ARMISelLowering.cpp revision c24cb3551ed66830b53362f593269873cb53a0c4
1//===-- ARMISelLowering.cpp - ARM DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that ARM uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "arm-isel"
16#include "ARM.h"
17#include "ARMAddressingModes.h"
18#include "ARMCallingConv.h"
19#include "ARMConstantPoolValue.h"
20#include "ARMISelLowering.h"
21#include "ARMMachineFunctionInfo.h"
22#include "ARMPerfectShuffle.h"
23#include "ARMRegisterInfo.h"
24#include "ARMSubtarget.h"
25#include "ARMTargetMachine.h"
26#include "ARMTargetObjectFile.h"
27#include "llvm/CallingConv.h"
28#include "llvm/Constants.h"
29#include "llvm/Function.h"
30#include "llvm/GlobalValue.h"
31#include "llvm/Instruction.h"
32#include "llvm/Instructions.h"
33#include "llvm/Intrinsics.h"
34#include "llvm/Type.h"
35#include "llvm/CodeGen/CallingConvLower.h"
36#include "llvm/CodeGen/MachineBasicBlock.h"
37#include "llvm/CodeGen/MachineFrameInfo.h"
38#include "llvm/CodeGen/MachineFunction.h"
39#include "llvm/CodeGen/MachineInstrBuilder.h"
40#include "llvm/CodeGen/MachineRegisterInfo.h"
41#include "llvm/CodeGen/PseudoSourceValue.h"
42#include "llvm/CodeGen/SelectionDAG.h"
43#include "llvm/MC/MCSectionMachO.h"
44#include "llvm/Target/TargetOptions.h"
45#include "llvm/ADT/VectorExtras.h"
46#include "llvm/ADT/Statistic.h"
47#include "llvm/Support/CommandLine.h"
48#include "llvm/Support/ErrorHandling.h"
49#include "llvm/Support/MathExtras.h"
50#include "llvm/Support/raw_ostream.h"
51#include <sstream>
52using namespace llvm;
53
54STATISTIC(NumTailCalls, "Number of tail calls");
55
56// This option should go away when tail calls fully work.
57static cl::opt<bool>
58EnableARMTailCalls("arm-tail-calls", cl::Hidden,
59  cl::desc("Generate tail calls (TEMPORARY OPTION)."),
60  cl::init(false));
61
62static cl::opt<bool>
63EnableARMLongCalls("arm-long-calls", cl::Hidden,
64  cl::desc("Generate calls via indirect call instructions"),
65  cl::init(false));
66
67static cl::opt<bool>
68ARMInterworking("arm-interworking", cl::Hidden,
69  cl::desc("Enable / disable ARM interworking (for debugging only)"),
70  cl::init(true));
71
72void ARMTargetLowering::addTypeForNEON(EVT VT, EVT PromotedLdStVT,
73                                       EVT PromotedBitwiseVT) {
74  if (VT != PromotedLdStVT) {
75    setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote);
76    AddPromotedToType (ISD::LOAD, VT.getSimpleVT(),
77                       PromotedLdStVT.getSimpleVT());
78
79    setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote);
80    AddPromotedToType (ISD::STORE, VT.getSimpleVT(),
81                       PromotedLdStVT.getSimpleVT());
82  }
83
84  EVT ElemTy = VT.getVectorElementType();
85  if (ElemTy != MVT::i64 && ElemTy != MVT::f64)
86    setOperationAction(ISD::VSETCC, VT.getSimpleVT(), Custom);
87  setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT.getSimpleVT(), Custom);
88  if (ElemTy != MVT::i32) {
89    setOperationAction(ISD::SINT_TO_FP, VT.getSimpleVT(), Expand);
90    setOperationAction(ISD::UINT_TO_FP, VT.getSimpleVT(), Expand);
91    setOperationAction(ISD::FP_TO_SINT, VT.getSimpleVT(), Expand);
92    setOperationAction(ISD::FP_TO_UINT, VT.getSimpleVT(), Expand);
93  }
94  setOperationAction(ISD::BUILD_VECTOR, VT.getSimpleVT(), Custom);
95  setOperationAction(ISD::VECTOR_SHUFFLE, VT.getSimpleVT(), Custom);
96  setOperationAction(ISD::CONCAT_VECTORS, VT.getSimpleVT(), Legal);
97  setOperationAction(ISD::EXTRACT_SUBVECTOR, VT.getSimpleVT(), Expand);
98  setOperationAction(ISD::SELECT, VT.getSimpleVT(), Expand);
99  setOperationAction(ISD::SELECT_CC, VT.getSimpleVT(), Expand);
100  if (VT.isInteger()) {
101    setOperationAction(ISD::SHL, VT.getSimpleVT(), Custom);
102    setOperationAction(ISD::SRA, VT.getSimpleVT(), Custom);
103    setOperationAction(ISD::SRL, VT.getSimpleVT(), Custom);
104    setLoadExtAction(ISD::SEXTLOAD, VT.getSimpleVT(), Expand);
105    setLoadExtAction(ISD::ZEXTLOAD, VT.getSimpleVT(), Expand);
106    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
107         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
108      setTruncStoreAction(VT.getSimpleVT(),
109                          (MVT::SimpleValueType)InnerVT, Expand);
110  }
111  setLoadExtAction(ISD::EXTLOAD, VT.getSimpleVT(), Expand);
112
113  // Promote all bit-wise operations.
114  if (VT.isInteger() && VT != PromotedBitwiseVT) {
115    setOperationAction(ISD::AND, VT.getSimpleVT(), Promote);
116    AddPromotedToType (ISD::AND, VT.getSimpleVT(),
117                       PromotedBitwiseVT.getSimpleVT());
118    setOperationAction(ISD::OR,  VT.getSimpleVT(), Promote);
119    AddPromotedToType (ISD::OR,  VT.getSimpleVT(),
120                       PromotedBitwiseVT.getSimpleVT());
121    setOperationAction(ISD::XOR, VT.getSimpleVT(), Promote);
122    AddPromotedToType (ISD::XOR, VT.getSimpleVT(),
123                       PromotedBitwiseVT.getSimpleVT());
124  }
125
126  // Neon does not support vector divide/remainder operations.
127  setOperationAction(ISD::SDIV, VT.getSimpleVT(), Expand);
128  setOperationAction(ISD::UDIV, VT.getSimpleVT(), Expand);
129  setOperationAction(ISD::FDIV, VT.getSimpleVT(), Expand);
130  setOperationAction(ISD::SREM, VT.getSimpleVT(), Expand);
131  setOperationAction(ISD::UREM, VT.getSimpleVT(), Expand);
132  setOperationAction(ISD::FREM, VT.getSimpleVT(), Expand);
133}
134
135void ARMTargetLowering::addDRTypeForNEON(EVT VT) {
136  addRegisterClass(VT, ARM::DPRRegisterClass);
137  addTypeForNEON(VT, MVT::f64, MVT::v2i32);
138}
139
140void ARMTargetLowering::addQRTypeForNEON(EVT VT) {
141  addRegisterClass(VT, ARM::QPRRegisterClass);
142  addTypeForNEON(VT, MVT::v2f64, MVT::v4i32);
143}
144
145static TargetLoweringObjectFile *createTLOF(TargetMachine &TM) {
146  if (TM.getSubtarget<ARMSubtarget>().isTargetDarwin())
147    return new TargetLoweringObjectFileMachO();
148
149  return new ARMElfTargetObjectFile();
150}
151
152ARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
153    : TargetLowering(TM, createTLOF(TM)) {
154  Subtarget = &TM.getSubtarget<ARMSubtarget>();
155  RegInfo = TM.getRegisterInfo();
156  Itins = TM.getInstrItineraryData();
157
158  if (Subtarget->isTargetDarwin()) {
159    // Uses VFP for Thumb libfuncs if available.
160    if (Subtarget->isThumb() && Subtarget->hasVFP2()) {
161      // Single-precision floating-point arithmetic.
162      setLibcallName(RTLIB::ADD_F32, "__addsf3vfp");
163      setLibcallName(RTLIB::SUB_F32, "__subsf3vfp");
164      setLibcallName(RTLIB::MUL_F32, "__mulsf3vfp");
165      setLibcallName(RTLIB::DIV_F32, "__divsf3vfp");
166
167      // Double-precision floating-point arithmetic.
168      setLibcallName(RTLIB::ADD_F64, "__adddf3vfp");
169      setLibcallName(RTLIB::SUB_F64, "__subdf3vfp");
170      setLibcallName(RTLIB::MUL_F64, "__muldf3vfp");
171      setLibcallName(RTLIB::DIV_F64, "__divdf3vfp");
172
173      // Single-precision comparisons.
