ARMISelLowering.cpp revision 969c9ef0dd271905136f21a6c51dd0839ef01cce
1//===-- ARMISelLowering.cpp - ARM DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that ARM uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "arm-isel"
16#include "ARM.h"
17#include "ARMCallingConv.h"
18#include "ARMConstantPoolValue.h"
19#include "ARMISelLowering.h"
20#include "ARMMachineFunctionInfo.h"
21#include "ARMPerfectShuffle.h"
22#include "ARMRegisterInfo.h"
23#include "ARMSubtarget.h"
24#include "ARMTargetMachine.h"
25#include "ARMTargetObjectFile.h"
26#include "MCTargetDesc/ARMAddressingModes.h"
27#include "llvm/CallingConv.h"
28#include "llvm/Constants.h"
29#include "llvm/Function.h"
30#include "llvm/GlobalValue.h"
31#include "llvm/Instruction.h"
32#include "llvm/Instructions.h"
33#include "llvm/Intrinsics.h"
34#include "llvm/Type.h"
35#include "llvm/CodeGen/CallingConvLower.h"
36#include "llvm/CodeGen/IntrinsicLowering.h"
37#include "llvm/CodeGen/MachineBasicBlock.h"
38#include "llvm/CodeGen/MachineFrameInfo.h"
39#include "llvm/CodeGen/MachineFunction.h"
40#include "llvm/CodeGen/MachineInstrBuilder.h"
41#include "llvm/CodeGen/MachineModuleInfo.h"
42#include "llvm/CodeGen/MachineRegisterInfo.h"
43#include "llvm/CodeGen/PseudoSourceValue.h"
44#include "llvm/CodeGen/SelectionDAG.h"
45#include "llvm/MC/MCSectionMachO.h"
46#include "llvm/Target/TargetOptions.h"
47#include "llvm/ADT/VectorExtras.h"
48#include "llvm/ADT/StringExtras.h"
49#include "llvm/ADT/Statistic.h"
50#include "llvm/Support/CommandLine.h"
51#include "llvm/Support/ErrorHandling.h"
52#include "llvm/Support/MathExtras.h"
53#include "llvm/Support/raw_ostream.h"
54#include <sstream>
55using namespace llvm;
56
57STATISTIC(NumTailCalls, "Number of tail calls");
58STATISTIC(NumMovwMovt, "Number of GAs materialized with movw + movt");
59
60// This option should go away when tail calls fully work.
61static cl::opt<bool>
62EnableARMTailCalls("arm-tail-calls", cl::Hidden,
63  cl::desc("Generate tail calls (TEMPORARY OPTION)."),
64  cl::init(false));
65
66cl::opt<bool>
67EnableARMLongCalls("arm-long-calls", cl::Hidden,
68  cl::desc("Generate calls via indirect call instructions"),
69  cl::init(false));
70
71static cl::opt<bool>
72ARMInterworking("arm-interworking", cl::Hidden,
73  cl::desc("Enable / disable ARM interworking (for debugging only)"),
74  cl::init(true));
75
76namespace llvm {
77  class ARMCCState : public CCState {
78  public:
79    ARMCCState(CallingConv::ID CC, bool isVarArg, MachineFunction &MF,
80               const TargetMachine &TM, SmallVector<CCValAssign, 16> &locs,
81               LLVMContext &C, ParmContext PC)
82        : CCState(CC, isVarArg, MF, TM, locs, C) {
83      assert(((PC == Call) || (PC == Prologue)) &&
84             "ARMCCState users must specify whether their context is call"
85             "or prologue generation.");
86      CallOrPrologue = PC;
87    }
88  };
89}
90
91// The APCS parameter registers.
92static const unsigned GPRArgRegs[] = {
93  ARM::R0, ARM::R1, ARM::R2, ARM::R3
94};
95
96void ARMTargetLowering::addTypeForNEON(EVT VT, EVT PromotedLdStVT,
97                                       EVT PromotedBitwiseVT) {
98  if (VT != PromotedLdStVT) {
99    setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote);
100    AddPromotedToType (ISD::LOAD, VT.getSimpleVT(),
101                       PromotedLdStVT.getSimpleVT());
102
103    setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote);
104    AddPromotedToType (ISD::STORE, VT.getSimpleVT(),
105                       PromotedLdStVT.getSimpleVT());
106  }
107
108  EVT ElemTy = VT.getVectorElementType();
109  if (ElemTy != MVT::i64 && ElemTy != MVT::f64)
110    setOperationAction(ISD::SETCC, VT.getSimpleVT(), Custom);
111  setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT.getSimpleVT(), Custom);
112  if (ElemTy != MVT::i32) {
113    setOperationAction(ISD::SINT_TO_FP, VT.getSimpleVT(), Expand);
114    setOperationAction(ISD::UINT_TO_FP, VT.getSimpleVT(), Expand);
115    setOperationAction(ISD::FP_TO_SINT, VT.getSimpleVT(), Expand);
116    setOperationAction(ISD::FP_TO_UINT, VT.getSimpleVT(), Expand);
117  }
118  setOperationAction(ISD::BUILD_VECTOR, VT.getSimpleVT(), Custom);
119  setOperationAction(ISD::VECTOR_SHUFFLE, VT.getSimpleVT(), Custom);
120  setOperationAction(ISD::CONCAT_VECTORS, VT.getSimpleVT(), Legal);
121  setOperationAction(ISD::EXTRACT_SUBVECTOR, VT.getSimpleVT(), Legal);
122  setOperationAction(ISD::SELECT, VT.getSimpleVT(), Expand);
123  setOperationAction(ISD::SELECT_CC, VT.getSimpleVT(), Expand);
124  if (VT.isInteger()) {
125    setOperationAction(ISD::SHL, VT.getSimpleVT(), Custom);
126    setOperationAction(ISD::SRA, VT.getSimpleVT(), Custom);
127    setOperationAction(ISD::SRL, VT.getSimpleVT(), Custom);
128    setLoadExtAction(ISD::SEXTLOAD, VT.getSimpleVT(), Expand);
129    setLoadExtAction(ISD::ZEXTLOAD, VT.getSimpleVT(), Expand);
130    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
131         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
132      setTruncStoreAction(VT.getSimpleVT(),
133                          (MVT::SimpleValueType)InnerVT, Expand);
134  }
135  setLoadExtAction(ISD::EXTLOAD, VT.getSimpleVT(), Expand);
136
137  // Promote all bit-wise operations.
138  if (VT.isInteger() && VT != PromotedBitwiseVT) {
139    setOperationAction(ISD::AND, VT.getSimpleVT(), Promote);
140    AddPromotedToType (ISD::AND, VT.getSimpleVT(),
141                       PromotedBitwiseVT.getSimpleVT());
142    setOperationAction(ISD::OR,  VT.getSimpleVT(), Promote);
143    AddPromotedToType (ISD::OR,  VT.getSimpleVT(),
144                       PromotedBitwiseVT.getSimpleVT());
145    setOperationAction(ISD::XOR, VT.getSimpleVT(), Promote);
146    AddPromotedToType (ISD::XOR, VT.getSimpleVT(),
147                       PromotedBitwiseVT.getSimpleVT());
148  }
149
150  // Neon does not support vector divide/remainder operations.
151  setOperationAction(ISD::SDIV, VT.getSimpleVT(), Expand);
152  setOperationAction(ISD::UDIV, VT.getSimpleVT(), Expand);
153  setOperationAction(ISD::FDIV, VT.getSimpleVT(), Expand);
154  setOperationAction(ISD::SREM, VT.getSimpleVT(), Expand);
155  setOperationAction(ISD::UREM, VT.getSimpleVT(), Expand);
156  setOperationAction(ISD::FREM, VT.getSimpleVT(), Expand);
157}
158
159void ARMTargetLowering::addDRTypeForNEON(EVT VT) {
160  addRegisterClass(VT, ARM::DPRRegisterClass);
161  addTypeForNEON(VT, MVT::f64, MVT::v2i32);
162}
163
164void ARMTargetLowering::addQRTypeForNEON(EVT VT) {
165  addRegisterClass(VT, ARM::QPRRegisterClass);
166  addTypeForNEON(VT, MVT::v2f64, MVT::v4i32);
167}
168
169static TargetLoweringObjectFile *createTLOF(TargetMachine &TM) {
170  if (TM.getSubtarget<ARMSubtarget>().isTargetDarwin())
171    return new TargetLoweringObjectFileMachO();
172
173  return new ARMElfTargetObjectFile();
174}
175
176ARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
177    : TargetLowering(TM, createTLOF(TM)) {
178  Subtarget = &TM.getSubtarget<ARMSubtarget>();
179  RegInfo = TM.getRegisterInfo();
180  Itins = TM.getInstrItineraryData();
181
182  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
183
184  if (Subtarget->isTargetDarwin()) {
185    // Uses VFP for Thumb libfuncs if available.
186    if (Subtarget->isThumb() && Subtarget->hasVFP2()) {
187      // Single-precision floating-point arithmetic.
188      setLibcallName(RTLIB::ADD_F32, "__addsf3vfp");
189      setLibcallName(RTLIB::SUB_F32, "__subsf3vfp");
190      setLibcallName(RTLIB::MUL_F32, "__mulsf3vfp");
191      setLibcallName(RTLIB::DIV_F32, "__divsf3vfp");
192
193      // Double-precision floating-point arithmetic.
194      setLibcallName(RTLIB::ADD_F64, "__adddf3vfp");
195      setLibcallName(RTLIB::SUB_F64, "__subdf3vfp");
196      setLibcallName(RTLIB::MUL_F64, "__muldf3vfp");
197      setLibcallName(RTLIB::DIV_F64, "__divdf3vfp");
198
199      // Single-precision comparisons.
200      setLibcallName(RTLIB::OEQ_F32, "__eqsf2vfp");
201      setLibcallName(RTLIB::UNE_F32, "__nesf2vfp");
202      setLibcallName(RTLIB::OLT_F32, "__ltsf2vfp");
203      setLibcallName(RTLIB::OLE_F32, "__lesf2vfp");
204      setLibcallName(RTLIB::OGE_F32, "__gesf2vfp");
205      setLibcallName(RTLIB::OGT_F32, "__gtsf2vfp");
206      setLibcallName(RTLIB::UO_F32,  "__unordsf2vfp");
207      setLibcallName(RTLIB::O_F32,   "__unordsf2vfp");
208
209      setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
210      setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETNE);
211      setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
212      setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
213      setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
214      setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
215      setCmpLibcallCC(RTLIB::UO_F32,  ISD::SETNE);
216      setCmpLibcallCC(RTLIB::O_F32,   ISD::SETEQ);
217
218      // Double-precision comparisons.
219      setLibcallName(RTLIB::OEQ_F64, "__eqdf2vfp");
220      setLibcallName(RTLIB::UNE_F64, "__nedf2vfp");
221      setLibcallName(RTLIB::OLT_F64, "__ltdf2vfp");
222      setLibcallName(RTLIB::OLE_F64, "__ledf2vfp");
223      setLibcallName(RTLIB::OGE_F64, "__gedf2vfp");
224      setLibcallName(RTLIB::OGT_F64, "__gtdf2vfp");
225      setLibcallName(RTLIB::UO_F64,  "__unorddf2vfp");
226      setLibcallName(RTLIB::O_F64,   "__unorddf2vfp");
227
228      setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
229      setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETNE);
230      setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
231      setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
232      setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
233      setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
234      setCmpLibcallCC(RTLIB::UO_F64,  ISD::SETNE);
235      setCmpLibcallCC(RTLIB::O_F64,   ISD::SETEQ);
236
237      // Floating-point to integer conversions.
238      // i64 conversions are done via library routines even when generating VFP
239      // instructions, so use the same ones.
240      setLibcallName(RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp");
241      setLibcallName(RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp");
242      setLibcallName(RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp");
243      setLibcallName(RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp");
244
245      // Conversions between floating types.
246      setLibcallName(RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp");
247      setLibcallName(RTLIB::FPEXT_F32_F64,   "__extendsfdf2vfp");
248
249      // Integer to floating-point conversions.
250      // i64 conversions are done via library routines even when generating VFP
251      // instructions, so use the same ones.
252      // FIXME: There appears to be some naming inconsistency in ARM libgcc:
253      // e.g., __floatunsidf vs. __floatunssidfvfp.
254      setLibcallName(RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp");
255      setLibcallName(RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp");
256      setLibcallName(RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp");
257      setLibcallName(RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp");
258    }
259  }
260
261  // These libcalls are not available in 32-bit.
262  setLibcallName(RTLIB::SHL_I128, 0);
263  setLibcallName(RTLIB::SRL_I128, 0);
264  setLibcallName(RTLIB::SRA_I128, 0);
265
266  if (Subtarget->isAAPCS_ABI()) {
267    // Double-precision floating-point arithmetic helper functions
268    // RTABI chapter 4.1.2, Table 2
269    setLibcallName(RTLIB::ADD_F64, "__aeabi_dadd");
270    setLibcallName(RTLIB::DIV_F64, "__aeabi_ddiv");
271    setLibcallName(RTLIB::MUL_F64, "__aeabi_dmul");
272    setLibcallName(RTLIB::SUB_F64, "__aeabi_dsub");
273    setLibcallCallingConv(RTLIB::ADD_F64, CallingConv::ARM_AAPCS);
274    setLibcallCallingConv(RTLIB::DIV_F64, CallingConv::ARM_AAPCS);
275    setLibcallCallingConv(RTLIB::MUL_F64, CallingConv::ARM_AAPCS);
276    setLibcallCallingConv(RTLIB::SUB_F64, CallingConv::ARM_AAPCS);
277
278    // Double-precision floating-point comparison helper functions
279    // RTABI chapter 4.1.2, Table 3
280    setLibcallName(RTLIB::OEQ_F64, "__aeabi_dcmpeq");
281    setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
282    setLibcallName(RTLIB::UNE_F64, "__aeabi_dcmpeq");
283    setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETEQ);
284    setLibcallName(RTLIB::OLT_F64, "__aeabi_dcmplt");
285    setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
286    setLibcallName(RTLIB::OLE_F64, "__aeabi_dcmple");
287    setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
288    setLibcallName(RTLIB::OGE_F64, "__aeabi_dcmpge");
289    setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
290    setLibcallName(RTLIB::OGT_F64, "__aeabi_dcmpgt");
291    setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
292    setLibcallName(RTLIB::UO_F64,  "__aeabi_dcmpun");
293    setCmpLibcallCC(RTLIB::UO_F64,  ISD::SETNE);
294    setLibcallName(RTLIB::O_F64,   "__aeabi_dcmpun");
295    setCmpLibcallCC(RTLIB::O_F64,   ISD::SETEQ);
296    setLibcallCallingConv(RTLIB::OEQ_F64, CallingConv::ARM_AAPCS);
297    setLibcallCallingConv(RTLIB::UNE_F64, CallingConv::ARM_AAPCS);
298    setLibcallCallingConv(RTLIB::OLT_F64, CallingConv::ARM_AAPCS);
299    setLibcallCallingConv(RTLIB::OLE_F64, CallingConv::ARM_AAPCS);
300    setLibcallCallingConv(RTLIB::OGE_F64, CallingConv::ARM_AAPCS);
301    setLibcallCallingConv(RTLIB::OGT_F64, CallingConv::ARM_AAPCS);
302    setLibcallCallingConv(RTLIB::UO_F64, CallingConv::ARM_AAPCS);
303    setLibcallCallingConv(RTLIB::O_F64, CallingConv::ARM_AAPCS);
304
305    // Single-precision floating-point arithmetic helper functions
306    // RTABI chapter 4.1.2, Table 4
307    setLibcallName(RTLIB::ADD_F32, "__aeabi_fadd");
308    setLibcallName(RTLIB::DIV_F32, "__aeabi_fdiv");
309    setLibcallName(RTLIB::MUL_F32, "__aeabi_fmul");
310    setLibcallName(RTLIB::SUB_F32, "__aeabi_fsub");
311    setLibcallCallingConv(RTLIB::ADD_F32, CallingConv::ARM_AAPCS);
312    setLibcallCallingConv(RTLIB::DIV_F32, CallingConv::ARM_AAPCS);
313    setLibcallCallingConv(RTLIB::MUL_F32, CallingConv::ARM_AAPCS);
314    setLibcallCallingConv(RTLIB::SUB_F32, CallingConv::ARM_AAPCS);
315
316    // Single-precision floating-point comparison helper functions
317    // RTABI chapter 4.1.2, Table 5
318    setLibcallName(RTLIB::OEQ_F32, "__aeabi_fcmpeq");
319    setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
320    setLibcallName(RTLIB::UNE_F32, "__aeabi_fcmpeq");
321    setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETEQ);
322    setLibcallName(RTLIB::OLT_F32, "__aeabi_fcmplt");
323    setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
324    setLibcallName(RTLIB::OLE_F32, "__aeabi_fcmple");
325    setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
326    setLibcallName(RTLIB::OGE_F32, "__aeabi_fcmpge");
327    setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
328    setLibcallName(RTLIB::OGT_F32, "__aeabi_fcmpgt");
329    setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
330    setLibcallName(RTLIB::UO_F32,  "__aeabi_fcmpun");
331    setCmpLibcallCC(RTLIB::UO_F32,  ISD::SETNE);
332    setLibcallName(RTLIB::O_F32,   "__aeabi_fcmpun");
333    setCmpLibcallCC(RTLIB::O_F32,   ISD::SETEQ);
334    setLibcallCallingConv(RTLIB::OEQ_F32, CallingConv::ARM_AAPCS);
335    setLibcallCallingConv(RTLIB::UNE_F32, CallingConv::ARM_AAPCS);
336    setLibcallCallingConv(RTLIB::OLT_F32, CallingConv::ARM_AAPCS);
337    setLibcallCallingConv(RTLIB::OLE_F32, CallingConv::ARM_AAPCS);
338    setLibcallCallingConv(RTLIB::OGE_F32, CallingConv::ARM_AAPCS);
339    setLibcallCallingConv(RTLIB::OGT_F32, CallingConv::ARM_AAPCS);
340    setLibcallCallingConv(RTLIB::UO_F32, CallingConv::ARM_AAPCS);
341    setLibcallCallingConv(RTLIB::O_F32, CallingConv::ARM_AAPCS);
342
343    // Floating-point to integer conversions.
344    // RTABI chapter 4.1.2, Table 6
345    setLibcallName(RTLIB::FPTOSINT_F64_I32, "__aeabi_d2iz");
346    setLibcallName(RTLIB::FPTOUINT_F64_I32, "__aeabi_d2uiz");
347    setLibcallName(RTLIB::FPTOSINT_F64_I64, "__aeabi_d2lz");
348    setLibcallName(RTLIB::FPTOUINT_F64_I64, "__aeabi_d2ulz");
349    setLibcallName(RTLIB::FPTOSINT_F32_I32, "__aeabi_f2iz");
350    setLibcallName(RTLIB::FPTOUINT_F32_I32, "__aeabi_f2uiz");
351    setLibcallName(RTLIB::FPTOSINT_F32_I64, "__aeabi_f2lz");
352    setLibcallName(RTLIB::FPTOUINT_F32_I64, "__aeabi_f2ulz");
353    setLibcallCallingConv(RTLIB::FPTOSINT_F64_I32, CallingConv::ARM_AAPCS);
354    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I32, CallingConv::ARM_AAPCS);
355    setLibcallCallingConv(RTLIB::FPTOSINT_F64_I64, CallingConv::ARM_AAPCS);
356    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::ARM_AAPCS);
357    setLibcallCallingConv(RTLIB::FPTOSINT_F32_I32, CallingConv::ARM_AAPCS);
358    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I32, CallingConv::ARM_AAPCS);
359    setLibcallCallingConv(RTLIB::FPTOSINT_F32_I64, CallingConv::ARM_AAPCS);
360    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::ARM_AAPCS);
361
362    // Conversions between floating types.
363    // RTABI chapter 4.1.2, Table 7
364    setLibcallName(RTLIB::FPROUND_F64_F32, "__aeabi_d2f");
365    setLibcallName(RTLIB::FPEXT_F32_F64,   "__aeabi_f2d");
366    setLibcallCallingConv(RTLIB::FPROUND_F64_F32, CallingConv::ARM_AAPCS);
367    setLibcallCallingConv(RTLIB::FPEXT_F32_F64, CallingConv::ARM_AAPCS);
368
369    // Integer to floating-point conversions.
370    // RTABI chapter 4.1.2, Table 8
371    setLibcallName(RTLIB::SINTTOFP_I32_F64, "__aeabi_i2d");
372    setLibcallName(RTLIB::UINTTOFP_I32_F64, "__aeabi_ui2d");
373    setLibcallName(RTLIB::SINTTOFP_I64_F64, "__aeabi_l2d");
374    setLibcallName(RTLIB::UINTTOFP_I64_F64, "__aeabi_ul2d");
375    setLibcallName(RTLIB::SINTTOFP_I32_F32, "__aeabi_i2f");
376    setLibcallName(RTLIB::UINTTOFP_I32_F32, "__aeabi_ui2f");
377    setLibcallName(RTLIB::SINTTOFP_I64_F32, "__aeabi_l2f");
378    setLibcallName(RTLIB::UINTTOFP_I64_F32, "__aeabi_ul2f");
379    setLibcallCallingConv(RTLIB::SINTTOFP_I32_F64, CallingConv::ARM_AAPCS);
380    setLibcallCallingConv(RTLIB::UINTTOFP_I32_F64, CallingConv::ARM_AAPCS);
381    setLibcallCallingConv(RTLIB::SINTTOFP_I64_F64, CallingConv::ARM_AAPCS);
382    setLibcallCallingConv(RTLIB::UINTTOFP_I64_F64, CallingConv::ARM_AAPCS);
383    setLibcallCallingConv(RTLIB::SINTTOFP_I32_F32, CallingConv::ARM_AAPCS);
384    setLibcallCallingConv(RTLIB::UINTTOFP_I32_F32, CallingConv::ARM_AAPCS);
385    setLibcallCallingConv(RTLIB::SINTTOFP_I64_F32, CallingConv::ARM_AAPCS);
386    setLibcallCallingConv(RTLIB::UINTTOFP_I64_F32, CallingConv::ARM_AAPCS);
387
388    // Long long helper functions
389    // RTABI chapter 4.2, Table 9
390    setLibcallName(RTLIB::MUL_I64,  "__aeabi_lmul");
391    setLibcallName(RTLIB::SDIV_I64, "__aeabi_ldivmod");
392    setLibcallName(RTLIB::UDIV_I64, "__aeabi_uldivmod");
393    setLibcallName(RTLIB::SHL_I64, "__aeabi_llsl");
394    setLibcallName(RTLIB::SRL_I64, "__aeabi_llsr");
395    setLibcallName(RTLIB::SRA_I64, "__aeabi_lasr");
396    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::ARM_AAPCS);
397    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::ARM_AAPCS);
398    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::ARM_AAPCS);
399    setLibcallCallingConv(RTLIB::SHL_I64, CallingConv::ARM_AAPCS);
400    setLibcallCallingConv(RTLIB::SRL_I64, CallingConv::ARM_AAPCS);
401    setLibcallCallingConv(RTLIB::SRA_I64, CallingConv::ARM_AAPCS);
402
403    // Integer division functions
404    // RTABI chapter 4.3.1
405    setLibcallName(RTLIB::SDIV_I8,  "__aeabi_idiv");
406    setLibcallName(RTLIB::SDIV_I16, "__aeabi_idiv");
407    setLibcallName(RTLIB::SDIV_I32, "__aeabi_idiv");
408    setLibcallName(RTLIB::UDIV_I8,  "__aeabi_uidiv");
409    setLibcallName(RTLIB::UDIV_I16, "__aeabi_uidiv");
410    setLibcallName(RTLIB::UDIV_I32, "__aeabi_uidiv");
411    setLibcallCallingConv(RTLIB::SDIV_I8, CallingConv::ARM_AAPCS);
412    setLibcallCallingConv(RTLIB::SDIV_I16, CallingConv::ARM_AAPCS);
413    setLibcallCallingConv(RTLIB::SDIV_I32, CallingConv::ARM_AAPCS);
414    setLibcallCallingConv(RTLIB::UDIV_I8, CallingConv::ARM_AAPCS);
415    setLibcallCallingConv(RTLIB::UDIV_I16, CallingConv::ARM_AAPCS);
416    setLibcallCallingConv(RTLIB::UDIV_I32, CallingConv::ARM_AAPCS);
417
418    // Memory operations
419    // RTABI chapter 4.3.4
420    setLibcallName(RTLIB::MEMCPY,  "__aeabi_memcpy");
421    setLibcallName(RTLIB::MEMMOVE, "__aeabi_memmove");
422    setLibcallName(RTLIB::MEMSET,  "__aeabi_memset");
423  }
424
425  // Use divmod compiler-rt calls for iOS 5.0 and later.
426  if (Subtarget->getTargetTriple().getOS() == Triple::IOS &&
427      !Subtarget->getTargetTriple().isOSVersionLT(5, 0)) {
428    setLibcallName(RTLIB::SDIVREM_I32, "__divmodsi4");
429    setLibcallName(RTLIB::UDIVREM_I32, "__udivmodsi4");
430  }
431
432  if (Subtarget->isThumb1Only())
433    addRegisterClass(MVT::i32, ARM::tGPRRegisterClass);
434  else
435    addRegisterClass(MVT::i32, ARM::GPRRegisterClass);
436  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
437    addRegisterClass(MVT::f32, ARM::SPRRegisterClass);
438    if (!Subtarget->isFPOnlySP())
439      addRegisterClass(MVT::f64, ARM::DPRRegisterClass);
440
441    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
442  }
443
444  if (Subtarget->hasNEON()) {
445    addDRTypeForNEON(MVT::v2f32);
446    addDRTypeForNEON(MVT::v8i8);
447    addDRTypeForNEON(MVT::v4i16);
448    addDRTypeForNEON(MVT::v2i32);
449    addDRTypeForNEON(MVT::v1i64);
450
451    addQRTypeForNEON(MVT::v4f32);
452    addQRTypeForNEON(MVT::v2f64);
453    addQRTypeForNEON(MVT::v16i8);
454    addQRTypeForNEON(MVT::v8i16);
455    addQRTypeForNEON(MVT::v4i32);
456    addQRTypeForNEON(MVT::v2i64);
457
458    // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
459    // neither Neon nor VFP support any arithmetic operations on it.
460    setOperationAction(ISD::FADD, MVT::v2f64, Expand);
461    setOperationAction(ISD::FSUB, MVT::v2f64, Expand);
462    setOperationAction(ISD::FMUL, MVT::v2f64, Expand);
463    setOperationAction(ISD::FDIV, MVT::v2f64, Expand);
464    setOperationAction(ISD::FREM, MVT::v2f64, Expand);
465    setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand);
466    setOperationAction(ISD::SETCC, MVT::v2f64, Expand);
467    setOperationAction(ISD::FNEG, MVT::v2f64, Expand);
468    setOperationAction(ISD::FABS, MVT::v2f64, Expand);
469    setOperationAction(ISD::FSQRT, MVT::v2f64, Expand);
470    setOperationAction(ISD::FSIN, MVT::v2f64, Expand);
471    setOperationAction(ISD::FCOS, MVT::v2f64, Expand);
472    setOperationAction(ISD::FPOWI, MVT::v2f64, Expand);
473    setOperationAction(ISD::FPOW, MVT::v2f64, Expand);
474    setOperationAction(ISD::FLOG, MVT::v2f64, Expand);
475    setOperationAction(ISD::FLOG2, MVT::v2f64, Expand);
476    setOperationAction(ISD::FLOG10, MVT::v2f64, Expand);
477    setOperationAction(ISD::FEXP, MVT::v2f64, Expand);
478    setOperationAction(ISD::FEXP2, MVT::v2f64, Expand);
479    setOperationAction(ISD::FCEIL, MVT::v2f64, Expand);
480    setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand);
481    setOperationAction(ISD::FRINT, MVT::v2f64, Expand);
482    setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand);
483    setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand);
484
485    setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand);
486
487    // Neon does not support some operations on v1i64 and v2i64 types.
488    setOperationAction(ISD::MUL, MVT::v1i64, Expand);
489    // Custom handling for some quad-vector types to detect VMULL.
490    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
491    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
492    setOperationAction(ISD::MUL, MVT::v2i64, Custom);
493    // Custom handling for some vector types to avoid expensive expansions
494    setOperationAction(ISD::SDIV, MVT::v4i16, Custom);
495    setOperationAction(ISD::SDIV, MVT::v8i8, Custom);
496    setOperationAction(ISD::UDIV, MVT::v4i16, Custom);
497    setOperationAction(ISD::UDIV, MVT::v8i8, Custom);
498    setOperationAction(ISD::SETCC, MVT::v1i64, Expand);
499    setOperationAction(ISD::SETCC, MVT::v2i64, Expand);
500    // Neon does not have single instruction SINT_TO_FP and UINT_TO_FP with
501    // a destination type that is wider than the source.
502    setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
503    setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
504
505    setTargetDAGCombine(ISD::INTRINSIC_VOID);
506    setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
507    setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
508    setTargetDAGCombine(ISD::SHL);
509    setTargetDAGCombine(ISD::SRL);
510    setTargetDAGCombine(ISD::SRA);
511    setTargetDAGCombine(ISD::SIGN_EXTEND);
512    setTargetDAGCombine(ISD::ZERO_EXTEND);
513    setTargetDAGCombine(ISD::ANY_EXTEND);
514    setTargetDAGCombine(ISD::SELECT_CC);
515    setTargetDAGCombine(ISD::BUILD_VECTOR);
516    setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
517    setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
518    setTargetDAGCombine(ISD::STORE);
519    setTargetDAGCombine(ISD::FP_TO_SINT);
520    setTargetDAGCombine(ISD::FP_TO_UINT);
521    setTargetDAGCombine(ISD::FDIV);
522  }
523
524  computeRegisterProperties();
525
526  // ARM does not have f32 extending load.
527  setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
528
529  // ARM does not have i1 sign extending load.
530  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
531
532  // ARM supports all 4 flavors of integer indexed load / store.
533  if (!Subtarget->isThumb1Only()) {
534    for (unsigned im = (unsigned)ISD::PRE_INC;
535         im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
536      setIndexedLoadAction(im,  MVT::i1,  Legal);
537      setIndexedLoadAction(im,  MVT::i8,  Legal);
538      setIndexedLoadAction(im,  MVT::i16, Legal);
539      setIndexedLoadAction(im,  MVT::i32, Legal);
540      setIndexedStoreAction(im, MVT::i1,  Legal);
541      setIndexedStoreAction(im, MVT::i8,  Legal);
542      setIndexedStoreAction(im, MVT::i16, Legal);
543      setIndexedStoreAction(im, MVT::i32, Legal);
544    }
545  }
546
547  // i64 operation support.
548  setOperationAction(ISD::MUL,     MVT::i64, Expand);
549  setOperationAction(ISD::MULHU,   MVT::i32, Expand);
550  if (Subtarget->isThumb1Only()) {
551    setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
552    setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
553  }
554  if (Subtarget->isThumb1Only() || !Subtarget->hasV6Ops()
555      || (Subtarget->isThumb2() && !Subtarget->hasThumb2DSP()))
556    setOperationAction(ISD::MULHS, MVT::i32, Expand);
557
558  setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
559  setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
560  setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
561  setOperationAction(ISD::SRL,       MVT::i64, Custom);
562  setOperationAction(ISD::SRA,       MVT::i64, Custom);
563
564  if (!Subtarget->isThumb1Only()) {
565    // FIXME: We should do this for Thumb1 as well.
566    setOperationAction(ISD::ADDC,    MVT::i32, Custom);
567    setOperationAction(ISD::ADDE,    MVT::i32, Custom);
568    setOperationAction(ISD::SUBC,    MVT::i32, Custom);
569    setOperationAction(ISD::SUBE,    MVT::i32, Custom);
570  }
571
572  // ARM does not have ROTL.
573  setOperationAction(ISD::ROTL,  MVT::i32, Expand);
574  setOperationAction(ISD::CTTZ,  MVT::i32, Custom);
575  setOperationAction(ISD::CTPOP, MVT::i32, Expand);
576  if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only())
577    setOperationAction(ISD::CTLZ, MVT::i32, Expand);
578
579  // Only ARMv6 has BSWAP.
580  if (!Subtarget->hasV6Ops())
581    setOperationAction(ISD::BSWAP, MVT::i32, Expand);
582
583  // These are expanded into libcalls.
584  if (!Subtarget->hasDivide() || !Subtarget->isThumb2()) {
585    // v7M has a hardware divider
586    setOperationAction(ISD::SDIV,  MVT::i32, Expand);
587    setOperationAction(ISD::UDIV,  MVT::i32, Expand);
588  }
589  setOperationAction(ISD::SREM,  MVT::i32, Expand);
590  setOperationAction(ISD::UREM,  MVT::i32, Expand);
591  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
592  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
593
594  setOperationAction(ISD::GlobalAddress, MVT::i32,   Custom);
595  setOperationAction(ISD::ConstantPool,  MVT::i32,   Custom);
596  setOperationAction(ISD::GLOBAL_OFFSET_TABLE, MVT::i32, Custom);
597  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
598  setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
599
600  setOperationAction(ISD::TRAP, MVT::Other, Legal);
601
602  // Use the default implementation.
603  setOperationAction(ISD::VASTART,            MVT::Other, Custom);
604  setOperationAction(ISD::VAARG,              MVT::Other, Expand);
605  setOperationAction(ISD::VACOPY,             MVT::Other, Expand);
606  setOperationAction(ISD::VAEND,              MVT::Other, Expand);
607  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
608  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
609  setOperationAction(ISD::EHSELECTION,        MVT::i32,   Expand);
610  setOperationAction(ISD::EXCEPTIONADDR,      MVT::i32,   Expand);
611  setExceptionPointerRegister(ARM::R0);
612  setExceptionSelectorRegister(ARM::R1);
613
614  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
615  // ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use
616  // the default expansion.
617  // FIXME: This should be checking for v6k, not just v6.
618  if (Subtarget->hasDataBarrier() ||
619      (Subtarget->hasV6Ops() && !Subtarget->isThumb())) {
620    // membarrier needs custom lowering; the rest are legal and handled
621    // normally.
622    setOperationAction(ISD::MEMBARRIER, MVT::Other, Custom);
623    setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
624    // Custom lowering for 64-bit ops
625    setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i64, Custom);
626    setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i64, Custom);
627    setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i64, Custom);
628    setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i64, Custom);
629    setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i64, Custom);
630    setOperationAction(ISD::ATOMIC_SWAP,  MVT::i64, Custom);
631    setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i64, Custom);
632    // Automatically insert fences (dmb ist) around ATOMIC_SWAP etc.
633    setInsertFencesForAtomic(true);
634  } else {
635    // Set them all for expansion, which will force libcalls.
636    setOperationAction(ISD::MEMBARRIER, MVT::Other, Expand);
637    setOperationAction(ISD::ATOMIC_FENCE,   MVT::Other, Expand);
638    setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i32, Expand);
639    setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Expand);
640    setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Expand);
641    setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Expand);
642    setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Expand);
643    setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Expand);
644    setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Expand);
645    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand);
646    setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Expand);
647    setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Expand);
648    setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Expand);
649    setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Expand);
650    // Mark ATOMIC_LOAD and ATOMIC_STORE custom so we can handle the
651    // Unordered/Monotonic case.
652    setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
653    setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
654    // Since the libcalls include locking, fold in the fences
655    setShouldFoldAtomicFences(true);
656  }
657
658  setOperationAction(ISD::PREFETCH,         MVT::Other, Custom);
659
660  // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
661  if (!Subtarget->hasV6Ops()) {
662    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
663    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
664  }
665  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
666
667  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
668    // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
669    // iff target supports vfp2.
670    setOperationAction(ISD::BITCAST, MVT::i64, Custom);
671    setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
672  }
673
674  // We want to custom lower some of our intrinsics.
675  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
676  if (Subtarget->isTargetDarwin()) {
677    setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
678    setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
679    setOperationAction(ISD::EH_SJLJ_DISPATCHSETUP, MVT::Other, Custom);
680    setLibcallName(RTLIB::UNWIND_RESUME, "_Unwind_SjLj_Resume");
681  }
682
683  setOperationAction(ISD::SETCC,     MVT::i32, Expand);
684  setOperationAction(ISD::SETCC,     MVT::f32, Expand);
685  setOperationAction(ISD::SETCC,     MVT::f64, Expand);
686  setOperationAction(ISD::SELECT,    MVT::i32, Custom);
687  setOperationAction(ISD::SELECT,    MVT::f32, Custom);
688  setOperationAction(ISD::SELECT,    MVT::f64, Custom);
689  setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
690  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
691  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
692
693  setOperationAction(ISD::BRCOND,    MVT::Other, Expand);
694  setOperationAction(ISD::BR_CC,     MVT::i32,   Custom);
695  setOperationAction(ISD::BR_CC,     MVT::f32,   Custom);
696  setOperationAction(ISD::BR_CC,     MVT::f64,   Custom);
697  setOperationAction(ISD::BR_JT,     MVT::Other, Custom);
698
699  // We don't support sin/cos/fmod/copysign/pow
700  setOperationAction(ISD::FSIN,      MVT::f64, Expand);
701  setOperationAction(ISD::FSIN,      MVT::f32, Expand);
702  setOperationAction(ISD::FCOS,      MVT::f32, Expand);
703  setOperationAction(ISD::FCOS,      MVT::f64, Expand);
704  setOperationAction(ISD::FREM,      MVT::f64, Expand);
705  setOperationAction(ISD::FREM,      MVT::f32, Expand);
706  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
707    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
708    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
709  }
710  setOperationAction(ISD::FPOW,      MVT::f64, Expand);
711  setOperationAction(ISD::FPOW,      MVT::f32, Expand);
712
713  setOperationAction(ISD::FMA, MVT::f64, Expand);
714  setOperationAction(ISD::FMA, MVT::f32, Expand);
715
716  // Various VFP goodness
717  if (!UseSoftFloat && !Subtarget->isThumb1Only()) {
718    // int <-> fp are custom expanded into bit_convert + ARMISD ops.
719    if (Subtarget->hasVFP2()) {
720      setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
721      setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
722      setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
723      setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
724    }
725    // Special handling for half-precision FP.
726    if (!Subtarget->hasFP16()) {
727      setOperationAction(ISD::FP16_TO_FP32, MVT::f32, Expand);
728      setOperationAction(ISD::FP32_TO_FP16, MVT::i32, Expand);
729    }
730  }
731
732  // We have target-specific dag combine patterns for the following nodes:
733  // ARMISD::VMOVRRD  - No need to call setTargetDAGCombine
734  setTargetDAGCombine(ISD::ADD);
735  setTargetDAGCombine(ISD::SUB);
736  setTargetDAGCombine(ISD::MUL);
737
738  if (Subtarget->hasV6T2Ops() || Subtarget->hasNEON())
739    setTargetDAGCombine(ISD::OR);
740  if (Subtarget->hasNEON())
741    setTargetDAGCombine(ISD::AND);
742
743  setStackPointerRegisterToSaveRestore(ARM::SP);
744
745  if (UseSoftFloat || Subtarget->isThumb1Only() || !Subtarget->hasVFP2())
746    setSchedulingPreference(Sched::RegPressure);
747  else
748    setSchedulingPreference(Sched::Hybrid);
749
750  //// temporary - rewrite interface to use type
751  maxStoresPerMemcpy = maxStoresPerMemcpyOptSize = 1;
752
753  // On ARM arguments smaller than 4 bytes are extended, so all arguments
754  // are at least 4 bytes aligned.
755  setMinStackArgumentAlignment(4);
756
757  benefitFromCodePlacementOpt = true;
758
759  setMinFunctionAlignment(Subtarget->isThumb() ? 1 : 2);
760}
761
762// FIXME: It might make sense to define the representative register class as the
763// nearest super-register that has a non-null superset. For example, DPR_VFP2 is
764// a super-register of SPR, and DPR is a superset if DPR_VFP2. Consequently,
765// SPR's representative would be DPR_VFP2. This should work well if register
766// pressure tracking were modified such that a register use would increment the
767// pressure of the register class's representative and all of it's super
768// classes' representatives transitively. We have not implemented this because
769// of the difficulty prior to coalescing of modeling operand register classes
770// due to the common occurrence of cross class copies and subregister insertions
771// and extractions.
772std::pair<const TargetRegisterClass*, uint8_t>
773ARMTargetLowering::findRepresentativeClass(EVT VT) const{
774  const TargetRegisterClass *RRC = 0;
775  uint8_t Cost = 1;
776  switch (VT.getSimpleVT().SimpleTy) {
777  default:
778    return TargetLowering::findRepresentativeClass(VT);
779  // Use DPR as representative register class for all floating point
780  // and vector types. Since there are 32 SPR registers and 32 DPR registers so
781  // the cost is 1 for both f32 and f64.
782  case MVT::f32: case MVT::f64: case MVT::v8i8: case MVT::v4i16:
783  case MVT::v2i32: case MVT::v1i64: case MVT::v2f32:
784    RRC = ARM::DPRRegisterClass;
785    // When NEON is used for SP, only half of the register file is available
786    // because operations that define both SP and DP results will be constrained
787    // to the VFP2 class (D0-D15). We currently model this constraint prior to
788    // coalescing by double-counting the SP regs. See the FIXME above.
