ARMISelLowering.cpp revision 92e3916c3b750f7eb4f41e14e401434b713e558b
1//===-- ARMISelLowering.cpp - ARM DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that ARM uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "arm-isel"
16#include "ARM.h"
17#include "ARMAddressingModes.h"
18#include "ARMCallingConv.h"
19#include "ARMConstantPoolValue.h"
20#include "ARMISelLowering.h"
21#include "ARMMachineFunctionInfo.h"
22#include "ARMPerfectShuffle.h"
23#include "ARMRegisterInfo.h"
24#include "ARMSubtarget.h"
25#include "ARMTargetMachine.h"
26#include "ARMTargetObjectFile.h"
27#include "llvm/CallingConv.h"
28#include "llvm/Constants.h"
29#include "llvm/Function.h"
30#include "llvm/GlobalValue.h"
31#include "llvm/Instruction.h"
32#include "llvm/Instructions.h"
33#include "llvm/Intrinsics.h"
34#include "llvm/Type.h"
35#include "llvm/CodeGen/CallingConvLower.h"
36#include "llvm/CodeGen/IntrinsicLowering.h"
37#include "llvm/CodeGen/MachineBasicBlock.h"
38#include "llvm/CodeGen/MachineFrameInfo.h"
39#include "llvm/CodeGen/MachineFunction.h"
40#include "llvm/CodeGen/MachineInstrBuilder.h"
41#include "llvm/CodeGen/MachineRegisterInfo.h"
42#include "llvm/CodeGen/PseudoSourceValue.h"
43#include "llvm/CodeGen/SelectionDAG.h"
44#include "llvm/MC/MCSectionMachO.h"
45#include "llvm/Target/TargetOptions.h"
46#include "llvm/ADT/VectorExtras.h"
47#include "llvm/ADT/StringExtras.h"
48#include "llvm/ADT/Statistic.h"
49#include "llvm/Support/CommandLine.h"
50#include "llvm/Support/ErrorHandling.h"
51#include "llvm/Support/MathExtras.h"
52#include "llvm/Support/raw_ostream.h"
53#include <sstream>
54using namespace llvm;
55
56STATISTIC(NumTailCalls, "Number of tail calls");
57STATISTIC(NumMovwMovt, "Number of GAs materialized with movw + movt");
58
59// This option should go away when tail calls fully work.
60static cl::opt<bool>
61EnableARMTailCalls("arm-tail-calls", cl::Hidden,
62  cl::desc("Generate tail calls (TEMPORARY OPTION)."),
63  cl::init(false));
64
65cl::opt<bool>
66EnableARMLongCalls("arm-long-calls", cl::Hidden,
67  cl::desc("Generate calls via indirect call instructions"),
68  cl::init(false));
69
70static cl::opt<bool>
71ARMInterworking("arm-interworking", cl::Hidden,
72  cl::desc("Enable / disable ARM interworking (for debugging only)"),
73  cl::init(true));
74
75void ARMTargetLowering::addTypeForNEON(EVT VT, EVT PromotedLdStVT,
76                                       EVT PromotedBitwiseVT) {
77  if (VT != PromotedLdStVT) {
78    setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote);
79    AddPromotedToType (ISD::LOAD, VT.getSimpleVT(),
80                       PromotedLdStVT.getSimpleVT());
81
82    setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote);
83    AddPromotedToType (ISD::STORE, VT.getSimpleVT(),
84                       PromotedLdStVT.getSimpleVT());
85  }
86
87  EVT ElemTy = VT.getVectorElementType();
88  if (ElemTy != MVT::i64 && ElemTy != MVT::f64)
89    setOperationAction(ISD::VSETCC, VT.getSimpleVT(), Custom);
90  setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT.getSimpleVT(), Custom);
91  if (ElemTy != MVT::i32) {
92    setOperationAction(ISD::SINT_TO_FP, VT.getSimpleVT(), Expand);
93    setOperationAction(ISD::UINT_TO_FP, VT.getSimpleVT(), Expand);
94    setOperationAction(ISD::FP_TO_SINT, VT.getSimpleVT(), Expand);
95    setOperationAction(ISD::FP_TO_UINT, VT.getSimpleVT(), Expand);
96  }
97  setOperationAction(ISD::BUILD_VECTOR, VT.getSimpleVT(), Custom);
98  setOperationAction(ISD::VECTOR_SHUFFLE, VT.getSimpleVT(), Custom);
99  setOperationAction(ISD::CONCAT_VECTORS, VT.getSimpleVT(), Legal);
100  setOperationAction(ISD::EXTRACT_SUBVECTOR, VT.getSimpleVT(), Legal);
101  setOperationAction(ISD::SELECT, VT.getSimpleVT(), Expand);
102  setOperationAction(ISD::SELECT_CC, VT.getSimpleVT(), Expand);
103  if (VT.isInteger()) {
104    setOperationAction(ISD::SHL, VT.getSimpleVT(), Custom);
105    setOperationAction(ISD::SRA, VT.getSimpleVT(), Custom);
106    setOperationAction(ISD::SRL, VT.getSimpleVT(), Custom);
107    setLoadExtAction(ISD::SEXTLOAD, VT.getSimpleVT(), Expand);
108    setLoadExtAction(ISD::ZEXTLOAD, VT.getSimpleVT(), Expand);
109    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
110         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
111      setTruncStoreAction(VT.getSimpleVT(),
112                          (MVT::SimpleValueType)InnerVT, Expand);
113  }
114  setLoadExtAction(ISD::EXTLOAD, VT.getSimpleVT(), Expand);
115
116  // Promote all bit-wise operations.
117  if (VT.isInteger() && VT != PromotedBitwiseVT) {
118    setOperationAction(ISD::AND, VT.getSimpleVT(), Promote);
119    AddPromotedToType (ISD::AND, VT.getSimpleVT(),
120                       PromotedBitwiseVT.getSimpleVT());
121    setOperationAction(ISD::OR,  VT.getSimpleVT(), Promote);
122    AddPromotedToType (ISD::OR,  VT.getSimpleVT(),
123                       PromotedBitwiseVT.getSimpleVT());
124    setOperationAction(ISD::XOR, VT.getSimpleVT(), Promote);
125    AddPromotedToType (ISD::XOR, VT.getSimpleVT(),
126                       PromotedBitwiseVT.getSimpleVT());
127  }
128
129  // Neon does not support vector divide/remainder operations.
130  setOperationAction(ISD::SDIV, VT.getSimpleVT(), Expand);
131  setOperationAction(ISD::UDIV, VT.getSimpleVT(), Expand);
132  setOperationAction(ISD::FDIV, VT.getSimpleVT(), Expand);
133  setOperationAction(ISD::SREM, VT.getSimpleVT(), Expand);
134  setOperationAction(ISD::UREM, VT.getSimpleVT(), Expand);
135  setOperationAction(ISD::FREM, VT.getSimpleVT(), Expand);
136}
137
138void ARMTargetLowering::addDRTypeForNEON(EVT VT) {
139  addRegisterClass(VT, ARM::DPRRegisterClass);
140  addTypeForNEON(VT, MVT::f64, MVT::v2i32);
141}
142
143void ARMTargetLowering::addQRTypeForNEON(EVT VT) {
144  addRegisterClass(VT, ARM::QPRRegisterClass);
145  addTypeForNEON(VT, MVT::v2f64, MVT::v4i32);
146}
147
148static TargetLoweringObjectFile *createTLOF(TargetMachine &TM) {
149  if (TM.getSubtarget<ARMSubtarget>().isTargetDarwin())
150    return new TargetLoweringObjectFileMachO();
151
152  return new ARMElfTargetObjectFile();
153}
154
155ARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
156    : TargetLowering(TM, createTLOF(TM)) {
157  Subtarget = &TM.getSubtarget<ARMSubtarget>();
158  RegInfo = TM.getRegisterInfo();
159  Itins = TM.getInstrItineraryData();
160
161  if (Subtarget->isTargetDarwin()) {
162    // Uses VFP for Thumb libfuncs if available.
163    if (Subtarget->isThumb() && Subtarget->hasVFP2()) {
164      // Single-precision floating-point arithmetic.
165      setLibcallName(RTLIB::ADD_F32, "__addsf3vfp");
166      setLibcallName(RTLIB::SUB_F32, "__subsf3vfp");
167      setLibcallName(RTLIB::MUL_F32, "__mulsf3vfp");
168      setLibcallName(RTLIB::DIV_F32, "__divsf3vfp");
169
170      // Double-precision floating-point arithmetic.
171      setLibcallName(RTLIB::ADD_F64, "__adddf3vfp");
172      setLibcallName(RTLIB::SUB_F64, "__subdf3vfp");
173      setLibcallName(RTLIB::MUL_F64, "__muldf3vfp");
174      setLibcallName(RTLIB::DIV_F64, "__divdf3vfp");
175
176      // Single-precision comparisons.
177      setLibcallName(RTLIB::OEQ_F32, "__eqsf2vfp");
178      setLibcallName(RTLIB::UNE_F32, "__nesf2vfp");
179      setLibcallName(RTLIB::OLT_F32, "__ltsf2vfp");
180      setLibcallName(RTLIB::OLE_F32, "__lesf2vfp");
181      setLibcallName(RTLIB::OGE_F32, "__gesf2vfp");
182      setLibcallName(RTLIB::OGT_F32, "__gtsf2vfp");
183      setLibcallName(RTLIB::UO_F32,  "__unordsf2vfp");
184      setLibcallName(RTLIB::O_F32,   "__unordsf2vfp");
185
186      setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
187      setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETNE);
188      setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
189      setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
190      setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
191      setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
192      setCmpLibcallCC(RTLIB::UO_F32,  ISD::SETNE);
193      setCmpLibcallCC(RTLIB::O_F32,   ISD::SETEQ);
194
195      // Double-precision comparisons.
196      setLibcallName(RTLIB::OEQ_F64, "__eqdf2vfp");
197      setLibcallName(RTLIB::UNE_F64, "__nedf2vfp");
198      setLibcallName(RTLIB::OLT_F64, "__ltdf2vfp");
199      setLibcallName(RTLIB::OLE_F64, "__ledf2vfp");
200      setLibcallName(RTLIB::OGE_F64, "__gedf2vfp");
201      setLibcallName(RTLIB::OGT_F64, "__gtdf2vfp");
202      setLibcallName(RTLIB::UO_F64,  "__unorddf2vfp");
203      setLibcallName(RTLIB::O_F64,   "__unorddf2vfp");
204
205      setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
206      setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETNE);
207      setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
208      setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
209      setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
210      setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
211      setCmpLibcallCC(RTLIB::UO_F64,  ISD::SETNE);
212      setCmpLibcallCC(RTLIB::O_F64,   ISD::SETEQ);
213
214      // Floating-point to integer conversions.
215      // i64 conversions are done via library routines even when generating VFP
216      // instructions, so use the same ones.
217      setLibcallName(RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp");
218      setLibcallName(RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp");
219      setLibcallName(RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp");
220      setLibcallName(RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp");
221
222      // Conversions between floating types.
223      setLibcallName(RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp");
224      setLibcallName(RTLIB::FPEXT_F32_F64,   "__extendsfdf2vfp");
225
226      // Integer to floating-point conversions.
227      // i64 conversions are done via library routines even when generating VFP
228      // instructions, so use the same ones.
229      // FIXME: There appears to be some naming inconsistency in ARM libgcc:
230      // e.g., __floatunsidf vs. __floatunssidfvfp.
231      setLibcallName(RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp");
232      setLibcallName(RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp");
233      setLibcallName(RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp");
234      setLibcallName(RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp");
235    }
236  }
237
238  // These libcalls are not available in 32-bit.
239  setLibcallName(RTLIB::SHL_I128, 0);
240  setLibcallName(RTLIB::SRL_I128, 0);
241  setLibcallName(RTLIB::SRA_I128, 0);
242
243  if (Subtarget->isAAPCS_ABI()) {
244    // Double-precision floating-point arithmetic helper functions
245    // RTABI chapter 4.1.2, Table 2
246    setLibcallName(RTLIB::ADD_F64, "__aeabi_dadd");
247    setLibcallName(RTLIB::DIV_F64, "__aeabi_ddiv");
248    setLibcallName(RTLIB::MUL_F64, "__aeabi_dmul");
249    setLibcallName(RTLIB::SUB_F64, "__aeabi_dsub");
250    setLibcallCallingConv(RTLIB::ADD_F64, CallingConv::ARM_AAPCS);
251    setLibcallCallingConv(RTLIB::DIV_F64, CallingConv::ARM_AAPCS);
252    setLibcallCallingConv(RTLIB::MUL_F64, CallingConv::ARM_AAPCS);
253    setLibcallCallingConv(RTLIB::SUB_F64, CallingConv::ARM_AAPCS);
254
255    // Double-precision floating-point comparison helper functions
256    // RTABI chapter 4.1.2, Table 3
257    setLibcallName(RTLIB::OEQ_F64, "__aeabi_dcmpeq");
258    setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
259    setLibcallName(RTLIB::UNE_F64, "__aeabi_dcmpeq");
260    setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETEQ);
261    setLibcallName(RTLIB::OLT_F64, "__aeabi_dcmplt");
262    setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
263    setLibcallName(RTLIB::OLE_F64, "__aeabi_dcmple");
264    setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
265    setLibcallName(RTLIB::OGE_F64, "__aeabi_dcmpge");
266    setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
267    setLibcallName(RTLIB::OGT_F64, "__aeabi_dcmpgt");
268    setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
269    setLibcallName(RTLIB::UO_F64,  "__aeabi_dcmpun");
270    setCmpLibcallCC(RTLIB::UO_F64,  ISD::SETNE);
271    setLibcallName(RTLIB::O_F64,   "__aeabi_dcmpun");
272    setCmpLibcallCC(RTLIB::O_F64,   ISD::SETEQ);
273    setLibcallCallingConv(RTLIB::OEQ_F64, CallingConv::ARM_AAPCS);
274    setLibcallCallingConv(RTLIB::UNE_F64, CallingConv::ARM_AAPCS);
275    setLibcallCallingConv(RTLIB::OLT_F64, CallingConv::ARM_AAPCS);
276    setLibcallCallingConv(RTLIB::OLE_F64, CallingConv::ARM_AAPCS);
277    setLibcallCallingConv(RTLIB::OGE_F64, CallingConv::ARM_AAPCS);
278    setLibcallCallingConv(RTLIB::OGT_F64, CallingConv::ARM_AAPCS);
279    setLibcallCallingConv(RTLIB::UO_F64, CallingConv::ARM_AAPCS);
280    setLibcallCallingConv(RTLIB::O_F64, CallingConv::ARM_AAPCS);
281
282    // Single-precision floating-point arithmetic helper functions
283    // RTABI chapter 4.1.2, Table 4
284    setLibcallName(RTLIB::ADD_F32, "__aeabi_fadd");
285    setLibcallName(RTLIB::DIV_F32, "__aeabi_fdiv");
286    setLibcallName(RTLIB::MUL_F32, "__aeabi_fmul");
287    setLibcallName(RTLIB::SUB_F32, "__aeabi_fsub");
288    setLibcallCallingConv(RTLIB::ADD_F32, CallingConv::ARM_AAPCS);
289    setLibcallCallingConv(RTLIB::DIV_F32, CallingConv::ARM_AAPCS);
290    setLibcallCallingConv(RTLIB::MUL_F32, CallingConv::ARM_AAPCS);
291    setLibcallCallingConv(RTLIB::SUB_F32, CallingConv::ARM_AAPCS);
292
293    // Single-precision floating-point comparison helper functions
294    // RTABI chapter 4.1.2, Table 5
295    setLibcallName(RTLIB::OEQ_F32, "__aeabi_fcmpeq");
296    setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
297    setLibcallName(RTLIB::UNE_F32, "__aeabi_fcmpeq");
298    setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETEQ);
299    setLibcallName(RTLIB::OLT_F32, "__aeabi_fcmplt");
300    setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
301    setLibcallName(RTLIB::OLE_F32, "__aeabi_fcmple");
302    setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
303    setLibcallName(RTLIB::OGE_F32, "__aeabi_fcmpge");
304    setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
305    setLibcallName(RTLIB::OGT_F32, "__aeabi_fcmpgt");
306    setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
307    setLibcallName(RTLIB::UO_F32,  "__aeabi_fcmpun");
308    setCmpLibcallCC(RTLIB::UO_F32,  ISD::SETNE);
309    setLibcallName(RTLIB::O_F32,   "__aeabi_fcmpun");
310    setCmpLibcallCC(RTLIB::O_F32,   ISD::SETEQ);
311    setLibcallCallingConv(RTLIB::OEQ_F32, CallingConv::ARM_AAPCS);
312    setLibcallCallingConv(RTLIB::UNE_F32, CallingConv::ARM_AAPCS);
313    setLibcallCallingConv(RTLIB::OLT_F32, CallingConv::ARM_AAPCS);
314    setLibcallCallingConv(RTLIB::OLE_F32, CallingConv::ARM_AAPCS);
315    setLibcallCallingConv(RTLIB::OGE_F32, CallingConv::ARM_AAPCS);
316    setLibcallCallingConv(RTLIB::OGT_F32, CallingConv::ARM_AAPCS);
317    setLibcallCallingConv(RTLIB::UO_F32, CallingConv::ARM_AAPCS);
318    setLibcallCallingConv(RTLIB::O_F32, CallingConv::ARM_AAPCS);
319
320    // Floating-point to integer conversions.
321    // RTABI chapter 4.1.2, Table 6
322    setLibcallName(RTLIB::FPTOSINT_F64_I32, "__aeabi_d2iz");
323    setLibcallName(RTLIB::FPTOUINT_F64_I32, "__aeabi_d2uiz");
324    setLibcallName(RTLIB::FPTOSINT_F64_I64, "__aeabi_d2lz");
325    setLibcallName(RTLIB::FPTOUINT_F64_I64, "__aeabi_d2ulz");
326    setLibcallName(RTLIB::FPTOSINT_F32_I32, "__aeabi_f2iz");
327    setLibcallName(RTLIB::FPTOUINT_F32_I32, "__aeabi_f2uiz");
328    setLibcallName(RTLIB::FPTOSINT_F32_I64, "__aeabi_f2lz");
329    setLibcallName(RTLIB::FPTOUINT_F32_I64, "__aeabi_f2ulz");
330    setLibcallCallingConv(RTLIB::FPTOSINT_F64_I32, CallingConv::ARM_AAPCS);
331    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I32, CallingConv::ARM_AAPCS);
332    setLibcallCallingConv(RTLIB::FPTOSINT_F64_I64, CallingConv::ARM_AAPCS);
333    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::ARM_AAPCS);
334    setLibcallCallingConv(RTLIB::FPTOSINT_F32_I32, CallingConv::ARM_AAPCS);
335    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I32, CallingConv::ARM_AAPCS);
336    setLibcallCallingConv(RTLIB::FPTOSINT_F32_I64, CallingConv::ARM_AAPCS);
337    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::ARM_AAPCS);
338
339    // Conversions between floating types.
340    // RTABI chapter 4.1.2, Table 7
341    setLibcallName(RTLIB::FPROUND_F64_F32, "__aeabi_d2f");
342    setLibcallName(RTLIB::FPEXT_F32_F64,   "__aeabi_f2d");
343    setLibcallCallingConv(RTLIB::FPROUND_F64_F32, CallingConv::ARM_AAPCS);
344    setLibcallCallingConv(RTLIB::FPEXT_F32_F64, CallingConv::ARM_AAPCS);
345
346    // Integer to floating-point conversions.
347    // RTABI chapter 4.1.2, Table 8
348    setLibcallName(RTLIB::SINTTOFP_I32_F64, "__aeabi_i2d");
349    setLibcallName(RTLIB::UINTTOFP_I32_F64, "__aeabi_ui2d");
350    setLibcallName(RTLIB::SINTTOFP_I64_F64, "__aeabi_l2d");
351    setLibcallName(RTLIB::UINTTOFP_I64_F64, "__aeabi_ul2d");
352    setLibcallName(RTLIB::SINTTOFP_I32_F32, "__aeabi_i2f");
353    setLibcallName(RTLIB::UINTTOFP_I32_F32, "__aeabi_ui2f");
354    setLibcallName(RTLIB::SINTTOFP_I64_F32, "__aeabi_l2f");
355    setLibcallName(RTLIB::UINTTOFP_I64_F32, "__aeabi_ul2f");
356    setLibcallCallingConv(RTLIB::SINTTOFP_I32_F64, CallingConv::ARM_AAPCS);
357    setLibcallCallingConv(RTLIB::UINTTOFP_I32_F64, CallingConv::ARM_AAPCS);
358    setLibcallCallingConv(RTLIB::SINTTOFP_I64_F64, CallingConv::ARM_AAPCS);
359    setLibcallCallingConv(RTLIB::UINTTOFP_I64_F64, CallingConv::ARM_AAPCS);
360    setLibcallCallingConv(RTLIB::SINTTOFP_I32_F32, CallingConv::ARM_AAPCS);
361    setLibcallCallingConv(RTLIB::UINTTOFP_I32_F32, CallingConv::ARM_AAPCS);
362    setLibcallCallingConv(RTLIB::SINTTOFP_I64_F32, CallingConv::ARM_AAPCS);
363    setLibcallCallingConv(RTLIB::UINTTOFP_I64_F32, CallingConv::ARM_AAPCS);
364
365    // Long long helper functions
366    // RTABI chapter 4.2, Table 9
367    setLibcallName(RTLIB::MUL_I64,  "__aeabi_lmul");
368    setLibcallName(RTLIB::SDIV_I64, "__aeabi_ldivmod");
369    setLibcallName(RTLIB::UDIV_I64, "__aeabi_uldivmod");
370    setLibcallName(RTLIB::SHL_I64, "__aeabi_llsl");
371    setLibcallName(RTLIB::SRL_I64, "__aeabi_llsr");
372    setLibcallName(RTLIB::SRA_I64, "__aeabi_lasr");
373    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::ARM_AAPCS);
374    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::ARM_AAPCS);
375    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::ARM_AAPCS);
376    setLibcallCallingConv(RTLIB::SHL_I64, CallingConv::ARM_AAPCS);
377    setLibcallCallingConv(RTLIB::SRL_I64, CallingConv::ARM_AAPCS);
378    setLibcallCallingConv(RTLIB::SRA_I64, CallingConv::ARM_AAPCS);
379
380    // Integer division functions
381    // RTABI chapter 4.3.1
382    setLibcallName(RTLIB::SDIV_I8,  "__aeabi_idiv");
383    setLibcallName(RTLIB::SDIV_I16, "__aeabi_idiv");
384    setLibcallName(RTLIB::SDIV_I32, "__aeabi_idiv");
385    setLibcallName(RTLIB::UDIV_I8,  "__aeabi_uidiv");
386    setLibcallName(RTLIB::UDIV_I16, "__aeabi_uidiv");
387    setLibcallName(RTLIB::UDIV_I32, "__aeabi_uidiv");
388    setLibcallCallingConv(RTLIB::SDIV_I8, CallingConv::ARM_AAPCS);
389    setLibcallCallingConv(RTLIB::SDIV_I16, CallingConv::ARM_AAPCS);
390    setLibcallCallingConv(RTLIB::SDIV_I32, CallingConv::ARM_AAPCS);
391    setLibcallCallingConv(RTLIB::UDIV_I8, CallingConv::ARM_AAPCS);
392    setLibcallCallingConv(RTLIB::UDIV_I16, CallingConv::ARM_AAPCS);
393    setLibcallCallingConv(RTLIB::UDIV_I32, CallingConv::ARM_AAPCS);
394  }
395
396  if (Subtarget->isThumb1Only())
397    addRegisterClass(MVT::i32, ARM::tGPRRegisterClass);
398  else
399    addRegisterClass(MVT::i32, ARM::GPRRegisterClass);
400  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
401    addRegisterClass(MVT::f32, ARM::SPRRegisterClass);
402    if (!Subtarget->isFPOnlySP())
403      addRegisterClass(MVT::f64, ARM::DPRRegisterClass);
404
405    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
406  }
407
408  if (Subtarget->hasNEON()) {
409    addDRTypeForNEON(MVT::v2f32);
410    addDRTypeForNEON(MVT::v8i8);
411    addDRTypeForNEON(MVT::v4i16);
412    addDRTypeForNEON(MVT::v2i32);
413    addDRTypeForNEON(MVT::v1i64);
414
415    addQRTypeForNEON(MVT::v4f32);
416    addQRTypeForNEON(MVT::v2f64);
417    addQRTypeForNEON(MVT::v16i8);
418    addQRTypeForNEON(MVT::v8i16);
419    addQRTypeForNEON(MVT::v4i32);
420    addQRTypeForNEON(MVT::v2i64);
421
422    // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
423    // neither Neon nor VFP support any arithmetic operations on it.
424    setOperationAction(ISD::FADD, MVT::v2f64, Expand);
425    setOperationAction(ISD::FSUB, MVT::v2f64, Expand);
426    setOperationAction(ISD::FMUL, MVT::v2f64, Expand);
427    setOperationAction(ISD::FDIV, MVT::v2f64, Expand);
428    setOperationAction(ISD::FREM, MVT::v2f64, Expand);
429    setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand);
430    setOperationAction(ISD::VSETCC, MVT::v2f64, Expand);
431    setOperationAction(ISD::FNEG, MVT::v2f64, Expand);
432    setOperationAction(ISD::FABS, MVT::v2f64, Expand);
433    setOperationAction(ISD::FSQRT, MVT::v2f64, Expand);
434    setOperationAction(ISD::FSIN, MVT::v2f64, Expand);
435    setOperationAction(ISD::FCOS, MVT::v2f64, Expand);
436    setOperationAction(ISD::FPOWI, MVT::v2f64, Expand);
437    setOperationAction(ISD::FPOW, MVT::v2f64, Expand);
438    setOperationAction(ISD::FLOG, MVT::v2f64, Expand);
439    setOperationAction(ISD::FLOG2, MVT::v2f64, Expand);
440    setOperationAction(ISD::FLOG10, MVT::v2f64, Expand);
441    setOperationAction(ISD::FEXP, MVT::v2f64, Expand);
442    setOperationAction(ISD::FEXP2, MVT::v2f64, Expand);
443    setOperationAction(ISD::FCEIL, MVT::v2f64, Expand);
444    setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand);
445    setOperationAction(ISD::FRINT, MVT::v2f64, Expand);
446    setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand);
447    setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand);
448
449    setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand);
450
451    // Neon does not support some operations on v1i64 and v2i64 types.
452    setOperationAction(ISD::MUL, MVT::v1i64, Expand);
453    // Custom handling for some quad-vector types to detect VMULL.
454    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
455    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
456    setOperationAction(ISD::MUL, MVT::v2i64, Custom);
457    // Custom handling for some vector types to avoid expensive expansions
458    setOperationAction(ISD::SDIV, MVT::v4i16, Custom);
459    setOperationAction(ISD::SDIV, MVT::v8i8, Custom);
460    setOperationAction(ISD::UDIV, MVT::v4i16, Custom);
461    setOperationAction(ISD::UDIV, MVT::v8i8, Custom);
462    setOperationAction(ISD::VSETCC, MVT::v1i64, Expand);
463    setOperationAction(ISD::VSETCC, MVT::v2i64, Expand);
464    // Neon does not have single instruction SINT_TO_FP and UINT_TO_FP with
465    // a destination type that is wider than the source.
466    setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
467    setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
468
469    setTargetDAGCombine(ISD::INTRINSIC_VOID);
470    setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
471    setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
472    setTargetDAGCombine(ISD::SHL);
473    setTargetDAGCombine(ISD::SRL);
474    setTargetDAGCombine(ISD::SRA);
475    setTargetDAGCombine(ISD::SIGN_EXTEND);
476    setTargetDAGCombine(ISD::ZERO_EXTEND);
477    setTargetDAGCombine(ISD::ANY_EXTEND);
478    setTargetDAGCombine(ISD::SELECT_CC);
479    setTargetDAGCombine(ISD::BUILD_VECTOR);
480    setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
481    setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
482    setTargetDAGCombine(ISD::STORE);
483  }
484
485  computeRegisterProperties();
486
487  // ARM does not have f32 extending load.
488  setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
489
490  // ARM does not have i1 sign extending load.
491  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
492
493  // ARM supports all 4 flavors of integer indexed load / store.
494  if (!Subtarget->isThumb1Only()) {
495    for (unsigned im = (unsigned)ISD::PRE_INC;
496         im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
497      setIndexedLoadAction(im,  MVT::i1,  Legal);
498      setIndexedLoadAction(im,  MVT::i8,  Legal);
499      setIndexedLoadAction(im,  MVT::i16, Legal);
500      setIndexedLoadAction(im,  MVT::i32, Legal);
501      setIndexedStoreAction(im, MVT::i1,  Legal);
502      setIndexedStoreAction(im, MVT::i8,  Legal);
503      setIndexedStoreAction(im, MVT::i16, Legal);
504      setIndexedStoreAction(im, MVT::i32, Legal);
505    }
506  }
507
508  // i64 operation support.
509  if (Subtarget->isThumb1Only()) {
510    setOperationAction(ISD::MUL,     MVT::i64, Expand);
511    setOperationAction(ISD::MULHU,   MVT::i32, Expand);
512    setOperationAction(ISD::MULHS,   MVT::i32, Expand);
513    setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
514    setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
515  } else {
516    setOperationAction(ISD::MUL,     MVT::i64, Expand);
517    setOperationAction(ISD::MULHU,   MVT::i32, Expand);
518    if (!Subtarget->hasV6Ops())
519      setOperationAction(ISD::MULHS, MVT::i32, Expand);
520  }
521  setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
522  setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
523  setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
524  setOperationAction(ISD::SRL,       MVT::i64, Custom);
525  setOperationAction(ISD::SRA,       MVT::i64, Custom);
526
527  // ARM does not have ROTL.
528  setOperationAction(ISD::ROTL,  MVT::i32, Expand);
529  setOperationAction(ISD::CTTZ,  MVT::i32, Custom);
530  setOperationAction(ISD::CTPOP, MVT::i32, Expand);
531  if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only())
532    setOperationAction(ISD::CTLZ, MVT::i32, Expand);
533
534  // Only ARMv6 has BSWAP.
535  if (!Subtarget->hasV6Ops())
536    setOperationAction(ISD::BSWAP, MVT::i32, Expand);
537
538  // These are expanded into libcalls.
539  if (!Subtarget->hasDivide() || !Subtarget->isThumb2()) {
540    // v7M has a hardware divider
541    setOperationAction(ISD::SDIV,  MVT::i32, Expand);
542    setOperationAction(ISD::UDIV,  MVT::i32, Expand);
543  }
544  setOperationAction(ISD::SREM,  MVT::i32, Expand);
545  setOperationAction(ISD::UREM,  MVT::i32, Expand);
546  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
547  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
548
549  setOperationAction(ISD::GlobalAddress, MVT::i32,   Custom);
550  setOperationAction(ISD::ConstantPool,  MVT::i32,   Custom);
551  setOperationAction(ISD::GLOBAL_OFFSET_TABLE, MVT::i32, Custom);
552  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
553  setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
554
555  setOperationAction(ISD::TRAP, MVT::Other, Legal);
556
557  // Use the default implementation.
558  setOperationAction(ISD::VASTART,            MVT::Other, Custom);
559  setOperationAction(ISD::VAARG,              MVT::Other, Expand);
560  setOperationAction(ISD::VACOPY,             MVT::Other, Expand);
561  setOperationAction(ISD::VAEND,              MVT::Other, Expand);
562  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
563  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
564  setOperationAction(ISD::EHSELECTION,        MVT::i32,   Expand);
565  setOperationAction(ISD::EXCEPTIONADDR,      MVT::i32,   Expand);
566  setExceptionPointerRegister(ARM::R0);
567  setExceptionSelectorRegister(ARM::R1);
568
569  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
570  // ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use
571  // the default expansion.
572  if (Subtarget->hasDataBarrier() ||
573      (Subtarget->hasV6Ops() && !Subtarget->isThumb())) {
574    // membarrier needs custom lowering; the rest are legal and handled
575    // normally.
576    setOperationAction(ISD::MEMBARRIER, MVT::Other, Custom);
577  } else {
578    // Set them all for expansion, which will force libcalls.
579    setOperationAction(ISD::MEMBARRIER, MVT::Other, Expand);
580    setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i8,  Expand);
581    setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i16, Expand);
582    setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i32, Expand);
583    setOperationAction(ISD::ATOMIC_SWAP,      MVT::i8,  Expand);
584    setOperationAction(ISD::ATOMIC_SWAP,      MVT::i16, Expand);
585    setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Expand);
586    setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i8,  Expand);
587    setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i16, Expand);
588    setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Expand);
589    setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i8,  Expand);
590    setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i16, Expand);
591    setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Expand);
592    setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i8,  Expand);
593    setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i16, Expand);
594    setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Expand);
595    setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i8,  Expand);
596    setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i16, Expand);
597    setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Expand);
598    setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i8,  Expand);
599    setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i16, Expand);
600    setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Expand);
601    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i8,  Expand);
602    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i16, Expand);
603    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand);
604    // Since the libcalls include locking, fold in the fences
605    setShouldFoldAtomicFences(true);
606  }
607  // 64-bit versions are always libcalls (for now)
608  setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i64, Expand);
609  setOperationAction(ISD::ATOMIC_SWAP,      MVT::i64, Expand);
610  setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i64, Expand);
611  setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i64, Expand);
612  setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i64, Expand);
613  setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i64, Expand);
614  setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i64, Expand);
615  setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Expand);
616
617  setOperationAction(ISD::PREFETCH,         MVT::Other, Custom);
618
619  // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
620  if (!Subtarget->hasV6Ops()) {
621    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
622    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
623  }
624  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
625
626  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
627    // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
628    // iff target supports vfp2.
629    setOperationAction(ISD::BITCAST, MVT::i64, Custom);
630    setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
631  }
632
633  // We want to custom lower some of our intrinsics.
634  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
635  if (Subtarget->isTargetDarwin()) {
636    setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
637    setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
638    setOperationAction(ISD::EH_SJLJ_DISPATCHSETUP, MVT::Other, Custom);
639  }
640
641  setOperationAction(ISD::SETCC,     MVT::i32, Expand);
642  setOperationAction(ISD::SETCC,     MVT::f32, Expand);
643  setOperationAction(ISD::SETCC,     MVT::f64, Expand);
644  setOperationAction(ISD::SELECT,    MVT::i32, Custom);
645  setOperationAction(ISD::SELECT,    MVT::f32, Custom);
646  setOperationAction(ISD::SELECT,    MVT::f64, Custom);
647  setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
648  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
649  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
650
651  setOperationAction(ISD::BRCOND,    MVT::Other, Expand);
652  setOperationAction(ISD::BR_CC,     MVT::i32,   Custom);
653  setOperationAction(ISD::BR_CC,     MVT::f32,   Custom);
654  setOperationAction(ISD::BR_CC,     MVT::f64,   Custom);
655  setOperationAction(ISD::BR_JT,     MVT::Other, Custom);
656
657  // We don't support sin/cos/fmod/copysign/pow
658  setOperationAction(ISD::FSIN,      MVT::f64, Expand);
659  setOperationAction(ISD::FSIN,      MVT::f32, Expand);
660  setOperationAction(ISD::FCOS,      MVT::f32, Expand);
661  setOperationAction(ISD::FCOS,      MVT::f64, Expand);
662  setOperationAction(ISD::FREM,      MVT::f64, Expand);
663  setOperationAction(ISD::FREM,      MVT::f32, Expand);
664  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
665    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
666    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
667  }
668  setOperationAction(ISD::FPOW,      MVT::f64, Expand);
669  setOperationAction(ISD::FPOW,      MVT::f32, Expand);
670
671  // Various VFP goodness
672  if (!UseSoftFloat && !Subtarget->isThumb1Only()) {
673    // int <-> fp are custom expanded into bit_convert + ARMISD ops.
674    if (Subtarget->hasVFP2()) {
675      setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
676      setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
677      setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
678      setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
679    }
680    // Special handling for half-precision FP.
681    if (!Subtarget->hasFP16()) {
682      setOperationAction(ISD::FP16_TO_FP32, MVT::f32, Expand);
683      setOperationAction(ISD::FP32_TO_FP16, MVT::i32, Expand);
684    }
685  }
686
687  // We have target-specific dag combine patterns for the following nodes:
688  // ARMISD::VMOVRRD  - No need to call setTargetDAGCombine
689  setTargetDAGCombine(ISD::ADD);
690  setTargetDAGCombine(ISD::SUB);
691  setTargetDAGCombine(ISD::MUL);
692
693  if (Subtarget->hasV6T2Ops() || Subtarget->hasNEON())
694    setTargetDAGCombine(ISD::OR);
695  if (Subtarget->hasNEON())
696    setTargetDAGCombine(ISD::AND);
697
698  setStackPointerRegisterToSaveRestore(ARM::SP);
699
700  if (UseSoftFloat || Subtarget->isThumb1Only() || !Subtarget->hasVFP2())
701    setSchedulingPreference(Sched::RegPressure);
702  else
703    setSchedulingPreference(Sched::Hybrid);
704
705  //// temporary - rewrite interface to use type
706  maxStoresPerMemcpy = maxStoresPerMemcpyOptSize = 1;
707
708  // On ARM arguments smaller than 4 bytes are extended, so all arguments
709  // are at least 4 bytes aligned.