174      setLibcallName(RTLIB::OEQ_F32, "__eqsf2vfp");
175      setLibcallName(RTLIB::UNE_F32, "__nesf2vfp");
176      setLibcallName(RTLIB::OLT_F32, "__ltsf2vfp");
177      setLibcallName(RTLIB::OLE_F32, "__lesf2vfp");
178      setLibcallName(RTLIB::OGE_F32, "__gesf2vfp");
179      setLibcallName(RTLIB::OGT_F32, "__gtsf2vfp");
180      setLibcallName(RTLIB::UO_F32,  "__unordsf2vfp");
181      setLibcallName(RTLIB::O_F32,   "__unordsf2vfp");
182
183      setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
184      setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETNE);
185      setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
186      setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
187      setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
188      setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
189      setCmpLibcallCC(RTLIB::UO_F32,  ISD::SETNE);
190      setCmpLibcallCC(RTLIB::O_F32,   ISD::SETEQ);
191
192      // Double-precision comparisons.
193      setLibcallName(RTLIB::OEQ_F64, "__eqdf2vfp");
194      setLibcallName(RTLIB::UNE_F64, "__nedf2vfp");
195      setLibcallName(RTLIB::OLT_F64, "__ltdf2vfp");
196      setLibcallName(RTLIB::OLE_F64, "__ledf2vfp");
197      setLibcallName(RTLIB::OGE_F64, "__gedf2vfp");
198      setLibcallName(RTLIB::OGT_F64, "__gtdf2vfp");
199      setLibcallName(RTLIB::UO_F64,  "__unorddf2vfp");
200      setLibcallName(RTLIB::O_F64,   "__unorddf2vfp");
201
202      setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
203      setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETNE);
204      setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
205      setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
206      setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
207      setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
208      setCmpLibcallCC(RTLIB::UO_F64,  ISD::SETNE);
209      setCmpLibcallCC(RTLIB::O_F64,   ISD::SETEQ);
210
211      // Floating-point to integer conversions.
212      // i64 conversions are done via library routines even when generating VFP
213      // instructions, so use the same ones.
214      setLibcallName(RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp");
215      setLibcallName(RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp");
216      setLibcallName(RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp");
217      setLibcallName(RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp");
218
219      // Conversions between floating types.
220      setLibcallName(RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp");
221      setLibcallName(RTLIB::FPEXT_F32_F64,   "__extendsfdf2vfp");
222
223      // Integer to floating-point conversions.
224      // i64 conversions are done via library routines even when generating VFP
225      // instructions, so use the same ones.
226      // FIXME: There appears to be some naming inconsistency in ARM libgcc:
227      // e.g., __floatunsidf vs. __floatunssidfvfp.
228      setLibcallName(RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp");
229      setLibcallName(RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp");
230      setLibcallName(RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp");
231      setLibcallName(RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp");
232    }
233  }
234
235  // These libcalls are not available in 32-bit.
236  setLibcallName(RTLIB::SHL_I128, 0);
237  setLibcallName(RTLIB::SRL_I128, 0);
238  setLibcallName(RTLIB::SRA_I128, 0);
239
240  if (Subtarget->isAAPCS_ABI()) {
241    // Double-precision floating-point arithmetic helper functions
242    // RTABI chapter 4.1.2, Table 2
243    setLibcallName(RTLIB::ADD_F64, "__aeabi_dadd");
244    setLibcallName(RTLIB::DIV_F64, "__aeabi_ddiv");
245    setLibcallName(RTLIB::MUL_F64, "__aeabi_dmul");
246    setLibcallName(RTLIB::SUB_F64, "__aeabi_dsub");
247    setLibcallCallingConv(RTLIB::ADD_F64, CallingConv::ARM_AAPCS);
248    setLibcallCallingConv(RTLIB::DIV_F64, CallingConv::ARM_AAPCS);
249    setLibcallCallingConv(RTLIB::MUL_F64, CallingConv::ARM_AAPCS);
250    setLibcallCallingConv(RTLIB::SUB_F64, CallingConv::ARM_AAPCS);
251
252    // Double-precision floating-point comparison helper functions
253    // RTABI chapter 4.1.2, Table 3
254    setLibcallName(RTLIB::OEQ_F64, "__aeabi_dcmpeq");
255    setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
256    setLibcallName(RTLIB::UNE_F64, "__aeabi_dcmpeq");
257    setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETEQ);
258    setLibcallName(RTLIB::OLT_F64, "__aeabi_dcmplt");
259    setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
260    setLibcallName(RTLIB::OLE_F64, "__aeabi_dcmple");
261    setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
262    setLibcallName(RTLIB::OGE_F64, "__aeabi_dcmpge");
263    setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
264    setLibcallName(RTLIB::OGT_F64, "__aeabi_dcmpgt");
265    setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
266    setLibcallName(RTLIB::UO_F64,  "__aeabi_dcmpun");
267    setCmpLibcallCC(RTLIB::UO_F64,  ISD::SETNE);
268    setLibcallName(RTLIB::O_F64,   "__aeabi_dcmpun");
269    setCmpLibcallCC(RTLIB::O_F64,   ISD::SETEQ);
270    setLibcallCallingConv(RTLIB::OEQ_F64, CallingConv::ARM_AAPCS);
271    setLibcallCallingConv(RTLIB::UNE_F64, CallingConv::ARM_AAPCS);
272    setLibcallCallingConv(RTLIB::OLT_F64, CallingConv::ARM_AAPCS);
273    setLibcallCallingConv(RTLIB::OLE_F64, CallingConv::ARM_AAPCS);
274    setLibcallCallingConv(RTLIB::OGE_F64, CallingConv::ARM_AAPCS);
275    setLibcallCallingConv(RTLIB::OGT_F64, CallingConv::ARM_AAPCS);
276    setLibcallCallingConv(RTLIB::UO_F64, CallingConv::ARM_AAPCS);
277    setLibcallCallingConv(RTLIB::O_F64, CallingConv::ARM_AAPCS);
278
279    // Single-precision floating-point arithmetic helper functions
280    // RTABI chapter 4.1.2, Table 4
281    setLibcallName(RTLIB::ADD_F32, "__aeabi_fadd");
282    setLibcallName(RTLIB::DIV_F32, "__aeabi_fdiv");
283    setLibcallName(RTLIB::MUL_F32, "__aeabi_fmul");
284    setLibcallName(RTLIB::SUB_F32, "__aeabi_fsub");
285    setLibcallCallingConv(RTLIB::ADD_F32, CallingConv::ARM_AAPCS);
286    setLibcallCallingConv(RTLIB::DIV_F32, CallingConv::ARM_AAPCS);
287    setLibcallCallingConv(RTLIB::MUL_F32, CallingConv::ARM_AAPCS);
288    setLibcallCallingConv(RTLIB::SUB_F32, CallingConv::ARM_AAPCS);
289
290    // Single-precision floating-point comparison helper functions
291    // RTABI chapter 4.1.2, Table 5
292    setLibcallName(RTLIB::OEQ_F32, "__aeabi_fcmpeq");
293    setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
294    setLibcallName(RTLIB::UNE_F32, "__aeabi_fcmpeq");
295    setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETEQ);
296    setLibcallName(RTLIB::OLT_F32, "__aeabi_fcmplt");
297    setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
298    setLibcallName(RTLIB::OLE_F32, "__aeabi_fcmple");
299    setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
300    setLibcallName(RTLIB::OGE_F32, "__aeabi_fcmpge");
301    setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
302    setLibcallName(RTLIB::OGT_F32, "__aeabi_fcmpgt");
303    setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
304    setLibcallName(RTLIB::UO_F32,  "__aeabi_fcmpun");
305    setCmpLibcallCC(RTLIB::UO_F32,  ISD::SETNE);
306    setLibcallName(RTLIB::O_F32,   "__aeabi_fcmpun");
307    setCmpLibcallCC(RTLIB::O_F32,   ISD::SETEQ);
308    setLibcallCallingConv(RTLIB::OEQ_F32, CallingConv::ARM_AAPCS);
309    setLibcallCallingConv(RTLIB::UNE_F32, CallingConv::ARM_AAPCS);
310    setLibcallCallingConv(RTLIB::OLT_F32, CallingConv::ARM_AAPCS);
311    setLibcallCallingConv(RTLIB::OLE_F32, CallingConv::ARM_AAPCS);
312    setLibcallCallingConv(RTLIB::OGE_F32, CallingConv::ARM_AAPCS);
313    setLibcallCallingConv(RTLIB::OGT_F32, CallingConv::ARM_AAPCS);
314    setLibcallCallingConv(RTLIB::UO_F32, CallingConv::ARM_AAPCS);
315    setLibcallCallingConv(RTLIB::O_F32, CallingConv::ARM_AAPCS);
316
317    // Floating-point to integer conversions.