789    if (Subtarget->useNEONForSinglePrecisionFP())
790      Cost = 2;
791    break;
792  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
793  case MVT::v4f32: case MVT::v2f64:
794    RRC = ARM::DPRRegisterClass;
795    Cost = 2;
796    break;
797  case MVT::v4i64:
798    RRC = ARM::DPRRegisterClass;
799    Cost = 4;
800    break;
801  case MVT::v8i64:
802    RRC = ARM::DPRRegisterClass;
803    Cost = 8;
804    break;
805  }
806  return std::make_pair(RRC, Cost);
807}
808
809const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
810  switch (Opcode) {
811  default: return 0;
812  case ARMISD::Wrapper:       return "ARMISD::Wrapper";
813  case ARMISD::WrapperDYN:    return "ARMISD::WrapperDYN";
814  case ARMISD::WrapperPIC:    return "ARMISD::WrapperPIC";
815  case ARMISD::WrapperJT:     return "ARMISD::WrapperJT";
816  case ARMISD::CALL:          return "ARMISD::CALL";
817  case ARMISD::CALL_PRED:     return "ARMISD::CALL_PRED";
818  case ARMISD::CALL_NOLINK:   return "ARMISD::CALL_NOLINK";
819  case ARMISD::tCALL:         return "ARMISD::tCALL";
820  case ARMISD::BRCOND:        return "ARMISD::BRCOND";
821  case ARMISD::BR_JT:         return "ARMISD::BR_JT";
822  case ARMISD::BR2_JT:        return "ARMISD::BR2_JT";
823  case ARMISD::RET_FLAG:      return "ARMISD::RET_FLAG";
824  case ARMISD::PIC_ADD:       return "ARMISD::PIC_ADD";
825  case ARMISD::CMP:           return "ARMISD::CMP";
826  case ARMISD::CMPZ:          return "ARMISD::CMPZ";
827  case ARMISD::CMPFP:         return "ARMISD::CMPFP";
828  case ARMISD::CMPFPw0:       return "ARMISD::CMPFPw0";
829  case ARMISD::BCC_i64:       return "ARMISD::BCC_i64";
830  case ARMISD::FMSTAT:        return "ARMISD::FMSTAT";
831  case ARMISD::CMOV:          return "ARMISD::CMOV";
832
833  case ARMISD::RBIT:          return "ARMISD::RBIT";
834
835  case ARMISD::FTOSI:         return "ARMISD::FTOSI";
836  case ARMISD::FTOUI:         return "ARMISD::FTOUI";
837  case ARMISD::SITOF:         return "ARMISD::SITOF";
838  case ARMISD::UITOF:         return "ARMISD::UITOF";
839
840  case ARMISD::SRL_FLAG:      return "ARMISD::SRL_FLAG";
841  case ARMISD::SRA_FLAG:      return "ARMISD::SRA_FLAG";
842  case ARMISD::RRX:           return "ARMISD::RRX";
843
844  case ARMISD::ADDC:          return "ARMISD::ADDC";
845  case ARMISD::ADDE:          return "ARMISD::ADDE";
846  case ARMISD::SUBC:          return "ARMISD::SUBC";
847  case ARMISD::SUBE:          return "ARMISD::SUBE";
848
849  case ARMISD::VMOVRRD:       return "ARMISD::VMOVRRD";
850  case ARMISD::VMOVDRR:       return "ARMISD::VMOVDRR";
851
852  case ARMISD::EH_SJLJ_SETJMP: return "ARMISD::EH_SJLJ_SETJMP";
853  case ARMISD::EH_SJLJ_LONGJMP:return "ARMISD::EH_SJLJ_LONGJMP";
854  case ARMISD::EH_SJLJ_DISPATCHSETUP:return "ARMISD::EH_SJLJ_DISPATCHSETUP";
855
856  case ARMISD::TC_RETURN:     return "ARMISD::TC_RETURN";
857
858  case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER";
859
860  case ARMISD::DYN_ALLOC:     return "ARMISD::DYN_ALLOC";
861
862  case ARMISD::MEMBARRIER:    return "ARMISD::MEMBARRIER";
863  case ARMISD::MEMBARRIER_MCR: return "ARMISD::MEMBARRIER_MCR";
864
865  case ARMISD::PRELOAD:       return "ARMISD::PRELOAD";
866
867  case ARMISD::VCEQ:          return "ARMISD::VCEQ";
868  case ARMISD::VCEQZ:         return "ARMISD::VCEQZ";
869  case ARMISD::VCGE:          return "ARMISD::VCGE";
870  case ARMISD::VCGEZ:         return "ARMISD::VCGEZ";
871  case ARMISD::VCLEZ:         return "ARMISD::VCLEZ";
872  case ARMISD::VCGEU:         return "ARMISD::VCGEU";
873  case ARMISD::VCGT:          return "ARMISD::VCGT";
874  case ARMISD::VCGTZ:         return "ARMISD::VCGTZ";
875  case ARMISD::VCLTZ:         return "ARMISD::VCLTZ";
876  case ARMISD::VCGTU:         return "ARMISD::VCGTU";
877  case ARMISD::VTST:          return "ARMISD::VTST";
878
879  case ARMISD::VSHL:          return "ARMISD::VSHL";
880  case ARMISD::VSHRs:         return "ARMISD::VSHRs";
881  case ARMISD::VSHRu:         return "ARMISD::VSHRu";
882  case ARMISD::VSHLLs:        return "ARMISD::VSHLLs";
883  case ARMISD::VSHLLu:        return "ARMISD::VSHLLu";
884  case ARMISD::VSHLLi:        return "ARMISD::VSHLLi";
885  case ARMISD::VSHRN:         return "ARMISD::VSHRN";
886  case ARMISD::VRSHRs:        return "ARMISD::VRSHRs";
887  case ARMISD::VRSHRu:        return "ARMISD::VRSHRu";
888  case ARMISD::VRSHRN:        return "ARMISD::VRSHRN";
889  case ARMISD::VQSHLs:        return "ARMISD::VQSHLs";
890  case ARMISD::VQSHLu:        return "ARMISD::VQSHLu";
891  case ARMISD::VQSHLsu:       return "ARMISD::VQSHLsu";
892  case ARMISD::VQSHRNs:       return "ARMISD::VQSHRNs";
893  case ARMISD::VQSHRNu:       return "ARMISD::VQSHRNu";
894  case ARMISD::VQSHRNsu:      return "ARMISD::VQSHRNsu";
895  case ARMISD::VQRSHRNs:      return "ARMISD::VQRSHRNs";
896  case ARMISD::VQRSHRNu:      return "ARMISD::VQRSHRNu";
897  case ARMISD::VQRSHRNsu:     return "ARMISD::VQRSHRNsu";
898  case ARMISD::VGETLANEu:     return "ARMISD::VGETLANEu";
899  case ARMISD::VGETLANEs:     return "ARMISD::VGETLANEs";
900  case ARMISD::VMOVIMM:       return "ARMISD::VMOVIMM";
901  case ARMISD::VMVNIMM:       return "ARMISD::VMVNIMM";
902  case ARMISD::VDUP:          return "ARMISD::VDUP";
903  case ARMISD::VDUPLANE:      return "ARMISD::VDUPLANE";
904  case ARMISD::VEXT:          return "ARMISD::VEXT";
905  case ARMISD::VREV64:        return "ARMISD::VREV64";
906  case ARMISD::VREV32:        return "ARMISD::VREV32";
907  case ARMISD::VREV16:        return "ARMISD::VREV16";
908  case ARMISD::VZIP:          return "ARMISD::VZIP";
909  case ARMISD::VUZP:          return "ARMISD::VUZP";
910  case ARMISD::VTRN:          return "ARMISD::VTRN";
911  case ARMISD::VTBL1:         return "ARMISD::VTBL1";
912  case ARMISD::VTBL2:         return "ARMISD::VTBL2";
913  case ARMISD::VMULLs:        return "ARMISD::VMULLs";
914  case ARMISD::VMULLu:        return "ARMISD::VMULLu";
915  case ARMISD::BUILD_VECTOR:  return "ARMISD::BUILD_VECTOR";
916  case ARMISD::FMAX:          return "ARMISD::FMAX";
917  case ARMISD::FMIN:          return "ARMISD::FMIN";
918  case ARMISD::BFI:           return "ARMISD::BFI";
919  case ARMISD::VORRIMM:       return "ARMISD::VORRIMM";
920  case ARMISD::VBICIMM:       return "ARMISD::VBICIMM";
921  case ARMISD::VBSL:          return "ARMISD::VBSL";
922  case ARMISD::VLD2DUP:       return "ARMISD::VLD2DUP";
923  case ARMISD::VLD3DUP:       return "ARMISD::VLD3DUP";
924  case ARMISD::VLD4DUP:       return "ARMISD::VLD4DUP";
925  case ARMISD::VLD1_UPD:      return "ARMISD::VLD1_UPD";
926  case ARMISD::VLD2_UPD:      return "ARMISD::VLD2_UPD";
927  case ARMISD::VLD3_UPD:      return "ARMISD::VLD3_UPD";
928  case ARMISD::VLD4_UPD:      return "ARMISD::VLD4_UPD";
929  case ARMISD::VLD2LN_UPD:    return "ARMISD::VLD2LN_UPD";
930  case ARMISD::VLD3LN_UPD:    return "ARMISD::VLD3LN_UPD";
931  case ARMISD::VLD4LN_UPD:    return "ARMISD::VLD4LN_UPD";
932  case ARMISD::VLD2DUP_UPD:   return "ARMISD::VLD2DUP_UPD";
933  case ARMISD::VLD3DUP_UPD:   return "ARMISD::VLD3DUP_UPD";
934  case ARMISD::VLD4DUP_UPD:   return "ARMISD::VLD4DUP_UPD";
935  case ARMISD::VST1_UPD:      return "ARMISD::VST1_UPD";
936  case ARMISD::VST2_UPD:      return "ARMISD::VST2_UPD";
937  case ARMISD::VST3_UPD:      return "ARMISD::VST3_UPD";
938  case ARMISD::VST4_UPD:      return "ARMISD::VST4_UPD";
939  case ARMISD::VST2LN_UPD:    return "ARMISD::VST2LN_UPD";
940  case ARMISD::VST3LN_UPD:    return "ARMISD::VST3LN_UPD";
941  case ARMISD::VST4LN_UPD:    return "ARMISD::VST4LN_UPD";
942  }
943}
944
945EVT ARMTargetLowering::getSetCCResultType(EVT VT) const {
946  if (!VT.isVector()) return getPointerTy();
947  return VT.changeVectorElementTypeToInteger();
948}
949
950/// getRegClassFor - Return the register class that should be used for the
951/// specified value type.
952TargetRegisterClass *ARMTargetLowering::getRegClassFor(EVT VT) const {
953  // Map v4i64 to QQ registers but do not make the type legal. Similarly map
954  // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
955  // load / store 4 to 8 consecutive D registers.
956  if (Subtarget->hasNEON()) {
957    if (VT == MVT::v4i64)
958      return ARM::QQPRRegisterClass;
959    else if (VT == MVT::v8i64)
960      return ARM::QQQQPRRegisterClass;
961  }
962  return TargetLowering::getRegClassFor(VT);
963}
964
965// Create a fast isel object.
966FastISel *
967ARMTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
968  return ARM::createFastISel(funcInfo);
969}
970
971/// getMaximalGlobalOffset - Returns the maximal possible offset which can
972/// be used for loads / stores from the global.
973unsigned ARMTargetLowering::getMaximalGlobalOffset() const {
974  return (Subtarget->isThumb1Only() ? 127 : 4095);
975}
976
977Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const {
978  unsigned NumVals = N->getNumValues();
979  if (!NumVals)
980    return Sched::RegPressure;
981
982  for (unsigned i = 0; i != NumVals; ++i) {
983    EVT VT = N->getValueType(i);
984    if (VT == MVT::Glue || VT == MVT::Other)
985      continue;
986    if (VT.isFloatingPoint() || VT.isVector())
987      return Sched::Latency;
988  }
989
990  if (!N->isMachineOpcode())
991    return Sched::RegPressure;
992
993  // Load are scheduled for latency even if there instruction itinerary
994  // is not available.
995  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
996  const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
997
998  if (MCID.getNumDefs() == 0)
999    return Sched::RegPressure;
1000  if (!Itins->isEmpty() &&
1001      Itins->getOperandCycle(MCID.getSchedClass(), 0) > 2)
1002    return Sched::Latency;
1003
1004  return Sched::RegPressure;
1005}
1006
1007//===----------------------------------------------------------------------===//
1008// Lowering Code
1009//===----------------------------------------------------------------------===//
1010
1011/// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
1012static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
1013  switch (CC) {
1014  default: llvm_unreachable("Unknown condition code!");
1015  case ISD::SETNE:  return ARMCC::NE;
1016  case ISD::SETEQ:  return ARMCC::EQ;
1017  case ISD::SETGT:  return ARMCC::GT;
1018  case ISD::SETGE:  return ARMCC::GE;
1019  case ISD::SETLT:  return ARMCC::LT;
1020  case ISD::SETLE:  return ARMCC::LE;
1021  case ISD::SETUGT: return ARMCC::HI;
1022  case ISD::SETUGE: return ARMCC::HS;
1023  case ISD::SETULT: return ARMCC::LO;
1024  case ISD::SETULE: return ARMCC::LS;
1025  }
1026}
1027
1028/// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
1029static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
1030                        ARMCC::CondCodes &CondCode2) {
1031  CondCode2 = ARMCC::AL;
1032  switch (CC) {
1033  default: llvm_unreachable("Unknown FP condition!");
1034  case ISD::SETEQ:
1035  case ISD::SETOEQ: CondCode = ARMCC::EQ; break;
1036  case ISD::SETGT:
1037  case ISD::SETOGT: CondCode = ARMCC::GT; break;
1038  case ISD::SETGE:
1039  case ISD::SETOGE: CondCode = ARMCC::GE; break;
1040  case ISD::SETOLT: CondCode = ARMCC::MI; break;
1041  case ISD::SETOLE: CondCode = ARMCC::LS; break;
1042  case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break;
1043  case ISD::SETO:   CondCode = ARMCC::VC; break;
1044  case ISD::SETUO:  CondCode = ARMCC::VS; break;
1045  case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break;
1046  case ISD::SETUGT: CondCode = ARMCC::HI; break;
1047  case ISD::SETUGE: CondCode = ARMCC::PL; break;
1048  case ISD::SETLT:
1049  case ISD::SETULT: CondCode = ARMCC::LT; break;
1050  case ISD::SETLE:
1051  case ISD::SETULE: CondCode = ARMCC::LE; break;
1052  case ISD::SETNE:
1053  case ISD::SETUNE: CondCode = ARMCC::NE; break;
1054  }
1055}
1056
1057//===----------------------------------------------------------------------===//
1058//                      Calling Convention Implementation
1059//===----------------------------------------------------------------------===//
1060
1061#include "ARMGenCallingConv.inc"
1062
1063/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
1064/// given CallingConvention value.
1065CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC,
1066                                                 bool Return,
1067                                                 bool isVarArg) const {
1068  switch (CC) {
1069  default:
1070    llvm_unreachable("Unsupported calling convention");
1071  case CallingConv::Fast:
1072    if (Subtarget->hasVFP2() && !isVarArg) {
1073      if (!Subtarget->isAAPCS_ABI())
1074        return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
1075      // For AAPCS ABI targets, just use VFP variant of the calling convention.
1076      return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1077    }
1078    // Fallthrough
1079  case CallingConv::C: {
1080    // Use target triple & subtarget features to do actual dispatch.
1081    if (!Subtarget->isAAPCS_ABI())
1082      return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
1083    else if (Subtarget->hasVFP2() &&
1084             FloatABIType == FloatABI::Hard && !isVarArg)
1085      return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1086    return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
1087  }
1088  case CallingConv::ARM_AAPCS_VFP:
1089    return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1090  case CallingConv::ARM_AAPCS:
1091    return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
1092  case CallingConv::ARM_APCS:
1093    return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
1094  }
1095}
1096
1097/// LowerCallResult - Lower the result values of a call into the
1098/// appropriate copies out of appropriate physical registers.
1099SDValue
1100ARMTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1101                                   CallingConv::ID CallConv, bool isVarArg,
1102                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1103                                   DebugLoc dl, SelectionDAG &DAG,
1104                                   SmallVectorImpl<SDValue> &InVals) const {
1105
1106  // Assign locations to each value returned by this call.
1107  SmallVector<CCValAssign, 16> RVLocs;
1108  ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1109                    getTargetMachine(), RVLocs, *DAG.getContext(), Call);
1110  CCInfo.AnalyzeCallResult(Ins,
1111                           CCAssignFnForNode(CallConv, /* Return*/ true,
1112                                             isVarArg));
1113
1114  // Copy all of the result registers out of their specified physreg.
1115  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1116    CCValAssign VA = RVLocs[i];
1117
1118    SDValue Val;
1119    if (VA.needsCustom()) {
1120      // Handle f64 or half of a v2f64.
1121      SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1122                                      InFlag);
1123      Chain = Lo.getValue(1);
1124      InFlag = Lo.getValue(2);
1125      VA = RVLocs[++i]; // skip ahead to next loc
1126      SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1127                                      InFlag);
1128      Chain = Hi.getValue(1);
1129      InFlag = Hi.getValue(2);
1130      Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1131
1132      if (VA.getLocVT() == MVT::v2f64) {
1133        SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
1134        Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1135                          DAG.getConstant(0, MVT::i32));
1136
1137        VA = RVLocs[++i]; // skip ahead to next loc
1138        Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1139        Chain = Lo.getValue(1);
1140        InFlag = Lo.getValue(2);
1141        VA = RVLocs[++i]; // skip ahead to next loc
1142        Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1143        Chain = Hi.getValue(1);
1144        InFlag = Hi.getValue(2);
1145        Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1146        Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1147                          DAG.getConstant(1, MVT::i32));
1148      }
1149    } else {
1150      Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
1151                               InFlag);
1152      Chain = Val.getValue(1);
1153      InFlag = Val.getValue(2);
1154    }
1155
1156    switch (VA.getLocInfo()) {
1157    default: llvm_unreachable("Unknown loc info!");
1158    case CCValAssign::Full: break;
1159    case CCValAssign::BCvt:
1160      Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val);
1161      break;
1162    }
1163
1164    InVals.push_back(Val);
1165  }
1166
1167  return Chain;
1168}
1169
1170/// LowerMemOpCallTo - Store the argument to the stack.
1171SDValue
1172ARMTargetLowering::LowerMemOpCallTo(SDValue Chain,
1173                                    SDValue StackPtr, SDValue Arg,
1174                                    DebugLoc dl, SelectionDAG &DAG,
1175                                    const CCValAssign &VA,
1176                                    ISD::ArgFlagsTy Flags) const {
1177  unsigned LocMemOffset = VA.getLocMemOffset();
1178  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1179  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1180  return DAG.getStore(Chain, dl, Arg, PtrOff,
1181                      MachinePointerInfo::getStack(LocMemOffset),
1182                      false, false, 0);
1183}
1184
1185void ARMTargetLowering::PassF64ArgInRegs(DebugLoc dl, SelectionDAG &DAG,
1186                                         SDValue Chain, SDValue &Arg,
1187                                         RegsToPassVector &RegsToPass,
1188                                         CCValAssign &VA, CCValAssign &NextVA,
1189                                         SDValue &StackPtr,
1190                                         SmallVector<SDValue, 8> &MemOpChains,
1191                                         ISD::ArgFlagsTy Flags) const {
1192
1193  SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
1194                              DAG.getVTList(MVT::i32, MVT::i32), Arg);
1195  RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd));
1196
1197  if (NextVA.isRegLoc())
1198    RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1)));
1199  else {
1200    assert(NextVA.isMemLoc());
1201    if (StackPtr.getNode() == 0)
1202      StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
1203
1204    MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1),
1205                                           dl, DAG, NextVA,
1206                                           Flags));
1207  }
1208}
1209
1210/// LowerCall - Lowering a call into a callseq_start <-
1211/// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
1212/// nodes.
1213SDValue
1214ARMTargetLowering::LowerCall(SDValue Chain, SDValue Callee,
1215                             CallingConv::ID CallConv, bool isVarArg,
1216                             bool &isTailCall,
1217                             const SmallVectorImpl<ISD::OutputArg> &Outs,
1218                             const SmallVectorImpl<SDValue> &OutVals,
1219                             const SmallVectorImpl<ISD::InputArg> &Ins,
1220                             DebugLoc dl, SelectionDAG &DAG,
1221                             SmallVectorImpl<SDValue> &InVals) const {
1222  MachineFunction &MF = DAG.getMachineFunction();
1223  bool IsStructRet    = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
1224  bool IsSibCall = false;
1225  // Disable tail calls if they're not supported.
1226  if (!EnableARMTailCalls && !Subtarget->supportsTailCall())
1227    isTailCall = false;
1228  if (isTailCall) {
1229    // Check if it's really possible to do a tail call.
1230    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1231                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
1232                                                   Outs, OutVals, Ins, DAG);
1233    // We don't support GuaranteedTailCallOpt for ARM, only automatically
1234    // detected sibcalls.
1235    if (isTailCall) {
1236      ++NumTailCalls;
1237      IsSibCall = true;
1238    }
1239  }
1240
1241  // Analyze operands of the call, assigning locations to each operand.
1242  SmallVector<CCValAssign, 16> ArgLocs;
1243  ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1244                 getTargetMachine(), ArgLocs, *DAG.getContext(), Call);
1245  CCInfo.AnalyzeCallOperands(Outs,
1246                             CCAssignFnForNode(CallConv, /* Return*/ false,
1247                                               isVarArg));
1248
1249  // Get a count of how many bytes are to be pushed on the stack.
1250  unsigned NumBytes = CCInfo.getNextStackOffset();
1251
1252  // For tail calls, memory operands are available in our caller's stack.
1253  if (IsSibCall)
1254    NumBytes = 0;
1255
1256  // Adjust the stack pointer for the new arguments...
1257  // These operations are automatically eliminated by the prolog/epilog pass
1258  if (!IsSibCall)
1259    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
1260
1261  SDValue StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
1262
1263  RegsToPassVector RegsToPass;
1264  SmallVector<SDValue, 8> MemOpChains;
1265
1266  // Walk the register/memloc assignments, inserting copies/loads.  In the case
1267  // of tail call optimization, arguments are handled later.
1268  for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
1269       i != e;
1270       ++i, ++realArgIdx) {
1271    CCValAssign &VA = ArgLocs[i];
1272    SDValue Arg = OutVals[realArgIdx];
1273    ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
1274    bool isByVal = Flags.isByVal();
1275
1276    // Promote the value if needed.
1277    switch (VA.getLocInfo()) {
1278    default: llvm_unreachable("Unknown loc info!");
1279    case CCValAssign::Full: break;
1280    case CCValAssign::SExt:
1281      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
1282      break;
1283    case CCValAssign::ZExt:
1284      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
1285      break;
1286    case CCValAssign::AExt:
1287      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
1288      break;
1289    case CCValAssign::BCvt:
1290      Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
1291      break;
1292    }
1293
1294    // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
1295    if (VA.needsCustom()) {
1296      if (VA.getLocVT() == MVT::v2f64) {
1297        SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1298                                  DAG.getConstant(0, MVT::i32));
1299        SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1300                                  DAG.getConstant(1, MVT::i32));
1301
1302        PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass,
1303                         VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1304
1305        VA = ArgLocs[++i]; // skip ahead to next loc
1306        if (VA.isRegLoc()) {
1307          PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass,
1308                           VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1309        } else {
1310          assert(VA.isMemLoc());
1311
1312          MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Op1,
1313                                                 dl, DAG, VA, Flags));
1314        }
1315      } else {
1316        PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
1317                         StackPtr, MemOpChains, Flags);
1318      }
1319    } else if (VA.isRegLoc()) {
1320      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1321    } else if (isByVal) {
1322      assert(VA.isMemLoc());
1323      unsigned offset = 0;
1324
1325      // True if this byval aggregate will be split between registers
1326      // and memory.
1327      if (CCInfo.isFirstByValRegValid()) {
1328        EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1329        unsigned int i, j;
1330        for (i = 0, j = CCInfo.getFirstByValReg(); j < ARM::R4; i++, j++) {
1331          SDValue Const = DAG.getConstant(4*i, MVT::i32);
1332          SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
1333          SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
1334                                     MachinePointerInfo(),
1335                                     false, false, 0);
1336          MemOpChains.push_back(Load.getValue(1));
1337          RegsToPass.push_back(std::make_pair(j, Load));
1338        }
1339        offset = ARM::R4 - CCInfo.getFirstByValReg();
1340        CCInfo.clearFirstByValReg();
1341      }
1342
1343      unsigned LocMemOffset = VA.getLocMemOffset();
1344      SDValue StkPtrOff = DAG.getIntPtrConstant(LocMemOffset);
1345      SDValue Dst = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr,
1346                                StkPtrOff);
1347      SDValue SrcOffset = DAG.getIntPtrConstant(4*offset);
1348      SDValue Src = DAG.getNode(ISD::ADD, dl, getPointerTy(), Arg, SrcOffset);
1349      SDValue SizeNode = DAG.getConstant(Flags.getByValSize() - 4*offset,
1350                                         MVT::i32);
1351      // TODO: Disable AlwaysInline when it becomes possible
1352      //       to emit a nested call sequence.
1353      MemOpChains.push_back(DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode,
1354                                          Flags.getByValAlign(),
1355                                          /*isVolatile=*/false,
1356                                          /*AlwaysInline=*/true,
1357                                          MachinePointerInfo(0),
1358                                          MachinePointerInfo(0)));
1359
1360    } else if (!IsSibCall) {
1361      assert(VA.isMemLoc());
1362
1363      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
1364                                             dl, DAG, VA, Flags));
1365    }
1366  }
1367
1368  if (!MemOpChains.empty())
1369    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1370                        &MemOpChains[0], MemOpChains.size());
1371
1372  // Build a sequence of copy-to-reg nodes chained together with token chain
1373  // and flag operands which copy the outgoing args into the appropriate regs.
1374  SDValue InFlag;
1375  // Tail call byval lowering might overwrite argument registers so in case of
1376  // tail call optimization the copies to registers are lowered later.
1377  if (!isTailCall)
1378    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1379      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1380                               RegsToPass[i].second, InFlag);
1381      InFlag = Chain.getValue(1);
1382    }
1383
1384  // For tail calls lower the arguments to the 'real' stack slot.
1385  if (isTailCall) {
1386    // Force all the incoming stack arguments to be loaded from the stack
1387    // before any new outgoing arguments are stored to the stack, because the
1388    // outgoing stack slots may alias the incoming argument stack slots, and
1389    // the alias isn't otherwise explicit. This is slightly more conservative
1390    // than necessary, because it means that each store effectively depends
1391    // on every argument instead of just those arguments it would clobber.
1392
1393    // Do not flag preceding copytoreg stuff together with the following stuff.
1394    InFlag = SDValue();
1395    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1396      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1397                               RegsToPass[i].second, InFlag);
1398      InFlag = Chain.getValue(1);
1399    }
1400    InFlag =SDValue();
1401  }
1402
1403  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
1404  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
1405  // node so that legalize doesn't hack it.
1406  bool isDirect = false;
1407  bool isARMFunc = false;
1408  bool isLocalARMFunc = false;
1409  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1410
1411  if (EnableARMLongCalls) {
1412    assert (getTargetMachine().getRelocationModel() == Reloc::Static
1413            && "long-calls with non-static relocation model!");
1414    // Handle a global address or an external symbol. If it's not one of
1415    // those, the target's already in a register, so we don't need to do
1416    // anything extra.
1417    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1418      const GlobalValue *GV = G->getGlobal();
1419      // Create a constant pool entry for the callee address
1420      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1421      ARMConstantPoolValue *CPV =
1422        ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, 0);
1423
1424      // Get the address of the callee into a register
1425      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1426      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1427      Callee = DAG.getLoad(getPointerTy(), dl,
1428                           DAG.getEntryNode(), CPAddr,
1429                           MachinePointerInfo::getConstantPool(),
1430                           false, false, 0);
1431    } else if (ExternalSymbolSDNode *S=dyn_cast<ExternalSymbolSDNode>(Callee)) {
1432      const char *Sym = S->getSymbol();
1433
1434      // Create a constant pool entry for the callee address
1435      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1436      ARMConstantPoolValue *CPV =
1437        ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
1438                                      ARMPCLabelIndex, 0);
1439      // Get the address of the callee into a register
1440      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1441      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1442      Callee = DAG.getLoad(getPointerTy(), dl,
1443                           DAG.getEntryNode(), CPAddr,
1444                           MachinePointerInfo::getConstantPool(),
1445                           false, false, 0);
1446    }
1447  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1448    const GlobalValue *GV = G->getGlobal();
1449    isDirect = true;
1450    bool isExt = GV->isDeclaration() || GV->isWeakForLinker();
1451    bool isStub = (isExt && Subtarget->isTargetDarwin()) &&
1452                   getTargetMachine().getRelocationModel() != Reloc::Static;
1453    isARMFunc = !Subtarget->isThumb() || isStub;
1454    // ARM call to a local ARM function is predicable.
1455    isLocalARMFunc = !Subtarget->isThumb() && (!isExt || !ARMInterworking);
1456    // tBX takes a register source operand.
1457    if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
1458      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1459      ARMConstantPoolValue *CPV =
1460        ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, 4);
1461      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1462      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1463      Callee = DAG.getLoad(getPointerTy(), dl,
1464                           DAG.getEntryNode(), CPAddr,
1465                           MachinePointerInfo::getConstantPool(),
1466                           false, false, 0);
1467      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1468      Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
1469                           getPointerTy(), Callee, PICLabel);
1470    } else {
1471      // On ELF targets for PIC code, direct calls should go through the PLT
1472      unsigned OpFlags = 0;
1473      if (Subtarget->isTargetELF() &&
1474                  getTargetMachine().getRelocationModel() == Reloc::PIC_)
1475        OpFlags = ARMII::MO_PLT;
1476      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
1477    }
1478  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1479    isDirect = true;
1480    bool isStub = Subtarget->isTargetDarwin() &&
1481                  getTargetMachine().getRelocationModel() != Reloc::Static;
1482    isARMFunc = !Subtarget->isThumb() || isStub;
1483    // tBX takes a register source operand.
1484    const char *Sym = S->getSymbol();
1485    if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
1486      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1487      ARMConstantPoolValue *CPV =
1488        ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
1489                                      ARMPCLabelIndex, 4);
1490      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1491      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1492      Callee = DAG.getLoad(getPointerTy(), dl,
1493                           DAG.getEntryNode(), CPAddr,
1494                           MachinePointerInfo::getConstantPool(),
1495                           false, false, 0);
1496      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1497      Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
1498                           getPointerTy(), Callee, PICLabel);
1499    } else {
1500      unsigned OpFlags = 0;
1501      // On ELF targets for PIC code, direct calls should go through the PLT
1502      if (Subtarget->isTargetELF() &&
1503                  getTargetMachine().getRelocationModel() == Reloc::PIC_)
1504        OpFlags = ARMII::MO_PLT;
1505      Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlags);
1506    }
1507  }
1508
1509  // FIXME: handle tail calls differently.
1510  unsigned CallOpc;
1511  if (Subtarget->isThumb()) {
1512    if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps())
1513      CallOpc = ARMISD::CALL_NOLINK;
1514    else
1515      CallOpc = isARMFunc ? ARMISD::CALL : ARMISD::tCALL;
1516  } else {
1517    CallOpc = (isDirect || Subtarget->hasV5TOps())
1518      ? (isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL)
1519      : ARMISD::CALL_NOLINK;
1520  }
1521
1522  std::vector<SDValue> Ops;
1523  Ops.push_back(Chain);
1524  Ops.push_back(Callee);
1525
1526  // Add argument registers to the end of the list so that they are known live
1527  // into the call.
1528  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1529    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1530                                  RegsToPass[i].second.getValueType()));
1531
1532  if (InFlag.getNode())
1533    Ops.push_back(InFlag);
1534
1535  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1536  if (isTailCall)
1537    return DAG.getNode(ARMISD::TC_RETURN, dl, NodeTys, &Ops[0], Ops.size());
1538
1539  // Returns a chain and a flag for retval copy to use.
1540  Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size());
1541  InFlag = Chain.getValue(1);
1542
1543  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
1544                             DAG.getIntPtrConstant(0, true), InFlag);
1545  if (!Ins.empty())
1546    InFlag = Chain.getValue(1);
1547
1548  // Handle result values, copying them out of physregs into vregs that we
1549  // return.
1550  return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins,
1551                         dl, DAG, InVals);
1552}
1553
1554/// HandleByVal - Every parameter *after* a byval parameter is passed
1555/// on the stack.  Remember the next parameter register to allocate,
1556/// and then confiscate the rest of the parameter registers to insure
1557/// this.
1558void
1559llvm::ARMTargetLowering::HandleByVal(CCState *State, unsigned &size) const {
1560  unsigned reg = State->AllocateReg(GPRArgRegs, 4);
1561  assert((State->getCallOrPrologue() == Prologue ||
1562          State->getCallOrPrologue() == Call) &&
1563         "unhandled ParmContext");
1564  if ((!State->isFirstByValRegValid()) &&
1565      (ARM::R0 <= reg) && (reg <= ARM::R3)) {
1566    State->setFirstByValReg(reg);
1567    // At a call site, a byval parameter that is split between
1568    // registers and memory needs its size truncated here.  In a
1569    // function prologue, such byval parameters are reassembled in
1570    // memory, and are not truncated.
1571    if (State->getCallOrPrologue() == Call) {
1572      unsigned excess = 4 * (ARM::R4 - reg);
1573      assert(size >= excess && "expected larger existing stack allocation");
1574      size -= excess;
1575    }
1576  }
1577  // Confiscate any remaining parameter registers to preclude their
1578  // assignment to subsequent parameters.
1579  while (State->AllocateReg(GPRArgRegs, 4))
1580    ;
1581}
1582
1583/// MatchingStackOffset - Return true if the given stack call argument is
1584/// already available in the same position (relatively) of the caller's
1585/// incoming argument stack.
1586static
1587bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
1588                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
1589                         const ARMInstrInfo *TII) {
1590  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
1591  int FI = INT_MAX;
1592  if (Arg.getOpcode() == ISD::CopyFromReg) {
1593    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
1594    if (!TargetRegisterInfo::isVirtualRegister(VR))
1595      return false;
1596    MachineInstr *Def = MRI->getVRegDef(VR);
1597    if (!Def)
1598      return false;
1599    if (!Flags.isByVal()) {
1600      if (!TII->isLoadFromStackSlot(Def, FI))
1601        return false;
1602    } else {
1603      return false;
1604    }
1605  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
1606    if (Flags.isByVal())
1607      // ByVal argument is passed in as a pointer but it's now being
1608      // dereferenced. e.g.
1609      // define @foo(%struct.X* %A) {
1610      //   tail call @bar(%struct.X* byval %A)
1611      // }
1612      return false;
1613    SDValue Ptr = Ld->getBasePtr();
1614    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
1615    if (!FINode)
1616      return false;
1617    FI = FINode->getIndex();
1618  } else
1619    return false;
1620
1621  assert(FI != INT_MAX);
1622  if (!MFI->isFixedObjectIndex(FI))
1623    return false;
1624  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
1625}
1626
1627/// IsEligibleForTailCallOptimization - Check whether the call is eligible
1628/// for tail call optimization. Targets which want to do tail call
1629/// optimization should implement this function.
1630bool
1631ARMTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
1632                                                     CallingConv::ID CalleeCC,
1633                                                     bool isVarArg,
1634                                                     bool isCalleeStructRet,
1635                                                     bool isCallerStructRet,
1636                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
1637                                    const SmallVectorImpl<SDValue> &OutVals,
1638                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1639                                                     SelectionDAG& DAG) const {
1640  const Function *CallerF = DAG.getMachineFunction().getFunction();
1641  CallingConv::ID CallerCC = CallerF->getCallingConv();
1642  bool CCMatch = CallerCC == CalleeCC;
1643
1644  // Look for obvious safe cases to perform tail call optimization that do not
1645  // require ABI changes. This is what gcc calls sibcall.
1646
1647  // Do not sibcall optimize vararg calls unless the call site is not passing
1648  // any arguments.
1649  if (isVarArg && !Outs.empty())
1650    return false;
1651
1652  // Also avoid sibcall optimization if either caller or callee uses struct
1653  // return semantics.
1654  if (isCalleeStructRet || isCallerStructRet)
1655    return false;
1656
1657  // FIXME: Completely disable sibcall for Thumb1 since Thumb1RegisterInfo::
1658  // emitEpilogue is not ready for them. Thumb tail calls also use t2B, as
1659  // the Thumb1 16-bit unconditional branch doesn't have sufficient relocation
1660  // support in the assembler and linker to be used. This would need to be
1661  // fixed to fully support tail calls in Thumb1.
1662  //
1663  // Doing this is tricky, since the LDM/POP instruction on Thumb doesn't take
1664  // LR.  This means if we need to reload LR, it takes an extra instructions,
1665  // which outweighs the value of the tail call; but here we don't know yet
1666  // whether LR is going to be used.  Probably the right approach is to
1667  // generate the tail call here and turn it back into CALL/RET in
1668  // emitEpilogue if LR is used.
1669
1670  // Thumb1 PIC calls to external symbols use BX, so they can be tail calls,
1671  // but we need to make sure there are enough registers; the only valid
1672  // registers are the 4 used for parameters.  We don't currently do this
1673  // case.
1674  if (Subtarget->isThumb1Only())
1675    return false;
1676
1677  // If the calling conventions do not match, then we'd better make sure the
1678  // results are returned in the same way as what the caller expects.
1679  if (!CCMatch) {
1680    SmallVector<CCValAssign, 16> RVLocs1;
1681    ARMCCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
1682                       getTargetMachine(), RVLocs1, *DAG.getContext(), Call);
1683    CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForNode(CalleeCC, true, isVarArg));
1684
1685    SmallVector<CCValAssign, 16> RVLocs2;
1686    ARMCCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
1687                       getTargetMachine(), RVLocs2, *DAG.getContext(), Call);
1688    CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForNode(CallerCC, true, isVarArg));
1689
1690    if (RVLocs1.size() != RVLocs2.size())
1691      return false;
1692    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
1693      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
1694        return false;
1695      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
1696        return false;
1697      if (RVLocs1[i].isRegLoc()) {
1698        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
1699          return false;
1700      } else {
1701        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
1702          return false;
1703      }
1704    }
1705  }
1706
1707  // If the callee takes no arguments then go on to check the results of the
1708  // call.
1709  if (!Outs.empty()) {
1710    // Check if stack adjustment is needed. For now, do not do this if any
1711    // argument is passed on the stack.
1712    SmallVector<CCValAssign, 16> ArgLocs;
1713    ARMCCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
1714                      getTargetMachine(), ArgLocs, *DAG.getContext(), Call);
1715    CCInfo.AnalyzeCallOperands(Outs,
1716                               CCAssignFnForNode(CalleeCC, false, isVarArg));
1717    if (CCInfo.getNextStackOffset()) {
1718      MachineFunction &MF = DAG.getMachineFunction();
1719
1720      // Check if the arguments are already laid out in the right way as
1721      // the caller's fixed stack objects.
1722      MachineFrameInfo *MFI = MF.getFrameInfo();
1723      const MachineRegisterInfo *MRI = &MF.getRegInfo();
1724      const ARMInstrInfo *TII =
1725        ((ARMTargetMachine&)getTargetMachine()).getInstrInfo();
1726      for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
1727           i != e;
1728           ++i, ++realArgIdx) {
1729        CCValAssign &VA = ArgLocs[i];
1730        EVT RegVT = VA.getLocVT();
1731        SDValue Arg = OutVals[realArgIdx];
1732        ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
1733        if (VA.getLocInfo() == CCValAssign::Indirect)
1734          return false;
1735        if (VA.needsCustom()) {
1736          // f64 and vector types are split into multiple registers or
1737          // register/stack-slot combinations.  The types will not match
1738          // the registers; give up on memory f64 refs until we figure
1739          // out what to do about this.
1740          if (!VA.isRegLoc())
1741            return false;
1742          if (!ArgLocs[++i].isRegLoc())
1743            return false;
1744          if (RegVT == MVT::v2f64) {
1745            if (!ArgLocs[++i].isRegLoc())
1746              return false;
1747            if (!ArgLocs[++i].isRegLoc())
1748              return false;
1749          }
1750        } else if (!VA.isRegLoc()) {
1751          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
1752                                   MFI, MRI, TII))
1753            return false;
1754        }
1755      }
1756    }
1757  }
1758
1759  return true;
1760}
1761
1762SDValue
1763ARMTargetLowering::LowerReturn(SDValue Chain,
1764                               CallingConv::ID CallConv, bool isVarArg,
1765                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1766                               const SmallVectorImpl<SDValue> &OutVals,
1767                               DebugLoc dl, SelectionDAG &DAG) const {
1768
1769  // CCValAssign - represent the assignment of the return value to a location.
1770  SmallVector<CCValAssign, 16> RVLocs;
1771
1772  // CCState - Info about the registers and stack slots.
1773  ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1774                    getTargetMachine(), RVLocs, *DAG.getContext(), Call);
1775
1776  // Analyze outgoing return values.
1777  CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv, /* Return */ true,
1778                                               isVarArg));
1779
1780  // If this is the first return lowered for this function, add
1781  // the regs to the liveout set for the function.
1782  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
1783    for (unsigned i = 0; i != RVLocs.size(); ++i)
1784      if (RVLocs[i].isRegLoc())
1785        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
1786  }
1787
1788  SDValue Flag;
1789
1790  // Copy the result values into the output registers.
1791  for (unsigned i = 0, realRVLocIdx = 0;
1792       i != RVLocs.size();
1793       ++i, ++realRVLocIdx) {
1794    CCValAssign &VA = RVLocs[i];
1795    assert(VA.isRegLoc() && "Can only return in registers!");
1796
1797    SDValue Arg = OutVals[realRVLocIdx];
1798
1799    switch (VA.getLocInfo()) {
1800    default: llvm_unreachable("Unknown loc info!");
1801    case CCValAssign::Full: break;
1802    case CCValAssign::BCvt:
1803      Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
1804      break;
1805    }
1806
1807    if (VA.needsCustom()) {
1808      if (VA.getLocVT() == MVT::v2f64) {
1809        // Extract the first half and return it in two registers.
1810        SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1811                                   DAG.getConstant(0, MVT::i32));
1812        SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl,
1813                                       DAG.getVTList(MVT::i32, MVT::i32), Half);
1814
1815        Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), HalfGPRs, Flag);
1816        Flag = Chain.getValue(1);
1817        VA = RVLocs[++i]; // skip ahead to next loc
1818        Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
1819                                 HalfGPRs.getValue(1), Flag);
1820        Flag = Chain.getValue(1);
1821        VA = RVLocs[++i]; // skip ahead to next loc
1822
1823        // Extract the 2nd half and fall through to handle it as an f64 value.
1824        Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1825                          DAG.getConstant(1, MVT::i32));
1826      }
1827      // Legalize ret f64 -> ret 2 x i32.  We always have fmrrd if f64 is
1828      // available.
1829      SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
1830                                  DAG.getVTList(MVT::i32, MVT::i32), &Arg, 1);
1831      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd, Flag);
1832      Flag = Chain.getValue(1);
1833      VA = RVLocs[++i]; // skip ahead to next loc
1834      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd.getValue(1),
1835                               Flag);
1836    } else
1837      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
1838
1839    // Guarantee that all emitted copies are
1840    // stuck together, avoiding something bad.
1841    Flag = Chain.getValue(1);
1842  }
1843
1844  SDValue result;
1845  if (Flag.getNode())
1846    result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain, Flag);
1847  else // Return Void
1848    result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain);
1849
1850  return result;
1851}
1852
1853bool ARMTargetLowering::isUsedByReturnOnly(SDNode *N) const {
1854  if (N->getNumValues() != 1)
1855    return false;
1856  if (!N->hasNUsesOfValue(1, 0))
1857    return false;
1858
1859  unsigned NumCopies = 0;
1860  SDNode* Copies[2];
1861  SDNode *Use = *N->use_begin();
1862  if (Use->getOpcode() == ISD::CopyToReg) {
1863    Copies[NumCopies++] = Use;
1864  } else if (Use->getOpcode() == ARMISD::VMOVRRD) {
1865    // f64 returned in a pair of GPRs.
1866    for (SDNode::use_iterator UI = Use->use_begin(), UE = Use->use_end();
1867         UI != UE; ++UI) {
1868      if (UI->getOpcode() != ISD::CopyToReg)
1869        return false;
1870      Copies[UI.getUse().getResNo()] = *UI;
1871      ++NumCopies;
1872    }
1873  } else if (Use->getOpcode() == ISD::BITCAST) {
1874    // f32 returned in a single GPR.
1875    if (!Use->hasNUsesOfValue(1, 0))
1876      return false;
1877    Use = *Use->use_begin();
1878    if (Use->getOpcode() != ISD::CopyToReg || !Use->hasNUsesOfValue(1, 0))
1879      return false;
1880    Copies[NumCopies++] = Use;
1881  } else {
1882    return false;
1883  }
1884
1885  if (NumCopies != 1 && NumCopies != 2)
1886    return false;
1887
1888  bool HasRet = false;
1889  for (unsigned i = 0; i < NumCopies; ++i) {
1890    SDNode *Copy = Copies[i];
1891    for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1892         UI != UE; ++UI) {
1893      if (UI->getOpcode() == ISD::CopyToReg) {
1894        SDNode *Use = *UI;
1895        if (Use == Copies[0] || Use == Copies[1])
1896          continue;
1897        return false;
1898      }
1899      if (UI->getOpcode() != ARMISD::RET_FLAG)
1900        return false;
1901      HasRet = true;
1902    }
1903  }
1904
1905  return HasRet;
1906}
1907
1908bool ARMTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
1909  if (!EnableARMTailCalls)
1910    return false;
1911
1912  if (!CI->isTailCall())
1913    return false;
1914
1915  return !Subtarget->isThumb1Only();
1916}
1917
1918// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
1919// their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
1920// one of the above mentioned nodes. It has to be wrapped because otherwise
1921// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
1922// be used to form addressing mode. These wrapped nodes will be selected
1923// into MOVi.
1924static SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
1925  EVT PtrVT = Op.getValueType();
1926  // FIXME there is no actual debug info here
1927  DebugLoc dl = Op.getDebugLoc();
1928  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1929  SDValue Res;
1930  if (CP->isMachineConstantPoolEntry())
1931    Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
1932                                    CP->getAlignment());
1933  else
1934    Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
1935                                    CP->getAlignment());
1936  return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
1937}
1938
1939unsigned ARMTargetLowering::getJumpTableEncoding() const {
1940  return MachineJumpTableInfo::EK_Inline;
1941}
1942
1943SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op,
1944                                             SelectionDAG &DAG) const {
1945  MachineFunction &MF = DAG.getMachineFunction();
1946  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1947  unsigned ARMPCLabelIndex = 0;
1948  DebugLoc DL = Op.getDebugLoc();
1949  EVT PtrVT = getPointerTy();
1950  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1951  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
1952  SDValue CPAddr;
1953  if (RelocM == Reloc::Static) {
1954    CPAddr = DAG.getTargetConstantPool(BA, PtrVT, 4);
1955  } else {
1956    unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
1957    ARMPCLabelIndex = AFI->createPICLabelUId();
1958    ARMConstantPoolValue *CPV =
1959      ARMConstantPoolConstant::Create(BA, ARMPCLabelIndex,
1960                                      ARMCP::CPBlockAddress, PCAdj);
1961    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1962  }
1963  CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr);
1964  SDValue Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), CPAddr,
1965                               MachinePointerInfo::getConstantPool(),
1966                               false, false, 0);
1967  if (RelocM == Reloc::Static)
1968    return Result;
1969  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1970  return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel);
1971}
1972
1973// Lower ISD::GlobalTLSAddress using the "general dynamic" model
1974SDValue
1975ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
1976                                                 SelectionDAG &DAG) const {
1977  DebugLoc dl = GA->getDebugLoc();
1978  EVT PtrVT = getPointerTy();
1979  unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
1980  MachineFunction &MF = DAG.getMachineFunction();
1981  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1982  unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1983  ARMConstantPoolValue *CPV =
1984    ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
1985                                    ARMCP::CPValue, PCAdj, ARMCP::TLSGD, true);
1986  SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1987  Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
1988  Argument = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Argument,
1989                         MachinePointerInfo::getConstantPool(),
1990                         false, false, 0);
1991  SDValue Chain = Argument.getValue(1);
1992
1993  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1994  Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);
1995
1996  // call __tls_get_addr.
1997  ArgListTy Args;
1998  ArgListEntry Entry;
1999  Entry.Node = Argument;
2000  Entry.Ty = (Type *) Type::getInt32Ty(*DAG.getContext());
2001  Args.push_back(Entry);
2002  // FIXME: is there useful debug info available here?
2003  std::pair<SDValue, SDValue> CallResult =
2004    LowerCallTo(Chain, (Type *) Type::getInt32Ty(*DAG.getContext()),
2005                false, false, false, false,
2006                0, CallingConv::C, false, /*isReturnValueUsed=*/true,
2007                DAG.getExternalSymbol("__tls_get_addr", PtrVT), Args, DAG, dl);
2008  return CallResult.first;
2009}
2010
2011// Lower ISD::GlobalTLSAddress using the "initial exec" or
2012// "local exec" model.
2013SDValue
2014ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
2015                                        SelectionDAG &DAG) const {
2016  const GlobalValue *GV = GA->getGlobal();
2017  DebugLoc dl = GA->getDebugLoc();
2018  SDValue Offset;
2019  SDValue Chain = DAG.getEntryNode();
2020  EVT PtrVT = getPointerTy();
2021  // Get the Thread Pointer
2022  SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
2023
2024  if (GV->isDeclaration()) {
2025    MachineFunction &MF = DAG.getMachineFunction();
2026    ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2027    unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2028    // Initial exec model.
2029    unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
2030    ARMConstantPoolValue *CPV =
2031      ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
2032                                      ARMCP::CPValue, PCAdj, ARMCP::GOTTPOFF,
2033                                      true);
2034    Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2035    Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
2036    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
2037                         MachinePointerInfo::getConstantPool(),
2038                         false, false, 0);
2039    Chain = Offset.getValue(1);
2040
2041    SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2042    Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
2043
2044    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
2045                         MachinePointerInfo::getConstantPool(),
2046                         false, false, 0);
2047  } else {
2048    // local exec model
2049    ARMConstantPoolValue *CPV =
2050      ARMConstantPoolConstant::Create(GV, ARMCP::TPOFF);
2051    Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2052    Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
2053    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
2054                         MachinePointerInfo::getConstantPool(),
2055                         false, false, 0);
2056  }
2057
2058  // The address of the thread local variable is the add of the thread
2059  // pointer with the offset of the variable.