710  setMinStackArgumentAlignment(4);
711
712  benefitFromCodePlacementOpt = true;
713}
714
715// FIXME: It might make sense to define the representative register class as the
716// nearest super-register that has a non-null superset. For example, DPR_VFP2 is
717// a super-register of SPR, and DPR is a superset if DPR_VFP2. Consequently,
718// SPR's representative would be DPR_VFP2. This should work well if register
719// pressure tracking were modified such that a register use would increment the
720// pressure of the register class's representative and all of it's super
721// classes' representatives transitively. We have not implemented this because
722// of the difficulty prior to coalescing of modeling operand register classes
723// due to the common occurence of cross class copies and subregister insertions
724// and extractions.
725std::pair<const TargetRegisterClass*, uint8_t>
726ARMTargetLowering::findRepresentativeClass(EVT VT) const{
727  const TargetRegisterClass *RRC = 0;
728  uint8_t Cost = 1;
729  switch (VT.getSimpleVT().SimpleTy) {
730  default:
731    return TargetLowering::findRepresentativeClass(VT);
732  // Use DPR as representative register class for all floating point
733  // and vector types. Since there are 32 SPR registers and 32 DPR registers so
734  // the cost is 1 for both f32 and f64.
735  case MVT::f32: case MVT::f64: case MVT::v8i8: case MVT::v4i16:
736  case MVT::v2i32: case MVT::v1i64: case MVT::v2f32:
737    RRC = ARM::DPRRegisterClass;
738    // When NEON is used for SP, only half of the register file is available
739    // because operations that define both SP and DP results will be constrained
740    // to the VFP2 class (D0-D15). We currently model this constraint prior to
741    // coalescing by double-counting the SP regs. See the FIXME above.
742    if (Subtarget->useNEONForSinglePrecisionFP())
743      Cost = 2;
744    break;
745  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
746  case MVT::v4f32: case MVT::v2f64:
747    RRC = ARM::DPRRegisterClass;
748    Cost = 2;
749    break;
750  case MVT::v4i64:
751    RRC = ARM::DPRRegisterClass;
752    Cost = 4;
753    break;
754  case MVT::v8i64:
755    RRC = ARM::DPRRegisterClass;
756    Cost = 8;
757    break;
758  }
759  return std::make_pair(RRC, Cost);
760}
761
762const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
763  switch (Opcode) {
764  default: return 0;
765  case ARMISD::Wrapper:       return "ARMISD::Wrapper";
766  case ARMISD::WrapperDYN:    return "ARMISD::WrapperDYN";
767  case ARMISD::WrapperPIC:    return "ARMISD::WrapperPIC";
768  case ARMISD::WrapperJT:     return "ARMISD::WrapperJT";
769  case ARMISD::CALL:          return "ARMISD::CALL";
770  case ARMISD::CALL_PRED:     return "ARMISD::CALL_PRED";
771  case ARMISD::CALL_NOLINK:   return "ARMISD::CALL_NOLINK";
772  case ARMISD::tCALL:         return "ARMISD::tCALL";
773  case ARMISD::BRCOND:        return "ARMISD::BRCOND";
774  case ARMISD::BR_JT:         return "ARMISD::BR_JT";
775  case ARMISD::BR2_JT:        return "ARMISD::BR2_JT";
776  case ARMISD::RET_FLAG:      return "ARMISD::RET_FLAG";
777  case ARMISD::PIC_ADD:       return "ARMISD::PIC_ADD";
778  case ARMISD::CMP:           return "ARMISD::CMP";
779  case ARMISD::CMPZ:          return "ARMISD::CMPZ";
780  case ARMISD::CMPFP:         return "ARMISD::CMPFP";
781  case ARMISD::CMPFPw0:       return "ARMISD::CMPFPw0";
782  case ARMISD::BCC_i64:       return "ARMISD::BCC_i64";
783  case ARMISD::FMSTAT:        return "ARMISD::FMSTAT";
784  case ARMISD::CMOV:          return "ARMISD::CMOV";
785
786  case ARMISD::RBIT:          return "ARMISD::RBIT";
787
788  case ARMISD::FTOSI:         return "ARMISD::FTOSI";
789  case ARMISD::FTOUI:         return "ARMISD::FTOUI";
790  case ARMISD::SITOF:         return "ARMISD::SITOF";
791  case ARMISD::UITOF:         return "ARMISD::UITOF";
792
793  case ARMISD::SRL_FLAG:      return "ARMISD::SRL_FLAG";
794  case ARMISD::SRA_FLAG:      return "ARMISD::SRA_FLAG";
795  case ARMISD::RRX:           return "ARMISD::RRX";
796
797  case ARMISD::VMOVRRD:       return "ARMISD::VMOVRRD";
798  case ARMISD::VMOVDRR:       return "ARMISD::VMOVDRR";
799
800  case ARMISD::EH_SJLJ_SETJMP: return "ARMISD::EH_SJLJ_SETJMP";
801  case ARMISD::EH_SJLJ_LONGJMP:return "ARMISD::EH_SJLJ_LONGJMP";
802  case ARMISD::EH_SJLJ_DISPATCHSETUP:return "ARMISD::EH_SJLJ_DISPATCHSETUP";
803
804  case ARMISD::TC_RETURN:     return "ARMISD::TC_RETURN";
805
806  case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER";
807
808  case ARMISD::DYN_ALLOC:     return "ARMISD::DYN_ALLOC";
809
810  case ARMISD::MEMBARRIER:    return "ARMISD::MEMBARRIER";
811  case ARMISD::MEMBARRIER_MCR: return "ARMISD::MEMBARRIER_MCR";
812
813  case ARMISD::PRELOAD:       return "ARMISD::PRELOAD";
814
815  case ARMISD::VCEQ:          return "ARMISD::VCEQ";
816  case ARMISD::VCEQZ:         return "ARMISD::VCEQZ";
817  case ARMISD::VCGE:          return "ARMISD::VCGE";
818  case ARMISD::VCGEZ:         return "ARMISD::VCGEZ";
819  case ARMISD::VCLEZ:         return "ARMISD::VCLEZ";
820  case ARMISD::VCGEU:         return "ARMISD::VCGEU";
821  case ARMISD::VCGT:          return "ARMISD::VCGT";
822  case ARMISD::VCGTZ:         return "ARMISD::VCGTZ";
823  case ARMISD::VCLTZ:         return "ARMISD::VCLTZ";
824  case ARMISD::VCGTU:         return "ARMISD::VCGTU";
825  case ARMISD::VTST:          return "ARMISD::VTST";
826
827  case ARMISD::VSHL:          return "ARMISD::VSHL";
828  case ARMISD::VSHRs:         return "ARMISD::VSHRs";
829  case ARMISD::VSHRu:         return "ARMISD::VSHRu";
830  case ARMISD::VSHLLs:        return "ARMISD::VSHLLs";
831  case ARMISD::VSHLLu:        return "ARMISD::VSHLLu";
832  case ARMISD::VSHLLi:        return "ARMISD::VSHLLi";
833  case ARMISD::VSHRN:         return "ARMISD::VSHRN";
834  case ARMISD::VRSHRs:        return "ARMISD::VRSHRs";
835  case ARMISD::VRSHRu:        return "ARMISD::VRSHRu";
836  case ARMISD::VRSHRN:        return "ARMISD::VRSHRN";
837  case ARMISD::VQSHLs:        return "ARMISD::VQSHLs";
838  case ARMISD::VQSHLu:        return "ARMISD::VQSHLu";
839  case ARMISD::VQSHLsu:       return "ARMISD::VQSHLsu";
840  case ARMISD::VQSHRNs:       return "ARMISD::VQSHRNs";
841  case ARMISD::VQSHRNu:       return "ARMISD::VQSHRNu";
842  case ARMISD::VQSHRNsu:      return "ARMISD::VQSHRNsu";
843  case ARMISD::VQRSHRNs:      return "ARMISD::VQRSHRNs";
844  case ARMISD::VQRSHRNu:      return "ARMISD::VQRSHRNu";
845  case ARMISD::VQRSHRNsu:     return "ARMISD::VQRSHRNsu";
846  case ARMISD::VGETLANEu:     return "ARMISD::VGETLANEu";
847  case ARMISD::VGETLANEs:     return "ARMISD::VGETLANEs";
848  case ARMISD::VMOVIMM:       return "ARMISD::VMOVIMM";
849  case ARMISD::VMVNIMM:       return "ARMISD::VMVNIMM";
850  case ARMISD::VDUP:          return "ARMISD::VDUP";
851  case ARMISD::VDUPLANE:      return "ARMISD::VDUPLANE";
852  case ARMISD::VEXT:          return "ARMISD::VEXT";
853  case ARMISD::VREV64:        return "ARMISD::VREV64";
854  case ARMISD::VREV32:        return "ARMISD::VREV32";
855  case ARMISD::VREV16:        return "ARMISD::VREV16";
856  case ARMISD::VZIP:          return "ARMISD::VZIP";
857  case ARMISD::VUZP:          return "ARMISD::VUZP";
858  case ARMISD::VTRN:          return "ARMISD::VTRN";
859  case ARMISD::VTBL1:         return "ARMISD::VTBL1";
860  case ARMISD::VTBL2:         return "ARMISD::VTBL2";
861  case ARMISD::VMULLs:        return "ARMISD::VMULLs";
862  case ARMISD::VMULLu:        return "ARMISD::VMULLu";
863  case ARMISD::BUILD_VECTOR:  return "ARMISD::BUILD_VECTOR";
864  case ARMISD::FMAX:          return "ARMISD::FMAX";
865  case ARMISD::FMIN:          return "ARMISD::FMIN";
866  case ARMISD::BFI:           return "ARMISD::BFI";
867  case ARMISD::VORRIMM:       return "ARMISD::VORRIMM";
868  case ARMISD::VBICIMM:       return "ARMISD::VBICIMM";
869  case ARMISD::VLD2DUP:       return "ARMISD::VLD2DUP";
870  case ARMISD::VLD3DUP:       return "ARMISD::VLD3DUP";
871  case ARMISD::VLD4DUP:       return "ARMISD::VLD4DUP";
872  case ARMISD::VLD1_UPD:      return "ARMISD::VLD1_UPD";
873  case ARMISD::VLD2_UPD:      return "ARMISD::VLD2_UPD";
874  case ARMISD::VLD3_UPD:      return "ARMISD::VLD3_UPD";
875  case ARMISD::VLD4_UPD:      return "ARMISD::VLD4_UPD";
876  case ARMISD::VLD2LN_UPD:    return "ARMISD::VLD2LN_UPD";
877  case ARMISD::VLD3LN_UPD:    return "ARMISD::VLD3LN_UPD";
878  case ARMISD::VLD4LN_UPD:    return "ARMISD::VLD4LN_UPD";
879  case ARMISD::VLD2DUP_UPD:   return "ARMISD::VLD2DUP_UPD";
880  case ARMISD::VLD3DUP_UPD:   return "ARMISD::VLD3DUP_UPD";
881  case ARMISD::VLD4DUP_UPD:   return "ARMISD::VLD4DUP_UPD";
882  case ARMISD::VST1_UPD:      return "ARMISD::VST1_UPD";
883  case ARMISD::VST2_UPD:      return "ARMISD::VST2_UPD";
884  case ARMISD::VST3_UPD:      return "ARMISD::VST3_UPD";
885  case ARMISD::VST4_UPD:      return "ARMISD::VST4_UPD";
886  case ARMISD::VST2LN_UPD:    return "ARMISD::VST2LN_UPD";
887  case ARMISD::VST3LN_UPD:    return "ARMISD::VST3LN_UPD";
888  case ARMISD::VST4LN_UPD:    return "ARMISD::VST4LN_UPD";
889  }
890}
891
892/// getRegClassFor - Return the register class that should be used for the
893/// specified value type.
894TargetRegisterClass *ARMTargetLowering::getRegClassFor(EVT VT) const {
895  // Map v4i64 to QQ registers but do not make the type legal. Similarly map
896  // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
897  // load / store 4 to 8 consecutive D registers.
898  if (Subtarget->hasNEON()) {
899    if (VT == MVT::v4i64)
900      return ARM::QQPRRegisterClass;
901    else if (VT == MVT::v8i64)
902      return ARM::QQQQPRRegisterClass;
903  }
904  return TargetLowering::getRegClassFor(VT);
905}
906
907// Create a fast isel object.
908FastISel *
909ARMTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
910  return ARM::createFastISel(funcInfo);
911}
912
913/// getFunctionAlignment - Return the Log2 alignment of this function.
914unsigned ARMTargetLowering::getFunctionAlignment(const Function *F) const {
915  return getTargetMachine().getSubtarget<ARMSubtarget>().isThumb() ? 1 : 2;
916}
917
918/// getMaximalGlobalOffset - Returns the maximal possible offset which can
919/// be used for loads / stores from the global.
920unsigned ARMTargetLowering::getMaximalGlobalOffset() const {
921  return (Subtarget->isThumb1Only() ? 127 : 4095);
922}
923
924Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const {
925  unsigned NumVals = N->getNumValues();
926  if (!NumVals)
927    return Sched::RegPressure;
928
929  for (unsigned i = 0; i != NumVals; ++i) {
930    EVT VT = N->getValueType(i);
931    if (VT == MVT::Glue || VT == MVT::Other)
932      continue;
933    if (VT.isFloatingPoint() || VT.isVector())
934      return Sched::Latency;
935  }
936
937  if (!N->isMachineOpcode())
938    return Sched::RegPressure;
939
940  // Load are scheduled for latency even if there instruction itinerary
941  // is not available.
942  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
943  const TargetInstrDesc &TID = TII->get(N->getMachineOpcode());
944
945  if (TID.getNumDefs() == 0)
946    return Sched::RegPressure;
947  if (!Itins->isEmpty() &&
948      Itins->getOperandCycle(TID.getSchedClass(), 0) > 2)
949    return Sched::Latency;
950
951  return Sched::RegPressure;
952}
953
954//===----------------------------------------------------------------------===//
955// Lowering Code
956//===----------------------------------------------------------------------===//
957
958/// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
959static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
960  switch (CC) {
961  default: llvm_unreachable("Unknown condition code!");
962  case ISD::SETNE:  return ARMCC::NE;
963  case ISD::SETEQ:  return ARMCC::EQ;
964  case ISD::SETGT:  return ARMCC::GT;
965  case ISD::SETGE:  return ARMCC::GE;
966  case ISD::SETLT:  return ARMCC::LT;
967  case ISD::SETLE:  return ARMCC::LE;
968  case ISD::SETUGT: return ARMCC::HI;
969  case ISD::SETUGE: return ARMCC::HS;
970  case ISD::SETULT: return ARMCC::LO;
971  case ISD::SETULE: return ARMCC::LS;
972  }
973}
974
975/// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
976static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
977                        ARMCC::CondCodes &CondCode2) {
978  CondCode2 = ARMCC::AL;
979  switch (CC) {
980  default: llvm_unreachable("Unknown FP condition!");
981  case ISD::SETEQ:
982  case ISD::SETOEQ: CondCode = ARMCC::EQ; break;
983  case ISD::SETGT:
984  case ISD::SETOGT: CondCode = ARMCC::GT; break;
985  case ISD::SETGE:
986  case ISD::SETOGE: CondCode = ARMCC::GE; break;
987  case ISD::SETOLT: CondCode = ARMCC::MI; break;
988  case ISD::SETOLE: CondCode = ARMCC::LS; break;
989  case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break;
990  case ISD::SETO:   CondCode = ARMCC::VC; break;
991  case ISD::SETUO:  CondCode = ARMCC::VS; break;
992  case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break;
993  case ISD::SETUGT: CondCode = ARMCC::HI; break;
994  case ISD::SETUGE: CondCode = ARMCC::PL; break;
995  case ISD::SETLT:
996  case ISD::SETULT: CondCode = ARMCC::LT; break;
997  case ISD::SETLE:
998  case ISD::SETULE: CondCode = ARMCC::LE; break;
999  case ISD::SETNE:
1000  case ISD::SETUNE: CondCode = ARMCC::NE; break;
1001  }
1002}
1003
1004//===----------------------------------------------------------------------===//
1005//                      Calling Convention Implementation
1006//===----------------------------------------------------------------------===//
1007
1008#include "ARMGenCallingConv.inc"
1009
1010/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
1011/// given CallingConvention value.
1012CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC,
1013                                                 bool Return,
1014                                                 bool isVarArg) const {
1015  switch (CC) {
1016  default:
1017    llvm_unreachable("Unsupported calling convention");
1018  case CallingConv::Fast:
1019    if (Subtarget->hasVFP2() && !isVarArg) {
1020      if (!Subtarget->isAAPCS_ABI())
1021        return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
1022      // For AAPCS ABI targets, just use VFP variant of the calling convention.
1023      return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1024    }
1025    // Fallthrough
1026  case CallingConv::C: {
1027    // Use target triple & subtarget features to do actual dispatch.
1028    if (!Subtarget->isAAPCS_ABI())
1029      return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
1030    else if (Subtarget->hasVFP2() &&
1031             FloatABIType == FloatABI::Hard && !isVarArg)
1032      return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1033    return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
1034  }
1035  case CallingConv::ARM_AAPCS_VFP:
1036    return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1037  case CallingConv::ARM_AAPCS:
1038    return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
1039  case CallingConv::ARM_APCS:
1040    return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
1041  }
1042}
1043
1044/// LowerCallResult - Lower the result values of a call into the
1045/// appropriate copies out of appropriate physical registers.
1046SDValue
1047ARMTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1048                                   CallingConv::ID CallConv, bool isVarArg,
1049                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1050                                   DebugLoc dl, SelectionDAG &DAG,
1051                                   SmallVectorImpl<SDValue> &InVals) const {
1052
1053  // Assign locations to each value returned by this call.
1054  SmallVector<CCValAssign, 16> RVLocs;
1055  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1056                 RVLocs, *DAG.getContext());
1057  CCInfo.AnalyzeCallResult(Ins,
1058                           CCAssignFnForNode(CallConv, /* Return*/ true,
1059                                             isVarArg));
1060
1061  // Copy all of the result registers out of their specified physreg.
1062  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1063    CCValAssign VA = RVLocs[i];
1064
1065    SDValue Val;
1066    if (VA.needsCustom()) {
1067      // Handle f64 or half of a v2f64.
1068      SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1069                                      InFlag);
1070      Chain = Lo.getValue(1);
1071      InFlag = Lo.getValue(2);
1072      VA = RVLocs[++i]; // skip ahead to next loc
1073      SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1074                                      InFlag);
1075      Chain = Hi.getValue(1);
1076      InFlag = Hi.getValue(2);
1077      Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1078
1079      if (VA.getLocVT() == MVT::v2f64) {
1080        SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
1081        Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1082                          DAG.getConstant(0, MVT::i32));
1083
1084        VA = RVLocs[++i]; // skip ahead to next loc
1085        Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1086        Chain = Lo.getValue(1);
1087        InFlag = Lo.getValue(2);
1088        VA = RVLocs[++i]; // skip ahead to next loc
1089        Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1090        Chain = Hi.getValue(1);
1091        InFlag = Hi.getValue(2);
1092        Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1093        Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1094                          DAG.getConstant(1, MVT::i32));
1095      }
1096    } else {
1097      Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
1098                               InFlag);
1099      Chain = Val.getValue(1);
1100      InFlag = Val.getValue(2);
1101    }
1102
1103    switch (VA.getLocInfo()) {
1104    default: llvm_unreachable("Unknown loc info!");
1105    case CCValAssign::Full: break;
1106    case CCValAssign::BCvt:
1107      Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val);
1108      break;
1109    }
1110
1111    InVals.push_back(Val);
1112  }
1113
1114  return Chain;
1115}
1116
1117/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1118/// by "Src" to address "Dst" of size "Size".  Alignment information is
1119/// specified by the specific parameter attribute.  The copy will be passed as
1120/// a byval function parameter.
1121/// Sometimes what we are copying is the end of a larger object, the part that
1122/// does not fit in registers.
1123static SDValue
1124CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1125                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1126                          DebugLoc dl) {
1127  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1128  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1129                       /*isVolatile=*/false, /*AlwaysInline=*/false,
1130                       MachinePointerInfo(0), MachinePointerInfo(0));
1131}
1132
1133/// LowerMemOpCallTo - Store the argument to the stack.
1134SDValue
1135ARMTargetLowering::LowerMemOpCallTo(SDValue Chain,
1136                                    SDValue StackPtr, SDValue Arg,
1137                                    DebugLoc dl, SelectionDAG &DAG,
1138                                    const CCValAssign &VA,
1139                                    ISD::ArgFlagsTy Flags) const {
1140  unsigned LocMemOffset = VA.getLocMemOffset();
1141  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1142  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1143  if (Flags.isByVal())
1144    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
1145
1146  return DAG.getStore(Chain, dl, Arg, PtrOff,
1147                      MachinePointerInfo::getStack(LocMemOffset),
1148                      false, false, 0);
1149}
1150
1151void ARMTargetLowering::PassF64ArgInRegs(DebugLoc dl, SelectionDAG &DAG,
1152                                         SDValue Chain, SDValue &Arg,
1153                                         RegsToPassVector &RegsToPass,
1154                                         CCValAssign &VA, CCValAssign &NextVA,
1155                                         SDValue &StackPtr,
1156                                         SmallVector<SDValue, 8> &MemOpChains,
1157                                         ISD::ArgFlagsTy Flags) const {
1158
1159  SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
1160                              DAG.getVTList(MVT::i32, MVT::i32), Arg);
1161  RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd));
1162
1163  if (NextVA.isRegLoc())
1164    RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1)));
1165  else {
1166    assert(NextVA.isMemLoc());
1167    if (StackPtr.getNode() == 0)
1168      StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
1169
1170    MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1),
1171                                           dl, DAG, NextVA,
1172                                           Flags));
1173  }
1174}
1175
1176/// LowerCall - Lowering a call into a callseq_start <-
1177/// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
1178/// nodes.
1179SDValue
1180ARMTargetLowering::LowerCall(SDValue Chain, SDValue Callee,
1181                             CallingConv::ID CallConv, bool isVarArg,
1182                             bool &isTailCall,
1183                             const SmallVectorImpl<ISD::OutputArg> &Outs,
1184                             const SmallVectorImpl<SDValue> &OutVals,
1185                             const SmallVectorImpl<ISD::InputArg> &Ins,
1186                             DebugLoc dl, SelectionDAG &DAG,
1187                             SmallVectorImpl<SDValue> &InVals) const {
1188  MachineFunction &MF = DAG.getMachineFunction();
1189  bool IsStructRet    = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
1190  bool IsSibCall = false;
1191  // Temporarily disable tail calls so things don't break.
1192  if (!EnableARMTailCalls)
1193    isTailCall = false;
1194  if (isTailCall) {
1195    // Check if it's really possible to do a tail call.
1196    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1197                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
1198                                                   Outs, OutVals, Ins, DAG);
1199    // We don't support GuaranteedTailCallOpt for ARM, only automatically
1200    // detected sibcalls.
1201    if (isTailCall) {
1202      ++NumTailCalls;
1203      IsSibCall = true;
1204    }
1205  }
1206
1207  // Analyze operands of the call, assigning locations to each operand.
1208  SmallVector<CCValAssign, 16> ArgLocs;
1209  CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs,
1210                 *DAG.getContext());
1211  CCInfo.AnalyzeCallOperands(Outs,
1212                             CCAssignFnForNode(CallConv, /* Return*/ false,
1213                                               isVarArg));
1214
1215  // Get a count of how many bytes are to be pushed on the stack.
1216  unsigned NumBytes = CCInfo.getNextStackOffset();
1217
1218  // For tail calls, memory operands are available in our caller's stack.
1219  if (IsSibCall)
1220    NumBytes = 0;
1221
1222  // Adjust the stack pointer for the new arguments...
1223  // These operations are automatically eliminated by the prolog/epilog pass
1224  if (!IsSibCall)
1225    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
1226
1227  SDValue StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
1228
1229  RegsToPassVector RegsToPass;
1230  SmallVector<SDValue, 8> MemOpChains;
1231
1232  // Walk the register/memloc assignments, inserting copies/loads.  In the case
1233  // of tail call optimization, arguments are handled later.
1234  for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
1235       i != e;
1236       ++i, ++realArgIdx) {
1237    CCValAssign &VA = ArgLocs[i];
1238    SDValue Arg = OutVals[realArgIdx];
1239    ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
1240    bool isByVal = Flags.isByVal();
1241
1242    // Promote the value if needed.
1243    switch (VA.getLocInfo()) {
1244    default: llvm_unreachable("Unknown loc info!");
1245    case CCValAssign::Full: break;
1246    case CCValAssign::SExt:
1247      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
1248      break;
1249    case CCValAssign::ZExt:
1250      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
1251      break;
1252    case CCValAssign::AExt:
1253      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
1254      break;
1255    case CCValAssign::BCvt:
1256      Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
1257      break;
1258    }
1259
1260    // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
1261    if (VA.needsCustom()) {
1262      if (VA.getLocVT() == MVT::v2f64) {
1263        SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1264                                  DAG.getConstant(0, MVT::i32));
1265        SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1266                                  DAG.getConstant(1, MVT::i32));
1267
1268        PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass,
1269                         VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1270
1271        VA = ArgLocs[++i]; // skip ahead to next loc
1272        if (VA.isRegLoc()) {
1273          PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass,
1274                           VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1275        } else {
1276          assert(VA.isMemLoc());
1277
1278          MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Op1,
1279                                                 dl, DAG, VA, Flags));
1280        }
1281      } else {
1282        PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
1283                         StackPtr, MemOpChains, Flags);
1284      }
1285    } else if (VA.isRegLoc()) {
1286      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1287    } else if (!IsSibCall || isByVal) {
1288      assert(VA.isMemLoc());
1289
1290      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
1291                                             dl, DAG, VA, Flags));
1292    }
1293  }
1294
1295  if (!MemOpChains.empty())
1296    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1297                        &MemOpChains[0], MemOpChains.size());
1298
1299  // Build a sequence of copy-to-reg nodes chained together with token chain
1300  // and flag operands which copy the outgoing args into the appropriate regs.
1301  SDValue InFlag;
1302  // Tail call byval lowering might overwrite argument registers so in case of
1303  // tail call optimization the copies to registers are lowered later.
1304  if (!isTailCall)
1305    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1306      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1307                               RegsToPass[i].second, InFlag);
1308      InFlag = Chain.getValue(1);
1309    }
1310
1311  // For tail calls lower the arguments to the 'real' stack slot.
1312  if (isTailCall) {
1313    // Force all the incoming stack arguments to be loaded from the stack
1314    // before any new outgoing arguments are stored to the stack, because the
1315    // outgoing stack slots may alias the incoming argument stack slots, and
1316    // the alias isn't otherwise explicit. This is slightly more conservative
1317    // than necessary, because it means that each store effectively depends
1318    // on every argument instead of just those arguments it would clobber.
1319
1320    // Do not flag preceeding copytoreg stuff together with the following stuff.
1321    InFlag = SDValue();
1322    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1323      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1324                               RegsToPass[i].second, InFlag);
1325      InFlag = Chain.getValue(1);
1326    }
1327    InFlag =SDValue();
1328  }
1329
1330  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
1331  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
1332  // node so that legalize doesn't hack it.
1333  bool isDirect = false;
1334  bool isARMFunc = false;
1335  bool isLocalARMFunc = false;
1336  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1337
1338  if (EnableARMLongCalls) {
1339    assert (getTargetMachine().getRelocationModel() == Reloc::Static
1340            && "long-calls with non-static relocation model!");
1341    // Handle a global address or an external symbol. If it's not one of
1342    // those, the target's already in a register, so we don't need to do
1343    // anything extra.
1344    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1345      const GlobalValue *GV = G->getGlobal();
1346      // Create a constant pool entry for the callee address
1347      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1348      ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV,
1349                                                           ARMPCLabelIndex,
1350                                                           ARMCP::CPValue, 0);
1351      // Get the address of the callee into a register
1352      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1353      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1354      Callee = DAG.getLoad(getPointerTy(), dl,
1355                           DAG.getEntryNode(), CPAddr,
1356                           MachinePointerInfo::getConstantPool(),
1357                           false, false, 0);
1358    } else if (ExternalSymbolSDNode *S=dyn_cast<ExternalSymbolSDNode>(Callee)) {
1359      const char *Sym = S->getSymbol();
1360
1361      // Create a constant pool entry for the callee address
1362      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1363      ARMConstantPoolValue *CPV = new ARMConstantPoolValue(*DAG.getContext(),
1364                                                       Sym, ARMPCLabelIndex, 0);
1365      // Get the address of the callee into a register
1366      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1367      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1368      Callee = DAG.getLoad(getPointerTy(), dl,
1369                           DAG.getEntryNode(), CPAddr,
1370                           MachinePointerInfo::getConstantPool(),
1371                           false, false, 0);
1372    }
1373  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1374    const GlobalValue *GV = G->getGlobal();
1375    isDirect = true;
1376    bool isExt = GV->isDeclaration() || GV->isWeakForLinker();
1377    bool isStub = (isExt && Subtarget->isTargetDarwin()) &&
1378                   getTargetMachine().getRelocationModel() != Reloc::Static;
1379    isARMFunc = !Subtarget->isThumb() || isStub;
1380    // ARM call to a local ARM function is predicable.
1381    isLocalARMFunc = !Subtarget->isThumb() && (!isExt || !ARMInterworking);
1382    // tBX takes a register source operand.
1383    if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
1384      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1385      ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV,
1386                                                           ARMPCLabelIndex,
1387                                                           ARMCP::CPValue, 4);
1388      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1389      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1390      Callee = DAG.getLoad(getPointerTy(), dl,
1391                           DAG.getEntryNode(), CPAddr,
1392                           MachinePointerInfo::getConstantPool(),
1393                           false, false, 0);
1394      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1395      Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
1396                           getPointerTy(), Callee, PICLabel);
1397    } else {
1398      // On ELF targets for PIC code, direct calls should go through the PLT
1399      unsigned OpFlags = 0;
1400      if (Subtarget->isTargetELF() &&
1401                  getTargetMachine().getRelocationModel() == Reloc::PIC_)
1402        OpFlags = ARMII::MO_PLT;
1403      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
1404    }
1405  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1406    isDirect = true;
1407    bool isStub = Subtarget->isTargetDarwin() &&
1408                  getTargetMachine().getRelocationModel() != Reloc::Static;
1409    isARMFunc = !Subtarget->isThumb() || isStub;
1410    // tBX takes a register source operand.
1411    const char *Sym = S->getSymbol();
1412    if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
1413      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1414      ARMConstantPoolValue *CPV = new ARMConstantPoolValue(*DAG.getContext(),
1415                                                       Sym, ARMPCLabelIndex, 4);
1416      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1417      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1418      Callee = DAG.getLoad(getPointerTy(), dl,
1419                           DAG.getEntryNode(), CPAddr,
1420                           MachinePointerInfo::getConstantPool(),
1421                           false, false, 0);
1422      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1423      Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
1424                           getPointerTy(), Callee, PICLabel);
1425    } else {
1426      unsigned OpFlags = 0;
1427      // On ELF targets for PIC code, direct calls should go through the PLT
1428      if (Subtarget->isTargetELF() &&
1429                  getTargetMachine().getRelocationModel() == Reloc::PIC_)
1430        OpFlags = ARMII::MO_PLT;
1431      Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlags);
1432    }
1433  }
1434
1435  // FIXME: handle tail calls differently.
1436  unsigned CallOpc;
1437  if (Subtarget->isThumb()) {
1438    if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps())
1439      CallOpc = ARMISD::CALL_NOLINK;
1440    else
1441      CallOpc = isARMFunc ? ARMISD::CALL : ARMISD::tCALL;
1442  } else {
1443    CallOpc = (isDirect || Subtarget->hasV5TOps())
1444      ? (isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL)
1445      : ARMISD::CALL_NOLINK;
1446  }
1447
1448  std::vector<SDValue> Ops;
1449  Ops.push_back(Chain);
1450  Ops.push_back(Callee);
1451
1452  // Add argument registers to the end of the list so that they are known live
1453  // into the call.
1454  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1455    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1456                                  RegsToPass[i].second.getValueType()));
1457
1458  if (InFlag.getNode())
1459    Ops.push_back(InFlag);
1460
1461  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1462  if (isTailCall)
1463    return DAG.getNode(ARMISD::TC_RETURN, dl, NodeTys, &Ops[0], Ops.size());
1464
1465  // Returns a chain and a flag for retval copy to use.
1466  Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size());
1467  InFlag = Chain.getValue(1);
1468
1469  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
1470                             DAG.getIntPtrConstant(0, true), InFlag);
1471  if (!Ins.empty())
1472    InFlag = Chain.getValue(1);
1473
1474  // Handle result values, copying them out of physregs into vregs that we
1475  // return.
1476  return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins,
1477                         dl, DAG, InVals);
1478}
1479
1480/// HandleByVal - Every parameter *after* a byval parameter is passed
1481/// on the stack.  Confiscate all the parameter registers to insure
1482/// this.
1483void
1484llvm::ARMTargetLowering::HandleByVal(CCState *State) const {
1485  static const unsigned RegList1[] = {
1486    ARM::R0, ARM::R1, ARM::R2, ARM::R3
1487  };
1488  do {} while (State->AllocateReg(RegList1, 4));
1489}
1490
1491/// MatchingStackOffset - Return true if the given stack call argument is
1492/// already available in the same position (relatively) of the caller's
1493/// incoming argument stack.
1494static
1495bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
1496                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
1497                         const ARMInstrInfo *TII) {
1498  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
1499  int FI = INT_MAX;
1500  if (Arg.getOpcode() == ISD::CopyFromReg) {
1501    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
1502    if (!TargetRegisterInfo::isVirtualRegister(VR))
1503      return false;
1504    MachineInstr *Def = MRI->getVRegDef(VR);
1505    if (!Def)
1506      return false;
1507    if (!Flags.isByVal()) {
1508      if (!TII->isLoadFromStackSlot(Def, FI))
1509        return false;
1510    } else {
1511      return false;
1512    }
1513  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
1514    if (Flags.isByVal())
1515      // ByVal argument is passed in as a pointer but it's now being
1516      // dereferenced. e.g.
1517      // define @foo(%struct.X* %A) {
1518      //   tail call @bar(%struct.X* byval %A)
1519      // }
1520      return false;
1521    SDValue Ptr = Ld->getBasePtr();
1522    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
1523    if (!FINode)
1524      return false;
1525    FI = FINode->getIndex();
1526  } else
1527    return false;
1528
1529  assert(FI != INT_MAX);
1530  if (!MFI->isFixedObjectIndex(FI))
1531    return false;
1532  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
1533}
1534
1535/// IsEligibleForTailCallOptimization - Check whether the call is eligible
1536/// for tail call optimization. Targets which want to do tail call
1537/// optimization should implement this function.
1538bool
1539ARMTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
1540                                                     CallingConv::ID CalleeCC,
1541                                                     bool isVarArg,
1542                                                     bool isCalleeStructRet,
1543                                                     bool isCallerStructRet,
1544                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
1545                                    const SmallVectorImpl<SDValue> &OutVals,
1546                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1547                                                     SelectionDAG& DAG) const {
1548  const Function *CallerF = DAG.getMachineFunction().getFunction();
1549  CallingConv::ID CallerCC = CallerF->getCallingConv();
1550  bool CCMatch = CallerCC == CalleeCC;
1551
1552  // Look for obvious safe cases to perform tail call optimization that do not
1553  // require ABI changes. This is what gcc calls sibcall.
1554
1555  // Do not sibcall optimize vararg calls unless the call site is not passing
1556  // any arguments.
1557  if (isVarArg && !Outs.empty())
1558    return false;
1559
1560  // Also avoid sibcall optimization if either caller or callee uses struct
1561  // return semantics.
1562  if (isCalleeStructRet || isCallerStructRet)
1563    return false;
1564
1565  // FIXME: Completely disable sibcall for Thumb1 since Thumb1RegisterInfo::
1566  // emitEpilogue is not ready for them.
1567  // Doing this is tricky, since the LDM/POP instruction on Thumb doesn't take
1568  // LR.  This means if we need to reload LR, it takes an extra instructions,
1569  // which outweighs the value of the tail call; but here we don't know yet
1570  // whether LR is going to be used.  Probably the right approach is to
1571  // generate the tail call here and turn it back into CALL/RET in
1572  // emitEpilogue if LR is used.
1573
1574  // Thumb1 PIC calls to external symbols use BX, so they can be tail calls,
1575  // but we need to make sure there are enough registers; the only valid
1576  // registers are the 4 used for parameters.  We don't currently do this
1577  // case.
1578  if (Subtarget->isThumb1Only())
1579    return false;
1580
1581  // If the calling conventions do not match, then we'd better make sure the
1582  // results are returned in the same way as what the caller expects.
1583  if (!CCMatch) {
1584    SmallVector<CCValAssign, 16> RVLocs1;
1585    CCState CCInfo1(CalleeCC, false, getTargetMachine(),
1586                    RVLocs1, *DAG.getContext());
1587    CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForNode(CalleeCC, true, isVarArg));
1588
1589    SmallVector<CCValAssign, 16> RVLocs2;
1590    CCState CCInfo2(CallerCC, false, getTargetMachine(),
1591                    RVLocs2, *DAG.getContext());
1592    CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForNode(CallerCC, true, isVarArg));
1593
1594    if (RVLocs1.size() != RVLocs2.size())
1595      return false;
1596    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
1597      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
1598        return false;
1599      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
1600        return false;
1601      if (RVLocs1[i].isRegLoc()) {
1602        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
1603          return false;
1604      } else {
1605        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
1606          return false;
1607      }
1608    }
1609  }
1610
1611  // If the callee takes no arguments then go on to check the results of the
1612  // call.