318    // RTABI chapter 4.1.2, Table 6
319    setLibcallName(RTLIB::FPTOSINT_F64_I32, "__aeabi_d2iz");
320    setLibcallName(RTLIB::FPTOUINT_F64_I32, "__aeabi_d2uiz");
321    setLibcallName(RTLIB::FPTOSINT_F64_I64, "__aeabi_d2lz");
322    setLibcallName(RTLIB::FPTOUINT_F64_I64, "__aeabi_d2ulz");
323    setLibcallName(RTLIB::FPTOSINT_F32_I32, "__aeabi_f2iz");
324    setLibcallName(RTLIB::FPTOUINT_F32_I32, "__aeabi_f2uiz");
325    setLibcallName(RTLIB::FPTOSINT_F32_I64, "__aeabi_f2lz");
326    setLibcallName(RTLIB::FPTOUINT_F32_I64, "__aeabi_f2ulz");
327    setLibcallCallingConv(RTLIB::FPTOSINT_F64_I32, CallingConv::ARM_AAPCS);
328    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I32, CallingConv::ARM_AAPCS);
329    setLibcallCallingConv(RTLIB::FPTOSINT_F64_I64, CallingConv::ARM_AAPCS);
330    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::ARM_AAPCS);
331    setLibcallCallingConv(RTLIB::FPTOSINT_F32_I32, CallingConv::ARM_AAPCS);
332    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I32, CallingConv::ARM_AAPCS);
333    setLibcallCallingConv(RTLIB::FPTOSINT_F32_I64, CallingConv::ARM_AAPCS);
334    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::ARM_AAPCS);
335
336    // Conversions between floating types.
337    // RTABI chapter 4.1.2, Table 7
338    setLibcallName(RTLIB::FPROUND_F64_F32, "__aeabi_d2f");
339    setLibcallName(RTLIB::FPEXT_F32_F64,   "__aeabi_f2d");
340    setLibcallCallingConv(RTLIB::FPROUND_F64_F32, CallingConv::ARM_AAPCS);
341    setLibcallCallingConv(RTLIB::FPEXT_F32_F64, CallingConv::ARM_AAPCS);
342
343    // Integer to floating-point conversions.
344    // RTABI chapter 4.1.2, Table 8
345    setLibcallName(RTLIB::SINTTOFP_I32_F64, "__aeabi_i2d");
346    setLibcallName(RTLIB::UINTTOFP_I32_F64, "__aeabi_ui2d");
347    setLibcallName(RTLIB::SINTTOFP_I64_F64, "__aeabi_l2d");
348    setLibcallName(RTLIB::UINTTOFP_I64_F64, "__aeabi_ul2d");
349    setLibcallName(RTLIB::SINTTOFP_I32_F32, "__aeabi_i2f");
350    setLibcallName(RTLIB::UINTTOFP_I32_F32, "__aeabi_ui2f");
351    setLibcallName(RTLIB::SINTTOFP_I64_F32, "__aeabi_l2f");
352    setLibcallName(RTLIB::UINTTOFP_I64_F32, "__aeabi_ul2f");
353    setLibcallCallingConv(RTLIB::SINTTOFP_I32_F64, CallingConv::ARM_AAPCS);
354    setLibcallCallingConv(RTLIB::UINTTOFP_I32_F64, CallingConv::ARM_AAPCS);
355    setLibcallCallingConv(RTLIB::SINTTOFP_I64_F64, CallingConv::ARM_AAPCS);
356    setLibcallCallingConv(RTLIB::UINTTOFP_I64_F64, CallingConv::ARM_AAPCS);
357    setLibcallCallingConv(RTLIB::SINTTOFP_I32_F32, CallingConv::ARM_AAPCS);
358    setLibcallCallingConv(RTLIB::UINTTOFP_I32_F32, CallingConv::ARM_AAPCS);
359    setLibcallCallingConv(RTLIB::SINTTOFP_I64_F32, CallingConv::ARM_AAPCS);
360    setLibcallCallingConv(RTLIB::UINTTOFP_I64_F32, CallingConv::ARM_AAPCS);
361
362    // Long long helper functions
363    // RTABI chapter 4.2, Table 9
364    setLibcallName(RTLIB::MUL_I64,  "__aeabi_lmul");
365    setLibcallName(RTLIB::SDIV_I64, "__aeabi_ldivmod");
366    setLibcallName(RTLIB::UDIV_I64, "__aeabi_uldivmod");
367    setLibcallName(RTLIB::SHL_I64, "__aeabi_llsl");
368    setLibcallName(RTLIB::SRL_I64, "__aeabi_llsr");
369    setLibcallName(RTLIB::SRA_I64, "__aeabi_lasr");
370    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::ARM_AAPCS);
371    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::ARM_AAPCS);
372    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::ARM_AAPCS);
373    setLibcallCallingConv(RTLIB::SHL_I64, CallingConv::ARM_AAPCS);
374    setLibcallCallingConv(RTLIB::SRL_I64, CallingConv::ARM_AAPCS);
375    setLibcallCallingConv(RTLIB::SRA_I64, CallingConv::ARM_AAPCS);
376
377    // Integer division functions
378    // RTABI chapter 4.3.1
379    setLibcallName(RTLIB::SDIV_I8,  "__aeabi_idiv");
380    setLibcallName(RTLIB::SDIV_I16, "__aeabi_idiv");
381    setLibcallName(RTLIB::SDIV_I32, "__aeabi_idiv");
382    setLibcallName(RTLIB::UDIV_I8,  "__aeabi_uidiv");
383    setLibcallName(RTLIB::UDIV_I16, "__aeabi_uidiv");
384    setLibcallName(RTLIB::UDIV_I32, "__aeabi_uidiv");
385    setLibcallCallingConv(RTLIB::SDIV_I8, CallingConv::ARM_AAPCS);
386    setLibcallCallingConv(RTLIB::SDIV_I16, CallingConv::ARM_AAPCS);
387    setLibcallCallingConv(RTLIB::SDIV_I32, CallingConv::ARM_AAPCS);
388    setLibcallCallingConv(RTLIB::UDIV_I8, CallingConv::ARM_AAPCS);
389    setLibcallCallingConv(RTLIB::UDIV_I16, CallingConv::ARM_AAPCS);
390    setLibcallCallingConv(RTLIB::UDIV_I32, CallingConv::ARM_AAPCS);
391  }
392
393  if (Subtarget->isThumb1Only())
394    addRegisterClass(MVT::i32, ARM::tGPRRegisterClass);
395  else
396    addRegisterClass(MVT::i32, ARM::GPRRegisterClass);
397  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
398    addRegisterClass(MVT::f32, ARM::SPRRegisterClass);
399    if (!Subtarget->isFPOnlySP())
400      addRegisterClass(MVT::f64, ARM::DPRRegisterClass);
401
402    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
403  }
404
405  if (Subtarget->hasNEON()) {
406    addDRTypeForNEON(MVT::v2f32);
407    addDRTypeForNEON(MVT::v8i8);
408    addDRTypeForNEON(MVT::v4i16);
409    addDRTypeForNEON(MVT::v2i32);
410    addDRTypeForNEON(MVT::v1i64);
411
412    addQRTypeForNEON(MVT::v4f32);
413    addQRTypeForNEON(MVT::v2f64);
414    addQRTypeForNEON(MVT::v16i8);
415    addQRTypeForNEON(MVT::v8i16);
416    addQRTypeForNEON(MVT::v4i32);
417    addQRTypeForNEON(MVT::v2i64);
418
419    // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
420    // neither Neon nor VFP support any arithmetic operations on it.
421    setOperationAction(ISD::FADD, MVT::v2f64, Expand);
422    setOperationAction(ISD::FSUB, MVT::v2f64, Expand);
423    setOperationAction(ISD::FMUL, MVT::v2f64, Expand);
424    setOperationAction(ISD::FDIV, MVT::v2f64, Expand);
425    setOperationAction(ISD::FREM, MVT::v2f64, Expand);
426    setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand);
427    setOperationAction(ISD::VSETCC, MVT::v2f64, Expand);
428    setOperationAction(ISD::FNEG, MVT::v2f64, Expand);
429    setOperationAction(ISD::FABS, MVT::v2f64, Expand);
430    setOperationAction(ISD::FSQRT, MVT::v2f64, Expand);
431    setOperationAction(ISD::FSIN, MVT::v2f64, Expand);
432    setOperationAction(ISD::FCOS, MVT::v2f64, Expand);
433    setOperationAction(ISD::FPOWI, MVT::v2f64, Expand);
434    setOperationAction(ISD::FPOW, MVT::v2f64, Expand);
435    setOperationAction(ISD::FLOG, MVT::v2f64, Expand);
436    setOperationAction(ISD::FLOG2, MVT::v2f64, Expand);
437    setOperationAction(ISD::FLOG10, MVT::v2f64, Expand);
438    setOperationAction(ISD::FEXP, MVT::v2f64, Expand);
439    setOperationAction(ISD::FEXP2, MVT::v2f64, Expand);
440    setOperationAction(ISD::FCEIL, MVT::v2f64, Expand);
441    setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand);
442    setOperationAction(ISD::FRINT, MVT::v2f64, Expand);
443    setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand);
444    setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand);
445
446    setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand);
447
448    // Neon does not support some operations on v1i64 and v2i64 types.