2060  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
2061}
2062
2063SDValue
2064ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
2065  // TODO: implement the "local dynamic" model
2066  assert(Subtarget->isTargetELF() &&
2067         "TLS not implemented for non-ELF targets");
2068  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2069  // If the relocation model is PIC, use the "General Dynamic" TLS Model,
2070  // otherwise use the "Local Exec" TLS Model
2071  if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
2072    return LowerToTLSGeneralDynamicModel(GA, DAG);
2073  else
2074    return LowerToTLSExecModels(GA, DAG);
2075}
2076
2077SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
2078                                                 SelectionDAG &DAG) const {
2079  EVT PtrVT = getPointerTy();
2080  DebugLoc dl = Op.getDebugLoc();
2081  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
2082  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2083  if (RelocM == Reloc::PIC_) {
2084    bool UseGOTOFF = GV->hasLocalLinkage() || GV->hasHiddenVisibility();
2085    ARMConstantPoolValue *CPV =
2086      ARMConstantPoolConstant::Create(GV,
2087                                      UseGOTOFF ? ARMCP::GOTOFF : ARMCP::GOT);
2088    SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2089    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2090    SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
2091                                 CPAddr,
2092                                 MachinePointerInfo::getConstantPool(),
2093                                 false, false, 0);
2094    SDValue Chain = Result.getValue(1);
2095    SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
2096    Result = DAG.getNode(ISD::ADD, dl, PtrVT, Result, GOT);
2097    if (!UseGOTOFF)
2098      Result = DAG.getLoad(PtrVT, dl, Chain, Result,
2099                           MachinePointerInfo::getGOT(), false, false, 0);
2100    return Result;
2101  }
2102
2103  // If we have T2 ops, we can materialize the address directly via movt/movw
2104  // pair. This is always cheaper.
2105  if (Subtarget->useMovt()) {
2106    ++NumMovwMovt;
2107    // FIXME: Once remat is capable of dealing with instructions with register
2108    // operands, expand this into two nodes.
2109    return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
2110                       DAG.getTargetGlobalAddress(GV, dl, PtrVT));
2111  } else {
2112    SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
2113    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2114    return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2115                       MachinePointerInfo::getConstantPool(),
2116                       false, false, 0);
2117  }
2118}
2119
2120SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
2121                                                    SelectionDAG &DAG) const {
2122  EVT PtrVT = getPointerTy();
2123  DebugLoc dl = Op.getDebugLoc();
2124  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
2125  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2126  MachineFunction &MF = DAG.getMachineFunction();
2127  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2128
2129  // FIXME: Enable this for static codegen when tool issues are fixed.
2130  if (Subtarget->useMovt() && RelocM != Reloc::Static) {
2131    ++NumMovwMovt;
2132    // FIXME: Once remat is capable of dealing with instructions with register
2133    // operands, expand this into two nodes.
2134    if (RelocM == Reloc::Static)
2135      return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
2136                                 DAG.getTargetGlobalAddress(GV, dl, PtrVT));
2137
2138    unsigned Wrapper = (RelocM == Reloc::PIC_)
2139      ? ARMISD::WrapperPIC : ARMISD::WrapperDYN;
2140    SDValue Result = DAG.getNode(Wrapper, dl, PtrVT,
2141                                 DAG.getTargetGlobalAddress(GV, dl, PtrVT));
2142    if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
2143      Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
2144                           MachinePointerInfo::getGOT(), false, false, 0);
2145    return Result;
2146  }
2147
2148  unsigned ARMPCLabelIndex = 0;
2149  SDValue CPAddr;
2150  if (RelocM == Reloc::Static) {
2151    CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
2152  } else {
2153    ARMPCLabelIndex = AFI->createPICLabelUId();
2154    unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : (Subtarget->isThumb()?4:8);
2155    ARMConstantPoolValue *CPV =
2156      ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue,
2157                                      PCAdj);
2158    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2159  }
2160  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2161
2162  SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2163                               MachinePointerInfo::getConstantPool(),
2164                               false, false, 0);
2165  SDValue Chain = Result.getValue(1);
2166
2167  if (RelocM == Reloc::PIC_) {
2168    SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2169    Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2170  }
2171
2172  if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
2173    Result = DAG.getLoad(PtrVT, dl, Chain, Result, MachinePointerInfo::getGOT(),
2174                         false, false, 0);
2175
2176  return Result;
2177}
2178
2179SDValue ARMTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op,
2180                                                    SelectionDAG &DAG) const {
2181  assert(Subtarget->isTargetELF() &&
2182         "GLOBAL OFFSET TABLE not implemented for non-ELF targets");
2183  MachineFunction &MF = DAG.getMachineFunction();
2184  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2185  unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2186  EVT PtrVT = getPointerTy();
2187  DebugLoc dl = Op.getDebugLoc();
2188  unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
2189  ARMConstantPoolValue *CPV =
2190    ARMConstantPoolSymbol::Create(*DAG.getContext(), "_GLOBAL_OFFSET_TABLE_",
2191                                  ARMPCLabelIndex, PCAdj);
2192  SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2193  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2194  SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2195                               MachinePointerInfo::getConstantPool(),
2196                               false, false, 0);
2197  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2198  return DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2199}
2200
2201SDValue
2202ARMTargetLowering::LowerEH_SJLJ_DISPATCHSETUP(SDValue Op, SelectionDAG &DAG)
2203  const {
2204  DebugLoc dl = Op.getDebugLoc();
2205  return DAG.getNode(ARMISD::EH_SJLJ_DISPATCHSETUP, dl, MVT::Other,
2206                     Op.getOperand(0), Op.getOperand(1));
2207}
2208
2209SDValue
2210ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const {
2211  DebugLoc dl = Op.getDebugLoc();
2212  SDValue Val = DAG.getConstant(0, MVT::i32);
2213  return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl,
2214                     DAG.getVTList(MVT::i32, MVT::Other), Op.getOperand(0),
2215                     Op.getOperand(1), Val);
2216}
2217
2218SDValue
2219ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const {
2220  DebugLoc dl = Op.getDebugLoc();
2221  return DAG.getNode(ARMISD::EH_SJLJ_LONGJMP, dl, MVT::Other, Op.getOperand(0),
2222                     Op.getOperand(1), DAG.getConstant(0, MVT::i32));
2223}
2224
2225SDValue
2226ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG,
2227                                          const ARMSubtarget *Subtarget) const {
2228  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2229  DebugLoc dl = Op.getDebugLoc();
2230  switch (IntNo) {
2231  default: return SDValue();    // Don't custom lower most intrinsics.
2232  case Intrinsic::arm_thread_pointer: {
2233    EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2234    return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
2235  }
2236  case Intrinsic::eh_sjlj_lsda: {
2237    MachineFunction &MF = DAG.getMachineFunction();
2238    ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2239    unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2240    EVT PtrVT = getPointerTy();
2241    DebugLoc dl = Op.getDebugLoc();
2242    Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2243    SDValue CPAddr;
2244    unsigned PCAdj = (RelocM != Reloc::PIC_)
2245      ? 0 : (Subtarget->isThumb() ? 4 : 8);
2246    ARMConstantPoolValue *CPV =
2247      ARMConstantPoolConstant::Create(MF.getFunction(), ARMPCLabelIndex,
2248                                      ARMCP::CPLSDA, PCAdj);
2249    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2250    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2251    SDValue Result =
2252      DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2253                  MachinePointerInfo::getConstantPool(),
2254                  false, false, 0);
2255
2256    if (RelocM == Reloc::PIC_) {
2257      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2258      Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2259    }
2260    return Result;
2261  }
2262  case Intrinsic::arm_neon_vmulls:
2263  case Intrinsic::arm_neon_vmullu: {
2264    unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmulls)
2265      ? ARMISD::VMULLs : ARMISD::VMULLu;
2266    return DAG.getNode(NewOpc, Op.getDebugLoc(), Op.getValueType(),
2267                       Op.getOperand(1), Op.getOperand(2));
2268  }
2269  }
2270}
2271
2272static SDValue LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG,
2273                               const ARMSubtarget *Subtarget) {
2274  DebugLoc dl = Op.getDebugLoc();
2275  if (!Subtarget->hasDataBarrier()) {
2276    // Some ARMv6 cpus can support data barriers with an mcr instruction.
2277    // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
2278    // here.
2279    assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&
2280           "Unexpected ISD::MEMBARRIER encountered. Should be libcall!");
2281    return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
2282                       DAG.getConstant(0, MVT::i32));
2283  }
2284
2285  SDValue Op5 = Op.getOperand(5);
2286  bool isDeviceBarrier = cast<ConstantSDNode>(Op5)->getZExtValue() != 0;
2287  unsigned isLL = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
2288  unsigned isLS = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
2289  bool isOnlyStoreBarrier = (isLL == 0 && isLS == 0);
2290
2291  ARM_MB::MemBOpt DMBOpt;
2292  if (isDeviceBarrier)
2293    DMBOpt = isOnlyStoreBarrier ? ARM_MB::ST : ARM_MB::SY;
2294  else
2295    DMBOpt = isOnlyStoreBarrier ? ARM_MB::ISHST : ARM_MB::ISH;
2296  return DAG.getNode(ARMISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0),
2297                     DAG.getConstant(DMBOpt, MVT::i32));
2298}
2299
2300
2301static SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG,
2302                                 const ARMSubtarget *Subtarget) {
2303  // FIXME: handle "fence singlethread" more efficiently.
2304  DebugLoc dl = Op.getDebugLoc();
2305  if (!Subtarget->hasDataBarrier()) {
2306    // Some ARMv6 cpus can support data barriers with an mcr instruction.
2307    // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
2308    // here.
2309    assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&
2310           "Unexpected ISD::MEMBARRIER encountered. Should be libcall!");
2311    return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
2312                       DAG.getConstant(0, MVT::i32));
2313  }
2314
2315  return DAG.getNode(ARMISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0),
2316                     DAG.getConstant(ARM_MB::ISH, MVT::i32));
2317}
2318
2319static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG,
2320                             const ARMSubtarget *Subtarget) {
2321  // ARM pre v5TE and Thumb1 does not have preload instructions.
2322  if (!(Subtarget->isThumb2() ||
2323        (!Subtarget->isThumb1Only() && Subtarget->hasV5TEOps())))
2324    // Just preserve the chain.
2325    return Op.getOperand(0);
2326
2327  DebugLoc dl = Op.getDebugLoc();
2328  unsigned isRead = ~cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() & 1;
2329  if (!isRead &&
2330      (!Subtarget->hasV7Ops() || !Subtarget->hasMPExtension()))
2331    // ARMv7 with MP extension has PLDW.
2332    return Op.getOperand(0);
2333
2334  unsigned isData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
2335  if (Subtarget->isThumb()) {
2336    // Invert the bits.
2337    isRead = ~isRead & 1;
2338    isData = ~isData & 1;
2339  }
2340
2341  return DAG.getNode(ARMISD::PRELOAD, dl, MVT::Other, Op.getOperand(0),
2342                     Op.getOperand(1), DAG.getConstant(isRead, MVT::i32),
2343                     DAG.getConstant(isData, MVT::i32));
2344}
2345
2346static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) {
2347  MachineFunction &MF = DAG.getMachineFunction();
2348  ARMFunctionInfo *FuncInfo = MF.getInfo<ARMFunctionInfo>();
2349
2350  // vastart just stores the address of the VarArgsFrameIndex slot into the
2351  // memory location argument.
2352  DebugLoc dl = Op.getDebugLoc();
2353  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2354  SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2355  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2356  return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
2357                      MachinePointerInfo(SV), false, false, 0);
2358}
2359
2360SDValue
2361ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA, CCValAssign &NextVA,
2362                                        SDValue &Root, SelectionDAG &DAG,
2363                                        DebugLoc dl) const {
2364  MachineFunction &MF = DAG.getMachineFunction();
2365  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2366
2367  TargetRegisterClass *RC;
2368  if (AFI->isThumb1OnlyFunction())
2369    RC = ARM::tGPRRegisterClass;
2370  else
2371    RC = ARM::GPRRegisterClass;
2372
2373  // Transform the arguments stored in physical registers into virtual ones.
2374  unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2375  SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
2376
2377  SDValue ArgValue2;
2378  if (NextVA.isMemLoc()) {
2379    MachineFrameInfo *MFI = MF.getFrameInfo();
2380    int FI = MFI->CreateFixedObject(4, NextVA.getLocMemOffset(), true);
2381
2382    // Create load node to retrieve arguments from the stack.
2383    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2384    ArgValue2 = DAG.getLoad(MVT::i32, dl, Root, FIN,
2385                            MachinePointerInfo::getFixedStack(FI),
2386                            false, false, 0);
2387  } else {
2388    Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
2389    ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
2390  }
2391
2392  return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2);
2393}
2394
2395void
2396ARMTargetLowering::computeRegArea(CCState &CCInfo, MachineFunction &MF,
2397                                  unsigned &VARegSize, unsigned &VARegSaveSize)
2398  const {
2399  unsigned NumGPRs;
2400  if (CCInfo.isFirstByValRegValid())
2401    NumGPRs = ARM::R4 - CCInfo.getFirstByValReg();
2402  else {
2403    unsigned int firstUnalloced;
2404    firstUnalloced = CCInfo.getFirstUnallocated(GPRArgRegs,
2405                                                sizeof(GPRArgRegs) /
2406                                                sizeof(GPRArgRegs[0]));
2407    NumGPRs = (firstUnalloced <= 3) ? (4 - firstUnalloced) : 0;
2408  }
2409
2410  unsigned Align = MF.getTarget().getFrameLowering()->getStackAlignment();
2411  VARegSize = NumGPRs * 4;
2412  VARegSaveSize = (VARegSize + Align - 1) & ~(Align - 1);
2413}
2414
2415// The remaining GPRs hold either the beginning of variable-argument
2416// data, or the beginning of an aggregate passed by value (usuall
2417// byval).  Either way, we allocate stack slots adjacent to the data
2418// provided by our caller, and store the unallocated registers there.
2419// If this is a variadic function, the va_list pointer will begin with
2420// these values; otherwise, this reassembles a (byval) structure that
2421// was split between registers and memory.
2422void
2423ARMTargetLowering::VarArgStyleRegisters(CCState &CCInfo, SelectionDAG &DAG,
2424                                        DebugLoc dl, SDValue &Chain,
2425                                        unsigned ArgOffset) const {
2426  MachineFunction &MF = DAG.getMachineFunction();
2427  MachineFrameInfo *MFI = MF.getFrameInfo();
2428  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2429  unsigned firstRegToSaveIndex;
2430  if (CCInfo.isFirstByValRegValid())
2431    firstRegToSaveIndex = CCInfo.getFirstByValReg() - ARM::R0;
2432  else {
2433    firstRegToSaveIndex = CCInfo.getFirstUnallocated
2434      (GPRArgRegs, sizeof(GPRArgRegs) / sizeof(GPRArgRegs[0]));
2435  }
2436
2437  unsigned VARegSize, VARegSaveSize;
2438  computeRegArea(CCInfo, MF, VARegSize, VARegSaveSize);
2439  if (VARegSaveSize) {
2440    // If this function is vararg, store any remaining integer argument regs
2441    // to their spots on the stack so that they may be loaded by deferencing
2442    // the result of va_next.
2443    AFI->setVarArgsRegSaveSize(VARegSaveSize);
2444    AFI->setVarArgsFrameIndex(MFI->CreateFixedObject(VARegSaveSize,
2445                                                     ArgOffset + VARegSaveSize
2446                                                     - VARegSize,
2447                                                     false));
2448    SDValue FIN = DAG.getFrameIndex(AFI->getVarArgsFrameIndex(),
2449                                    getPointerTy());
2450
2451    SmallVector<SDValue, 4> MemOps;
2452    for (; firstRegToSaveIndex < 4; ++firstRegToSaveIndex) {
2453      TargetRegisterClass *RC;
2454      if (AFI->isThumb1OnlyFunction())
2455        RC = ARM::tGPRRegisterClass;
2456      else
2457        RC = ARM::GPRRegisterClass;
2458
2459      unsigned VReg = MF.addLiveIn(GPRArgRegs[firstRegToSaveIndex], RC);
2460      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
2461      SDValue Store =
2462        DAG.getStore(Val.getValue(1), dl, Val, FIN,
2463                 MachinePointerInfo::getFixedStack(AFI->getVarArgsFrameIndex()),
2464                     false, false, 0);
2465      MemOps.push_back(Store);
2466      FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN,
2467                        DAG.getConstant(4, getPointerTy()));
2468    }
2469    if (!MemOps.empty())
2470      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2471                          &MemOps[0], MemOps.size());
2472  } else
2473    // This will point to the next argument passed via stack.
2474    AFI->setVarArgsFrameIndex(MFI->CreateFixedObject(4, ArgOffset, true));
2475}
2476
2477SDValue
2478ARMTargetLowering::LowerFormalArguments(SDValue Chain,
2479                                        CallingConv::ID CallConv, bool isVarArg,
2480                                        const SmallVectorImpl<ISD::InputArg>
2481                                          &Ins,
2482                                        DebugLoc dl, SelectionDAG &DAG,
2483                                        SmallVectorImpl<SDValue> &InVals)
2484                                          const {
2485  MachineFunction &MF = DAG.getMachineFunction();
2486  MachineFrameInfo *MFI = MF.getFrameInfo();
2487
2488  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2489
2490  // Assign locations to all of the incoming arguments.
2491  SmallVector<CCValAssign, 16> ArgLocs;
2492  ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2493                    getTargetMachine(), ArgLocs, *DAG.getContext(), Prologue);
2494  CCInfo.AnalyzeFormalArguments(Ins,
2495                                CCAssignFnForNode(CallConv, /* Return*/ false,
2496                                                  isVarArg));
2497
2498  SmallVector<SDValue, 16> ArgValues;
2499  int lastInsIndex = -1;
2500
2501  SDValue ArgValue;
2502  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2503    CCValAssign &VA = ArgLocs[i];
2504
2505    // Arguments stored in registers.
2506    if (VA.isRegLoc()) {
2507      EVT RegVT = VA.getLocVT();
2508
2509      if (VA.needsCustom()) {
2510        // f64 and vector types are split up into multiple registers or
2511        // combinations of registers and stack slots.
2512        if (VA.getLocVT() == MVT::v2f64) {
2513          SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i],
2514                                                   Chain, DAG, dl);
2515          VA = ArgLocs[++i]; // skip ahead to next loc
2516          SDValue ArgValue2;
2517          if (VA.isMemLoc()) {
2518            int FI = MFI->CreateFixedObject(8, VA.getLocMemOffset(), true);
2519            SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2520            ArgValue2 = DAG.getLoad(MVT::f64, dl, Chain, FIN,
2521                                    MachinePointerInfo::getFixedStack(FI),
2522                                    false, false, 0);
2523          } else {
2524            ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i],
2525                                             Chain, DAG, dl);
2526          }
2527          ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
2528          ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
2529                                 ArgValue, ArgValue1, DAG.getIntPtrConstant(0));
2530          ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
2531                                 ArgValue, ArgValue2, DAG.getIntPtrConstant(1));
2532        } else
2533          ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
2534
2535      } else {
2536        TargetRegisterClass *RC;
2537
2538        if (RegVT == MVT::f32)
2539          RC = ARM::SPRRegisterClass;
2540        else if (RegVT == MVT::f64)
2541          RC = ARM::DPRRegisterClass;
2542        else if (RegVT == MVT::v2f64)
2543          RC = ARM::QPRRegisterClass;
2544        else if (RegVT == MVT::i32)
2545          RC = (AFI->isThumb1OnlyFunction() ?
2546                ARM::tGPRRegisterClass : ARM::GPRRegisterClass);
2547        else
2548          llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
2549
2550        // Transform the arguments in physical registers into virtual ones.
2551        unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2552        ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
2553      }
2554
2555      // If this is an 8 or 16-bit value, it is really passed promoted
2556      // to 32 bits.  Insert an assert[sz]ext to capture this, then
2557      // truncate to the right size.
2558      switch (VA.getLocInfo()) {
2559      default: llvm_unreachable("Unknown loc info!");
2560      case CCValAssign::Full: break;
2561      case CCValAssign::BCvt:
2562        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
2563        break;
2564      case CCValAssign::SExt:
2565        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
2566                               DAG.getValueType(VA.getValVT()));
2567        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
2568        break;
2569      case CCValAssign::ZExt:
2570        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
2571                               DAG.getValueType(VA.getValVT()));
2572        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
2573        break;
2574      }
2575
2576      InVals.push_back(ArgValue);
2577
2578    } else { // VA.isRegLoc()
2579
2580      // sanity check
2581      assert(VA.isMemLoc());
2582      assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered");
2583
2584      int index = ArgLocs[i].getValNo();
2585
2586      // Some Ins[] entries become multiple ArgLoc[] entries.
2587      // Process them only once.
2588      if (index != lastInsIndex)
2589        {
2590          ISD::ArgFlagsTy Flags = Ins[index].Flags;
2591          // FIXME: For now, all byval parameter objects are marked mutable.
2592          // This can be changed with more analysis.
2593          // In case of tail call optimization mark all arguments mutable.
2594          // Since they could be overwritten by lowering of arguments in case of
2595          // a tail call.
2596          if (Flags.isByVal()) {
2597            unsigned VARegSize, VARegSaveSize;
2598            computeRegArea(CCInfo, MF, VARegSize, VARegSaveSize);
2599            VarArgStyleRegisters(CCInfo, DAG, dl, Chain, 0);
2600            unsigned Bytes = Flags.getByValSize() - VARegSize;
2601            if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
2602            int FI = MFI->CreateFixedObject(Bytes,
2603                                            VA.getLocMemOffset(), false);
2604            InVals.push_back(DAG.getFrameIndex(FI, getPointerTy()));
2605          } else {
2606            int FI = MFI->CreateFixedObject(VA.getLocVT().getSizeInBits()/8,
2607                                            VA.getLocMemOffset(), true);
2608
2609            // Create load nodes to retrieve arguments from the stack.
2610            SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2611            InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
2612                                         MachinePointerInfo::getFixedStack(FI),
2613                                         false, false, 0));
2614          }
2615          lastInsIndex = index;
2616        }
2617    }
2618  }
2619
2620  // varargs
2621  if (isVarArg)
2622    VarArgStyleRegisters(CCInfo, DAG, dl, Chain, CCInfo.getNextStackOffset());
2623
2624  return Chain;
2625}
2626
2627/// isFloatingPointZero - Return true if this is +0.0.
2628static bool isFloatingPointZero(SDValue Op) {
2629  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
2630    return CFP->getValueAPF().isPosZero();
2631  else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
2632    // Maybe this has already been legalized into the constant pool?
2633    if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
2634      SDValue WrapperOp = Op.getOperand(1).getOperand(0);
2635      if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
2636        if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
2637          return CFP->getValueAPF().isPosZero();
2638    }
2639  }
2640  return false;
2641}
2642
2643/// Returns appropriate ARM CMP (cmp) and corresponding condition code for
2644/// the given operands.
2645SDValue
2646ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
2647                             SDValue &ARMcc, SelectionDAG &DAG,
2648                             DebugLoc dl) const {
2649  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
2650    unsigned C = RHSC->getZExtValue();
2651    if (!isLegalICmpImmediate(C)) {
2652      // Constant does not fit, try adjusting it by one?
2653      switch (CC) {
2654      default: break;
2655      case ISD::SETLT:
2656      case ISD::SETGE:
2657        if (C != 0x80000000 && isLegalICmpImmediate(C-1)) {
2658          CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
2659          RHS = DAG.getConstant(C-1, MVT::i32);
2660        }
2661        break;
2662      case ISD::SETULT:
2663      case ISD::SETUGE:
2664        if (C != 0 && isLegalICmpImmediate(C-1)) {
2665          CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
2666          RHS = DAG.getConstant(C-1, MVT::i32);
2667        }
2668        break;
2669      case ISD::SETLE:
2670      case ISD::SETGT:
2671        if (C != 0x7fffffff && isLegalICmpImmediate(C+1)) {
2672          CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
2673          RHS = DAG.getConstant(C+1, MVT::i32);
2674        }
2675        break;
2676      case ISD::SETULE:
2677      case ISD::SETUGT:
2678        if (C != 0xffffffff && isLegalICmpImmediate(C+1)) {
2679          CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
2680          RHS = DAG.getConstant(C+1, MVT::i32);
2681        }
2682        break;
2683      }
2684    }
2685  }
2686
2687  ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
2688  ARMISD::NodeType CompareType;
2689  switch (CondCode) {
2690  default:
2691    CompareType = ARMISD::CMP;
2692    break;
2693  case ARMCC::EQ:
2694  case ARMCC::NE:
2695    // Uses only Z Flag
2696    CompareType = ARMISD::CMPZ;
2697    break;
2698  }
2699  ARMcc = DAG.getConstant(CondCode, MVT::i32);
2700  return DAG.getNode(CompareType, dl, MVT::Glue, LHS, RHS);
2701}
2702
2703/// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
2704SDValue
2705ARMTargetLowering::getVFPCmp(SDValue LHS, SDValue RHS, SelectionDAG &DAG,
2706                             DebugLoc dl) const {
2707  SDValue Cmp;
2708  if (!isFloatingPointZero(RHS))
2709    Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Glue, LHS, RHS);
2710  else
2711    Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Glue, LHS);
2712  return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Glue, Cmp);
2713}
2714
2715/// duplicateCmp - Glue values can have only one use, so this function
2716/// duplicates a comparison node.
2717SDValue
2718ARMTargetLowering::duplicateCmp(SDValue Cmp, SelectionDAG &DAG) const {
2719  unsigned Opc = Cmp.getOpcode();
2720  DebugLoc DL = Cmp.getDebugLoc();
2721  if (Opc == ARMISD::CMP || Opc == ARMISD::CMPZ)
2722    return DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
2723
2724  assert(Opc == ARMISD::FMSTAT && "unexpected comparison operation");
2725  Cmp = Cmp.getOperand(0);
2726  Opc = Cmp.getOpcode();
2727  if (Opc == ARMISD::CMPFP)
2728    Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
2729  else {
2730    assert(Opc == ARMISD::CMPFPw0 && "unexpected operand of FMSTAT");
2731    Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0));
2732  }
2733  return DAG.getNode(ARMISD::FMSTAT, DL, MVT::Glue, Cmp);
2734}
2735
2736SDValue ARMTargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
2737  SDValue Cond = Op.getOperand(0);
2738  SDValue SelectTrue = Op.getOperand(1);
2739  SDValue SelectFalse = Op.getOperand(2);
2740  DebugLoc dl = Op.getDebugLoc();
2741
2742  // Convert:
2743  //
2744  //   (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond)
2745  //   (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond)
2746  //
2747  if (Cond.getOpcode() == ARMISD::CMOV && Cond.hasOneUse()) {
2748    const ConstantSDNode *CMOVTrue =
2749      dyn_cast<ConstantSDNode>(Cond.getOperand(0));
2750    const ConstantSDNode *CMOVFalse =
2751      dyn_cast<ConstantSDNode>(Cond.getOperand(1));
2752
2753    if (CMOVTrue && CMOVFalse) {
2754      unsigned CMOVTrueVal = CMOVTrue->getZExtValue();
2755      unsigned CMOVFalseVal = CMOVFalse->getZExtValue();
2756
2757      SDValue True;
2758      SDValue False;
2759      if (CMOVTrueVal == 1 && CMOVFalseVal == 0) {
2760        True = SelectTrue;
2761        False = SelectFalse;
2762      } else if (CMOVTrueVal == 0 && CMOVFalseVal == 1) {
2763        True = SelectFalse;
2764        False = SelectTrue;
2765      }
2766
2767      if (True.getNode() && False.getNode()) {
2768        EVT VT = Op.getValueType();
2769        SDValue ARMcc = Cond.getOperand(2);
2770        SDValue CCR = Cond.getOperand(3);
2771        SDValue Cmp = duplicateCmp(Cond.getOperand(4), DAG);
2772        assert(True.getValueType() == VT);
2773        return DAG.getNode(ARMISD::CMOV, dl, VT, True, False, ARMcc, CCR, Cmp);
2774      }
2775    }
2776  }
2777
2778  return DAG.getSelectCC(dl, Cond,
2779                         DAG.getConstant(0, Cond.getValueType()),
2780                         SelectTrue, SelectFalse, ISD::SETNE);
2781}
2782
2783SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
2784  EVT VT = Op.getValueType();
2785  SDValue LHS = Op.getOperand(0);
2786  SDValue RHS = Op.getOperand(1);
2787  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2788  SDValue TrueVal = Op.getOperand(2);
2789  SDValue FalseVal = Op.getOperand(3);
2790  DebugLoc dl = Op.getDebugLoc();
2791
2792  if (LHS.getValueType() == MVT::i32) {
2793    SDValue ARMcc;
2794    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2795    SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
2796    return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, CCR,Cmp);
2797  }
2798
2799  ARMCC::CondCodes CondCode, CondCode2;
2800  FPCCToARMCC(CC, CondCode, CondCode2);
2801
2802  SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
2803  SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
2804  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2805  SDValue Result = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal,
2806                               ARMcc, CCR, Cmp);
2807  if (CondCode2 != ARMCC::AL) {
2808    SDValue ARMcc2 = DAG.getConstant(CondCode2, MVT::i32);
2809    // FIXME: Needs another CMP because flag can have but one use.
2810    SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl);
2811    Result = DAG.getNode(ARMISD::CMOV, dl, VT,
2812                         Result, TrueVal, ARMcc2, CCR, Cmp2);
2813  }
2814  return Result;
2815}
2816
2817/// canChangeToInt - Given the fp compare operand, return true if it is suitable
2818/// to morph to an integer compare sequence.
2819static bool canChangeToInt(SDValue Op, bool &SeenZero,
2820                           const ARMSubtarget *Subtarget) {
2821  SDNode *N = Op.getNode();
2822  if (!N->hasOneUse())
2823    // Otherwise it requires moving the value from fp to integer registers.
2824    return false;
2825  if (!N->getNumValues())
2826    return false;
2827  EVT VT = Op.getValueType();
2828  if (VT != MVT::f32 && !Subtarget->isFPBrccSlow())
2829    // f32 case is generally profitable. f64 case only makes sense when vcmpe +
2830    // vmrs are very slow, e.g. cortex-a8.
2831    return false;
2832
2833  if (isFloatingPointZero(Op)) {
2834    SeenZero = true;
2835    return true;
2836  }
2837  return ISD::isNormalLoad(N);
2838}
2839
2840static SDValue bitcastf32Toi32(SDValue Op, SelectionDAG &DAG) {
2841  if (isFloatingPointZero(Op))
2842    return DAG.getConstant(0, MVT::i32);
2843
2844  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op))
2845    return DAG.getLoad(MVT::i32, Op.getDebugLoc(),
2846                       Ld->getChain(), Ld->getBasePtr(), Ld->getPointerInfo(),
2847                       Ld->isVolatile(), Ld->isNonTemporal(),
2848                       Ld->getAlignment());
2849
2850  llvm_unreachable("Unknown VFP cmp argument!");
2851}
2852
2853static void expandf64Toi32(SDValue Op, SelectionDAG &DAG,
2854                           SDValue &RetVal1, SDValue &RetVal2) {
2855  if (isFloatingPointZero(Op)) {
2856    RetVal1 = DAG.getConstant(0, MVT::i32);
2857    RetVal2 = DAG.getConstant(0, MVT::i32);
2858    return;
2859  }
2860
2861  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) {
2862    SDValue Ptr = Ld->getBasePtr();
2863    RetVal1 = DAG.getLoad(MVT::i32, Op.getDebugLoc(),
2864                          Ld->getChain(), Ptr,
2865                          Ld->getPointerInfo(),
2866                          Ld->isVolatile(), Ld->isNonTemporal(),
2867                          Ld->getAlignment());
2868
2869    EVT PtrType = Ptr.getValueType();
2870    unsigned NewAlign = MinAlign(Ld->getAlignment(), 4);
2871    SDValue NewPtr = DAG.getNode(ISD::ADD, Op.getDebugLoc(),
2872                                 PtrType, Ptr, DAG.getConstant(4, PtrType));
2873    RetVal2 = DAG.getLoad(MVT::i32, Op.getDebugLoc(),
2874                          Ld->getChain(), NewPtr,
2875                          Ld->getPointerInfo().getWithOffset(4),
2876                          Ld->isVolatile(), Ld->isNonTemporal(),
2877                          NewAlign);
2878    return;
2879  }
2880
2881  llvm_unreachable("Unknown VFP cmp argument!");
2882}
2883
2884/// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some
2885/// f32 and even f64 comparisons to integer ones.
2886SDValue
2887ARMTargetLowering::OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const {
2888  SDValue Chain = Op.getOperand(0);
2889  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
2890  SDValue LHS = Op.getOperand(2);
2891  SDValue RHS = Op.getOperand(3);
2892  SDValue Dest = Op.getOperand(4);
2893  DebugLoc dl = Op.getDebugLoc();
2894
2895  bool SeenZero = false;
2896  if (canChangeToInt(LHS, SeenZero, Subtarget) &&
2897      canChangeToInt(RHS, SeenZero, Subtarget) &&
2898      // If one of the operand is zero, it's safe to ignore the NaN case since
2899      // we only care about equality comparisons.
2900      (SeenZero || (DAG.isKnownNeverNaN(LHS) && DAG.isKnownNeverNaN(RHS)))) {
2901    // If unsafe fp math optimization is enabled and there are no other uses of
2902    // the CMP operands, and the condition code is EQ or NE, we can optimize it
2903    // to an integer comparison.
2904    if (CC == ISD::SETOEQ)
2905      CC = ISD::SETEQ;
2906    else if (CC == ISD::SETUNE)
2907      CC = ISD::SETNE;
2908
2909    SDValue ARMcc;
2910    if (LHS.getValueType() == MVT::f32) {
2911      LHS = bitcastf32Toi32(LHS, DAG);
2912      RHS = bitcastf32Toi32(RHS, DAG);
2913      SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
2914      SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2915      return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
2916                         Chain, Dest, ARMcc, CCR, Cmp);
2917    }
2918
2919    SDValue LHS1, LHS2;
2920    SDValue RHS1, RHS2;
2921    expandf64Toi32(LHS, DAG, LHS1, LHS2);
2922    expandf64Toi32(RHS, DAG, RHS1, RHS2);
2923    ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
2924    ARMcc = DAG.getConstant(CondCode, MVT::i32);
2925    SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
2926    SDValue Ops[] = { Chain, ARMcc, LHS1, LHS2, RHS1, RHS2, Dest };
2927    return DAG.getNode(ARMISD::BCC_i64, dl, VTList, Ops, 7);
2928  }
2929
2930  return SDValue();
2931}
2932
2933SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
2934  SDValue Chain = Op.getOperand(0);
2935  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
2936  SDValue LHS = Op.getOperand(2);
2937  SDValue RHS = Op.getOperand(3);
2938  SDValue Dest = Op.getOperand(4);
2939  DebugLoc dl = Op.getDebugLoc();
2940
2941  if (LHS.getValueType() == MVT::i32) {
2942    SDValue ARMcc;
2943    SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
2944    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2945    return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
2946                       Chain, Dest, ARMcc, CCR, Cmp);
2947  }
2948
2949  assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
2950
2951  if (UnsafeFPMath &&
2952      (CC == ISD::SETEQ || CC == ISD::SETOEQ ||
2953       CC == ISD::SETNE || CC == ISD::SETUNE)) {
2954    SDValue Result = OptimizeVFPBrcond(Op, DAG);
2955    if (Result.getNode())
2956      return Result;
2957  }
2958
2959  ARMCC::CondCodes CondCode, CondCode2;
2960  FPCCToARMCC(CC, CondCode, CondCode2);
2961
2962  SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
2963  SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
2964  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2965  SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
2966  SDValue Ops[] = { Chain, Dest, ARMcc, CCR, Cmp };
2967  SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
2968  if (CondCode2 != ARMCC::AL) {
2969    ARMcc = DAG.getConstant(CondCode2, MVT::i32);
2970    SDValue Ops[] = { Res, Dest, ARMcc, CCR, Res.getValue(1) };
2971    Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
2972  }
2973  return Res;
2974}
2975
2976SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
2977  SDValue Chain = Op.getOperand(0);
2978  SDValue Table = Op.getOperand(1);
2979  SDValue Index = Op.getOperand(2);
2980  DebugLoc dl = Op.getDebugLoc();
2981
2982  EVT PTy = getPointerTy();
2983  JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
2984  ARMFunctionInfo *AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
2985  SDValue UId = DAG.getConstant(AFI->createJumpTableUId(), PTy);
2986  SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
2987  Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI, UId);
2988  Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, PTy));
2989  SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
2990  if (Subtarget->isThumb2()) {
2991    // Thumb2 uses a two-level jump. That is, it jumps into the jump table
2992    // which does another jump to the destination. This also makes it easier
2993    // to translate it to TBB / TBH later.
2994    // FIXME: This might not work if the function is extremely large.
2995    return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain,
2996                       Addr, Op.getOperand(2), JTI, UId);
2997  }
2998  if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2999    Addr = DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr,
3000                       MachinePointerInfo::getJumpTable(),
3001                       false, false, 0);
3002    Chain = Addr.getValue(1);
3003    Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, Table);
3004    return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
3005  } else {
3006    Addr = DAG.getLoad(PTy, dl, Chain, Addr,
3007                       MachinePointerInfo::getJumpTable(), false, false, 0);
3008    Chain = Addr.getValue(1);
3009    return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
3010  }
3011}
3012
3013static SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
3014  DebugLoc dl = Op.getDebugLoc();
3015  unsigned Opc;
3016
3017  switch (Op.getOpcode()) {
3018  default:
3019    assert(0 && "Invalid opcode!");
3020  case ISD::FP_TO_SINT:
3021    Opc = ARMISD::FTOSI;
3022    break;
3023  case ISD::FP_TO_UINT:
3024    Opc = ARMISD::FTOUI;
3025    break;
3026  }
3027  Op = DAG.getNode(Opc, dl, MVT::f32, Op.getOperand(0));
3028  return DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3029}
3030
3031static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
3032  EVT VT = Op.getValueType();
3033  DebugLoc dl = Op.getDebugLoc();
3034
3035  assert(Op.getOperand(0).getValueType() == MVT::v4i16 &&
3036         "Invalid type for custom lowering!");
3037  if (VT != MVT::v4f32)
3038    return DAG.UnrollVectorOp(Op.getNode());
3039
3040  unsigned CastOpc;
3041  unsigned Opc;
3042  switch (Op.getOpcode()) {
3043  default:
3044    assert(0 && "Invalid opcode!");
3045  case ISD::SINT_TO_FP:
3046    CastOpc = ISD::SIGN_EXTEND;
3047    Opc = ISD::SINT_TO_FP;
3048    break;
3049  case ISD::UINT_TO_FP:
3050    CastOpc = ISD::ZERO_EXTEND;
3051    Opc = ISD::UINT_TO_FP;
3052    break;
3053  }
3054
3055  Op = DAG.getNode(CastOpc, dl, MVT::v4i32, Op.getOperand(0));
3056  return DAG.getNode(Opc, dl, VT, Op);
3057}
3058
3059static SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
3060  EVT VT = Op.getValueType();
3061  if (VT.isVector())
3062    return LowerVectorINT_TO_FP(Op, DAG);
3063
3064  DebugLoc dl = Op.getDebugLoc();
3065  unsigned Opc;
3066
3067  switch (Op.getOpcode()) {
3068  default:
3069    assert(0 && "Invalid opcode!");
3070  case ISD::SINT_TO_FP:
3071    Opc = ARMISD::SITOF;
3072    break;
3073  case ISD::UINT_TO_FP:
3074    Opc = ARMISD::UITOF;
3075    break;
3076  }
3077
3078  Op = DAG.getNode(ISD::BITCAST, dl, MVT::f32, Op.getOperand(0));
3079  return DAG.getNode(Opc, dl, VT, Op);
3080}
3081
3082SDValue ARMTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
3083  // Implement fcopysign with a fabs and a conditional fneg.
3084  SDValue Tmp0 = Op.getOperand(0);
3085  SDValue Tmp1 = Op.getOperand(1);
3086  DebugLoc dl = Op.getDebugLoc();
3087  EVT VT = Op.getValueType();
3088  EVT SrcVT = Tmp1.getValueType();
3089  bool InGPR = Tmp0.getOpcode() == ISD::BITCAST ||
3090    Tmp0.getOpcode() == ARMISD::VMOVDRR;
3091  bool UseNEON = !InGPR && Subtarget->hasNEON();
3092
3093  if (UseNEON) {
3094    // Use VBSL to copy the sign bit.
3095    unsigned EncodedVal = ARM_AM::createNEONModImm(0x6, 0x80);
3096    SDValue Mask = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v2i32,
3097                               DAG.getTargetConstant(EncodedVal, MVT::i32));
3098    EVT OpVT = (VT == MVT::f32) ? MVT::v2i32 : MVT::v1i64;
3099    if (VT == MVT::f64)
3100      Mask = DAG.getNode(ARMISD::VSHL, dl, OpVT,
3101                         DAG.getNode(ISD::BITCAST, dl, OpVT, Mask),
3102                         DAG.getConstant(32, MVT::i32));
3103    else /*if (VT == MVT::f32)*/
3104      Tmp0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp0);
3105    if (SrcVT == MVT::f32) {
3106      Tmp1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp1);
3107      if (VT == MVT::f64)
3108        Tmp1 = DAG.getNode(ARMISD::VSHL, dl, OpVT,
3109                           DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1),
3110                           DAG.getConstant(32, MVT::i32));
3111    } else if (VT == MVT::f32)
3112      Tmp1 = DAG.getNode(ARMISD::VSHRu, dl, MVT::v1i64,
3113                         DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, Tmp1),
3114                         DAG.getConstant(32, MVT::i32));
3115    Tmp0 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp0);
3116    Tmp1 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1);
3117
3118    SDValue AllOnes = DAG.getTargetConstant(ARM_AM::createNEONModImm(0xe, 0xff),
3119                                            MVT::i32);
3120    AllOnes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v8i8, AllOnes);
3121    SDValue MaskNot = DAG.getNode(ISD::XOR, dl, OpVT, Mask,
3122                                  DAG.getNode(ISD::BITCAST, dl, OpVT, AllOnes));
3123
3124    SDValue Res = DAG.getNode(ISD::OR, dl, OpVT,
3125                              DAG.getNode(ISD::AND, dl, OpVT, Tmp1, Mask),
3126                              DAG.getNode(ISD::AND, dl, OpVT, Tmp0, MaskNot));
3127    if (VT == MVT::f32) {
3128      Res = DAG.getNode(ISD::BITCAST, dl, MVT::v2f32, Res);
3129      Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, Res,
3130                        DAG.getConstant(0, MVT::i32));
3131    } else {
3132      Res = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Res);
3133    }
3134
3135    return Res;
3136  }
3137
3138  // Bitcast operand 1 to i32.
3139  if (SrcVT == MVT::f64)
3140    Tmp1 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
3141                       &Tmp1, 1).getValue(1);
3142  Tmp1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp1);
3143
3144  // Or in the signbit with integer operations.
3145  SDValue Mask1 = DAG.getConstant(0x80000000, MVT::i32);
3146  SDValue Mask2 = DAG.getConstant(0x7fffffff, MVT::i32);
3147  Tmp1 = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp1, Mask1);
3148  if (VT == MVT::f32) {
3149    Tmp0 = DAG.getNode(ISD::AND, dl, MVT::i32,
3150                       DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp0), Mask2);
3151    return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
3152                       DAG.getNode(ISD::OR, dl, MVT::i32, Tmp0, Tmp1));
3153  }
3154
3155  // f64: Or the high part with signbit and then combine two parts.
3156  Tmp0 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
3157                     &Tmp0, 1);
3158  SDValue Lo = Tmp0.getValue(0);
3159  SDValue Hi = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp0.getValue(1), Mask2);
3160  Hi = DAG.getNode(ISD::OR, dl, MVT::i32, Hi, Tmp1);
3161  return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
3162}
3163
3164SDValue ARMTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{
3165  MachineFunction &MF = DAG.getMachineFunction();
3166  MachineFrameInfo *MFI = MF.getFrameInfo();
3167  MFI->setReturnAddressIsTaken(true);
3168
3169  EVT VT = Op.getValueType();
3170  DebugLoc dl = Op.getDebugLoc();
3171  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3172  if (Depth) {
3173    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
3174    SDValue Offset = DAG.getConstant(4, MVT::i32);
3175    return DAG.getLoad(VT, dl, DAG.getEntryNode(),
3176                       DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
3177                       MachinePointerInfo(), false, false, 0);
3178  }
3179
3180  // Return LR, which contains the return address. Mark it an implicit live-in.
3181  unsigned Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32));
3182  return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
3183}
3184
3185SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
3186  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3187  MFI->setFrameAddressIsTaken(true);
3188
3189  EVT VT = Op.getValueType();
3190  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
3191  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3192  unsigned FrameReg = (Subtarget->isThumb() || Subtarget->isTargetDarwin())
3193    ? ARM::R7 : ARM::R11;
3194  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
3195  while (Depth--)
3196    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
3197                            MachinePointerInfo(),
3198                            false, false, 0);
3199  return FrameAddr;
3200}
3201
3202/// ExpandBITCAST - If the target supports VFP, this function is called to
3203/// expand a bit convert where either the source or destination type is i64 to
3204/// use a VMOVDRR or VMOVRRD node.  This should not be done when the non-i64
3205/// operand type is illegal (e.g., v2f32 for a target that doesn't support
3206/// vectors), since the legalizer won't know what to do with that.
3207static SDValue ExpandBITCAST(SDNode *N, SelectionDAG &DAG) {
3208  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3209  DebugLoc dl = N->getDebugLoc();
3210  SDValue Op = N->getOperand(0);
3211
3212  // This function is only supposed to be called for i64 types, either as the
3213  // source or destination of the bit convert.
3214  EVT SrcVT = Op.getValueType();
3215  EVT DstVT = N->getValueType(0);
3216  assert((SrcVT == MVT::i64 || DstVT == MVT::i64) &&
3217         "ExpandBITCAST called for non-i64 type");
3218
3219  // Turn i64->f64 into VMOVDRR.
3220  if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) {
3221    SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
3222                             DAG.getConstant(0, MVT::i32));
3223    SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
3224                             DAG.getConstant(1, MVT::i32));
3225    return DAG.getNode(ISD::BITCAST, dl, DstVT,
3226                       DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi));
3227  }
3228
3229  // Turn f64->i64 into VMOVRRD.
3230  if (DstVT == MVT::i64 && TLI.isTypeLegal(SrcVT)) {
3231    SDValue Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
3232                              DAG.getVTList(MVT::i32, MVT::i32), &Op, 1);
3233    // Merge the pieces into a single i64 value.
3234    return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1));
3235  }
3236
3237  return SDValue();
3238}
3239
3240/// getZeroVector - Returns a vector of specified type with all zero elements.
3241/// Zero vectors are used to represent vector negation and in those cases
3242/// will be implemented with the NEON VNEG instruction.  However, VNEG does
3243/// not support i64 elements, so sometimes the zero vectors will need to be
3244/// explicitly constructed.  Regardless, use a canonical VMOV to create the
3245/// zero vector.