1613  if (!Outs.empty()) {
1614    // Check if stack adjustment is needed. For now, do not do this if any
1615    // argument is passed on the stack.
1616    SmallVector<CCValAssign, 16> ArgLocs;
1617    CCState CCInfo(CalleeCC, isVarArg, getTargetMachine(),
1618                   ArgLocs, *DAG.getContext());
1619    CCInfo.AnalyzeCallOperands(Outs,
1620                               CCAssignFnForNode(CalleeCC, false, isVarArg));
1621    if (CCInfo.getNextStackOffset()) {
1622      MachineFunction &MF = DAG.getMachineFunction();
1623
1624      // Check if the arguments are already laid out in the right way as
1625      // the caller's fixed stack objects.
1626      MachineFrameInfo *MFI = MF.getFrameInfo();
1627      const MachineRegisterInfo *MRI = &MF.getRegInfo();
1628      const ARMInstrInfo *TII =
1629        ((ARMTargetMachine&)getTargetMachine()).getInstrInfo();
1630      for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
1631           i != e;
1632           ++i, ++realArgIdx) {
1633        CCValAssign &VA = ArgLocs[i];
1634        EVT RegVT = VA.getLocVT();
1635        SDValue Arg = OutVals[realArgIdx];
1636        ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
1637        if (VA.getLocInfo() == CCValAssign::Indirect)
1638          return false;
1639        if (VA.needsCustom()) {
1640          // f64 and vector types are split into multiple registers or
1641          // register/stack-slot combinations.  The types will not match
1642          // the registers; give up on memory f64 refs until we figure
1643          // out what to do about this.
1644          if (!VA.isRegLoc())
1645            return false;
1646          if (!ArgLocs[++i].isRegLoc())
1647            return false;
1648          if (RegVT == MVT::v2f64) {
1649            if (!ArgLocs[++i].isRegLoc())
1650              return false;
1651            if (!ArgLocs[++i].isRegLoc())
1652              return false;
1653          }
1654        } else if (!VA.isRegLoc()) {
1655          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
1656                                   MFI, MRI, TII))
1657            return false;
1658        }
1659      }
1660    }
1661  }
1662
1663  return true;
1664}
1665
1666SDValue
1667ARMTargetLowering::LowerReturn(SDValue Chain,
1668                               CallingConv::ID CallConv, bool isVarArg,
1669                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1670                               const SmallVectorImpl<SDValue> &OutVals,
1671                               DebugLoc dl, SelectionDAG &DAG) const {
1672
1673  // CCValAssign - represent the assignment of the return value to a location.
1674  SmallVector<CCValAssign, 16> RVLocs;
1675
1676  // CCState - Info about the registers and stack slots.
1677  CCState CCInfo(CallConv, isVarArg, getTargetMachine(), RVLocs,
1678                 *DAG.getContext());
1679
1680  // Analyze outgoing return values.
1681  CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv, /* Return */ true,
1682                                               isVarArg));
1683
1684  // If this is the first return lowered for this function, add
1685  // the regs to the liveout set for the function.
1686  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
1687    for (unsigned i = 0; i != RVLocs.size(); ++i)
1688      if (RVLocs[i].isRegLoc())
1689        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
1690  }
1691
1692  SDValue Flag;
1693
1694  // Copy the result values into the output registers.
1695  for (unsigned i = 0, realRVLocIdx = 0;
1696       i != RVLocs.size();
1697       ++i, ++realRVLocIdx) {
1698    CCValAssign &VA = RVLocs[i];
1699    assert(VA.isRegLoc() && "Can only return in registers!");
1700
1701    SDValue Arg = OutVals[realRVLocIdx];
1702
1703    switch (VA.getLocInfo()) {
1704    default: llvm_unreachable("Unknown loc info!");
1705    case CCValAssign::Full: break;
1706    case CCValAssign::BCvt:
1707      Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
1708      break;
1709    }
1710
1711    if (VA.needsCustom()) {
1712      if (VA.getLocVT() == MVT::v2f64) {
1713        // Extract the first half and return it in two registers.
1714        SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1715                                   DAG.getConstant(0, MVT::i32));
1716        SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl,
1717                                       DAG.getVTList(MVT::i32, MVT::i32), Half);
1718
1719        Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), HalfGPRs, Flag);
1720        Flag = Chain.getValue(1);
1721        VA = RVLocs[++i]; // skip ahead to next loc
1722        Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
1723                                 HalfGPRs.getValue(1), Flag);
1724        Flag = Chain.getValue(1);
1725        VA = RVLocs[++i]; // skip ahead to next loc
1726
1727        // Extract the 2nd half and fall through to handle it as an f64 value.
1728        Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1729                          DAG.getConstant(1, MVT::i32));
1730      }
1731      // Legalize ret f64 -> ret 2 x i32.  We always have fmrrd if f64 is
1732      // available.
1733      SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
1734                                  DAG.getVTList(MVT::i32, MVT::i32), &Arg, 1);
1735      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd, Flag);
1736      Flag = Chain.getValue(1);
1737      VA = RVLocs[++i]; // skip ahead to next loc
1738      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd.getValue(1),
1739                               Flag);
1740    } else
1741      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
1742
1743    // Guarantee that all emitted copies are
1744    // stuck together, avoiding something bad.
1745    Flag = Chain.getValue(1);
1746  }
1747
1748  SDValue result;
1749  if (Flag.getNode())
1750    result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain, Flag);
1751  else // Return Void
1752    result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain);
1753
1754  return result;
1755}
1756
1757bool ARMTargetLowering::isUsedByReturnOnly(SDNode *N) const {
1758  if (N->getNumValues() != 1)
1759    return false;
1760  if (!N->hasNUsesOfValue(1, 0))
1761    return false;
1762
1763  unsigned NumCopies = 0;
1764  SDNode* Copies[2];
1765  SDNode *Use = *N->use_begin();
1766  if (Use->getOpcode() == ISD::CopyToReg) {
1767    Copies[NumCopies++] = Use;
1768  } else if (Use->getOpcode() == ARMISD::VMOVRRD) {
1769    // f64 returned in a pair of GPRs.
1770    for (SDNode::use_iterator UI = Use->use_begin(), UE = Use->use_end();
1771         UI != UE; ++UI) {
1772      if (UI->getOpcode() != ISD::CopyToReg)
1773        return false;
1774      Copies[UI.getUse().getResNo()] = *UI;
1775      ++NumCopies;
1776    }
1777  } else if (Use->getOpcode() == ISD::BITCAST) {
1778    // f32 returned in a single GPR.
1779    if (!Use->hasNUsesOfValue(1, 0))
1780      return false;
1781    Use = *Use->use_begin();
1782    if (Use->getOpcode() != ISD::CopyToReg || !Use->hasNUsesOfValue(1, 0))
1783      return false;
1784    Copies[NumCopies++] = Use;
1785  } else {
1786    return false;
1787  }
1788
1789  if (NumCopies != 1 && NumCopies != 2)
1790    return false;
1791
1792  bool HasRet = false;
1793  for (unsigned i = 0; i < NumCopies; ++i) {
1794    SDNode *Copy = Copies[i];
1795    for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1796         UI != UE; ++UI) {
1797      if (UI->getOpcode() == ISD::CopyToReg) {
1798        SDNode *Use = *UI;
1799        if (Use == Copies[0] || Use == Copies[1])
1800          continue;
1801        return false;
1802      }
1803      if (UI->getOpcode() != ARMISD::RET_FLAG)
1804        return false;
1805      HasRet = true;
1806    }
1807  }
1808
1809  return HasRet;
1810}
1811
1812bool ARMTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
1813  if (!EnableARMTailCalls)
1814    return false;
1815
1816  if (!CI->isTailCall())
1817    return false;
1818
1819  return !Subtarget->isThumb1Only();
1820}
1821
1822// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
1823// their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
1824// one of the above mentioned nodes. It has to be wrapped because otherwise
1825// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
1826// be used to form addressing mode. These wrapped nodes will be selected
1827// into MOVi.
1828static SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
1829  EVT PtrVT = Op.getValueType();
1830  // FIXME there is no actual debug info here
1831  DebugLoc dl = Op.getDebugLoc();
1832  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1833  SDValue Res;
1834  if (CP->isMachineConstantPoolEntry())
1835    Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
1836                                    CP->getAlignment());
1837  else
1838    Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
1839                                    CP->getAlignment());
1840  return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
1841}
1842
1843unsigned ARMTargetLowering::getJumpTableEncoding() const {
1844  return MachineJumpTableInfo::EK_Inline;
1845}
1846
1847SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op,
1848                                             SelectionDAG &DAG) const {
1849  MachineFunction &MF = DAG.getMachineFunction();
1850  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1851  unsigned ARMPCLabelIndex = 0;
1852  DebugLoc DL = Op.getDebugLoc();
1853  EVT PtrVT = getPointerTy();
1854  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1855  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
1856  SDValue CPAddr;
1857  if (RelocM == Reloc::Static) {
1858    CPAddr = DAG.getTargetConstantPool(BA, PtrVT, 4);
1859  } else {
1860    unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
1861    ARMPCLabelIndex = AFI->createPICLabelUId();
1862    ARMConstantPoolValue *CPV = new ARMConstantPoolValue(BA, ARMPCLabelIndex,
1863                                                         ARMCP::CPBlockAddress,
1864                                                         PCAdj);
1865    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1866  }
1867  CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr);
1868  SDValue Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), CPAddr,
1869                               MachinePointerInfo::getConstantPool(),
1870                               false, false, 0);
1871  if (RelocM == Reloc::Static)
1872    return Result;
1873  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1874  return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel);
1875}
1876
1877// Lower ISD::GlobalTLSAddress using the "general dynamic" model
1878SDValue
1879ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
1880                                                 SelectionDAG &DAG) const {
1881  DebugLoc dl = GA->getDebugLoc();
1882  EVT PtrVT = getPointerTy();
1883  unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
1884  MachineFunction &MF = DAG.getMachineFunction();
1885  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1886  unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1887  ARMConstantPoolValue *CPV =
1888    new ARMConstantPoolValue(GA->getGlobal(), ARMPCLabelIndex,
1889                             ARMCP::CPValue, PCAdj, ARMCP::TLSGD, true);
1890  SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1891  Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
1892  Argument = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Argument,
1893                         MachinePointerInfo::getConstantPool(),
1894                         false, false, 0);
1895  SDValue Chain = Argument.getValue(1);
1896
1897  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1898  Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);
1899
1900  // call __tls_get_addr.
1901  ArgListTy Args;
1902  ArgListEntry Entry;
1903  Entry.Node = Argument;
1904  Entry.Ty = (const Type *) Type::getInt32Ty(*DAG.getContext());
1905  Args.push_back(Entry);
1906  // FIXME: is there useful debug info available here?
1907  std::pair<SDValue, SDValue> CallResult =
1908    LowerCallTo(Chain, (const Type *) Type::getInt32Ty(*DAG.getContext()),
1909                false, false, false, false,
1910                0, CallingConv::C, false, /*isReturnValueUsed=*/true,
1911                DAG.getExternalSymbol("__tls_get_addr", PtrVT), Args, DAG, dl);
1912  return CallResult.first;
1913}
1914
1915// Lower ISD::GlobalTLSAddress using the "initial exec" or
1916// "local exec" model.
1917SDValue
1918ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
1919                                        SelectionDAG &DAG) const {
1920  const GlobalValue *GV = GA->getGlobal();
1921  DebugLoc dl = GA->getDebugLoc();
1922  SDValue Offset;
1923  SDValue Chain = DAG.getEntryNode();
1924  EVT PtrVT = getPointerTy();
1925  // Get the Thread Pointer
1926  SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
1927
1928  if (GV->isDeclaration()) {
1929    MachineFunction &MF = DAG.getMachineFunction();
1930    ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1931    unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1932    // Initial exec model.
1933    unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
1934    ARMConstantPoolValue *CPV =
1935      new ARMConstantPoolValue(GA->getGlobal(), ARMPCLabelIndex,
1936                               ARMCP::CPValue, PCAdj, ARMCP::GOTTPOFF, true);
1937    Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1938    Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
1939    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
1940                         MachinePointerInfo::getConstantPool(),
1941                         false, false, 0);
1942    Chain = Offset.getValue(1);
1943
1944    SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1945    Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
1946
1947    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
1948                         MachinePointerInfo::getConstantPool(),
1949                         false, false, 0);
1950  } else {
1951    // local exec model
1952    ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV, ARMCP::TPOFF);
1953    Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1954    Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
1955    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
1956                         MachinePointerInfo::getConstantPool(),
1957                         false, false, 0);
1958  }
1959
1960  // The address of the thread local variable is the add of the thread
1961  // pointer with the offset of the variable.
1962  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
1963}
1964
1965SDValue
1966ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
1967  // TODO: implement the "local dynamic" model
1968  assert(Subtarget->isTargetELF() &&
1969         "TLS not implemented for non-ELF targets");
1970  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
1971  // If the relocation model is PIC, use the "General Dynamic" TLS Model,
1972  // otherwise use the "Local Exec" TLS Model
1973  if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
1974    return LowerToTLSGeneralDynamicModel(GA, DAG);
1975  else
1976    return LowerToTLSExecModels(GA, DAG);
1977}
1978
1979SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
1980                                                 SelectionDAG &DAG) const {
1981  EVT PtrVT = getPointerTy();
1982  DebugLoc dl = Op.getDebugLoc();
1983  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
1984  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
1985  if (RelocM == Reloc::PIC_) {
1986    bool UseGOTOFF = GV->hasLocalLinkage() || GV->hasHiddenVisibility();
1987    ARMConstantPoolValue *CPV =
1988      new ARMConstantPoolValue(GV, UseGOTOFF ? ARMCP::GOTOFF : ARMCP::GOT);
1989    SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1990    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1991    SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
1992                                 CPAddr,
1993                                 MachinePointerInfo::getConstantPool(),
1994                                 false, false, 0);
1995    SDValue Chain = Result.getValue(1);
1996    SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
1997    Result = DAG.getNode(ISD::ADD, dl, PtrVT, Result, GOT);
1998    if (!UseGOTOFF)
1999      Result = DAG.getLoad(PtrVT, dl, Chain, Result,
2000                           MachinePointerInfo::getGOT(), false, false, 0);
2001    return Result;
2002  }
2003
2004  // If we have T2 ops, we can materialize the address directly via movt/movw
2005  // pair. This is always cheaper.
2006  if (Subtarget->useMovt()) {
2007    ++NumMovwMovt;
2008    // FIXME: Once remat is capable of dealing with instructions with register
2009    // operands, expand this into two nodes.
2010    return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
2011                       DAG.getTargetGlobalAddress(GV, dl, PtrVT));
2012  } else {
2013    SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
2014    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2015    return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2016                       MachinePointerInfo::getConstantPool(),
2017                       false, false, 0);
2018  }
2019}
2020
2021SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
2022                                                    SelectionDAG &DAG) const {
2023  EVT PtrVT = getPointerTy();
2024  DebugLoc dl = Op.getDebugLoc();
2025  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
2026  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2027  MachineFunction &MF = DAG.getMachineFunction();
2028  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2029
2030  if (Subtarget->useMovt()) {
2031    ++NumMovwMovt;
2032    // FIXME: Once remat is capable of dealing with instructions with register
2033    // operands, expand this into two nodes.
2034    if (RelocM == Reloc::Static)
2035      return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
2036                                 DAG.getTargetGlobalAddress(GV, dl, PtrVT));
2037
2038    unsigned Wrapper = (RelocM == Reloc::PIC_)
2039      ? ARMISD::WrapperPIC : ARMISD::WrapperDYN;
2040    SDValue Result = DAG.getNode(Wrapper, dl, PtrVT,
2041                                 DAG.getTargetGlobalAddress(GV, dl, PtrVT));
2042    if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
2043      Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
2044                           MachinePointerInfo::getGOT(), false, false, 0);
2045    return Result;
2046  }
2047
2048  unsigned ARMPCLabelIndex = 0;
2049  SDValue CPAddr;
2050  if (RelocM == Reloc::Static) {
2051    CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
2052  } else {
2053    ARMPCLabelIndex = AFI->createPICLabelUId();
2054    unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : (Subtarget->isThumb()?4:8);
2055    ARMConstantPoolValue *CPV =
2056      new ARMConstantPoolValue(GV, ARMPCLabelIndex, ARMCP::CPValue, PCAdj);
2057    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2058  }
2059  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2060
2061  SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2062                               MachinePointerInfo::getConstantPool(),
2063                               false, false, 0);
2064  SDValue Chain = Result.getValue(1);
2065
2066  if (RelocM == Reloc::PIC_) {
2067    SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2068    Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2069  }
2070
2071  if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
2072    Result = DAG.getLoad(PtrVT, dl, Chain, Result, MachinePointerInfo::getGOT(),
2073                         false, false, 0);
2074
2075  return Result;
2076}
2077
2078SDValue ARMTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op,
2079                                                    SelectionDAG &DAG) const {
2080  assert(Subtarget->isTargetELF() &&
2081         "GLOBAL OFFSET TABLE not implemented for non-ELF targets");
2082  MachineFunction &MF = DAG.getMachineFunction();
2083  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2084  unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2085  EVT PtrVT = getPointerTy();
2086  DebugLoc dl = Op.getDebugLoc();
2087  unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
2088  ARMConstantPoolValue *CPV = new ARMConstantPoolValue(*DAG.getContext(),
2089                                                       "_GLOBAL_OFFSET_TABLE_",
2090                                                       ARMPCLabelIndex, PCAdj);
2091  SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2092  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2093  SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2094                               MachinePointerInfo::getConstantPool(),
2095                               false, false, 0);
2096  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2097  return DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2098}
2099
2100SDValue
2101ARMTargetLowering::LowerEH_SJLJ_DISPATCHSETUP(SDValue Op, SelectionDAG &DAG)
2102  const {
2103  DebugLoc dl = Op.getDebugLoc();
2104  return DAG.getNode(ARMISD::EH_SJLJ_DISPATCHSETUP, dl, MVT::Other,
2105                     Op.getOperand(0), Op.getOperand(1));
2106}
2107
2108SDValue
2109ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const {
2110  DebugLoc dl = Op.getDebugLoc();
2111  SDValue Val = DAG.getConstant(0, MVT::i32);
2112  return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl, MVT::i32, Op.getOperand(0),
2113                     Op.getOperand(1), Val);
2114}
2115
2116SDValue
2117ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const {
2118  DebugLoc dl = Op.getDebugLoc();
2119  return DAG.getNode(ARMISD::EH_SJLJ_LONGJMP, dl, MVT::Other, Op.getOperand(0),
2120                     Op.getOperand(1), DAG.getConstant(0, MVT::i32));
2121}
2122
2123SDValue
2124ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG,
2125                                          const ARMSubtarget *Subtarget) const {
2126  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2127  DebugLoc dl = Op.getDebugLoc();
2128  switch (IntNo) {
2129  default: return SDValue();    // Don't custom lower most intrinsics.
2130  case Intrinsic::arm_thread_pointer: {
2131    EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2132    return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
2133  }
2134  case Intrinsic::eh_sjlj_lsda: {
2135    MachineFunction &MF = DAG.getMachineFunction();
2136    ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2137    unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2138    EVT PtrVT = getPointerTy();
2139    DebugLoc dl = Op.getDebugLoc();
2140    Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2141    SDValue CPAddr;
2142    unsigned PCAdj = (RelocM != Reloc::PIC_)
2143      ? 0 : (Subtarget->isThumb() ? 4 : 8);
2144    ARMConstantPoolValue *CPV =
2145      new ARMConstantPoolValue(MF.getFunction(), ARMPCLabelIndex,
2146                               ARMCP::CPLSDA, PCAdj);
2147    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2148    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2149    SDValue Result =
2150      DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2151                  MachinePointerInfo::getConstantPool(),
2152                  false, false, 0);
2153
2154    if (RelocM == Reloc::PIC_) {
2155      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2156      Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2157    }
2158    return Result;
2159  }
2160  case Intrinsic::arm_neon_vmulls:
2161  case Intrinsic::arm_neon_vmullu: {
2162    unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmulls)
2163      ? ARMISD::VMULLs : ARMISD::VMULLu;
2164    return DAG.getNode(NewOpc, Op.getDebugLoc(), Op.getValueType(),
2165                       Op.getOperand(1), Op.getOperand(2));
2166  }
2167  }
2168}
2169
2170static SDValue LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG,
2171                               const ARMSubtarget *Subtarget) {
2172  DebugLoc dl = Op.getDebugLoc();
2173  if (!Subtarget->hasDataBarrier()) {
2174    // Some ARMv6 cpus can support data barriers with an mcr instruction.
2175    // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
2176    // here.
2177    assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&
2178           "Unexpected ISD::MEMBARRIER encountered. Should be libcall!");
2179    return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
2180                       DAG.getConstant(0, MVT::i32));
2181  }
2182
2183  SDValue Op5 = Op.getOperand(5);
2184  bool isDeviceBarrier = cast<ConstantSDNode>(Op5)->getZExtValue() != 0;
2185  unsigned isLL = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
2186  unsigned isLS = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
2187  bool isOnlyStoreBarrier = (isLL == 0 && isLS == 0);
2188
2189  ARM_MB::MemBOpt DMBOpt;
2190  if (isDeviceBarrier)
2191    DMBOpt = isOnlyStoreBarrier ? ARM_MB::ST : ARM_MB::SY;
2192  else
2193    DMBOpt = isOnlyStoreBarrier ? ARM_MB::ISHST : ARM_MB::ISH;
2194  return DAG.getNode(ARMISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0),
2195                     DAG.getConstant(DMBOpt, MVT::i32));
2196}
2197
2198static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG,
2199                             const ARMSubtarget *Subtarget) {
2200  // ARM pre v5TE and Thumb1 does not have preload instructions.
2201  if (!(Subtarget->isThumb2() ||
2202        (!Subtarget->isThumb1Only() && Subtarget->hasV5TEOps())))
2203    // Just preserve the chain.
2204    return Op.getOperand(0);
2205
2206  DebugLoc dl = Op.getDebugLoc();
2207  unsigned isRead = ~cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() & 1;
2208  if (!isRead &&
2209      (!Subtarget->hasV7Ops() || !Subtarget->hasMPExtension()))
2210    // ARMv7 with MP extension has PLDW.
2211    return Op.getOperand(0);
2212
2213  if (Subtarget->isThumb())
2214    // Invert the bits.
2215    isRead = ~isRead & 1;
2216  unsigned isData = Subtarget->isThumb() ? 0 : 1;
2217
2218  // Currently there is no intrinsic that matches pli.
2219  return DAG.getNode(ARMISD::PRELOAD, dl, MVT::Other, Op.getOperand(0),
2220                     Op.getOperand(1), DAG.getConstant(isRead, MVT::i32),
2221                     DAG.getConstant(isData, MVT::i32));
2222}
2223
2224static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) {
2225  MachineFunction &MF = DAG.getMachineFunction();
2226  ARMFunctionInfo *FuncInfo = MF.getInfo<ARMFunctionInfo>();
2227
2228  // vastart just stores the address of the VarArgsFrameIndex slot into the
2229  // memory location argument.
2230  DebugLoc dl = Op.getDebugLoc();
2231  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2232  SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2233  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2234  return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
2235                      MachinePointerInfo(SV), false, false, 0);
2236}
2237
2238SDValue
2239ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA, CCValAssign &NextVA,
2240                                        SDValue &Root, SelectionDAG &DAG,
2241                                        DebugLoc dl) const {
2242  MachineFunction &MF = DAG.getMachineFunction();
2243  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2244
2245  TargetRegisterClass *RC;
2246  if (AFI->isThumb1OnlyFunction())
2247    RC = ARM::tGPRRegisterClass;
2248  else
2249    RC = ARM::GPRRegisterClass;
2250
2251  // Transform the arguments stored in physical registers into virtual ones.
2252  unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2253  SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
2254
2255  SDValue ArgValue2;
2256  if (NextVA.isMemLoc()) {
2257    MachineFrameInfo *MFI = MF.getFrameInfo();
2258    int FI = MFI->CreateFixedObject(4, NextVA.getLocMemOffset(), true);
2259
2260    // Create load node to retrieve arguments from the stack.
2261    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2262    ArgValue2 = DAG.getLoad(MVT::i32, dl, Root, FIN,
2263                            MachinePointerInfo::getFixedStack(FI),
2264                            false, false, 0);
2265  } else {
2266    Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
2267    ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
2268  }
2269
2270  return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2);
2271}
2272
2273SDValue
2274ARMTargetLowering::LowerFormalArguments(SDValue Chain,
2275                                        CallingConv::ID CallConv, bool isVarArg,
2276                                        const SmallVectorImpl<ISD::InputArg>
2277                                          &Ins,
2278                                        DebugLoc dl, SelectionDAG &DAG,
2279                                        SmallVectorImpl<SDValue> &InVals)
2280                                          const {
2281
2282  MachineFunction &MF = DAG.getMachineFunction();
2283  MachineFrameInfo *MFI = MF.getFrameInfo();
2284
2285  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2286
2287  // Assign locations to all of the incoming arguments.
2288  SmallVector<CCValAssign, 16> ArgLocs;
2289  CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs,
2290                 *DAG.getContext());
2291  CCInfo.AnalyzeFormalArguments(Ins,
2292                                CCAssignFnForNode(CallConv, /* Return*/ false,
2293                                                  isVarArg));
2294
2295  SmallVector<SDValue, 16> ArgValues;
2296  int lastInsIndex = -1;
2297
2298  SDValue ArgValue;
2299  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2300    CCValAssign &VA = ArgLocs[i];
2301
2302    // Arguments stored in registers.
2303    if (VA.isRegLoc()) {
2304      EVT RegVT = VA.getLocVT();
2305
2306      if (VA.needsCustom()) {
2307        // f64 and vector types are split up into multiple registers or
2308        // combinations of registers and stack slots.
2309        if (VA.getLocVT() == MVT::v2f64) {
2310          SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i],
2311                                                   Chain, DAG, dl);
2312          VA = ArgLocs[++i]; // skip ahead to next loc
2313          SDValue ArgValue2;
2314          if (VA.isMemLoc()) {
2315            int FI = MFI->CreateFixedObject(8, VA.getLocMemOffset(), true);
2316            SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2317            ArgValue2 = DAG.getLoad(MVT::f64, dl, Chain, FIN,
2318                                    MachinePointerInfo::getFixedStack(FI),
2319                                    false, false, 0);
2320          } else {
2321            ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i],
2322                                             Chain, DAG, dl);
2323          }
2324          ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
2325          ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
2326                                 ArgValue, ArgValue1, DAG.getIntPtrConstant(0));
2327          ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
2328                                 ArgValue, ArgValue2, DAG.getIntPtrConstant(1));
2329        } else
2330          ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
2331
2332      } else {
2333        TargetRegisterClass *RC;
2334
2335        if (RegVT == MVT::f32)
2336          RC = ARM::SPRRegisterClass;
2337        else if (RegVT == MVT::f64)
2338          RC = ARM::DPRRegisterClass;
2339        else if (RegVT == MVT::v2f64)
2340          RC = ARM::QPRRegisterClass;
2341        else if (RegVT == MVT::i32)
2342          RC = (AFI->isThumb1OnlyFunction() ?
2343                ARM::tGPRRegisterClass : ARM::GPRRegisterClass);
2344        else
2345          llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
2346
2347        // Transform the arguments in physical registers into virtual ones.
2348        unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2349        ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
2350      }
2351
2352      // If this is an 8 or 16-bit value, it is really passed promoted
2353      // to 32 bits.  Insert an assert[sz]ext to capture this, then
2354      // truncate to the right size.
2355      switch (VA.getLocInfo()) {
2356      default: llvm_unreachable("Unknown loc info!");
2357      case CCValAssign::Full: break;
2358      case CCValAssign::BCvt:
2359        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
2360        break;
2361      case CCValAssign::SExt:
2362        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
2363                               DAG.getValueType(VA.getValVT()));
2364        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
2365        break;
2366      case CCValAssign::ZExt:
2367        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
2368                               DAG.getValueType(VA.getValVT()));
2369        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
2370        break;
2371      }
2372
2373      InVals.push_back(ArgValue);
2374
2375    } else { // VA.isRegLoc()
2376
2377      // sanity check
2378      assert(VA.isMemLoc());
2379      assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered");
2380
2381      int index = ArgLocs[i].getValNo();
2382
2383      // Some Ins[] entries become multiple ArgLoc[] entries.
2384      // Process them only once.
2385      if (index != lastInsIndex)
2386        {
2387          ISD::ArgFlagsTy Flags = Ins[index].Flags;
2388          // FIXME: For now, all byval parameter objects are marked mutable. This can be
2389          // changed with more analysis.
2390          // In case of tail call optimization mark all arguments mutable. Since they
2391          // could be overwritten by lowering of arguments in case of a tail call.
2392          if (Flags.isByVal()) {
2393            int FI = MFI->CreateFixedObject(Flags.getByValSize(),
2394                                            VA.getLocMemOffset(), false);
2395            InVals.push_back(DAG.getFrameIndex(FI, getPointerTy()));
2396          } else {
2397            int FI = MFI->CreateFixedObject(VA.getLocVT().getSizeInBits()/8,
2398                                            VA.getLocMemOffset(), true);
2399
2400            // Create load nodes to retrieve arguments from the stack.
2401            SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2402            InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
2403                                         MachinePointerInfo::getFixedStack(FI),
2404                                         false, false, 0));
2405          }
2406          lastInsIndex = index;
2407        }
2408    }
2409  }
2410
2411  // varargs
2412  if (isVarArg) {
2413    static const unsigned GPRArgRegs[] = {
2414      ARM::R0, ARM::R1, ARM::R2, ARM::R3
2415    };
2416
2417    unsigned NumGPRs = CCInfo.getFirstUnallocated
2418      (GPRArgRegs, sizeof(GPRArgRegs) / sizeof(GPRArgRegs[0]));
2419
2420    unsigned Align = MF.getTarget().getFrameLowering()->getStackAlignment();
2421    unsigned VARegSize = (4 - NumGPRs) * 4;
2422    unsigned VARegSaveSize = (VARegSize + Align - 1) & ~(Align - 1);
2423    unsigned ArgOffset = CCInfo.getNextStackOffset();
2424    if (VARegSaveSize) {
2425      // If this function is vararg, store any remaining integer argument regs
2426      // to their spots on the stack so that they may be loaded by deferencing
2427      // the result of va_next.
2428      AFI->setVarArgsRegSaveSize(VARegSaveSize);
2429      AFI->setVarArgsFrameIndex(
2430        MFI->CreateFixedObject(VARegSaveSize,
2431                               ArgOffset + VARegSaveSize - VARegSize,
2432                               false));
2433      SDValue FIN = DAG.getFrameIndex(AFI->getVarArgsFrameIndex(),
2434                                      getPointerTy());
2435
2436      SmallVector<SDValue, 4> MemOps;
2437      for (; NumGPRs < 4; ++NumGPRs) {
2438        TargetRegisterClass *RC;
2439        if (AFI->isThumb1OnlyFunction())
2440          RC = ARM::tGPRRegisterClass;
2441        else
2442          RC = ARM::GPRRegisterClass;
2443
2444        unsigned VReg = MF.addLiveIn(GPRArgRegs[NumGPRs], RC);
2445        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
2446        SDValue Store =
2447          DAG.getStore(Val.getValue(1), dl, Val, FIN,
2448               MachinePointerInfo::getFixedStack(AFI->getVarArgsFrameIndex()),
2449                       false, false, 0);
2450        MemOps.push_back(Store);
2451        FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN,
2452                          DAG.getConstant(4, getPointerTy()));
2453      }
2454      if (!MemOps.empty())
2455        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2456                            &MemOps[0], MemOps.size());
2457    } else
2458      // This will point to the next argument passed via stack.
2459      AFI->setVarArgsFrameIndex(MFI->CreateFixedObject(4, ArgOffset, true));
2460  }
2461
2462  return Chain;
2463}
2464
2465/// isFloatingPointZero - Return true if this is +0.0.
2466static bool isFloatingPointZero(SDValue Op) {
2467  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
2468    return CFP->getValueAPF().isPosZero();
2469  else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
2470    // Maybe this has already been legalized into the constant pool?
2471    if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
2472      SDValue WrapperOp = Op.getOperand(1).getOperand(0);
2473      if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
2474        if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
2475          return CFP->getValueAPF().isPosZero();
2476    }
2477  }
2478  return false;
2479}
2480
2481/// Returns appropriate ARM CMP (cmp) and corresponding condition code for
2482/// the given operands.
2483SDValue
2484ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
2485                             SDValue &ARMcc, SelectionDAG &DAG,
2486                             DebugLoc dl) const {
2487  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
2488    unsigned C = RHSC->getZExtValue();
2489    if (!isLegalICmpImmediate(C)) {
2490      // Constant does not fit, try adjusting it by one?
2491      switch (CC) {
2492      default: break;
2493      case ISD::SETLT:
2494      case ISD::SETGE:
2495        if (C != 0x80000000 && isLegalICmpImmediate(C-1)) {
2496          CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
2497          RHS = DAG.getConstant(C-1, MVT::i32);
2498        }
2499        break;
2500      case ISD::SETULT:
2501      case ISD::SETUGE:
2502        if (C != 0 && isLegalICmpImmediate(C-1)) {
2503          CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
2504          RHS = DAG.getConstant(C-1, MVT::i32);
2505        }
2506        break;
2507      case ISD::SETLE:
2508      case ISD::SETGT:
2509        if (C != 0x7fffffff && isLegalICmpImmediate(C+1)) {
2510          CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
2511          RHS = DAG.getConstant(C+1, MVT::i32);
2512        }
2513        break;
2514      case ISD::SETULE:
2515      case ISD::SETUGT:
2516        if (C != 0xffffffff && isLegalICmpImmediate(C+1)) {
2517          CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
2518          RHS = DAG.getConstant(C+1, MVT::i32);
2519        }
2520        break;
2521      }
2522    }
2523  }
2524
2525  ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
2526  ARMISD::NodeType CompareType;
2527  switch (CondCode) {
2528  default:
2529    CompareType = ARMISD::CMP;
2530    break;
2531  case ARMCC::EQ:
2532  case ARMCC::NE:
2533    // Uses only Z Flag
2534    CompareType = ARMISD::CMPZ;
2535    break;
2536  }
2537  ARMcc = DAG.getConstant(CondCode, MVT::i32);
2538  return DAG.getNode(CompareType, dl, MVT::Glue, LHS, RHS);
2539}
2540
2541/// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
2542SDValue
2543ARMTargetLowering::getVFPCmp(SDValue LHS, SDValue RHS, SelectionDAG &DAG,
2544                             DebugLoc dl) const {
2545  SDValue Cmp;
2546  if (!isFloatingPointZero(RHS))
2547    Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Glue, LHS, RHS);
2548  else
2549    Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Glue, LHS);
2550  return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Glue, Cmp);
2551}
2552
2553/// duplicateCmp - Glue values can have only one use, so this function
2554/// duplicates a comparison node.
2555SDValue
2556ARMTargetLowering::duplicateCmp(SDValue Cmp, SelectionDAG &DAG) const {
2557  unsigned Opc = Cmp.getOpcode();
2558  DebugLoc DL = Cmp.getDebugLoc();
2559  if (Opc == ARMISD::CMP || Opc == ARMISD::CMPZ)
2560    return DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
2561
2562  assert(Opc == ARMISD::FMSTAT && "unexpected comparison operation");
2563  Cmp = Cmp.getOperand(0);
2564  Opc = Cmp.getOpcode();
2565  if (Opc == ARMISD::CMPFP)
2566    Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
2567  else {
2568    assert(Opc == ARMISD::CMPFPw0 && "unexpected operand of FMSTAT");
2569    Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0));
2570  }
2571  return DAG.getNode(ARMISD::FMSTAT, DL, MVT::Glue, Cmp);
2572}
2573
2574SDValue ARMTargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
2575  SDValue Cond = Op.getOperand(0);
2576  SDValue SelectTrue = Op.getOperand(1);
2577  SDValue SelectFalse = Op.getOperand(2);
2578  DebugLoc dl = Op.getDebugLoc();
2579
2580  // Convert:
2581  //
2582  //   (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond)
2583  //   (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond)
2584  //
2585  if (Cond.getOpcode() == ARMISD::CMOV && Cond.hasOneUse()) {
2586    const ConstantSDNode *CMOVTrue =
2587      dyn_cast<ConstantSDNode>(Cond.getOperand(0));
2588    const ConstantSDNode *CMOVFalse =
2589      dyn_cast<ConstantSDNode>(Cond.getOperand(1));
2590
2591    if (CMOVTrue && CMOVFalse) {
2592      unsigned CMOVTrueVal = CMOVTrue->getZExtValue();
2593      unsigned CMOVFalseVal = CMOVFalse->getZExtValue();
2594
2595      SDValue True;
2596      SDValue False;
2597      if (CMOVTrueVal == 1 && CMOVFalseVal == 0) {
2598        True = SelectTrue;
2599        False = SelectFalse;
2600      } else if (CMOVTrueVal == 0 && CMOVFalseVal == 1) {
2601        True = SelectFalse;
2602        False = SelectTrue;
2603      }
2604
2605      if (True.getNode() && False.getNode()) {
2606        EVT VT = Cond.getValueType();
2607        SDValue ARMcc = Cond.getOperand(2);
2608        SDValue CCR = Cond.getOperand(3);
2609        SDValue Cmp = duplicateCmp(Cond.getOperand(4), DAG);
2610        return DAG.getNode(ARMISD::CMOV, dl, VT, True, False, ARMcc, CCR, Cmp);
2611      }
2612    }
2613  }
2614
2615  return DAG.getSelectCC(dl, Cond,
2616                         DAG.getConstant(0, Cond.getValueType()),
2617                         SelectTrue, SelectFalse, ISD::SETNE);
2618}
2619
2620SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
2621  EVT VT = Op.getValueType();
2622  SDValue LHS = Op.getOperand(0);
2623  SDValue RHS = Op.getOperand(1);
2624  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2625  SDValue TrueVal = Op.getOperand(2);
2626  SDValue FalseVal = Op.getOperand(3);
2627  DebugLoc dl = Op.getDebugLoc();
2628
2629  if (LHS.getValueType() == MVT::i32) {
2630    SDValue ARMcc;
2631    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2632    SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
2633    return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, CCR,Cmp);
2634  }
2635
2636  ARMCC::CondCodes CondCode, CondCode2;
2637  FPCCToARMCC(CC, CondCode, CondCode2);
2638
2639  SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
2640  SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
2641  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2642  SDValue Result = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal,
2643                               ARMcc, CCR, Cmp);
2644  if (CondCode2 != ARMCC::AL) {
2645    SDValue ARMcc2 = DAG.getConstant(CondCode2, MVT::i32);
2646    // FIXME: Needs another CMP because flag can have but one use.