449    setOperationAction(ISD::MUL, MVT::v1i64, Expand);
450    // Custom handling for some quad-vector types to detect VMULL.
451    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
452    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
453    setOperationAction(ISD::MUL, MVT::v2i64, Custom);
454    setOperationAction(ISD::VSETCC, MVT::v1i64, Expand);
455    setOperationAction(ISD::VSETCC, MVT::v2i64, Expand);
456
457    setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
458    setTargetDAGCombine(ISD::SHL);
459    setTargetDAGCombine(ISD::SRL);
460    setTargetDAGCombine(ISD::SRA);
461    setTargetDAGCombine(ISD::SIGN_EXTEND);
462    setTargetDAGCombine(ISD::ZERO_EXTEND);
463    setTargetDAGCombine(ISD::ANY_EXTEND);
464    setTargetDAGCombine(ISD::SELECT_CC);
465    setTargetDAGCombine(ISD::BUILD_VECTOR);
466    setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
467  }
468
469  computeRegisterProperties();
470
471  // ARM does not have f32 extending load.
472  setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
473
474  // ARM does not have i1 sign extending load.
475  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
476
477  // ARM supports all 4 flavors of integer indexed load / store.
478  if (!Subtarget->isThumb1Only()) {
479    for (unsigned im = (unsigned)ISD::PRE_INC;
480         im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
481      setIndexedLoadAction(im,  MVT::i1,  Legal);
482      setIndexedLoadAction(im,  MVT::i8,  Legal);
483      setIndexedLoadAction(im,  MVT::i16, Legal);
484      setIndexedLoadAction(im,  MVT::i32, Legal);
485      setIndexedStoreAction(im, MVT::i1,  Legal);
486      setIndexedStoreAction(im, MVT::i8,  Legal);
487      setIndexedStoreAction(im, MVT::i16, Legal);
488      setIndexedStoreAction(im, MVT::i32, Legal);
489    }
490  }
491
492  // i64 operation support.
493  if (Subtarget->isThumb1Only()) {
494    setOperationAction(ISD::MUL,     MVT::i64, Expand);
495    setOperationAction(ISD::MULHU,   MVT::i32, Expand);
496    setOperationAction(ISD::MULHS,   MVT::i32, Expand);
497    setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
498    setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
499  } else {
500    setOperationAction(ISD::MUL,     MVT::i64, Expand);
501    setOperationAction(ISD::MULHU,   MVT::i32, Expand);
502    if (!Subtarget->hasV6Ops())
503      setOperationAction(ISD::MULHS, MVT::i32, Expand);
504  }
505  setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
506  setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
507  setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
508  setOperationAction(ISD::SRL,       MVT::i64, Custom);
509  setOperationAction(ISD::SRA,       MVT::i64, Custom);
510
511  // ARM does not have ROTL.
512  setOperationAction(ISD::ROTL,  MVT::i32, Expand);
513  setOperationAction(ISD::CTTZ,  MVT::i32, Custom);
514  setOperationAction(ISD::CTPOP, MVT::i32, Expand);
515  if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only())
516    setOperationAction(ISD::CTLZ, MVT::i32, Expand);
517
518  // Only ARMv6 has BSWAP.
519  if (!Subtarget->hasV6Ops())
520    setOperationAction(ISD::BSWAP, MVT::i32, Expand);
521
522  // These are expanded into libcalls.
523  if (!Subtarget->hasDivide()) {
524    // v7M has a hardware divider
525    setOperationAction(ISD::SDIV,  MVT::i32, Expand);
526    setOperationAction(ISD::UDIV,  MVT::i32, Expand);
527  }
528  setOperationAction(ISD::SREM,  MVT::i32, Expand);
529  setOperationAction(ISD::UREM,  MVT::i32, Expand);
530  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
531  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
532
533  setOperationAction(ISD::GlobalAddress, MVT::i32,   Custom);
534  setOperationAction(ISD::ConstantPool,  MVT::i32,   Custom);
535  setOperationAction(ISD::GLOBAL_OFFSET_TABLE, MVT::i32, Custom);
536  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
537  setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
538
539  setOperationAction(ISD::TRAP, MVT::Other, Legal);
540
541  // Use the default implementation.
542  setOperationAction(ISD::VASTART,            MVT::Other, Custom);
543  setOperationAction(ISD::VAARG,              MVT::Other, Expand);
544  setOperationAction(ISD::VACOPY,             MVT::Other, Expand);
545  setOperationAction(ISD::VAEND,              MVT::Other, Expand);
546  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
547  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
548  setOperationAction(ISD::EHSELECTION,        MVT::i32,   Expand);
549  // FIXME: Shouldn't need this, since no register is used, but the legalizer
550  // doesn't yet know how to not do that for SjLj.
551  setExceptionSelectorRegister(ARM::R0);
552  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
553  // ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use
554  // the default expansion.
555  if (Subtarget->hasDataBarrier() ||
556      (Subtarget->hasV6Ops() && !Subtarget->isThumb1Only())) {
557    // membarrier needs custom lowering; the rest are legal and handled
558    // normally.
559    setOperationAction(ISD::MEMBARRIER, MVT::Other, Custom);
560  } else {
561    // Set them all for expansion, which will force libcalls.
562    setOperationAction(ISD::MEMBARRIER, MVT::Other, Expand);
563    setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i8,  Expand);
564    setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i16, Expand);
565    setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i32, Expand);
566    setOperationAction(ISD::ATOMIC_SWAP,      MVT::i8,  Expand);
567    setOperationAction(ISD::ATOMIC_SWAP,      MVT::i16, Expand);
568    setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Expand);
569    setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i8,  Expand);
570    setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i16, Expand);
571    setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Expand);
572    setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i8,  Expand);
573    setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i16, Expand);
574    setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Expand);
575    setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i8,  Expand);
576    setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i16, Expand);
577    setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Expand);
578    setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i8,  Expand);
579    setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i16, Expand);
580    setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Expand);
581    setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i8,  Expand);
582    setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i16, Expand);
583    setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Expand);
584    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i8,  Expand);
585    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i16, Expand);
586    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand);
587    // Since the libcalls include locking, fold in the fences
588    setShouldFoldAtomicFences(true);
589  }
590  // 64-bit versions are always libcalls (for now)
591  setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i64, Expand);
592  setOperationAction(ISD::ATOMIC_SWAP,      MVT::i64, Expand);
593  setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i64, Expand);
594  setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i64, Expand);
595  setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i64, Expand);
596  setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i64, Expand);
597  setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i64, Expand);
598  setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Expand);
599
600  setOperationAction(ISD::PREFETCH,         MVT::Other, Custom);
601
602  // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
603  if (!Subtarget->hasV6Ops()) {
604    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
605    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
606  }
607  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
608
609  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
610    // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
611    // iff target supports vfp2.
612    setOperationAction(ISD::BIT_CONVERT, MVT::i64, Custom);
613    setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
614  }
615
616  // We want to custom lower some of our intrinsics.
617  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
618  if (Subtarget->isTargetDarwin()) {
619    setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
620    setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
621    setOperationAction(ISD::EH_SJLJ_DISPATCHSETUP, MVT::Other, Custom);
622  }
623
624  setOperationAction(ISD::SETCC,     MVT::i32, Expand);
625  setOperationAction(ISD::SETCC,     MVT::f32, Expand);
626  setOperationAction(ISD::SETCC,     MVT::f64, Expand);
627  setOperationAction(ISD::SELECT,    MVT::i32, Custom);
628  setOperationAction(ISD::SELECT,    MVT::f32, Custom);
629  setOperationAction(ISD::SELECT,    MVT::f64, Custom);
630  setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
631  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
632  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
633
634  setOperationAction(ISD::BRCOND,    MVT::Other, Expand);
635  setOperationAction(ISD::BR_CC,     MVT::i32,   Custom);
636  setOperationAction(ISD::BR_CC,     MVT::f32,   Custom);
637  setOperationAction(ISD::BR_CC,     MVT::f64,   Custom);
638  setOperationAction(ISD::BR_JT,     MVT::Other, Custom);
639
640  // We don't support sin/cos/fmod/copysign/pow
641  setOperationAction(ISD::FSIN,      MVT::f64, Expand);
642  setOperationAction(ISD::FSIN,      MVT::f32, Expand);
643  setOperationAction(ISD::FCOS,      MVT::f32, Expand);
644  setOperationAction(ISD::FCOS,      MVT::f64, Expand);
645  setOperationAction(ISD::FREM,      MVT::f64, Expand);
646  setOperationAction(ISD::FREM,      MVT::f32, Expand);
647  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
648    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
649    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
650  }
651  setOperationAction(ISD::FPOW,      MVT::f64, Expand);
652  setOperationAction(ISD::FPOW,      MVT::f32, Expand);
653
654  // Various VFP goodness
655  if (!UseSoftFloat && !Subtarget->isThumb1Only()) {
656    // int <-> fp are custom expanded into bit_convert + ARMISD ops.