3246static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
3247  assert(VT.isVector() && "Expected a vector type");
3248  // The canonical modified immediate encoding of a zero vector is....0!
3249  SDValue EncodedVal = DAG.getTargetConstant(0, MVT::i32);
3250  EVT VmovVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
3251  SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, EncodedVal);
3252  return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
3253}
3254
3255/// LowerShiftRightParts - Lower SRA_PARTS, which returns two
3256/// i32 values and take a 2 x i32 value to shift plus a shift amount.
3257SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op,
3258                                                SelectionDAG &DAG) const {
3259  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
3260  EVT VT = Op.getValueType();
3261  unsigned VTBits = VT.getSizeInBits();
3262  DebugLoc dl = Op.getDebugLoc();
3263  SDValue ShOpLo = Op.getOperand(0);
3264  SDValue ShOpHi = Op.getOperand(1);
3265  SDValue ShAmt  = Op.getOperand(2);
3266  SDValue ARMcc;
3267  unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
3268
3269  assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
3270
3271  SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
3272                                 DAG.getConstant(VTBits, MVT::i32), ShAmt);
3273  SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
3274  SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
3275                                   DAG.getConstant(VTBits, MVT::i32));
3276  SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
3277  SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
3278  SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
3279
3280  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3281  SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
3282                          ARMcc, DAG, dl);
3283  SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
3284  SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc,
3285                           CCR, Cmp);
3286
3287  SDValue Ops[2] = { Lo, Hi };
3288  return DAG.getMergeValues(Ops, 2, dl);
3289}
3290
3291/// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
3292/// i32 values and take a 2 x i32 value to shift plus a shift amount.
3293SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op,
3294                                               SelectionDAG &DAG) const {
3295  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
3296  EVT VT = Op.getValueType();
3297  unsigned VTBits = VT.getSizeInBits();
3298  DebugLoc dl = Op.getDebugLoc();
3299  SDValue ShOpLo = Op.getOperand(0);
3300  SDValue ShOpHi = Op.getOperand(1);
3301  SDValue ShAmt  = Op.getOperand(2);
3302  SDValue ARMcc;
3303
3304  assert(Op.getOpcode() == ISD::SHL_PARTS);
3305  SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
3306                                 DAG.getConstant(VTBits, MVT::i32), ShAmt);
3307  SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
3308  SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
3309                                   DAG.getConstant(VTBits, MVT::i32));
3310  SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
3311  SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
3312
3313  SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
3314  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3315  SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
3316                          ARMcc, DAG, dl);
3317  SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
3318  SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, Tmp3, ARMcc,
3319                           CCR, Cmp);
3320
3321  SDValue Ops[2] = { Lo, Hi };
3322  return DAG.getMergeValues(Ops, 2, dl);
3323}
3324
3325SDValue ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
3326                                            SelectionDAG &DAG) const {
3327  // The rounding mode is in bits 23:22 of the FPSCR.
3328  // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
3329  // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
3330  // so that the shift + and get folded into a bitfield extract.
3331  DebugLoc dl = Op.getDebugLoc();
3332  SDValue FPSCR = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::i32,
3333                              DAG.getConstant(Intrinsic::arm_get_fpscr,
3334                                              MVT::i32));
3335  SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPSCR,
3336                                  DAG.getConstant(1U << 22, MVT::i32));
3337  SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds,
3338                              DAG.getConstant(22, MVT::i32));
3339  return DAG.getNode(ISD::AND, dl, MVT::i32, RMODE,
3340                     DAG.getConstant(3, MVT::i32));
3341}
3342
3343static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG,
3344                         const ARMSubtarget *ST) {
3345  EVT VT = N->getValueType(0);
3346  DebugLoc dl = N->getDebugLoc();
3347
3348  if (!ST->hasV6T2Ops())
3349    return SDValue();
3350
3351  SDValue rbit = DAG.getNode(ARMISD::RBIT, dl, VT, N->getOperand(0));
3352  return DAG.getNode(ISD::CTLZ, dl, VT, rbit);
3353}
3354
3355static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
3356                          const ARMSubtarget *ST) {
3357  EVT VT = N->getValueType(0);
3358  DebugLoc dl = N->getDebugLoc();
3359
3360  if (!VT.isVector())
3361    return SDValue();
3362
3363  // Lower vector shifts on NEON to use VSHL.
3364  assert(ST->hasNEON() && "unexpected vector shift");
3365
3366  // Left shifts translate directly to the vshiftu intrinsic.
3367  if (N->getOpcode() == ISD::SHL)
3368    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
3369                       DAG.getConstant(Intrinsic::arm_neon_vshiftu, MVT::i32),
3370                       N->getOperand(0), N->getOperand(1));
3371
3372  assert((N->getOpcode() == ISD::SRA ||
3373          N->getOpcode() == ISD::SRL) && "unexpected vector shift opcode");
3374
3375  // NEON uses the same intrinsics for both left and right shifts.  For
3376  // right shifts, the shift amounts are negative, so negate the vector of
3377  // shift amounts.
3378  EVT ShiftVT = N->getOperand(1).getValueType();
3379  SDValue NegatedCount = DAG.getNode(ISD::SUB, dl, ShiftVT,
3380                                     getZeroVector(ShiftVT, DAG, dl),
3381                                     N->getOperand(1));
3382  Intrinsic::ID vshiftInt = (N->getOpcode() == ISD::SRA ?
3383                             Intrinsic::arm_neon_vshifts :
3384                             Intrinsic::arm_neon_vshiftu);
3385  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
3386                     DAG.getConstant(vshiftInt, MVT::i32),
3387                     N->getOperand(0), NegatedCount);
3388}
3389
3390static SDValue Expand64BitShift(SDNode *N, SelectionDAG &DAG,
3391                                const ARMSubtarget *ST) {
3392  EVT VT = N->getValueType(0);
3393  DebugLoc dl = N->getDebugLoc();
3394
3395  // We can get here for a node like i32 = ISD::SHL i32, i64
3396  if (VT != MVT::i64)
3397    return SDValue();
3398
3399  assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) &&
3400         "Unknown shift to lower!");
3401
3402  // We only lower SRA, SRL of 1 here, all others use generic lowering.
3403  if (!isa<ConstantSDNode>(N->getOperand(1)) ||
3404      cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 1)
3405    return SDValue();
3406
3407  // If we are in thumb mode, we don't have RRX.
3408  if (ST->isThumb1Only()) return SDValue();
3409
3410  // Okay, we have a 64-bit SRA or SRL of 1.  Lower this to an RRX expr.
3411  SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
3412                           DAG.getConstant(0, MVT::i32));
3413  SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
3414                           DAG.getConstant(1, MVT::i32));
3415
3416  // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
3417  // captures the result into a carry flag.
3418  unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
3419  Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Glue), &Hi, 1);
3420
3421  // The low part is an ARMISD::RRX operand, which shifts the carry in.
3422  Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));
3423
3424  // Merge the pieces into a single i64 value.
3425 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
3426}
3427
3428static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
3429  SDValue TmpOp0, TmpOp1;
3430  bool Invert = false;
3431  bool Swap = false;
3432  unsigned Opc = 0;
3433
3434  SDValue Op0 = Op.getOperand(0);
3435  SDValue Op1 = Op.getOperand(1);
3436  SDValue CC = Op.getOperand(2);
3437  EVT VT = Op.getValueType();
3438  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
3439  DebugLoc dl = Op.getDebugLoc();
3440
3441  if (Op.getOperand(1).getValueType().isFloatingPoint()) {
3442    switch (SetCCOpcode) {
3443    default: llvm_unreachable("Illegal FP comparison"); break;
3444    case ISD::SETUNE:
3445    case ISD::SETNE:  Invert = true; // Fallthrough
3446    case ISD::SETOEQ:
3447    case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
3448    case ISD::SETOLT:
3449    case ISD::SETLT: Swap = true; // Fallthrough
3450    case ISD::SETOGT:
3451    case ISD::SETGT:  Opc = ARMISD::VCGT; break;
3452    case ISD::SETOLE:
3453    case ISD::SETLE:  Swap = true; // Fallthrough
3454    case ISD::SETOGE:
3455    case ISD::SETGE: Opc = ARMISD::VCGE; break;
3456    case ISD::SETUGE: Swap = true; // Fallthrough
3457    case ISD::SETULE: Invert = true; Opc = ARMISD::VCGT; break;
3458    case ISD::SETUGT: Swap = true; // Fallthrough
3459    case ISD::SETULT: Invert = true; Opc = ARMISD::VCGE; break;
3460    case ISD::SETUEQ: Invert = true; // Fallthrough
3461    case ISD::SETONE:
3462      // Expand this to (OLT | OGT).
3463      TmpOp0 = Op0;
3464      TmpOp1 = Op1;
3465      Opc = ISD::OR;
3466      Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
3467      Op1 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp0, TmpOp1);
3468      break;
3469    case ISD::SETUO: Invert = true; // Fallthrough
3470    case ISD::SETO:
3471      // Expand this to (OLT | OGE).
3472      TmpOp0 = Op0;
3473      TmpOp1 = Op1;
3474      Opc = ISD::OR;
3475      Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
3476      Op1 = DAG.getNode(ARMISD::VCGE, dl, VT, TmpOp0, TmpOp1);
3477      break;
3478    }
3479  } else {
3480    // Integer comparisons.
3481    switch (SetCCOpcode) {
3482    default: llvm_unreachable("Illegal integer comparison"); break;
3483    case ISD::SETNE:  Invert = true;
3484    case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
3485    case ISD::SETLT:  Swap = true;
3486    case ISD::SETGT:  Opc = ARMISD::VCGT; break;
3487    case ISD::SETLE:  Swap = true;
3488    case ISD::SETGE:  Opc = ARMISD::VCGE; break;
3489    case ISD::SETULT: Swap = true;
3490    case ISD::SETUGT: Opc = ARMISD::VCGTU; break;
3491    case ISD::SETULE: Swap = true;
3492    case ISD::SETUGE: Opc = ARMISD::VCGEU; break;
3493    }
3494
3495    // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
3496    if (Opc == ARMISD::VCEQ) {
3497
3498      SDValue AndOp;
3499      if (ISD::isBuildVectorAllZeros(Op1.getNode()))
3500        AndOp = Op0;
3501      else if (ISD::isBuildVectorAllZeros(Op0.getNode()))
3502        AndOp = Op1;
3503
3504      // Ignore bitconvert.
3505      if (AndOp.getNode() && AndOp.getOpcode() == ISD::BITCAST)
3506        AndOp = AndOp.getOperand(0);
3507
3508      if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) {
3509        Opc = ARMISD::VTST;
3510        Op0 = DAG.getNode(ISD::BITCAST, dl, VT, AndOp.getOperand(0));
3511        Op1 = DAG.getNode(ISD::BITCAST, dl, VT, AndOp.getOperand(1));
3512        Invert = !Invert;
3513      }
3514    }
3515  }
3516
3517  if (Swap)
3518    std::swap(Op0, Op1);
3519
3520  // If one of the operands is a constant vector zero, attempt to fold the
3521  // comparison to a specialized compare-against-zero form.
3522  SDValue SingleOp;
3523  if (ISD::isBuildVectorAllZeros(Op1.getNode()))
3524    SingleOp = Op0;
3525  else if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
3526    if (Opc == ARMISD::VCGE)
3527      Opc = ARMISD::VCLEZ;
3528    else if (Opc == ARMISD::VCGT)
3529      Opc = ARMISD::VCLTZ;
3530    SingleOp = Op1;
3531  }
3532
3533  SDValue Result;
3534  if (SingleOp.getNode()) {
3535    switch (Opc) {
3536    case ARMISD::VCEQ:
3537      Result = DAG.getNode(ARMISD::VCEQZ, dl, VT, SingleOp); break;
3538    case ARMISD::VCGE:
3539      Result = DAG.getNode(ARMISD::VCGEZ, dl, VT, SingleOp); break;
3540    case ARMISD::VCLEZ:
3541      Result = DAG.getNode(ARMISD::VCLEZ, dl, VT, SingleOp); break;
3542    case ARMISD::VCGT:
3543      Result = DAG.getNode(ARMISD::VCGTZ, dl, VT, SingleOp); break;
3544    case ARMISD::VCLTZ:
3545      Result = DAG.getNode(ARMISD::VCLTZ, dl, VT, SingleOp); break;
3546    default:
3547      Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
3548    }
3549  } else {
3550     Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
3551  }
3552
3553  if (Invert)
3554    Result = DAG.getNOT(dl, Result, VT);
3555
3556  return Result;
3557}
3558
3559/// isNEONModifiedImm - Check if the specified splat value corresponds to a
3560/// valid vector constant for a NEON instruction with a "modified immediate"
3561/// operand (e.g., VMOV).  If so, return the encoded value.
3562static SDValue isNEONModifiedImm(uint64_t SplatBits, uint64_t SplatUndef,
3563                                 unsigned SplatBitSize, SelectionDAG &DAG,
3564                                 EVT &VT, bool is128Bits, NEONModImmType type) {
3565  unsigned OpCmode, Imm;
3566
3567  // SplatBitSize is set to the smallest size that splats the vector, so a
3568  // zero vector will always have SplatBitSize == 8.  However, NEON modified
3569  // immediate instructions others than VMOV do not support the 8-bit encoding
3570  // of a zero vector, and the default encoding of zero is supposed to be the
3571  // 32-bit version.
3572  if (SplatBits == 0)
3573    SplatBitSize = 32;
3574
3575  switch (SplatBitSize) {
3576  case 8:
3577    if (type != VMOVModImm)
3578      return SDValue();
3579    // Any 1-byte value is OK.  Op=0, Cmode=1110.
3580    assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
3581    OpCmode = 0xe;
3582    Imm = SplatBits;
3583    VT = is128Bits ? MVT::v16i8 : MVT::v8i8;
3584    break;
3585
3586  case 16:
3587    // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
3588    VT = is128Bits ? MVT::v8i16 : MVT::v4i16;
3589    if ((SplatBits & ~0xff) == 0) {
3590      // Value = 0x00nn: Op=x, Cmode=100x.
3591      OpCmode = 0x8;
3592      Imm = SplatBits;
3593      break;
3594    }
3595    if ((SplatBits & ~0xff00) == 0) {
3596      // Value = 0xnn00: Op=x, Cmode=101x.
3597      OpCmode = 0xa;
3598      Imm = SplatBits >> 8;
3599      break;
3600    }
3601    return SDValue();
3602
3603  case 32:
3604    // NEON's 32-bit VMOV supports splat values where:
3605    // * only one byte is nonzero, or
3606    // * the least significant byte is 0xff and the second byte is nonzero, or
3607    // * the least significant 2 bytes are 0xff and the third is nonzero.
3608    VT = is128Bits ? MVT::v4i32 : MVT::v2i32;
3609    if ((SplatBits & ~0xff) == 0) {
3610      // Value = 0x000000nn: Op=x, Cmode=000x.
3611      OpCmode = 0;
3612      Imm = SplatBits;
3613      break;
3614    }
3615    if ((SplatBits & ~0xff00) == 0) {
3616      // Value = 0x0000nn00: Op=x, Cmode=001x.
3617      OpCmode = 0x2;
3618      Imm = SplatBits >> 8;
3619      break;
3620    }
3621    if ((SplatBits & ~0xff0000) == 0) {
3622      // Value = 0x00nn0000: Op=x, Cmode=010x.
3623      OpCmode = 0x4;
3624      Imm = SplatBits >> 16;
3625      break;
3626    }
3627    if ((SplatBits & ~0xff000000) == 0) {
3628      // Value = 0xnn000000: Op=x, Cmode=011x.
3629      OpCmode = 0x6;
3630      Imm = SplatBits >> 24;
3631      break;
3632    }
3633
3634    // cmode == 0b1100 and cmode == 0b1101 are not supported for VORR or VBIC
3635    if (type == OtherModImm) return SDValue();
3636
3637    if ((SplatBits & ~0xffff) == 0 &&
3638        ((SplatBits | SplatUndef) & 0xff) == 0xff) {
3639      // Value = 0x0000nnff: Op=x, Cmode=1100.
3640      OpCmode = 0xc;
3641      Imm = SplatBits >> 8;
3642      SplatBits |= 0xff;
3643      break;
3644    }
3645
3646    if ((SplatBits & ~0xffffff) == 0 &&
3647        ((SplatBits | SplatUndef) & 0xffff) == 0xffff) {
3648      // Value = 0x00nnffff: Op=x, Cmode=1101.
3649      OpCmode = 0xd;
3650      Imm = SplatBits >> 16;
3651      SplatBits |= 0xffff;
3652      break;
3653    }
3654
3655    // Note: there are a few 32-bit splat values (specifically: 00ffff00,
3656    // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
3657    // VMOV.I32.  A (very) minor optimization would be to replicate the value
3658    // and fall through here to test for a valid 64-bit splat.  But, then the
3659    // caller would also need to check and handle the change in size.
3660    return SDValue();
3661
3662  case 64: {
3663    if (type != VMOVModImm)
3664      return SDValue();
3665    // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
3666    uint64_t BitMask = 0xff;
3667    uint64_t Val = 0;
3668    unsigned ImmMask = 1;
3669    Imm = 0;
3670    for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
3671      if (((SplatBits | SplatUndef) & BitMask) == BitMask) {
3672        Val |= BitMask;
3673        Imm |= ImmMask;
3674      } else if ((SplatBits & BitMask) != 0) {
3675        return SDValue();
3676      }
3677      BitMask <<= 8;
3678      ImmMask <<= 1;
3679    }
3680    // Op=1, Cmode=1110.
3681    OpCmode = 0x1e;
3682    SplatBits = Val;
3683    VT = is128Bits ? MVT::v2i64 : MVT::v1i64;
3684    break;
3685  }
3686
3687  default:
3688    llvm_unreachable("unexpected size for isNEONModifiedImm");
3689    return SDValue();
3690  }
3691
3692  unsigned EncodedVal = ARM_AM::createNEONModImm(OpCmode, Imm);
3693  return DAG.getTargetConstant(EncodedVal, MVT::i32);
3694}
3695
3696static bool isVEXTMask(const SmallVectorImpl<int> &M, EVT VT,
3697                       bool &ReverseVEXT, unsigned &Imm) {
3698  unsigned NumElts = VT.getVectorNumElements();
3699  ReverseVEXT = false;
3700
3701  // Assume that the first shuffle index is not UNDEF.  Fail if it is.
3702  if (M[0] < 0)
3703    return false;
3704
3705  Imm = M[0];
3706
3707  // If this is a VEXT shuffle, the immediate value is the index of the first
3708  // element.  The other shuffle indices must be the successive elements after
3709  // the first one.
3710  unsigned ExpectedElt = Imm;
3711  for (unsigned i = 1; i < NumElts; ++i) {
3712    // Increment the expected index.  If it wraps around, it may still be
3713    // a VEXT but the source vectors must be swapped.
3714    ExpectedElt += 1;
3715    if (ExpectedElt == NumElts * 2) {
3716      ExpectedElt = 0;
3717      ReverseVEXT = true;
3718    }
3719
3720    if (M[i] < 0) continue; // ignore UNDEF indices
3721    if (ExpectedElt != static_cast<unsigned>(M[i]))
3722      return false;
3723  }
3724
3725  // Adjust the index value if the source operands will be swapped.
3726  if (ReverseVEXT)
3727    Imm -= NumElts;
3728
3729  return true;
3730}
3731
3732/// isVREVMask - Check if a vector shuffle corresponds to a VREV
3733/// instruction with the specified blocksize.  (The order of the elements
3734/// within each block of the vector is reversed.)
3735static bool isVREVMask(const SmallVectorImpl<int> &M, EVT VT,
3736                       unsigned BlockSize) {
3737  assert((BlockSize==16 || BlockSize==32 || BlockSize==64) &&
3738         "Only possible block sizes for VREV are: 16, 32, 64");
3739
3740  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3741  if (EltSz == 64)
3742    return false;
3743
3744  unsigned NumElts = VT.getVectorNumElements();
3745  unsigned BlockElts = M[0] + 1;
3746  // If the first shuffle index is UNDEF, be optimistic.
3747  if (M[0] < 0)
3748    BlockElts = BlockSize / EltSz;
3749
3750  if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
3751    return false;
3752
3753  for (unsigned i = 0; i < NumElts; ++i) {
3754    if (M[i] < 0) continue; // ignore UNDEF indices
3755    if ((unsigned) M[i] != (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts))
3756      return false;
3757  }
3758
3759  return true;
3760}
3761
3762static bool isVTBLMask(const SmallVectorImpl<int> &M, EVT VT) {
3763  // We can handle <8 x i8> vector shuffles. If the index in the mask is out of
3764  // range, then 0 is placed into the resulting vector. So pretty much any mask
3765  // of 8 elements can work here.
3766  return VT == MVT::v8i8 && M.size() == 8;
3767}
3768
3769static bool isVTRNMask(const SmallVectorImpl<int> &M, EVT VT,
3770                       unsigned &WhichResult) {
3771  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3772  if (EltSz == 64)
3773    return false;
3774
3775  unsigned NumElts = VT.getVectorNumElements();
3776  WhichResult = (M[0] == 0 ? 0 : 1);
3777  for (unsigned i = 0; i < NumElts; i += 2) {
3778    if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) ||
3779        (M[i+1] >= 0 && (unsigned) M[i+1] != i + NumElts + WhichResult))
3780      return false;
3781  }
3782  return true;
3783}
3784
3785/// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
3786/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
3787/// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
3788static bool isVTRN_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
3789                                unsigned &WhichResult) {
3790  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3791  if (EltSz == 64)
3792    return false;
3793
3794  unsigned NumElts = VT.getVectorNumElements();
3795  WhichResult = (M[0] == 0 ? 0 : 1);
3796  for (unsigned i = 0; i < NumElts; i += 2) {
3797    if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) ||
3798        (M[i+1] >= 0 && (unsigned) M[i+1] != i + WhichResult))
3799      return false;
3800  }
3801  return true;
3802}
3803
3804static bool isVUZPMask(const SmallVectorImpl<int> &M, EVT VT,
3805                       unsigned &WhichResult) {
3806  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3807  if (EltSz == 64)
3808    return false;
3809
3810  unsigned NumElts = VT.getVectorNumElements();
3811  WhichResult = (M[0] == 0 ? 0 : 1);
3812  for (unsigned i = 0; i != NumElts; ++i) {
3813    if (M[i] < 0) continue; // ignore UNDEF indices
3814    if ((unsigned) M[i] != 2 * i + WhichResult)
3815      return false;
3816  }
3817
3818  // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3819  if (VT.is64BitVector() && EltSz == 32)
3820    return false;
3821
3822  return true;
3823}
3824
3825/// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
3826/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
3827/// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
3828static bool isVUZP_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
3829                                unsigned &WhichResult) {
3830  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3831  if (EltSz == 64)
3832    return false;
3833
3834  unsigned Half = VT.getVectorNumElements() / 2;
3835  WhichResult = (M[0] == 0 ? 0 : 1);
3836  for (unsigned j = 0; j != 2; ++j) {
3837    unsigned Idx = WhichResult;
3838    for (unsigned i = 0; i != Half; ++i) {
3839      int MIdx = M[i + j * Half];
3840      if (MIdx >= 0 && (unsigned) MIdx != Idx)
3841        return false;
3842      Idx += 2;
3843    }
3844  }
3845
3846  // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3847  if (VT.is64BitVector() && EltSz == 32)
3848    return false;
3849
3850  return true;
3851}
3852
3853static bool isVZIPMask(const SmallVectorImpl<int> &M, EVT VT,
3854                       unsigned &WhichResult) {
3855  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3856  if (EltSz == 64)
3857    return false;
3858
3859  unsigned NumElts = VT.getVectorNumElements();
3860  WhichResult = (M[0] == 0 ? 0 : 1);
3861  unsigned Idx = WhichResult * NumElts / 2;
3862  for (unsigned i = 0; i != NumElts; i += 2) {
3863    if ((M[i] >= 0 && (unsigned) M[i] != Idx) ||
3864        (M[i+1] >= 0 && (unsigned) M[i+1] != Idx + NumElts))
3865      return false;
3866    Idx += 1;
3867  }
3868
3869  // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3870  if (VT.is64BitVector() && EltSz == 32)
3871    return false;
3872
3873  return true;
3874}
3875
3876/// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
3877/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
3878/// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
3879static bool isVZIP_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
3880                                unsigned &WhichResult) {
3881  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3882  if (EltSz == 64)
3883    return false;
3884
3885  unsigned NumElts = VT.getVectorNumElements();
3886  WhichResult = (M[0] == 0 ? 0 : 1);
3887  unsigned Idx = WhichResult * NumElts / 2;
3888  for (unsigned i = 0; i != NumElts; i += 2) {
3889    if ((M[i] >= 0 && (unsigned) M[i] != Idx) ||
3890        (M[i+1] >= 0 && (unsigned) M[i+1] != Idx))
3891      return false;
3892    Idx += 1;
3893  }
3894
3895  // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3896  if (VT.is64BitVector() && EltSz == 32)
3897    return false;
3898
3899  return true;
3900}
3901
3902// If N is an integer constant that can be moved into a register in one
3903// instruction, return an SDValue of such a constant (will become a MOV
3904// instruction).  Otherwise return null.
3905static SDValue IsSingleInstrConstant(SDValue N, SelectionDAG &DAG,
3906                                     const ARMSubtarget *ST, DebugLoc dl) {
3907  uint64_t Val;
3908  if (!isa<ConstantSDNode>(N))
3909    return SDValue();
3910  Val = cast<ConstantSDNode>(N)->getZExtValue();
3911
3912  if (ST->isThumb1Only()) {
3913    if (Val <= 255 || ~Val <= 255)
3914      return DAG.getConstant(Val, MVT::i32);
3915  } else {
3916    if (ARM_AM::getSOImmVal(Val) != -1 || ARM_AM::getSOImmVal(~Val) != -1)
3917      return DAG.getConstant(Val, MVT::i32);
3918  }
3919  return SDValue();
3920}
3921
3922// If this is a case we can't handle, return null and let the default
3923// expansion code take care of it.
3924SDValue ARMTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
3925                                             const ARMSubtarget *ST) const {
3926  BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
3927  DebugLoc dl = Op.getDebugLoc();
3928  EVT VT = Op.getValueType();
3929
3930  APInt SplatBits, SplatUndef;
3931  unsigned SplatBitSize;
3932  bool HasAnyUndefs;
3933  if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
3934    if (SplatBitSize <= 64) {
3935      // Check if an immediate VMOV works.
3936      EVT VmovVT;
3937      SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
3938                                      SplatUndef.getZExtValue(), SplatBitSize,
3939                                      DAG, VmovVT, VT.is128BitVector(),
3940                                      VMOVModImm);
3941      if (Val.getNode()) {
3942        SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, Val);
3943        return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
3944      }
3945
3946      // Try an immediate VMVN.
3947      uint64_t NegatedImm = (~SplatBits).getZExtValue();
3948      Val = isNEONModifiedImm(NegatedImm,
3949                                      SplatUndef.getZExtValue(), SplatBitSize,
3950                                      DAG, VmovVT, VT.is128BitVector(),
3951                                      VMVNModImm);
3952      if (Val.getNode()) {
3953        SDValue Vmov = DAG.getNode(ARMISD::VMVNIMM, dl, VmovVT, Val);
3954        return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
3955      }
3956    }
3957  }
3958
3959  // Scan through the operands to see if only one value is used.
3960  unsigned NumElts = VT.getVectorNumElements();
3961  bool isOnlyLowElement = true;
3962  bool usesOnlyOneValue = true;
3963  bool isConstant = true;
3964  SDValue Value;
3965  for (unsigned i = 0; i < NumElts; ++i) {
3966    SDValue V = Op.getOperand(i);
3967    if (V.getOpcode() == ISD::UNDEF)
3968      continue;
3969    if (i > 0)
3970      isOnlyLowElement = false;
3971    if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
3972      isConstant = false;
3973
3974    if (!Value.getNode())
3975      Value = V;
3976    else if (V != Value)
3977      usesOnlyOneValue = false;
3978  }
3979
3980  if (!Value.getNode())
3981    return DAG.getUNDEF(VT);
3982
3983  if (isOnlyLowElement)
3984    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
3985
3986  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
3987
3988  // Use VDUP for non-constant splats.  For f32 constant splats, reduce to
3989  // i32 and try again.
3990  if (usesOnlyOneValue && EltSize <= 32) {
3991    if (!isConstant)
3992      return DAG.getNode(ARMISD::VDUP, dl, VT, Value);
3993    if (VT.getVectorElementType().isFloatingPoint()) {
3994      SmallVector<SDValue, 8> Ops;
3995      for (unsigned i = 0; i < NumElts; ++i)
3996        Ops.push_back(DAG.getNode(ISD::BITCAST, dl, MVT::i32,
3997                                  Op.getOperand(i)));
3998      EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
3999      SDValue Val = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, &Ops[0], NumElts);
4000      Val = LowerBUILD_VECTOR(Val, DAG, ST);
4001      if (Val.getNode())
4002        return DAG.getNode(ISD::BITCAST, dl, VT, Val);
4003    }
4004    SDValue Val = IsSingleInstrConstant(Value, DAG, ST, dl);
4005    if (Val.getNode())
4006      return DAG.getNode(ARMISD::VDUP, dl, VT, Val);
4007  }
4008
4009  // If all elements are constants and the case above didn't get hit, fall back
4010  // to the default expansion, which will generate a load from the constant
4011  // pool.
4012  if (isConstant)
4013    return SDValue();
4014
4015  // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
4016  if (NumElts >= 4) {
4017    SDValue shuffle = ReconstructShuffle(Op, DAG);
4018    if (shuffle != SDValue())
4019      return shuffle;
4020  }
4021
4022  // Vectors with 32- or 64-bit elements can be built by directly assigning
4023  // the subregisters.  Lower it to an ARMISD::BUILD_VECTOR so the operands
4024  // will be legalized.
4025  if (EltSize >= 32) {
4026    // Do the expansion with floating-point types, since that is what the VFP
4027    // registers are defined to use, and since i64 is not legal.
4028    EVT EltVT = EVT::getFloatingPointVT(EltSize);
4029    EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
4030    SmallVector<SDValue, 8> Ops;
4031    for (unsigned i = 0; i < NumElts; ++i)
4032      Ops.push_back(DAG.getNode(ISD::BITCAST, dl, EltVT, Op.getOperand(i)));
4033    SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts);
4034    return DAG.getNode(ISD::BITCAST, dl, VT, Val);
4035  }
4036
4037  return SDValue();
4038}
4039
4040// Gather data to see if the operation can be modelled as a
4041// shuffle in combination with VEXTs.
4042SDValue ARMTargetLowering::ReconstructShuffle(SDValue Op,
4043                                              SelectionDAG &DAG) const {
4044  DebugLoc dl = Op.getDebugLoc();
4045  EVT VT = Op.getValueType();
4046  unsigned NumElts = VT.getVectorNumElements();
4047
4048  SmallVector<SDValue, 2> SourceVecs;
4049  SmallVector<unsigned, 2> MinElts;
4050  SmallVector<unsigned, 2> MaxElts;
4051
4052  for (unsigned i = 0; i < NumElts; ++i) {
4053    SDValue V = Op.getOperand(i);
4054    if (V.getOpcode() == ISD::UNDEF)
4055      continue;
4056    else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) {
4057      // A shuffle can only come from building a vector from various
4058      // elements of other vectors.
4059      return SDValue();
4060    }
4061
4062    // Record this extraction against the appropriate vector if possible...
4063    SDValue SourceVec = V.getOperand(0);
4064    unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
4065    bool FoundSource = false;
4066    for (unsigned j = 0; j < SourceVecs.size(); ++j) {
4067      if (SourceVecs[j] == SourceVec) {
4068        if (MinElts[j] > EltNo)
4069          MinElts[j] = EltNo;
4070        if (MaxElts[j] < EltNo)
4071          MaxElts[j] = EltNo;
4072        FoundSource = true;
4073        break;
4074      }
4075    }
4076
4077    // Or record a new source if not...
4078    if (!FoundSource) {
4079      SourceVecs.push_back(SourceVec);
4080      MinElts.push_back(EltNo);
4081      MaxElts.push_back(EltNo);
4082    }
4083  }
4084
4085  // Currently only do something sane when at most two source vectors
4086  // involved.
4087  if (SourceVecs.size() > 2)
4088    return SDValue();
4089
4090  SDValue ShuffleSrcs[2] = {DAG.getUNDEF(VT), DAG.getUNDEF(VT) };
4091  int VEXTOffsets[2] = {0, 0};
4092
4093  // This loop extracts the usage patterns of the source vectors
4094  // and prepares appropriate SDValues for a shuffle if possible.
4095  for (unsigned i = 0; i < SourceVecs.size(); ++i) {
4096    if (SourceVecs[i].getValueType() == VT) {
4097      // No VEXT necessary
4098      ShuffleSrcs[i] = SourceVecs[i];
4099      VEXTOffsets[i] = 0;
4100      continue;
4101    } else if (SourceVecs[i].getValueType().getVectorNumElements() < NumElts) {
4102      // It probably isn't worth padding out a smaller vector just to
4103      // break it down again in a shuffle.
4104      return SDValue();
4105    }
4106
4107    // Since only 64-bit and 128-bit vectors are legal on ARM and
4108    // we've eliminated the other cases...
4109    assert(SourceVecs[i].getValueType().getVectorNumElements() == 2*NumElts &&
4110           "unexpected vector sizes in ReconstructShuffle");
4111
4112    if (MaxElts[i] - MinElts[i] >= NumElts) {
4113      // Span too large for a VEXT to cope
4114      return SDValue();
4115    }
4116
4117    if (MinElts[i] >= NumElts) {
4118      // The extraction can just take the second half
4119      VEXTOffsets[i] = NumElts;
4120      ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4121                                   SourceVecs[i],
4122                                   DAG.getIntPtrConstant(NumElts));
4123    } else if (MaxElts[i] < NumElts) {
4124      // The extraction can just take the first half
4125      VEXTOffsets[i] = 0;
4126      ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4127                                   SourceVecs[i],
4128                                   DAG.getIntPtrConstant(0));
4129    } else {
4130      // An actual VEXT is needed
4131      VEXTOffsets[i] = MinElts[i];
4132      SDValue VEXTSrc1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4133                                     SourceVecs[i],
4134                                     DAG.getIntPtrConstant(0));
4135      SDValue VEXTSrc2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4136                                     SourceVecs[i],
4137                                     DAG.getIntPtrConstant(NumElts));
4138      ShuffleSrcs[i] = DAG.getNode(ARMISD::VEXT, dl, VT, VEXTSrc1, VEXTSrc2,
4139                                   DAG.getConstant(VEXTOffsets[i], MVT::i32));
4140    }
4141  }
4142
4143  SmallVector<int, 8> Mask;
4144
4145  for (unsigned i = 0; i < NumElts; ++i) {
4146    SDValue Entry = Op.getOperand(i);
4147    if (Entry.getOpcode() == ISD::UNDEF) {
4148      Mask.push_back(-1);
4149      continue;
4150    }
4151
4152    SDValue ExtractVec = Entry.getOperand(0);
4153    int ExtractElt = cast<ConstantSDNode>(Op.getOperand(i)
4154                                          .getOperand(1))->getSExtValue();
4155    if (ExtractVec == SourceVecs[0]) {
4156      Mask.push_back(ExtractElt - VEXTOffsets[0]);
4157    } else {
4158      Mask.push_back(ExtractElt + NumElts - VEXTOffsets[1]);
4159    }
4160  }
4161
4162  // Final check before we try to produce nonsense...
4163  if (isShuffleMaskLegal(Mask, VT))
4164    return DAG.getVectorShuffle(VT, dl, ShuffleSrcs[0], ShuffleSrcs[1],
4165                                &Mask[0]);
4166
4167  return SDValue();
4168}
4169
4170/// isShuffleMaskLegal - Targets can use this to indicate that they only
4171/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
4172/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
4173/// are assumed to be legal.
4174bool
4175ARMTargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
4176                                      EVT VT) const {
4177  if (VT.getVectorNumElements() == 4 &&
4178      (VT.is128BitVector() || VT.is64BitVector())) {
4179    unsigned PFIndexes[4];
4180    for (unsigned i = 0; i != 4; ++i) {
4181      if (M[i] < 0)
4182        PFIndexes[i] = 8;
4183      else
4184        PFIndexes[i] = M[i];
4185    }
4186
4187    // Compute the index in the perfect shuffle table.
4188    unsigned PFTableIndex =
4189      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
4190    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
4191    unsigned Cost = (PFEntry >> 30);
4192
4193    if (Cost <= 4)
4194      return true;
4195  }
4196
4197  bool ReverseVEXT;
4198  unsigned Imm, WhichResult;
4199
4200  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4201  return (EltSize >= 32 ||
4202          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
4203          isVREVMask(M, VT, 64) ||
4204          isVREVMask(M, VT, 32) ||
4205          isVREVMask(M, VT, 16) ||
4206          isVEXTMask(M, VT, ReverseVEXT, Imm) ||
4207          isVTBLMask(M, VT) ||
4208          isVTRNMask(M, VT, WhichResult) ||
4209          isVUZPMask(M, VT, WhichResult) ||
4210          isVZIPMask(M, VT, WhichResult) ||
4211          isVTRN_v_undef_Mask(M, VT, WhichResult) ||
4212          isVUZP_v_undef_Mask(M, VT, WhichResult) ||
4213          isVZIP_v_undef_Mask(M, VT, WhichResult));
4214}
4215
4216/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
4217/// the specified operations to build the shuffle.
4218static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
4219                                      SDValue RHS, SelectionDAG &DAG,
4220                                      DebugLoc dl) {
4221  unsigned OpNum = (PFEntry >> 26) & 0x0F;
4222  unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
4223  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
4224
4225  enum {
4226    OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
4227    OP_VREV,
4228    OP_VDUP0,
4229    OP_VDUP1,
4230    OP_VDUP2,
4231    OP_VDUP3,
4232    OP_VEXT1,
4233    OP_VEXT2,
4234    OP_VEXT3,
4235    OP_VUZPL, // VUZP, left result
4236    OP_VUZPR, // VUZP, right result
4237    OP_VZIPL, // VZIP, left result
4238    OP_VZIPR, // VZIP, right result
4239    OP_VTRNL, // VTRN, left result
4240    OP_VTRNR  // VTRN, right result
4241  };
4242
4243  if (OpNum == OP_COPY) {
4244    if (LHSID == (1*9+2)*9+3) return LHS;
4245    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
4246    return RHS;
4247  }
4248
4249  SDValue OpLHS, OpRHS;
4250  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
4251  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
4252  EVT VT = OpLHS.getValueType();
4253
4254  switch (OpNum) {
4255  default: llvm_unreachable("Unknown shuffle opcode!");
4256  case OP_VREV:
4257    // VREV divides the vector in half and swaps within the half.
4258    if (VT.getVectorElementType() == MVT::i32 ||
4259        VT.getVectorElementType() == MVT::f32)
4260      return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS);
4261    // vrev <4 x i16> -> VREV32
4262    if (VT.getVectorElementType() == MVT::i16)
4263      return DAG.getNode(ARMISD::VREV32, dl, VT, OpLHS);
4264    // vrev <4 x i8> -> VREV16
4265    assert(VT.getVectorElementType() == MVT::i8);
4266    return DAG.getNode(ARMISD::VREV16, dl, VT, OpLHS);
4267  case OP_VDUP0:
4268  case OP_VDUP1:
4269  case OP_VDUP2:
4270  case OP_VDUP3:
4271    return DAG.getNode(ARMISD::VDUPLANE, dl, VT,
4272                       OpLHS, DAG.getConstant(OpNum-OP_VDUP0, MVT::i32));
4273  case OP_VEXT1:
4274  case OP_VEXT2:
4275  case OP_VEXT3:
4276    return DAG.getNode(ARMISD::VEXT, dl, VT,
4277                       OpLHS, OpRHS,
4278                       DAG.getConstant(OpNum-OP_VEXT1+1, MVT::i32));
4279  case OP_VUZPL:
4280  case OP_VUZPR:
4281    return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
4282                       OpLHS, OpRHS).getValue(OpNum-OP_VUZPL);
4283  case OP_VZIPL:
4284  case OP_VZIPR:
4285    return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
4286                       OpLHS, OpRHS).getValue(OpNum-OP_VZIPL);
4287  case OP_VTRNL:
4288  case OP_VTRNR:
4289    return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
4290                       OpLHS, OpRHS).getValue(OpNum-OP_VTRNL);
4291  }
4292}
4293
4294static SDValue LowerVECTOR_SHUFFLEv8i8(SDValue Op,
4295                                       SmallVectorImpl<int> &ShuffleMask,
4296                                       SelectionDAG &DAG) {
4297  // Check to see if we can use the VTBL instruction.
4298  SDValue V1 = Op.getOperand(0);
4299  SDValue V2 = Op.getOperand(1);
4300  DebugLoc DL = Op.getDebugLoc();
4301
4302  SmallVector<SDValue, 8> VTBLMask;
4303  for (SmallVectorImpl<int>::iterator
4304         I = ShuffleMask.begin(), E = ShuffleMask.end(); I != E; ++I)
4305    VTBLMask.push_back(DAG.getConstant(*I, MVT::i32));
4306
4307  if (V2.getNode()->getOpcode() == ISD::UNDEF)
4308    return DAG.getNode(ARMISD::VTBL1, DL, MVT::v8i8, V1,
4309                       DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i8,
4310                                   &VTBLMask[0], 8));
4311
4312  return DAG.getNode(ARMISD::VTBL2, DL, MVT::v8i8, V1, V2,
4313                     DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i8,
4314                                 &VTBLMask[0], 8));
4315}
4316
4317static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
4318  SDValue V1 = Op.getOperand(0);
4319  SDValue V2 = Op.getOperand(1);
4320  DebugLoc dl = Op.getDebugLoc();
4321  EVT VT = Op.getValueType();
4322  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
4323  SmallVector<int, 8> ShuffleMask;
4324
4325  // Convert shuffles that are directly supported on NEON to target-specific
4326  // DAG nodes, instead of keeping them as shuffles and matching them again
4327  // during code selection.  This is more efficient and avoids the possibility
4328  // of inconsistencies between legalization and selection.
4329  // FIXME: floating-point vectors should be canonicalized to integer vectors
4330  // of the same time so that they get CSEd properly.
4331  SVN->getMask(ShuffleMask);
4332
4333  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4334  if (EltSize <= 32) {
4335    if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0], VT)) {
4336      int Lane = SVN->getSplatIndex();
4337      // If this is undef splat, generate it via "just" vdup, if possible.
4338      if (Lane == -1) Lane = 0;
4339
4340      if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
4341        return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
4342      }
4343      return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1,
4344                         DAG.getConstant(Lane, MVT::i32));
4345    }
4346
4347    bool ReverseVEXT;
4348    unsigned Imm;
4349    if (isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) {
4350      if (ReverseVEXT)
4351        std::swap(V1, V2);
4352      return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2,
4353                         DAG.getConstant(Imm, MVT::i32));
4354    }
4355
4356    if (isVREVMask(ShuffleMask, VT, 64))
4357      return DAG.getNode(ARMISD::VREV64, dl, VT, V1);
4358    if (isVREVMask(ShuffleMask, VT, 32))
4359      return DAG.getNode(ARMISD::VREV32, dl, VT, V1);
4360    if (isVREVMask(ShuffleMask, VT, 16))
4361      return DAG.getNode(ARMISD::VREV16, dl, VT, V1);
4362
4363    // Check for Neon shuffles that modify both input vectors in place.
4364    // If both results are used, i.e., if there are two shuffles with the same
4365    // source operands and with masks corresponding to both results of one of
4366    // these operations, DAG memoization will ensure that a single node is
4367    // used for both shuffles.
4368    unsigned WhichResult;
4369    if (isVTRNMask(ShuffleMask, VT, WhichResult))
4370      return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
4371                         V1, V2).getValue(WhichResult);
4372    if (isVUZPMask(ShuffleMask, VT, WhichResult))
4373      return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
4374                         V1, V2).getValue(WhichResult);
4375    if (isVZIPMask(ShuffleMask, VT, WhichResult))
4376      return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
4377                         V1, V2).getValue(WhichResult);
4378
4379    if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult))
4380      return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
4381                         V1, V1).getValue(WhichResult);
4382    if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult))
4383      return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
4384                         V1, V1).getValue(WhichResult);
4385    if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult))
4386      return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
4387                         V1, V1).getValue(WhichResult);
4388  }
4389
4390  // If the shuffle is not directly supported and it has 4 elements, use
4391  // the PerfectShuffle-generated table to synthesize it from other shuffles.
4392  unsigned NumElts = VT.getVectorNumElements();
4393  if (NumElts == 4) {
4394    unsigned PFIndexes[4];
4395    for (unsigned i = 0; i != 4; ++i) {
4396      if (ShuffleMask[i] < 0)
4397        PFIndexes[i] = 8;
4398      else
4399        PFIndexes[i] = ShuffleMask[i];
4400    }
4401
4402    // Compute the index in the perfect shuffle table.
4403    unsigned PFTableIndex =
4404      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
4405    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
4406    unsigned Cost = (PFEntry >> 30);
4407
4408    if (Cost <= 4)
4409      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
4410  }
4411
4412  // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs.
4413  if (EltSize >= 32) {
4414    // Do the expansion with floating-point types, since that is what the VFP
4415    // registers are defined to use, and since i64 is not legal.
4416    EVT EltVT = EVT::getFloatingPointVT(EltSize);
4417    EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
4418    V1 = DAG.getNode(ISD::BITCAST, dl, VecVT, V1);
4419    V2 = DAG.getNode(ISD::BITCAST, dl, VecVT, V2);
4420    SmallVector<SDValue, 8> Ops;
4421    for (unsigned i = 0; i < NumElts; ++i) {
4422      if (ShuffleMask[i] < 0)
4423        Ops.push_back(DAG.getUNDEF(EltVT));
4424      else
4425        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
4426                                  ShuffleMask[i] < (int)NumElts ? V1 : V2,
4427                                  DAG.getConstant(ShuffleMask[i] & (NumElts-1),
4428                                                  MVT::i32)));
4429    }
4430    SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts);
4431    return DAG.getNode(ISD::BITCAST, dl, VT, Val);
4432  }
4433
4434  if (VT == MVT::v8i8) {
4435    SDValue NewOp = LowerVECTOR_SHUFFLEv8i8(Op, ShuffleMask, DAG);
4436    if (NewOp.getNode())
4437      return NewOp;
4438  }
4439
4440  return SDValue();
4441}
4442
4443static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4444  // EXTRACT_VECTOR_ELT is legal only for immediate indexes.