2647    SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl);
2648    Result = DAG.getNode(ARMISD::CMOV, dl, VT,
2649                         Result, TrueVal, ARMcc2, CCR, Cmp2);
2650  }
2651  return Result;
2652}
2653
2654/// canChangeToInt - Given the fp compare operand, return true if it is suitable
2655/// to morph to an integer compare sequence.
2656static bool canChangeToInt(SDValue Op, bool &SeenZero,
2657                           const ARMSubtarget *Subtarget) {
2658  SDNode *N = Op.getNode();
2659  if (!N->hasOneUse())
2660    // Otherwise it requires moving the value from fp to integer registers.
2661    return false;
2662  if (!N->getNumValues())
2663    return false;
2664  EVT VT = Op.getValueType();
2665  if (VT != MVT::f32 && !Subtarget->isFPBrccSlow())
2666    // f32 case is generally profitable. f64 case only makes sense when vcmpe +
2667    // vmrs are very slow, e.g. cortex-a8.
2668    return false;
2669
2670  if (isFloatingPointZero(Op)) {
2671    SeenZero = true;
2672    return true;
2673  }
2674  return ISD::isNormalLoad(N);
2675}
2676
2677static SDValue bitcastf32Toi32(SDValue Op, SelectionDAG &DAG) {
2678  if (isFloatingPointZero(Op))
2679    return DAG.getConstant(0, MVT::i32);
2680
2681  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op))
2682    return DAG.getLoad(MVT::i32, Op.getDebugLoc(),
2683                       Ld->getChain(), Ld->getBasePtr(), Ld->getPointerInfo(),
2684                       Ld->isVolatile(), Ld->isNonTemporal(),
2685                       Ld->getAlignment());
2686
2687  llvm_unreachable("Unknown VFP cmp argument!");
2688}
2689
2690static void expandf64Toi32(SDValue Op, SelectionDAG &DAG,
2691                           SDValue &RetVal1, SDValue &RetVal2) {
2692  if (isFloatingPointZero(Op)) {
2693    RetVal1 = DAG.getConstant(0, MVT::i32);
2694    RetVal2 = DAG.getConstant(0, MVT::i32);
2695    return;
2696  }
2697
2698  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) {
2699    SDValue Ptr = Ld->getBasePtr();
2700    RetVal1 = DAG.getLoad(MVT::i32, Op.getDebugLoc(),
2701                          Ld->getChain(), Ptr,
2702                          Ld->getPointerInfo(),
2703                          Ld->isVolatile(), Ld->isNonTemporal(),
2704                          Ld->getAlignment());
2705
2706    EVT PtrType = Ptr.getValueType();
2707    unsigned NewAlign = MinAlign(Ld->getAlignment(), 4);
2708    SDValue NewPtr = DAG.getNode(ISD::ADD, Op.getDebugLoc(),
2709                                 PtrType, Ptr, DAG.getConstant(4, PtrType));
2710    RetVal2 = DAG.getLoad(MVT::i32, Op.getDebugLoc(),
2711                          Ld->getChain(), NewPtr,
2712                          Ld->getPointerInfo().getWithOffset(4),
2713                          Ld->isVolatile(), Ld->isNonTemporal(),
2714                          NewAlign);
2715    return;
2716  }
2717
2718  llvm_unreachable("Unknown VFP cmp argument!");
2719}
2720
2721/// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some
2722/// f32 and even f64 comparisons to integer ones.
2723SDValue
2724ARMTargetLowering::OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const {
2725  SDValue Chain = Op.getOperand(0);
2726  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
2727  SDValue LHS = Op.getOperand(2);
2728  SDValue RHS = Op.getOperand(3);
2729  SDValue Dest = Op.getOperand(4);
2730  DebugLoc dl = Op.getDebugLoc();
2731
2732  bool SeenZero = false;
2733  if (canChangeToInt(LHS, SeenZero, Subtarget) &&
2734      canChangeToInt(RHS, SeenZero, Subtarget) &&
2735      // If one of the operand is zero, it's safe to ignore the NaN case since
2736      // we only care about equality comparisons.
2737      (SeenZero || (DAG.isKnownNeverNaN(LHS) && DAG.isKnownNeverNaN(RHS)))) {
2738    // If unsafe fp math optimization is enabled and there are no other uses of
2739    // the CMP operands, and the condition code is EQ or NE, we can optimize it
2740    // to an integer comparison.
2741    if (CC == ISD::SETOEQ)
2742      CC = ISD::SETEQ;
2743    else if (CC == ISD::SETUNE)
2744      CC = ISD::SETNE;
2745
2746    SDValue ARMcc;
2747    if (LHS.getValueType() == MVT::f32) {
2748      LHS = bitcastf32Toi32(LHS, DAG);
2749      RHS = bitcastf32Toi32(RHS, DAG);
2750      SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
2751      SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2752      return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
2753                         Chain, Dest, ARMcc, CCR, Cmp);
2754    }
2755
2756    SDValue LHS1, LHS2;
2757    SDValue RHS1, RHS2;
2758    expandf64Toi32(LHS, DAG, LHS1, LHS2);
2759    expandf64Toi32(RHS, DAG, RHS1, RHS2);
2760    ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
2761    ARMcc = DAG.getConstant(CondCode, MVT::i32);
2762    SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
2763    SDValue Ops[] = { Chain, ARMcc, LHS1, LHS2, RHS1, RHS2, Dest };
2764    return DAG.getNode(ARMISD::BCC_i64, dl, VTList, Ops, 7);
2765  }
2766
2767  return SDValue();
2768}
2769
2770SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
2771  SDValue Chain = Op.getOperand(0);
2772  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
2773  SDValue LHS = Op.getOperand(2);
2774  SDValue RHS = Op.getOperand(3);
2775  SDValue Dest = Op.getOperand(4);
2776  DebugLoc dl = Op.getDebugLoc();
2777
2778  if (LHS.getValueType() == MVT::i32) {
2779    SDValue ARMcc;
2780    SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
2781    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2782    return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
2783                       Chain, Dest, ARMcc, CCR, Cmp);
2784  }
2785
2786  assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
2787
2788  if (UnsafeFPMath &&
2789      (CC == ISD::SETEQ || CC == ISD::SETOEQ ||
2790       CC == ISD::SETNE || CC == ISD::SETUNE)) {
2791    SDValue Result = OptimizeVFPBrcond(Op, DAG);
2792    if (Result.getNode())
2793      return Result;
2794  }
2795
2796  ARMCC::CondCodes CondCode, CondCode2;
2797  FPCCToARMCC(CC, CondCode, CondCode2);
2798
2799  SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
2800  SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
2801  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2802  SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
2803  SDValue Ops[] = { Chain, Dest, ARMcc, CCR, Cmp };
2804  SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
2805  if (CondCode2 != ARMCC::AL) {
2806    ARMcc = DAG.getConstant(CondCode2, MVT::i32);
2807    SDValue Ops[] = { Res, Dest, ARMcc, CCR, Res.getValue(1) };
2808    Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
2809  }
2810  return Res;
2811}
2812
2813SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
2814  SDValue Chain = Op.getOperand(0);
2815  SDValue Table = Op.getOperand(1);
2816  SDValue Index = Op.getOperand(2);
2817  DebugLoc dl = Op.getDebugLoc();
2818
2819  EVT PTy = getPointerTy();
2820  JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
2821  ARMFunctionInfo *AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
2822  SDValue UId = DAG.getConstant(AFI->createJumpTableUId(), PTy);
2823  SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
2824  Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI, UId);
2825  Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, PTy));
2826  SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
2827  if (Subtarget->isThumb2()) {
2828    // Thumb2 uses a two-level jump. That is, it jumps into the jump table
2829    // which does another jump to the destination. This also makes it easier
2830    // to translate it to TBB / TBH later.
2831    // FIXME: This might not work if the function is extremely large.
2832    return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain,
2833                       Addr, Op.getOperand(2), JTI, UId);
2834  }
2835  if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2836    Addr = DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr,
2837                       MachinePointerInfo::getJumpTable(),
2838                       false, false, 0);
2839    Chain = Addr.getValue(1);
2840    Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, Table);
2841    return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
2842  } else {
2843    Addr = DAG.getLoad(PTy, dl, Chain, Addr,
2844                       MachinePointerInfo::getJumpTable(), false, false, 0);
2845    Chain = Addr.getValue(1);
2846    return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
2847  }
2848}
2849
2850static SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
2851  DebugLoc dl = Op.getDebugLoc();
2852  unsigned Opc;
2853
2854  switch (Op.getOpcode()) {
2855  default:
2856    assert(0 && "Invalid opcode!");
2857  case ISD::FP_TO_SINT:
2858    Opc = ARMISD::FTOSI;
2859    break;
2860  case ISD::FP_TO_UINT:
2861    Opc = ARMISD::FTOUI;
2862    break;
2863  }
2864  Op = DAG.getNode(Opc, dl, MVT::f32, Op.getOperand(0));
2865  return DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
2866}
2867
2868static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
2869  EVT VT = Op.getValueType();
2870  DebugLoc dl = Op.getDebugLoc();
2871
2872  EVT OperandVT = Op.getOperand(0).getValueType();
2873  assert(OperandVT == MVT::v4i16 && "Invalid type for custom lowering!");
2874  if (VT != MVT::v4f32)
2875    return DAG.UnrollVectorOp(Op.getNode());
2876
2877  unsigned CastOpc;
2878  unsigned Opc;
2879  switch (Op.getOpcode()) {
2880  default:
2881    assert(0 && "Invalid opcode!");
2882  case ISD::SINT_TO_FP:
2883    CastOpc = ISD::SIGN_EXTEND;
2884    Opc = ISD::SINT_TO_FP;
2885    break;
2886  case ISD::UINT_TO_FP:
2887    CastOpc = ISD::ZERO_EXTEND;
2888    Opc = ISD::UINT_TO_FP;
2889    break;
2890  }
2891
2892  Op = DAG.getNode(CastOpc, dl, MVT::v4i32, Op.getOperand(0));
2893  return DAG.getNode(Opc, dl, VT, Op);
2894}
2895
2896static SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
2897  EVT VT = Op.getValueType();
2898  if (VT.isVector())
2899    return LowerVectorINT_TO_FP(Op, DAG);
2900
2901  DebugLoc dl = Op.getDebugLoc();
2902  unsigned Opc;
2903
2904  switch (Op.getOpcode()) {
2905  default:
2906    assert(0 && "Invalid opcode!");
2907  case ISD::SINT_TO_FP:
2908    Opc = ARMISD::SITOF;
2909    break;
2910  case ISD::UINT_TO_FP:
2911    Opc = ARMISD::UITOF;
2912    break;
2913  }
2914
2915  Op = DAG.getNode(ISD::BITCAST, dl, MVT::f32, Op.getOperand(0));
2916  return DAG.getNode(Opc, dl, VT, Op);
2917}
2918
2919SDValue ARMTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
2920  // Implement fcopysign with a fabs and a conditional fneg.
2921  SDValue Tmp0 = Op.getOperand(0);
2922  SDValue Tmp1 = Op.getOperand(1);
2923  DebugLoc dl = Op.getDebugLoc();
2924  EVT VT = Op.getValueType();
2925  EVT SrcVT = Tmp1.getValueType();
2926  bool InGPR = Tmp0.getOpcode() == ISD::BITCAST ||
2927    Tmp0.getOpcode() == ARMISD::VMOVDRR;
2928  bool UseNEON = !InGPR && Subtarget->hasNEON();
2929
2930  if (UseNEON) {
2931    // Use VBSL to copy the sign bit.
2932    unsigned EncodedVal = ARM_AM::createNEONModImm(0x6, 0x80);
2933    SDValue Mask = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v2i32,
2934                               DAG.getTargetConstant(EncodedVal, MVT::i32));
2935    EVT OpVT = (VT == MVT::f32) ? MVT::v2i32 : MVT::v1i64;
2936    if (VT == MVT::f64)
2937      Mask = DAG.getNode(ARMISD::VSHL, dl, OpVT,
2938                         DAG.getNode(ISD::BITCAST, dl, OpVT, Mask),
2939                         DAG.getConstant(32, MVT::i32));
2940    else /*if (VT == MVT::f32)*/
2941      Tmp0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp0);
2942    if (SrcVT == MVT::f32) {
2943      Tmp1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp1);
2944      if (VT == MVT::f64)
2945        Tmp1 = DAG.getNode(ARMISD::VSHL, dl, OpVT,
2946                           DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1),
2947                           DAG.getConstant(32, MVT::i32));
2948    }
2949    Tmp0 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp0);
2950    Tmp1 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1);
2951
2952    SDValue AllOnes = DAG.getTargetConstant(ARM_AM::createNEONModImm(0xe, 0xff),
2953                                            MVT::i32);
2954    AllOnes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v8i8, AllOnes);
2955    SDValue MaskNot = DAG.getNode(ISD::XOR, dl, OpVT, Mask,
2956                                  DAG.getNode(ISD::BITCAST, dl, OpVT, AllOnes));
2957
2958    SDValue Res = DAG.getNode(ISD::OR, dl, OpVT,
2959                              DAG.getNode(ISD::AND, dl, OpVT, Tmp1, Mask),
2960                              DAG.getNode(ISD::AND, dl, OpVT, Tmp0, MaskNot));
2961    if (VT == MVT::f32) {
2962      Res = DAG.getNode(ISD::BITCAST, dl, MVT::v2f32, Res);
2963      Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, Res,
2964                        DAG.getConstant(0, MVT::i32));
2965    } else {
2966      Res = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Res);
2967    }
2968
2969    return Res;
2970  }
2971
2972  // Bitcast operand 1 to i32.
2973  if (SrcVT == MVT::f64)
2974    Tmp1 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
2975                       &Tmp1, 1).getValue(1);
2976  Tmp1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp1);
2977
2978  // Or in the signbit with integer operations.
2979  SDValue Mask1 = DAG.getConstant(0x80000000, MVT::i32);
2980  SDValue Mask2 = DAG.getConstant(0x7fffffff, MVT::i32);
2981  Tmp1 = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp1, Mask1);
2982  if (VT == MVT::f32) {
2983    Tmp0 = DAG.getNode(ISD::AND, dl, MVT::i32,
2984                       DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp0), Mask2);
2985    return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
2986                       DAG.getNode(ISD::OR, dl, MVT::i32, Tmp0, Tmp1));
2987  }
2988
2989  // f64: Or the high part with signbit and then combine two parts.
2990  Tmp0 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
2991                     &Tmp0, 1);
2992  SDValue Lo = Tmp0.getValue(0);
2993  SDValue Hi = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp0.getValue(1), Mask2);
2994  Hi = DAG.getNode(ISD::OR, dl, MVT::i32, Hi, Tmp1);
2995  return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
2996}
2997
2998SDValue ARMTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{
2999  MachineFunction &MF = DAG.getMachineFunction();
3000  MachineFrameInfo *MFI = MF.getFrameInfo();
3001  MFI->setReturnAddressIsTaken(true);
3002
3003  EVT VT = Op.getValueType();
3004  DebugLoc dl = Op.getDebugLoc();
3005  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3006  if (Depth) {
3007    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
3008    SDValue Offset = DAG.getConstant(4, MVT::i32);
3009    return DAG.getLoad(VT, dl, DAG.getEntryNode(),
3010                       DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
3011                       MachinePointerInfo(), false, false, 0);
3012  }
3013
3014  // Return LR, which contains the return address. Mark it an implicit live-in.
3015  unsigned Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32));
3016  return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
3017}
3018
3019SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
3020  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3021  MFI->setFrameAddressIsTaken(true);
3022
3023  EVT VT = Op.getValueType();
3024  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
3025  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3026  unsigned FrameReg = (Subtarget->isThumb() || Subtarget->isTargetDarwin())
3027    ? ARM::R7 : ARM::R11;
3028  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
3029  while (Depth--)
3030    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
3031                            MachinePointerInfo(),
3032                            false, false, 0);
3033  return FrameAddr;
3034}
3035
3036/// ExpandBITCAST - If the target supports VFP, this function is called to
3037/// expand a bit convert where either the source or destination type is i64 to
3038/// use a VMOVDRR or VMOVRRD node.  This should not be done when the non-i64
3039/// operand type is illegal (e.g., v2f32 for a target that doesn't support
3040/// vectors), since the legalizer won't know what to do with that.
3041static SDValue ExpandBITCAST(SDNode *N, SelectionDAG &DAG) {
3042  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3043  DebugLoc dl = N->getDebugLoc();
3044  SDValue Op = N->getOperand(0);
3045
3046  // This function is only supposed to be called for i64 types, either as the
3047  // source or destination of the bit convert.
3048  EVT SrcVT = Op.getValueType();
3049  EVT DstVT = N->getValueType(0);
3050  assert((SrcVT == MVT::i64 || DstVT == MVT::i64) &&
3051         "ExpandBITCAST called for non-i64 type");
3052
3053  // Turn i64->f64 into VMOVDRR.
3054  if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) {
3055    SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
3056                             DAG.getConstant(0, MVT::i32));
3057    SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
3058                             DAG.getConstant(1, MVT::i32));
3059    return DAG.getNode(ISD::BITCAST, dl, DstVT,
3060                       DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi));
3061  }
3062
3063  // Turn f64->i64 into VMOVRRD.
3064  if (DstVT == MVT::i64 && TLI.isTypeLegal(SrcVT)) {
3065    SDValue Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
3066                              DAG.getVTList(MVT::i32, MVT::i32), &Op, 1);
3067    // Merge the pieces into a single i64 value.
3068    return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1));
3069  }
3070
3071  return SDValue();
3072}
3073
3074/// getZeroVector - Returns a vector of specified type with all zero elements.
3075/// Zero vectors are used to represent vector negation and in those cases
3076/// will be implemented with the NEON VNEG instruction.  However, VNEG does
3077/// not support i64 elements, so sometimes the zero vectors will need to be
3078/// explicitly constructed.  Regardless, use a canonical VMOV to create the
3079/// zero vector.
3080static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
3081  assert(VT.isVector() && "Expected a vector type");
3082  // The canonical modified immediate encoding of a zero vector is....0!
3083  SDValue EncodedVal = DAG.getTargetConstant(0, MVT::i32);
3084  EVT VmovVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
3085  SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, EncodedVal);
3086  return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
3087}
3088
3089/// LowerShiftRightParts - Lower SRA_PARTS, which returns two
3090/// i32 values and take a 2 x i32 value to shift plus a shift amount.
3091SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op,
3092                                                SelectionDAG &DAG) const {
3093  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
3094  EVT VT = Op.getValueType();
3095  unsigned VTBits = VT.getSizeInBits();
3096  DebugLoc dl = Op.getDebugLoc();
3097  SDValue ShOpLo = Op.getOperand(0);
3098  SDValue ShOpHi = Op.getOperand(1);
3099  SDValue ShAmt  = Op.getOperand(2);
3100  SDValue ARMcc;
3101  unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
3102
3103  assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
3104
3105  SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
3106                                 DAG.getConstant(VTBits, MVT::i32), ShAmt);
3107  SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
3108  SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
3109                                   DAG.getConstant(VTBits, MVT::i32));
3110  SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
3111  SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
3112  SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
3113
3114  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3115  SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
3116                          ARMcc, DAG, dl);
3117  SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
3118  SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc,
3119                           CCR, Cmp);
3120
3121  SDValue Ops[2] = { Lo, Hi };
3122  return DAG.getMergeValues(Ops, 2, dl);
3123}
3124
3125/// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
3126/// i32 values and take a 2 x i32 value to shift plus a shift amount.
3127SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op,
3128                                               SelectionDAG &DAG) const {
3129  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
3130  EVT VT = Op.getValueType();
3131  unsigned VTBits = VT.getSizeInBits();
3132  DebugLoc dl = Op.getDebugLoc();
3133  SDValue ShOpLo = Op.getOperand(0);
3134  SDValue ShOpHi = Op.getOperand(1);
3135  SDValue ShAmt  = Op.getOperand(2);
3136  SDValue ARMcc;
3137
3138  assert(Op.getOpcode() == ISD::SHL_PARTS);
3139  SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
3140                                 DAG.getConstant(VTBits, MVT::i32), ShAmt);
3141  SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
3142  SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
3143                                   DAG.getConstant(VTBits, MVT::i32));
3144  SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
3145  SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
3146
3147  SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
3148  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3149  SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
3150                          ARMcc, DAG, dl);
3151  SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
3152  SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, Tmp3, ARMcc,
3153                           CCR, Cmp);
3154
3155  SDValue Ops[2] = { Lo, Hi };
3156  return DAG.getMergeValues(Ops, 2, dl);
3157}
3158
3159SDValue ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
3160                                            SelectionDAG &DAG) const {
3161  // The rounding mode is in bits 23:22 of the FPSCR.
3162  // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
3163  // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
3164  // so that the shift + and get folded into a bitfield extract.
3165  DebugLoc dl = Op.getDebugLoc();
3166  SDValue FPSCR = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::i32,
3167                              DAG.getConstant(Intrinsic::arm_get_fpscr,
3168                                              MVT::i32));
3169  SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPSCR,
3170                                  DAG.getConstant(1U << 22, MVT::i32));
3171  SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds,
3172                              DAG.getConstant(22, MVT::i32));
3173  return DAG.getNode(ISD::AND, dl, MVT::i32, RMODE,
3174                     DAG.getConstant(3, MVT::i32));
3175}
3176
3177static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG,
3178                         const ARMSubtarget *ST) {
3179  EVT VT = N->getValueType(0);
3180  DebugLoc dl = N->getDebugLoc();
3181
3182  if (!ST->hasV6T2Ops())
3183    return SDValue();
3184
3185  SDValue rbit = DAG.getNode(ARMISD::RBIT, dl, VT, N->getOperand(0));
3186  return DAG.getNode(ISD::CTLZ, dl, VT, rbit);
3187}
3188
3189static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
3190                          const ARMSubtarget *ST) {
3191  EVT VT = N->getValueType(0);
3192  DebugLoc dl = N->getDebugLoc();
3193
3194  if (!VT.isVector())
3195    return SDValue();
3196
3197  // Lower vector shifts on NEON to use VSHL.
3198  assert(ST->hasNEON() && "unexpected vector shift");
3199
3200  // Left shifts translate directly to the vshiftu intrinsic.
3201  if (N->getOpcode() == ISD::SHL)
3202    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
3203                       DAG.getConstant(Intrinsic::arm_neon_vshiftu, MVT::i32),
3204                       N->getOperand(0), N->getOperand(1));
3205
3206  assert((N->getOpcode() == ISD::SRA ||
3207          N->getOpcode() == ISD::SRL) && "unexpected vector shift opcode");
3208
3209  // NEON uses the same intrinsics for both left and right shifts.  For
3210  // right shifts, the shift amounts are negative, so negate the vector of
3211  // shift amounts.
3212  EVT ShiftVT = N->getOperand(1).getValueType();
3213  SDValue NegatedCount = DAG.getNode(ISD::SUB, dl, ShiftVT,
3214                                     getZeroVector(ShiftVT, DAG, dl),
3215                                     N->getOperand(1));
3216  Intrinsic::ID vshiftInt = (N->getOpcode() == ISD::SRA ?
3217                             Intrinsic::arm_neon_vshifts :
3218                             Intrinsic::arm_neon_vshiftu);
3219  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
3220                     DAG.getConstant(vshiftInt, MVT::i32),
3221                     N->getOperand(0), NegatedCount);
3222}
3223
3224static SDValue Expand64BitShift(SDNode *N, SelectionDAG &DAG,
3225                                const ARMSubtarget *ST) {
3226  EVT VT = N->getValueType(0);
3227  DebugLoc dl = N->getDebugLoc();
3228
3229  // We can get here for a node like i32 = ISD::SHL i32, i64
3230  if (VT != MVT::i64)
3231    return SDValue();
3232
3233  assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) &&
3234         "Unknown shift to lower!");
3235
3236  // We only lower SRA, SRL of 1 here, all others use generic lowering.
3237  if (!isa<ConstantSDNode>(N->getOperand(1)) ||
3238      cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 1)
3239    return SDValue();
3240
3241  // If we are in thumb mode, we don't have RRX.
3242  if (ST->isThumb1Only()) return SDValue();
3243
3244  // Okay, we have a 64-bit SRA or SRL of 1.  Lower this to an RRX expr.
3245  SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
3246                           DAG.getConstant(0, MVT::i32));
3247  SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
3248                           DAG.getConstant(1, MVT::i32));
3249
3250  // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
3251  // captures the result into a carry flag.
3252  unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
3253  Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Glue), &Hi, 1);
3254
3255  // The low part is an ARMISD::RRX operand, which shifts the carry in.
3256  Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));
3257
3258  // Merge the pieces into a single i64 value.
3259 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
3260}
3261
3262static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
3263  SDValue TmpOp0, TmpOp1;
3264  bool Invert = false;
3265  bool Swap = false;
3266  unsigned Opc = 0;
3267
3268  SDValue Op0 = Op.getOperand(0);
3269  SDValue Op1 = Op.getOperand(1);
3270  SDValue CC = Op.getOperand(2);
3271  EVT VT = Op.getValueType();
3272  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
3273  DebugLoc dl = Op.getDebugLoc();
3274
3275  if (Op.getOperand(1).getValueType().isFloatingPoint()) {
3276    switch (SetCCOpcode) {
3277    default: llvm_unreachable("Illegal FP comparison"); break;
3278    case ISD::SETUNE:
3279    case ISD::SETNE:  Invert = true; // Fallthrough
3280    case ISD::SETOEQ:
3281    case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
3282    case ISD::SETOLT:
3283    case ISD::SETLT: Swap = true; // Fallthrough
3284    case ISD::SETOGT:
3285    case ISD::SETGT:  Opc = ARMISD::VCGT; break;
3286    case ISD::SETOLE:
3287    case ISD::SETLE:  Swap = true; // Fallthrough
3288    case ISD::SETOGE:
3289    case ISD::SETGE: Opc = ARMISD::VCGE; break;
3290    case ISD::SETUGE: Swap = true; // Fallthrough
3291    case ISD::SETULE: Invert = true; Opc = ARMISD::VCGT; break;
3292    case ISD::SETUGT: Swap = true; // Fallthrough
3293    case ISD::SETULT: Invert = true; Opc = ARMISD::VCGE; break;
3294    case ISD::SETUEQ: Invert = true; // Fallthrough
3295    case ISD::SETONE:
3296      // Expand this to (OLT | OGT).
3297      TmpOp0 = Op0;
3298      TmpOp1 = Op1;
3299      Opc = ISD::OR;
3300      Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
3301      Op1 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp0, TmpOp1);
3302      break;
3303    case ISD::SETUO: Invert = true; // Fallthrough
3304    case ISD::SETO:
3305      // Expand this to (OLT | OGE).
3306      TmpOp0 = Op0;
3307      TmpOp1 = Op1;
3308      Opc = ISD::OR;
3309      Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
3310      Op1 = DAG.getNode(ARMISD::VCGE, dl, VT, TmpOp0, TmpOp1);
3311      break;
3312    }
3313  } else {
3314    // Integer comparisons.
3315    switch (SetCCOpcode) {
3316    default: llvm_unreachable("Illegal integer comparison"); break;
3317    case ISD::SETNE:  Invert = true;
3318    case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
3319    case ISD::SETLT:  Swap = true;
3320    case ISD::SETGT:  Opc = ARMISD::VCGT; break;
3321    case ISD::SETLE:  Swap = true;
3322    case ISD::SETGE:  Opc = ARMISD::VCGE; break;
3323    case ISD::SETULT: Swap = true;
3324    case ISD::SETUGT: Opc = ARMISD::VCGTU; break;
3325    case ISD::SETULE: Swap = true;
3326    case ISD::SETUGE: Opc = ARMISD::VCGEU; break;
3327    }
3328
3329    // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
3330    if (Opc == ARMISD::VCEQ) {
3331
3332      SDValue AndOp;
3333      if (ISD::isBuildVectorAllZeros(Op1.getNode()))
3334        AndOp = Op0;
3335      else if (ISD::isBuildVectorAllZeros(Op0.getNode()))
3336        AndOp = Op1;
3337
3338      // Ignore bitconvert.
3339      if (AndOp.getNode() && AndOp.getOpcode() == ISD::BITCAST)
3340        AndOp = AndOp.getOperand(0);
3341
3342      if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) {
3343        Opc = ARMISD::VTST;
3344        Op0 = DAG.getNode(ISD::BITCAST, dl, VT, AndOp.getOperand(0));
3345        Op1 = DAG.getNode(ISD::BITCAST, dl, VT, AndOp.getOperand(1));
3346        Invert = !Invert;
3347      }
3348    }
3349  }
3350
3351  if (Swap)
3352    std::swap(Op0, Op1);
3353
3354  // If one of the operands is a constant vector zero, attempt to fold the
3355  // comparison to a specialized compare-against-zero form.
3356  SDValue SingleOp;
3357  if (ISD::isBuildVectorAllZeros(Op1.getNode()))
3358    SingleOp = Op0;
3359  else if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
3360    if (Opc == ARMISD::VCGE)
3361      Opc = ARMISD::VCLEZ;
3362    else if (Opc == ARMISD::VCGT)
3363      Opc = ARMISD::VCLTZ;
3364    SingleOp = Op1;
3365  }
3366
3367  SDValue Result;
3368  if (SingleOp.getNode()) {
3369    switch (Opc) {
3370    case ARMISD::VCEQ:
3371      Result = DAG.getNode(ARMISD::VCEQZ, dl, VT, SingleOp); break;
3372    case ARMISD::VCGE:
3373      Result = DAG.getNode(ARMISD::VCGEZ, dl, VT, SingleOp); break;
3374    case ARMISD::VCLEZ:
3375      Result = DAG.getNode(ARMISD::VCLEZ, dl, VT, SingleOp); break;
3376    case ARMISD::VCGT:
3377      Result = DAG.getNode(ARMISD::VCGTZ, dl, VT, SingleOp); break;
3378    case ARMISD::VCLTZ:
3379      Result = DAG.getNode(ARMISD::VCLTZ, dl, VT, SingleOp); break;
3380    default:
3381      Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
3382    }
3383  } else {
3384     Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
3385  }
3386
3387  if (Invert)
3388    Result = DAG.getNOT(dl, Result, VT);
3389
3390  return Result;
3391}
3392
3393/// isNEONModifiedImm - Check if the specified splat value corresponds to a
3394/// valid vector constant for a NEON instruction with a "modified immediate"
3395/// operand (e.g., VMOV).  If so, return the encoded value.
3396static SDValue isNEONModifiedImm(uint64_t SplatBits, uint64_t SplatUndef,
3397                                 unsigned SplatBitSize, SelectionDAG &DAG,
3398                                 EVT &VT, bool is128Bits, NEONModImmType type) {
3399  unsigned OpCmode, Imm;
3400
3401  // SplatBitSize is set to the smallest size that splats the vector, so a
3402  // zero vector will always have SplatBitSize == 8.  However, NEON modified
3403  // immediate instructions others than VMOV do not support the 8-bit encoding
3404  // of a zero vector, and the default encoding of zero is supposed to be the
3405  // 32-bit version.
3406  if (SplatBits == 0)
3407    SplatBitSize = 32;
3408
3409  switch (SplatBitSize) {
3410  case 8:
3411    if (type != VMOVModImm)
3412      return SDValue();
3413    // Any 1-byte value is OK.  Op=0, Cmode=1110.
3414    assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
3415    OpCmode = 0xe;
3416    Imm = SplatBits;
3417    VT = is128Bits ? MVT::v16i8 : MVT::v8i8;
3418    break;
3419
3420  case 16:
3421    // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
3422    VT = is128Bits ? MVT::v8i16 : MVT::v4i16;
3423    if ((SplatBits & ~0xff) == 0) {
3424      // Value = 0x00nn: Op=x, Cmode=100x.
3425      OpCmode = 0x8;
3426      Imm = SplatBits;
3427      break;
3428    }
3429    if ((SplatBits & ~0xff00) == 0) {
3430      // Value = 0xnn00: Op=x, Cmode=101x.
3431      OpCmode = 0xa;
3432      Imm = SplatBits >> 8;
3433      break;
3434    }
3435    return SDValue();
3436
3437  case 32:
3438    // NEON's 32-bit VMOV supports splat values where:
3439    // * only one byte is nonzero, or
3440    // * the least significant byte is 0xff and the second byte is nonzero, or
3441    // * the least significant 2 bytes are 0xff and the third is nonzero.
3442    VT = is128Bits ? MVT::v4i32 : MVT::v2i32;
3443    if ((SplatBits & ~0xff) == 0) {
3444      // Value = 0x000000nn: Op=x, Cmode=000x.
3445      OpCmode = 0;
3446      Imm = SplatBits;
3447      break;
3448    }
3449    if ((SplatBits & ~0xff00) == 0) {
3450      // Value = 0x0000nn00: Op=x, Cmode=001x.
3451      OpCmode = 0x2;
3452      Imm = SplatBits >> 8;
3453      break;
3454    }
3455    if ((SplatBits & ~0xff0000) == 0) {
3456      // Value = 0x00nn0000: Op=x, Cmode=010x.
3457      OpCmode = 0x4;
3458      Imm = SplatBits >> 16;
3459      break;
3460    }
3461    if ((SplatBits & ~0xff000000) == 0) {
3462      // Value = 0xnn000000: Op=x, Cmode=011x.
3463      OpCmode = 0x6;
3464      Imm = SplatBits >> 24;
3465      break;
3466    }
3467
3468    // cmode == 0b1100 and cmode == 0b1101 are not supported for VORR or VBIC
3469    if (type == OtherModImm) return SDValue();
3470
3471    if ((SplatBits & ~0xffff) == 0 &&
3472        ((SplatBits | SplatUndef) & 0xff) == 0xff) {
3473      // Value = 0x0000nnff: Op=x, Cmode=1100.
3474      OpCmode = 0xc;
3475      Imm = SplatBits >> 8;
3476      SplatBits |= 0xff;
3477      break;
3478    }
3479
3480    if ((SplatBits & ~0xffffff) == 0 &&
3481        ((SplatBits | SplatUndef) & 0xffff) == 0xffff) {
3482      // Value = 0x00nnffff: Op=x, Cmode=1101.
3483      OpCmode = 0xd;
3484      Imm = SplatBits >> 16;
3485      SplatBits |= 0xffff;
3486      break;
3487    }
3488
3489    // Note: there are a few 32-bit splat values (specifically: 00ffff00,
3490    // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
3491    // VMOV.I32.  A (very) minor optimization would be to replicate the value
3492    // and fall through here to test for a valid 64-bit splat.  But, then the
3493    // caller would also need to check and handle the change in size.
3494    return SDValue();
3495
3496  case 64: {
3497    if (type != VMOVModImm)
3498      return SDValue();
3499    // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
3500    uint64_t BitMask = 0xff;
3501    uint64_t Val = 0;
3502    unsigned ImmMask = 1;
3503    Imm = 0;
3504    for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
3505      if (((SplatBits | SplatUndef) & BitMask) == BitMask) {
3506        Val |= BitMask;
3507        Imm |= ImmMask;
3508      } else if ((SplatBits & BitMask) != 0) {
3509        return SDValue();
3510      }
3511      BitMask <<= 8;
3512      ImmMask <<= 1;
3513    }
3514    // Op=1, Cmode=1110.
3515    OpCmode = 0x1e;
3516    SplatBits = Val;
3517    VT = is128Bits ? MVT::v2i64 : MVT::v1i64;
3518    break;
3519  }
3520
3521  default:
3522    llvm_unreachable("unexpected size for isNEONModifiedImm");
3523    return SDValue();
3524  }
3525
3526  unsigned EncodedVal = ARM_AM::createNEONModImm(OpCmode, Imm);
3527  return DAG.getTargetConstant(EncodedVal, MVT::i32);
3528}
3529
3530static bool isVEXTMask(const SmallVectorImpl<int> &M, EVT VT,
3531                       bool &ReverseVEXT, unsigned &Imm) {
3532  unsigned NumElts = VT.getVectorNumElements();
3533  ReverseVEXT = false;
3534
3535  // Assume that the first shuffle index is not UNDEF.  Fail if it is.