657    if (Subtarget->hasVFP2()) {
658      setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
659      setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
660      setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
661      setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
662    }
663    // Special handling for half-precision FP.
664    if (!Subtarget->hasFP16()) {
665      setOperationAction(ISD::FP16_TO_FP32, MVT::f32, Expand);
666      setOperationAction(ISD::FP32_TO_FP16, MVT::i32, Expand);
667    }
668  }
669
670  // We have target-specific dag combine patterns for the following nodes:
671  // ARMISD::VMOVRRD  - No need to call setTargetDAGCombine
672  setTargetDAGCombine(ISD::ADD);
673  setTargetDAGCombine(ISD::SUB);
674  setTargetDAGCombine(ISD::MUL);
675
676  if (Subtarget->hasV6T2Ops() || Subtarget->hasNEON())
677    setTargetDAGCombine(ISD::OR);
678  if (Subtarget->hasNEON())
679    setTargetDAGCombine(ISD::AND);
680
681  setStackPointerRegisterToSaveRestore(ARM::SP);
682
683  if (UseSoftFloat || Subtarget->isThumb1Only() || !Subtarget->hasVFP2())
684    setSchedulingPreference(Sched::RegPressure);
685  else
686    setSchedulingPreference(Sched::Hybrid);
687
688  maxStoresPerMemcpy = 1;   //// temporary - rewrite interface to use type
689
690  // On ARM arguments smaller than 4 bytes are extended, so all arguments
691  // are at least 4 bytes aligned.
692  setMinStackArgumentAlignment(4);
693
694  benefitFromCodePlacementOpt = true;
695}
696
697std::pair<const TargetRegisterClass*, uint8_t>
698ARMTargetLowering::findRepresentativeClass(EVT VT) const{
699  const TargetRegisterClass *RRC = 0;
700  uint8_t Cost = 1;
701  switch (VT.getSimpleVT().SimpleTy) {
702  default:
703    return TargetLowering::findRepresentativeClass(VT);
704  // Use DPR as representative register class for all floating point
705  // and vector types. Since there are 32 SPR registers and 32 DPR registers so
706  // the cost is 1 for both f32 and f64.
707  case MVT::f32: case MVT::f64: case MVT::v8i8: case MVT::v4i16:
708  case MVT::v2i32: case MVT::v1i64: case MVT::v2f32:
709    RRC = ARM::DPRRegisterClass;
710    break;
711  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
712  case MVT::v4f32: case MVT::v2f64:
713    RRC = ARM::DPRRegisterClass;
714    Cost = 2;
715    break;
716  case MVT::v4i64:
717    RRC = ARM::DPRRegisterClass;
718    Cost = 4;
719    break;
720  case MVT::v8i64:
721    RRC = ARM::DPRRegisterClass;
722    Cost = 8;
723    break;
724  }
725  return std::make_pair(RRC, Cost);
726}
727
728const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
729  switch (Opcode) {
730  default: return 0;
731  case ARMISD::Wrapper:       return "ARMISD::Wrapper";
732  case ARMISD::WrapperJT:     return "ARMISD::WrapperJT";
733  case ARMISD::CALL:          return "ARMISD::CALL";
734  case ARMISD::CALL_PRED:     return "ARMISD::CALL_PRED";
735  case ARMISD::CALL_NOLINK:   return "ARMISD::CALL_NOLINK";
736  case ARMISD::tCALL:         return "ARMISD::tCALL";
737  case ARMISD::BRCOND:        return "ARMISD::BRCOND";
738  case ARMISD::BR_JT:         return "ARMISD::BR_JT";
739  case ARMISD::BR2_JT:        return "ARMISD::BR2_JT";
740  case ARMISD::RET_FLAG:      return "ARMISD::RET_FLAG";
741  case ARMISD::PIC_ADD:       return "ARMISD::PIC_ADD";
742  case ARMISD::CMP:           return "ARMISD::CMP";
743  case ARMISD::CMPZ:          return "ARMISD::CMPZ";
744  case ARMISD::CMPFP:         return "ARMISD::CMPFP";
745  case ARMISD::CMPFPw0:       return "ARMISD::CMPFPw0";
746  case ARMISD::BCC_i64:       return "ARMISD::BCC_i64";
747  case ARMISD::FMSTAT:        return "ARMISD::FMSTAT";
748  case ARMISD::CMOV:          return "ARMISD::CMOV";
749  case ARMISD::CNEG:          return "ARMISD::CNEG";
750
751  case ARMISD::RBIT:          return "ARMISD::RBIT";
752
753  case ARMISD::FTOSI:         return "ARMISD::FTOSI";
754  case ARMISD::FTOUI:         return "ARMISD::FTOUI";
755  case ARMISD::SITOF:         return "ARMISD::SITOF";
756  case ARMISD::UITOF:         return "ARMISD::UITOF";
757
758  case ARMISD::SRL_FLAG:      return "ARMISD::SRL_FLAG";
759  case ARMISD::SRA_FLAG:      return "ARMISD::SRA_FLAG";
760  case ARMISD::RRX:           return "ARMISD::RRX";
761
762  case ARMISD::VMOVRRD:       return "ARMISD::VMOVRRD";
763  case ARMISD::VMOVDRR:       return "ARMISD::VMOVDRR";
764
765  case ARMISD::EH_SJLJ_SETJMP: return "ARMISD::EH_SJLJ_SETJMP";
766  case ARMISD::EH_SJLJ_LONGJMP:return "ARMISD::EH_SJLJ_LONGJMP";
767  case ARMISD::EH_SJLJ_DISPATCHSETUP:return "ARMISD::EH_SJLJ_DISPATCHSETUP";
768
769  case ARMISD::TC_RETURN:     return "ARMISD::TC_RETURN";
770
771  case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER";
772
773  case ARMISD::DYN_ALLOC:     return "ARMISD::DYN_ALLOC";
774
775  case ARMISD::MEMBARRIER:    return "ARMISD::MEMBARRIER";
776  case ARMISD::MEMBARRIER_MCR: return "ARMISD::MEMBARRIER_MCR";
777
778  case ARMISD::PRELOAD:       return "ARMISD::PRELOAD";
779
780  case ARMISD::VCEQ:          return "ARMISD::VCEQ";
781  case ARMISD::VCGE:          return "ARMISD::VCGE";
782  case ARMISD::VCGEU:         return "ARMISD::VCGEU";
783  case ARMISD::VCGT:          return "ARMISD::VCGT";
784  case ARMISD::VCGTU:         return "ARMISD::VCGTU";
785  case ARMISD::VTST:          return "ARMISD::VTST";
786
787  case ARMISD::VSHL:          return "ARMISD::VSHL";
788  case ARMISD::VSHRs:         return "ARMISD::VSHRs";
789  case ARMISD::VSHRu:         return "ARMISD::VSHRu";
790  case ARMISD::VSHLLs:        return "ARMISD::VSHLLs";
791  case ARMISD::VSHLLu:        return "ARMISD::VSHLLu";
792  case ARMISD::VSHLLi:        return "ARMISD::VSHLLi";
793  case ARMISD::VSHRN:         return "ARMISD::VSHRN";
794  case ARMISD::VRSHRs:        return "ARMISD::VRSHRs";
795  case ARMISD::VRSHRu:        return "ARMISD::VRSHRu";
796  case ARMISD::VRSHRN:        return "ARMISD::VRSHRN";
797  case ARMISD::VQSHLs:        return "ARMISD::VQSHLs";
798  case ARMISD::VQSHLu:        return "ARMISD::VQSHLu";
799  case ARMISD::VQSHLsu:       return "ARMISD::VQSHLsu";
800  case ARMISD::VQSHRNs:       return "ARMISD::VQSHRNs";
801  case ARMISD::VQSHRNu:       return "ARMISD::VQSHRNu";
802  case ARMISD::VQSHRNsu:      return "ARMISD::VQSHRNsu";
803  case ARMISD::VQRSHRNs:      return "ARMISD::VQRSHRNs";
804  case ARMISD::VQRSHRNu:      return "ARMISD::VQRSHRNu";
805  case ARMISD::VQRSHRNsu:     return "ARMISD::VQRSHRNsu";
806  case ARMISD::VGETLANEu:     return "ARMISD::VGETLANEu";
807  case ARMISD::VGETLANEs:     return "ARMISD::VGETLANEs";
808  case ARMISD::VMOVIMM:       return "ARMISD::VMOVIMM";
809  case ARMISD::VMVNIMM:       return "ARMISD::VMVNIMM";
810  case ARMISD::VDUP:          return "ARMISD::VDUP";
811  case ARMISD::VDUPLANE:      return "ARMISD::VDUPLANE";
812  case ARMISD::VEXT:          return "ARMISD::VEXT";
813  case ARMISD::VREV64:        return "ARMISD::VREV64";
814  case ARMISD::VREV32:        return "ARMISD::VREV32";
815  case ARMISD::VREV16:        return "ARMISD::VREV16";
816  case ARMISD::VZIP:          return "ARMISD::VZIP";
817  case ARMISD::VUZP:          return "ARMISD::VUZP";
818  case ARMISD::VTRN:          return "ARMISD::VTRN";
819  case ARMISD::VMULLs:        return "ARMISD::VMULLs";
820  case ARMISD::VMULLu:        return "ARMISD::VMULLu";
821  case ARMISD::BUILD_VECTOR:  return "ARMISD::BUILD_VECTOR";
822  case ARMISD::FMAX:          return "ARMISD::FMAX";
823  case ARMISD::FMIN:          return "ARMISD::FMIN";
824  case ARMISD::BFI:           return "ARMISD::BFI";
825  case ARMISD::VORRIMM:        return "ARMISD::VORRIMM";
826  }
827}
828
829/// getRegClassFor - Return the register class that should be used for the
830/// specified value type.