4445  SDValue Lane = Op.getOperand(1);
4446  if (!isa<ConstantSDNode>(Lane))
4447    return SDValue();
4448
4449  SDValue Vec = Op.getOperand(0);
4450  if (Op.getValueType() == MVT::i32 &&
4451      Vec.getValueType().getVectorElementType().getSizeInBits() < 32) {
4452    DebugLoc dl = Op.getDebugLoc();
4453    return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
4454  }
4455
4456  return Op;
4457}
4458
4459static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
4460  // The only time a CONCAT_VECTORS operation can have legal types is when
4461  // two 64-bit vectors are concatenated to a 128-bit vector.
4462  assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 &&
4463         "unexpected CONCAT_VECTORS");
4464  DebugLoc dl = Op.getDebugLoc();
4465  SDValue Val = DAG.getUNDEF(MVT::v2f64);
4466  SDValue Op0 = Op.getOperand(0);
4467  SDValue Op1 = Op.getOperand(1);
4468  if (Op0.getOpcode() != ISD::UNDEF)
4469    Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
4470                      DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op0),
4471                      DAG.getIntPtrConstant(0));
4472  if (Op1.getOpcode() != ISD::UNDEF)
4473    Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
4474                      DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op1),
4475                      DAG.getIntPtrConstant(1));
4476  return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Val);
4477}
4478
4479/// isExtendedBUILD_VECTOR - Check if N is a constant BUILD_VECTOR where each
4480/// element has been zero/sign-extended, depending on the isSigned parameter,
4481/// from an integer type half its size.
4482static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
4483                                   bool isSigned) {
4484  // A v2i64 BUILD_VECTOR will have been legalized to a BITCAST from v4i32.
4485  EVT VT = N->getValueType(0);
4486  if (VT == MVT::v2i64 && N->getOpcode() == ISD::BITCAST) {
4487    SDNode *BVN = N->getOperand(0).getNode();
4488    if (BVN->getValueType(0) != MVT::v4i32 ||
4489        BVN->getOpcode() != ISD::BUILD_VECTOR)
4490      return false;
4491    unsigned LoElt = DAG.getTargetLoweringInfo().isBigEndian() ? 1 : 0;
4492    unsigned HiElt = 1 - LoElt;
4493    ConstantSDNode *Lo0 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt));
4494    ConstantSDNode *Hi0 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt));
4495    ConstantSDNode *Lo1 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt+2));
4496    ConstantSDNode *Hi1 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt+2));
4497    if (!Lo0 || !Hi0 || !Lo1 || !Hi1)
4498      return false;
4499    if (isSigned) {
4500      if (Hi0->getSExtValue() == Lo0->getSExtValue() >> 32 &&
4501          Hi1->getSExtValue() == Lo1->getSExtValue() >> 32)
4502        return true;
4503    } else {
4504      if (Hi0->isNullValue() && Hi1->isNullValue())
4505        return true;
4506    }
4507    return false;
4508  }
4509
4510  if (N->getOpcode() != ISD::BUILD_VECTOR)
4511    return false;
4512
4513  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
4514    SDNode *Elt = N->getOperand(i).getNode();
4515    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
4516      unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4517      unsigned HalfSize = EltSize / 2;
4518      if (isSigned) {
4519        int64_t SExtVal = C->getSExtValue();
4520        if ((SExtVal >> HalfSize) != (SExtVal >> EltSize))
4521          return false;
4522      } else {
4523        if ((C->getZExtValue() >> HalfSize) != 0)
4524          return false;
4525      }
4526      continue;
4527    }
4528    return false;
4529  }
4530
4531  return true;
4532}
4533
4534/// isSignExtended - Check if a node is a vector value that is sign-extended
4535/// or a constant BUILD_VECTOR with sign-extended elements.
4536static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
4537  if (N->getOpcode() == ISD::SIGN_EXTEND || ISD::isSEXTLoad(N))
4538    return true;
4539  if (isExtendedBUILD_VECTOR(N, DAG, true))
4540    return true;
4541  return false;
4542}
4543
4544/// isZeroExtended - Check if a node is a vector value that is zero-extended
4545/// or a constant BUILD_VECTOR with zero-extended elements.
4546static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
4547  if (N->getOpcode() == ISD::ZERO_EXTEND || ISD::isZEXTLoad(N))
4548    return true;
4549  if (isExtendedBUILD_VECTOR(N, DAG, false))
4550    return true;
4551  return false;
4552}
4553
4554/// SkipExtension - For a node that is a SIGN_EXTEND, ZERO_EXTEND, extending
4555/// load, or BUILD_VECTOR with extended elements, return the unextended value.
4556static SDValue SkipExtension(SDNode *N, SelectionDAG &DAG) {
4557  if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
4558    return N->getOperand(0);
4559  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N))
4560    return DAG.getLoad(LD->getMemoryVT(), N->getDebugLoc(), LD->getChain(),
4561                       LD->getBasePtr(), LD->getPointerInfo(), LD->isVolatile(),
4562                       LD->isNonTemporal(), LD->getAlignment());
4563  // Otherwise, the value must be a BUILD_VECTOR.  For v2i64, it will
4564  // have been legalized as a BITCAST from v4i32.
4565  if (N->getOpcode() == ISD::BITCAST) {
4566    SDNode *BVN = N->getOperand(0).getNode();
4567    assert(BVN->getOpcode() == ISD::BUILD_VECTOR &&
4568           BVN->getValueType(0) == MVT::v4i32 && "expected v4i32 BUILD_VECTOR");
4569    unsigned LowElt = DAG.getTargetLoweringInfo().isBigEndian() ? 1 : 0;
4570    return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(), MVT::v2i32,
4571                       BVN->getOperand(LowElt), BVN->getOperand(LowElt+2));
4572  }
4573  // Construct a new BUILD_VECTOR with elements truncated to half the size.
4574  assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
4575  EVT VT = N->getValueType(0);
4576  unsigned EltSize = VT.getVectorElementType().getSizeInBits() / 2;
4577  unsigned NumElts = VT.getVectorNumElements();
4578  MVT TruncVT = MVT::getIntegerVT(EltSize);
4579  SmallVector<SDValue, 8> Ops;
4580  for (unsigned i = 0; i != NumElts; ++i) {
4581    ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
4582    const APInt &CInt = C->getAPIntValue();
4583    Ops.push_back(DAG.getConstant(CInt.trunc(EltSize), TruncVT));
4584  }
4585  return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(),
4586                     MVT::getVectorVT(TruncVT, NumElts), Ops.data(), NumElts);
4587}
4588
4589static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
4590  unsigned Opcode = N->getOpcode();
4591  if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
4592    SDNode *N0 = N->getOperand(0).getNode();
4593    SDNode *N1 = N->getOperand(1).getNode();
4594    return N0->hasOneUse() && N1->hasOneUse() &&
4595      isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
4596  }
4597  return false;
4598}
4599
4600static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
4601  unsigned Opcode = N->getOpcode();
4602  if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
4603    SDNode *N0 = N->getOperand(0).getNode();
4604    SDNode *N1 = N->getOperand(1).getNode();
4605    return N0->hasOneUse() && N1->hasOneUse() &&
4606      isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
4607  }
4608  return false;
4609}
4610
4611static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
4612  // Multiplications are only custom-lowered for 128-bit vectors so that
4613  // VMULL can be detected.  Otherwise v2i64 multiplications are not legal.
4614  EVT VT = Op.getValueType();
4615  assert(VT.is128BitVector() && "unexpected type for custom-lowering ISD::MUL");
4616  SDNode *N0 = Op.getOperand(0).getNode();
4617  SDNode *N1 = Op.getOperand(1).getNode();
4618  unsigned NewOpc = 0;
4619  bool isMLA = false;
4620  bool isN0SExt = isSignExtended(N0, DAG);
4621  bool isN1SExt = isSignExtended(N1, DAG);
4622  if (isN0SExt && isN1SExt)
4623    NewOpc = ARMISD::VMULLs;
4624  else {
4625    bool isN0ZExt = isZeroExtended(N0, DAG);
4626    bool isN1ZExt = isZeroExtended(N1, DAG);
4627    if (isN0ZExt && isN1ZExt)
4628      NewOpc = ARMISD::VMULLu;
4629    else if (isN1SExt || isN1ZExt) {
4630      // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
4631      // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
4632      if (isN1SExt && isAddSubSExt(N0, DAG)) {
4633        NewOpc = ARMISD::VMULLs;
4634        isMLA = true;
4635      } else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
4636        NewOpc = ARMISD::VMULLu;
4637        isMLA = true;
4638      } else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
4639        std::swap(N0, N1);
4640        NewOpc = ARMISD::VMULLu;
4641        isMLA = true;
4642      }
4643    }
4644
4645    if (!NewOpc) {
4646      if (VT == MVT::v2i64)
4647        // Fall through to expand this.  It is not legal.
4648        return SDValue();
4649      else
4650        // Other vector multiplications are legal.
4651        return Op;
4652    }
4653  }
4654
4655  // Legalize to a VMULL instruction.
4656  DebugLoc DL = Op.getDebugLoc();
4657  SDValue Op0;
4658  SDValue Op1 = SkipExtension(N1, DAG);
4659  if (!isMLA) {
4660    Op0 = SkipExtension(N0, DAG);
4661    assert(Op0.getValueType().is64BitVector() &&
4662           Op1.getValueType().is64BitVector() &&
4663           "unexpected types for extended operands to VMULL");
4664    return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
4665  }
4666
4667  // Optimizing (zext A + zext B) * C, to (VMULL A, C) + (VMULL B, C) during
4668  // isel lowering to take advantage of no-stall back to back vmul + vmla.
4669  //   vmull q0, d4, d6
4670  //   vmlal q0, d5, d6
4671  // is faster than
4672  //   vaddl q0, d4, d5
4673  //   vmovl q1, d6
4674  //   vmul  q0, q0, q1
4675  SDValue N00 = SkipExtension(N0->getOperand(0).getNode(), DAG);
4676  SDValue N01 = SkipExtension(N0->getOperand(1).getNode(), DAG);
4677  EVT Op1VT = Op1.getValueType();
4678  return DAG.getNode(N0->getOpcode(), DL, VT,
4679                     DAG.getNode(NewOpc, DL, VT,
4680                               DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
4681                     DAG.getNode(NewOpc, DL, VT,
4682                               DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
4683}
4684
4685static SDValue
4686LowerSDIV_v4i8(SDValue X, SDValue Y, DebugLoc dl, SelectionDAG &DAG) {
4687  // Convert to float
4688  // float4 xf = vcvt_f32_s32(vmovl_s16(a.lo));
4689  // float4 yf = vcvt_f32_s32(vmovl_s16(b.lo));
4690  X = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, X);
4691  Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, Y);
4692  X = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, X);
4693  Y = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, Y);
4694  // Get reciprocal estimate.
4695  // float4 recip = vrecpeq_f32(yf);
4696  Y = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
4697                   DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), Y);
4698  // Because char has a smaller range than uchar, we can actually get away
4699  // without any newton steps.  This requires that we use a weird bias
4700  // of 0xb000, however (again, this has been exhaustively tested).
4701  // float4 result = as_float4(as_int4(xf*recip) + 0xb000);
4702  X = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, X, Y);
4703  X = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, X);
4704  Y = DAG.getConstant(0xb000, MVT::i32);
4705  Y = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Y, Y, Y, Y);
4706  X = DAG.getNode(ISD::ADD, dl, MVT::v4i32, X, Y);
4707  X = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, X);
4708  // Convert back to short.
4709  X = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, X);
4710  X = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, X);
4711  return X;
4712}
4713
4714static SDValue
4715LowerSDIV_v4i16(SDValue N0, SDValue N1, DebugLoc dl, SelectionDAG &DAG) {
4716  SDValue N2;
4717  // Convert to float.
4718  // float4 yf = vcvt_f32_s32(vmovl_s16(y));
4719  // float4 xf = vcvt_f32_s32(vmovl_s16(x));
4720  N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N0);
4721  N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N1);
4722  N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
4723  N1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
4724
4725  // Use reciprocal estimate and one refinement step.
4726  // float4 recip = vrecpeq_f32(yf);
4727  // recip *= vrecpsq_f32(yf, recip);
4728  N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
4729                   DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), N1);
4730  N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
4731                   DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
4732                   N1, N2);
4733  N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
4734  // Because short has a smaller range than ushort, we can actually get away
4735  // with only a single newton step.  This requires that we use a weird bias
4736  // of 89, however (again, this has been exhaustively tested).
4737  // float4 result = as_float4(as_int4(xf*recip) + 0x89);
4738  N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
4739  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
4740  N1 = DAG.getConstant(0x89, MVT::i32);
4741  N1 = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, N1, N1, N1, N1);
4742  N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
4743  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
4744  // Convert back to integer and return.
4745  // return vmovn_s32(vcvt_s32_f32(result));
4746  N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
4747  N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
4748  return N0;
4749}
4750
4751static SDValue LowerSDIV(SDValue Op, SelectionDAG &DAG) {
4752  EVT VT = Op.getValueType();
4753  assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
4754         "unexpected type for custom-lowering ISD::SDIV");
4755
4756  DebugLoc dl = Op.getDebugLoc();
4757  SDValue N0 = Op.getOperand(0);
4758  SDValue N1 = Op.getOperand(1);
4759  SDValue N2, N3;
4760
4761  if (VT == MVT::v8i8) {
4762    N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N0);
4763    N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N1);
4764
4765    N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
4766                     DAG.getIntPtrConstant(4));
4767    N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
4768                     DAG.getIntPtrConstant(4));
4769    N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
4770                     DAG.getIntPtrConstant(0));
4771    N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
4772                     DAG.getIntPtrConstant(0));
4773
4774    N0 = LowerSDIV_v4i8(N0, N1, dl, DAG); // v4i16
4775    N2 = LowerSDIV_v4i8(N2, N3, dl, DAG); // v4i16
4776
4777    N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
4778    N0 = LowerCONCAT_VECTORS(N0, DAG);
4779
4780    N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v8i8, N0);
4781    return N0;
4782  }
4783  return LowerSDIV_v4i16(N0, N1, dl, DAG);
4784}
4785
4786static SDValue LowerUDIV(SDValue Op, SelectionDAG &DAG) {
4787  EVT VT = Op.getValueType();
4788  assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
4789         "unexpected type for custom-lowering ISD::UDIV");
4790
4791  DebugLoc dl = Op.getDebugLoc();
4792  SDValue N0 = Op.getOperand(0);
4793  SDValue N1 = Op.getOperand(1);
4794  SDValue N2, N3;
4795
4796  if (VT == MVT::v8i8) {
4797    N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N0);
4798    N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N1);
4799
4800    N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
4801                     DAG.getIntPtrConstant(4));
4802    N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
4803                     DAG.getIntPtrConstant(4));
4804    N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
4805                     DAG.getIntPtrConstant(0));
4806    N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
4807                     DAG.getIntPtrConstant(0));
4808
4809    N0 = LowerSDIV_v4i16(N0, N1, dl, DAG); // v4i16
4810    N2 = LowerSDIV_v4i16(N2, N3, dl, DAG); // v4i16
4811
4812    N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
4813    N0 = LowerCONCAT_VECTORS(N0, DAG);
4814
4815    N0 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v8i8,
4816                     DAG.getConstant(Intrinsic::arm_neon_vqmovnsu, MVT::i32),
4817                     N0);
4818    return N0;
4819  }
4820
4821  // v4i16 sdiv ... Convert to float.
4822  // float4 yf = vcvt_f32_s32(vmovl_u16(y));
4823  // float4 xf = vcvt_f32_s32(vmovl_u16(x));
4824  N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N0);
4825  N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N1);
4826  N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
4827  SDValue BN1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
4828
4829  // Use reciprocal estimate and two refinement steps.
4830  // float4 recip = vrecpeq_f32(yf);
4831  // recip *= vrecpsq_f32(yf, recip);
4832  // recip *= vrecpsq_f32(yf, recip);
4833  N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
4834                   DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), BN1);
4835  N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
4836                   DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
4837                   BN1, N2);
4838  N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
4839  N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
4840                   DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
4841                   BN1, N2);
4842  N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
4843  // Simply multiplying by the reciprocal estimate can leave us a few ulps
4844  // too low, so we add 2 ulps (exhaustive testing shows that this is enough,
4845  // and that it will never cause us to return an answer too large).
4846  // float4 result = as_float4(as_int4(xf*recip) + 2);
4847  N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
4848  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
4849  N1 = DAG.getConstant(2, MVT::i32);
4850  N1 = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, N1, N1, N1, N1);
4851  N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
4852  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
4853  // Convert back to integer and return.
4854  // return vmovn_u32(vcvt_s32_f32(result));
4855  N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
4856  N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
4857  return N0;
4858}
4859
4860static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
4861  EVT VT = Op.getNode()->getValueType(0);
4862  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
4863
4864  unsigned Opc;
4865  bool ExtraOp = false;
4866  switch (Op.getOpcode()) {
4867  default: assert(0 && "Invalid code");
4868  case ISD::ADDC: Opc = ARMISD::ADDC; break;
4869  case ISD::ADDE: Opc = ARMISD::ADDE; ExtraOp = true; break;
4870  case ISD::SUBC: Opc = ARMISD::SUBC; break;
4871  case ISD::SUBE: Opc = ARMISD::SUBE; ExtraOp = true; break;
4872  }
4873
4874  if (!ExtraOp)
4875    return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
4876                       Op.getOperand(1));
4877  return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
4878                     Op.getOperand(1), Op.getOperand(2));
4879}
4880
4881static SDValue LowerAtomicLoadStore(SDValue Op, SelectionDAG &DAG) {
4882  // Monotonic load/store is legal for all targets
4883  if (cast<AtomicSDNode>(Op)->getOrdering() <= Monotonic)
4884    return Op;
4885
4886  // Aquire/Release load/store is not legal for targets without a
4887  // dmb or equivalent available.
4888  return SDValue();
4889}
4890
4891
4892static void
4893ReplaceATOMIC_OP_64(SDNode *Node, SmallVectorImpl<SDValue>& Results,
4894                    SelectionDAG &DAG, unsigned NewOp) {
4895  EVT T = Node->getValueType(0);
4896  DebugLoc dl = Node->getDebugLoc();
4897  assert (T == MVT::i64 && "Only know how to expand i64 atomics");
4898
4899  SmallVector<SDValue, 6> Ops;
4900  Ops.push_back(Node->getOperand(0)); // Chain
4901  Ops.push_back(Node->getOperand(1)); // Ptr
4902  // Low part of Val1
4903  Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
4904                            Node->getOperand(2), DAG.getIntPtrConstant(0)));
4905  // High part of Val1
4906  Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
4907                            Node->getOperand(2), DAG.getIntPtrConstant(1)));
4908  if (NewOp == ARMISD::ATOMCMPXCHG64_DAG) {
4909    // High part of Val1
4910    Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
4911                              Node->getOperand(3), DAG.getIntPtrConstant(0)));
4912    // High part of Val2
4913    Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
4914                              Node->getOperand(3), DAG.getIntPtrConstant(1)));
4915  }
4916  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
4917  SDValue Result =
4918    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops.data(), Ops.size(), MVT::i64,
4919                            cast<MemSDNode>(Node)->getMemOperand());
4920  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1) };
4921  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
4922  Results.push_back(Result.getValue(2));
4923}
4924
4925SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
4926  switch (Op.getOpcode()) {
4927  default: llvm_unreachable("Don't know how to custom lower this!");
4928  case ISD::ConstantPool:  return LowerConstantPool(Op, DAG);
4929  case ISD::BlockAddress:  return LowerBlockAddress(Op, DAG);
4930  case ISD::GlobalAddress:
4931    return Subtarget->isTargetDarwin() ? LowerGlobalAddressDarwin(Op, DAG) :
4932      LowerGlobalAddressELF(Op, DAG);
4933  case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
4934  case ISD::SELECT:        return LowerSELECT(Op, DAG);
4935  case ISD::SELECT_CC:     return LowerSELECT_CC(Op, DAG);
4936  case ISD::BR_CC:         return LowerBR_CC(Op, DAG);
4937  case ISD::BR_JT:         return LowerBR_JT(Op, DAG);
4938  case ISD::VASTART:       return LowerVASTART(Op, DAG);
4939  case ISD::MEMBARRIER:    return LowerMEMBARRIER(Op, DAG, Subtarget);
4940  case ISD::ATOMIC_FENCE:  return LowerATOMIC_FENCE(Op, DAG, Subtarget);
4941  case ISD::PREFETCH:      return LowerPREFETCH(Op, DAG, Subtarget);
4942  case ISD::SINT_TO_FP:
4943  case ISD::UINT_TO_FP:    return LowerINT_TO_FP(Op, DAG);
4944  case ISD::FP_TO_SINT:
4945  case ISD::FP_TO_UINT:    return LowerFP_TO_INT(Op, DAG);
4946  case ISD::FCOPYSIGN:     return LowerFCOPYSIGN(Op, DAG);
4947  case ISD::RETURNADDR:    return LowerRETURNADDR(Op, DAG);
4948  case ISD::FRAMEADDR:     return LowerFRAMEADDR(Op, DAG);
4949  case ISD::GLOBAL_OFFSET_TABLE: return LowerGLOBAL_OFFSET_TABLE(Op, DAG);
4950  case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG);
4951  case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG);
4952  case ISD::EH_SJLJ_DISPATCHSETUP: return LowerEH_SJLJ_DISPATCHSETUP(Op, DAG);
4953  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG,
4954                                                               Subtarget);
4955  case ISD::BITCAST:       return ExpandBITCAST(Op.getNode(), DAG);
4956  case ISD::SHL:
4957  case ISD::SRL:
4958  case ISD::SRA:           return LowerShift(Op.getNode(), DAG, Subtarget);
4959  case ISD::SHL_PARTS:     return LowerShiftLeftParts(Op, DAG);
4960  case ISD::SRL_PARTS:
4961  case ISD::SRA_PARTS:     return LowerShiftRightParts(Op, DAG);
4962  case ISD::CTTZ:          return LowerCTTZ(Op.getNode(), DAG, Subtarget);
4963  case ISD::SETCC:         return LowerVSETCC(Op, DAG);
4964  case ISD::BUILD_VECTOR:  return LowerBUILD_VECTOR(Op, DAG, Subtarget);
4965  case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
4966  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
4967  case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
4968  case ISD::FLT_ROUNDS_:   return LowerFLT_ROUNDS_(Op, DAG);
4969  case ISD::MUL:           return LowerMUL(Op, DAG);
4970  case ISD::SDIV:          return LowerSDIV(Op, DAG);
4971  case ISD::UDIV:          return LowerUDIV(Op, DAG);
4972  case ISD::ADDC:
4973  case ISD::ADDE:
4974  case ISD::SUBC:
4975  case ISD::SUBE:          return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
4976  case ISD::ATOMIC_LOAD:
4977  case ISD::ATOMIC_STORE:  return LowerAtomicLoadStore(Op, DAG);
4978  }
4979  return SDValue();
4980}
4981
4982/// ReplaceNodeResults - Replace the results of node with an illegal result
4983/// type with new values built out of custom code.
4984void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
4985                                           SmallVectorImpl<SDValue>&Results,
4986                                           SelectionDAG &DAG) const {
4987  SDValue Res;
4988  switch (N->getOpcode()) {
4989  default:
4990    llvm_unreachable("Don't know how to custom expand this!");
4991    break;
4992  case ISD::BITCAST:
4993    Res = ExpandBITCAST(N, DAG);
4994    break;
4995  case ISD::SRL:
4996  case ISD::SRA:
4997    Res = Expand64BitShift(N, DAG, Subtarget);
4998    break;
4999  case ISD::ATOMIC_LOAD_ADD:
5000    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMADD64_DAG);
5001    return;
5002  case ISD::ATOMIC_LOAD_AND:
5003    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMAND64_DAG);
5004    return;
5005  case ISD::ATOMIC_LOAD_NAND:
5006    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMNAND64_DAG);
5007    return;
5008  case ISD::ATOMIC_LOAD_OR:
5009    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMOR64_DAG);
5010    return;
5011  case ISD::ATOMIC_LOAD_SUB:
5012    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMSUB64_DAG);
5013    return;
5014  case ISD::ATOMIC_LOAD_XOR:
5015    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMXOR64_DAG);
5016    return;
5017  case ISD::ATOMIC_SWAP:
5018    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMSWAP64_DAG);
5019    return;
5020  case ISD::ATOMIC_CMP_SWAP:
5021    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMCMPXCHG64_DAG);
5022    return;
5023  }
5024  if (Res.getNode())
5025    Results.push_back(Res);
5026}
5027
5028//===----------------------------------------------------------------------===//
5029//                           ARM Scheduler Hooks
5030//===----------------------------------------------------------------------===//
5031
5032MachineBasicBlock *
5033ARMTargetLowering::EmitAtomicCmpSwap(MachineInstr *MI,
5034                                     MachineBasicBlock *BB,
5035                                     unsigned Size) const {
5036  unsigned dest    = MI->getOperand(0).getReg();
5037  unsigned ptr     = MI->getOperand(1).getReg();
5038  unsigned oldval  = MI->getOperand(2).getReg();
5039  unsigned newval  = MI->getOperand(3).getReg();
5040  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5041  DebugLoc dl = MI->getDebugLoc();
5042  bool isThumb2 = Subtarget->isThumb2();
5043
5044  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
5045  unsigned scratch =
5046    MRI.createVirtualRegister(isThumb2 ? ARM::rGPRRegisterClass
5047                                       : ARM::GPRRegisterClass);
5048
5049  if (isThumb2) {
5050    MRI.constrainRegClass(dest, ARM::rGPRRegisterClass);
5051    MRI.constrainRegClass(oldval, ARM::rGPRRegisterClass);
5052    MRI.constrainRegClass(newval, ARM::rGPRRegisterClass);
5053  }
5054
5055  unsigned ldrOpc, strOpc;
5056  switch (Size) {
5057  default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
5058  case 1:
5059    ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
5060    strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
5061    break;
5062  case 2:
5063    ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
5064    strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
5065    break;
5066  case 4:
5067    ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
5068    strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
5069    break;
5070  }
5071
5072  MachineFunction *MF = BB->getParent();
5073  const BasicBlock *LLVM_BB = BB->getBasicBlock();
5074  MachineFunction::iterator It = BB;
5075  ++It; // insert the new blocks after the current block
5076
5077  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
5078  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
5079  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5080  MF->insert(It, loop1MBB);
5081  MF->insert(It, loop2MBB);
5082  MF->insert(It, exitMBB);
5083
5084  // Transfer the remainder of BB and its successor edges to exitMBB.
5085  exitMBB->splice(exitMBB->begin(), BB,
5086                  llvm::next(MachineBasicBlock::iterator(MI)),
5087                  BB->end());
5088  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5089
5090  //  thisMBB:
5091  //   ...
5092  //   fallthrough --> loop1MBB
5093  BB->addSuccessor(loop1MBB);
5094
5095  // loop1MBB:
5096  //   ldrex dest, [ptr]
5097  //   cmp dest, oldval
5098  //   bne exitMBB
5099  BB = loop1MBB;
5100  MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
5101  if (ldrOpc == ARM::t2LDREX)
5102    MIB.addImm(0);
5103  AddDefaultPred(MIB);
5104  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
5105                 .addReg(dest).addReg(oldval));
5106  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5107    .addMBB(exitMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5108  BB->addSuccessor(loop2MBB);
5109  BB->addSuccessor(exitMBB);
5110
5111  // loop2MBB:
5112  //   strex scratch, newval, [ptr]
5113  //   cmp scratch, #0
5114  //   bne loop1MBB
5115  BB = loop2MBB;
5116  MIB = BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(newval).addReg(ptr);
5117  if (strOpc == ARM::t2STREX)
5118    MIB.addImm(0);
5119  AddDefaultPred(MIB);
5120  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
5121                 .addReg(scratch).addImm(0));
5122  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5123    .addMBB(loop1MBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5124  BB->addSuccessor(loop1MBB);
5125  BB->addSuccessor(exitMBB);
5126
5127  //  exitMBB:
5128  //   ...
5129  BB = exitMBB;
5130
5131  MI->eraseFromParent();   // The instruction is gone now.
5132
5133  return BB;
5134}
5135
5136MachineBasicBlock *
5137ARMTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
5138                                    unsigned Size, unsigned BinOpcode) const {
5139  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
5140  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5141
5142  const BasicBlock *LLVM_BB = BB->getBasicBlock();
5143  MachineFunction *MF = BB->getParent();
5144  MachineFunction::iterator It = BB;
5145  ++It;
5146
5147  unsigned dest = MI->getOperand(0).getReg();
5148  unsigned ptr = MI->getOperand(1).getReg();
5149  unsigned incr = MI->getOperand(2).getReg();
5150  DebugLoc dl = MI->getDebugLoc();
5151  bool isThumb2 = Subtarget->isThumb2();
5152
5153  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
5154  if (isThumb2) {
5155    MRI.constrainRegClass(dest, ARM::rGPRRegisterClass);
5156    MRI.constrainRegClass(ptr, ARM::rGPRRegisterClass);
5157  }
5158
5159  unsigned ldrOpc, strOpc;
5160  switch (Size) {
5161  default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
5162  case 1:
5163    ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
5164    strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
5165    break;
5166  case 2:
5167    ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
5168    strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
5169    break;
5170  case 4:
5171    ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
5172    strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
5173    break;
5174  }
5175
5176  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5177  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5178  MF->insert(It, loopMBB);
5179  MF->insert(It, exitMBB);
5180
5181  // Transfer the remainder of BB and its successor edges to exitMBB.
5182  exitMBB->splice(exitMBB->begin(), BB,
5183                  llvm::next(MachineBasicBlock::iterator(MI)),
5184                  BB->end());
5185  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5186
5187  TargetRegisterClass *TRC =
5188    isThumb2 ? ARM::tGPRRegisterClass : ARM::GPRRegisterClass;
5189  unsigned scratch = MRI.createVirtualRegister(TRC);
5190  unsigned scratch2 = (!BinOpcode) ? incr : MRI.createVirtualRegister(TRC);
5191
5192  //  thisMBB:
5193  //   ...
5194  //   fallthrough --> loopMBB
5195  BB->addSuccessor(loopMBB);
5196
5197  //  loopMBB:
5198  //   ldrex dest, ptr
5199  //   <binop> scratch2, dest, incr
5200  //   strex scratch, scratch2, ptr
5201  //   cmp scratch, #0
5202  //   bne- loopMBB
5203  //   fallthrough --> exitMBB
5204  BB = loopMBB;
5205  MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
5206  if (ldrOpc == ARM::t2LDREX)
5207    MIB.addImm(0);
5208  AddDefaultPred(MIB);
5209  if (BinOpcode) {
5210    // operand order needs to go the other way for NAND
5211    if (BinOpcode == ARM::BICrr || BinOpcode == ARM::t2BICrr)
5212      AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
5213                     addReg(incr).addReg(dest)).addReg(0);
5214    else
5215      AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
5216                     addReg(dest).addReg(incr)).addReg(0);
5217  }
5218
5219  MIB = BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(scratch2).addReg(ptr);
5220  if (strOpc == ARM::t2STREX)
5221    MIB.addImm(0);
5222  AddDefaultPred(MIB);
5223  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
5224                 .addReg(scratch).addImm(0));
5225  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5226    .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5227
5228  BB->addSuccessor(loopMBB);
5229  BB->addSuccessor(exitMBB);
5230
5231  //  exitMBB:
5232  //   ...
5233  BB = exitMBB;
5234
5235  MI->eraseFromParent();   // The instruction is gone now.
5236
5237  return BB;
5238}
5239
5240MachineBasicBlock *
5241ARMTargetLowering::EmitAtomicBinaryMinMax(MachineInstr *MI,
5242                                          MachineBasicBlock *BB,
5243                                          unsigned Size,
5244                                          bool signExtend,
5245                                          ARMCC::CondCodes Cond) const {
5246  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5247
5248  const BasicBlock *LLVM_BB = BB->getBasicBlock();
5249  MachineFunction *MF = BB->getParent();
5250  MachineFunction::iterator It = BB;
5251  ++It;
5252
5253  unsigned dest = MI->getOperand(0).getReg();
5254  unsigned ptr = MI->getOperand(1).getReg();
5255  unsigned incr = MI->getOperand(2).getReg();
5256  unsigned oldval = dest;
5257  DebugLoc dl = MI->getDebugLoc();
5258  bool isThumb2 = Subtarget->isThumb2();
5259
5260  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
5261  if (isThumb2) {
5262    MRI.constrainRegClass(dest, ARM::rGPRRegisterClass);
5263    MRI.constrainRegClass(ptr, ARM::rGPRRegisterClass);
5264  }
5265
5266  unsigned ldrOpc, strOpc, extendOpc;
5267  switch (Size) {
5268  default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
5269  case 1:
5270    ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
5271    strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
5272    extendOpc = isThumb2 ? ARM::t2SXTB : ARM::SXTB;
5273    break;
5274  case 2:
5275    ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
5276    strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
5277    extendOpc = isThumb2 ? ARM::t2SXTH : ARM::SXTH;
5278    break;
5279  case 4:
5280    ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
5281    strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
5282    extendOpc = 0;
5283    break;
5284  }
5285
5286  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5287  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5288  MF->insert(It, loopMBB);
5289  MF->insert(It, exitMBB);
5290
5291  // Transfer the remainder of BB and its successor edges to exitMBB.
5292  exitMBB->splice(exitMBB->begin(), BB,
5293                  llvm::next(MachineBasicBlock::iterator(MI)),
5294                  BB->end());
5295  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5296
5297  TargetRegisterClass *TRC =
5298    isThumb2 ? ARM::tGPRRegisterClass : ARM::GPRRegisterClass;
5299  unsigned scratch = MRI.createVirtualRegister(TRC);
5300  unsigned scratch2 = MRI.createVirtualRegister(TRC);
5301
5302  //  thisMBB:
5303  //   ...
5304  //   fallthrough --> loopMBB
5305  BB->addSuccessor(loopMBB);
5306
5307  //  loopMBB:
5308  //   ldrex dest, ptr
5309  //   (sign extend dest, if required)
5310  //   cmp dest, incr
5311  //   cmov.cond scratch2, dest, incr
5312  //   strex scratch, scratch2, ptr
5313  //   cmp scratch, #0
5314  //   bne- loopMBB
5315  //   fallthrough --> exitMBB
5316  BB = loopMBB;
5317  MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
5318  if (ldrOpc == ARM::t2LDREX)
5319    MIB.addImm(0);
5320  AddDefaultPred(MIB);
5321
5322  // Sign extend the value, if necessary.
5323  if (signExtend && extendOpc) {
5324    oldval = MRI.createVirtualRegister(ARM::GPRRegisterClass);
5325    AddDefaultPred(BuildMI(BB, dl, TII->get(extendOpc), oldval)
5326                     .addReg(dest)
5327                     .addImm(0));
5328  }
5329
5330  // Build compare and cmov instructions.
5331  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
5332                 .addReg(oldval).addReg(incr));
5333  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2MOVCCr : ARM::MOVCCr), scratch2)
5334         .addReg(oldval).addReg(incr).addImm(Cond).addReg(ARM::CPSR);
5335
5336  MIB = BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(scratch2).addReg(ptr);
5337  if (strOpc == ARM::t2STREX)
5338    MIB.addImm(0);
5339  AddDefaultPred(MIB);
5340  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
5341                 .addReg(scratch).addImm(0));
5342  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5343    .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5344
5345  BB->addSuccessor(loopMBB);
5346  BB->addSuccessor(exitMBB);
5347
5348  //  exitMBB:
5349  //   ...
5350  BB = exitMBB;
5351
5352  MI->eraseFromParent();   // The instruction is gone now.
5353
5354  return BB;
5355}
5356
5357MachineBasicBlock *
5358ARMTargetLowering::EmitAtomicBinary64(MachineInstr *MI, MachineBasicBlock *BB,
5359                                      unsigned Op1, unsigned Op2,
5360                                      bool NeedsCarry, bool IsCmpxchg) const {
5361  // This also handles ATOMIC_SWAP, indicated by Op1==0.
5362  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5363
5364  const BasicBlock *LLVM_BB = BB->getBasicBlock();
5365  MachineFunction *MF = BB->getParent();
5366  MachineFunction::iterator It = BB;
5367  ++It;
5368
5369  unsigned destlo = MI->getOperand(0).getReg();
5370  unsigned desthi = MI->getOperand(1).getReg();
5371  unsigned ptr = MI->getOperand(2).getReg();
5372  unsigned vallo = MI->getOperand(3).getReg();
5373  unsigned valhi = MI->getOperand(4).getReg();
5374  DebugLoc dl = MI->getDebugLoc();
5375  bool isThumb2 = Subtarget->isThumb2();
5376
5377  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
5378  if (isThumb2) {
5379    MRI.constrainRegClass(destlo, ARM::rGPRRegisterClass);
5380    MRI.constrainRegClass(desthi, ARM::rGPRRegisterClass);
5381    MRI.constrainRegClass(ptr, ARM::rGPRRegisterClass);
5382  }
5383
5384  unsigned ldrOpc = isThumb2 ? ARM::t2LDREXD : ARM::LDREXD;
5385  unsigned strOpc = isThumb2 ? ARM::t2STREXD : ARM::STREXD;
5386
5387  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5388  MachineBasicBlock *contBB = 0, *cont2BB = 0;
5389  if (IsCmpxchg) {
5390    contBB = MF->CreateMachineBasicBlock(LLVM_BB);
5391    cont2BB = MF->CreateMachineBasicBlock(LLVM_BB);
5392  }
5393  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5394  MF->insert(It, loopMBB);
5395  if (IsCmpxchg) {
5396    MF->insert(It, contBB);
5397    MF->insert(It, cont2BB);
5398  }
5399  MF->insert(It, exitMBB);
5400
5401  // Transfer the remainder of BB and its successor edges to exitMBB.
5402  exitMBB->splice(exitMBB->begin(), BB,
5403                  llvm::next(MachineBasicBlock::iterator(MI)),
5404                  BB->end());
5405  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5406
5407  TargetRegisterClass *TRC =
5408    isThumb2 ? ARM::tGPRRegisterClass : ARM::GPRRegisterClass;
5409  unsigned storesuccess = MRI.createVirtualRegister(TRC);
5410
5411  //  thisMBB:
5412  //   ...
5413  //   fallthrough --> loopMBB
5414  BB->addSuccessor(loopMBB);
5415
5416  //  loopMBB:
5417  //   ldrexd r2, r3, ptr
5418  //   <binopa> r0, r2, incr
5419  //   <binopb> r1, r3, incr
5420  //   strexd storesuccess, r0, r1, ptr
5421  //   cmp storesuccess, #0
5422  //   bne- loopMBB
5423  //   fallthrough --> exitMBB
5424  //
5425  // Note that the registers are explicitly specified because there is not any
5426  // way to force the register allocator to allocate a register pair.
5427  //
5428  // FIXME: The hardcoded registers are not necessary for Thumb2, but we
5429  // need to properly enforce the restriction that the two output registers
5430  // for ldrexd must be different.
5431  BB = loopMBB;
5432  // Load
5433  AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc))
5434                 .addReg(ARM::R2, RegState::Define)
5435                 .addReg(ARM::R3, RegState::Define).addReg(ptr));
5436  // Copy r2/r3 into dest.  (This copy will normally be coalesced.)
5437  BuildMI(BB, dl, TII->get(TargetOpcode::COPY), destlo).addReg(ARM::R2);
5438  BuildMI(BB, dl, TII->get(TargetOpcode::COPY), desthi).addReg(ARM::R3);
5439
5440  if (IsCmpxchg) {
5441    // Add early exit
5442    for (unsigned i = 0; i < 2; i++) {
5443      AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr :
5444                                                         ARM::CMPrr))
5445                     .addReg(i == 0 ? destlo : desthi)
5446                     .addReg(i == 0 ? vallo : valhi));
5447      BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5448        .addMBB(exitMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5449      BB->addSuccessor(exitMBB);
5450      BB->addSuccessor(i == 0 ? contBB : cont2BB);
5451      BB = (i == 0 ? contBB : cont2BB);
5452    }
5453
5454    // Copy to physregs for strexd
5455    unsigned setlo = MI->getOperand(5).getReg();
5456    unsigned sethi = MI->getOperand(6).getReg();
5457    BuildMI(BB, dl, TII->get(TargetOpcode::COPY), ARM::R0).addReg(setlo);
5458    BuildMI(BB, dl, TII->get(TargetOpcode::COPY), ARM::R1).addReg(sethi);
5459  } else if (Op1) {
5460    // Perform binary operation
5461    AddDefaultPred(BuildMI(BB, dl, TII->get(Op1), ARM::R0)
5462                   .addReg(destlo).addReg(vallo))
5463        .addReg(NeedsCarry ? ARM::CPSR : 0, getDefRegState(NeedsCarry));
5464    AddDefaultPred(BuildMI(BB, dl, TII->get(Op2), ARM::R1)
5465                   .addReg(desthi).addReg(valhi)).addReg(0);
5466  } else {
5467    // Copy to physregs for strexd
5468    BuildMI(BB, dl, TII->get(TargetOpcode::COPY), ARM::R0).addReg(vallo);
5469    BuildMI(BB, dl, TII->get(TargetOpcode::COPY), ARM::R1).addReg(valhi);
5470  }
5471
5472  // Store
5473  AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), storesuccess)
5474                 .addReg(ARM::R0).addReg(ARM::R1).addReg(ptr));
5475  // Cmp+jump
5476  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
5477                 .addReg(storesuccess).addImm(0));
5478  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5479    .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5480
5481  BB->addSuccessor(loopMBB);
5482  BB->addSuccessor(exitMBB);
5483
5484  //  exitMBB:
5485  //   ...
5486  BB = exitMBB;
5487
5488  MI->eraseFromParent();   // The instruction is gone now.
5489
5490  return BB;
5491}
5492
5493/// EmitBasePointerRecalculation - For functions using a base pointer, we
5494/// rematerialize it (via the frame pointer).
5495void ARMTargetLowering::
5496EmitBasePointerRecalculation(MachineInstr *MI, MachineBasicBlock *MBB,
5497                             MachineBasicBlock *DispatchBB) const {
5498  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5499  const ARMBaseInstrInfo *AII = static_cast<const ARMBaseInstrInfo*>(TII);
5500  MachineFunction &MF = *MI->getParent()->getParent();
5501  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
5502  const ARMBaseRegisterInfo &RI = AII->getRegisterInfo();
5503
5504  if (!RI.hasBasePointer(MF)) return;
5505
5506  MachineBasicBlock::iterator MBBI = MI;
5507
5508  int32_t NumBytes = AFI->getFramePtrSpillOffset();
5509  unsigned FramePtr = RI.getFrameRegister(MF);
5510  assert(MF.getTarget().getFrameLowering()->hasFP(MF) &&
5511         "Base pointer without frame pointer?");
5512
5513  if (AFI->isThumb2Function())
5514    llvm::emitT2RegPlusImmediate(*MBB, MBBI, MI->getDebugLoc(), ARM::R6,
5515                                 FramePtr, -NumBytes, ARMCC::AL, 0, *AII);
5516  else if (AFI->isThumbFunction())
5517    llvm::emitThumbRegPlusImmediate(*MBB, MBBI, MI->getDebugLoc(), ARM::R6,
5518                                    FramePtr, -NumBytes, *AII, RI);
5519  else
5520    llvm::emitARMRegPlusImmediate(*MBB, MBBI, MI->getDebugLoc(), ARM::R6,
5521                                  FramePtr, -NumBytes, ARMCC::AL, 0, *AII);
5522
5523  if (!RI.needsStackRealignment(MF)) return;
5524
5525  // If there's dynamic realignment, adjust for it.
5526  MachineFrameInfo *MFI = MF.getFrameInfo();
5527  unsigned MaxAlign = MFI->getMaxAlignment();
5528  assert(!AFI->isThumb1OnlyFunction());
5529
5530  // Emit bic r6, r6, MaxAlign
5531  unsigned bicOpc = AFI->isThumbFunction() ? ARM::t2BICri : ARM::BICri;
5532  AddDefaultCC(
5533    AddDefaultPred(
5534      BuildMI(*MBB, MBBI, MI->getDebugLoc(), TII->get(bicOpc), ARM::R6)
5535      .addReg(ARM::R6, RegState::Kill)
5536      .addImm(MaxAlign - 1)));
5537}
5538
5539/// SetupEntryBlockForSjLj - Insert code into the entry block that creates and
5540/// registers the function context.
5541void ARMTargetLowering::
5542SetupEntryBlockForSjLj(MachineInstr *MI, MachineBasicBlock *MBB,
5543                       MachineBasicBlock *DispatchBB, int FI) const {
5544  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5545  DebugLoc dl = MI->getDebugLoc();
5546  MachineFunction *MF = MBB->getParent();
5547  MachineRegisterInfo *MRI = &MF->getRegInfo();
5548  MachineConstantPool *MCP = MF->getConstantPool();
5549  ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>();
5550  const Function *F = MF->getFunction();
5551
5552  bool isThumb = Subtarget->isThumb();
5553  bool isThumb2 = Subtarget->isThumb2();
5554
5555  unsigned PCLabelId = AFI->createPICLabelUId();
5556  unsigned PCAdj = (isThumb || isThumb2) ? 4 : 8;
5557  ARMConstantPoolValue *CPV =
5558    ARMConstantPoolMBB::Create(F->getContext(), DispatchBB, PCLabelId, PCAdj);
5559  unsigned CPI = MCP->getConstantPoolIndex(CPV, 4);
5560
5561  const TargetRegisterClass *TRC =
5562    isThumb ? ARM::tGPRRegisterClass : ARM::GPRRegisterClass;
5563
5564  // Grab constant pool and fixed stack memory operands.
5565  MachineMemOperand *CPMMO =
5566    MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(),
5567                             MachineMemOperand::MOLoad, 4, 4);
5568
5569  MachineMemOperand *FIMMOSt =
5570    MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
5571                             MachineMemOperand::MOStore, 4, 4);
5572
5573  EmitBasePointerRecalculation(MI, MBB, DispatchBB);
5574
5575  // Load the address of the dispatch MBB into the jump buffer.