3536  if (M[0] < 0)
3537    return false;
3538
3539  Imm = M[0];
3540
3541  // If this is a VEXT shuffle, the immediate value is the index of the first
3542  // element.  The other shuffle indices must be the successive elements after
3543  // the first one.
3544  unsigned ExpectedElt = Imm;
3545  for (unsigned i = 1; i < NumElts; ++i) {
3546    // Increment the expected index.  If it wraps around, it may still be
3547    // a VEXT but the source vectors must be swapped.
3548    ExpectedElt += 1;
3549    if (ExpectedElt == NumElts * 2) {
3550      ExpectedElt = 0;
3551      ReverseVEXT = true;
3552    }
3553
3554    if (M[i] < 0) continue; // ignore UNDEF indices
3555    if (ExpectedElt != static_cast<unsigned>(M[i]))
3556      return false;
3557  }
3558
3559  // Adjust the index value if the source operands will be swapped.
3560  if (ReverseVEXT)
3561    Imm -= NumElts;
3562
3563  return true;
3564}
3565
3566/// isVREVMask - Check if a vector shuffle corresponds to a VREV
3567/// instruction with the specified blocksize.  (The order of the elements
3568/// within each block of the vector is reversed.)
3569static bool isVREVMask(const SmallVectorImpl<int> &M, EVT VT,
3570                       unsigned BlockSize) {
3571  assert((BlockSize==16 || BlockSize==32 || BlockSize==64) &&
3572         "Only possible block sizes for VREV are: 16, 32, 64");
3573
3574  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3575  if (EltSz == 64)
3576    return false;
3577
3578  unsigned NumElts = VT.getVectorNumElements();
3579  unsigned BlockElts = M[0] + 1;
3580  // If the first shuffle index is UNDEF, be optimistic.
3581  if (M[0] < 0)
3582    BlockElts = BlockSize / EltSz;
3583
3584  if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
3585    return false;
3586
3587  for (unsigned i = 0; i < NumElts; ++i) {
3588    if (M[i] < 0) continue; // ignore UNDEF indices
3589    if ((unsigned) M[i] != (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts))
3590      return false;
3591  }
3592
3593  return true;
3594}
3595
3596static bool isVTBLMask(const SmallVectorImpl<int> &M, EVT VT) {
3597  // We can handle <8 x i8> vector shuffles. If the index in the mask is out of
3598  // range, then 0 is placed into the resulting vector. So pretty much any mask
3599  // of 8 elements can work here.
3600  return VT == MVT::v8i8 && M.size() == 8;
3601}
3602
3603static bool isVTRNMask(const SmallVectorImpl<int> &M, EVT VT,
3604                       unsigned &WhichResult) {
3605  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3606  if (EltSz == 64)
3607    return false;
3608
3609  unsigned NumElts = VT.getVectorNumElements();
3610  WhichResult = (M[0] == 0 ? 0 : 1);
3611  for (unsigned i = 0; i < NumElts; i += 2) {
3612    if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) ||
3613        (M[i+1] >= 0 && (unsigned) M[i+1] != i + NumElts + WhichResult))
3614      return false;
3615  }
3616  return true;
3617}
3618
3619/// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
3620/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
3621/// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
3622static bool isVTRN_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
3623                                unsigned &WhichResult) {
3624  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3625  if (EltSz == 64)
3626    return false;
3627
3628  unsigned NumElts = VT.getVectorNumElements();
3629  WhichResult = (M[0] == 0 ? 0 : 1);
3630  for (unsigned i = 0; i < NumElts; i += 2) {
3631    if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) ||
3632        (M[i+1] >= 0 && (unsigned) M[i+1] != i + WhichResult))
3633      return false;
3634  }
3635  return true;
3636}
3637
3638static bool isVUZPMask(const SmallVectorImpl<int> &M, EVT VT,
3639                       unsigned &WhichResult) {
3640  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3641  if (EltSz == 64)
3642    return false;
3643
3644  unsigned NumElts = VT.getVectorNumElements();
3645  WhichResult = (M[0] == 0 ? 0 : 1);
3646  for (unsigned i = 0; i != NumElts; ++i) {
3647    if (M[i] < 0) continue; // ignore UNDEF indices
3648    if ((unsigned) M[i] != 2 * i + WhichResult)
3649      return false;
3650  }
3651
3652  // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3653  if (VT.is64BitVector() && EltSz == 32)
3654    return false;
3655
3656  return true;
3657}
3658
3659/// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
3660/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
3661/// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
3662static bool isVUZP_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
3663                                unsigned &WhichResult) {
3664  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3665  if (EltSz == 64)
3666    return false;
3667
3668  unsigned Half = VT.getVectorNumElements() / 2;
3669  WhichResult = (M[0] == 0 ? 0 : 1);
3670  for (unsigned j = 0; j != 2; ++j) {
3671    unsigned Idx = WhichResult;
3672    for (unsigned i = 0; i != Half; ++i) {
3673      int MIdx = M[i + j * Half];
3674      if (MIdx >= 0 && (unsigned) MIdx != Idx)
3675        return false;
3676      Idx += 2;
3677    }
3678  }
3679
3680  // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3681  if (VT.is64BitVector() && EltSz == 32)
3682    return false;
3683
3684  return true;
3685}
3686
3687static bool isVZIPMask(const SmallVectorImpl<int> &M, EVT VT,
3688                       unsigned &WhichResult) {
3689  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3690  if (EltSz == 64)
3691    return false;
3692
3693  unsigned NumElts = VT.getVectorNumElements();
3694  WhichResult = (M[0] == 0 ? 0 : 1);
3695  unsigned Idx = WhichResult * NumElts / 2;
3696  for (unsigned i = 0; i != NumElts; i += 2) {
3697    if ((M[i] >= 0 && (unsigned) M[i] != Idx) ||
3698        (M[i+1] >= 0 && (unsigned) M[i+1] != Idx + NumElts))
3699      return false;
3700    Idx += 1;
3701  }
3702
3703  // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3704  if (VT.is64BitVector() && EltSz == 32)
3705    return false;
3706
3707  return true;
3708}
3709
3710/// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
3711/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
3712/// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
3713static bool isVZIP_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
3714                                unsigned &WhichResult) {
3715  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3716  if (EltSz == 64)
3717    return false;
3718
3719  unsigned NumElts = VT.getVectorNumElements();
3720  WhichResult = (M[0] == 0 ? 0 : 1);
3721  unsigned Idx = WhichResult * NumElts / 2;
3722  for (unsigned i = 0; i != NumElts; i += 2) {
3723    if ((M[i] >= 0 && (unsigned) M[i] != Idx) ||
3724        (M[i+1] >= 0 && (unsigned) M[i+1] != Idx))
3725      return false;
3726    Idx += 1;
3727  }
3728
3729  // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3730  if (VT.is64BitVector() && EltSz == 32)
3731    return false;
3732
3733  return true;
3734}
3735
3736// If N is an integer constant that can be moved into a register in one
3737// instruction, return an SDValue of such a constant (will become a MOV
3738// instruction).  Otherwise return null.
3739static SDValue IsSingleInstrConstant(SDValue N, SelectionDAG &DAG,
3740                                     const ARMSubtarget *ST, DebugLoc dl) {
3741  uint64_t Val;
3742  if (!isa<ConstantSDNode>(N))
3743    return SDValue();
3744  Val = cast<ConstantSDNode>(N)->getZExtValue();
3745
3746  if (ST->isThumb1Only()) {
3747    if (Val <= 255 || ~Val <= 255)
3748      return DAG.getConstant(Val, MVT::i32);
3749  } else {
3750    if (ARM_AM::getSOImmVal(Val) != -1 || ARM_AM::getSOImmVal(~Val) != -1)
3751      return DAG.getConstant(Val, MVT::i32);
3752  }
3753  return SDValue();
3754}
3755
3756// If this is a case we can't handle, return null and let the default
3757// expansion code take care of it.
3758SDValue ARMTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
3759                                             const ARMSubtarget *ST) const {
3760  BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
3761  DebugLoc dl = Op.getDebugLoc();
3762  EVT VT = Op.getValueType();
3763
3764  APInt SplatBits, SplatUndef;
3765  unsigned SplatBitSize;
3766  bool HasAnyUndefs;
3767  if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
3768    if (SplatBitSize <= 64) {
3769      // Check if an immediate VMOV works.
3770      EVT VmovVT;
3771      SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
3772                                      SplatUndef.getZExtValue(), SplatBitSize,
3773                                      DAG, VmovVT, VT.is128BitVector(),
3774                                      VMOVModImm);
3775      if (Val.getNode()) {
3776        SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, Val);
3777        return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
3778      }
3779
3780      // Try an immediate VMVN.
3781      uint64_t NegatedImm = (SplatBits.getZExtValue() ^
3782                             ((1LL << SplatBitSize) - 1));
3783      Val = isNEONModifiedImm(NegatedImm,
3784                                      SplatUndef.getZExtValue(), SplatBitSize,
3785                                      DAG, VmovVT, VT.is128BitVector(),
3786                                      VMVNModImm);
3787      if (Val.getNode()) {
3788        SDValue Vmov = DAG.getNode(ARMISD::VMVNIMM, dl, VmovVT, Val);
3789        return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
3790      }
3791    }
3792  }
3793
3794  // Scan through the operands to see if only one value is used.
3795  unsigned NumElts = VT.getVectorNumElements();
3796  bool isOnlyLowElement = true;
3797  bool usesOnlyOneValue = true;
3798  bool isConstant = true;
3799  SDValue Value;
3800  for (unsigned i = 0; i < NumElts; ++i) {
3801    SDValue V = Op.getOperand(i);
3802    if (V.getOpcode() == ISD::UNDEF)
3803      continue;
3804    if (i > 0)
3805      isOnlyLowElement = false;
3806    if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
3807      isConstant = false;
3808
3809    if (!Value.getNode())
3810      Value = V;
3811    else if (V != Value)
3812      usesOnlyOneValue = false;
3813  }
3814
3815  if (!Value.getNode())
3816    return DAG.getUNDEF(VT);
3817
3818  if (isOnlyLowElement)
3819    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
3820
3821  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
3822
3823  // Use VDUP for non-constant splats.  For f32 constant splats, reduce to
3824  // i32 and try again.
3825  if (usesOnlyOneValue && EltSize <= 32) {
3826    if (!isConstant)
3827      return DAG.getNode(ARMISD::VDUP, dl, VT, Value);
3828    if (VT.getVectorElementType().isFloatingPoint()) {
3829      SmallVector<SDValue, 8> Ops;
3830      for (unsigned i = 0; i < NumElts; ++i)
3831        Ops.push_back(DAG.getNode(ISD::BITCAST, dl, MVT::i32,
3832                                  Op.getOperand(i)));
3833      EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
3834      SDValue Val = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, &Ops[0], NumElts);
3835      Val = LowerBUILD_VECTOR(Val, DAG, ST);
3836      if (Val.getNode())
3837        return DAG.getNode(ISD::BITCAST, dl, VT, Val);
3838    }
3839    SDValue Val = IsSingleInstrConstant(Value, DAG, ST, dl);
3840    if (Val.getNode())
3841      return DAG.getNode(ARMISD::VDUP, dl, VT, Val);
3842  }
3843
3844  // If all elements are constants and the case above didn't get hit, fall back
3845  // to the default expansion, which will generate a load from the constant
3846  // pool.
3847  if (isConstant)
3848    return SDValue();
3849
3850  // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
3851  if (NumElts >= 4) {
3852    SDValue shuffle = ReconstructShuffle(Op, DAG);
3853    if (shuffle != SDValue())
3854      return shuffle;
3855  }
3856
3857  // Vectors with 32- or 64-bit elements can be built by directly assigning
3858  // the subregisters.  Lower it to an ARMISD::BUILD_VECTOR so the operands
3859  // will be legalized.
3860  if (EltSize >= 32) {
3861    // Do the expansion with floating-point types, since that is what the VFP
3862    // registers are defined to use, and since i64 is not legal.
3863    EVT EltVT = EVT::getFloatingPointVT(EltSize);
3864    EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
3865    SmallVector<SDValue, 8> Ops;
3866    for (unsigned i = 0; i < NumElts; ++i)
3867      Ops.push_back(DAG.getNode(ISD::BITCAST, dl, EltVT, Op.getOperand(i)));
3868    SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts);
3869    return DAG.getNode(ISD::BITCAST, dl, VT, Val);
3870  }
3871
3872  return SDValue();
3873}
3874
3875// Gather data to see if the operation can be modelled as a
3876// shuffle in combination with VEXTs.
3877SDValue ARMTargetLowering::ReconstructShuffle(SDValue Op,
3878                                              SelectionDAG &DAG) const {
3879  DebugLoc dl = Op.getDebugLoc();
3880  EVT VT = Op.getValueType();
3881  unsigned NumElts = VT.getVectorNumElements();
3882
3883  SmallVector<SDValue, 2> SourceVecs;
3884  SmallVector<unsigned, 2> MinElts;
3885  SmallVector<unsigned, 2> MaxElts;
3886
3887  for (unsigned i = 0; i < NumElts; ++i) {
3888    SDValue V = Op.getOperand(i);
3889    if (V.getOpcode() == ISD::UNDEF)
3890      continue;
3891    else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) {
3892      // A shuffle can only come from building a vector from various
3893      // elements of other vectors.
3894      return SDValue();
3895    }
3896
3897    // Record this extraction against the appropriate vector if possible...
3898    SDValue SourceVec = V.getOperand(0);
3899    unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
3900    bool FoundSource = false;
3901    for (unsigned j = 0; j < SourceVecs.size(); ++j) {
3902      if (SourceVecs[j] == SourceVec) {
3903        if (MinElts[j] > EltNo)
3904          MinElts[j] = EltNo;
3905        if (MaxElts[j] < EltNo)
3906          MaxElts[j] = EltNo;
3907        FoundSource = true;
3908        break;
3909      }
3910    }
3911
3912    // Or record a new source if not...
3913    if (!FoundSource) {
3914      SourceVecs.push_back(SourceVec);
3915      MinElts.push_back(EltNo);
3916      MaxElts.push_back(EltNo);
3917    }
3918  }
3919
3920  // Currently only do something sane when at most two source vectors
3921  // involved.
3922  if (SourceVecs.size() > 2)
3923    return SDValue();
3924
3925  SDValue ShuffleSrcs[2] = {DAG.getUNDEF(VT), DAG.getUNDEF(VT) };
3926  int VEXTOffsets[2] = {0, 0};
3927
3928  // This loop extracts the usage patterns of the source vectors
3929  // and prepares appropriate SDValues for a shuffle if possible.
3930  for (unsigned i = 0; i < SourceVecs.size(); ++i) {
3931    if (SourceVecs[i].getValueType() == VT) {
3932      // No VEXT necessary
3933      ShuffleSrcs[i] = SourceVecs[i];
3934      VEXTOffsets[i] = 0;
3935      continue;
3936    } else if (SourceVecs[i].getValueType().getVectorNumElements() < NumElts) {
3937      // It probably isn't worth padding out a smaller vector just to
3938      // break it down again in a shuffle.
3939      return SDValue();
3940    }
3941
3942    // Since only 64-bit and 128-bit vectors are legal on ARM and
3943    // we've eliminated the other cases...
3944    assert(SourceVecs[i].getValueType().getVectorNumElements() == 2*NumElts &&
3945           "unexpected vector sizes in ReconstructShuffle");
3946
3947    if (MaxElts[i] - MinElts[i] >= NumElts) {
3948      // Span too large for a VEXT to cope
3949      return SDValue();
3950    }
3951
3952    if (MinElts[i] >= NumElts) {
3953      // The extraction can just take the second half
3954      VEXTOffsets[i] = NumElts;
3955      ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
3956                                   SourceVecs[i],
3957                                   DAG.getIntPtrConstant(NumElts));
3958    } else if (MaxElts[i] < NumElts) {
3959      // The extraction can just take the first half
3960      VEXTOffsets[i] = 0;
3961      ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
3962                                   SourceVecs[i],
3963                                   DAG.getIntPtrConstant(0));
3964    } else {
3965      // An actual VEXT is needed
3966      VEXTOffsets[i] = MinElts[i];
3967      SDValue VEXTSrc1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
3968                                     SourceVecs[i],
3969                                     DAG.getIntPtrConstant(0));
3970      SDValue VEXTSrc2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
3971                                     SourceVecs[i],
3972                                     DAG.getIntPtrConstant(NumElts));
3973      ShuffleSrcs[i] = DAG.getNode(ARMISD::VEXT, dl, VT, VEXTSrc1, VEXTSrc2,
3974                                   DAG.getConstant(VEXTOffsets[i], MVT::i32));
3975    }
3976  }
3977
3978  SmallVector<int, 8> Mask;
3979
3980  for (unsigned i = 0; i < NumElts; ++i) {
3981    SDValue Entry = Op.getOperand(i);
3982    if (Entry.getOpcode() == ISD::UNDEF) {
3983      Mask.push_back(-1);
3984      continue;
3985    }
3986
3987    SDValue ExtractVec = Entry.getOperand(0);
3988    int ExtractElt = cast<ConstantSDNode>(Op.getOperand(i)
3989                                          .getOperand(1))->getSExtValue();
3990    if (ExtractVec == SourceVecs[0]) {
3991      Mask.push_back(ExtractElt - VEXTOffsets[0]);
3992    } else {
3993      Mask.push_back(ExtractElt + NumElts - VEXTOffsets[1]);
3994    }
3995  }
3996
3997  // Final check before we try to produce nonsense...
3998  if (isShuffleMaskLegal(Mask, VT))
3999    return DAG.getVectorShuffle(VT, dl, ShuffleSrcs[0], ShuffleSrcs[1],
4000                                &Mask[0]);
4001
4002  return SDValue();
4003}
4004
4005/// isShuffleMaskLegal - Targets can use this to indicate that they only
4006/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
4007/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
4008/// are assumed to be legal.
4009bool
4010ARMTargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
4011                                      EVT VT) const {
4012  if (VT.getVectorNumElements() == 4 &&
4013      (VT.is128BitVector() || VT.is64BitVector())) {
4014    unsigned PFIndexes[4];
4015    for (unsigned i = 0; i != 4; ++i) {
4016      if (M[i] < 0)
4017        PFIndexes[i] = 8;
4018      else
4019        PFIndexes[i] = M[i];
4020    }
4021
4022    // Compute the index in the perfect shuffle table.
4023    unsigned PFTableIndex =
4024      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
4025    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
4026    unsigned Cost = (PFEntry >> 30);
4027
4028    if (Cost <= 4)
4029      return true;
4030  }
4031
4032  bool ReverseVEXT;
4033  unsigned Imm, WhichResult;
4034
4035  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4036  return (EltSize >= 32 ||
4037          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
4038          isVREVMask(M, VT, 64) ||
4039          isVREVMask(M, VT, 32) ||
4040          isVREVMask(M, VT, 16) ||
4041          isVEXTMask(M, VT, ReverseVEXT, Imm) ||
4042          isVTBLMask(M, VT) ||
4043          isVTRNMask(M, VT, WhichResult) ||
4044          isVUZPMask(M, VT, WhichResult) ||
4045          isVZIPMask(M, VT, WhichResult) ||
4046          isVTRN_v_undef_Mask(M, VT, WhichResult) ||
4047          isVUZP_v_undef_Mask(M, VT, WhichResult) ||
4048          isVZIP_v_undef_Mask(M, VT, WhichResult));
4049}
4050
4051/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
4052/// the specified operations to build the shuffle.
4053static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
4054                                      SDValue RHS, SelectionDAG &DAG,
4055                                      DebugLoc dl) {
4056  unsigned OpNum = (PFEntry >> 26) & 0x0F;
4057  unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
4058  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
4059
4060  enum {
4061    OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
4062    OP_VREV,
4063    OP_VDUP0,
4064    OP_VDUP1,
4065    OP_VDUP2,
4066    OP_VDUP3,
4067    OP_VEXT1,
4068    OP_VEXT2,
4069    OP_VEXT3,
4070    OP_VUZPL, // VUZP, left result
4071    OP_VUZPR, // VUZP, right result
4072    OP_VZIPL, // VZIP, left result
4073    OP_VZIPR, // VZIP, right result
4074    OP_VTRNL, // VTRN, left result
4075    OP_VTRNR  // VTRN, right result
4076  };
4077
4078  if (OpNum == OP_COPY) {
4079    if (LHSID == (1*9+2)*9+3) return LHS;
4080    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
4081    return RHS;
4082  }
4083
4084  SDValue OpLHS, OpRHS;
4085  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
4086  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
4087  EVT VT = OpLHS.getValueType();
4088
4089  switch (OpNum) {
4090  default: llvm_unreachable("Unknown shuffle opcode!");
4091  case OP_VREV:
4092    return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS);
4093  case OP_VDUP0:
4094  case OP_VDUP1:
4095  case OP_VDUP2:
4096  case OP_VDUP3:
4097    return DAG.getNode(ARMISD::VDUPLANE, dl, VT,
4098                       OpLHS, DAG.getConstant(OpNum-OP_VDUP0, MVT::i32));
4099  case OP_VEXT1:
4100  case OP_VEXT2:
4101  case OP_VEXT3:
4102    return DAG.getNode(ARMISD::VEXT, dl, VT,
4103                       OpLHS, OpRHS,
4104                       DAG.getConstant(OpNum-OP_VEXT1+1, MVT::i32));
4105  case OP_VUZPL:
4106  case OP_VUZPR:
4107    return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
4108                       OpLHS, OpRHS).getValue(OpNum-OP_VUZPL);
4109  case OP_VZIPL:
4110  case OP_VZIPR:
4111    return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
4112                       OpLHS, OpRHS).getValue(OpNum-OP_VZIPL);
4113  case OP_VTRNL:
4114  case OP_VTRNR:
4115    return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
4116                       OpLHS, OpRHS).getValue(OpNum-OP_VTRNL);
4117  }
4118}
4119
4120static SDValue LowerVECTOR_SHUFFLEv8i8(SDValue Op,
4121                                       SmallVectorImpl<int> &ShuffleMask,
4122                                       SelectionDAG &DAG) {
4123  // Check to see if we can use the VTBL instruction.
4124  SDValue V1 = Op.getOperand(0);
4125  SDValue V2 = Op.getOperand(1);
4126  DebugLoc DL = Op.getDebugLoc();
4127
4128  SmallVector<SDValue, 8> VTBLMask;
4129  for (SmallVectorImpl<int>::iterator
4130         I = ShuffleMask.begin(), E = ShuffleMask.end(); I != E; ++I)
4131    VTBLMask.push_back(DAG.getConstant(*I, MVT::i32));
4132
4133  if (V2.getNode()->getOpcode() == ISD::UNDEF)
4134    return DAG.getNode(ARMISD::VTBL1, DL, MVT::v8i8, V1,
4135                       DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i8,
4136                                   &VTBLMask[0], 8));
4137
4138  return DAG.getNode(ARMISD::VTBL2, DL, MVT::v8i8, V1, V2,
4139                     DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i8,
4140                                 &VTBLMask[0], 8));
4141}
4142
4143static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
4144  SDValue V1 = Op.getOperand(0);
4145  SDValue V2 = Op.getOperand(1);
4146  DebugLoc dl = Op.getDebugLoc();
4147  EVT VT = Op.getValueType();
4148  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
4149  SmallVector<int, 8> ShuffleMask;
4150
4151  // Convert shuffles that are directly supported on NEON to target-specific
4152  // DAG nodes, instead of keeping them as shuffles and matching them again
4153  // during code selection.  This is more efficient and avoids the possibility
4154  // of inconsistencies between legalization and selection.
4155  // FIXME: floating-point vectors should be canonicalized to integer vectors
4156  // of the same time so that they get CSEd properly.
4157  SVN->getMask(ShuffleMask);
4158
4159  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4160  if (EltSize <= 32) {
4161    if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0], VT)) {
4162      int Lane = SVN->getSplatIndex();
4163      // If this is undef splat, generate it via "just" vdup, if possible.
4164      if (Lane == -1) Lane = 0;
4165
4166      if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
4167        return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
4168      }
4169      return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1,
4170                         DAG.getConstant(Lane, MVT::i32));
4171    }
4172
4173    bool ReverseVEXT;
4174    unsigned Imm;
4175    if (isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) {
4176      if (ReverseVEXT)
4177        std::swap(V1, V2);
4178      return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2,
4179                         DAG.getConstant(Imm, MVT::i32));
4180    }
4181
4182    if (isVREVMask(ShuffleMask, VT, 64))
4183      return DAG.getNode(ARMISD::VREV64, dl, VT, V1);
4184    if (isVREVMask(ShuffleMask, VT, 32))
4185      return DAG.getNode(ARMISD::VREV32, dl, VT, V1);
4186    if (isVREVMask(ShuffleMask, VT, 16))
4187      return DAG.getNode(ARMISD::VREV16, dl, VT, V1);
4188
4189    // Check for Neon shuffles that modify both input vectors in place.
4190    // If both results are used, i.e., if there are two shuffles with the same
4191    // source operands and with masks corresponding to both results of one of
4192    // these operations, DAG memoization will ensure that a single node is
4193    // used for both shuffles.
4194    unsigned WhichResult;
4195    if (isVTRNMask(ShuffleMask, VT, WhichResult))
4196      return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
4197                         V1, V2).getValue(WhichResult);
4198    if (isVUZPMask(ShuffleMask, VT, WhichResult))
4199      return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
4200                         V1, V2).getValue(WhichResult);
4201    if (isVZIPMask(ShuffleMask, VT, WhichResult))
4202      return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
4203                         V1, V2).getValue(WhichResult);
4204
4205    if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult))
4206      return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
4207                         V1, V1).getValue(WhichResult);
4208    if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult))
4209      return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
4210                         V1, V1).getValue(WhichResult);
4211    if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult))
4212      return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
4213                         V1, V1).getValue(WhichResult);
4214  }
4215
4216  // If the shuffle is not directly supported and it has 4 elements, use
4217  // the PerfectShuffle-generated table to synthesize it from other shuffles.
4218  unsigned NumElts = VT.getVectorNumElements();
4219  if (NumElts == 4) {
4220    unsigned PFIndexes[4];
4221    for (unsigned i = 0; i != 4; ++i) {
4222      if (ShuffleMask[i] < 0)
4223        PFIndexes[i] = 8;
4224      else
4225        PFIndexes[i] = ShuffleMask[i];
4226    }
4227
4228    // Compute the index in the perfect shuffle table.
4229    unsigned PFTableIndex =
4230      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
4231    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
4232    unsigned Cost = (PFEntry >> 30);
4233
4234    if (Cost <= 4)
4235      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
4236  }
4237
4238  // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs.
4239  if (EltSize >= 32) {
4240    // Do the expansion with floating-point types, since that is what the VFP
4241    // registers are defined to use, and since i64 is not legal.
4242    EVT EltVT = EVT::getFloatingPointVT(EltSize);
4243    EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
4244    V1 = DAG.getNode(ISD::BITCAST, dl, VecVT, V1);
4245    V2 = DAG.getNode(ISD::BITCAST, dl, VecVT, V2);
4246    SmallVector<SDValue, 8> Ops;
4247    for (unsigned i = 0; i < NumElts; ++i) {
4248      if (ShuffleMask[i] < 0)
4249        Ops.push_back(DAG.getUNDEF(EltVT));
4250      else
4251        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
4252                                  ShuffleMask[i] < (int)NumElts ? V1 : V2,
4253                                  DAG.getConstant(ShuffleMask[i] & (NumElts-1),
4254                                                  MVT::i32)));
4255    }
4256    SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts);
4257    return DAG.getNode(ISD::BITCAST, dl, VT, Val);
4258  }
4259
4260  if (VT == MVT::v8i8) {
4261    SDValue NewOp = LowerVECTOR_SHUFFLEv8i8(Op, ShuffleMask, DAG);
4262    if (NewOp.getNode())
4263      return NewOp;
4264  }
4265
4266  return SDValue();
4267}
4268
4269static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4270  // EXTRACT_VECTOR_ELT is legal only for immediate indexes.
4271  SDValue Lane = Op.getOperand(1);
4272  if (!isa<ConstantSDNode>(Lane))
4273    return SDValue();
4274
4275  SDValue Vec = Op.getOperand(0);
4276  if (Op.getValueType() == MVT::i32 &&
4277      Vec.getValueType().getVectorElementType().getSizeInBits() < 32) {
4278    DebugLoc dl = Op.getDebugLoc();
4279    return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
4280  }
4281
4282  return Op;
4283}
4284
4285static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
4286  // The only time a CONCAT_VECTORS operation can have legal types is when
4287  // two 64-bit vectors are concatenated to a 128-bit vector.
4288  assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 &&
4289         "unexpected CONCAT_VECTORS");
4290  DebugLoc dl = Op.getDebugLoc();
4291  SDValue Val = DAG.getUNDEF(MVT::v2f64);
4292  SDValue Op0 = Op.getOperand(0);
4293  SDValue Op1 = Op.getOperand(1);
4294  if (Op0.getOpcode() != ISD::UNDEF)
4295    Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
4296                      DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op0),
4297                      DAG.getIntPtrConstant(0));
4298  if (Op1.getOpcode() != ISD::UNDEF)
4299    Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
4300                      DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op1),
4301                      DAG.getIntPtrConstant(1));
4302  return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Val);
4303}
4304
4305/// isExtendedBUILD_VECTOR - Check if N is a constant BUILD_VECTOR where each
4306/// element has been zero/sign-extended, depending on the isSigned parameter,
4307/// from an integer type half its size.
4308static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
4309                                   bool isSigned) {
4310  // A v2i64 BUILD_VECTOR will have been legalized to a BITCAST from v4i32.
4311  EVT VT = N->getValueType(0);
4312  if (VT == MVT::v2i64 && N->getOpcode() == ISD::BITCAST) {
4313    SDNode *BVN = N->getOperand(0).getNode();
4314    if (BVN->getValueType(0) != MVT::v4i32 ||
4315        BVN->getOpcode() != ISD::BUILD_VECTOR)
4316      return false;
4317    unsigned LoElt = DAG.getTargetLoweringInfo().isBigEndian() ? 1 : 0;
4318    unsigned HiElt = 1 - LoElt;
4319    ConstantSDNode *Lo0 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt));
4320    ConstantSDNode *Hi0 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt));
4321    ConstantSDNode *Lo1 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt+2));
4322    ConstantSDNode *Hi1 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt+2));
4323    if (!Lo0 || !Hi0 || !Lo1 || !Hi1)
4324      return false;
4325    if (isSigned) {
4326      if (Hi0->getSExtValue() == Lo0->getSExtValue() >> 32 &&
4327          Hi1->getSExtValue() == Lo1->getSExtValue() >> 32)
4328        return true;
4329    } else {
4330      if (Hi0->isNullValue() && Hi1->isNullValue())
4331        return true;
4332    }
4333    return false;
4334  }
4335
4336  if (N->getOpcode() != ISD::BUILD_VECTOR)
4337    return false;
4338
4339  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
4340    SDNode *Elt = N->getOperand(i).getNode();
4341    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
4342      unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4343      unsigned HalfSize = EltSize / 2;
4344      if (isSigned) {
4345        int64_t SExtVal = C->getSExtValue();
4346        if ((SExtVal >> HalfSize) != (SExtVal >> EltSize))
4347          return false;
4348      } else {
4349        if ((C->getZExtValue() >> HalfSize) != 0)
4350          return false;
4351      }
4352      continue;
4353    }
4354    return false;
4355  }
4356
4357  return true;
4358}
4359
4360/// isSignExtended - Check if a node is a vector value that is sign-extended
4361/// or a constant BUILD_VECTOR with sign-extended elements.
4362static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
4363  if (N->getOpcode() == ISD::SIGN_EXTEND || ISD::isSEXTLoad(N))
4364    return true;
4365  if (isExtendedBUILD_VECTOR(N, DAG, true))
4366    return true;
4367  return false;
4368}
4369
4370/// isZeroExtended - Check if a node is a vector value that is zero-extended
4371/// or a constant BUILD_VECTOR with zero-extended elements.
4372static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
4373  if (N->getOpcode() == ISD::ZERO_EXTEND || ISD::isZEXTLoad(N))
4374    return true;
4375  if (isExtendedBUILD_VECTOR(N, DAG, false))
4376    return true;
4377  return false;
4378}
4379
4380/// SkipExtension - For a node that is a SIGN_EXTEND, ZERO_EXTEND, extending
4381/// load, or BUILD_VECTOR with extended elements, return the unextended value.
4382static SDValue SkipExtension(SDNode *N, SelectionDAG &DAG) {
4383  if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
4384    return N->getOperand(0);
4385  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N))
4386    return DAG.getLoad(LD->getMemoryVT(), N->getDebugLoc(), LD->getChain(),
4387                       LD->getBasePtr(), LD->getPointerInfo(), LD->isVolatile(),
4388                       LD->isNonTemporal(), LD->getAlignment());
4389  // Otherwise, the value must be a BUILD_VECTOR.  For v2i64, it will
4390  // have been legalized as a BITCAST from v4i32.
4391  if (N->getOpcode() == ISD::BITCAST) {
4392    SDNode *BVN = N->getOperand(0).getNode();
4393    assert(BVN->getOpcode() == ISD::BUILD_VECTOR &&
4394           BVN->getValueType(0) == MVT::v4i32 && "expected v4i32 BUILD_VECTOR");
4395    unsigned LowElt = DAG.getTargetLoweringInfo().isBigEndian() ? 1 : 0;
4396    return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(), MVT::v2i32,
4397                       BVN->getOperand(LowElt), BVN->getOperand(LowElt+2));
4398  }
4399  // Construct a new BUILD_VECTOR with elements truncated to half the size.
4400  assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
4401  EVT VT = N->getValueType(0);
4402  unsigned EltSize = VT.getVectorElementType().getSizeInBits() / 2;
4403  unsigned NumElts = VT.getVectorNumElements();
4404  MVT TruncVT = MVT::getIntegerVT(EltSize);
4405  SmallVector<SDValue, 8> Ops;
4406  for (unsigned i = 0; i != NumElts; ++i) {
4407    ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
4408    const APInt &CInt = C->getAPIntValue();
4409    Ops.push_back(DAG.getConstant(CInt.trunc(EltSize), TruncVT));
4410  }
4411  return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(),
4412                     MVT::getVectorVT(TruncVT, NumElts), Ops.data(), NumElts);
4413}
4414
4415static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
4416  unsigned Opcode = N->getOpcode();
4417  if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
4418    SDNode *N0 = N->getOperand(0).getNode();
4419    SDNode *N1 = N->getOperand(1).getNode();
4420    return N0->hasOneUse() && N1->hasOneUse() &&
4421      isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
4422  }
4423  return false;
4424}
4425
4426static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
4427  unsigned Opcode = N->getOpcode();
4428  if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
4429    SDNode *N0 = N->getOperand(0).getNode();
4430    SDNode *N1 = N->getOperand(1).getNode();
4431    return N0->hasOneUse() && N1->hasOneUse() &&
4432      isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
4433  }
4434  return false;
4435}
4436
4437static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
4438  // Multiplications are only custom-lowered for 128-bit vectors so that
4439  // VMULL can be detected.  Otherwise v2i64 multiplications are not legal.
4440  EVT VT = Op.getValueType();
4441  assert(VT.is128BitVector() && "unexpected type for custom-lowering ISD::MUL");
4442  SDNode *N0 = Op.getOperand(0).getNode();
4443  SDNode *N1 = Op.getOperand(1).getNode();
4444  unsigned NewOpc = 0;
4445  bool isMLA = false;
4446  bool isN0SExt = isSignExtended(N0, DAG);
4447  bool isN1SExt = isSignExtended(N1, DAG);
4448  if (isN0SExt && isN1SExt)
4449    NewOpc = ARMISD::VMULLs;
4450  else {
4451    bool isN0ZExt = isZeroExtended(N0, DAG);
4452    bool isN1ZExt = isZeroExtended(N1, DAG);
4453    if (isN0ZExt && isN1ZExt)
4454      NewOpc = ARMISD::VMULLu;
4455    else if (isN1SExt || isN1ZExt) {
4456      // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
4457      // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
4458      if (isN1SExt && isAddSubSExt(N0, DAG)) {
4459        NewOpc = ARMISD::VMULLs;
4460        isMLA = true;
4461      } else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
4462        NewOpc = ARMISD::VMULLu;
4463        isMLA = true;
4464      } else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
4465        std::swap(N0, N1);
4466        NewOpc = ARMISD::VMULLu;
4467        isMLA = true;
4468      }
4469    }
4470
4471    if (!NewOpc) {
4472      if (VT == MVT::v2i64)
4473        // Fall through to expand this.  It is not legal.
4474        return SDValue();
4475      else
4476        // Other vector multiplications are legal.
4477        return Op;
4478    }
4479  }
4480
4481  // Legalize to a VMULL instruction.
4482  DebugLoc DL = Op.getDebugLoc();
4483  SDValue Op0;
4484  SDValue Op1 = SkipExtension(N1, DAG);
4485  if (!isMLA) {
4486    Op0 = SkipExtension(N0, DAG);
4487    assert(Op0.getValueType().is64BitVector() &&
4488           Op1.getValueType().is64BitVector() &&
4489           "unexpected types for extended operands to VMULL");
4490    return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
4491  }
4492
4493  // Optimizing (zext A + zext B) * C, to (VMULL A, C) + (VMULL B, C) during
4494  // isel lowering to take advantage of no-stall back to back vmul + vmla.