831TargetRegisterClass *ARMTargetLowering::getRegClassFor(EVT VT) const {
832  // Map v4i64 to QQ registers but do not make the type legal. Similarly map
833  // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
834  // load / store 4 to 8 consecutive D registers.
835  if (Subtarget->hasNEON()) {
836    if (VT == MVT::v4i64)
837      return ARM::QQPRRegisterClass;
838    else if (VT == MVT::v8i64)
839      return ARM::QQQQPRRegisterClass;
840  }
841  return TargetLowering::getRegClassFor(VT);
842}
843
844// Create a fast isel object.
845FastISel *
846ARMTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
847  return ARM::createFastISel(funcInfo);
848}
849
850/// getFunctionAlignment - Return the Log2 alignment of this function.
851unsigned ARMTargetLowering::getFunctionAlignment(const Function *F) const {
852  return getTargetMachine().getSubtarget<ARMSubtarget>().isThumb() ? 1 : 2;
853}
854
855/// getMaximalGlobalOffset - Returns the maximal possible offset which can
856/// be used for loads / stores from the global.
857unsigned ARMTargetLowering::getMaximalGlobalOffset() const {
858  return (Subtarget->isThumb1Only() ? 127 : 4095);
859}
860
861Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const {
862  unsigned NumVals = N->getNumValues();
863  if (!NumVals)
864    return Sched::RegPressure;
865
866  for (unsigned i = 0; i != NumVals; ++i) {
867    EVT VT = N->getValueType(i);
868    if (VT == MVT::Flag || VT == MVT::Other)
869      continue;
870    if (VT.isFloatingPoint() || VT.isVector())
871      return Sched::Latency;
872  }
873
874  if (!N->isMachineOpcode())
875    return Sched::RegPressure;
876
877  // Load are scheduled for latency even if there instruction itinerary
878  // is not available.
879  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
880  const TargetInstrDesc &TID = TII->get(N->getMachineOpcode());
881
882  if (TID.getNumDefs() == 0)
883    return Sched::RegPressure;
884  if (!Itins->isEmpty() &&
885      Itins->getOperandCycle(TID.getSchedClass(), 0) > 2)
886    return Sched::Latency;
887
888  return Sched::RegPressure;
889}
890
891unsigned
892ARMTargetLowering::getRegPressureLimit(const TargetRegisterClass *RC,
893                                       MachineFunction &MF) const {
894  switch (RC->getID()) {
895  default:
896    return 0;
897  case ARM::tGPRRegClassID:
898    return RegInfo->hasFP(MF) ? 4 : 5;
899  case ARM::GPRRegClassID: {
900    unsigned FP = RegInfo->hasFP(MF) ? 1 : 0;
901    return 10 - FP - (Subtarget->isR9Reserved() ? 1 : 0);
902  }
903  case ARM::SPRRegClassID:  // Currently not used as 'rep' register class.
904  case ARM::DPRRegClassID:
905    return 32 - 10;
906  }
907}
908
909//===----------------------------------------------------------------------===//
910// Lowering Code
911//===----------------------------------------------------------------------===//
912
913/// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
914static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
915  switch (CC) {
916  default: llvm_unreachable("Unknown condition code!");
917  case ISD::SETNE:  return ARMCC::NE;
918  case ISD::SETEQ:  return ARMCC::EQ;
919  case ISD::SETGT:  return ARMCC::GT;
920  case ISD::SETGE:  return ARMCC::GE;
921  case ISD::SETLT:  return ARMCC::LT;
922  case ISD::SETLE:  return ARMCC::LE;
923  case ISD::SETUGT: return ARMCC::HI;
924  case ISD::SETUGE: return ARMCC::HS;
925  case ISD::SETULT: return ARMCC::LO;
926  case ISD::SETULE: return ARMCC::LS;
927  }
928}
929
930/// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
931static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
932                        ARMCC::CondCodes &CondCode2) {
933  CondCode2 = ARMCC::AL;
934  switch (CC) {
935  default: llvm_unreachable("Unknown FP condition!");
936  case ISD::SETEQ:
937  case ISD::SETOEQ: CondCode = ARMCC::EQ; break;
938  case ISD::SETGT:
939  case ISD::SETOGT: CondCode = ARMCC::GT; break;
940  case ISD::SETGE:
941  case ISD::SETOGE: CondCode = ARMCC::GE; break;
942  case ISD::SETOLT: CondCode = ARMCC::MI; break;
943  case ISD::SETOLE: CondCode = ARMCC::LS; break;
944  case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break;
945  case ISD::SETO:   CondCode = ARMCC::VC; break;
946  case ISD::SETUO:  CondCode = ARMCC::VS; break;
947  case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break;
948  case ISD::SETUGT: CondCode = ARMCC::HI; break;
949  case ISD::SETUGE: CondCode = ARMCC::PL; break;
950  case ISD::SETLT:
951  case ISD::SETULT: CondCode = ARMCC::LT; break;
952  case ISD::SETLE:
953  case ISD::SETULE: CondCode = ARMCC::LE; break;
954  case ISD::SETNE:
955  case ISD::SETUNE: CondCode = ARMCC::NE; break;
956  }
957}
958
959//===----------------------------------------------------------------------===//
960//                      Calling Convention Implementation
961//===----------------------------------------------------------------------===//
962
963#include "ARMGenCallingConv.inc"
964
965/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
966/// given CallingConvention value.
967CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC,
968                                                 bool Return,
969                                                 bool isVarArg) const {
970  switch (CC) {
971  default:
972    llvm_unreachable("Unsupported calling convention");
973  case CallingConv::Fast:
974    if (Subtarget->hasVFP2() && !isVarArg) {
975      if (!Subtarget->isAAPCS_ABI())
976        return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
977      // For AAPCS ABI targets, just use VFP variant of the calling convention.
978      return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
979    }
980    // Fallthrough
981  case CallingConv::C: {
982    // Use target triple & subtarget features to do actual dispatch.
983    if (!Subtarget->isAAPCS_ABI())
984      return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
985    else if (Subtarget->hasVFP2() &&
986             FloatABIType == FloatABI::Hard && !isVarArg)
987      return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
988    return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
989  }
990  case CallingConv::ARM_AAPCS_VFP:
991    return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
992  case CallingConv::ARM_AAPCS:
993    return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
994  case CallingConv::ARM_APCS:
995    return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
996  }
997}
998
999/// LowerCallResult - Lower the result values of a call into the
1000/// appropriate copies out of appropriate physical registers.
1001SDValue
1002ARMTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1003                                   CallingConv::ID CallConv, bool isVarArg,
1004                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1005                                   DebugLoc dl, SelectionDAG &DAG,
1006                                   SmallVectorImpl<SDValue> &InVals) const {
1007
1008  // Assign locations to each value returned by this call.
1009  SmallVector<CCValAssign, 16> RVLocs;
1010  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1011                 RVLocs, *DAG.getContext());
1012  CCInfo.AnalyzeCallResult(Ins,
1013                           CCAssignFnForNode(CallConv, /* Return*/ true,
1014                                             isVarArg));
1015
1016  // Copy all of the result registers out of their specified physreg.