5576  if (isThumb2) {
5577    // Incoming value: jbuf
5578    //   ldr.n  r5, LCPI1_1
5579    //   orr    r5, r5, #1
5580    //   add    r5, pc
5581    //   str    r5, [$jbuf, #+4] ; &jbuf[1]
5582    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
5583    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2LDRpci), NewVReg1)
5584                   .addConstantPoolIndex(CPI)
5585                   .addMemOperand(CPMMO));
5586    // Set the low bit because of thumb mode.
5587    unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
5588    AddDefaultCC(
5589      AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2ORRri), NewVReg2)
5590                     .addReg(NewVReg1, RegState::Kill)
5591                     .addImm(0x01)));
5592    unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
5593    BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg3)
5594      .addReg(NewVReg2, RegState::Kill)
5595      .addImm(PCLabelId);
5596    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2STRi12))
5597                   .addReg(NewVReg3, RegState::Kill)
5598                   .addFrameIndex(FI)
5599                   .addImm(36)  // &jbuf[1] :: pc
5600                   .addMemOperand(FIMMOSt));
5601  } else if (isThumb) {
5602    // Incoming value: jbuf
5603    //   ldr.n  r1, LCPI1_4
5604    //   add    r1, pc
5605    //   mov    r2, #1
5606    //   orrs   r1, r2
5607    //   add    r2, $jbuf, #+4 ; &jbuf[1]
5608    //   str    r1, [r2]
5609    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
5610    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tLDRpci), NewVReg1)
5611                   .addConstantPoolIndex(CPI)
5612                   .addMemOperand(CPMMO));
5613    unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
5614    BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg2)
5615      .addReg(NewVReg1, RegState::Kill)
5616      .addImm(PCLabelId);
5617    // Set the low bit because of thumb mode.
5618    unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
5619    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tMOVi8), NewVReg3)
5620                   .addReg(ARM::CPSR, RegState::Define)
5621                   .addImm(1));
5622    unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
5623    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tORR), NewVReg4)
5624                   .addReg(ARM::CPSR, RegState::Define)
5625                   .addReg(NewVReg2, RegState::Kill)
5626                   .addReg(NewVReg3, RegState::Kill));
5627    unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
5628    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tADDrSPi), NewVReg5)
5629                   .addFrameIndex(FI)
5630                   .addImm(36)); // &jbuf[1] :: pc
5631    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tSTRi))
5632                   .addReg(NewVReg4, RegState::Kill)
5633                   .addReg(NewVReg5, RegState::Kill)
5634                   .addImm(0)
5635                   .addMemOperand(FIMMOSt));
5636  } else {
5637    // Incoming value: jbuf
5638    //   ldr  r1, LCPI1_1
5639    //   add  r1, pc, r1
5640    //   str  r1, [$jbuf, #+4] ; &jbuf[1]
5641    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
5642    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::LDRi12),  NewVReg1)
5643                   .addConstantPoolIndex(CPI)
5644                   .addImm(0)
5645                   .addMemOperand(CPMMO));
5646    unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
5647    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::PICADD), NewVReg2)
5648                   .addReg(NewVReg1, RegState::Kill)
5649                   .addImm(PCLabelId));
5650    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::STRi12))
5651                   .addReg(NewVReg2, RegState::Kill)
5652                   .addFrameIndex(FI)
5653                   .addImm(36)  // &jbuf[1] :: pc
5654                   .addMemOperand(FIMMOSt));
5655  }
5656}
5657
5658MachineBasicBlock *ARMTargetLowering::
5659EmitSjLjDispatchBlock(MachineInstr *MI, MachineBasicBlock *MBB) const {
5660  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5661  DebugLoc dl = MI->getDebugLoc();
5662  MachineFunction *MF = MBB->getParent();
5663  MachineRegisterInfo *MRI = &MF->getRegInfo();
5664  ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>();
5665  MachineFrameInfo *MFI = MF->getFrameInfo();
5666  int FI = MFI->getFunctionContextIndex();
5667
5668  const TargetRegisterClass *TRC =
5669    Subtarget->isThumb() ? ARM::tGPRRegisterClass : ARM::GPRRegisterClass;
5670
5671  // Get a mapping of the call site numbers to all of the landing pads they're
5672  // associated with.
5673  DenseMap<unsigned, SmallVector<MachineBasicBlock*, 2> > CallSiteNumToLPad;
5674  unsigned MaxCSNum = 0;
5675  MachineModuleInfo &MMI = MF->getMMI();
5676  for (MachineFunction::iterator BB = MF->begin(), E = MF->end(); BB != E; ++BB) {
5677    if (!BB->isLandingPad()) continue;
5678
5679    // FIXME: We should assert that the EH_LABEL is the first MI in the landing
5680    // pad.
5681    for (MachineBasicBlock::iterator
5682           II = BB->begin(), IE = BB->end(); II != IE; ++II) {
5683      if (!II->isEHLabel()) continue;
5684
5685      MCSymbol *Sym = II->getOperand(0).getMCSymbol();
5686      if (!MMI.hasCallSiteLandingPad(Sym)) continue;
5687
5688      SmallVectorImpl<unsigned> &CallSiteIdxs = MMI.getCallSiteLandingPad(Sym);
5689      for (SmallVectorImpl<unsigned>::iterator
5690             CSI = CallSiteIdxs.begin(), CSE = CallSiteIdxs.end();
5691           CSI != CSE; ++CSI) {
5692        CallSiteNumToLPad[*CSI].push_back(BB);
5693        MaxCSNum = std::max(MaxCSNum, *CSI);
5694      }
5695      break;
5696    }
5697  }
5698
5699  // Get an ordered list of the machine basic blocks for the jump table.
5700  std::vector<MachineBasicBlock*> LPadList;
5701  SmallPtrSet<MachineBasicBlock*, 64> InvokeBBs;
5702  LPadList.reserve(CallSiteNumToLPad.size());
5703  for (unsigned I = 1; I <= MaxCSNum; ++I) {
5704    SmallVectorImpl<MachineBasicBlock*> &MBBList = CallSiteNumToLPad[I];
5705    for (SmallVectorImpl<MachineBasicBlock*>::iterator
5706           II = MBBList.begin(), IE = MBBList.end(); II != IE; ++II) {
5707      LPadList.push_back(*II);
5708      InvokeBBs.insert((*II)->pred_begin(), (*II)->pred_end());
5709    }
5710  }
5711
5712  assert(!LPadList.empty() &&
5713         "No landing pad destinations for the dispatch jump table!");
5714
5715  // Create the jump table and associated information.
5716  MachineJumpTableInfo *JTI =
5717    MF->getOrCreateJumpTableInfo(MachineJumpTableInfo::EK_Inline);
5718  unsigned MJTI = JTI->createJumpTableIndex(LPadList);
5719  unsigned UId = AFI->createJumpTableUId();
5720
5721  // Create the MBBs for the dispatch code.
5722
5723  // Shove the dispatch's address into the return slot in the function context.
5724  MachineBasicBlock *DispatchBB = MF->CreateMachineBasicBlock();
5725  DispatchBB->setIsLandingPad();
5726
5727  MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
5728  BuildMI(TrapBB, dl, TII->get(Subtarget->isThumb() ? ARM::tTRAP : ARM::TRAP));
5729  DispatchBB->addSuccessor(TrapBB);
5730
5731  MachineBasicBlock *DispContBB = MF->CreateMachineBasicBlock();
5732  DispatchBB->addSuccessor(DispContBB);
5733
5734  // Insert and renumber MBBs.
5735  MachineBasicBlock *Last = &MF->back();
5736  MF->insert(MF->end(), DispatchBB);
5737  MF->insert(MF->end(), DispContBB);
5738  MF->insert(MF->end(), TrapBB);
5739  MF->RenumberBlocks(Last);
5740
5741  // Insert code into the entry block that creates and registers the function
5742  // context.
5743  SetupEntryBlockForSjLj(MI, MBB, DispatchBB, FI);
5744
5745  MachineMemOperand *FIMMOLd =
5746    MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
5747                             MachineMemOperand::MOLoad |
5748                             MachineMemOperand::MOVolatile, 4, 4);
5749
5750  if (Subtarget->isThumb2()) {
5751    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
5752    AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2LDRi12), NewVReg1)
5753                   .addFrameIndex(FI)
5754                   .addImm(4)
5755                   .addMemOperand(FIMMOLd));
5756    AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPri))
5757                   .addReg(NewVReg1)
5758                   .addImm(LPadList.size()));
5759    BuildMI(DispatchBB, dl, TII->get(ARM::t2Bcc))
5760      .addMBB(TrapBB)
5761      .addImm(ARMCC::HI)
5762      .addReg(ARM::CPSR);
5763
5764    unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
5765    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::t2LEApcrelJT),NewVReg2)
5766                   .addJumpTableIndex(MJTI)
5767                   .addImm(UId));
5768
5769    unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
5770    AddDefaultCC(
5771      AddDefaultPred(
5772        BuildMI(DispContBB, dl, TII->get(ARM::t2ADDrs), NewVReg3)
5773        .addReg(NewVReg2, RegState::Kill)
5774        .addReg(NewVReg1)
5775        .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))));
5776
5777    BuildMI(DispContBB, dl, TII->get(ARM::t2BR_JT))
5778      .addReg(NewVReg3, RegState::Kill)
5779      .addReg(NewVReg1)
5780      .addJumpTableIndex(MJTI)
5781      .addImm(UId);
5782  } else if (Subtarget->isThumb()) {
5783    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
5784    AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tLDRspi), NewVReg1)
5785                   .addFrameIndex(FI)
5786                   .addImm(1)
5787                   .addMemOperand(FIMMOLd));
5788
5789    AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tCMPi8))
5790                   .addReg(NewVReg1)
5791                   .addImm(LPadList.size()));
5792    BuildMI(DispatchBB, dl, TII->get(ARM::tBcc))
5793      .addMBB(TrapBB)
5794      .addImm(ARMCC::HI)
5795      .addReg(ARM::CPSR);
5796
5797    unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
5798    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLSLri), NewVReg2)
5799                   .addReg(ARM::CPSR, RegState::Define)
5800                   .addReg(NewVReg1)
5801                   .addImm(2));
5802
5803    unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
5804    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLEApcrelJT), NewVReg3)
5805                   .addJumpTableIndex(MJTI)
5806                   .addImm(UId));
5807
5808    unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
5809    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg4)
5810                   .addReg(ARM::CPSR, RegState::Define)
5811                   .addReg(NewVReg2, RegState::Kill)
5812                   .addReg(NewVReg3));
5813
5814    MachineMemOperand *JTMMOLd =
5815      MF->getMachineMemOperand(MachinePointerInfo::getJumpTable(),
5816                               MachineMemOperand::MOLoad, 4, 4);
5817
5818    unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
5819    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLDRi), NewVReg5)
5820                   .addReg(NewVReg4, RegState::Kill)
5821                   .addImm(0)
5822                   .addMemOperand(JTMMOLd));
5823
5824    unsigned NewVReg6 = MRI->createVirtualRegister(TRC);
5825    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg6)
5826                   .addReg(ARM::CPSR, RegState::Define)
5827                   .addReg(NewVReg5, RegState::Kill)
5828                   .addReg(NewVReg3));
5829
5830    BuildMI(DispContBB, dl, TII->get(ARM::tBR_JTr))
5831      .addReg(NewVReg6, RegState::Kill)
5832      .addJumpTableIndex(MJTI)
5833      .addImm(UId);
5834  } else {
5835    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
5836    AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::LDRi12), NewVReg1)
5837                   .addFrameIndex(FI)
5838                   .addImm(4)
5839                   .addMemOperand(FIMMOLd));
5840    AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPri))
5841                   .addReg(NewVReg1)
5842                   .addImm(LPadList.size()));
5843    BuildMI(DispatchBB, dl, TII->get(ARM::Bcc))
5844      .addMBB(TrapBB)
5845      .addImm(ARMCC::HI)
5846      .addReg(ARM::CPSR);
5847
5848    unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
5849    AddDefaultCC(
5850      AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::MOVsi), NewVReg2)
5851                     .addReg(NewVReg1)
5852                     .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))));
5853    unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
5854    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::LEApcrelJT), NewVReg3)
5855                   .addJumpTableIndex(MJTI)
5856                   .addImm(UId));
5857
5858    MachineMemOperand *JTMMOLd =
5859      MF->getMachineMemOperand(MachinePointerInfo::getJumpTable(),
5860                               MachineMemOperand::MOLoad, 4, 4);
5861    unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
5862    AddDefaultPred(
5863      BuildMI(DispContBB, dl, TII->get(ARM::LDRrs), NewVReg4)
5864      .addReg(NewVReg2, RegState::Kill)
5865      .addReg(NewVReg3)
5866      .addImm(0)
5867      .addMemOperand(JTMMOLd));
5868
5869    BuildMI(DispContBB, dl, TII->get(ARM::BR_JTadd))
5870      .addReg(NewVReg4, RegState::Kill)
5871      .addReg(NewVReg3)
5872      .addJumpTableIndex(MJTI)
5873      .addImm(UId);
5874  }
5875
5876  // Add the jump table entries as successors to the MBB.
5877  MachineBasicBlock *PrevMBB = 0;
5878  for (std::vector<MachineBasicBlock*>::iterator
5879         I = LPadList.begin(), E = LPadList.end(); I != E; ++I) {
5880    MachineBasicBlock *CurMBB = *I;
5881    if (PrevMBB != CurMBB)
5882      DispContBB->addSuccessor(CurMBB);
5883    PrevMBB = CurMBB;
5884  }
5885
5886  const ARMBaseInstrInfo *AII = static_cast<const ARMBaseInstrInfo*>(TII);
5887  const ARMBaseRegisterInfo &RI = AII->getRegisterInfo();
5888  const unsigned *SavedRegs = RI.getCalleeSavedRegs(MF);
5889  for (SmallPtrSet<MachineBasicBlock*, 64>::iterator
5890         I = InvokeBBs.begin(), E = InvokeBBs.end(); I != E; ++I) {
5891    MachineBasicBlock *BB = *I;
5892
5893    // Remove the landing pad successor from the invoke block and replace it
5894    // with the new dispatch block.
5895    for (MachineBasicBlock::succ_iterator
5896           SI = BB->succ_begin(), SE = BB->succ_end(); SI != SE; ++SI) {
5897      MachineBasicBlock *SMBB = *SI;
5898      if (SMBB->isLandingPad()) {
5899        BB->removeSuccessor(SMBB);
5900        SMBB->setIsLandingPad(false);
5901      }
5902    }
5903
5904    BB->addSuccessor(DispatchBB);
5905
5906    // Find the invoke call and mark all of the callee-saved registers as
5907    // 'implicit defined' so that they're spilled. This prevents code from
5908    // moving instructions to before the EH block, where they will never be
5909    // executed.
5910    for (MachineBasicBlock::reverse_iterator
5911           II = BB->rbegin(), IE = BB->rend(); II != IE; ++II) {
5912      if (!II->getDesc().isCall()) continue;
5913
5914      DenseMap<unsigned, bool> DefRegs;
5915      for (MachineInstr::mop_iterator
5916             OI = II->operands_begin(), OE = II->operands_end();
5917           OI != OE; ++OI) {
5918        if (!OI->isReg()) continue;
5919        DefRegs[OI->getReg()] = true;
5920      }
5921
5922      MachineInstrBuilder MIB(&*II);
5923
5924      for (unsigned i = 0; SavedRegs[i] != 0; ++i)
5925        if (!DefRegs[SavedRegs[i]])
5926          MIB.addReg(SavedRegs[i], RegState::Implicit | RegState::Define);
5927
5928      break;
5929    }
5930  }
5931
5932  // The instruction is gone now.
5933  MI->eraseFromParent();
5934
5935  return MBB;
5936}
5937
5938static
5939MachineBasicBlock *OtherSucc(MachineBasicBlock *MBB, MachineBasicBlock *Succ) {
5940  for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
5941       E = MBB->succ_end(); I != E; ++I)
5942    if (*I != Succ)
5943      return *I;
5944  llvm_unreachable("Expecting a BB with two successors!");
5945}
5946
5947MachineBasicBlock *
5948ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
5949                                               MachineBasicBlock *BB) const {
5950  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5951  DebugLoc dl = MI->getDebugLoc();
5952  bool isThumb2 = Subtarget->isThumb2();
5953  switch (MI->getOpcode()) {
5954  default: {
5955    MI->dump();
5956    llvm_unreachable("Unexpected instr type to insert");
5957  }
5958  // The Thumb2 pre-indexed stores have the same MI operands, they just
5959  // define them differently in the .td files from the isel patterns, so
5960  // they need pseudos.
5961  case ARM::t2STR_preidx:
5962    MI->setDesc(TII->get(ARM::t2STR_PRE));
5963    return BB;
5964  case ARM::t2STRB_preidx:
5965    MI->setDesc(TII->get(ARM::t2STRB_PRE));
5966    return BB;
5967  case ARM::t2STRH_preidx:
5968    MI->setDesc(TII->get(ARM::t2STRH_PRE));
5969    return BB;
5970
5971  case ARM::STRi_preidx:
5972  case ARM::STRBi_preidx: {
5973    unsigned NewOpc = MI->getOpcode() == ARM::STRi_preidx ?
5974      ARM::STR_PRE_IMM : ARM::STRB_PRE_IMM;
5975    // Decode the offset.
5976    unsigned Offset = MI->getOperand(4).getImm();
5977    bool isSub = ARM_AM::getAM2Op(Offset) == ARM_AM::sub;
5978    Offset = ARM_AM::getAM2Offset(Offset);
5979    if (isSub)
5980      Offset = -Offset;
5981
5982    MachineMemOperand *MMO = *MI->memoperands_begin();
5983    BuildMI(*BB, MI, dl, TII->get(NewOpc))
5984      .addOperand(MI->getOperand(0))  // Rn_wb
5985      .addOperand(MI->getOperand(1))  // Rt
5986      .addOperand(MI->getOperand(2))  // Rn
5987      .addImm(Offset)                 // offset (skip GPR==zero_reg)
5988      .addOperand(MI->getOperand(5))  // pred
5989      .addOperand(MI->getOperand(6))
5990      .addMemOperand(MMO);
5991    MI->eraseFromParent();
5992    return BB;
5993  }
5994  case ARM::STRr_preidx:
5995  case ARM::STRBr_preidx:
5996  case ARM::STRH_preidx: {
5997    unsigned NewOpc;
5998    switch (MI->getOpcode()) {
5999    default: llvm_unreachable("unexpected opcode!");
6000    case ARM::STRr_preidx: NewOpc = ARM::STR_PRE_REG; break;
6001    case ARM::STRBr_preidx: NewOpc = ARM::STRB_PRE_REG; break;
6002    case ARM::STRH_preidx: NewOpc = ARM::STRH_PRE; break;
6003    }
6004    MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(NewOpc));
6005    for (unsigned i = 0; i < MI->getNumOperands(); ++i)
6006      MIB.addOperand(MI->getOperand(i));
6007    MI->eraseFromParent();
6008    return BB;
6009  }
6010  case ARM::ATOMIC_LOAD_ADD_I8:
6011     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
6012  case ARM::ATOMIC_LOAD_ADD_I16:
6013     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
6014  case ARM::ATOMIC_LOAD_ADD_I32:
6015     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
6016
6017  case ARM::ATOMIC_LOAD_AND_I8:
6018     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
6019  case ARM::ATOMIC_LOAD_AND_I16:
6020     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
6021  case ARM::ATOMIC_LOAD_AND_I32:
6022     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
6023
6024  case ARM::ATOMIC_LOAD_OR_I8:
6025     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
6026  case ARM::ATOMIC_LOAD_OR_I16:
6027     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
6028  case ARM::ATOMIC_LOAD_OR_I32:
6029     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
6030
6031  case ARM::ATOMIC_LOAD_XOR_I8:
6032     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
6033  case ARM::ATOMIC_LOAD_XOR_I16:
6034     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
6035  case ARM::ATOMIC_LOAD_XOR_I32:
6036     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
6037
6038  case ARM::ATOMIC_LOAD_NAND_I8:
6039     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
6040  case ARM::ATOMIC_LOAD_NAND_I16:
6041     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
6042  case ARM::ATOMIC_LOAD_NAND_I32:
6043     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
6044
6045  case ARM::ATOMIC_LOAD_SUB_I8:
6046     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
6047  case ARM::ATOMIC_LOAD_SUB_I16:
6048     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
6049  case ARM::ATOMIC_LOAD_SUB_I32:
6050     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
6051
6052  case ARM::ATOMIC_LOAD_MIN_I8:
6053     return EmitAtomicBinaryMinMax(MI, BB, 1, true, ARMCC::LT);
6054  case ARM::ATOMIC_LOAD_MIN_I16:
6055     return EmitAtomicBinaryMinMax(MI, BB, 2, true, ARMCC::LT);
6056  case ARM::ATOMIC_LOAD_MIN_I32:
6057     return EmitAtomicBinaryMinMax(MI, BB, 4, true, ARMCC::LT);
6058
6059  case ARM::ATOMIC_LOAD_MAX_I8:
6060     return EmitAtomicBinaryMinMax(MI, BB, 1, true, ARMCC::GT);
6061  case ARM::ATOMIC_LOAD_MAX_I16:
6062     return EmitAtomicBinaryMinMax(MI, BB, 2, true, ARMCC::GT);
6063  case ARM::ATOMIC_LOAD_MAX_I32:
6064     return EmitAtomicBinaryMinMax(MI, BB, 4, true, ARMCC::GT);
6065
6066  case ARM::ATOMIC_LOAD_UMIN_I8:
6067     return EmitAtomicBinaryMinMax(MI, BB, 1, false, ARMCC::LO);
6068  case ARM::ATOMIC_LOAD_UMIN_I16:
6069     return EmitAtomicBinaryMinMax(MI, BB, 2, false, ARMCC::LO);
6070  case ARM::ATOMIC_LOAD_UMIN_I32:
6071     return EmitAtomicBinaryMinMax(MI, BB, 4, false, ARMCC::LO);
6072
6073  case ARM::ATOMIC_LOAD_UMAX_I8:
6074     return EmitAtomicBinaryMinMax(MI, BB, 1, false, ARMCC::HI);
6075  case ARM::ATOMIC_LOAD_UMAX_I16:
6076     return EmitAtomicBinaryMinMax(MI, BB, 2, false, ARMCC::HI);
6077  case ARM::ATOMIC_LOAD_UMAX_I32:
6078     return EmitAtomicBinaryMinMax(MI, BB, 4, false, ARMCC::HI);
6079
6080  case ARM::ATOMIC_SWAP_I8:  return EmitAtomicBinary(MI, BB, 1, 0);
6081  case ARM::ATOMIC_SWAP_I16: return EmitAtomicBinary(MI, BB, 2, 0);
6082  case ARM::ATOMIC_SWAP_I32: return EmitAtomicBinary(MI, BB, 4, 0);
6083
6084  case ARM::ATOMIC_CMP_SWAP_I8:  return EmitAtomicCmpSwap(MI, BB, 1);
6085  case ARM::ATOMIC_CMP_SWAP_I16: return EmitAtomicCmpSwap(MI, BB, 2);
6086  case ARM::ATOMIC_CMP_SWAP_I32: return EmitAtomicCmpSwap(MI, BB, 4);
6087
6088
6089  case ARM::ATOMADD6432:
6090    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr,
6091                              isThumb2 ? ARM::t2ADCrr : ARM::ADCrr,
6092                              /*NeedsCarry*/ true);
6093  case ARM::ATOMSUB6432:
6094    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr,
6095                              isThumb2 ? ARM::t2SBCrr : ARM::SBCrr,
6096                              /*NeedsCarry*/ true);
6097  case ARM::ATOMOR6432:
6098    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr,
6099                              isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
6100  case ARM::ATOMXOR6432:
6101    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2EORrr : ARM::EORrr,
6102                              isThumb2 ? ARM::t2EORrr : ARM::EORrr);
6103  case ARM::ATOMAND6432:
6104    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr,
6105                              isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
6106  case ARM::ATOMSWAP6432:
6107    return EmitAtomicBinary64(MI, BB, 0, 0, false);
6108  case ARM::ATOMCMPXCHG6432:
6109    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr,
6110                              isThumb2 ? ARM::t2SBCrr : ARM::SBCrr,
6111                              /*NeedsCarry*/ false, /*IsCmpxchg*/true);
6112
6113  case ARM::tMOVCCr_pseudo: {
6114    // To "insert" a SELECT_CC instruction, we actually have to insert the
6115    // diamond control-flow pattern.  The incoming instruction knows the
6116    // destination vreg to set, the condition code register to branch on, the
6117    // true/false values to select between, and a branch opcode to use.
6118    const BasicBlock *LLVM_BB = BB->getBasicBlock();
6119    MachineFunction::iterator It = BB;
6120    ++It;
6121
6122    //  thisMBB:
6123    //  ...
6124    //   TrueVal = ...
6125    //   cmpTY ccX, r1, r2
6126    //   bCC copy1MBB
6127    //   fallthrough --> copy0MBB
6128    MachineBasicBlock *thisMBB  = BB;
6129    MachineFunction *F = BB->getParent();
6130    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
6131    MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
6132    F->insert(It, copy0MBB);
6133    F->insert(It, sinkMBB);
6134
6135    // Transfer the remainder of BB and its successor edges to sinkMBB.
6136    sinkMBB->splice(sinkMBB->begin(), BB,
6137                    llvm::next(MachineBasicBlock::iterator(MI)),
6138                    BB->end());
6139    sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
6140
6141    BB->addSuccessor(copy0MBB);
6142    BB->addSuccessor(sinkMBB);
6143
6144    BuildMI(BB, dl, TII->get(ARM::tBcc)).addMBB(sinkMBB)
6145      .addImm(MI->getOperand(3).getImm()).addReg(MI->getOperand(4).getReg());
6146
6147    //  copy0MBB:
6148    //   %FalseValue = ...
6149    //   # fallthrough to sinkMBB
6150    BB = copy0MBB;
6151
6152    // Update machine-CFG edges
6153    BB->addSuccessor(sinkMBB);
6154
6155    //  sinkMBB:
6156    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
6157    //  ...
6158    BB = sinkMBB;
6159    BuildMI(*BB, BB->begin(), dl,
6160            TII->get(ARM::PHI), MI->getOperand(0).getReg())
6161      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
6162      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
6163
6164    MI->eraseFromParent();   // The pseudo instruction is gone now.
6165    return BB;
6166  }
6167
6168  case ARM::BCCi64:
6169  case ARM::BCCZi64: {
6170    // If there is an unconditional branch to the other successor, remove it.
6171    BB->erase(llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
6172
6173    // Compare both parts that make up the double comparison separately for
6174    // equality.
6175    bool RHSisZero = MI->getOpcode() == ARM::BCCZi64;
6176
6177    unsigned LHS1 = MI->getOperand(1).getReg();
6178    unsigned LHS2 = MI->getOperand(2).getReg();
6179    if (RHSisZero) {
6180      AddDefaultPred(BuildMI(BB, dl,
6181                             TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
6182                     .addReg(LHS1).addImm(0));
6183      BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
6184        .addReg(LHS2).addImm(0)
6185        .addImm(ARMCC::EQ).addReg(ARM::CPSR);
6186    } else {
6187      unsigned RHS1 = MI->getOperand(3).getReg();
6188      unsigned RHS2 = MI->getOperand(4).getReg();
6189      AddDefaultPred(BuildMI(BB, dl,
6190                             TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
6191                     .addReg(LHS1).addReg(RHS1));
6192      BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
6193        .addReg(LHS2).addReg(RHS2)
6194        .addImm(ARMCC::EQ).addReg(ARM::CPSR);
6195    }
6196
6197    MachineBasicBlock *destMBB = MI->getOperand(RHSisZero ? 3 : 5).getMBB();
6198    MachineBasicBlock *exitMBB = OtherSucc(BB, destMBB);
6199    if (MI->getOperand(0).getImm() == ARMCC::NE)
6200      std::swap(destMBB, exitMBB);
6201
6202    BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
6203      .addMBB(destMBB).addImm(ARMCC::EQ).addReg(ARM::CPSR);
6204    if (isThumb2)
6205      AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2B)).addMBB(exitMBB));
6206    else
6207      BuildMI(BB, dl, TII->get(ARM::B)) .addMBB(exitMBB);
6208
6209    MI->eraseFromParent();   // The pseudo instruction is gone now.
6210    return BB;
6211  }
6212
6213  case ARM::ABS:
6214  case ARM::t2ABS: {
6215    // To insert an ABS instruction, we have to insert the
6216    // diamond control-flow pattern.  The incoming instruction knows the
6217    // source vreg to test against 0, the destination vreg to set,
6218    // the condition code register to branch on, the
6219    // true/false values to select between, and a branch opcode to use.
6220    // It transforms
6221    //     V1 = ABS V0
6222    // into
6223    //     V2 = MOVS V0
6224    //     BCC                      (branch to SinkBB if V0 >= 0)
6225    //     RSBBB: V3 = RSBri V2, 0  (compute ABS if V2 < 0)
6226    //     SinkBB: V1 = PHI(V2, V3)
6227    const BasicBlock *LLVM_BB = BB->getBasicBlock();
6228    MachineFunction::iterator BBI = BB;
6229    ++BBI;
6230    MachineFunction *Fn = BB->getParent();
6231    MachineBasicBlock *RSBBB = Fn->CreateMachineBasicBlock(LLVM_BB);
6232    MachineBasicBlock *SinkBB  = Fn->CreateMachineBasicBlock(LLVM_BB);
6233    Fn->insert(BBI, RSBBB);
6234    Fn->insert(BBI, SinkBB);
6235
6236    unsigned int ABSSrcReg = MI->getOperand(1).getReg();
6237    unsigned int ABSDstReg = MI->getOperand(0).getReg();
6238    bool isThumb2 = Subtarget->isThumb2();
6239    MachineRegisterInfo &MRI = Fn->getRegInfo();
6240    // In Thumb mode S must not be specified if source register is the SP or
6241    // PC and if destination register is the SP, so restrict register class
6242    unsigned NewMovDstReg = MRI.createVirtualRegister(
6243      isThumb2 ? ARM::rGPRRegisterClass : ARM::GPRRegisterClass);
6244    unsigned NewRsbDstReg = MRI.createVirtualRegister(
6245      isThumb2 ? ARM::rGPRRegisterClass : ARM::GPRRegisterClass);
6246
6247    // Transfer the remainder of BB and its successor edges to sinkMBB.
6248    SinkBB->splice(SinkBB->begin(), BB,
6249      llvm::next(MachineBasicBlock::iterator(MI)),
6250      BB->end());
6251    SinkBB->transferSuccessorsAndUpdatePHIs(BB);
6252
6253    BB->addSuccessor(RSBBB);
6254    BB->addSuccessor(SinkBB);
6255
6256    // fall through to SinkMBB
6257    RSBBB->addSuccessor(SinkBB);
6258
6259    // insert a movs at the end of BB
6260    BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2MOVr : ARM::MOVr),
6261      NewMovDstReg)
6262      .addReg(ABSSrcReg, RegState::Kill)
6263      .addImm((unsigned)ARMCC::AL).addReg(0)
6264      .addReg(ARM::CPSR, RegState::Define);
6265
6266    // insert a bcc with opposite CC to ARMCC::MI at the end of BB
6267    BuildMI(BB, dl,
6268      TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)).addMBB(SinkBB)
6269      .addImm(ARMCC::getOppositeCondition(ARMCC::MI)).addReg(ARM::CPSR);
6270
6271    // insert rsbri in RSBBB
6272    // Note: BCC and rsbri will be converted into predicated rsbmi
6273    // by if-conversion pass
6274    BuildMI(*RSBBB, RSBBB->begin(), dl,
6275      TII->get(isThumb2 ? ARM::t2RSBri : ARM::RSBri), NewRsbDstReg)
6276      .addReg(NewMovDstReg, RegState::Kill)
6277      .addImm(0).addImm((unsigned)ARMCC::AL).addReg(0).addReg(0);
6278
6279    // insert PHI in SinkBB,
6280    // reuse ABSDstReg to not change uses of ABS instruction
6281    BuildMI(*SinkBB, SinkBB->begin(), dl,
6282      TII->get(ARM::PHI), ABSDstReg)
6283      .addReg(NewRsbDstReg).addMBB(RSBBB)
6284      .addReg(NewMovDstReg).addMBB(BB);
6285
6286    // remove ABS instruction
6287    MI->eraseFromParent();
6288
6289    // return last added BB
6290    return SinkBB;
6291  }
6292  }
6293}
6294
6295void ARMTargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI,
6296                                                      SDNode *Node) const {
6297  const MCInstrDesc &MCID = MI->getDesc();
6298  if (!MCID.hasPostISelHook()) {
6299    assert(!convertAddSubFlagsOpcode(MI->getOpcode()) &&
6300           "Pseudo flag-setting opcodes must be marked with 'hasPostISelHook'");
6301    return;
6302  }
6303
6304  // Adjust potentially 's' setting instructions after isel, i.e. ADC, SBC, RSB,
6305  // RSC. Coming out of isel, they have an implicit CPSR def, but the optional
6306  // operand is still set to noreg. If needed, set the optional operand's
6307  // register to CPSR, and remove the redundant implicit def.
6308  //
6309  // e.g. ADCS (...opt:%noreg, CPSR<imp-def>) -> ADC (... opt:CPSR<def>).
6310
6311  // Rename pseudo opcodes.
6312  unsigned NewOpc = convertAddSubFlagsOpcode(MI->getOpcode());
6313  if (NewOpc) {
6314    const ARMBaseInstrInfo *TII =
6315      static_cast<const ARMBaseInstrInfo*>(getTargetMachine().getInstrInfo());
6316    MI->setDesc(TII->get(NewOpc));
6317  }
6318  unsigned ccOutIdx = MCID.getNumOperands() - 1;
6319
6320  // Any ARM instruction that sets the 's' bit should specify an optional
6321  // "cc_out" operand in the last operand position.
6322  if (!MCID.hasOptionalDef() || !MCID.OpInfo[ccOutIdx].isOptionalDef()) {
6323    assert(!NewOpc && "Optional cc_out operand required");
6324    return;
6325  }
6326  // Look for an implicit def of CPSR added by MachineInstr ctor. Remove it
6327  // since we already have an optional CPSR def.
6328  bool definesCPSR = false;
6329  bool deadCPSR = false;
6330  for (unsigned i = MCID.getNumOperands(), e = MI->getNumOperands();
6331       i != e; ++i) {
6332    const MachineOperand &MO = MI->getOperand(i);
6333    if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR) {
6334      definesCPSR = true;
6335      if (MO.isDead())
6336        deadCPSR = true;
6337      MI->RemoveOperand(i);
6338      break;
6339    }
6340  }
6341  if (!definesCPSR) {
6342    assert(!NewOpc && "Optional cc_out operand required");
6343    return;
6344  }
6345  assert(deadCPSR == !Node->hasAnyUseOfValue(1) && "inconsistent dead flag");
6346  if (deadCPSR) {
6347    assert(!MI->getOperand(ccOutIdx).getReg() &&
6348           "expect uninitialized optional cc_out operand");
6349    return;
6350  }
6351
6352  // If this instruction was defined with an optional CPSR def and its dag node
6353  // had a live implicit CPSR def, then activate the optional CPSR def.
6354  MachineOperand &MO = MI->getOperand(ccOutIdx);
6355  MO.setReg(ARM::CPSR);
6356  MO.setIsDef(true);
6357}
6358
6359//===----------------------------------------------------------------------===//
6360//                           ARM Optimization Hooks
6361//===----------------------------------------------------------------------===//
6362
6363static
6364SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
6365                            TargetLowering::DAGCombinerInfo &DCI) {
6366  SelectionDAG &DAG = DCI.DAG;
6367  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6368  EVT VT = N->getValueType(0);
6369  unsigned Opc = N->getOpcode();
6370  bool isSlctCC = Slct.getOpcode() == ISD::SELECT_CC;
6371  SDValue LHS = isSlctCC ? Slct.getOperand(2) : Slct.getOperand(1);
6372  SDValue RHS = isSlctCC ? Slct.getOperand(3) : Slct.getOperand(2);
6373  ISD::CondCode CC = ISD::SETCC_INVALID;
6374
6375  if (isSlctCC) {
6376    CC = cast<CondCodeSDNode>(Slct.getOperand(4))->get();
6377  } else {
6378    SDValue CCOp = Slct.getOperand(0);
6379    if (CCOp.getOpcode() == ISD::SETCC)
6380      CC = cast<CondCodeSDNode>(CCOp.getOperand(2))->get();
6381  }
6382
6383  bool DoXform = false;
6384  bool InvCC = false;
6385  assert ((Opc == ISD::ADD || (Opc == ISD::SUB && Slct == N->getOperand(1))) &&
6386          "Bad input!");
6387
6388  if (LHS.getOpcode() == ISD::Constant &&
6389      cast<ConstantSDNode>(LHS)->isNullValue()) {
6390    DoXform = true;
6391  } else if (CC != ISD::SETCC_INVALID &&
6392             RHS.getOpcode() == ISD::Constant &&
6393             cast<ConstantSDNode>(RHS)->isNullValue()) {
6394    std::swap(LHS, RHS);
6395    SDValue Op0 = Slct.getOperand(0);
6396    EVT OpVT = isSlctCC ? Op0.getValueType() :
6397                          Op0.getOperand(0).getValueType();
6398    bool isInt = OpVT.isInteger();
6399    CC = ISD::getSetCCInverse(CC, isInt);
6400
6401    if (!TLI.isCondCodeLegal(CC, OpVT))
6402      return SDValue();         // Inverse operator isn't legal.
6403
6404    DoXform = true;
6405    InvCC = true;
6406  }
6407
6408  if (DoXform) {
6409    SDValue Result = DAG.getNode(Opc, RHS.getDebugLoc(), VT, OtherOp, RHS);
6410    if (isSlctCC)
6411      return DAG.getSelectCC(N->getDebugLoc(), OtherOp, Result,
6412                             Slct.getOperand(0), Slct.getOperand(1), CC);
6413    SDValue CCOp = Slct.getOperand(0);
6414    if (InvCC)
6415      CCOp = DAG.getSetCC(Slct.getDebugLoc(), CCOp.getValueType(),
6416                          CCOp.getOperand(0), CCOp.getOperand(1), CC);
6417    return DAG.getNode(ISD::SELECT, N->getDebugLoc(), VT,
6418                       CCOp, OtherOp, Result);
6419  }
6420  return SDValue();
6421}
6422
6423// AddCombineToVPADDL- For pair-wise add on neon, use the vpaddl instruction
6424// (only after legalization).
6425static SDValue AddCombineToVPADDL(SDNode *N, SDValue N0, SDValue N1,
6426                                 TargetLowering::DAGCombinerInfo &DCI,
6427                                 const ARMSubtarget *Subtarget) {
6428
6429  // Only perform optimization if after legalize, and if NEON is available. We
6430  // also expected both operands to be BUILD_VECTORs.
6431  if (DCI.isBeforeLegalize() || !Subtarget->hasNEON()
6432      || N0.getOpcode() != ISD::BUILD_VECTOR
6433      || N1.getOpcode() != ISD::BUILD_VECTOR)
6434    return SDValue();
6435
6436  // Check output type since VPADDL operand elements can only be 8, 16, or 32.
6437  EVT VT = N->getValueType(0);
6438  if (!VT.isInteger() || VT.getVectorElementType() == MVT::i64)
6439    return SDValue();
6440
6441  // Check that the vector operands are of the right form.
6442  // N0 and N1 are BUILD_VECTOR nodes with N number of EXTRACT_VECTOR
6443  // operands, where N is the size of the formed vector.
6444  // Each EXTRACT_VECTOR should have the same input vector and odd or even
6445  // index such that we have a pair wise add pattern.
6446
6447  // Grab the vector that all EXTRACT_VECTOR nodes should be referencing.
6448  if (N0->getOperand(0)->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
6449    return SDValue();
6450  SDValue Vec = N0->getOperand(0)->getOperand(0);
6451  SDNode *V = Vec.getNode();
6452  unsigned nextIndex = 0;
6453
6454  // For each operands to the ADD which are BUILD_VECTORs,
6455  // check to see if each of their operands are an EXTRACT_VECTOR with
6456  // the same vector and appropriate index.
6457  for (unsigned i = 0, e = N0->getNumOperands(); i != e; ++i) {
6458    if (N0->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT
6459        && N1->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
6460
6461      SDValue ExtVec0 = N0->getOperand(i);
6462      SDValue ExtVec1 = N1->getOperand(i);
6463
6464      // First operand is the vector, verify its the same.
6465      if (V != ExtVec0->getOperand(0).getNode() ||
6466          V != ExtVec1->getOperand(0).getNode())
6467        return SDValue();
6468
6469      // Second is the constant, verify its correct.
6470      ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(ExtVec0->getOperand(1));
6471      ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(ExtVec1->getOperand(1));
6472
6473      // For the constant, we want to see all the even or all the odd.
6474      if (!C0 || !C1 || C0->getZExtValue() != nextIndex
6475          || C1->getZExtValue() != nextIndex+1)
6476        return SDValue();
6477
6478      // Increment index.
6479      nextIndex+=2;
6480    } else
6481      return SDValue();
6482  }
6483
6484  // Create VPADDL node.
6485  SelectionDAG &DAG = DCI.DAG;
6486  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6487
6488  // Build operand list.
6489  SmallVector<SDValue, 8> Ops;
6490  Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpaddls,
6491                                TLI.getPointerTy()));
6492
6493  // Input is the vector.
6494  Ops.push_back(Vec);
6495
6496  // Get widened type and narrowed type.
6497  MVT widenType;
6498  unsigned numElem = VT.getVectorNumElements();
6499  switch (VT.getVectorElementType().getSimpleVT().SimpleTy) {
6500    case MVT::i8: widenType = MVT::getVectorVT(MVT::i16, numElem); break;
6501    case MVT::i16: widenType = MVT::getVectorVT(MVT::i32, numElem); break;
6502    case MVT::i32: widenType = MVT::getVectorVT(MVT::i64, numElem); break;
6503    default:
6504      assert(0 && "Invalid vector element type for padd optimization.");
6505  }
6506
6507  SDValue tmp = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, N->getDebugLoc(),
6508                            widenType, &Ops[0], Ops.size());
6509  return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, tmp);
6510}
6511
6512/// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
6513/// operands N0 and N1.  This is a helper for PerformADDCombine that is
6514/// called with the default operands, and if that fails, with commuted
6515/// operands.
6516static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
6517                                          TargetLowering::DAGCombinerInfo &DCI,
6518                                          const ARMSubtarget *Subtarget){
6519
6520  // Attempt to create vpaddl for this add.
6521  SDValue Result = AddCombineToVPADDL(N, N0, N1, DCI, Subtarget);
6522  if (Result.getNode())
6523    return Result;
6524
6525  // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
6526  if (N0.getOpcode() == ISD::SELECT && N0.getNode()->hasOneUse()) {
6527    SDValue Result = combineSelectAndUse(N, N0, N1, DCI);
6528    if (Result.getNode()) return Result;
6529  }
6530  return SDValue();
6531}
6532
6533/// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
6534///
6535static SDValue PerformADDCombine(SDNode *N,
6536                                 TargetLowering::DAGCombinerInfo &DCI,
6537                                 const ARMSubtarget *Subtarget) {
6538  SDValue N0 = N->getOperand(0);
6539  SDValue N1 = N->getOperand(1);
6540
6541  // First try with the default operand order.
6542  SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI, Subtarget);
6543  if (Result.getNode())
6544    return Result;
6545
6546  // If that didn't work, try again with the operands commuted.
6547  return PerformADDCombineWithOperands(N, N1, N0, DCI, Subtarget);
6548}
6549
6550/// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
6551///
6552static SDValue PerformSUBCombine(SDNode *N,
6553                                 TargetLowering::DAGCombinerInfo &DCI) {
6554  SDValue N0 = N->getOperand(0);
6555  SDValue N1 = N->getOperand(1);
6556
6557  // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
6558  if (N1.getOpcode() == ISD::SELECT && N1.getNode()->hasOneUse()) {
6559    SDValue Result = combineSelectAndUse(N, N1, N0, DCI);
6560    if (Result.getNode()) return Result;
6561  }
6562
6563  return SDValue();
6564}
6565
6566/// PerformVMULCombine
6567/// Distribute (A + B) * C to (A * C) + (B * C) to take advantage of the
6568/// special multiplier accumulator forwarding.
6569///   vmul d3, d0, d2
6570///   vmla d3, d1, d2
6571/// is faster than
6572///   vadd d3, d0, d1
6573///   vmul d3, d3, d2
6574static SDValue PerformVMULCombine(SDNode *N,
6575                                  TargetLowering::DAGCombinerInfo &DCI,
6576                                  const ARMSubtarget *Subtarget) {
6577  if (!Subtarget->hasVMLxForwarding())
6578    return SDValue();
6579
6580  SelectionDAG &DAG = DCI.DAG;
6581  SDValue N0 = N->getOperand(0);
6582  SDValue N1 = N->getOperand(1);
6583  unsigned Opcode = N0.getOpcode();
6584  if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
6585      Opcode != ISD::FADD && Opcode != ISD::FSUB) {
6586    Opcode = N1.getOpcode();
6587    if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
6588        Opcode != ISD::FADD && Opcode != ISD::FSUB)
6589      return SDValue();
6590    std::swap(N0, N1);
6591  }
6592
6593  EVT VT = N->getValueType(0);
6594  DebugLoc DL = N->getDebugLoc();
6595  SDValue N00 = N0->getOperand(0);
6596  SDValue N01 = N0->getOperand(1);
6597  return DAG.getNode(Opcode, DL, VT,
6598                     DAG.getNode(ISD::MUL, DL, VT, N00, N1),
6599                     DAG.getNode(ISD::MUL, DL, VT, N01, N1));
6600}
6601
6602static SDValue PerformMULCombine(SDNode *N,
6603                                 TargetLowering::DAGCombinerInfo &DCI,
6604                                 const ARMSubtarget *Subtarget) {
6605  SelectionDAG &DAG = DCI.DAG;
6606
6607  if (Subtarget->isThumb1Only())
6608    return SDValue();
6609
6610  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
6611    return SDValue();
6612
6613  EVT VT = N->getValueType(0);
6614  if (VT.is64BitVector() || VT.is128BitVector())
6615    return PerformVMULCombine(N, DCI, Subtarget);
6616  if (VT != MVT::i32)
6617    return SDValue();
6618
6619  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
6620  if (!C)
6621    return SDValue();
6622
6623  uint64_t MulAmt = C->getZExtValue();
6624  unsigned ShiftAmt = CountTrailingZeros_64(MulAmt);
6625  ShiftAmt = ShiftAmt & (32 - 1);
6626  SDValue V = N->getOperand(0);
6627  DebugLoc DL = N->getDebugLoc();
6628
6629  SDValue Res;
6630  MulAmt >>= ShiftAmt;
6631  if (isPowerOf2_32(MulAmt - 1)) {
6632    // (mul x, 2^N + 1) => (add (shl x, N), x)
6633    Res = DAG.getNode(ISD::ADD, DL, VT,
6634                      V, DAG.getNode(ISD::SHL, DL, VT,
6635                                     V, DAG.getConstant(Log2_32(MulAmt-1),
6636                                                        MVT::i32)));
6637  } else if (isPowerOf2_32(MulAmt + 1)) {
6638    // (mul x, 2^N - 1) => (sub (shl x, N), x)
6639    Res = DAG.getNode(ISD::SUB, DL, VT,
6640                      DAG.getNode(ISD::SHL, DL, VT,
6641                                  V, DAG.getConstant(Log2_32(MulAmt+1),
6642                                                     MVT::i32)),
6643                                                     V);
6644  } else
6645    return SDValue();
6646
6647  if (ShiftAmt != 0)
6648    Res = DAG.getNode(ISD::SHL, DL, VT, Res,
6649                      DAG.getConstant(ShiftAmt, MVT::i32));
6650
6651  // Do not add new nodes to DAG combiner worklist.