4495  //   vmull q0, d4, d6
4496  //   vmlal q0, d5, d6
4497  // is faster than
4498  //   vaddl q0, d4, d5
4499  //   vmovl q1, d6
4500  //   vmul  q0, q0, q1
4501  SDValue N00 = SkipExtension(N0->getOperand(0).getNode(), DAG);
4502  SDValue N01 = SkipExtension(N0->getOperand(1).getNode(), DAG);
4503  EVT Op1VT = Op1.getValueType();
4504  return DAG.getNode(N0->getOpcode(), DL, VT,
4505                     DAG.getNode(NewOpc, DL, VT,
4506                               DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
4507                     DAG.getNode(NewOpc, DL, VT,
4508                               DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
4509}
4510
4511static SDValue
4512LowerSDIV_v4i8(SDValue X, SDValue Y, DebugLoc dl, SelectionDAG &DAG) {
4513  // Convert to float
4514  // float4 xf = vcvt_f32_s32(vmovl_s16(a.lo));
4515  // float4 yf = vcvt_f32_s32(vmovl_s16(b.lo));
4516  X = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, X);
4517  Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, Y);
4518  X = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, X);
4519  Y = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, Y);
4520  // Get reciprocal estimate.
4521  // float4 recip = vrecpeq_f32(yf);
4522  Y = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
4523                   DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), Y);
4524  // Because char has a smaller range than uchar, we can actually get away
4525  // without any newton steps.  This requires that we use a weird bias
4526  // of 0xb000, however (again, this has been exhaustively tested).
4527  // float4 result = as_float4(as_int4(xf*recip) + 0xb000);
4528  X = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, X, Y);
4529  X = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, X);
4530  Y = DAG.getConstant(0xb000, MVT::i32);
4531  Y = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Y, Y, Y, Y);
4532  X = DAG.getNode(ISD::ADD, dl, MVT::v4i32, X, Y);
4533  X = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, X);
4534  // Convert back to short.
4535  X = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, X);
4536  X = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, X);
4537  return X;
4538}
4539
4540static SDValue
4541LowerSDIV_v4i16(SDValue N0, SDValue N1, DebugLoc dl, SelectionDAG &DAG) {
4542  SDValue N2;
4543  // Convert to float.
4544  // float4 yf = vcvt_f32_s32(vmovl_s16(y));
4545  // float4 xf = vcvt_f32_s32(vmovl_s16(x));
4546  N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N0);
4547  N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N1);
4548  N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
4549  N1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
4550
4551  // Use reciprocal estimate and one refinement step.
4552  // float4 recip = vrecpeq_f32(yf);
4553  // recip *= vrecpsq_f32(yf, recip);
4554  N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
4555                   DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), N1);
4556  N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
4557                   DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
4558                   N1, N2);
4559  N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
4560  // Because short has a smaller range than ushort, we can actually get away
4561  // with only a single newton step.  This requires that we use a weird bias
4562  // of 89, however (again, this has been exhaustively tested).
4563  // float4 result = as_float4(as_int4(xf*recip) + 89);
4564  N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
4565  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
4566  N1 = DAG.getConstant(89, MVT::i32);
4567  N1 = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, N1, N1, N1, N1);
4568  N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
4569  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
4570  // Convert back to integer and return.
4571  // return vmovn_s32(vcvt_s32_f32(result));
4572  N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
4573  N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
4574  return N0;
4575}
4576
4577static SDValue LowerSDIV(SDValue Op, SelectionDAG &DAG) {
4578  EVT VT = Op.getValueType();
4579  assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
4580         "unexpected type for custom-lowering ISD::SDIV");
4581
4582  DebugLoc dl = Op.getDebugLoc();
4583  SDValue N0 = Op.getOperand(0);
4584  SDValue N1 = Op.getOperand(1);
4585  SDValue N2, N3;
4586
4587  if (VT == MVT::v8i8) {
4588    N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N0);
4589    N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N1);
4590
4591    N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
4592                     DAG.getIntPtrConstant(4));
4593    N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
4594                     DAG.getIntPtrConstant(4));
4595    N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
4596                     DAG.getIntPtrConstant(0));
4597    N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
4598                     DAG.getIntPtrConstant(0));
4599
4600    N0 = LowerSDIV_v4i8(N0, N1, dl, DAG); // v4i16
4601    N2 = LowerSDIV_v4i8(N2, N3, dl, DAG); // v4i16
4602
4603    N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
4604    N0 = LowerCONCAT_VECTORS(N0, DAG);
4605
4606    N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v8i8, N0);
4607    return N0;
4608  }
4609  return LowerSDIV_v4i16(N0, N1, dl, DAG);
4610}
4611
4612static SDValue LowerUDIV(SDValue Op, SelectionDAG &DAG) {
4613  EVT VT = Op.getValueType();
4614  assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
4615         "unexpected type for custom-lowering ISD::UDIV");
4616
4617  DebugLoc dl = Op.getDebugLoc();
4618  SDValue N0 = Op.getOperand(0);
4619  SDValue N1 = Op.getOperand(1);
4620  SDValue N2, N3;
4621
4622  if (VT == MVT::v8i8) {
4623    N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N0);
4624    N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N1);
4625
4626    N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
4627                     DAG.getIntPtrConstant(4));
4628    N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
4629                     DAG.getIntPtrConstant(4));
4630    N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
4631                     DAG.getIntPtrConstant(0));
4632    N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
4633                     DAG.getIntPtrConstant(0));
4634
4635    N0 = LowerSDIV_v4i16(N0, N1, dl, DAG); // v4i16
4636    N2 = LowerSDIV_v4i16(N2, N3, dl, DAG); // v4i16
4637
4638    N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
4639    N0 = LowerCONCAT_VECTORS(N0, DAG);
4640
4641    N0 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v8i8,
4642                     DAG.getConstant(Intrinsic::arm_neon_vqmovnsu, MVT::i32),
4643                     N0);
4644    return N0;
4645  }
4646
4647  // v4i16 sdiv ... Convert to float.
4648  // float4 yf = vcvt_f32_s32(vmovl_u16(y));
4649  // float4 xf = vcvt_f32_s32(vmovl_u16(x));
4650  N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N0);
4651  N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N1);
4652  N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
4653  N1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
4654
4655  // Use reciprocal estimate and two refinement steps.
4656  // float4 recip = vrecpeq_f32(yf);
4657  // recip *= vrecpsq_f32(yf, recip);
4658  // recip *= vrecpsq_f32(yf, recip);
4659  N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
4660                   DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), N1);
4661  N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
4662                   DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
4663                   N1, N2);
4664  N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
4665  N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
4666                   DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
4667                   N1, N2);
4668  N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
4669  // Simply multiplying by the reciprocal estimate can leave us a few ulps
4670  // too low, so we add 2 ulps (exhaustive testing shows that this is enough,
4671  // and that it will never cause us to return an answer too large).
4672  // float4 result = as_float4(as_int4(xf*recip) + 89);
4673  N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
4674  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
4675  N1 = DAG.getConstant(2, MVT::i32);
4676  N1 = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, N1, N1, N1, N1);
4677  N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
4678  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
4679  // Convert back to integer and return.
4680  // return vmovn_u32(vcvt_s32_f32(result));
4681  N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
4682  N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
4683  return N0;
4684}
4685
4686SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
4687  switch (Op.getOpcode()) {
4688  default: llvm_unreachable("Don't know how to custom lower this!");
4689  case ISD::ConstantPool:  return LowerConstantPool(Op, DAG);
4690  case ISD::BlockAddress:  return LowerBlockAddress(Op, DAG);
4691  case ISD::GlobalAddress:
4692    return Subtarget->isTargetDarwin() ? LowerGlobalAddressDarwin(Op, DAG) :
4693      LowerGlobalAddressELF(Op, DAG);
4694  case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
4695  case ISD::SELECT:        return LowerSELECT(Op, DAG);
4696  case ISD::SELECT_CC:     return LowerSELECT_CC(Op, DAG);
4697  case ISD::BR_CC:         return LowerBR_CC(Op, DAG);
4698  case ISD::BR_JT:         return LowerBR_JT(Op, DAG);
4699  case ISD::VASTART:       return LowerVASTART(Op, DAG);
4700  case ISD::MEMBARRIER:    return LowerMEMBARRIER(Op, DAG, Subtarget);
4701  case ISD::PREFETCH:      return LowerPREFETCH(Op, DAG, Subtarget);
4702  case ISD::SINT_TO_FP:
4703  case ISD::UINT_TO_FP:    return LowerINT_TO_FP(Op, DAG);
4704  case ISD::FP_TO_SINT:
4705  case ISD::FP_TO_UINT:    return LowerFP_TO_INT(Op, DAG);
4706  case ISD::FCOPYSIGN:     return LowerFCOPYSIGN(Op, DAG);
4707  case ISD::RETURNADDR:    return LowerRETURNADDR(Op, DAG);
4708  case ISD::FRAMEADDR:     return LowerFRAMEADDR(Op, DAG);
4709  case ISD::GLOBAL_OFFSET_TABLE: return LowerGLOBAL_OFFSET_TABLE(Op, DAG);
4710  case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG);
4711  case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG);
4712  case ISD::EH_SJLJ_DISPATCHSETUP: return LowerEH_SJLJ_DISPATCHSETUP(Op, DAG);
4713  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG,
4714                                                               Subtarget);
4715  case ISD::BITCAST:       return ExpandBITCAST(Op.getNode(), DAG);
4716  case ISD::SHL:
4717  case ISD::SRL:
4718  case ISD::SRA:           return LowerShift(Op.getNode(), DAG, Subtarget);
4719  case ISD::SHL_PARTS:     return LowerShiftLeftParts(Op, DAG);
4720  case ISD::SRL_PARTS:
4721  case ISD::SRA_PARTS:     return LowerShiftRightParts(Op, DAG);
4722  case ISD::CTTZ:          return LowerCTTZ(Op.getNode(), DAG, Subtarget);
4723  case ISD::VSETCC:        return LowerVSETCC(Op, DAG);
4724  case ISD::BUILD_VECTOR:  return LowerBUILD_VECTOR(Op, DAG, Subtarget);
4725  case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
4726  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
4727  case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
4728  case ISD::FLT_ROUNDS_:   return LowerFLT_ROUNDS_(Op, DAG);
4729  case ISD::MUL:           return LowerMUL(Op, DAG);
4730  case ISD::SDIV:          return LowerSDIV(Op, DAG);
4731  case ISD::UDIV:          return LowerUDIV(Op, DAG);
4732  }
4733  return SDValue();
4734}
4735
4736/// ReplaceNodeResults - Replace the results of node with an illegal result
4737/// type with new values built out of custom code.
4738void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
4739                                           SmallVectorImpl<SDValue>&Results,
4740                                           SelectionDAG &DAG) const {
4741  SDValue Res;
4742  switch (N->getOpcode()) {
4743  default:
4744    llvm_unreachable("Don't know how to custom expand this!");
4745    break;
4746  case ISD::BITCAST:
4747    Res = ExpandBITCAST(N, DAG);
4748    break;
4749  case ISD::SRL:
4750  case ISD::SRA:
4751    Res = Expand64BitShift(N, DAG, Subtarget);
4752    break;
4753  }
4754  if (Res.getNode())
4755    Results.push_back(Res);
4756}
4757
4758//===----------------------------------------------------------------------===//
4759//                           ARM Scheduler Hooks
4760//===----------------------------------------------------------------------===//
4761
4762MachineBasicBlock *
4763ARMTargetLowering::EmitAtomicCmpSwap(MachineInstr *MI,
4764                                     MachineBasicBlock *BB,
4765                                     unsigned Size) const {
4766  unsigned dest    = MI->getOperand(0).getReg();
4767  unsigned ptr     = MI->getOperand(1).getReg();
4768  unsigned oldval  = MI->getOperand(2).getReg();
4769  unsigned newval  = MI->getOperand(3).getReg();
4770  unsigned scratch = BB->getParent()->getRegInfo()
4771    .createVirtualRegister(ARM::GPRRegisterClass);
4772  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4773  DebugLoc dl = MI->getDebugLoc();
4774  bool isThumb2 = Subtarget->isThumb2();
4775
4776  unsigned ldrOpc, strOpc;
4777  switch (Size) {
4778  default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
4779  case 1:
4780    ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
4781    strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
4782    break;
4783  case 2:
4784    ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
4785    strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
4786    break;
4787  case 4:
4788    ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
4789    strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
4790    break;
4791  }
4792
4793  MachineFunction *MF = BB->getParent();
4794  const BasicBlock *LLVM_BB = BB->getBasicBlock();
4795  MachineFunction::iterator It = BB;
4796  ++It; // insert the new blocks after the current block
4797
4798  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
4799  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
4800  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
4801  MF->insert(It, loop1MBB);
4802  MF->insert(It, loop2MBB);
4803  MF->insert(It, exitMBB);
4804
4805  // Transfer the remainder of BB and its successor edges to exitMBB.
4806  exitMBB->splice(exitMBB->begin(), BB,
4807                  llvm::next(MachineBasicBlock::iterator(MI)),
4808                  BB->end());
4809  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
4810
4811  //  thisMBB:
4812  //   ...
4813  //   fallthrough --> loop1MBB
4814  BB->addSuccessor(loop1MBB);
4815
4816  // loop1MBB:
4817  //   ldrex dest, [ptr]
4818  //   cmp dest, oldval
4819  //   bne exitMBB
4820  BB = loop1MBB;
4821  AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr));
4822  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
4823                 .addReg(dest).addReg(oldval));
4824  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
4825    .addMBB(exitMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
4826  BB->addSuccessor(loop2MBB);
4827  BB->addSuccessor(exitMBB);
4828
4829  // loop2MBB:
4830  //   strex scratch, newval, [ptr]
4831  //   cmp scratch, #0
4832  //   bne loop1MBB
4833  BB = loop2MBB;
4834  AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(newval)
4835                 .addReg(ptr));
4836  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
4837                 .addReg(scratch).addImm(0));
4838  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
4839    .addMBB(loop1MBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
4840  BB->addSuccessor(loop1MBB);
4841  BB->addSuccessor(exitMBB);
4842
4843  //  exitMBB:
4844  //   ...
4845  BB = exitMBB;
4846
4847  MI->eraseFromParent();   // The instruction is gone now.
4848
4849  return BB;
4850}
4851
4852MachineBasicBlock *
4853ARMTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
4854                                    unsigned Size, unsigned BinOpcode) const {
4855  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
4856  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4857
4858  const BasicBlock *LLVM_BB = BB->getBasicBlock();
4859  MachineFunction *MF = BB->getParent();
4860  MachineFunction::iterator It = BB;
4861  ++It;
4862
4863  unsigned dest = MI->getOperand(0).getReg();
4864  unsigned ptr = MI->getOperand(1).getReg();
4865  unsigned incr = MI->getOperand(2).getReg();
4866  DebugLoc dl = MI->getDebugLoc();
4867
4868  bool isThumb2 = Subtarget->isThumb2();
4869  unsigned ldrOpc, strOpc;
4870  switch (Size) {
4871  default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
4872  case 1:
4873    ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
4874    strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
4875    break;
4876  case 2:
4877    ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
4878    strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
4879    break;
4880  case 4:
4881    ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
4882    strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
4883    break;
4884  }
4885
4886  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
4887  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
4888  MF->insert(It, loopMBB);
4889  MF->insert(It, exitMBB);
4890
4891  // Transfer the remainder of BB and its successor edges to exitMBB.
4892  exitMBB->splice(exitMBB->begin(), BB,
4893                  llvm::next(MachineBasicBlock::iterator(MI)),
4894                  BB->end());
4895  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
4896
4897  MachineRegisterInfo &RegInfo = MF->getRegInfo();
4898  unsigned scratch = RegInfo.createVirtualRegister(ARM::GPRRegisterClass);
4899  unsigned scratch2 = (!BinOpcode) ? incr :
4900    RegInfo.createVirtualRegister(ARM::GPRRegisterClass);
4901
4902  //  thisMBB:
4903  //   ...
4904  //   fallthrough --> loopMBB
4905  BB->addSuccessor(loopMBB);
4906
4907  //  loopMBB:
4908  //   ldrex dest, ptr
4909  //   <binop> scratch2, dest, incr
4910  //   strex scratch, scratch2, ptr
4911  //   cmp scratch, #0
4912  //   bne- loopMBB
4913  //   fallthrough --> exitMBB
4914  BB = loopMBB;
4915  AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr));
4916  if (BinOpcode) {
4917    // operand order needs to go the other way for NAND
4918    if (BinOpcode == ARM::BICrr || BinOpcode == ARM::t2BICrr)
4919      AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
4920                     addReg(incr).addReg(dest)).addReg(0);
4921    else
4922      AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
4923                     addReg(dest).addReg(incr)).addReg(0);
4924  }
4925
4926  AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(scratch2)
4927                 .addReg(ptr));
4928  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
4929                 .addReg(scratch).addImm(0));
4930  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
4931    .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
4932
4933  BB->addSuccessor(loopMBB);
4934  BB->addSuccessor(exitMBB);
4935
4936  //  exitMBB:
4937  //   ...
4938  BB = exitMBB;
4939
4940  MI->eraseFromParent();   // The instruction is gone now.
4941
4942  return BB;
4943}
4944
4945static
4946MachineBasicBlock *OtherSucc(MachineBasicBlock *MBB, MachineBasicBlock *Succ) {
4947  for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
4948       E = MBB->succ_end(); I != E; ++I)
4949    if (*I != Succ)
4950      return *I;
4951  llvm_unreachable("Expecting a BB with two successors!");
4952}
4953
4954MachineBasicBlock *
4955ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
4956                                               MachineBasicBlock *BB) const {
4957  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4958  DebugLoc dl = MI->getDebugLoc();
4959  bool isThumb2 = Subtarget->isThumb2();
4960  switch (MI->getOpcode()) {
4961  default:
4962    MI->dump();
4963    llvm_unreachable("Unexpected instr type to insert");
4964
4965  case ARM::ATOMIC_LOAD_ADD_I8:
4966     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
4967  case ARM::ATOMIC_LOAD_ADD_I16:
4968     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
4969  case ARM::ATOMIC_LOAD_ADD_I32:
4970     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
4971
4972  case ARM::ATOMIC_LOAD_AND_I8:
4973     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
4974  case ARM::ATOMIC_LOAD_AND_I16:
4975     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
4976  case ARM::ATOMIC_LOAD_AND_I32:
4977     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
4978
4979  case ARM::ATOMIC_LOAD_OR_I8:
4980     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
4981  case ARM::ATOMIC_LOAD_OR_I16:
4982     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
4983  case ARM::ATOMIC_LOAD_OR_I32:
4984     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
4985
4986  case ARM::ATOMIC_LOAD_XOR_I8:
4987     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
4988  case ARM::ATOMIC_LOAD_XOR_I16:
4989     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
4990  case ARM::ATOMIC_LOAD_XOR_I32:
4991     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
4992
4993  case ARM::ATOMIC_LOAD_NAND_I8:
4994     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
4995  case ARM::ATOMIC_LOAD_NAND_I16:
4996     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
4997  case ARM::ATOMIC_LOAD_NAND_I32:
4998     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
4999
5000  case ARM::ATOMIC_LOAD_SUB_I8:
5001     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
5002  case ARM::ATOMIC_LOAD_SUB_I16:
5003     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
5004  case ARM::ATOMIC_LOAD_SUB_I32:
5005     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
5006
5007  case ARM::ATOMIC_SWAP_I8:  return EmitAtomicBinary(MI, BB, 1, 0);
5008  case ARM::ATOMIC_SWAP_I16: return EmitAtomicBinary(MI, BB, 2, 0);
5009  case ARM::ATOMIC_SWAP_I32: return EmitAtomicBinary(MI, BB, 4, 0);
5010
5011  case ARM::ATOMIC_CMP_SWAP_I8:  return EmitAtomicCmpSwap(MI, BB, 1);
5012  case ARM::ATOMIC_CMP_SWAP_I16: return EmitAtomicCmpSwap(MI, BB, 2);
5013  case ARM::ATOMIC_CMP_SWAP_I32: return EmitAtomicCmpSwap(MI, BB, 4);
5014
5015  case ARM::tMOVCCr_pseudo: {
5016    // To "insert" a SELECT_CC instruction, we actually have to insert the
5017    // diamond control-flow pattern.  The incoming instruction knows the
5018    // destination vreg to set, the condition code register to branch on, the
5019    // true/false values to select between, and a branch opcode to use.
5020    const BasicBlock *LLVM_BB = BB->getBasicBlock();
5021    MachineFunction::iterator It = BB;
5022    ++It;
5023
5024    //  thisMBB:
5025    //  ...
5026    //   TrueVal = ...
5027    //   cmpTY ccX, r1, r2
5028    //   bCC copy1MBB
5029    //   fallthrough --> copy0MBB
5030    MachineBasicBlock *thisMBB  = BB;
5031    MachineFunction *F = BB->getParent();
5032    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
5033    MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
5034    F->insert(It, copy0MBB);
5035    F->insert(It, sinkMBB);
5036
5037    // Transfer the remainder of BB and its successor edges to sinkMBB.
5038    sinkMBB->splice(sinkMBB->begin(), BB,
5039                    llvm::next(MachineBasicBlock::iterator(MI)),
5040                    BB->end());
5041    sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
5042
5043    BB->addSuccessor(copy0MBB);
5044    BB->addSuccessor(sinkMBB);
5045
5046    BuildMI(BB, dl, TII->get(ARM::tBcc)).addMBB(sinkMBB)
5047      .addImm(MI->getOperand(3).getImm()).addReg(MI->getOperand(4).getReg());
5048
5049    //  copy0MBB:
5050    //   %FalseValue = ...
5051    //   # fallthrough to sinkMBB
5052    BB = copy0MBB;
5053
5054    // Update machine-CFG edges
5055    BB->addSuccessor(sinkMBB);
5056
5057    //  sinkMBB:
5058    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
5059    //  ...
5060    BB = sinkMBB;
5061    BuildMI(*BB, BB->begin(), dl,
5062            TII->get(ARM::PHI), MI->getOperand(0).getReg())
5063      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
5064      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
5065
5066    MI->eraseFromParent();   // The pseudo instruction is gone now.
5067    return BB;
5068  }
5069
5070  case ARM::BCCi64:
5071  case ARM::BCCZi64: {
5072    // If there is an unconditional branch to the other successor, remove it.
5073    BB->erase(llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
5074
5075    // Compare both parts that make up the double comparison separately for
5076    // equality.
5077    bool RHSisZero = MI->getOpcode() == ARM::BCCZi64;
5078
5079    unsigned LHS1 = MI->getOperand(1).getReg();
5080    unsigned LHS2 = MI->getOperand(2).getReg();
5081    if (RHSisZero) {
5082      AddDefaultPred(BuildMI(BB, dl,
5083                             TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
5084                     .addReg(LHS1).addImm(0));
5085      BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
5086        .addReg(LHS2).addImm(0)
5087        .addImm(ARMCC::EQ).addReg(ARM::CPSR);
5088    } else {
5089      unsigned RHS1 = MI->getOperand(3).getReg();
5090      unsigned RHS2 = MI->getOperand(4).getReg();
5091      AddDefaultPred(BuildMI(BB, dl,
5092                             TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
5093                     .addReg(LHS1).addReg(RHS1));
5094      BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
5095        .addReg(LHS2).addReg(RHS2)
5096        .addImm(ARMCC::EQ).addReg(ARM::CPSR);
5097    }
5098
5099    MachineBasicBlock *destMBB = MI->getOperand(RHSisZero ? 3 : 5).getMBB();
5100    MachineBasicBlock *exitMBB = OtherSucc(BB, destMBB);
5101    if (MI->getOperand(0).getImm() == ARMCC::NE)
5102      std::swap(destMBB, exitMBB);
5103
5104    BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5105      .addMBB(destMBB).addImm(ARMCC::EQ).addReg(ARM::CPSR);
5106    BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2B : ARM::B))
5107      .addMBB(exitMBB);
5108
5109    MI->eraseFromParent();   // The pseudo instruction is gone now.
5110    return BB;
5111  }
5112  }
5113}
5114
5115//===----------------------------------------------------------------------===//
5116//                           ARM Optimization Hooks
5117//===----------------------------------------------------------------------===//
5118
5119static
5120SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
5121                            TargetLowering::DAGCombinerInfo &DCI) {
5122  SelectionDAG &DAG = DCI.DAG;
5123  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5124  EVT VT = N->getValueType(0);
5125  unsigned Opc = N->getOpcode();
5126  bool isSlctCC = Slct.getOpcode() == ISD::SELECT_CC;
5127  SDValue LHS = isSlctCC ? Slct.getOperand(2) : Slct.getOperand(1);
5128  SDValue RHS = isSlctCC ? Slct.getOperand(3) : Slct.getOperand(2);
5129  ISD::CondCode CC = ISD::SETCC_INVALID;
5130
5131  if (isSlctCC) {
5132    CC = cast<CondCodeSDNode>(Slct.getOperand(4))->get();
5133  } else {
5134    SDValue CCOp = Slct.getOperand(0);
5135    if (CCOp.getOpcode() == ISD::SETCC)
5136      CC = cast<CondCodeSDNode>(CCOp.getOperand(2))->get();
5137  }
5138
5139  bool DoXform = false;
5140  bool InvCC = false;
5141  assert ((Opc == ISD::ADD || (Opc == ISD::SUB && Slct == N->getOperand(1))) &&
5142          "Bad input!");
5143
5144  if (LHS.getOpcode() == ISD::Constant &&
5145      cast<ConstantSDNode>(LHS)->isNullValue()) {
5146    DoXform = true;
5147  } else if (CC != ISD::SETCC_INVALID &&
5148             RHS.getOpcode() == ISD::Constant &&
5149             cast<ConstantSDNode>(RHS)->isNullValue()) {
5150    std::swap(LHS, RHS);
5151    SDValue Op0 = Slct.getOperand(0);
5152    EVT OpVT = isSlctCC ? Op0.getValueType() :
5153                          Op0.getOperand(0).getValueType();
5154    bool isInt = OpVT.isInteger();
5155    CC = ISD::getSetCCInverse(CC, isInt);
5156
5157    if (!TLI.isCondCodeLegal(CC, OpVT))
5158      return SDValue();         // Inverse operator isn't legal.
5159
5160    DoXform = true;
5161    InvCC = true;
5162  }
5163
5164  if (DoXform) {
5165    SDValue Result = DAG.getNode(Opc, RHS.getDebugLoc(), VT, OtherOp, RHS);
5166    if (isSlctCC)
5167      return DAG.getSelectCC(N->getDebugLoc(), OtherOp, Result,
5168                             Slct.getOperand(0), Slct.getOperand(1), CC);
5169    SDValue CCOp = Slct.getOperand(0);
5170    if (InvCC)
5171      CCOp = DAG.getSetCC(Slct.getDebugLoc(), CCOp.getValueType(),
5172                          CCOp.getOperand(0), CCOp.getOperand(1), CC);
5173    return DAG.getNode(ISD::SELECT, N->getDebugLoc(), VT,
5174                       CCOp, OtherOp, Result);
5175  }
5176  return SDValue();
5177}
5178
5179/// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
5180/// operands N0 and N1.  This is a helper for PerformADDCombine that is
5181/// called with the default operands, and if that fails, with commuted
5182/// operands.
5183static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
5184                                         TargetLowering::DAGCombinerInfo &DCI) {
5185  // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
5186  if (N0.getOpcode() == ISD::SELECT && N0.getNode()->hasOneUse()) {
5187    SDValue Result = combineSelectAndUse(N, N0, N1, DCI);
5188    if (Result.getNode()) return Result;
5189  }
5190  return SDValue();
5191}
5192
5193/// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
5194///
5195static SDValue PerformADDCombine(SDNode *N,
5196                                 TargetLowering::DAGCombinerInfo &DCI) {
5197  SDValue N0 = N->getOperand(0);
5198  SDValue N1 = N->getOperand(1);
5199
5200  // First try with the default operand order.
5201  SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI);
5202  if (Result.getNode())
5203    return Result;
5204
5205  // If that didn't work, try again with the operands commuted.
5206  return PerformADDCombineWithOperands(N, N1, N0, DCI);
5207}
5208
5209/// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
5210///
5211static SDValue PerformSUBCombine(SDNode *N,
5212                                 TargetLowering::DAGCombinerInfo &DCI) {
5213  SDValue N0 = N->getOperand(0);
5214  SDValue N1 = N->getOperand(1);
5215
5216  // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
5217  if (N1.getOpcode() == ISD::SELECT && N1.getNode()->hasOneUse()) {
5218    SDValue Result = combineSelectAndUse(N, N1, N0, DCI);
5219    if (Result.getNode()) return Result;
5220  }
5221
5222  return SDValue();
5223}
5224
5225static SDValue PerformMULCombine(SDNode *N,
5226                                 TargetLowering::DAGCombinerInfo &DCI,
5227                                 const ARMSubtarget *Subtarget) {
5228  SelectionDAG &DAG = DCI.DAG;
5229
5230  if (Subtarget->isThumb1Only())
5231    return SDValue();
5232
5233  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
5234    return SDValue();
5235
5236  EVT VT = N->getValueType(0);
5237  if (VT != MVT::i32)
5238    return SDValue();
5239
5240  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
5241  if (!C)
5242    return SDValue();
5243
5244  uint64_t MulAmt = C->getZExtValue();
5245  unsigned ShiftAmt = CountTrailingZeros_64(MulAmt);
5246  ShiftAmt = ShiftAmt & (32 - 1);
5247  SDValue V = N->getOperand(0);
5248  DebugLoc DL = N->getDebugLoc();
5249
5250  SDValue Res;
5251  MulAmt >>= ShiftAmt;
5252  if (isPowerOf2_32(MulAmt - 1)) {
5253    // (mul x, 2^N + 1) => (add (shl x, N), x)
5254    Res = DAG.getNode(ISD::ADD, DL, VT,
5255                      V, DAG.getNode(ISD::SHL, DL, VT,
5256                                     V, DAG.getConstant(Log2_32(MulAmt-1),
5257                                                        MVT::i32)));
5258  } else if (isPowerOf2_32(MulAmt + 1)) {
5259    // (mul x, 2^N - 1) => (sub (shl x, N), x)
5260    Res = DAG.getNode(ISD::SUB, DL, VT,
5261                      DAG.getNode(ISD::SHL, DL, VT,
5262                                  V, DAG.getConstant(Log2_32(MulAmt+1),
5263                                                     MVT::i32)),
5264                                                     V);
5265  } else
5266    return SDValue();
5267
5268  if (ShiftAmt != 0)
5269    Res = DAG.getNode(ISD::SHL, DL, VT, Res,
5270                      DAG.getConstant(ShiftAmt, MVT::i32));
5271
5272  // Do not add new nodes to DAG combiner worklist.
5273  DCI.CombineTo(N, Res, false);
5274  return SDValue();
5275}
5276
5277static SDValue PerformANDCombine(SDNode *N,
5278                                TargetLowering::DAGCombinerInfo &DCI) {
5279
5280  // Attempt to use immediate-form VBIC
5281  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
5282  DebugLoc dl = N->getDebugLoc();
5283  EVT VT = N->getValueType(0);
5284  SelectionDAG &DAG = DCI.DAG;
5285
5286  APInt SplatBits, SplatUndef;
5287  unsigned SplatBitSize;
5288  bool HasAnyUndefs;
5289  if (BVN &&
5290      BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
5291    if (SplatBitSize <= 64) {
5292      EVT VbicVT;
5293      SDValue Val = isNEONModifiedImm((~SplatBits).getZExtValue(),
5294                                      SplatUndef.getZExtValue(), SplatBitSize,
5295                                      DAG, VbicVT, VT.is128BitVector(),
5296                                      OtherModImm);
5297      if (Val.getNode()) {
5298        SDValue Input =
5299          DAG.getNode(ISD::BITCAST, dl, VbicVT, N->getOperand(0));
5300        SDValue Vbic = DAG.getNode(ARMISD::VBICIMM, dl, VbicVT, Input, Val);
5301        return DAG.getNode(ISD::BITCAST, dl, VT, Vbic);
5302      }
5303    }
5304  }
5305
5306  return SDValue();
5307}
5308
5309/// PerformORCombine - Target-specific dag combine xforms for ISD::OR
5310static SDValue PerformORCombine(SDNode *N,
5311                                TargetLowering::DAGCombinerInfo &DCI,
5312                                const ARMSubtarget *Subtarget) {
5313  // Attempt to use immediate-form VORR
5314  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
5315  DebugLoc dl = N->getDebugLoc();
5316  EVT VT = N->getValueType(0);
5317  SelectionDAG &DAG = DCI.DAG;
5318
5319  APInt SplatBits, SplatUndef;
5320  unsigned SplatBitSize;
5321  bool HasAnyUndefs;
5322  if (BVN && Subtarget->hasNEON() &&
5323      BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
5324    if (SplatBitSize <= 64) {
5325      EVT VorrVT;
5326      SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
5327                                      SplatUndef.getZExtValue(), SplatBitSize,
5328                                      DAG, VorrVT, VT.is128BitVector(),
5329                                      OtherModImm);
5330      if (Val.getNode()) {
5331        SDValue Input =
5332          DAG.getNode(ISD::BITCAST, dl, VorrVT, N->getOperand(0));
5333        SDValue Vorr = DAG.getNode(ARMISD::VORRIMM, dl, VorrVT, Input, Val);
5334        return DAG.getNode(ISD::BITCAST, dl, VT, Vorr);
5335      }
5336    }
5337  }
5338
5339  // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when
5340  // reasonable.
5341
5342  // BFI is only available on V6T2+
5343  if (Subtarget->isThumb1Only() || !Subtarget->hasV6T2Ops())
5344    return SDValue();
5345
5346  SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
5347  DebugLoc DL = N->getDebugLoc();
5348  // 1) or (and A, mask), val => ARMbfi A, val, mask
5349  //      iff (val & mask) == val
5350  //
5351  // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
5352  //  2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2)
5353  //          && mask == ~mask2
5354  //  2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2)
5355  //          && ~mask == mask2
5356  //  (i.e., copy a bitfield value into another bitfield of the same width)
5357  if (N0.getOpcode() != ISD::AND)
5358    return SDValue();
5359
5360  if (VT != MVT::i32)
5361    return SDValue();
5362
5363  SDValue N00 = N0.getOperand(0);
5364
5365  // The value and the mask need to be constants so we can verify this is
5366  // actually a bitfield set. If the mask is 0xffff, we can do better
5367  // via a movt instruction, so don't use BFI in that case.
5368  SDValue MaskOp = N0.getOperand(1);
5369  ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(MaskOp);
5370  if (!MaskC)
5371    return SDValue();
5372  unsigned Mask = MaskC->getZExtValue();
5373  if (Mask == 0xffff)
5374    return SDValue();
5375  SDValue Res;
5376  // Case (1): or (and A, mask), val => ARMbfi A, val, mask
5377  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
5378  if (N1C) {
5379    unsigned Val = N1C->getZExtValue();
5380    if ((Val & ~Mask) != Val)
5381      return SDValue();
5382
5383    if (ARM::isBitFieldInvertedMask(Mask)) {
5384      Val >>= CountTrailingZeros_32(~Mask);
5385
5386      Res = DAG.getNode(ARMISD::BFI, DL, VT, N00,
5387                        DAG.getConstant(Val, MVT::i32),
5388                        DAG.getConstant(Mask, MVT::i32));
5389
5390      // Do not add new nodes to DAG combiner worklist.
5391      DCI.CombineTo(N, Res, false);
5392      return SDValue();
5393    }
5394  } else if (N1.getOpcode() == ISD::AND) {
5395    // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
5396    ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
5397    if (!N11C)
5398      return SDValue();
5399    unsigned Mask2 = N11C->getZExtValue();
5400
5401    // Mask and ~Mask2 (or reverse) must be equivalent for the BFI pattern
5402    // as is to match.
5403    if (ARM::isBitFieldInvertedMask(Mask) &&
5404        (Mask == ~Mask2)) {
5405      // The pack halfword instruction works better for masks that fit it,
5406      // so use that when it's available.
5407      if (Subtarget->hasT2ExtractPack() &&
5408          (Mask == 0xffff || Mask == 0xffff0000))
5409        return SDValue();
5410      // 2a
5411      unsigned amt = CountTrailingZeros_32(Mask2);
5412      Res = DAG.getNode(ISD::SRL, DL, VT, N1.getOperand(0),
5413                        DAG.getConstant(amt, MVT::i32));
5414      Res = DAG.getNode(ARMISD::BFI, DL, VT, N00, Res,
5415                        DAG.getConstant(Mask, MVT::i32));
5416      // Do not add new nodes to DAG combiner worklist.
5417      DCI.CombineTo(N, Res, false);
5418      return SDValue();
5419    } else if (ARM::isBitFieldInvertedMask(~Mask) &&
5420               (~Mask == Mask2)) {
5421      // The pack halfword instruction works better for masks that fit it,
5422      // so use that when it's available.