1017  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1018    CCValAssign VA = RVLocs[i];
1019
1020    SDValue Val;
1021    if (VA.needsCustom()) {
1022      // Handle f64 or half of a v2f64.
1023      SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1024                                      InFlag);
1025      Chain = Lo.getValue(1);
1026      InFlag = Lo.getValue(2);
1027      VA = RVLocs[++i]; // skip ahead to next loc
1028      SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1029                                      InFlag);
1030      Chain = Hi.getValue(1);
1031      InFlag = Hi.getValue(2);
1032      Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1033
1034      if (VA.getLocVT() == MVT::v2f64) {
1035        SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
1036        Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1037                          DAG.getConstant(0, MVT::i32));
1038
1039        VA = RVLocs[++i]; // skip ahead to next loc
1040        Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1041        Chain = Lo.getValue(1);
1042        InFlag = Lo.getValue(2);
1043        VA = RVLocs[++i]; // skip ahead to next loc
1044        Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1045        Chain = Hi.getValue(1);
1046        InFlag = Hi.getValue(2);
1047        Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1048        Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1049                          DAG.getConstant(1, MVT::i32));
1050      }
1051    } else {
1052      Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
1053                               InFlag);
1054      Chain = Val.getValue(1);
1055      InFlag = Val.getValue(2);
1056    }
1057
1058    switch (VA.getLocInfo()) {
1059    default: llvm_unreachable("Unknown loc info!");
1060    case CCValAssign::Full: break;
1061    case CCValAssign::BCvt:
1062      Val = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), Val);
1063      break;
1064    }
1065
1066    InVals.push_back(Val);
1067  }
1068
1069  return Chain;
1070}
1071
1072/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1073/// by "Src" to address "Dst" of size "Size".  Alignment information is
1074/// specified by the specific parameter attribute.  The copy will be passed as
1075/// a byval function parameter.
1076/// Sometimes what we are copying is the end of a larger object, the part that
1077/// does not fit in registers.
1078static SDValue
1079CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1080                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1081                          DebugLoc dl) {
1082  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1083  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1084                       /*isVolatile=*/false, /*AlwaysInline=*/false,
1085                       MachinePointerInfo(0), MachinePointerInfo(0));
1086}
1087
1088/// LowerMemOpCallTo - Store the argument to the stack.
1089SDValue
1090ARMTargetLowering::LowerMemOpCallTo(SDValue Chain,
1091                                    SDValue StackPtr, SDValue Arg,
1092                                    DebugLoc dl, SelectionDAG &DAG,
1093                                    const CCValAssign &VA,
1094                                    ISD::ArgFlagsTy Flags) const {
1095  unsigned LocMemOffset = VA.getLocMemOffset();
1096  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1097  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1098  if (Flags.isByVal())
1099    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
1100
1101  return DAG.getStore(Chain, dl, Arg, PtrOff,
1102                      MachinePointerInfo::getStack(LocMemOffset),
1103                      false, false, 0);
1104}
1105
1106void ARMTargetLowering::PassF64ArgInRegs(DebugLoc dl, SelectionDAG &DAG,
1107                                         SDValue Chain, SDValue &Arg,
1108                                         RegsToPassVector &RegsToPass,
1109                                         CCValAssign &VA, CCValAssign &NextVA,
1110                                         SDValue &StackPtr,
1111                                         SmallVector<SDValue, 8> &MemOpChains,
1112                                         ISD::ArgFlagsTy Flags) const {
1113
1114  SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
1115                              DAG.getVTList(MVT::i32, MVT::i32), Arg);
1116  RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd));
1117
1118  if (NextVA.isRegLoc())
1119    RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1)));
1120  else {
1121    assert(NextVA.isMemLoc());
1122    if (StackPtr.getNode() == 0)
1123      StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
1124
1125    MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1),
1126                                           dl, DAG, NextVA,
1127                                           Flags));
1128  }
1129}
1130
1131/// LowerCall - Lowering a call into a callseq_start <-
1132/// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
1133/// nodes.
1134SDValue
1135ARMTargetLowering::LowerCall(SDValue Chain, SDValue Callee,
1136                             CallingConv::ID CallConv, bool isVarArg,
1137                             bool &isTailCall,
1138                             const SmallVectorImpl<ISD::OutputArg> &Outs,
1139                             const SmallVectorImpl<SDValue> &OutVals,
1140                             const SmallVectorImpl<ISD::InputArg> &Ins,
1141                             DebugLoc dl, SelectionDAG &DAG,
1142                             SmallVectorImpl<SDValue> &InVals) const {
1143  MachineFunction &MF = DAG.getMachineFunction();
1144  bool IsStructRet    = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
1145  bool IsSibCall = false;
1146  // Temporarily disable tail calls so things don't break.
1147  if (!EnableARMTailCalls)
1148    isTailCall = false;
1149  if (isTailCall) {
1150    // Check if it's really possible to do a tail call.
1151    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1152                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
1153                                                   Outs, OutVals, Ins, DAG);
1154    // We don't support GuaranteedTailCallOpt for ARM, only automatically
1155    // detected sibcalls.
1156    if (isTailCall) {
1157      ++NumTailCalls;
1158      IsSibCall = true;
1159    }
1160  }
1161
1162  // Analyze operands of the call, assigning locations to each operand.
1163  SmallVector<CCValAssign, 16> ArgLocs;
1164  CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs,
1165                 *DAG.getContext());
1166  CCInfo.AnalyzeCallOperands(Outs,
1167                             CCAssignFnForNode(CallConv, /* Return*/ false,
1168                                               isVarArg));
1169
1170  // Get a count of how many bytes are to be pushed on the stack.
1171  unsigned NumBytes = CCInfo.getNextStackOffset();
1172
1173  // For tail calls, memory operands are available in our caller's stack.
1174  if (IsSibCall)
1175    NumBytes = 0;
1176
1177  // Adjust the stack pointer for the new arguments...
1178  // These operations are automatically eliminated by the prolog/epilog pass
1179  if (!IsSibCall)
1180    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
1181
1182  SDValue StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
1183
1184  RegsToPassVector RegsToPass;
1185  SmallVector<SDValue, 8> MemOpChains;
1186
1187  // Walk the register/memloc assignments, inserting copies/loads.  In the case
1188  // of tail call optimization, arguments are handled later.
1189  for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
1190       i != e;
1191       ++i, ++realArgIdx) {
1192    CCValAssign &VA = ArgLocs[i];
1193    SDValue Arg = OutVals[realArgIdx];
1194    ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
1195
1196    // Promote the value if needed.
1197    switch (VA.getLocInfo()) {
1198    default: llvm_unreachable("Unknown loc info!");
1199    case CCValAssign::Full: break;
1200    case CCValAssign::SExt:
1201      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
1202      break;
1203    case CCValAssign::ZExt:
1204      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
1205      break;
1206    case CCValAssign::AExt:
1207      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
1208      break;
1209    case CCValAssign::BCvt:
1210      Arg = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getLocVT(), Arg);
1211      break;
1212    }
1213
1214    // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
1215    if (VA.needsCustom()) {
1216      if (VA.getLocVT() == MVT::v2f64) {
1217        SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1218                                  DAG.getConstant(0, MVT::i32));
1219        SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1220                                  DAG.getConstant(1, MVT::i32));
1221
1222        PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass,
1223                         VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1224
1225        VA = ArgLocs[++i]; // skip ahead to next loc
1226        if (VA.isRegLoc()) {
1227          PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass,
1228                           VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1229        } else {
1230          assert(VA.isMemLoc());
1231
1232          MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Op1,
1233                                                 dl, DAG, VA, Flags));
1234        }
1235      } else {
1236        PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
1237                         StackPtr, MemOpChains, Flags);
1238      }
1239    } else if (VA.isRegLoc()) {
1240      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1241    } else if (!IsSibCall) {
1242      assert(VA.isMemLoc());
1243
1244      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
1245                                             dl, DAG, VA, Flags));
1246    }
1247  }
1248
1249  if (!MemOpChains.empty())
1250    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1251                        &MemOpChains[0], MemOpChains.size());
1252
1253  // Build a sequence of copy-to-reg nodes chained together with token chain
1254  // and flag operands which copy the outgoing args into the appropriate regs.
1255  SDValue InFlag;
1256  // Tail call byval lowering might overwrite argument registers so in case of
1257  // tail call optimization the copies to registers are lowered later.
1258  if (!isTailCall)
1259    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1260      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1261                               RegsToPass[i].second, InFlag);
1262      InFlag = Chain.getValue(1);
1263    }
1264
1265  // For tail calls lower the arguments to the 'real' stack slot.