6652  DCI.CombineTo(N, Res, false);
6653  return SDValue();
6654}
6655
6656static SDValue PerformANDCombine(SDNode *N,
6657                                TargetLowering::DAGCombinerInfo &DCI) {
6658
6659  // Attempt to use immediate-form VBIC
6660  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
6661  DebugLoc dl = N->getDebugLoc();
6662  EVT VT = N->getValueType(0);
6663  SelectionDAG &DAG = DCI.DAG;
6664
6665  if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
6666    return SDValue();
6667
6668  APInt SplatBits, SplatUndef;
6669  unsigned SplatBitSize;
6670  bool HasAnyUndefs;
6671  if (BVN &&
6672      BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
6673    if (SplatBitSize <= 64) {
6674      EVT VbicVT;
6675      SDValue Val = isNEONModifiedImm((~SplatBits).getZExtValue(),
6676                                      SplatUndef.getZExtValue(), SplatBitSize,
6677                                      DAG, VbicVT, VT.is128BitVector(),
6678                                      OtherModImm);
6679      if (Val.getNode()) {
6680        SDValue Input =
6681          DAG.getNode(ISD::BITCAST, dl, VbicVT, N->getOperand(0));
6682        SDValue Vbic = DAG.getNode(ARMISD::VBICIMM, dl, VbicVT, Input, Val);
6683        return DAG.getNode(ISD::BITCAST, dl, VT, Vbic);
6684      }
6685    }
6686  }
6687
6688  return SDValue();
6689}
6690
6691/// PerformORCombine - Target-specific dag combine xforms for ISD::OR
6692static SDValue PerformORCombine(SDNode *N,
6693                                TargetLowering::DAGCombinerInfo &DCI,
6694                                const ARMSubtarget *Subtarget) {
6695  // Attempt to use immediate-form VORR
6696  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
6697  DebugLoc dl = N->getDebugLoc();
6698  EVT VT = N->getValueType(0);
6699  SelectionDAG &DAG = DCI.DAG;
6700
6701  if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
6702    return SDValue();
6703
6704  APInt SplatBits, SplatUndef;
6705  unsigned SplatBitSize;
6706  bool HasAnyUndefs;
6707  if (BVN && Subtarget->hasNEON() &&
6708      BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
6709    if (SplatBitSize <= 64) {
6710      EVT VorrVT;
6711      SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
6712                                      SplatUndef.getZExtValue(), SplatBitSize,
6713                                      DAG, VorrVT, VT.is128BitVector(),
6714                                      OtherModImm);
6715      if (Val.getNode()) {
6716        SDValue Input =
6717          DAG.getNode(ISD::BITCAST, dl, VorrVT, N->getOperand(0));
6718        SDValue Vorr = DAG.getNode(ARMISD::VORRIMM, dl, VorrVT, Input, Val);
6719        return DAG.getNode(ISD::BITCAST, dl, VT, Vorr);
6720      }
6721    }
6722  }
6723
6724  SDValue N0 = N->getOperand(0);
6725  if (N0.getOpcode() != ISD::AND)
6726    return SDValue();
6727  SDValue N1 = N->getOperand(1);
6728
6729  // (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant.
6730  if (Subtarget->hasNEON() && N1.getOpcode() == ISD::AND && VT.isVector() &&
6731      DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
6732    APInt SplatUndef;
6733    unsigned SplatBitSize;
6734    bool HasAnyUndefs;
6735
6736    BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(1));
6737    APInt SplatBits0;
6738    if (BVN0 && BVN0->isConstantSplat(SplatBits0, SplatUndef, SplatBitSize,
6739                                  HasAnyUndefs) && !HasAnyUndefs) {
6740      BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(1));
6741      APInt SplatBits1;
6742      if (BVN1 && BVN1->isConstantSplat(SplatBits1, SplatUndef, SplatBitSize,
6743                                    HasAnyUndefs) && !HasAnyUndefs &&
6744          SplatBits0 == ~SplatBits1) {
6745        // Canonicalize the vector type to make instruction selection simpler.
6746        EVT CanonicalVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
6747        SDValue Result = DAG.getNode(ARMISD::VBSL, dl, CanonicalVT,
6748                                     N0->getOperand(1), N0->getOperand(0),
6749                                     N1->getOperand(0));
6750        return DAG.getNode(ISD::BITCAST, dl, VT, Result);
6751      }
6752    }
6753  }
6754
6755  // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when
6756  // reasonable.
6757
6758  // BFI is only available on V6T2+
6759  if (Subtarget->isThumb1Only() || !Subtarget->hasV6T2Ops())
6760    return SDValue();
6761
6762  DebugLoc DL = N->getDebugLoc();
6763  // 1) or (and A, mask), val => ARMbfi A, val, mask
6764  //      iff (val & mask) == val
6765  //
6766  // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
6767  //  2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2)
6768  //          && mask == ~mask2
6769  //  2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2)
6770  //          && ~mask == mask2
6771  //  (i.e., copy a bitfield value into another bitfield of the same width)
6772
6773  if (VT != MVT::i32)
6774    return SDValue();
6775
6776  SDValue N00 = N0.getOperand(0);
6777
6778  // The value and the mask need to be constants so we can verify this is
6779  // actually a bitfield set. If the mask is 0xffff, we can do better
6780  // via a movt instruction, so don't use BFI in that case.
6781  SDValue MaskOp = N0.getOperand(1);
6782  ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(MaskOp);
6783  if (!MaskC)
6784    return SDValue();
6785  unsigned Mask = MaskC->getZExtValue();
6786  if (Mask == 0xffff)
6787    return SDValue();
6788  SDValue Res;
6789  // Case (1): or (and A, mask), val => ARMbfi A, val, mask
6790  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
6791  if (N1C) {
6792    unsigned Val = N1C->getZExtValue();
6793    if ((Val & ~Mask) != Val)
6794      return SDValue();
6795
6796    if (ARM::isBitFieldInvertedMask(Mask)) {
6797      Val >>= CountTrailingZeros_32(~Mask);
6798
6799      Res = DAG.getNode(ARMISD::BFI, DL, VT, N00,
6800                        DAG.getConstant(Val, MVT::i32),
6801                        DAG.getConstant(Mask, MVT::i32));
6802
6803      // Do not add new nodes to DAG combiner worklist.
6804      DCI.CombineTo(N, Res, false);
6805      return SDValue();
6806    }
6807  } else if (N1.getOpcode() == ISD::AND) {
6808    // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
6809    ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
6810    if (!N11C)
6811      return SDValue();
6812    unsigned Mask2 = N11C->getZExtValue();
6813
6814    // Mask and ~Mask2 (or reverse) must be equivalent for the BFI pattern
6815    // as is to match.
6816    if (ARM::isBitFieldInvertedMask(Mask) &&
6817        (Mask == ~Mask2)) {
6818      // The pack halfword instruction works better for masks that fit it,
6819      // so use that when it's available.
6820      if (Subtarget->hasT2ExtractPack() &&
6821          (Mask == 0xffff || Mask == 0xffff0000))
6822        return SDValue();
6823      // 2a
6824      unsigned amt = CountTrailingZeros_32(Mask2);
6825      Res = DAG.getNode(ISD::SRL, DL, VT, N1.getOperand(0),
6826                        DAG.getConstant(amt, MVT::i32));
6827      Res = DAG.getNode(ARMISD::BFI, DL, VT, N00, Res,
6828                        DAG.getConstant(Mask, MVT::i32));
6829      // Do not add new nodes to DAG combiner worklist.
6830      DCI.CombineTo(N, Res, false);
6831      return SDValue();
6832    } else if (ARM::isBitFieldInvertedMask(~Mask) &&
6833               (~Mask == Mask2)) {
6834      // The pack halfword instruction works better for masks that fit it,
6835      // so use that when it's available.
6836      if (Subtarget->hasT2ExtractPack() &&
6837          (Mask2 == 0xffff || Mask2 == 0xffff0000))
6838        return SDValue();
6839      // 2b
6840      unsigned lsb = CountTrailingZeros_32(Mask);
6841      Res = DAG.getNode(ISD::SRL, DL, VT, N00,
6842                        DAG.getConstant(lsb, MVT::i32));
6843      Res = DAG.getNode(ARMISD::BFI, DL, VT, N1.getOperand(0), Res,
6844                        DAG.getConstant(Mask2, MVT::i32));
6845      // Do not add new nodes to DAG combiner worklist.
6846      DCI.CombineTo(N, Res, false);
6847      return SDValue();
6848    }
6849  }
6850
6851  if (DAG.MaskedValueIsZero(N1, MaskC->getAPIntValue()) &&
6852      N00.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N00.getOperand(1)) &&
6853      ARM::isBitFieldInvertedMask(~Mask)) {
6854    // Case (3): or (and (shl A, #shamt), mask), B => ARMbfi B, A, ~mask
6855    // where lsb(mask) == #shamt and masked bits of B are known zero.
6856    SDValue ShAmt = N00.getOperand(1);
6857    unsigned ShAmtC = cast<ConstantSDNode>(ShAmt)->getZExtValue();
6858    unsigned LSB = CountTrailingZeros_32(Mask);
6859    if (ShAmtC != LSB)
6860      return SDValue();
6861
6862    Res = DAG.getNode(ARMISD::BFI, DL, VT, N1, N00.getOperand(0),
6863                      DAG.getConstant(~Mask, MVT::i32));
6864
6865    // Do not add new nodes to DAG combiner worklist.
6866    DCI.CombineTo(N, Res, false);
6867  }
6868
6869  return SDValue();
6870}
6871
6872/// PerformBFICombine - (bfi A, (and B, Mask1), Mask2) -> (bfi A, B, Mask2) iff
6873/// the bits being cleared by the AND are not demanded by the BFI.
6874static SDValue PerformBFICombine(SDNode *N,
6875                                 TargetLowering::DAGCombinerInfo &DCI) {
6876  SDValue N1 = N->getOperand(1);
6877  if (N1.getOpcode() == ISD::AND) {
6878    ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
6879    if (!N11C)
6880      return SDValue();
6881    unsigned InvMask = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
6882    unsigned LSB = CountTrailingZeros_32(~InvMask);
6883    unsigned Width = (32 - CountLeadingZeros_32(~InvMask)) - LSB;
6884    unsigned Mask = (1 << Width)-1;
6885    unsigned Mask2 = N11C->getZExtValue();
6886    if ((Mask & (~Mask2)) == 0)
6887      return DCI.DAG.getNode(ARMISD::BFI, N->getDebugLoc(), N->getValueType(0),
6888                             N->getOperand(0), N1.getOperand(0),
6889                             N->getOperand(2));
6890  }
6891  return SDValue();
6892}
6893
6894/// PerformVMOVRRDCombine - Target-specific dag combine xforms for
6895/// ARMISD::VMOVRRD.
6896static SDValue PerformVMOVRRDCombine(SDNode *N,
6897                                     TargetLowering::DAGCombinerInfo &DCI) {
6898  // vmovrrd(vmovdrr x, y) -> x,y
6899  SDValue InDouble = N->getOperand(0);
6900  if (InDouble.getOpcode() == ARMISD::VMOVDRR)
6901    return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
6902
6903  // vmovrrd(load f64) -> (load i32), (load i32)
6904  SDNode *InNode = InDouble.getNode();
6905  if (ISD::isNormalLoad(InNode) && InNode->hasOneUse() &&
6906      InNode->getValueType(0) == MVT::f64 &&
6907      InNode->getOperand(1).getOpcode() == ISD::FrameIndex &&
6908      !cast<LoadSDNode>(InNode)->isVolatile()) {
6909    // TODO: Should this be done for non-FrameIndex operands?
6910    LoadSDNode *LD = cast<LoadSDNode>(InNode);
6911
6912    SelectionDAG &DAG = DCI.DAG;
6913    DebugLoc DL = LD->getDebugLoc();
6914    SDValue BasePtr = LD->getBasePtr();
6915    SDValue NewLD1 = DAG.getLoad(MVT::i32, DL, LD->getChain(), BasePtr,
6916                                 LD->getPointerInfo(), LD->isVolatile(),
6917                                 LD->isNonTemporal(), LD->getAlignment());
6918
6919    SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
6920                                    DAG.getConstant(4, MVT::i32));
6921    SDValue NewLD2 = DAG.getLoad(MVT::i32, DL, NewLD1.getValue(1), OffsetPtr,
6922                                 LD->getPointerInfo(), LD->isVolatile(),
6923                                 LD->isNonTemporal(),
6924                                 std::min(4U, LD->getAlignment() / 2));
6925
6926    DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewLD2.getValue(1));
6927    SDValue Result = DCI.CombineTo(N, NewLD1, NewLD2);
6928    DCI.RemoveFromWorklist(LD);
6929    DAG.DeleteNode(LD);
6930    return Result;
6931  }
6932
6933  return SDValue();
6934}
6935
6936/// PerformVMOVDRRCombine - Target-specific dag combine xforms for
6937/// ARMISD::VMOVDRR.  This is also used for BUILD_VECTORs with 2 operands.
6938static SDValue PerformVMOVDRRCombine(SDNode *N, SelectionDAG &DAG) {
6939  // N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X)
6940  SDValue Op0 = N->getOperand(0);
6941  SDValue Op1 = N->getOperand(1);
6942  if (Op0.getOpcode() == ISD::BITCAST)
6943    Op0 = Op0.getOperand(0);
6944  if (Op1.getOpcode() == ISD::BITCAST)
6945    Op1 = Op1.getOperand(0);
6946  if (Op0.getOpcode() == ARMISD::VMOVRRD &&
6947      Op0.getNode() == Op1.getNode() &&
6948      Op0.getResNo() == 0 && Op1.getResNo() == 1)
6949    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(),
6950                       N->getValueType(0), Op0.getOperand(0));
6951  return SDValue();
6952}
6953
6954/// PerformSTORECombine - Target-specific dag combine xforms for
6955/// ISD::STORE.
6956static SDValue PerformSTORECombine(SDNode *N,
6957                                   TargetLowering::DAGCombinerInfo &DCI) {
6958  // Bitcast an i64 store extracted from a vector to f64.
6959  // Otherwise, the i64 value will be legalized to a pair of i32 values.
6960  StoreSDNode *St = cast<StoreSDNode>(N);
6961  SDValue StVal = St->getValue();
6962  if (!ISD::isNormalStore(St) || St->isVolatile())
6963    return SDValue();
6964
6965  if (StVal.getNode()->getOpcode() == ARMISD::VMOVDRR &&
6966      StVal.getNode()->hasOneUse() && !St->isVolatile()) {
6967    SelectionDAG  &DAG = DCI.DAG;
6968    DebugLoc DL = St->getDebugLoc();
6969    SDValue BasePtr = St->getBasePtr();
6970    SDValue NewST1 = DAG.getStore(St->getChain(), DL,
6971                                  StVal.getNode()->getOperand(0), BasePtr,
6972                                  St->getPointerInfo(), St->isVolatile(),
6973                                  St->isNonTemporal(), St->getAlignment());
6974
6975    SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
6976                                    DAG.getConstant(4, MVT::i32));
6977    return DAG.getStore(NewST1.getValue(0), DL, StVal.getNode()->getOperand(1),
6978                        OffsetPtr, St->getPointerInfo(), St->isVolatile(),
6979                        St->isNonTemporal(),
6980                        std::min(4U, St->getAlignment() / 2));
6981  }
6982
6983  if (StVal.getValueType() != MVT::i64 ||
6984      StVal.getNode()->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
6985    return SDValue();
6986
6987  SelectionDAG &DAG = DCI.DAG;
6988  DebugLoc dl = StVal.getDebugLoc();
6989  SDValue IntVec = StVal.getOperand(0);
6990  EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
6991                                 IntVec.getValueType().getVectorNumElements());
6992  SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, IntVec);
6993  SDValue ExtElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
6994                               Vec, StVal.getOperand(1));
6995  dl = N->getDebugLoc();
6996  SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ExtElt);
6997  // Make the DAGCombiner fold the bitcasts.
6998  DCI.AddToWorklist(Vec.getNode());
6999  DCI.AddToWorklist(ExtElt.getNode());
7000  DCI.AddToWorklist(V.getNode());
7001  return DAG.getStore(St->getChain(), dl, V, St->getBasePtr(),
7002                      St->getPointerInfo(), St->isVolatile(),
7003                      St->isNonTemporal(), St->getAlignment(),
7004                      St->getTBAAInfo());
7005}
7006
7007/// hasNormalLoadOperand - Check if any of the operands of a BUILD_VECTOR node
7008/// are normal, non-volatile loads.  If so, it is profitable to bitcast an
7009/// i64 vector to have f64 elements, since the value can then be loaded
7010/// directly into a VFP register.
7011static bool hasNormalLoadOperand(SDNode *N) {
7012  unsigned NumElts = N->getValueType(0).getVectorNumElements();
7013  for (unsigned i = 0; i < NumElts; ++i) {
7014    SDNode *Elt = N->getOperand(i).getNode();
7015    if (ISD::isNormalLoad(Elt) && !cast<LoadSDNode>(Elt)->isVolatile())
7016      return true;
7017  }
7018  return false;
7019}
7020
7021/// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for
7022/// ISD::BUILD_VECTOR.
7023static SDValue PerformBUILD_VECTORCombine(SDNode *N,
7024                                          TargetLowering::DAGCombinerInfo &DCI){
7025  // build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X):
7026  // VMOVRRD is introduced when legalizing i64 types.  It forces the i64 value
7027  // into a pair of GPRs, which is fine when the value is used as a scalar,
7028  // but if the i64 value is converted to a vector, we need to undo the VMOVRRD.
7029  SelectionDAG &DAG = DCI.DAG;
7030  if (N->getNumOperands() == 2) {
7031    SDValue RV = PerformVMOVDRRCombine(N, DAG);
7032    if (RV.getNode())
7033      return RV;
7034  }
7035
7036  // Load i64 elements as f64 values so that type legalization does not split
7037  // them up into i32 values.
7038  EVT VT = N->getValueType(0);
7039  if (VT.getVectorElementType() != MVT::i64 || !hasNormalLoadOperand(N))
7040    return SDValue();
7041  DebugLoc dl = N->getDebugLoc();
7042  SmallVector<SDValue, 8> Ops;
7043  unsigned NumElts = VT.getVectorNumElements();
7044  for (unsigned i = 0; i < NumElts; ++i) {
7045    SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(i));
7046    Ops.push_back(V);
7047    // Make the DAGCombiner fold the bitcast.
7048    DCI.AddToWorklist(V.getNode());
7049  }
7050  EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, NumElts);
7051  SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, FloatVT, Ops.data(), NumElts);
7052  return DAG.getNode(ISD::BITCAST, dl, VT, BV);
7053}
7054
7055/// PerformInsertEltCombine - Target-specific dag combine xforms for
7056/// ISD::INSERT_VECTOR_ELT.
7057static SDValue PerformInsertEltCombine(SDNode *N,
7058                                       TargetLowering::DAGCombinerInfo &DCI) {
7059  // Bitcast an i64 load inserted into a vector to f64.
7060  // Otherwise, the i64 value will be legalized to a pair of i32 values.
7061  EVT VT = N->getValueType(0);
7062  SDNode *Elt = N->getOperand(1).getNode();
7063  if (VT.getVectorElementType() != MVT::i64 ||
7064      !ISD::isNormalLoad(Elt) || cast<LoadSDNode>(Elt)->isVolatile())
7065    return SDValue();
7066
7067  SelectionDAG &DAG = DCI.DAG;
7068  DebugLoc dl = N->getDebugLoc();
7069  EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
7070                                 VT.getVectorNumElements());
7071  SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, N->getOperand(0));
7072  SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(1));
7073  // Make the DAGCombiner fold the bitcasts.
7074  DCI.AddToWorklist(Vec.getNode());
7075  DCI.AddToWorklist(V.getNode());
7076  SDValue InsElt = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, FloatVT,
7077                               Vec, V, N->getOperand(2));
7078  return DAG.getNode(ISD::BITCAST, dl, VT, InsElt);
7079}
7080
7081/// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for
7082/// ISD::VECTOR_SHUFFLE.
7083static SDValue PerformVECTOR_SHUFFLECombine(SDNode *N, SelectionDAG &DAG) {
7084  // The LLVM shufflevector instruction does not require the shuffle mask
7085  // length to match the operand vector length, but ISD::VECTOR_SHUFFLE does
7086  // have that requirement.  When translating to ISD::VECTOR_SHUFFLE, if the
7087  // operands do not match the mask length, they are extended by concatenating
7088  // them with undef vectors.  That is probably the right thing for other
7089  // targets, but for NEON it is better to concatenate two double-register
7090  // size vector operands into a single quad-register size vector.  Do that
7091  // transformation here:
7092  //   shuffle(concat(v1, undef), concat(v2, undef)) ->
7093  //   shuffle(concat(v1, v2), undef)
7094  SDValue Op0 = N->getOperand(0);
7095  SDValue Op1 = N->getOperand(1);
7096  if (Op0.getOpcode() != ISD::CONCAT_VECTORS ||
7097      Op1.getOpcode() != ISD::CONCAT_VECTORS ||
7098      Op0.getNumOperands() != 2 ||
7099      Op1.getNumOperands() != 2)
7100    return SDValue();
7101  SDValue Concat0Op1 = Op0.getOperand(1);
7102  SDValue Concat1Op1 = Op1.getOperand(1);
7103  if (Concat0Op1.getOpcode() != ISD::UNDEF ||
7104      Concat1Op1.getOpcode() != ISD::UNDEF)
7105    return SDValue();
7106  // Skip the transformation if any of the types are illegal.
7107  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7108  EVT VT = N->getValueType(0);
7109  if (!TLI.isTypeLegal(VT) ||
7110      !TLI.isTypeLegal(Concat0Op1.getValueType()) ||
7111      !TLI.isTypeLegal(Concat1Op1.getValueType()))
7112    return SDValue();
7113
7114  SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, N->getDebugLoc(), VT,
7115                                  Op0.getOperand(0), Op1.getOperand(0));
7116  // Translate the shuffle mask.
7117  SmallVector<int, 16> NewMask;
7118  unsigned NumElts = VT.getVectorNumElements();
7119  unsigned HalfElts = NumElts/2;
7120  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
7121  for (unsigned n = 0; n < NumElts; ++n) {
7122    int MaskElt = SVN->getMaskElt(n);
7123    int NewElt = -1;
7124    if (MaskElt < (int)HalfElts)
7125      NewElt = MaskElt;
7126    else if (MaskElt >= (int)NumElts && MaskElt < (int)(NumElts + HalfElts))
7127      NewElt = HalfElts + MaskElt - NumElts;
7128    NewMask.push_back(NewElt);
7129  }
7130  return DAG.getVectorShuffle(VT, N->getDebugLoc(), NewConcat,
7131                              DAG.getUNDEF(VT), NewMask.data());
7132}
7133
7134/// CombineBaseUpdate - Target-specific DAG combine function for VLDDUP and
7135/// NEON load/store intrinsics to merge base address updates.
7136static SDValue CombineBaseUpdate(SDNode *N,
7137                                 TargetLowering::DAGCombinerInfo &DCI) {
7138  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
7139    return SDValue();
7140
7141  SelectionDAG &DAG = DCI.DAG;
7142  bool isIntrinsic = (N->getOpcode() == ISD::INTRINSIC_VOID ||
7143                      N->getOpcode() == ISD::INTRINSIC_W_CHAIN);
7144  unsigned AddrOpIdx = (isIntrinsic ? 2 : 1);
7145  SDValue Addr = N->getOperand(AddrOpIdx);
7146
7147  // Search for a use of the address operand that is an increment.
7148  for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
7149         UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
7150    SDNode *User = *UI;
7151    if (User->getOpcode() != ISD::ADD ||
7152        UI.getUse().getResNo() != Addr.getResNo())
7153      continue;
7154
7155    // Check that the add is independent of the load/store.  Otherwise, folding
7156    // it would create a cycle.
7157    if (User->isPredecessorOf(N) || N->isPredecessorOf(User))
7158      continue;
7159
7160    // Find the new opcode for the updating load/store.
7161    bool isLoad = true;
7162    bool isLaneOp = false;
7163    unsigned NewOpc = 0;
7164    unsigned NumVecs = 0;
7165    if (isIntrinsic) {
7166      unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
7167      switch (IntNo) {
7168      default: assert(0 && "unexpected intrinsic for Neon base update");
7169      case Intrinsic::arm_neon_vld1:     NewOpc = ARMISD::VLD1_UPD;
7170        NumVecs = 1; break;
7171      case Intrinsic::arm_neon_vld2:     NewOpc = ARMISD::VLD2_UPD;
7172        NumVecs = 2; break;
7173      case Intrinsic::arm_neon_vld3:     NewOpc = ARMISD::VLD3_UPD;
7174        NumVecs = 3; break;
7175      case Intrinsic::arm_neon_vld4:     NewOpc = ARMISD::VLD4_UPD;
7176        NumVecs = 4; break;
7177      case Intrinsic::arm_neon_vld2lane: NewOpc = ARMISD::VLD2LN_UPD;
7178        NumVecs = 2; isLaneOp = true; break;
7179      case Intrinsic::arm_neon_vld3lane: NewOpc = ARMISD::VLD3LN_UPD;
7180        NumVecs = 3; isLaneOp = true; break;
7181      case Intrinsic::arm_neon_vld4lane: NewOpc = ARMISD::VLD4LN_UPD;
7182        NumVecs = 4; isLaneOp = true; break;
7183      case Intrinsic::arm_neon_vst1:     NewOpc = ARMISD::VST1_UPD;
7184        NumVecs = 1; isLoad = false; break;
7185      case Intrinsic::arm_neon_vst2:     NewOpc = ARMISD::VST2_UPD;
7186        NumVecs = 2; isLoad = false; break;
7187      case Intrinsic::arm_neon_vst3:     NewOpc = ARMISD::VST3_UPD;
7188        NumVecs = 3; isLoad = false; break;
7189      case Intrinsic::arm_neon_vst4:     NewOpc = ARMISD::VST4_UPD;
7190        NumVecs = 4; isLoad = false; break;
7191      case Intrinsic::arm_neon_vst2lane: NewOpc = ARMISD::VST2LN_UPD;
7192        NumVecs = 2; isLoad = false; isLaneOp = true; break;
7193      case Intrinsic::arm_neon_vst3lane: NewOpc = ARMISD::VST3LN_UPD;
7194        NumVecs = 3; isLoad = false; isLaneOp = true; break;
7195      case Intrinsic::arm_neon_vst4lane: NewOpc = ARMISD::VST4LN_UPD;
7196        NumVecs = 4; isLoad = false; isLaneOp = true; break;
7197      }
7198    } else {
7199      isLaneOp = true;
7200      switch (N->getOpcode()) {
7201      default: assert(0 && "unexpected opcode for Neon base update");
7202      case ARMISD::VLD2DUP: NewOpc = ARMISD::VLD2DUP_UPD; NumVecs = 2; break;
7203      case ARMISD::VLD3DUP: NewOpc = ARMISD::VLD3DUP_UPD; NumVecs = 3; break;
7204      case ARMISD::VLD4DUP: NewOpc = ARMISD::VLD4DUP_UPD; NumVecs = 4; break;
7205      }
7206    }
7207
7208    // Find the size of memory referenced by the load/store.
7209    EVT VecTy;
7210    if (isLoad)
7211      VecTy = N->getValueType(0);
7212    else
7213      VecTy = N->getOperand(AddrOpIdx+1).getValueType();
7214    unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
7215    if (isLaneOp)
7216      NumBytes /= VecTy.getVectorNumElements();
7217
7218    // If the increment is a constant, it must match the memory ref size.
7219    SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
7220    if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
7221      uint64_t IncVal = CInc->getZExtValue();
7222      if (IncVal != NumBytes)
7223        continue;
7224    } else if (NumBytes >= 3 * 16) {
7225      // VLD3/4 and VST3/4 for 128-bit vectors are implemented with two
7226      // separate instructions that make it harder to use a non-constant update.
7227      continue;
7228    }
7229
7230    // Create the new updating load/store node.
7231    EVT Tys[6];
7232    unsigned NumResultVecs = (isLoad ? NumVecs : 0);
7233    unsigned n;
7234    for (n = 0; n < NumResultVecs; ++n)
7235      Tys[n] = VecTy;
7236    Tys[n++] = MVT::i32;
7237    Tys[n] = MVT::Other;
7238    SDVTList SDTys = DAG.getVTList(Tys, NumResultVecs+2);
7239    SmallVector<SDValue, 8> Ops;
7240    Ops.push_back(N->getOperand(0)); // incoming chain
7241    Ops.push_back(N->getOperand(AddrOpIdx));
7242    Ops.push_back(Inc);
7243    for (unsigned i = AddrOpIdx + 1; i < N->getNumOperands(); ++i) {
7244      Ops.push_back(N->getOperand(i));
7245    }
7246    MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N);
7247    SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, N->getDebugLoc(), SDTys,
7248                                           Ops.data(), Ops.size(),
7249                                           MemInt->getMemoryVT(),
7250                                           MemInt->getMemOperand());
7251
7252    // Update the uses.
7253    std::vector<SDValue> NewResults;
7254    for (unsigned i = 0; i < NumResultVecs; ++i) {
7255      NewResults.push_back(SDValue(UpdN.getNode(), i));
7256    }
7257    NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs+1)); // chain
7258    DCI.CombineTo(N, NewResults);
7259    DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
7260
7261    break;
7262  }
7263  return SDValue();
7264}
7265
7266/// CombineVLDDUP - For a VDUPLANE node N, check if its source operand is a
7267/// vldN-lane (N > 1) intrinsic, and if all the other uses of that intrinsic
7268/// are also VDUPLANEs.  If so, combine them to a vldN-dup operation and
7269/// return true.
7270static bool CombineVLDDUP(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
7271  SelectionDAG &DAG = DCI.DAG;
7272  EVT VT = N->getValueType(0);
7273  // vldN-dup instructions only support 64-bit vectors for N > 1.
7274  if (!VT.is64BitVector())
7275    return false;
7276
7277  // Check if the VDUPLANE operand is a vldN-dup intrinsic.
7278  SDNode *VLD = N->getOperand(0).getNode();
7279  if (VLD->getOpcode() != ISD::INTRINSIC_W_CHAIN)
7280    return false;
7281  unsigned NumVecs = 0;
7282  unsigned NewOpc = 0;
7283  unsigned IntNo = cast<ConstantSDNode>(VLD->getOperand(1))->getZExtValue();
7284  if (IntNo == Intrinsic::arm_neon_vld2lane) {
7285    NumVecs = 2;
7286    NewOpc = ARMISD::VLD2DUP;
7287  } else if (IntNo == Intrinsic::arm_neon_vld3lane) {
7288    NumVecs = 3;
7289    NewOpc = ARMISD::VLD3DUP;
7290  } else if (IntNo == Intrinsic::arm_neon_vld4lane) {
7291    NumVecs = 4;
7292    NewOpc = ARMISD::VLD4DUP;
7293  } else {
7294    return false;
7295  }
7296
7297  // First check that all the vldN-lane uses are VDUPLANEs and that the lane
7298  // numbers match the load.
7299  unsigned VLDLaneNo =
7300    cast<ConstantSDNode>(VLD->getOperand(NumVecs+3))->getZExtValue();
7301  for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
7302       UI != UE; ++UI) {
7303    // Ignore uses of the chain result.
7304    if (UI.getUse().getResNo() == NumVecs)
7305      continue;
7306    SDNode *User = *UI;
7307    if (User->getOpcode() != ARMISD::VDUPLANE ||
7308        VLDLaneNo != cast<ConstantSDNode>(User->getOperand(1))->getZExtValue())
7309      return false;
7310  }
7311
7312  // Create the vldN-dup node.
7313  EVT Tys[5];
7314  unsigned n;
7315  for (n = 0; n < NumVecs; ++n)
7316    Tys[n] = VT;
7317  Tys[n] = MVT::Other;
7318  SDVTList SDTys = DAG.getVTList(Tys, NumVecs+1);
7319  SDValue Ops[] = { VLD->getOperand(0), VLD->getOperand(2) };
7320  MemIntrinsicSDNode *VLDMemInt = cast<MemIntrinsicSDNode>(VLD);
7321  SDValue VLDDup = DAG.getMemIntrinsicNode(NewOpc, VLD->getDebugLoc(), SDTys,
7322                                           Ops, 2, VLDMemInt->getMemoryVT(),
7323                                           VLDMemInt->getMemOperand());
7324
7325  // Update the uses.
7326  for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
7327       UI != UE; ++UI) {
7328    unsigned ResNo = UI.getUse().getResNo();
7329    // Ignore uses of the chain result.
7330    if (ResNo == NumVecs)
7331      continue;
7332    SDNode *User = *UI;
7333    DCI.CombineTo(User, SDValue(VLDDup.getNode(), ResNo));
7334  }
7335
7336  // Now the vldN-lane intrinsic is dead except for its chain result.
7337  // Update uses of the chain.
7338  std::vector<SDValue> VLDDupResults;
7339  for (unsigned n = 0; n < NumVecs; ++n)
7340    VLDDupResults.push_back(SDValue(VLDDup.getNode(), n));
7341  VLDDupResults.push_back(SDValue(VLDDup.getNode(), NumVecs));
7342  DCI.CombineTo(VLD, VLDDupResults);
7343
7344  return true;
7345}
7346
7347/// PerformVDUPLANECombine - Target-specific dag combine xforms for
7348/// ARMISD::VDUPLANE.
7349static SDValue PerformVDUPLANECombine(SDNode *N,
7350                                      TargetLowering::DAGCombinerInfo &DCI) {
7351  SDValue Op = N->getOperand(0);
7352
7353  // If the source is a vldN-lane (N > 1) intrinsic, and all the other uses
7354  // of that intrinsic are also VDUPLANEs, combine them to a vldN-dup operation.
7355  if (CombineVLDDUP(N, DCI))
7356    return SDValue(N, 0);
7357
7358  // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is
7359  // redundant.  Ignore bit_converts for now; element sizes are checked below.
7360  while (Op.getOpcode() == ISD::BITCAST)
7361    Op = Op.getOperand(0);
7362  if (Op.getOpcode() != ARMISD::VMOVIMM && Op.getOpcode() != ARMISD::VMVNIMM)
7363    return SDValue();
7364
7365  // Make sure the VMOV element size is not bigger than the VDUPLANE elements.
7366  unsigned EltSize = Op.getValueType().getVectorElementType().getSizeInBits();
7367  // The canonical VMOV for a zero vector uses a 32-bit element size.
7368  unsigned Imm = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7369  unsigned EltBits;
7370  if (ARM_AM::decodeNEONModImm(Imm, EltBits) == 0)
7371    EltSize = 8;
7372  EVT VT = N->getValueType(0);
7373  if (EltSize > VT.getVectorElementType().getSizeInBits())
7374    return SDValue();
7375
7376  return DCI.DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
7377}
7378
7379// isConstVecPow2 - Return true if each vector element is a power of 2, all
7380// elements are the same constant, C, and Log2(C) ranges from 1 to 32.
7381static bool isConstVecPow2(SDValue ConstVec, bool isSigned, uint64_t &C)
7382{
7383  integerPart cN;
7384  integerPart c0 = 0;
7385  for (unsigned I = 0, E = ConstVec.getValueType().getVectorNumElements();
7386       I != E; I++) {
7387    ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(ConstVec.getOperand(I));
7388    if (!C)
7389      return false;
7390
7391    bool isExact;
7392    APFloat APF = C->getValueAPF();
7393    if (APF.convertToInteger(&cN, 64, isSigned, APFloat::rmTowardZero, &isExact)
7394        != APFloat::opOK || !isExact)
7395      return false;
7396
7397    c0 = (I == 0) ? cN : c0;
7398    if (!isPowerOf2_64(cN) || c0 != cN || Log2_64(c0) < 1 || Log2_64(c0) > 32)
7399      return false;
7400  }
7401  C = c0;
7402  return true;
7403}
7404
7405/// PerformVCVTCombine - VCVT (floating-point to fixed-point, Advanced SIMD)
7406/// can replace combinations of VMUL and VCVT (floating-point to integer)
7407/// when the VMUL has a constant operand that is a power of 2.
7408///
7409/// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
7410///  vmul.f32        d16, d17, d16
7411///  vcvt.s32.f32    d16, d16
7412/// becomes:
7413///  vcvt.s32.f32    d16, d16, #3
7414static SDValue PerformVCVTCombine(SDNode *N,
7415                                  TargetLowering::DAGCombinerInfo &DCI,
7416                                  const ARMSubtarget *Subtarget) {
7417  SelectionDAG &DAG = DCI.DAG;
7418  SDValue Op = N->getOperand(0);
7419
7420  if (!Subtarget->hasNEON() || !Op.getValueType().isVector() ||
7421      Op.getOpcode() != ISD::FMUL)
7422    return SDValue();
7423
7424  uint64_t C;
7425  SDValue N0 = Op->getOperand(0);
7426  SDValue ConstVec = Op->getOperand(1);
7427  bool isSigned = N->getOpcode() == ISD::FP_TO_SINT;
7428
7429  if (ConstVec.getOpcode() != ISD::BUILD_VECTOR ||
7430      !isConstVecPow2(ConstVec, isSigned, C))
7431    return SDValue();
7432
7433  unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfp2fxs :
7434    Intrinsic::arm_neon_vcvtfp2fxu;
7435  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, N->getDebugLoc(),
7436                     N->getValueType(0),
7437                     DAG.getConstant(IntrinsicOpcode, MVT::i32), N0,
7438                     DAG.getConstant(Log2_64(C), MVT::i32));
7439}
7440
7441/// PerformVDIVCombine - VCVT (fixed-point to floating-point, Advanced SIMD)
7442/// can replace combinations of VCVT (integer to floating-point) and VDIV
7443/// when the VDIV has a constant operand that is a power of 2.
7444///
7445/// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
7446///  vcvt.f32.s32    d16, d16
7447///  vdiv.f32        d16, d17, d16
7448/// becomes:
7449///  vcvt.f32.s32    d16, d16, #3
7450static SDValue PerformVDIVCombine(SDNode *N,
7451                                  TargetLowering::DAGCombinerInfo &DCI,
7452                                  const ARMSubtarget *Subtarget) {
7453  SelectionDAG &DAG = DCI.DAG;
7454  SDValue Op = N->getOperand(0);
7455  unsigned OpOpcode = Op.getNode()->getOpcode();
7456
7457  if (!Subtarget->hasNEON() || !N->getValueType(0).isVector() ||
7458      (OpOpcode != ISD::SINT_TO_FP && OpOpcode != ISD::UINT_TO_FP))
7459    return SDValue();
7460
7461  uint64_t C;
7462  SDValue ConstVec = N->getOperand(1);
7463  bool isSigned = OpOpcode == ISD::SINT_TO_FP;
7464
7465  if (ConstVec.getOpcode() != ISD::BUILD_VECTOR ||
7466      !isConstVecPow2(ConstVec, isSigned, C))
7467    return SDValue();
7468
7469  unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfxs2fp :
7470    Intrinsic::arm_neon_vcvtfxu2fp;
7471  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, N->getDebugLoc(),
7472                     Op.getValueType(),
7473                     DAG.getConstant(IntrinsicOpcode, MVT::i32),
7474                     Op.getOperand(0), DAG.getConstant(Log2_64(C), MVT::i32));
7475}
7476
7477/// Getvshiftimm - Check if this is a valid build_vector for the immediate
7478/// operand of a vector shift operation, where all the elements of the
7479/// build_vector must have the same constant integer value.
7480static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
7481  // Ignore bit_converts.
7482  while (Op.getOpcode() == ISD::BITCAST)
7483    Op = Op.getOperand(0);
7484  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
7485  APInt SplatBits, SplatUndef;
7486  unsigned SplatBitSize;
7487  bool HasAnyUndefs;
7488  if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
7489                                      HasAnyUndefs, ElementBits) ||
7490      SplatBitSize > ElementBits)
7491    return false;
7492  Cnt = SplatBits.getSExtValue();
7493  return true;
7494}
7495
7496/// isVShiftLImm - Check if this is a valid build_vector for the immediate
7497/// operand of a vector shift left operation.  That value must be in the range:
7498///   0 <= Value < ElementBits for a left shift; or
7499///   0 <= Value <= ElementBits for a long left shift.
7500static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
7501  assert(VT.isVector() && "vector shift count is not a vector type");
7502  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
7503  if (! getVShiftImm(Op, ElementBits, Cnt))
7504    return false;
7505  return (Cnt >= 0 && (isLong ? Cnt-1 : Cnt) < ElementBits);
7506}
7507
7508/// isVShiftRImm - Check if this is a valid build_vector for the immediate
7509/// operand of a vector shift right operation.  For a shift opcode, the value
7510/// is positive, but for an intrinsic the value count must be negative. The
7511/// absolute value must be in the range:
7512///   1 <= |Value| <= ElementBits for a right shift; or
7513///   1 <= |Value| <= ElementBits/2 for a narrow right shift.
7514static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
7515                         int64_t &Cnt) {
7516  assert(VT.isVector() && "vector shift count is not a vector type");
7517  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
7518  if (! getVShiftImm(Op, ElementBits, Cnt))
7519    return false;
7520  if (isIntrinsic)
7521    Cnt = -Cnt;
7522  return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits/2 : ElementBits));
7523}
7524
7525/// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
7526static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
7527  unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
7528  switch (IntNo) {
7529  default:
7530    // Don't do anything for most intrinsics.
7531    break;
7532
7533  // Vector shifts: check for immediate versions and lower them.
7534  // Note: This is done during DAG combining instead of DAG legalizing because
7535  // the build_vectors for 64-bit vector element shift counts are generally
7536  // not legal, and it is hard to see their values after they get legalized to
7537  // loads from a constant pool.
7538  case Intrinsic::arm_neon_vshifts:
7539  case Intrinsic::arm_neon_vshiftu:
7540  case Intrinsic::arm_neon_vshiftls:
7541  case Intrinsic::arm_neon_vshiftlu:
7542  case Intrinsic::arm_neon_vshiftn:
7543  case Intrinsic::arm_neon_vrshifts:
7544  case Intrinsic::arm_neon_vrshiftu:
7545  case Intrinsic::arm_neon_vrshiftn:
7546  case Intrinsic::arm_neon_vqshifts:
7547  case Intrinsic::arm_neon_vqshiftu:
7548  case Intrinsic::arm_neon_vqshiftsu:
7549  case Intrinsic::arm_neon_vqshiftns:
7550  case Intrinsic::arm_neon_vqshiftnu:
7551  case Intrinsic::arm_neon_vqshiftnsu:
7552  case Intrinsic::arm_neon_vqrshiftns:
7553  case Intrinsic::arm_neon_vqrshiftnu:
7554  case Intrinsic::arm_neon_vqrshiftnsu: {
7555    EVT VT = N->getOperand(1).getValueType();
7556    int64_t Cnt;
7557    unsigned VShiftOpc = 0;
7558
7559    switch (IntNo) {
7560    case Intrinsic::arm_neon_vshifts:
7561    case Intrinsic::arm_neon_vshiftu:
7562      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) {
7563        VShiftOpc = ARMISD::VSHL;
7564        break;
7565      }
7566      if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) {
7567        VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ?
7568                     ARMISD::VSHRs : ARMISD::VSHRu);
7569        break;
7570      }
7571      return SDValue();
7572
7573    case Intrinsic::arm_neon_vshiftls:
7574    case Intrinsic::arm_neon_vshiftlu:
7575      if (isVShiftLImm(N->getOperand(2), VT, true, Cnt))
7576        break;
7577      llvm_unreachable("invalid shift count for vshll intrinsic");
7578
7579    case Intrinsic::arm_neon_vrshifts:
7580    case Intrinsic::arm_neon_vrshiftu:
7581      if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt))
7582        break;
7583      return SDValue();
7584
7585    case Intrinsic::arm_neon_vqshifts:
7586    case Intrinsic::arm_neon_vqshiftu:
7587      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
7588        break;
7589      return SDValue();
7590
7591    case Intrinsic::arm_neon_vqshiftsu:
7592      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
7593        break;
7594      llvm_unreachable("invalid shift count for vqshlu intrinsic");
7595
7596    case Intrinsic::arm_neon_vshiftn:
7597    case Intrinsic::arm_neon_vrshiftn:
7598    case Intrinsic::arm_neon_vqshiftns:
7599    case Intrinsic::arm_neon_vqshiftnu:
7600    case Intrinsic::arm_neon_vqshiftnsu:
7601    case Intrinsic::arm_neon_vqrshiftns:
7602    case Intrinsic::arm_neon_vqrshiftnu:
7603    case Intrinsic::arm_neon_vqrshiftnsu:
7604      // Narrowing shifts require an immediate right shift.
7605      if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt))
7606        break;
7607      llvm_unreachable("invalid shift count for narrowing vector shift "
7608                       "intrinsic");
7609
7610    default:
7611      llvm_unreachable("unhandled vector shift");
7612    }
7613
7614    switch (IntNo) {
7615    case Intrinsic::arm_neon_vshifts:
7616    case Intrinsic::arm_neon_vshiftu:
7617      // Opcode already set above.