5423      if (Subtarget->hasT2ExtractPack() &&
5424          (Mask2 == 0xffff || Mask2 == 0xffff0000))
5425        return SDValue();
5426      // 2b
5427      unsigned lsb = CountTrailingZeros_32(Mask);
5428      Res = DAG.getNode(ISD::SRL, DL, VT, N00,
5429                        DAG.getConstant(lsb, MVT::i32));
5430      Res = DAG.getNode(ARMISD::BFI, DL, VT, N1.getOperand(0), Res,
5431                        DAG.getConstant(Mask2, MVT::i32));
5432      // Do not add new nodes to DAG combiner worklist.
5433      DCI.CombineTo(N, Res, false);
5434      return SDValue();
5435    }
5436  }
5437
5438  if (DAG.MaskedValueIsZero(N1, MaskC->getAPIntValue()) &&
5439      N00.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N00.getOperand(1)) &&
5440      ARM::isBitFieldInvertedMask(~Mask)) {
5441    // Case (3): or (and (shl A, #shamt), mask), B => ARMbfi B, A, ~mask
5442    // where lsb(mask) == #shamt and masked bits of B are known zero.
5443    SDValue ShAmt = N00.getOperand(1);
5444    unsigned ShAmtC = cast<ConstantSDNode>(ShAmt)->getZExtValue();
5445    unsigned LSB = CountTrailingZeros_32(Mask);
5446    if (ShAmtC != LSB)
5447      return SDValue();
5448
5449    Res = DAG.getNode(ARMISD::BFI, DL, VT, N1, N00.getOperand(0),
5450                      DAG.getConstant(~Mask, MVT::i32));
5451
5452    // Do not add new nodes to DAG combiner worklist.
5453    DCI.CombineTo(N, Res, false);
5454  }
5455
5456  return SDValue();
5457}
5458
5459/// PerformBFICombine - (bfi A, (and B, C1), C2) -> (bfi A, B, C2) iff
5460/// C1 & C2 == C1.
5461static SDValue PerformBFICombine(SDNode *N,
5462                                 TargetLowering::DAGCombinerInfo &DCI) {
5463  SDValue N1 = N->getOperand(1);
5464  if (N1.getOpcode() == ISD::AND) {
5465    ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
5466    if (!N11C)
5467      return SDValue();
5468    unsigned Mask = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
5469    unsigned Mask2 = N11C->getZExtValue();
5470    if ((Mask & Mask2) == Mask2)
5471      return DCI.DAG.getNode(ARMISD::BFI, N->getDebugLoc(), N->getValueType(0),
5472                             N->getOperand(0), N1.getOperand(0),
5473                             N->getOperand(2));
5474  }
5475  return SDValue();
5476}
5477
5478/// PerformVMOVRRDCombine - Target-specific dag combine xforms for
5479/// ARMISD::VMOVRRD.
5480static SDValue PerformVMOVRRDCombine(SDNode *N,
5481                                     TargetLowering::DAGCombinerInfo &DCI) {
5482  // vmovrrd(vmovdrr x, y) -> x,y
5483  SDValue InDouble = N->getOperand(0);
5484  if (InDouble.getOpcode() == ARMISD::VMOVDRR)
5485    return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
5486  return SDValue();
5487}
5488
5489/// PerformVMOVDRRCombine - Target-specific dag combine xforms for
5490/// ARMISD::VMOVDRR.  This is also used for BUILD_VECTORs with 2 operands.
5491static SDValue PerformVMOVDRRCombine(SDNode *N, SelectionDAG &DAG) {
5492  // N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X)
5493  SDValue Op0 = N->getOperand(0);
5494  SDValue Op1 = N->getOperand(1);
5495  if (Op0.getOpcode() == ISD::BITCAST)
5496    Op0 = Op0.getOperand(0);
5497  if (Op1.getOpcode() == ISD::BITCAST)
5498    Op1 = Op1.getOperand(0);
5499  if (Op0.getOpcode() == ARMISD::VMOVRRD &&
5500      Op0.getNode() == Op1.getNode() &&
5501      Op0.getResNo() == 0 && Op1.getResNo() == 1)
5502    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(),
5503                       N->getValueType(0), Op0.getOperand(0));
5504  return SDValue();
5505}
5506
5507/// PerformSTORECombine - Target-specific dag combine xforms for
5508/// ISD::STORE.
5509static SDValue PerformSTORECombine(SDNode *N,
5510                                   TargetLowering::DAGCombinerInfo &DCI) {
5511  // Bitcast an i64 store extracted from a vector to f64.
5512  // Otherwise, the i64 value will be legalized to a pair of i32 values.
5513  StoreSDNode *St = cast<StoreSDNode>(N);
5514  SDValue StVal = St->getValue();
5515  if (!ISD::isNormalStore(St) || St->isVolatile() ||
5516      StVal.getValueType() != MVT::i64 ||
5517      StVal.getNode()->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
5518    return SDValue();
5519
5520  SelectionDAG &DAG = DCI.DAG;
5521  DebugLoc dl = StVal.getDebugLoc();
5522  SDValue IntVec = StVal.getOperand(0);
5523  EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
5524                                 IntVec.getValueType().getVectorNumElements());
5525  SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, IntVec);
5526  SDValue ExtElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
5527                               Vec, StVal.getOperand(1));
5528  dl = N->getDebugLoc();
5529  SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ExtElt);
5530  // Make the DAGCombiner fold the bitcasts.
5531  DCI.AddToWorklist(Vec.getNode());
5532  DCI.AddToWorklist(ExtElt.getNode());
5533  DCI.AddToWorklist(V.getNode());
5534  return DAG.getStore(St->getChain(), dl, V, St->getBasePtr(),
5535                      St->getPointerInfo(), St->isVolatile(),
5536                      St->isNonTemporal(), St->getAlignment(),
5537                      St->getTBAAInfo());
5538}
5539
5540/// hasNormalLoadOperand - Check if any of the operands of a BUILD_VECTOR node
5541/// are normal, non-volatile loads.  If so, it is profitable to bitcast an
5542/// i64 vector to have f64 elements, since the value can then be loaded
5543/// directly into a VFP register.
5544static bool hasNormalLoadOperand(SDNode *N) {
5545  unsigned NumElts = N->getValueType(0).getVectorNumElements();
5546  for (unsigned i = 0; i < NumElts; ++i) {
5547    SDNode *Elt = N->getOperand(i).getNode();
5548    if (ISD::isNormalLoad(Elt) && !cast<LoadSDNode>(Elt)->isVolatile())
5549      return true;
5550  }
5551  return false;
5552}
5553
5554/// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for
5555/// ISD::BUILD_VECTOR.
5556static SDValue PerformBUILD_VECTORCombine(SDNode *N,
5557                                          TargetLowering::DAGCombinerInfo &DCI){
5558  // build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X):
5559  // VMOVRRD is introduced when legalizing i64 types.  It forces the i64 value
5560  // into a pair of GPRs, which is fine when the value is used as a scalar,
5561  // but if the i64 value is converted to a vector, we need to undo the VMOVRRD.
5562  SelectionDAG &DAG = DCI.DAG;
5563  if (N->getNumOperands() == 2) {
5564    SDValue RV = PerformVMOVDRRCombine(N, DAG);
5565    if (RV.getNode())
5566      return RV;
5567  }
5568
5569  // Load i64 elements as f64 values so that type legalization does not split
5570  // them up into i32 values.
5571  EVT VT = N->getValueType(0);
5572  if (VT.getVectorElementType() != MVT::i64 || !hasNormalLoadOperand(N))
5573    return SDValue();
5574  DebugLoc dl = N->getDebugLoc();
5575  SmallVector<SDValue, 8> Ops;
5576  unsigned NumElts = VT.getVectorNumElements();
5577  for (unsigned i = 0; i < NumElts; ++i) {
5578    SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(i));
5579    Ops.push_back(V);
5580    // Make the DAGCombiner fold the bitcast.
5581    DCI.AddToWorklist(V.getNode());
5582  }
5583  EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, NumElts);
5584  SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, FloatVT, Ops.data(), NumElts);
5585  return DAG.getNode(ISD::BITCAST, dl, VT, BV);
5586}
5587
5588/// PerformInsertEltCombine - Target-specific dag combine xforms for
5589/// ISD::INSERT_VECTOR_ELT.
5590static SDValue PerformInsertEltCombine(SDNode *N,
5591                                       TargetLowering::DAGCombinerInfo &DCI) {
5592  // Bitcast an i64 load inserted into a vector to f64.
5593  // Otherwise, the i64 value will be legalized to a pair of i32 values.
5594  EVT VT = N->getValueType(0);
5595  SDNode *Elt = N->getOperand(1).getNode();
5596  if (VT.getVectorElementType() != MVT::i64 ||
5597      !ISD::isNormalLoad(Elt) || cast<LoadSDNode>(Elt)->isVolatile())
5598    return SDValue();
5599
5600  SelectionDAG &DAG = DCI.DAG;
5601  DebugLoc dl = N->getDebugLoc();
5602  EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
5603                                 VT.getVectorNumElements());
5604  SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, N->getOperand(0));
5605  SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(1));
5606  // Make the DAGCombiner fold the bitcasts.
5607  DCI.AddToWorklist(Vec.getNode());
5608  DCI.AddToWorklist(V.getNode());
5609  SDValue InsElt = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, FloatVT,
5610                               Vec, V, N->getOperand(2));
5611  return DAG.getNode(ISD::BITCAST, dl, VT, InsElt);
5612}
5613
5614/// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for
5615/// ISD::VECTOR_SHUFFLE.
5616static SDValue PerformVECTOR_SHUFFLECombine(SDNode *N, SelectionDAG &DAG) {
5617  // The LLVM shufflevector instruction does not require the shuffle mask
5618  // length to match the operand vector length, but ISD::VECTOR_SHUFFLE does
5619  // have that requirement.  When translating to ISD::VECTOR_SHUFFLE, if the
5620  // operands do not match the mask length, they are extended by concatenating
5621  // them with undef vectors.  That is probably the right thing for other
5622  // targets, but for NEON it is better to concatenate two double-register
5623  // size vector operands into a single quad-register size vector.  Do that
5624  // transformation here:
5625  //   shuffle(concat(v1, undef), concat(v2, undef)) ->
5626  //   shuffle(concat(v1, v2), undef)
5627  SDValue Op0 = N->getOperand(0);
5628  SDValue Op1 = N->getOperand(1);
5629  if (Op0.getOpcode() != ISD::CONCAT_VECTORS ||
5630      Op1.getOpcode() != ISD::CONCAT_VECTORS ||
5631      Op0.getNumOperands() != 2 ||
5632      Op1.getNumOperands() != 2)
5633    return SDValue();
5634  SDValue Concat0Op1 = Op0.getOperand(1);
5635  SDValue Concat1Op1 = Op1.getOperand(1);
5636  if (Concat0Op1.getOpcode() != ISD::UNDEF ||
5637      Concat1Op1.getOpcode() != ISD::UNDEF)
5638    return SDValue();
5639  // Skip the transformation if any of the types are illegal.
5640  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5641  EVT VT = N->getValueType(0);
5642  if (!TLI.isTypeLegal(VT) ||
5643      !TLI.isTypeLegal(Concat0Op1.getValueType()) ||
5644      !TLI.isTypeLegal(Concat1Op1.getValueType()))
5645    return SDValue();
5646
5647  SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, N->getDebugLoc(), VT,
5648                                  Op0.getOperand(0), Op1.getOperand(0));
5649  // Translate the shuffle mask.
5650  SmallVector<int, 16> NewMask;
5651  unsigned NumElts = VT.getVectorNumElements();
5652  unsigned HalfElts = NumElts/2;
5653  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
5654  for (unsigned n = 0; n < NumElts; ++n) {
5655    int MaskElt = SVN->getMaskElt(n);
5656    int NewElt = -1;
5657    if (MaskElt < (int)HalfElts)
5658      NewElt = MaskElt;
5659    else if (MaskElt >= (int)NumElts && MaskElt < (int)(NumElts + HalfElts))
5660      NewElt = HalfElts + MaskElt - NumElts;
5661    NewMask.push_back(NewElt);
5662  }
5663  return DAG.getVectorShuffle(VT, N->getDebugLoc(), NewConcat,
5664                              DAG.getUNDEF(VT), NewMask.data());
5665}
5666
5667/// CombineBaseUpdate - Target-specific DAG combine function for VLDDUP and
5668/// NEON load/store intrinsics to merge base address updates.
5669static SDValue CombineBaseUpdate(SDNode *N,
5670                                 TargetLowering::DAGCombinerInfo &DCI) {
5671  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
5672    return SDValue();
5673
5674  SelectionDAG &DAG = DCI.DAG;
5675  bool isIntrinsic = (N->getOpcode() == ISD::INTRINSIC_VOID ||
5676                      N->getOpcode() == ISD::INTRINSIC_W_CHAIN);
5677  unsigned AddrOpIdx = (isIntrinsic ? 2 : 1);
5678  SDValue Addr = N->getOperand(AddrOpIdx);
5679
5680  // Search for a use of the address operand that is an increment.
5681  for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
5682         UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
5683    SDNode *User = *UI;
5684    if (User->getOpcode() != ISD::ADD ||
5685        UI.getUse().getResNo() != Addr.getResNo())
5686      continue;
5687
5688    // Check that the add is independent of the load/store.  Otherwise, folding
5689    // it would create a cycle.
5690    if (User->isPredecessorOf(N) || N->isPredecessorOf(User))
5691      continue;
5692
5693    // Find the new opcode for the updating load/store.
5694    bool isLoad = true;
5695    bool isLaneOp = false;
5696    unsigned NewOpc = 0;
5697    unsigned NumVecs = 0;
5698    if (isIntrinsic) {
5699      unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
5700      switch (IntNo) {
5701      default: assert(0 && "unexpected intrinsic for Neon base update");
5702      case Intrinsic::arm_neon_vld1:     NewOpc = ARMISD::VLD1_UPD;
5703        NumVecs = 1; break;
5704      case Intrinsic::arm_neon_vld2:     NewOpc = ARMISD::VLD2_UPD;
5705        NumVecs = 2; break;
5706      case Intrinsic::arm_neon_vld3:     NewOpc = ARMISD::VLD3_UPD;
5707        NumVecs = 3; break;
5708      case Intrinsic::arm_neon_vld4:     NewOpc = ARMISD::VLD4_UPD;
5709        NumVecs = 4; break;
5710      case Intrinsic::arm_neon_vld2lane: NewOpc = ARMISD::VLD2LN_UPD;
5711        NumVecs = 2; isLaneOp = true; break;
5712      case Intrinsic::arm_neon_vld3lane: NewOpc = ARMISD::VLD3LN_UPD;
5713        NumVecs = 3; isLaneOp = true; break;
5714      case Intrinsic::arm_neon_vld4lane: NewOpc = ARMISD::VLD4LN_UPD;
5715        NumVecs = 4; isLaneOp = true; break;
5716      case Intrinsic::arm_neon_vst1:     NewOpc = ARMISD::VST1_UPD;
5717        NumVecs = 1; isLoad = false; break;
5718      case Intrinsic::arm_neon_vst2:     NewOpc = ARMISD::VST2_UPD;
5719        NumVecs = 2; isLoad = false; break;
5720      case Intrinsic::arm_neon_vst3:     NewOpc = ARMISD::VST3_UPD;
5721        NumVecs = 3; isLoad = false; break;
5722      case Intrinsic::arm_neon_vst4:     NewOpc = ARMISD::VST4_UPD;
5723        NumVecs = 4; isLoad = false; break;
5724      case Intrinsic::arm_neon_vst2lane: NewOpc = ARMISD::VST2LN_UPD;
5725        NumVecs = 2; isLoad = false; isLaneOp = true; break;
5726      case Intrinsic::arm_neon_vst3lane: NewOpc = ARMISD::VST3LN_UPD;
5727        NumVecs = 3; isLoad = false; isLaneOp = true; break;
5728      case Intrinsic::arm_neon_vst4lane: NewOpc = ARMISD::VST4LN_UPD;
5729        NumVecs = 4; isLoad = false; isLaneOp = true; break;
5730      }
5731    } else {
5732      isLaneOp = true;
5733      switch (N->getOpcode()) {
5734      default: assert(0 && "unexpected opcode for Neon base update");
5735      case ARMISD::VLD2DUP: NewOpc = ARMISD::VLD2DUP_UPD; NumVecs = 2; break;
5736      case ARMISD::VLD3DUP: NewOpc = ARMISD::VLD3DUP_UPD; NumVecs = 3; break;
5737      case ARMISD::VLD4DUP: NewOpc = ARMISD::VLD4DUP_UPD; NumVecs = 4; break;
5738      }
5739    }
5740
5741    // Find the size of memory referenced by the load/store.
5742    EVT VecTy;
5743    if (isLoad)
5744      VecTy = N->getValueType(0);
5745    else
5746      VecTy = N->getOperand(AddrOpIdx+1).getValueType();
5747    unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
5748    if (isLaneOp)
5749      NumBytes /= VecTy.getVectorNumElements();
5750
5751    // If the increment is a constant, it must match the memory ref size.
5752    SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
5753    if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
5754      uint64_t IncVal = CInc->getZExtValue();
5755      if (IncVal != NumBytes)
5756        continue;
5757    } else if (NumBytes >= 3 * 16) {
5758      // VLD3/4 and VST3/4 for 128-bit vectors are implemented with two
5759      // separate instructions that make it harder to use a non-constant update.
5760      continue;
5761    }
5762
5763    // Create the new updating load/store node.
5764    EVT Tys[6];
5765    unsigned NumResultVecs = (isLoad ? NumVecs : 0);
5766    unsigned n;
5767    for (n = 0; n < NumResultVecs; ++n)
5768      Tys[n] = VecTy;
5769    Tys[n++] = MVT::i32;
5770    Tys[n] = MVT::Other;
5771    SDVTList SDTys = DAG.getVTList(Tys, NumResultVecs+2);
5772    SmallVector<SDValue, 8> Ops;
5773    Ops.push_back(N->getOperand(0)); // incoming chain
5774    Ops.push_back(N->getOperand(AddrOpIdx));
5775    Ops.push_back(Inc);
5776    for (unsigned i = AddrOpIdx + 1; i < N->getNumOperands(); ++i) {
5777      Ops.push_back(N->getOperand(i));
5778    }
5779    MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N);
5780    SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, N->getDebugLoc(), SDTys,
5781                                           Ops.data(), Ops.size(),
5782                                           MemInt->getMemoryVT(),
5783                                           MemInt->getMemOperand());
5784
5785    // Update the uses.
5786    std::vector<SDValue> NewResults;
5787    for (unsigned i = 0; i < NumResultVecs; ++i) {
5788      NewResults.push_back(SDValue(UpdN.getNode(), i));
5789    }
5790    NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs+1)); // chain
5791    DCI.CombineTo(N, NewResults);
5792    DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
5793
5794    break;
5795  }
5796  return SDValue();
5797}
5798
5799/// CombineVLDDUP - For a VDUPLANE node N, check if its source operand is a
5800/// vldN-lane (N > 1) intrinsic, and if all the other uses of that intrinsic
5801/// are also VDUPLANEs.  If so, combine them to a vldN-dup operation and
5802/// return true.
5803static bool CombineVLDDUP(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
5804  SelectionDAG &DAG = DCI.DAG;
5805  EVT VT = N->getValueType(0);
5806  // vldN-dup instructions only support 64-bit vectors for N > 1.
5807  if (!VT.is64BitVector())
5808    return false;
5809
5810  // Check if the VDUPLANE operand is a vldN-dup intrinsic.
5811  SDNode *VLD = N->getOperand(0).getNode();
5812  if (VLD->getOpcode() != ISD::INTRINSIC_W_CHAIN)
5813    return false;
5814  unsigned NumVecs = 0;
5815  unsigned NewOpc = 0;
5816  unsigned IntNo = cast<ConstantSDNode>(VLD->getOperand(1))->getZExtValue();
5817  if (IntNo == Intrinsic::arm_neon_vld2lane) {
5818    NumVecs = 2;
5819    NewOpc = ARMISD::VLD2DUP;
5820  } else if (IntNo == Intrinsic::arm_neon_vld3lane) {
5821    NumVecs = 3;
5822    NewOpc = ARMISD::VLD3DUP;
5823  } else if (IntNo == Intrinsic::arm_neon_vld4lane) {
5824    NumVecs = 4;
5825    NewOpc = ARMISD::VLD4DUP;
5826  } else {
5827    return false;
5828  }
5829
5830  // First check that all the vldN-lane uses are VDUPLANEs and that the lane
5831  // numbers match the load.
5832  unsigned VLDLaneNo =
5833    cast<ConstantSDNode>(VLD->getOperand(NumVecs+3))->getZExtValue();
5834  for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
5835       UI != UE; ++UI) {
5836    // Ignore uses of the chain result.
5837    if (UI.getUse().getResNo() == NumVecs)
5838      continue;
5839    SDNode *User = *UI;
5840    if (User->getOpcode() != ARMISD::VDUPLANE ||
5841        VLDLaneNo != cast<ConstantSDNode>(User->getOperand(1))->getZExtValue())
5842      return false;
5843  }
5844
5845  // Create the vldN-dup node.
5846  EVT Tys[5];
5847  unsigned n;
5848  for (n = 0; n < NumVecs; ++n)
5849    Tys[n] = VT;
5850  Tys[n] = MVT::Other;
5851  SDVTList SDTys = DAG.getVTList(Tys, NumVecs+1);
5852  SDValue Ops[] = { VLD->getOperand(0), VLD->getOperand(2) };
5853  MemIntrinsicSDNode *VLDMemInt = cast<MemIntrinsicSDNode>(VLD);
5854  SDValue VLDDup = DAG.getMemIntrinsicNode(NewOpc, VLD->getDebugLoc(), SDTys,
5855                                           Ops, 2, VLDMemInt->getMemoryVT(),
5856                                           VLDMemInt->getMemOperand());
5857
5858  // Update the uses.
5859  for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
5860       UI != UE; ++UI) {
5861    unsigned ResNo = UI.getUse().getResNo();
5862    // Ignore uses of the chain result.
5863    if (ResNo == NumVecs)
5864      continue;
5865    SDNode *User = *UI;
5866    DCI.CombineTo(User, SDValue(VLDDup.getNode(), ResNo));
5867  }
5868
5869  // Now the vldN-lane intrinsic is dead except for its chain result.
5870  // Update uses of the chain.
5871  std::vector<SDValue> VLDDupResults;
5872  for (unsigned n = 0; n < NumVecs; ++n)
5873    VLDDupResults.push_back(SDValue(VLDDup.getNode(), n));
5874  VLDDupResults.push_back(SDValue(VLDDup.getNode(), NumVecs));
5875  DCI.CombineTo(VLD, VLDDupResults);
5876
5877  return true;
5878}
5879
5880/// PerformVDUPLANECombine - Target-specific dag combine xforms for
5881/// ARMISD::VDUPLANE.
5882static SDValue PerformVDUPLANECombine(SDNode *N,
5883                                      TargetLowering::DAGCombinerInfo &DCI) {
5884  SDValue Op = N->getOperand(0);
5885
5886  // If the source is a vldN-lane (N > 1) intrinsic, and all the other uses
5887  // of that intrinsic are also VDUPLANEs, combine them to a vldN-dup operation.
5888  if (CombineVLDDUP(N, DCI))
5889    return SDValue(N, 0);
5890
5891  // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is
5892  // redundant.  Ignore bit_converts for now; element sizes are checked below.
5893  while (Op.getOpcode() == ISD::BITCAST)
5894    Op = Op.getOperand(0);
5895  if (Op.getOpcode() != ARMISD::VMOVIMM && Op.getOpcode() != ARMISD::VMVNIMM)
5896    return SDValue();
5897
5898  // Make sure the VMOV element size is not bigger than the VDUPLANE elements.
5899  unsigned EltSize = Op.getValueType().getVectorElementType().getSizeInBits();
5900  // The canonical VMOV for a zero vector uses a 32-bit element size.
5901  unsigned Imm = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5902  unsigned EltBits;
5903  if (ARM_AM::decodeNEONModImm(Imm, EltBits) == 0)
5904    EltSize = 8;
5905  EVT VT = N->getValueType(0);
5906  if (EltSize > VT.getVectorElementType().getSizeInBits())
5907    return SDValue();
5908
5909  return DCI.DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
5910}
5911
5912/// getVShiftImm - Check if this is a valid build_vector for the immediate
5913/// operand of a vector shift operation, where all the elements of the
5914/// build_vector must have the same constant integer value.
5915static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
5916  // Ignore bit_converts.
5917  while (Op.getOpcode() == ISD::BITCAST)
5918    Op = Op.getOperand(0);
5919  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
5920  APInt SplatBits, SplatUndef;
5921  unsigned SplatBitSize;
5922  bool HasAnyUndefs;
5923  if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
5924                                      HasAnyUndefs, ElementBits) ||
5925      SplatBitSize > ElementBits)
5926    return false;
5927  Cnt = SplatBits.getSExtValue();
5928  return true;
5929}
5930
5931/// isVShiftLImm - Check if this is a valid build_vector for the immediate
5932/// operand of a vector shift left operation.  That value must be in the range:
5933///   0 <= Value < ElementBits for a left shift; or
5934///   0 <= Value <= ElementBits for a long left shift.
5935static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
5936  assert(VT.isVector() && "vector shift count is not a vector type");
5937  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
5938  if (! getVShiftImm(Op, ElementBits, Cnt))
5939    return false;
5940  return (Cnt >= 0 && (isLong ? Cnt-1 : Cnt) < ElementBits);
5941}
5942
5943/// isVShiftRImm - Check if this is a valid build_vector for the immediate
5944/// operand of a vector shift right operation.  For a shift opcode, the value
5945/// is positive, but for an intrinsic the value count must be negative. The
5946/// absolute value must be in the range:
5947///   1 <= |Value| <= ElementBits for a right shift; or
5948///   1 <= |Value| <= ElementBits/2 for a narrow right shift.
5949static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
5950                         int64_t &Cnt) {
5951  assert(VT.isVector() && "vector shift count is not a vector type");
5952  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
5953  if (! getVShiftImm(Op, ElementBits, Cnt))
5954    return false;
5955  if (isIntrinsic)
5956    Cnt = -Cnt;
5957  return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits/2 : ElementBits));
5958}
5959
5960/// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
5961static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
5962  unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
5963  switch (IntNo) {
5964  default:
5965    // Don't do anything for most intrinsics.
5966    break;
5967
5968  // Vector shifts: check for immediate versions and lower them.
5969  // Note: This is done during DAG combining instead of DAG legalizing because
5970  // the build_vectors for 64-bit vector element shift counts are generally
5971  // not legal, and it is hard to see their values after they get legalized to
5972  // loads from a constant pool.
5973  case Intrinsic::arm_neon_vshifts:
5974  case Intrinsic::arm_neon_vshiftu:
5975  case Intrinsic::arm_neon_vshiftls:
5976  case Intrinsic::arm_neon_vshiftlu:
5977  case Intrinsic::arm_neon_vshiftn:
5978  case Intrinsic::arm_neon_vrshifts:
5979  case Intrinsic::arm_neon_vrshiftu:
5980  case Intrinsic::arm_neon_vrshiftn:
5981  case Intrinsic::arm_neon_vqshifts:
5982  case Intrinsic::arm_neon_vqshiftu:
5983  case Intrinsic::arm_neon_vqshiftsu:
5984  case Intrinsic::arm_neon_vqshiftns:
5985  case Intrinsic::arm_neon_vqshiftnu:
5986  case Intrinsic::arm_neon_vqshiftnsu:
5987  case Intrinsic::arm_neon_vqrshiftns:
5988  case Intrinsic::arm_neon_vqrshiftnu:
5989  case Intrinsic::arm_neon_vqrshiftnsu: {
5990    EVT VT = N->getOperand(1).getValueType();
5991    int64_t Cnt;
5992    unsigned VShiftOpc = 0;
5993
5994    switch (IntNo) {
5995    case Intrinsic::arm_neon_vshifts:
5996    case Intrinsic::arm_neon_vshiftu:
5997      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) {
5998        VShiftOpc = ARMISD::VSHL;
5999        break;
6000      }
6001      if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) {
6002        VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ?
6003                     ARMISD::VSHRs : ARMISD::VSHRu);
6004        break;
6005      }
6006      return SDValue();
6007
6008    case Intrinsic::arm_neon_vshiftls:
6009    case Intrinsic::arm_neon_vshiftlu:
6010      if (isVShiftLImm(N->getOperand(2), VT, true, Cnt))
6011        break;
6012      llvm_unreachable("invalid shift count for vshll intrinsic");
6013
6014    case Intrinsic::arm_neon_vrshifts:
6015    case Intrinsic::arm_neon_vrshiftu:
6016      if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt))
6017        break;
6018      return SDValue();
6019
6020    case Intrinsic::arm_neon_vqshifts:
6021    case Intrinsic::arm_neon_vqshiftu:
6022      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
6023        break;
6024      return SDValue();
6025
6026    case Intrinsic::arm_neon_vqshiftsu:
6027      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
6028        break;
6029      llvm_unreachable("invalid shift count for vqshlu intrinsic");
6030
6031    case Intrinsic::arm_neon_vshiftn:
6032    case Intrinsic::arm_neon_vrshiftn:
6033    case Intrinsic::arm_neon_vqshiftns:
6034    case Intrinsic::arm_neon_vqshiftnu:
6035    case Intrinsic::arm_neon_vqshiftnsu:
6036    case Intrinsic::arm_neon_vqrshiftns:
6037    case Intrinsic::arm_neon_vqrshiftnu:
6038    case Intrinsic::arm_neon_vqrshiftnsu:
6039      // Narrowing shifts require an immediate right shift.
6040      if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt))
6041        break;
6042      llvm_unreachable("invalid shift count for narrowing vector shift "
6043                       "intrinsic");
6044
6045    default:
6046      llvm_unreachable("unhandled vector shift");
6047    }
6048
6049    switch (IntNo) {
6050    case Intrinsic::arm_neon_vshifts:
6051    case Intrinsic::arm_neon_vshiftu:
6052      // Opcode already set above.
6053      break;
6054    case Intrinsic::arm_neon_vshiftls:
6055    case Intrinsic::arm_neon_vshiftlu:
6056      if (Cnt == VT.getVectorElementType().getSizeInBits())
6057        VShiftOpc = ARMISD::VSHLLi;
6058      else
6059        VShiftOpc = (IntNo == Intrinsic::arm_neon_vshiftls ?
6060                     ARMISD::VSHLLs : ARMISD::VSHLLu);
6061      break;
6062    case Intrinsic::arm_neon_vshiftn:
6063      VShiftOpc = ARMISD::VSHRN; break;
6064    case Intrinsic::arm_neon_vrshifts:
6065      VShiftOpc = ARMISD::VRSHRs; break;
6066    case Intrinsic::arm_neon_vrshiftu:
6067      VShiftOpc = ARMISD::VRSHRu; break;
6068    case Intrinsic::arm_neon_vrshiftn:
6069      VShiftOpc = ARMISD::VRSHRN; break;
6070    case Intrinsic::arm_neon_vqshifts:
6071      VShiftOpc = ARMISD::VQSHLs; break;
6072    case Intrinsic::arm_neon_vqshiftu:
6073      VShiftOpc = ARMISD::VQSHLu; break;
6074    case Intrinsic::arm_neon_vqshiftsu:
6075      VShiftOpc = ARMISD::VQSHLsu; break;
6076    case Intrinsic::arm_neon_vqshiftns:
6077      VShiftOpc = ARMISD::VQSHRNs; break;
6078    case Intrinsic::arm_neon_vqshiftnu:
6079      VShiftOpc = ARMISD::VQSHRNu; break;
6080    case Intrinsic::arm_neon_vqshiftnsu:
6081      VShiftOpc = ARMISD::VQSHRNsu; break;
6082    case Intrinsic::arm_neon_vqrshiftns:
6083      VShiftOpc = ARMISD::VQRSHRNs; break;
6084    case Intrinsic::arm_neon_vqrshiftnu:
6085      VShiftOpc = ARMISD::VQRSHRNu; break;
6086    case Intrinsic::arm_neon_vqrshiftnsu:
6087      VShiftOpc = ARMISD::VQRSHRNsu; break;
6088    }
6089
6090    return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
6091                       N->getOperand(1), DAG.getConstant(Cnt, MVT::i32));
6092  }
6093
6094  case Intrinsic::arm_neon_vshiftins: {
6095    EVT VT = N->getOperand(1).getValueType();
6096    int64_t Cnt;
6097    unsigned VShiftOpc = 0;
6098
6099    if (isVShiftLImm(N->getOperand(3), VT, false, Cnt))
6100      VShiftOpc = ARMISD::VSLI;
6101    else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt))
6102      VShiftOpc = ARMISD::VSRI;
6103    else {
6104      llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
6105    }
6106
6107    return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
6108                       N->getOperand(1), N->getOperand(2),
6109                       DAG.getConstant(Cnt, MVT::i32));
6110  }
6111
6112  case Intrinsic::arm_neon_vqrshifts:
6113  case Intrinsic::arm_neon_vqrshiftu:
6114    // No immediate versions of these to check for.
6115    break;
6116  }
6117
6118  return SDValue();
6119}
6120
6121/// PerformShiftCombine - Checks for immediate versions of vector shifts and
6122/// lowers them.  As with the vector shift intrinsics, this is done during DAG
6123/// combining instead of DAG legalizing because the build_vectors for 64-bit
6124/// vector element shift counts are generally not legal, and it is hard to see
6125/// their values after they get legalized to loads from a constant pool.
6126static SDValue PerformShiftCombine(SDNode *N, SelectionDAG &DAG,
6127                                   const ARMSubtarget *ST) {
6128  EVT VT = N->getValueType(0);
6129
6130  // Nothing to be done for scalar shifts.
6131  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6132  if (!VT.isVector() || !TLI.isTypeLegal(VT))
6133    return SDValue();
6134
6135  assert(ST->hasNEON() && "unexpected vector shift");
6136  int64_t Cnt;
6137
6138  switch (N->getOpcode()) {
6139  default: llvm_unreachable("unexpected shift opcode");
6140
6141  case ISD::SHL:
6142    if (isVShiftLImm(N->getOperand(1), VT, false, Cnt))
6143      return DAG.getNode(ARMISD::VSHL, N->getDebugLoc(), VT, N->getOperand(0),
6144                         DAG.getConstant(Cnt, MVT::i32));
6145    break;
6146
6147  case ISD::SRA:
6148  case ISD::SRL:
6149    if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
6150      unsigned VShiftOpc = (N->getOpcode() == ISD::SRA ?
6151                            ARMISD::VSHRs : ARMISD::VSHRu);
6152      return DAG.getNode(VShiftOpc, N->getDebugLoc(), VT, N->getOperand(0),
6153                         DAG.getConstant(Cnt, MVT::i32));
6154    }
6155  }
6156  return SDValue();
6157}
6158
6159/// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
6160/// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
6161static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG,
6162                                    const ARMSubtarget *ST) {
6163  SDValue N0 = N->getOperand(0);
6164
6165  // Check for sign- and zero-extensions of vector extract operations of 8-
6166  // and 16-bit vector elements.  NEON supports these directly.  They are
6167  // handled during DAG combining because type legalization will promote them
6168  // to 32-bit types and it is messy to recognize the operations after that.
6169  if (ST->hasNEON() && N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
6170    SDValue Vec = N0.getOperand(0);
6171    SDValue Lane = N0.getOperand(1);
6172    EVT VT = N->getValueType(0);
6173    EVT EltVT = N0.getValueType();
6174    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6175
6176    if (VT == MVT::i32 &&
6177        (EltVT == MVT::i8 || EltVT == MVT::i16) &&
6178        TLI.isTypeLegal(Vec.getValueType()) &&
6179        isa<ConstantSDNode>(Lane)) {
6180
6181      unsigned Opc = 0;
6182      switch (N->getOpcode()) {
6183      default: llvm_unreachable("unexpected opcode");
6184      case ISD::SIGN_EXTEND:
6185        Opc = ARMISD::VGETLANEs;
6186        break;
6187      case ISD::ZERO_EXTEND:
6188      case ISD::ANY_EXTEND:
6189        Opc = ARMISD::VGETLANEu;
6190        break;
6191      }
6192      return DAG.getNode(Opc, N->getDebugLoc(), VT, Vec, Lane);
6193    }
6194  }
6195
6196  return SDValue();
6197}
6198
6199/// PerformSELECT_CCCombine - Target-specific DAG combining for ISD::SELECT_CC
6200/// to match f32 max/min patterns to use NEON vmax/vmin instructions.
6201static SDValue PerformSELECT_CCCombine(SDNode *N, SelectionDAG &DAG,
6202                                       const ARMSubtarget *ST) {
6203  // If the target supports NEON, try to use vmax/vmin instructions for f32
6204  // selects like "x < y ? x : y".  Unless the NoNaNsFPMath option is set,
6205  // be careful about NaNs:  NEON's vmax/vmin return NaN if either operand is
6206  // a NaN; only do the transformation when it matches that behavior.
6207
6208  // For now only do this when using NEON for FP operations; if using VFP, it
6209  // is not obvious that the benefit outweighs the cost of switching to the
6210  // NEON pipeline.