7618      break;
7619    case Intrinsic::arm_neon_vshiftls:
7620    case Intrinsic::arm_neon_vshiftlu:
7621      if (Cnt == VT.getVectorElementType().getSizeInBits())
7622        VShiftOpc = ARMISD::VSHLLi;
7623      else
7624        VShiftOpc = (IntNo == Intrinsic::arm_neon_vshiftls ?
7625                     ARMISD::VSHLLs : ARMISD::VSHLLu);
7626      break;
7627    case Intrinsic::arm_neon_vshiftn:
7628      VShiftOpc = ARMISD::VSHRN; break;
7629    case Intrinsic::arm_neon_vrshifts:
7630      VShiftOpc = ARMISD::VRSHRs; break;
7631    case Intrinsic::arm_neon_vrshiftu:
7632      VShiftOpc = ARMISD::VRSHRu; break;
7633    case Intrinsic::arm_neon_vrshiftn:
7634      VShiftOpc = ARMISD::VRSHRN; break;
7635    case Intrinsic::arm_neon_vqshifts:
7636      VShiftOpc = ARMISD::VQSHLs; break;
7637    case Intrinsic::arm_neon_vqshiftu:
7638      VShiftOpc = ARMISD::VQSHLu; break;
7639    case Intrinsic::arm_neon_vqshiftsu:
7640      VShiftOpc = ARMISD::VQSHLsu; break;
7641    case Intrinsic::arm_neon_vqshiftns:
7642      VShiftOpc = ARMISD::VQSHRNs; break;
7643    case Intrinsic::arm_neon_vqshiftnu:
7644      VShiftOpc = ARMISD::VQSHRNu; break;
7645    case Intrinsic::arm_neon_vqshiftnsu:
7646      VShiftOpc = ARMISD::VQSHRNsu; break;
7647    case Intrinsic::arm_neon_vqrshiftns:
7648      VShiftOpc = ARMISD::VQRSHRNs; break;
7649    case Intrinsic::arm_neon_vqrshiftnu:
7650      VShiftOpc = ARMISD::VQRSHRNu; break;
7651    case Intrinsic::arm_neon_vqrshiftnsu:
7652      VShiftOpc = ARMISD::VQRSHRNsu; break;
7653    }
7654
7655    return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
7656                       N->getOperand(1), DAG.getConstant(Cnt, MVT::i32));
7657  }
7658
7659  case Intrinsic::arm_neon_vshiftins: {
7660    EVT VT = N->getOperand(1).getValueType();
7661    int64_t Cnt;
7662    unsigned VShiftOpc = 0;
7663
7664    if (isVShiftLImm(N->getOperand(3), VT, false, Cnt))
7665      VShiftOpc = ARMISD::VSLI;
7666    else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt))
7667      VShiftOpc = ARMISD::VSRI;
7668    else {
7669      llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
7670    }
7671
7672    return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
7673                       N->getOperand(1), N->getOperand(2),
7674                       DAG.getConstant(Cnt, MVT::i32));
7675  }
7676
7677  case Intrinsic::arm_neon_vqrshifts:
7678  case Intrinsic::arm_neon_vqrshiftu:
7679    // No immediate versions of these to check for.
7680    break;
7681  }
7682
7683  return SDValue();
7684}
7685
7686/// PerformShiftCombine - Checks for immediate versions of vector shifts and
7687/// lowers them.  As with the vector shift intrinsics, this is done during DAG
7688/// combining instead of DAG legalizing because the build_vectors for 64-bit
7689/// vector element shift counts are generally not legal, and it is hard to see
7690/// their values after they get legalized to loads from a constant pool.
7691static SDValue PerformShiftCombine(SDNode *N, SelectionDAG &DAG,
7692                                   const ARMSubtarget *ST) {
7693  EVT VT = N->getValueType(0);
7694
7695  // Nothing to be done for scalar shifts.
7696  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7697  if (!VT.isVector() || !TLI.isTypeLegal(VT))
7698    return SDValue();
7699
7700  assert(ST->hasNEON() && "unexpected vector shift");
7701  int64_t Cnt;
7702
7703  switch (N->getOpcode()) {
7704  default: llvm_unreachable("unexpected shift opcode");
7705
7706  case ISD::SHL:
7707    if (isVShiftLImm(N->getOperand(1), VT, false, Cnt))
7708      return DAG.getNode(ARMISD::VSHL, N->getDebugLoc(), VT, N->getOperand(0),
7709                         DAG.getConstant(Cnt, MVT::i32));
7710    break;
7711
7712  case ISD::SRA:
7713  case ISD::SRL:
7714    if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
7715      unsigned VShiftOpc = (N->getOpcode() == ISD::SRA ?
7716                            ARMISD::VSHRs : ARMISD::VSHRu);
7717      return DAG.getNode(VShiftOpc, N->getDebugLoc(), VT, N->getOperand(0),
7718                         DAG.getConstant(Cnt, MVT::i32));
7719    }
7720  }
7721  return SDValue();
7722}
7723
7724/// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
7725/// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
7726static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG,
7727                                    const ARMSubtarget *ST) {
7728  SDValue N0 = N->getOperand(0);
7729
7730  // Check for sign- and zero-extensions of vector extract operations of 8-
7731  // and 16-bit vector elements.  NEON supports these directly.  They are
7732  // handled during DAG combining because type legalization will promote them
7733  // to 32-bit types and it is messy to recognize the operations after that.
7734  if (ST->hasNEON() && N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
7735    SDValue Vec = N0.getOperand(0);
7736    SDValue Lane = N0.getOperand(1);
7737    EVT VT = N->getValueType(0);
7738    EVT EltVT = N0.getValueType();
7739    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7740
7741    if (VT == MVT::i32 &&
7742        (EltVT == MVT::i8 || EltVT == MVT::i16) &&
7743        TLI.isTypeLegal(Vec.getValueType()) &&
7744        isa<ConstantSDNode>(Lane)) {
7745
7746      unsigned Opc = 0;
7747      switch (N->getOpcode()) {
7748      default: llvm_unreachable("unexpected opcode");
7749      case ISD::SIGN_EXTEND:
7750        Opc = ARMISD::VGETLANEs;
7751        break;
7752      case ISD::ZERO_EXTEND:
7753      case ISD::ANY_EXTEND:
7754        Opc = ARMISD::VGETLANEu;
7755        break;
7756      }
7757      return DAG.getNode(Opc, N->getDebugLoc(), VT, Vec, Lane);
7758    }
7759  }
7760
7761  return SDValue();
7762}
7763
7764/// PerformSELECT_CCCombine - Target-specific DAG combining for ISD::SELECT_CC
7765/// to match f32 max/min patterns to use NEON vmax/vmin instructions.
7766static SDValue PerformSELECT_CCCombine(SDNode *N, SelectionDAG &DAG,
7767                                       const ARMSubtarget *ST) {
7768  // If the target supports NEON, try to use vmax/vmin instructions for f32
7769  // selects like "x < y ? x : y".  Unless the NoNaNsFPMath option is set,
7770  // be careful about NaNs:  NEON's vmax/vmin return NaN if either operand is
7771  // a NaN; only do the transformation when it matches that behavior.
7772
7773  // For now only do this when using NEON for FP operations; if using VFP, it
7774  // is not obvious that the benefit outweighs the cost of switching to the
7775  // NEON pipeline.
7776  if (!ST->hasNEON() || !ST->useNEONForSinglePrecisionFP() ||
7777      N->getValueType(0) != MVT::f32)
7778    return SDValue();
7779
7780  SDValue CondLHS = N->getOperand(0);
7781  SDValue CondRHS = N->getOperand(1);
7782  SDValue LHS = N->getOperand(2);
7783  SDValue RHS = N->getOperand(3);
7784  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
7785
7786  unsigned Opcode = 0;
7787  bool IsReversed;
7788  if (DAG.isEqualTo(LHS, CondLHS) && DAG.isEqualTo(RHS, CondRHS)) {
7789    IsReversed = false; // x CC y ? x : y
7790  } else if (DAG.isEqualTo(LHS, CondRHS) && DAG.isEqualTo(RHS, CondLHS)) {
7791    IsReversed = true ; // x CC y ? y : x
7792  } else {
7793    return SDValue();
7794  }
7795
7796  bool IsUnordered;
7797  switch (CC) {
7798  default: break;
7799  case ISD::SETOLT:
7800  case ISD::SETOLE:
7801  case ISD::SETLT:
7802  case ISD::SETLE:
7803  case ISD::SETULT:
7804  case ISD::SETULE:
7805    // If LHS is NaN, an ordered comparison will be false and the result will
7806    // be the RHS, but vmin(NaN, RHS) = NaN.  Avoid this by checking that LHS
7807    // != NaN.  Likewise, for unordered comparisons, check for RHS != NaN.
7808    IsUnordered = (CC == ISD::SETULT || CC == ISD::SETULE);
7809    if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
7810      break;
7811    // For less-than-or-equal comparisons, "+0 <= -0" will be true but vmin
7812    // will return -0, so vmin can only be used for unsafe math or if one of
7813    // the operands is known to be nonzero.
7814    if ((CC == ISD::SETLE || CC == ISD::SETOLE || CC == ISD::SETULE) &&
7815        !UnsafeFPMath &&
7816        !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
7817      break;
7818    Opcode = IsReversed ? ARMISD::FMAX : ARMISD::FMIN;
7819    break;
7820
7821  case ISD::SETOGT:
7822  case ISD::SETOGE:
7823  case ISD::SETGT:
7824  case ISD::SETGE:
7825  case ISD::SETUGT:
7826  case ISD::SETUGE:
7827    // If LHS is NaN, an ordered comparison will be false and the result will
7828    // be the RHS, but vmax(NaN, RHS) = NaN.  Avoid this by checking that LHS
7829    // != NaN.  Likewise, for unordered comparisons, check for RHS != NaN.
7830    IsUnordered = (CC == ISD::SETUGT || CC == ISD::SETUGE);
7831    if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
7832      break;
7833    // For greater-than-or-equal comparisons, "-0 >= +0" will be true but vmax
7834    // will return +0, so vmax can only be used for unsafe math or if one of
7835    // the operands is known to be nonzero.
7836    if ((CC == ISD::SETGE || CC == ISD::SETOGE || CC == ISD::SETUGE) &&
7837        !UnsafeFPMath &&
7838        !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
7839      break;
7840    Opcode = IsReversed ? ARMISD::FMIN : ARMISD::FMAX;
7841    break;
7842  }
7843
7844  if (!Opcode)
7845    return SDValue();
7846  return DAG.getNode(Opcode, N->getDebugLoc(), N->getValueType(0), LHS, RHS);
7847}
7848
7849/// PerformCMOVCombine - Target-specific DAG combining for ARMISD::CMOV.
7850SDValue
7851ARMTargetLowering::PerformCMOVCombine(SDNode *N, SelectionDAG &DAG) const {
7852  SDValue Cmp = N->getOperand(4);
7853  if (Cmp.getOpcode() != ARMISD::CMPZ)
7854    // Only looking at EQ and NE cases.
7855    return SDValue();
7856
7857  EVT VT = N->getValueType(0);
7858  DebugLoc dl = N->getDebugLoc();
7859  SDValue LHS = Cmp.getOperand(0);
7860  SDValue RHS = Cmp.getOperand(1);
7861  SDValue FalseVal = N->getOperand(0);
7862  SDValue TrueVal = N->getOperand(1);
7863  SDValue ARMcc = N->getOperand(2);
7864  ARMCC::CondCodes CC =
7865    (ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue();
7866
7867  // Simplify
7868  //   mov     r1, r0
7869  //   cmp     r1, x
7870  //   mov     r0, y
7871  //   moveq   r0, x
7872  // to
7873  //   cmp     r0, x
7874  //   movne   r0, y
7875  //
7876  //   mov     r1, r0
7877  //   cmp     r1, x
7878  //   mov     r0, x
7879  //   movne   r0, y
7880  // to
7881  //   cmp     r0, x
7882  //   movne   r0, y
7883  /// FIXME: Turn this into a target neutral optimization?
7884  SDValue Res;
7885  if (CC == ARMCC::NE && FalseVal == RHS && FalseVal != LHS) {
7886    Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, TrueVal, ARMcc,
7887                      N->getOperand(3), Cmp);
7888  } else if (CC == ARMCC::EQ && TrueVal == RHS) {
7889    SDValue ARMcc;
7890    SDValue NewCmp = getARMCmp(LHS, RHS, ISD::SETNE, ARMcc, DAG, dl);
7891    Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, FalseVal, ARMcc,
7892                      N->getOperand(3), NewCmp);
7893  }
7894
7895  if (Res.getNode()) {
7896    APInt KnownZero, KnownOne;
7897    APInt Mask = APInt::getAllOnesValue(VT.getScalarType().getSizeInBits());
7898    DAG.ComputeMaskedBits(SDValue(N,0), Mask, KnownZero, KnownOne);
7899    // Capture demanded bits information that would be otherwise lost.
7900    if (KnownZero == 0xfffffffe)
7901      Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
7902                        DAG.getValueType(MVT::i1));
7903    else if (KnownZero == 0xffffff00)
7904      Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
7905                        DAG.getValueType(MVT::i8));
7906    else if (KnownZero == 0xffff0000)
7907      Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
7908                        DAG.getValueType(MVT::i16));
7909  }
7910
7911  return Res;
7912}
7913
7914SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
7915                                             DAGCombinerInfo &DCI) const {
7916  switch (N->getOpcode()) {
7917  default: break;
7918  case ISD::ADD:        return PerformADDCombine(N, DCI, Subtarget);
7919  case ISD::SUB:        return PerformSUBCombine(N, DCI);
7920  case ISD::MUL:        return PerformMULCombine(N, DCI, Subtarget);
7921  case ISD::OR:         return PerformORCombine(N, DCI, Subtarget);
7922  case ISD::AND:        return PerformANDCombine(N, DCI);
7923  case ARMISD::BFI:     return PerformBFICombine(N, DCI);
7924  case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI);
7925  case ARMISD::VMOVDRR: return PerformVMOVDRRCombine(N, DCI.DAG);
7926  case ISD::STORE:      return PerformSTORECombine(N, DCI);
7927  case ISD::BUILD_VECTOR: return PerformBUILD_VECTORCombine(N, DCI);
7928  case ISD::INSERT_VECTOR_ELT: return PerformInsertEltCombine(N, DCI);
7929  case ISD::VECTOR_SHUFFLE: return PerformVECTOR_SHUFFLECombine(N, DCI.DAG);
7930  case ARMISD::VDUPLANE: return PerformVDUPLANECombine(N, DCI);
7931  case ISD::FP_TO_SINT:
7932  case ISD::FP_TO_UINT: return PerformVCVTCombine(N, DCI, Subtarget);
7933  case ISD::FDIV:       return PerformVDIVCombine(N, DCI, Subtarget);
7934  case ISD::INTRINSIC_WO_CHAIN: return PerformIntrinsicCombine(N, DCI.DAG);
7935  case ISD::SHL:
7936  case ISD::SRA:
7937  case ISD::SRL:        return PerformShiftCombine(N, DCI.DAG, Subtarget);
7938  case ISD::SIGN_EXTEND:
7939  case ISD::ZERO_EXTEND:
7940  case ISD::ANY_EXTEND: return PerformExtendCombine(N, DCI.DAG, Subtarget);
7941  case ISD::SELECT_CC:  return PerformSELECT_CCCombine(N, DCI.DAG, Subtarget);
7942  case ARMISD::CMOV: return PerformCMOVCombine(N, DCI.DAG);
7943  case ARMISD::VLD2DUP:
7944  case ARMISD::VLD3DUP:
7945  case ARMISD::VLD4DUP:
7946    return CombineBaseUpdate(N, DCI);
7947  case ISD::INTRINSIC_VOID:
7948  case ISD::INTRINSIC_W_CHAIN:
7949    switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
7950    case Intrinsic::arm_neon_vld1:
7951    case Intrinsic::arm_neon_vld2:
7952    case Intrinsic::arm_neon_vld3:
7953    case Intrinsic::arm_neon_vld4:
7954    case Intrinsic::arm_neon_vld2lane:
7955    case Intrinsic::arm_neon_vld3lane:
7956    case Intrinsic::arm_neon_vld4lane:
7957    case Intrinsic::arm_neon_vst1:
7958    case Intrinsic::arm_neon_vst2:
7959    case Intrinsic::arm_neon_vst3:
7960    case Intrinsic::arm_neon_vst4:
7961    case Intrinsic::arm_neon_vst2lane:
7962    case Intrinsic::arm_neon_vst3lane:
7963    case Intrinsic::arm_neon_vst4lane:
7964      return CombineBaseUpdate(N, DCI);
7965    default: break;
7966    }
7967    break;
7968  }
7969  return SDValue();
7970}
7971
7972bool ARMTargetLowering::isDesirableToTransformToIntegerOp(unsigned Opc,
7973                                                          EVT VT) const {
7974  return (VT == MVT::f32) && (Opc == ISD::LOAD || Opc == ISD::STORE);
7975}
7976
7977bool ARMTargetLowering::allowsUnalignedMemoryAccesses(EVT VT) const {
7978  if (!Subtarget->allowsUnalignedMem())
7979    return false;
7980
7981  switch (VT.getSimpleVT().SimpleTy) {
7982  default:
7983    return false;
7984  case MVT::i8:
7985  case MVT::i16:
7986  case MVT::i32:
7987    return true;
7988  // FIXME: VLD1 etc with standard alignment is legal.
7989  }
7990}
7991
7992static bool isLegalT1AddressImmediate(int64_t V, EVT VT) {
7993  if (V < 0)
7994    return false;
7995
7996  unsigned Scale = 1;
7997  switch (VT.getSimpleVT().SimpleTy) {
7998  default: return false;
7999  case MVT::i1:
8000  case MVT::i8:
8001    // Scale == 1;
8002    break;
8003  case MVT::i16:
8004    // Scale == 2;
8005    Scale = 2;
8006    break;
8007  case MVT::i32:
8008    // Scale == 4;
8009    Scale = 4;
8010    break;
8011  }
8012
8013  if ((V & (Scale - 1)) != 0)
8014    return false;
8015  V /= Scale;
8016  return V == (V & ((1LL << 5) - 1));
8017}
8018
8019static bool isLegalT2AddressImmediate(int64_t V, EVT VT,
8020                                      const ARMSubtarget *Subtarget) {
8021  bool isNeg = false;
8022  if (V < 0) {
8023    isNeg = true;
8024    V = - V;
8025  }
8026
8027  switch (VT.getSimpleVT().SimpleTy) {
8028  default: return false;
8029  case MVT::i1:
8030  case MVT::i8:
8031  case MVT::i16:
8032  case MVT::i32:
8033    // + imm12 or - imm8
8034    if (isNeg)
8035      return V == (V & ((1LL << 8) - 1));
8036    return V == (V & ((1LL << 12) - 1));
8037  case MVT::f32:
8038  case MVT::f64:
8039    // Same as ARM mode. FIXME: NEON?
8040    if (!Subtarget->hasVFP2())
8041      return false;
8042    if ((V & 3) != 0)
8043      return false;
8044    V >>= 2;
8045    return V == (V & ((1LL << 8) - 1));
8046  }
8047}
8048
8049/// isLegalAddressImmediate - Return true if the integer value can be used
8050/// as the offset of the target addressing mode for load / store of the
8051/// given type.
8052static bool isLegalAddressImmediate(int64_t V, EVT VT,
8053                                    const ARMSubtarget *Subtarget) {
8054  if (V == 0)
8055    return true;
8056
8057  if (!VT.isSimple())
8058    return false;
8059
8060  if (Subtarget->isThumb1Only())
8061    return isLegalT1AddressImmediate(V, VT);
8062  else if (Subtarget->isThumb2())
8063    return isLegalT2AddressImmediate(V, VT, Subtarget);
8064
8065  // ARM mode.
8066  if (V < 0)
8067    V = - V;
8068  switch (VT.getSimpleVT().SimpleTy) {
8069  default: return false;
8070  case MVT::i1:
8071  case MVT::i8:
8072  case MVT::i32:
8073    // +- imm12
8074    return V == (V & ((1LL << 12) - 1));
8075  case MVT::i16:
8076    // +- imm8
8077    return V == (V & ((1LL << 8) - 1));
8078  case MVT::f32:
8079  case MVT::f64:
8080    if (!Subtarget->hasVFP2()) // FIXME: NEON?
8081      return false;
8082    if ((V & 3) != 0)
8083      return false;
8084    V >>= 2;
8085    return V == (V & ((1LL << 8) - 1));
8086  }
8087}
8088
8089bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM,
8090                                                      EVT VT) const {
8091  int Scale = AM.Scale;
8092  if (Scale < 0)
8093    return false;
8094
8095  switch (VT.getSimpleVT().SimpleTy) {
8096  default: return false;
8097  case MVT::i1:
8098  case MVT::i8:
8099  case MVT::i16:
8100  case MVT::i32:
8101    if (Scale == 1)
8102      return true;
8103    // r + r << imm
8104    Scale = Scale & ~1;
8105    return Scale == 2 || Scale == 4 || Scale == 8;
8106  case MVT::i64:
8107    // r + r
8108    if (((unsigned)AM.HasBaseReg + Scale) <= 2)
8109      return true;
8110    return false;
8111  case MVT::isVoid:
8112    // Note, we allow "void" uses (basically, uses that aren't loads or
8113    // stores), because arm allows folding a scale into many arithmetic
8114    // operations.  This should be made more precise and revisited later.
8115
8116    // Allow r << imm, but the imm has to be a multiple of two.
8117    if (Scale & 1) return false;
8118    return isPowerOf2_32(Scale);
8119  }
8120}
8121
8122/// isLegalAddressingMode - Return true if the addressing mode represented
8123/// by AM is legal for this target, for a load/store of the specified type.
8124bool ARMTargetLowering::isLegalAddressingMode(const AddrMode &AM,
8125                                              Type *Ty) const {
8126  EVT VT = getValueType(Ty, true);
8127  if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget))
8128    return false;
8129
8130  // Can never fold addr of global into load/store.
8131  if (AM.BaseGV)
8132    return false;
8133
8134  switch (AM.Scale) {
8135  case 0:  // no scale reg, must be "r+i" or "r", or "i".
8136    break;
8137  case 1:
8138    if (Subtarget->isThumb1Only())
8139      return false;
8140    // FALL THROUGH.
8141  default:
8142    // ARM doesn't support any R+R*scale+imm addr modes.
8143    if (AM.BaseOffs)
8144      return false;
8145
8146    if (!VT.isSimple())
8147      return false;
8148
8149    if (Subtarget->isThumb2())
8150      return isLegalT2ScaledAddressingMode(AM, VT);
8151
8152    int Scale = AM.Scale;
8153    switch (VT.getSimpleVT().SimpleTy) {
8154    default: return false;
8155    case MVT::i1:
8156    case MVT::i8:
8157    case MVT::i32:
8158      if (Scale < 0) Scale = -Scale;
8159      if (Scale == 1)
8160        return true;
8161      // r + r << imm
8162      return isPowerOf2_32(Scale & ~1);
8163    case MVT::i16:
8164    case MVT::i64:
8165      // r + r
8166      if (((unsigned)AM.HasBaseReg + Scale) <= 2)
8167        return true;
8168      return false;
8169
8170    case MVT::isVoid:
8171      // Note, we allow "void" uses (basically, uses that aren't loads or
8172      // stores), because arm allows folding a scale into many arithmetic
8173      // operations.  This should be made more precise and revisited later.
8174
8175      // Allow r << imm, but the imm has to be a multiple of two.
8176      if (Scale & 1) return false;
8177      return isPowerOf2_32(Scale);
8178    }
8179    break;
8180  }
8181  return true;
8182}
8183
8184/// isLegalICmpImmediate - Return true if the specified immediate is legal
8185/// icmp immediate, that is the target has icmp instructions which can compare
8186/// a register against the immediate without having to materialize the
8187/// immediate into a register.
8188bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
8189  if (!Subtarget->isThumb())
8190    return ARM_AM::getSOImmVal(Imm) != -1;
8191  if (Subtarget->isThumb2())
8192    return ARM_AM::getT2SOImmVal(Imm) != -1;
8193  return Imm >= 0 && Imm <= 255;
8194}
8195
8196/// isLegalAddImmediate - Return true if the specified immediate is legal
8197/// add immediate, that is the target has add instructions which can add
8198/// a register with the immediate without having to materialize the
8199/// immediate into a register.
8200bool ARMTargetLowering::isLegalAddImmediate(int64_t Imm) const {
8201  return ARM_AM::getSOImmVal(Imm) != -1;
8202}
8203
8204static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT,
8205                                      bool isSEXTLoad, SDValue &Base,
8206                                      SDValue &Offset, bool &isInc,
8207                                      SelectionDAG &DAG) {
8208  if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
8209    return false;
8210
8211  if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
8212    // AddressingMode 3
8213    Base = Ptr->getOperand(0);
8214    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
8215      int RHSC = (int)RHS->getZExtValue();
8216      if (RHSC < 0 && RHSC > -256) {
8217        assert(Ptr->getOpcode() == ISD::ADD);
8218        isInc = false;
8219        Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
8220        return true;
8221      }
8222    }
8223    isInc = (Ptr->getOpcode() == ISD::ADD);
8224    Offset = Ptr->getOperand(1);
8225    return true;
8226  } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
8227    // AddressingMode 2
8228    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
8229      int RHSC = (int)RHS->getZExtValue();
8230      if (RHSC < 0 && RHSC > -0x1000) {
8231        assert(Ptr->getOpcode() == ISD::ADD);
8232        isInc = false;
8233        Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
8234        Base = Ptr->getOperand(0);
8235        return true;
8236      }
8237    }
8238
8239    if (Ptr->getOpcode() == ISD::ADD) {
8240      isInc = true;
8241      ARM_AM::ShiftOpc ShOpcVal=
8242        ARM_AM::getShiftOpcForNode(Ptr->getOperand(0).getOpcode());
8243      if (ShOpcVal != ARM_AM::no_shift) {
8244        Base = Ptr->getOperand(1);
8245        Offset = Ptr->getOperand(0);
8246      } else {
8247        Base = Ptr->getOperand(0);
8248        Offset = Ptr->getOperand(1);
8249      }
8250      return true;
8251    }
8252
8253    isInc = (Ptr->getOpcode() == ISD::ADD);
8254    Base = Ptr->getOperand(0);
8255    Offset = Ptr->getOperand(1);
8256    return true;
8257  }
8258
8259  // FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
8260  return false;
8261}
8262
8263static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT,
8264                                     bool isSEXTLoad, SDValue &Base,
8265                                     SDValue &Offset, bool &isInc,
8266                                     SelectionDAG &DAG) {
8267  if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
8268    return false;
8269
8270  Base = Ptr->getOperand(0);
8271  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
8272    int RHSC = (int)RHS->getZExtValue();
8273    if (RHSC < 0 && RHSC > -0x100) { // 8 bits.
8274      assert(Ptr->getOpcode() == ISD::ADD);
8275      isInc = false;
8276      Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
8277      return true;
8278    } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero.
8279      isInc = Ptr->getOpcode() == ISD::ADD;
8280      Offset = DAG.getConstant(RHSC, RHS->getValueType(0));
8281      return true;
8282    }
8283  }
8284
8285  return false;
8286}
8287
8288/// getPreIndexedAddressParts - returns true by value, base pointer and
8289/// offset pointer and addressing mode by reference if the node's address
8290/// can be legally represented as pre-indexed load / store address.
8291bool
8292ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
8293                                             SDValue &Offset,
8294                                             ISD::MemIndexedMode &AM,
8295                                             SelectionDAG &DAG) const {
8296  if (Subtarget->isThumb1Only())
8297    return false;
8298
8299  EVT VT;
8300  SDValue Ptr;
8301  bool isSEXTLoad = false;
8302  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
8303    Ptr = LD->getBasePtr();
8304    VT  = LD->getMemoryVT();
8305    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
8306  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
8307    Ptr = ST->getBasePtr();
8308    VT  = ST->getMemoryVT();
8309  } else
8310    return false;
8311
8312  bool isInc;
8313  bool isLegal = false;
8314  if (Subtarget->isThumb2())
8315    isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
8316                                       Offset, isInc, DAG);
8317  else
8318    isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
8319                                        Offset, isInc, DAG);
8320  if (!isLegal)
8321    return false;
8322
8323  AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
8324  return true;
8325}
8326
8327/// getPostIndexedAddressParts - returns true by value, base pointer and
8328/// offset pointer and addressing mode by reference if this node can be
8329/// combined with a load / store to form a post-indexed load / store.
8330bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
8331                                                   SDValue &Base,
8332                                                   SDValue &Offset,
8333                                                   ISD::MemIndexedMode &AM,
8334                                                   SelectionDAG &DAG) const {
8335  if (Subtarget->isThumb1Only())
8336    return false;
8337
8338  EVT VT;
8339  SDValue Ptr;
8340  bool isSEXTLoad = false;
8341  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
8342    VT  = LD->getMemoryVT();
8343    Ptr = LD->getBasePtr();
8344    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
8345  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
8346    VT  = ST->getMemoryVT();
8347    Ptr = ST->getBasePtr();
8348  } else
8349    return false;
8350
8351  bool isInc;
8352  bool isLegal = false;
8353  if (Subtarget->isThumb2())
8354    isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
8355                                       isInc, DAG);
8356  else
8357    isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
8358                                        isInc, DAG);
8359  if (!isLegal)
8360    return false;
8361
8362  if (Ptr != Base) {
8363    // Swap base ptr and offset to catch more post-index load / store when
8364    // it's legal. In Thumb2 mode, offset must be an immediate.
8365    if (Ptr == Offset && Op->getOpcode() == ISD::ADD &&
8366        !Subtarget->isThumb2())
8367      std::swap(Base, Offset);
8368
8369    // Post-indexed load / store update the base pointer.
8370    if (Ptr != Base)
8371      return false;
8372  }
8373
8374  AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
8375  return true;
8376}
8377
8378void ARMTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
8379                                                       const APInt &Mask,
8380                                                       APInt &KnownZero,
8381                                                       APInt &KnownOne,
8382                                                       const SelectionDAG &DAG,
8383                                                       unsigned Depth) const {
8384  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
8385  switch (Op.getOpcode()) {
8386  default: break;
8387  case ARMISD::CMOV: {
8388    // Bits are known zero/one if known on the LHS and RHS.
8389    DAG.ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
8390    if (KnownZero == 0 && KnownOne == 0) return;
8391
8392    APInt KnownZeroRHS, KnownOneRHS;
8393    DAG.ComputeMaskedBits(Op.getOperand(1), Mask,
8394                          KnownZeroRHS, KnownOneRHS, Depth+1);
8395    KnownZero &= KnownZeroRHS;
8396    KnownOne  &= KnownOneRHS;
8397    return;
8398  }
8399  }
8400}
8401
8402//===----------------------------------------------------------------------===//
8403//                           ARM Inline Assembly Support
8404//===----------------------------------------------------------------------===//
8405
8406bool ARMTargetLowering::ExpandInlineAsm(CallInst *CI) const {
8407  // Looking for "rev" which is V6+.
8408  if (!Subtarget->hasV6Ops())
8409    return false;
8410
8411  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
8412  std::string AsmStr = IA->getAsmString();
8413  SmallVector<StringRef, 4> AsmPieces;
8414  SplitString(AsmStr, AsmPieces, ";\n");
8415
8416  switch (AsmPieces.size()) {
8417  default: return false;
8418  case 1:
8419    AsmStr = AsmPieces[0];
8420    AsmPieces.clear();
8421    SplitString(AsmStr, AsmPieces, " \t,");
8422
8423    // rev $0, $1
8424    if (AsmPieces.size() == 3 &&
8425        AsmPieces[0] == "rev" && AsmPieces[1] == "$0" && AsmPieces[2] == "$1" &&
8426        IA->getConstraintString().compare(0, 4, "=l,l") == 0) {
8427      IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
8428      if (Ty && Ty->getBitWidth() == 32)
8429        return IntrinsicLowering::LowerToByteSwap(CI);
8430    }
8431    break;
8432  }
8433
8434  return false;
8435}
8436
8437/// getConstraintType - Given a constraint letter, return the type of
8438/// constraint it is for this target.
8439ARMTargetLowering::ConstraintType
8440ARMTargetLowering::getConstraintType(const std::string &Constraint) const {
8441  if (Constraint.size() == 1) {
8442    switch (Constraint[0]) {
8443    default:  break;
8444    case 'l': return C_RegisterClass;
8445    case 'w': return C_RegisterClass;
8446    case 'h': return C_RegisterClass;
8447    case 'x': return C_RegisterClass;
8448    case 't': return C_RegisterClass;
8449    case 'j': return C_Other; // Constant for movw.
8450      // An address with a single base register. Due to the way we
8451      // currently handle addresses it is the same as an 'r' memory constraint.
8452    case 'Q': return C_Memory;
8453    }
8454  } else if (Constraint.size() == 2) {
8455    switch (Constraint[0]) {
8456    default: break;
8457    // All 'U+' constraints are addresses.
8458    case 'U': return C_Memory;
8459    }
8460  }
8461  return TargetLowering::getConstraintType(Constraint);
8462}
8463
8464/// Examine constraint type and operand type and determine a weight value.
8465/// This object must already have been set up with the operand type
8466/// and the current alternative constraint selected.
8467TargetLowering::ConstraintWeight
8468ARMTargetLowering::getSingleConstraintMatchWeight(
8469    AsmOperandInfo &info, const char *constraint) const {
8470  ConstraintWeight weight = CW_Invalid;
8471  Value *CallOperandVal = info.CallOperandVal;
8472    // If we don't have a value, we can't do a match,
8473    // but allow it at the lowest weight.
8474  if (CallOperandVal == NULL)
8475    return CW_Default;
8476  Type *type = CallOperandVal->getType();
8477  // Look at the constraint type.
8478  switch (*constraint) {
8479  default:
8480    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
8481    break;
8482  case 'l':
8483    if (type->isIntegerTy()) {
8484      if (Subtarget->isThumb())
8485        weight = CW_SpecificReg;
8486      else
8487        weight = CW_Register;
8488    }
8489    break;
8490  case 'w':
8491    if (type->isFloatingPointTy())
8492      weight = CW_Register;
8493    break;
8494  }
8495  return weight;
8496}
8497
8498typedef std::pair<unsigned, const TargetRegisterClass*> RCPair;
8499RCPair
8500ARMTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
8501                                                EVT VT) const {
8502  if (Constraint.size() == 1) {
8503    // GCC ARM Constraint Letters
8504    switch (Constraint[0]) {
8505    case 'l': // Low regs or general regs.
8506      if (Subtarget->isThumb())
8507        return RCPair(0U, ARM::tGPRRegisterClass);
8508      else
8509        return RCPair(0U, ARM::GPRRegisterClass);
8510    case 'h': // High regs or no regs.
8511      if (Subtarget->isThumb())
8512        return RCPair(0U, ARM::hGPRRegisterClass);
8513      break;
8514    case 'r':
8515      return RCPair(0U, ARM::GPRRegisterClass);
8516    case 'w':
8517      if (VT == MVT::f32)
8518        return RCPair(0U, ARM::SPRRegisterClass);
8519      if (VT.getSizeInBits() == 64)
8520        return RCPair(0U, ARM::DPRRegisterClass);
8521      if (VT.getSizeInBits() == 128)
8522        return RCPair(0U, ARM::QPRRegisterClass);
8523      break;
8524    case 'x':
8525      if (VT == MVT::f32)
8526        return RCPair(0U, ARM::SPR_8RegisterClass);
8527      if (VT.getSizeInBits() == 64)
8528        return RCPair(0U, ARM::DPR_8RegisterClass);
8529      if (VT.getSizeInBits() == 128)
8530        return RCPair(0U, ARM::QPR_8RegisterClass);
8531      break;
8532    case 't':
8533      if (VT == MVT::f32)
8534        return RCPair(0U, ARM::SPRRegisterClass);
8535      break;
8536    }
8537  }
8538  if (StringRef("{cc}").equals_lower(Constraint))
8539    return std::make_pair(unsigned(ARM::CPSR), ARM::CCRRegisterClass);
8540
8541  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
8542}
8543
8544/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
8545/// vector.  If it is invalid, don't add anything to Ops.
8546void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
8547                                                     std::string &Constraint,
8548                                                     std::vector<SDValue>&Ops,
8549                                                     SelectionDAG &DAG) const {
8550  SDValue Result(0, 0);
8551
8552  // Currently only support length 1 constraints.
8553  if (Constraint.length() != 1) return;
8554
8555  char ConstraintLetter = Constraint[0];
8556  switch (ConstraintLetter) {
8557  default: break;
8558  case 'j':
8559  case 'I': case 'J': case 'K': case 'L':
8560  case 'M': case 'N': case 'O':
8561    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
8562    if (!C)
8563      return;
8564
8565    int64_t CVal64 = C->getSExtValue();
8566    int CVal = (int) CVal64;
8567    // None of these constraints allow values larger than 32 bits.  Check
8568    // that the value fits in an int.
8569    if (CVal != CVal64)
8570      return;
8571
8572    switch (ConstraintLetter) {
8573      case 'j':
8574        // Constant suitable for movw, must be between 0 and
8575        // 65535.
8576        if (Subtarget->hasV6T2Ops())
8577          if (CVal >= 0 && CVal <= 65535)
8578            break;
8579        return;
8580      case 'I':
8581        if (Subtarget->isThumb1Only()) {
8582          // This must be a constant between 0 and 255, for ADD
8583          // immediates.
8584          if (CVal >= 0 && CVal <= 255)
8585            break;
8586        } else if (Subtarget->isThumb2()) {
8587          // A constant that can be used as an immediate value in a
8588          // data-processing instruction.
8589          if (ARM_AM::getT2SOImmVal(CVal) != -1)
8590            break;
8591        } else {
8592          // A constant that can be used as an immediate value in a
8593          // data-processing instruction.
8594          if (ARM_AM::getSOImmVal(CVal) != -1)
8595            break;
8596        }
8597        return;
8598
8599      case 'J':
8600        if (Subtarget->isThumb()) {  // FIXME thumb2
8601          // This must be a constant between -255 and -1, for negated ADD
8602          // immediates. This can be used in GCC with an "n" modifier that
8603          // prints the negated value, for use with SUB instructions. It is
8604          // not useful otherwise but is implemented for compatibility.
8605          if (CVal >= -255 && CVal <= -1)
8606            break;
8607        } else {
8608          // This must be a constant between -4095 and 4095. It is not clear
8609          // what this constraint is intended for. Implemented for
8610          // compatibility with GCC.
8611          if (CVal >= -4095 && CVal <= 4095)
8612            break;
8613        }
8614        return;
8615
8616      case 'K':
8617        if (Subtarget->isThumb1Only()) {
8618          // A 32-bit value where only one byte has a nonzero value. Exclude
8619          // zero to match GCC. This constraint is used by GCC internally for
8620          // constants that can be loaded with a move/shift combination.
8621          // It is not useful otherwise but is implemented for compatibility.
8622          if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal))
8623            break;
8624        } else if (Subtarget->isThumb2()) {
8625          // A constant whose bitwise inverse can be used as an immediate
8626          // value in a data-processing instruction. This can be used in GCC
8627          // with a "B" modifier that prints the inverted value, for use with
8628          // BIC and MVN instructions. It is not useful otherwise but is
8629          // implemented for compatibility.
8630          if (ARM_AM::getT2SOImmVal(~CVal) != -1)
8631            break;
8632        } else {
8633          // A constant whose bitwise inverse can be used as an immediate
8634          // value in a data-processing instruction. This can be used in GCC
8635          // with a "B" modifier that prints the inverted value, for use with
8636          // BIC and MVN instructions. It is not useful otherwise but is
8637          // implemented for compatibility.
8638          if (ARM_AM::getSOImmVal(~CVal) != -1)
8639            break;
8640        }
8641        return;
8642
8643      case 'L':
8644        if (Subtarget->isThumb1Only()) {
8645          // This must be a constant between -7 and 7,
8646          // for 3-operand ADD/SUB immediate instructions.
8647          if (CVal >= -7 && CVal < 7)
8648            break;
8649        } else if (Subtarget->isThumb2()) {
8650          // A constant whose negation can be used as an immediate value in a
8651          // data-processing instruction. This can be used in GCC with an "n"
8652          // modifier that prints the negated value, for use with SUB
8653          // instructions. It is not useful otherwise but is implemented for
8654          // compatibility.
8655          if (ARM_AM::getT2SOImmVal(-CVal) != -1)
8656            break;
8657        } else {
8658          // A constant whose negation can be used as an immediate value in a
8659          // data-processing instruction. This can be used in GCC with an "n"
8660          // modifier that prints the negated value, for use with SUB
8661          // instructions. It is not useful otherwise but is implemented for
8662          // compatibility.
8663          if (ARM_AM::getSOImmVal(-CVal) != -1)
8664            break;
8665        }
8666        return;
8667
8668      case 'M':
8669        if (Subtarget->isThumb()) { // FIXME thumb2
8670          // This must be a multiple of 4 between 0 and 1020, for
8671          // ADD sp + immediate.
8672          if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
8673            break;
8674        } else {
8675          // A power of two or a constant between 0 and 32.  This is used in
8676          // GCC for the shift amount on shifted register operands, but it is
8677          // useful in general for any shift amounts.
8678          if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0))
8679            break;
8680        }
8681        return;
8682
8683      case 'N':
8684        if (Subtarget->isThumb()) {  // FIXME thumb2
8685          // This must be a constant between 0 and 31, for shift amounts.
8686          if (CVal >= 0 && CVal <= 31)
8687            break;
8688        }
8689        return;
8690
8691      case 'O':
8692        if (Subtarget->isThumb()) {  // FIXME thumb2
8693          // This must be a multiple of 4 between -508 and 508, for
8694          // ADD/SUB sp = sp + immediate.
8695          if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
8696            break;
8697        }
8698        return;
8699    }
8700    Result = DAG.getTargetConstant(CVal, Op.getValueType());
8701    break;
8702  }
8703
8704  if (Result.getNode()) {
8705    Ops.push_back(Result);
8706    return;
8707  }
8708  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
8709}
8710
8711bool
8712ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
8713  // The ARM target isn't yet aware of offsets.
8714  return false;
8715}
8716
8717bool ARM::isBitFieldInvertedMask(unsigned v) {
8718  if (v == 0xffffffff)
8719    return 0;
8720  // there can be 1's on either or both "outsides", all the "inside"
8721  // bits must be 0's
8722  unsigned int lsb = 0, msb = 31;
8723  while (v & (1 << msb)) --msb;
8724  while (v & (1 << lsb)) ++lsb;
8725  for (unsigned int i = lsb; i <= msb; ++i) {
8726    if (v & (1 << i))
8727      return 0;
8728  }
8729  return 1;
8730}
8731
8732/// isFPImmLegal - Returns true if the target can instruction select the
8733/// specified FP immediate natively. If false, the legalizer will
8734/// materialize the FP immediate as a load from a constant pool.
8735bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
8736  if (!Subtarget->hasVFP3())
8737    return false;
8738  if (VT == MVT::f32)
8739    return ARM_AM::getFP32Imm(Imm) != -1;
8740  if (VT == MVT::f64)
8741    return ARM_AM::getFP64Imm(Imm) != -1;
8742  return false;
8743}
8744
8745/// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
8746/// MemIntrinsicNodes.  The associated MachineMemOperands record the alignment
8747/// specified in the intrinsic calls.
8748bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
8749                                           const CallInst &I,
8750                                           unsigned Intrinsic) const {
8751  switch (Intrinsic) {
8752  case Intrinsic::arm_neon_vld1:
8753  case Intrinsic::arm_neon_vld2:
8754  case Intrinsic::arm_neon_vld3:
8755  case Intrinsic::arm_neon_vld4:
8756  case Intrinsic::arm_neon_vld2lane:
8757  case Intrinsic::arm_neon_vld3lane:
8758  case Intrinsic::arm_neon_vld4lane: {
8759    Info.opc = ISD::INTRINSIC_W_CHAIN;
8760    // Conservatively set memVT to the entire set of vectors loaded.
8761    uint64_t NumElts = getTargetData()->getTypeAllocSize(I.getType()) / 8;
8762    Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
8763    Info.ptrVal = I.getArgOperand(0);
8764    Info.offset = 0;
8765    Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
8766    Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
8767    Info.vol = false; // volatile loads with NEON intrinsics not supported
8768    Info.readMem = true;
8769    Info.writeMem = false;
8770    return true;
8771  }
8772  case Intrinsic::arm_neon_vst1:
8773  case Intrinsic::arm_neon_vst2:
8774  case Intrinsic::arm_neon_vst3:
8775  case Intrinsic::arm_neon_vst4:
8776  case Intrinsic::arm_neon_vst2lane:
8777  case Intrinsic::arm_neon_vst3lane:
8778  case Intrinsic::arm_neon_vst4lane: {
8779    Info.opc = ISD::INTRINSIC_VOID;
8780    // Conservatively set memVT to the entire set of vectors stored.
8781    unsigned NumElts = 0;
8782    for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
8783      Type *ArgTy = I.getArgOperand(ArgI)->getType();
8784      if (!ArgTy->isVectorTy())
8785        break;
8786      NumElts += getTargetData()->getTypeAllocSize(ArgTy) / 8;
8787    }
8788    Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
8789    Info.ptrVal = I.getArgOperand(0);
8790    Info.offset = 0;
8791    Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
8792    Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
8793    Info.vol = false; // volatile stores with NEON intrinsics not supported
8794    Info.readMem = false;
8795    Info.writeMem = true;
8796    return true;
8797  }
8798  case Intrinsic::arm_strexd: {
8799    Info.opc = ISD::INTRINSIC_W_CHAIN;
8800    Info.memVT = MVT::i64;
8801    Info.ptrVal = I.getArgOperand(2);
8802    Info.offset = 0;
8803    Info.align = 8;
8804    Info.vol = true;
8805    Info.readMem = false;
8806    Info.writeMem = true;
8807    return true;
8808  }
8809  case Intrinsic::arm_ldrexd: {
8810    Info.opc = ISD::INTRINSIC_W_CHAIN;
8811    Info.memVT = MVT::i64;
8812    Info.ptrVal = I.getArgOperand(0);
8813    Info.offset = 0;
8814    Info.align = 8;
8815    Info.vol = true;
8816    Info.readMem = true;
8817    Info.writeMem = false;
8818    return true;
8819  }
8820  default:
8821    break;
8822  }
8823
8824  return false;
8825}
8826