6211  if (!ST->hasNEON() || !ST->useNEONForSinglePrecisionFP() ||
6212      N->getValueType(0) != MVT::f32)
6213    return SDValue();
6214
6215  SDValue CondLHS = N->getOperand(0);
6216  SDValue CondRHS = N->getOperand(1);
6217  SDValue LHS = N->getOperand(2);
6218  SDValue RHS = N->getOperand(3);
6219  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
6220
6221  unsigned Opcode = 0;
6222  bool IsReversed;
6223  if (DAG.isEqualTo(LHS, CondLHS) && DAG.isEqualTo(RHS, CondRHS)) {
6224    IsReversed = false; // x CC y ? x : y
6225  } else if (DAG.isEqualTo(LHS, CondRHS) && DAG.isEqualTo(RHS, CondLHS)) {
6226    IsReversed = true ; // x CC y ? y : x
6227  } else {
6228    return SDValue();
6229  }
6230
6231  bool IsUnordered;
6232  switch (CC) {
6233  default: break;
6234  case ISD::SETOLT:
6235  case ISD::SETOLE:
6236  case ISD::SETLT:
6237  case ISD::SETLE:
6238  case ISD::SETULT:
6239  case ISD::SETULE:
6240    // If LHS is NaN, an ordered comparison will be false and the result will
6241    // be the RHS, but vmin(NaN, RHS) = NaN.  Avoid this by checking that LHS
6242    // != NaN.  Likewise, for unordered comparisons, check for RHS != NaN.
6243    IsUnordered = (CC == ISD::SETULT || CC == ISD::SETULE);
6244    if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
6245      break;
6246    // For less-than-or-equal comparisons, "+0 <= -0" will be true but vmin
6247    // will return -0, so vmin can only be used for unsafe math or if one of
6248    // the operands is known to be nonzero.
6249    if ((CC == ISD::SETLE || CC == ISD::SETOLE || CC == ISD::SETULE) &&
6250        !UnsafeFPMath &&
6251        !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
6252      break;
6253    Opcode = IsReversed ? ARMISD::FMAX : ARMISD::FMIN;
6254    break;
6255
6256  case ISD::SETOGT:
6257  case ISD::SETOGE:
6258  case ISD::SETGT:
6259  case ISD::SETGE:
6260  case ISD::SETUGT:
6261  case ISD::SETUGE:
6262    // If LHS is NaN, an ordered comparison will be false and the result will
6263    // be the RHS, but vmax(NaN, RHS) = NaN.  Avoid this by checking that LHS
6264    // != NaN.  Likewise, for unordered comparisons, check for RHS != NaN.
6265    IsUnordered = (CC == ISD::SETUGT || CC == ISD::SETUGE);
6266    if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
6267      break;
6268    // For greater-than-or-equal comparisons, "-0 >= +0" will be true but vmax
6269    // will return +0, so vmax can only be used for unsafe math or if one of
6270    // the operands is known to be nonzero.
6271    if ((CC == ISD::SETGE || CC == ISD::SETOGE || CC == ISD::SETUGE) &&
6272        !UnsafeFPMath &&
6273        !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
6274      break;
6275    Opcode = IsReversed ? ARMISD::FMIN : ARMISD::FMAX;
6276    break;
6277  }
6278
6279  if (!Opcode)
6280    return SDValue();
6281  return DAG.getNode(Opcode, N->getDebugLoc(), N->getValueType(0), LHS, RHS);
6282}
6283
6284SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
6285                                             DAGCombinerInfo &DCI) const {
6286  switch (N->getOpcode()) {
6287  default: break;
6288  case ISD::ADD:        return PerformADDCombine(N, DCI);
6289  case ISD::SUB:        return PerformSUBCombine(N, DCI);
6290  case ISD::MUL:        return PerformMULCombine(N, DCI, Subtarget);
6291  case ISD::OR:         return PerformORCombine(N, DCI, Subtarget);
6292  case ISD::AND:        return PerformANDCombine(N, DCI);
6293  case ARMISD::BFI:     return PerformBFICombine(N, DCI);
6294  case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI);
6295  case ARMISD::VMOVDRR: return PerformVMOVDRRCombine(N, DCI.DAG);
6296  case ISD::STORE:      return PerformSTORECombine(N, DCI);
6297  case ISD::BUILD_VECTOR: return PerformBUILD_VECTORCombine(N, DCI);
6298  case ISD::INSERT_VECTOR_ELT: return PerformInsertEltCombine(N, DCI);
6299  case ISD::VECTOR_SHUFFLE: return PerformVECTOR_SHUFFLECombine(N, DCI.DAG);
6300  case ARMISD::VDUPLANE: return PerformVDUPLANECombine(N, DCI);
6301  case ISD::INTRINSIC_WO_CHAIN: return PerformIntrinsicCombine(N, DCI.DAG);
6302  case ISD::SHL:
6303  case ISD::SRA:
6304  case ISD::SRL:        return PerformShiftCombine(N, DCI.DAG, Subtarget);
6305  case ISD::SIGN_EXTEND:
6306  case ISD::ZERO_EXTEND:
6307  case ISD::ANY_EXTEND: return PerformExtendCombine(N, DCI.DAG, Subtarget);
6308  case ISD::SELECT_CC:  return PerformSELECT_CCCombine(N, DCI.DAG, Subtarget);
6309  case ARMISD::VLD2DUP:
6310  case ARMISD::VLD3DUP:
6311  case ARMISD::VLD4DUP:
6312    return CombineBaseUpdate(N, DCI);
6313  case ISD::INTRINSIC_VOID:
6314  case ISD::INTRINSIC_W_CHAIN:
6315    switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
6316    case Intrinsic::arm_neon_vld1:
6317    case Intrinsic::arm_neon_vld2:
6318    case Intrinsic::arm_neon_vld3:
6319    case Intrinsic::arm_neon_vld4:
6320    case Intrinsic::arm_neon_vld2lane:
6321    case Intrinsic::arm_neon_vld3lane:
6322    case Intrinsic::arm_neon_vld4lane:
6323    case Intrinsic::arm_neon_vst1:
6324    case Intrinsic::arm_neon_vst2:
6325    case Intrinsic::arm_neon_vst3:
6326    case Intrinsic::arm_neon_vst4:
6327    case Intrinsic::arm_neon_vst2lane:
6328    case Intrinsic::arm_neon_vst3lane:
6329    case Intrinsic::arm_neon_vst4lane:
6330      return CombineBaseUpdate(N, DCI);
6331    default: break;
6332    }
6333    break;
6334  }
6335  return SDValue();
6336}
6337
6338bool ARMTargetLowering::isDesirableToTransformToIntegerOp(unsigned Opc,
6339                                                          EVT VT) const {
6340  return (VT == MVT::f32) && (Opc == ISD::LOAD || Opc == ISD::STORE);
6341}
6342
6343bool ARMTargetLowering::allowsUnalignedMemoryAccesses(EVT VT) const {
6344  if (!Subtarget->allowsUnalignedMem())
6345    return false;
6346
6347  switch (VT.getSimpleVT().SimpleTy) {
6348  default:
6349    return false;
6350  case MVT::i8:
6351  case MVT::i16:
6352  case MVT::i32:
6353    return true;
6354  // FIXME: VLD1 etc with standard alignment is legal.
6355  }
6356}
6357
6358static bool isLegalT1AddressImmediate(int64_t V, EVT VT) {
6359  if (V < 0)
6360    return false;
6361
6362  unsigned Scale = 1;
6363  switch (VT.getSimpleVT().SimpleTy) {
6364  default: return false;
6365  case MVT::i1:
6366  case MVT::i8:
6367    // Scale == 1;
6368    break;
6369  case MVT::i16:
6370    // Scale == 2;
6371    Scale = 2;
6372    break;
6373  case MVT::i32:
6374    // Scale == 4;
6375    Scale = 4;
6376    break;
6377  }
6378
6379  if ((V & (Scale - 1)) != 0)
6380    return false;
6381  V /= Scale;
6382  return V == (V & ((1LL << 5) - 1));
6383}
6384
6385static bool isLegalT2AddressImmediate(int64_t V, EVT VT,
6386                                      const ARMSubtarget *Subtarget) {
6387  bool isNeg = false;
6388  if (V < 0) {
6389    isNeg = true;
6390    V = - V;
6391  }
6392
6393  switch (VT.getSimpleVT().SimpleTy) {
6394  default: return false;
6395  case MVT::i1:
6396  case MVT::i8:
6397  case MVT::i16:
6398  case MVT::i32:
6399    // + imm12 or - imm8
6400    if (isNeg)
6401      return V == (V & ((1LL << 8) - 1));
6402    return V == (V & ((1LL << 12) - 1));
6403  case MVT::f32:
6404  case MVT::f64:
6405    // Same as ARM mode. FIXME: NEON?
6406    if (!Subtarget->hasVFP2())
6407      return false;
6408    if ((V & 3) != 0)
6409      return false;
6410    V >>= 2;
6411    return V == (V & ((1LL << 8) - 1));
6412  }
6413}
6414
6415/// isLegalAddressImmediate - Return true if the integer value can be used
6416/// as the offset of the target addressing mode for load / store of the
6417/// given type.
6418static bool isLegalAddressImmediate(int64_t V, EVT VT,
6419                                    const ARMSubtarget *Subtarget) {
6420  if (V == 0)
6421    return true;
6422
6423  if (!VT.isSimple())
6424    return false;
6425
6426  if (Subtarget->isThumb1Only())
6427    return isLegalT1AddressImmediate(V, VT);
6428  else if (Subtarget->isThumb2())
6429    return isLegalT2AddressImmediate(V, VT, Subtarget);
6430
6431  // ARM mode.
6432  if (V < 0)
6433    V = - V;
6434  switch (VT.getSimpleVT().SimpleTy) {
6435  default: return false;
6436  case MVT::i1:
6437  case MVT::i8:
6438  case MVT::i32:
6439    // +- imm12
6440    return V == (V & ((1LL << 12) - 1));
6441  case MVT::i16:
6442    // +- imm8
6443    return V == (V & ((1LL << 8) - 1));
6444  case MVT::f32:
6445  case MVT::f64:
6446    if (!Subtarget->hasVFP2()) // FIXME: NEON?
6447      return false;
6448    if ((V & 3) != 0)
6449      return false;
6450    V >>= 2;
6451    return V == (V & ((1LL << 8) - 1));
6452  }
6453}
6454
6455bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM,
6456                                                      EVT VT) const {
6457  int Scale = AM.Scale;
6458  if (Scale < 0)
6459    return false;
6460
6461  switch (VT.getSimpleVT().SimpleTy) {
6462  default: return false;
6463  case MVT::i1:
6464  case MVT::i8:
6465  case MVT::i16:
6466  case MVT::i32:
6467    if (Scale == 1)
6468      return true;
6469    // r + r << imm
6470    Scale = Scale & ~1;
6471    return Scale == 2 || Scale == 4 || Scale == 8;
6472  case MVT::i64:
6473    // r + r
6474    if (((unsigned)AM.HasBaseReg + Scale) <= 2)
6475      return true;
6476    return false;
6477  case MVT::isVoid:
6478    // Note, we allow "void" uses (basically, uses that aren't loads or
6479    // stores), because arm allows folding a scale into many arithmetic
6480    // operations.  This should be made more precise and revisited later.
6481
6482    // Allow r << imm, but the imm has to be a multiple of two.
6483    if (Scale & 1) return false;
6484    return isPowerOf2_32(Scale);
6485  }
6486}
6487
6488/// isLegalAddressingMode - Return true if the addressing mode represented
6489/// by AM is legal for this target, for a load/store of the specified type.
6490bool ARMTargetLowering::isLegalAddressingMode(const AddrMode &AM,
6491                                              const Type *Ty) const {
6492  EVT VT = getValueType(Ty, true);
6493  if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget))
6494    return false;
6495
6496  // Can never fold addr of global into load/store.
6497  if (AM.BaseGV)
6498    return false;
6499
6500  switch (AM.Scale) {
6501  case 0:  // no scale reg, must be "r+i" or "r", or "i".
6502    break;
6503  case 1:
6504    if (Subtarget->isThumb1Only())
6505      return false;
6506    // FALL THROUGH.
6507  default:
6508    // ARM doesn't support any R+R*scale+imm addr modes.
6509    if (AM.BaseOffs)
6510      return false;
6511
6512    if (!VT.isSimple())
6513      return false;
6514
6515    if (Subtarget->isThumb2())
6516      return isLegalT2ScaledAddressingMode(AM, VT);
6517
6518    int Scale = AM.Scale;
6519    switch (VT.getSimpleVT().SimpleTy) {
6520    default: return false;
6521    case MVT::i1:
6522    case MVT::i8:
6523    case MVT::i32:
6524      if (Scale < 0) Scale = -Scale;
6525      if (Scale == 1)
6526        return true;
6527      // r + r << imm
6528      return isPowerOf2_32(Scale & ~1);
6529    case MVT::i16:
6530    case MVT::i64:
6531      // r + r
6532      if (((unsigned)AM.HasBaseReg + Scale) <= 2)
6533        return true;
6534      return false;
6535
6536    case MVT::isVoid:
6537      // Note, we allow "void" uses (basically, uses that aren't loads or
6538      // stores), because arm allows folding a scale into many arithmetic
6539      // operations.  This should be made more precise and revisited later.
6540
6541      // Allow r << imm, but the imm has to be a multiple of two.
6542      if (Scale & 1) return false;
6543      return isPowerOf2_32(Scale);
6544    }
6545    break;
6546  }
6547  return true;
6548}
6549
6550/// isLegalICmpImmediate - Return true if the specified immediate is legal
6551/// icmp immediate, that is the target has icmp instructions which can compare
6552/// a register against the immediate without having to materialize the
6553/// immediate into a register.
6554bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
6555  if (!Subtarget->isThumb())
6556    return ARM_AM::getSOImmVal(Imm) != -1;
6557  if (Subtarget->isThumb2())
6558    return ARM_AM::getT2SOImmVal(Imm) != -1;
6559  return Imm >= 0 && Imm <= 255;
6560}
6561
6562static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT,
6563                                      bool isSEXTLoad, SDValue &Base,
6564                                      SDValue &Offset, bool &isInc,
6565                                      SelectionDAG &DAG) {
6566  if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
6567    return false;
6568
6569  if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
6570    // AddressingMode 3
6571    Base = Ptr->getOperand(0);
6572    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
6573      int RHSC = (int)RHS->getZExtValue();
6574      if (RHSC < 0 && RHSC > -256) {
6575        assert(Ptr->getOpcode() == ISD::ADD);
6576        isInc = false;
6577        Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
6578        return true;
6579      }
6580    }
6581    isInc = (Ptr->getOpcode() == ISD::ADD);
6582    Offset = Ptr->getOperand(1);
6583    return true;
6584  } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
6585    // AddressingMode 2
6586    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
6587      int RHSC = (int)RHS->getZExtValue();
6588      if (RHSC < 0 && RHSC > -0x1000) {
6589        assert(Ptr->getOpcode() == ISD::ADD);
6590        isInc = false;
6591        Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
6592        Base = Ptr->getOperand(0);
6593        return true;
6594      }
6595    }
6596
6597    if (Ptr->getOpcode() == ISD::ADD) {
6598      isInc = true;
6599      ARM_AM::ShiftOpc ShOpcVal= ARM_AM::getShiftOpcForNode(Ptr->getOperand(0));
6600      if (ShOpcVal != ARM_AM::no_shift) {
6601        Base = Ptr->getOperand(1);
6602        Offset = Ptr->getOperand(0);
6603      } else {
6604        Base = Ptr->getOperand(0);
6605        Offset = Ptr->getOperand(1);
6606      }
6607      return true;
6608    }
6609
6610    isInc = (Ptr->getOpcode() == ISD::ADD);
6611    Base = Ptr->getOperand(0);
6612    Offset = Ptr->getOperand(1);
6613    return true;
6614  }
6615
6616  // FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
6617  return false;
6618}
6619
6620static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT,
6621                                     bool isSEXTLoad, SDValue &Base,
6622                                     SDValue &Offset, bool &isInc,
6623                                     SelectionDAG &DAG) {
6624  if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
6625    return false;
6626
6627  Base = Ptr->getOperand(0);
6628  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
6629    int RHSC = (int)RHS->getZExtValue();
6630    if (RHSC < 0 && RHSC > -0x100) { // 8 bits.
6631      assert(Ptr->getOpcode() == ISD::ADD);
6632      isInc = false;
6633      Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
6634      return true;
6635    } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero.
6636      isInc = Ptr->getOpcode() == ISD::ADD;
6637      Offset = DAG.getConstant(RHSC, RHS->getValueType(0));
6638      return true;
6639    }
6640  }
6641
6642  return false;
6643}
6644
6645/// getPreIndexedAddressParts - returns true by value, base pointer and
6646/// offset pointer and addressing mode by reference if the node's address
6647/// can be legally represented as pre-indexed load / store address.
6648bool
6649ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
6650                                             SDValue &Offset,
6651                                             ISD::MemIndexedMode &AM,
6652                                             SelectionDAG &DAG) const {
6653  if (Subtarget->isThumb1Only())
6654    return false;
6655
6656  EVT VT;
6657  SDValue Ptr;
6658  bool isSEXTLoad = false;
6659  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
6660    Ptr = LD->getBasePtr();
6661    VT  = LD->getMemoryVT();
6662    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
6663  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
6664    Ptr = ST->getBasePtr();
6665    VT  = ST->getMemoryVT();
6666  } else
6667    return false;
6668
6669  bool isInc;
6670  bool isLegal = false;
6671  if (Subtarget->isThumb2())
6672    isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
6673                                       Offset, isInc, DAG);
6674  else
6675    isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
6676                                        Offset, isInc, DAG);
6677  if (!isLegal)
6678    return false;
6679
6680  AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
6681  return true;
6682}
6683
6684/// getPostIndexedAddressParts - returns true by value, base pointer and
6685/// offset pointer and addressing mode by reference if this node can be
6686/// combined with a load / store to form a post-indexed load / store.
6687bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
6688                                                   SDValue &Base,
6689                                                   SDValue &Offset,
6690                                                   ISD::MemIndexedMode &AM,
6691                                                   SelectionDAG &DAG) const {
6692  if (Subtarget->isThumb1Only())
6693    return false;
6694
6695  EVT VT;
6696  SDValue Ptr;
6697  bool isSEXTLoad = false;
6698  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
6699    VT  = LD->getMemoryVT();
6700    Ptr = LD->getBasePtr();
6701    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
6702  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
6703    VT  = ST->getMemoryVT();
6704    Ptr = ST->getBasePtr();
6705  } else
6706    return false;
6707
6708  bool isInc;
6709  bool isLegal = false;
6710  if (Subtarget->isThumb2())
6711    isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
6712                                       isInc, DAG);
6713  else
6714    isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
6715                                        isInc, DAG);
6716  if (!isLegal)
6717    return false;
6718
6719  if (Ptr != Base) {
6720    // Swap base ptr and offset to catch more post-index load / store when
6721    // it's legal. In Thumb2 mode, offset must be an immediate.
6722    if (Ptr == Offset && Op->getOpcode() == ISD::ADD &&
6723        !Subtarget->isThumb2())
6724      std::swap(Base, Offset);
6725
6726    // Post-indexed load / store update the base pointer.
6727    if (Ptr != Base)
6728      return false;
6729  }
6730
6731  AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
6732  return true;
6733}
6734
6735void ARMTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
6736                                                       const APInt &Mask,
6737                                                       APInt &KnownZero,
6738                                                       APInt &KnownOne,
6739                                                       const SelectionDAG &DAG,
6740                                                       unsigned Depth) const {
6741  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
6742  switch (Op.getOpcode()) {
6743  default: break;
6744  case ARMISD::CMOV: {
6745    // Bits are known zero/one if known on the LHS and RHS.
6746    DAG.ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
6747    if (KnownZero == 0 && KnownOne == 0) return;
6748
6749    APInt KnownZeroRHS, KnownOneRHS;
6750    DAG.ComputeMaskedBits(Op.getOperand(1), Mask,
6751                          KnownZeroRHS, KnownOneRHS, Depth+1);
6752    KnownZero &= KnownZeroRHS;
6753    KnownOne  &= KnownOneRHS;
6754    return;
6755  }
6756  }
6757}
6758
6759//===----------------------------------------------------------------------===//
6760//                           ARM Inline Assembly Support
6761//===----------------------------------------------------------------------===//
6762
6763bool ARMTargetLowering::ExpandInlineAsm(CallInst *CI) const {
6764  // Looking for "rev" which is V6+.
6765  if (!Subtarget->hasV6Ops())
6766    return false;
6767
6768  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
6769  std::string AsmStr = IA->getAsmString();
6770  SmallVector<StringRef, 4> AsmPieces;
6771  SplitString(AsmStr, AsmPieces, ";\n");
6772
6773  switch (AsmPieces.size()) {
6774  default: return false;
6775  case 1:
6776    AsmStr = AsmPieces[0];
6777    AsmPieces.clear();
6778    SplitString(AsmStr, AsmPieces, " \t,");
6779
6780    // rev $0, $1
6781    if (AsmPieces.size() == 3 &&
6782        AsmPieces[0] == "rev" && AsmPieces[1] == "$0" && AsmPieces[2] == "$1" &&
6783        IA->getConstraintString().compare(0, 4, "=l,l") == 0) {
6784      const IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
6785      if (Ty && Ty->getBitWidth() == 32)
6786        return IntrinsicLowering::LowerToByteSwap(CI);
6787    }
6788    break;
6789  }
6790
6791  return false;
6792}
6793
6794/// getConstraintType - Given a constraint letter, return the type of
6795/// constraint it is for this target.
6796ARMTargetLowering::ConstraintType
6797ARMTargetLowering::getConstraintType(const std::string &Constraint) const {
6798  if (Constraint.size() == 1) {
6799    switch (Constraint[0]) {
6800    default:  break;
6801    case 'l': return C_RegisterClass;
6802    case 'w': return C_RegisterClass;
6803    }
6804  }
6805  return TargetLowering::getConstraintType(Constraint);
6806}
6807
6808/// Examine constraint type and operand type and determine a weight value.
6809/// This object must already have been set up with the operand type
6810/// and the current alternative constraint selected.
6811TargetLowering::ConstraintWeight
6812ARMTargetLowering::getSingleConstraintMatchWeight(
6813    AsmOperandInfo &info, const char *constraint) const {
6814  ConstraintWeight weight = CW_Invalid;
6815  Value *CallOperandVal = info.CallOperandVal;
6816    // If we don't have a value, we can't do a match,
6817    // but allow it at the lowest weight.
6818  if (CallOperandVal == NULL)
6819    return CW_Default;
6820  const Type *type = CallOperandVal->getType();
6821  // Look at the constraint type.
6822  switch (*constraint) {
6823  default:
6824    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
6825    break;
6826  case 'l':
6827    if (type->isIntegerTy()) {
6828      if (Subtarget->isThumb())
6829        weight = CW_SpecificReg;
6830      else
6831        weight = CW_Register;
6832    }
6833    break;
6834  case 'w':
6835    if (type->isFloatingPointTy())
6836      weight = CW_Register;
6837    break;
6838  }
6839  return weight;
6840}
6841
6842std::pair<unsigned, const TargetRegisterClass*>
6843ARMTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
6844                                                EVT VT) const {
6845  if (Constraint.size() == 1) {
6846    // GCC ARM Constraint Letters
6847    switch (Constraint[0]) {
6848    case 'l':
6849      if (Subtarget->isThumb())
6850        return std::make_pair(0U, ARM::tGPRRegisterClass);
6851      else
6852        return std::make_pair(0U, ARM::GPRRegisterClass);
6853    case 'r':
6854      return std::make_pair(0U, ARM::GPRRegisterClass);
6855    case 'w':
6856      if (VT == MVT::f32)
6857        return std::make_pair(0U, ARM::SPRRegisterClass);
6858      if (VT.getSizeInBits() == 64)
6859        return std::make_pair(0U, ARM::DPRRegisterClass);
6860      if (VT.getSizeInBits() == 128)
6861        return std::make_pair(0U, ARM::QPRRegisterClass);
6862      break;
6863    }
6864  }
6865  if (StringRef("{cc}").equals_lower(Constraint))
6866    return std::make_pair(unsigned(ARM::CPSR), ARM::CCRRegisterClass);
6867
6868  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
6869}
6870
6871std::vector<unsigned> ARMTargetLowering::
6872getRegClassForInlineAsmConstraint(const std::string &Constraint,
6873                                  EVT VT) const {
6874  if (Constraint.size() != 1)
6875    return std::vector<unsigned>();
6876
6877  switch (Constraint[0]) {      // GCC ARM Constraint Letters
6878  default: break;
6879  case 'l':
6880    return make_vector<unsigned>(ARM::R0, ARM::R1, ARM::R2, ARM::R3,
6881                                 ARM::R4, ARM::R5, ARM::R6, ARM::R7,
6882                                 0);
6883  case 'r':
6884    return make_vector<unsigned>(ARM::R0, ARM::R1, ARM::R2, ARM::R3,
6885                                 ARM::R4, ARM::R5, ARM::R6, ARM::R7,
6886                                 ARM::R8, ARM::R9, ARM::R10, ARM::R11,
6887                                 ARM::R12, ARM::LR, 0);
6888  case 'w':
6889    if (VT == MVT::f32)
6890      return make_vector<unsigned>(ARM::S0, ARM::S1, ARM::S2, ARM::S3,
6891                                   ARM::S4, ARM::S5, ARM::S6, ARM::S7,
6892                                   ARM::S8, ARM::S9, ARM::S10, ARM::S11,
6893                                   ARM::S12,ARM::S13,ARM::S14,ARM::S15,
6894                                   ARM::S16,ARM::S17,ARM::S18,ARM::S19,
6895                                   ARM::S20,ARM::S21,ARM::S22,ARM::S23,
6896                                   ARM::S24,ARM::S25,ARM::S26,ARM::S27,
6897                                   ARM::S28,ARM::S29,ARM::S30,ARM::S31, 0);
6898    if (VT.getSizeInBits() == 64)
6899      return make_vector<unsigned>(ARM::D0, ARM::D1, ARM::D2, ARM::D3,
6900                                   ARM::D4, ARM::D5, ARM::D6, ARM::D7,
6901                                   ARM::D8, ARM::D9, ARM::D10,ARM::D11,
6902                                   ARM::D12,ARM::D13,ARM::D14,ARM::D15, 0);
6903    if (VT.getSizeInBits() == 128)
6904      return make_vector<unsigned>(ARM::Q0, ARM::Q1, ARM::Q2, ARM::Q3,
6905                                   ARM::Q4, ARM::Q5, ARM::Q6, ARM::Q7, 0);
6906      break;
6907  }
6908
6909  return std::vector<unsigned>();
6910}
6911
6912/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
6913/// vector.  If it is invalid, don't add anything to Ops.
6914void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
6915                                                     char Constraint,
6916                                                     std::vector<SDValue>&Ops,
6917                                                     SelectionDAG &DAG) const {
6918  SDValue Result(0, 0);
6919
6920  switch (Constraint) {
6921  default: break;
6922  case 'I': case 'J': case 'K': case 'L':
6923  case 'M': case 'N': case 'O':
6924    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
6925    if (!C)
6926      return;
6927
6928    int64_t CVal64 = C->getSExtValue();
6929    int CVal = (int) CVal64;
6930    // None of these constraints allow values larger than 32 bits.  Check
6931    // that the value fits in an int.
6932    if (CVal != CVal64)
6933      return;
6934
6935    switch (Constraint) {
6936      case 'I':
6937        if (Subtarget->isThumb1Only()) {
6938          // This must be a constant between 0 and 255, for ADD
6939          // immediates.
6940          if (CVal >= 0 && CVal <= 255)
6941            break;
6942        } else if (Subtarget->isThumb2()) {
6943          // A constant that can be used as an immediate value in a
6944          // data-processing instruction.
6945          if (ARM_AM::getT2SOImmVal(CVal) != -1)
6946            break;
6947        } else {
6948          // A constant that can be used as an immediate value in a
6949          // data-processing instruction.
6950          if (ARM_AM::getSOImmVal(CVal) != -1)
6951            break;
6952        }
6953        return;
6954
6955      case 'J':
6956        if (Subtarget->isThumb()) {  // FIXME thumb2
6957          // This must be a constant between -255 and -1, for negated ADD
6958          // immediates. This can be used in GCC with an "n" modifier that
6959          // prints the negated value, for use with SUB instructions. It is
6960          // not useful otherwise but is implemented for compatibility.
6961          if (CVal >= -255 && CVal <= -1)
6962            break;
6963        } else {
6964          // This must be a constant between -4095 and 4095. It is not clear
6965          // what this constraint is intended for. Implemented for
6966          // compatibility with GCC.
6967          if (CVal >= -4095 && CVal <= 4095)
6968            break;
6969        }
6970        return;
6971
6972      case 'K':
6973        if (Subtarget->isThumb1Only()) {
6974          // A 32-bit value where only one byte has a nonzero value. Exclude
6975          // zero to match GCC. This constraint is used by GCC internally for
6976          // constants that can be loaded with a move/shift combination.
6977          // It is not useful otherwise but is implemented for compatibility.
6978          if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal))
6979            break;
6980        } else if (Subtarget->isThumb2()) {
6981          // A constant whose bitwise inverse can be used as an immediate
6982          // value in a data-processing instruction. This can be used in GCC
6983          // with a "B" modifier that prints the inverted value, for use with
6984          // BIC and MVN instructions. It is not useful otherwise but is
6985          // implemented for compatibility.
6986          if (ARM_AM::getT2SOImmVal(~CVal) != -1)
6987            break;
6988        } else {
6989          // A constant whose bitwise inverse can be used as an immediate
6990          // value in a data-processing instruction. This can be used in GCC
6991          // with a "B" modifier that prints the inverted value, for use with
6992          // BIC and MVN instructions. It is not useful otherwise but is
6993          // implemented for compatibility.
6994          if (ARM_AM::getSOImmVal(~CVal) != -1)
6995            break;
6996        }
6997        return;
6998
6999      case 'L':
7000        if (Subtarget->isThumb1Only()) {
7001          // This must be a constant between -7 and 7,
7002          // for 3-operand ADD/SUB immediate instructions.
7003          if (CVal >= -7 && CVal < 7)
7004            break;
7005        } else if (Subtarget->isThumb2()) {
7006          // A constant whose negation can be used as an immediate value in a
7007          // data-processing instruction. This can be used in GCC with an "n"
7008          // modifier that prints the negated value, for use with SUB
7009          // instructions. It is not useful otherwise but is implemented for
7010          // compatibility.
7011          if (ARM_AM::getT2SOImmVal(-CVal) != -1)
7012            break;
7013        } else {
7014          // A constant whose negation can be used as an immediate value in a
7015          // data-processing instruction. This can be used in GCC with an "n"
7016          // modifier that prints the negated value, for use with SUB
7017          // instructions. It is not useful otherwise but is implemented for
7018          // compatibility.
7019          if (ARM_AM::getSOImmVal(-CVal) != -1)
7020            break;
7021        }
7022        return;
7023
7024      case 'M':
7025        if (Subtarget->isThumb()) { // FIXME thumb2
7026          // This must be a multiple of 4 between 0 and 1020, for
7027          // ADD sp + immediate.
7028          if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
7029            break;
7030        } else {
7031          // A power of two or a constant between 0 and 32.  This is used in
7032          // GCC for the shift amount on shifted register operands, but it is
7033          // useful in general for any shift amounts.
7034          if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0))
7035            break;
7036        }
7037        return;
7038
7039      case 'N':
7040        if (Subtarget->isThumb()) {  // FIXME thumb2
7041          // This must be a constant between 0 and 31, for shift amounts.
7042          if (CVal >= 0 && CVal <= 31)
7043            break;
7044        }
7045        return;
7046
7047      case 'O':
7048        if (Subtarget->isThumb()) {  // FIXME thumb2
7049          // This must be a multiple of 4 between -508 and 508, for
7050          // ADD/SUB sp = sp + immediate.
7051          if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
7052            break;
7053        }
7054        return;
7055    }
7056    Result = DAG.getTargetConstant(CVal, Op.getValueType());
7057    break;
7058  }
7059
7060  if (Result.getNode()) {
7061    Ops.push_back(Result);
7062    return;
7063  }
7064  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
7065}
7066
7067bool
7068ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
7069  // The ARM target isn't yet aware of offsets.
7070  return false;
7071}
7072
7073int ARM::getVFPf32Imm(const APFloat &FPImm) {
7074  APInt Imm = FPImm.bitcastToAPInt();
7075  uint32_t Sign = Imm.lshr(31).getZExtValue() & 1;
7076  int32_t Exp = (Imm.lshr(23).getSExtValue() & 0xff) - 127;  // -126 to 127
7077  int64_t Mantissa = Imm.getZExtValue() & 0x7fffff;  // 23 bits
7078
7079  // We can handle 4 bits of mantissa.
7080  // mantissa = (16+UInt(e:f:g:h))/16.
7081  if (Mantissa & 0x7ffff)
7082    return -1;
7083  Mantissa >>= 19;
7084  if ((Mantissa & 0xf) != Mantissa)
7085    return -1;
7086
7087  // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
7088  if (Exp < -3 || Exp > 4)
7089    return -1;
7090  Exp = ((Exp+3) & 0x7) ^ 4;
7091
7092  return ((int)Sign << 7) | (Exp << 4) | Mantissa;
7093}
7094
7095int ARM::getVFPf64Imm(const APFloat &FPImm) {
7096  APInt Imm = FPImm.bitcastToAPInt();
7097  uint64_t Sign = Imm.lshr(63).getZExtValue() & 1;
7098  int64_t Exp = (Imm.lshr(52).getSExtValue() & 0x7ff) - 1023;   // -1022 to 1023
7099  uint64_t Mantissa = Imm.getZExtValue() & 0xfffffffffffffLL;
7100
7101  // We can handle 4 bits of mantissa.
7102  // mantissa = (16+UInt(e:f:g:h))/16.
7103  if (Mantissa & 0xffffffffffffLL)
7104    return -1;
7105  Mantissa >>= 48;
7106  if ((Mantissa & 0xf) != Mantissa)
7107    return -1;
7108
7109  // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
7110  if (Exp < -3 || Exp > 4)
7111    return -1;
7112  Exp = ((Exp+3) & 0x7) ^ 4;
7113
7114  return ((int)Sign << 7) | (Exp << 4) | Mantissa;
7115}
7116
7117bool ARM::isBitFieldInvertedMask(unsigned v) {
7118  if (v == 0xffffffff)
7119    return 0;
7120  // there can be 1's on either or both "outsides", all the "inside"
7121  // bits must be 0's
7122  unsigned int lsb = 0, msb = 31;
7123  while (v & (1 << msb)) --msb;
7124  while (v & (1 << lsb)) ++lsb;
7125  for (unsigned int i = lsb; i <= msb; ++i) {
7126    if (v & (1 << i))
7127      return 0;
7128  }
7129  return 1;
7130}
7131
7132/// isFPImmLegal - Returns true if the target can instruction select the
7133/// specified FP immediate natively. If false, the legalizer will
7134/// materialize the FP immediate as a load from a constant pool.
7135bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
7136  if (!Subtarget->hasVFP3())
7137    return false;
7138  if (VT == MVT::f32)
7139    return ARM::getVFPf32Imm(Imm) != -1;
7140  if (VT == MVT::f64)
7141    return ARM::getVFPf64Imm(Imm) != -1;
7142  return false;
7143}
7144
7145/// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
7146/// MemIntrinsicNodes.  The associated MachineMemOperands record the alignment
7147/// specified in the intrinsic calls.
7148bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
7149                                           const CallInst &I,
7150                                           unsigned Intrinsic) const {
7151  switch (Intrinsic) {
7152  case Intrinsic::arm_neon_vld1:
7153  case Intrinsic::arm_neon_vld2:
7154  case Intrinsic::arm_neon_vld3:
7155  case Intrinsic::arm_neon_vld4:
7156  case Intrinsic::arm_neon_vld2lane:
7157  case Intrinsic::arm_neon_vld3lane:
7158  case Intrinsic::arm_neon_vld4lane: {
7159    Info.opc = ISD::INTRINSIC_W_CHAIN;
7160    // Conservatively set memVT to the entire set of vectors loaded.
7161    uint64_t NumElts = getTargetData()->getTypeAllocSize(I.getType()) / 8;
7162    Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
7163    Info.ptrVal = I.getArgOperand(0);
7164    Info.offset = 0;
7165    Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
7166    Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
7167    Info.vol = false; // volatile loads with NEON intrinsics not supported
7168    Info.readMem = true;
7169    Info.writeMem = false;
7170    return true;
7171  }
7172  case Intrinsic::arm_neon_vst1:
7173  case Intrinsic::arm_neon_vst2:
7174  case Intrinsic::arm_neon_vst3:
7175  case Intrinsic::arm_neon_vst4:
7176  case Intrinsic::arm_neon_vst2lane:
7177  case Intrinsic::arm_neon_vst3lane:
7178  case Intrinsic::arm_neon_vst4lane: {
7179    Info.opc = ISD::INTRINSIC_VOID;
7180    // Conservatively set memVT to the entire set of vectors stored.
7181    unsigned NumElts = 0;
7182    for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
7183      const Type *ArgTy = I.getArgOperand(ArgI)->getType();
7184      if (!ArgTy->isVectorTy())
7185        break;
7186      NumElts += getTargetData()->getTypeAllocSize(ArgTy) / 8;
7187    }
7188    Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
7189    Info.ptrVal = I.getArgOperand(0);
7190    Info.offset = 0;
7191    Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
7192    Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
7193    Info.vol = false; // volatile stores with NEON intrinsics not supported
7194    Info.readMem = false;
7195    Info.writeMem = true;
7196    return true;
7197  }
7198  default:
7199    break;
7200  }
7201
7202  return false;
7203}
7204