1266  if (isTailCall) {
1267    // Force all the incoming stack arguments to be loaded from the stack
1268    // before any new outgoing arguments are stored to the stack, because the
1269    // outgoing stack slots may alias the incoming argument stack slots, and
1270    // the alias isn't otherwise explicit. This is slightly more conservative
1271    // than necessary, because it means that each store effectively depends
1272    // on every argument instead of just those arguments it would clobber.
1273
1274    // Do not flag preceeding copytoreg stuff together with the following stuff.
1275    InFlag = SDValue();
1276    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1277      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1278                               RegsToPass[i].second, InFlag);
1279      InFlag = Chain.getValue(1);
1280    }
1281    InFlag =SDValue();
1282  }
1283
1284  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
1285  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
1286  // node so that legalize doesn't hack it.
1287  bool isDirect = false;
1288  bool isARMFunc = false;
1289  bool isLocalARMFunc = false;
1290  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1291
1292  if (EnableARMLongCalls) {
1293    assert (getTargetMachine().getRelocationModel() == Reloc::Static
1294            && "long-calls with non-static relocation model!");
1295    // Handle a global address or an external symbol. If it's not one of
1296    // those, the target's already in a register, so we don't need to do
1297    // anything extra.
1298    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1299      const GlobalValue *GV = G->getGlobal();
1300      // Create a constant pool entry for the callee address
1301      unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1302      ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV,
1303                                                           ARMPCLabelIndex,
1304                                                           ARMCP::CPValue, 0);
1305      // Get the address of the callee into a register
1306      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1307      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1308      Callee = DAG.getLoad(getPointerTy(), dl,
1309                           DAG.getEntryNode(), CPAddr,
1310                           MachinePointerInfo::getConstantPool(),
1311                           false, false, 0);
1312    } else if (ExternalSymbolSDNode *S=dyn_cast<ExternalSymbolSDNode>(Callee)) {
1313      const char *Sym = S->getSymbol();
1314
1315      // Create a constant pool entry for the callee address
1316      unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1317      ARMConstantPoolValue *CPV = new ARMConstantPoolValue(*DAG.getContext(),
1318                                                       Sym, ARMPCLabelIndex, 0);
1319      // Get the address of the callee into a register
1320      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1321      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1322      Callee = DAG.getLoad(getPointerTy(), dl,
1323                           DAG.getEntryNode(), CPAddr,
1324                           MachinePointerInfo::getConstantPool(),
1325                           false, false, 0);
1326    }
1327  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1328    const GlobalValue *GV = G->getGlobal();
1329    isDirect = true;
1330    bool isExt = GV->isDeclaration() || GV->isWeakForLinker();
1331    bool isStub = (isExt && Subtarget->isTargetDarwin()) &&
1332                   getTargetMachine().getRelocationModel() != Reloc::Static;
1333    isARMFunc = !Subtarget->isThumb() || isStub;
1334    // ARM call to a local ARM function is predicable.
1335    isLocalARMFunc = !Subtarget->isThumb() && (!isExt || !ARMInterworking);
1336    // tBX takes a register source operand.
1337    if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
1338      unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1339      ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV,
1340                                                           ARMPCLabelIndex,
1341                                                           ARMCP::CPValue, 4);
1342      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1343      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1344      Callee = DAG.getLoad(getPointerTy(), dl,
1345                           DAG.getEntryNode(), CPAddr,
1346                           MachinePointerInfo::getConstantPool(),
1347                           false, false, 0);
1348      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1349      Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
1350                           getPointerTy(), Callee, PICLabel);
1351    } else {
1352      // On ELF targets for PIC code, direct calls should go through the PLT
1353      unsigned OpFlags = 0;
1354      if (Subtarget->isTargetELF() &&
1355                  getTargetMachine().getRelocationModel() == Reloc::PIC_)
1356        OpFlags = ARMII::MO_PLT;
1357      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
1358    }
1359  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1360    isDirect = true;
1361    bool isStub = Subtarget->isTargetDarwin() &&
1362                  getTargetMachine().getRelocationModel() != Reloc::Static;
1363    isARMFunc = !Subtarget->isThumb() || isStub;
1364    // tBX takes a register source operand.
1365    const char *Sym = S->getSymbol();
1366    if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
1367      unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1368      ARMConstantPoolValue *CPV = new ARMConstantPoolValue(*DAG.getContext(),
1369                                                       Sym, ARMPCLabelIndex, 4);
1370      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1371      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1372      Callee = DAG.getLoad(getPointerTy(), dl,
1373                           DAG.getEntryNode(), CPAddr,
1374                           MachinePointerInfo::getConstantPool(),
1375                           false, false, 0);
1376      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1377      Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
1378                           getPointerTy(), Callee, PICLabel);
1379    } else {
1380      unsigned OpFlags = 0;
1381      // On ELF targets for PIC code, direct calls should go through the PLT
1382      if (Subtarget->isTargetELF() &&
1383                  getTargetMachine().getRelocationModel() == Reloc::PIC_)
1384        OpFlags = ARMII::MO_PLT;
1385      Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlags);
1386    }
1387  }
1388
1389  // FIXME: handle tail calls differently.
1390  unsigned CallOpc;
1391  if (Subtarget->isThumb()) {
1392    if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps())
1393      CallOpc = ARMISD::CALL_NOLINK;
1394    else
1395      CallOpc = isARMFunc ? ARMISD::CALL : ARMISD::tCALL;
1396  } else {
1397    CallOpc = (isDirect || Subtarget->hasV5TOps())
1398      ? (isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL)
1399      : ARMISD::CALL_NOLINK;
1400  }
1401
1402  std::vector<SDValue> Ops;
1403  Ops.push_back(Chain);
1404  Ops.push_back(Callee);
1405
1406  // Add argument registers to the end of the list so that they are known live
1407  // into the call.
1408  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1409    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1410                                  RegsToPass[i].second.getValueType()));
1411
1412  if (InFlag.getNode())
1413    Ops.push_back(InFlag);
1414
1415  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1416  if (isTailCall)
1417    return DAG.getNode(ARMISD::TC_RETURN, dl, NodeTys, &Ops[0], Ops.size());
1418
1419  // Returns a chain and a flag for retval copy to use.
1420  Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size());
1421  InFlag = Chain.getValue(1);
1422
1423  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
1424                             DAG.getIntPtrConstant(0, true), InFlag);
1425  if (!Ins.empty())
1426    InFlag = Chain.getValue(1);
1427
1428  // Handle result values, copying them out of physregs into vregs that we
1429  // return.
1430  return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins,
1431                         dl, DAG, InVals);
1432}
1433
1434/// MatchingStackOffset - Return true if the given stack call argument is
1435/// already available in the same position (relatively) of the caller's
1436/// incoming argument stack.
1437static
1438bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
1439                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
1440                         const ARMInstrInfo *TII) {
1441  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
1442  int FI = INT_MAX;
1443  if (Arg.getOpcode() == ISD::CopyFromReg) {
1444    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
1445    if (!VR || TargetRegisterInfo::isPhysicalRegister(VR))
1446      return false;
1447    MachineInstr *Def = MRI->getVRegDef(VR);
1448    if (!Def)
1449      return false;
1450    if (!Flags.isByVal()) {
1451      if (!TII->isLoadFromStackSlot(Def, FI))
1452        return false;
1453    } else {
1454      return false;
1455    }
1456  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
1457    if (Flags.isByVal())
1458      // ByVal argument is passed in as a pointer but it's now being
1459      // dereferenced. e.g.
1460      // define @foo(%struct.X* %A) {
1461      //   tail call @bar(%struct.X* byval %A)
1462      // }
1463      return false;
1464    SDValue Ptr = Ld->getBasePtr();
1465    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
1466    if (!FINode)
1467      return false;
1468    FI = FINode->getIndex();
1469  } else
1470    return false;
1471
1472  assert(FI != INT_MAX);
1473  if (!MFI->isFixedObjectIndex(FI))
1474    return false;
1475  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
1476}
1477
1478/// IsEligibleForTailCallOptimization - Check whether the call is eligible
1479/// for tail call optimization. Targets which want to do tail call
1480/// optimization should implement this function.
1481bool
1482ARMTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
1483                                                     CallingConv::ID CalleeCC,
1484                                                     bool isVarArg,
1485                                                     bool isCalleeStructRet,
1486                                                     bool isCallerStructRet,
1487                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
1488                                    const SmallVectorImpl<SDValue> &OutVals,
1489                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1490                                                     SelectionDAG& DAG) const {
1491  const Function *CallerF = DAG.getMachineFunction().getFunction();
1492  CallingConv::ID CallerCC = CallerF->getCallingConv();
1493  bool CCMatch = CallerCC == CalleeCC;
1494
1495  // Look for obvious safe cases to perform tail call optimization that do not
1496  // require ABI changes. This is what gcc calls sibcall.
1497
1498  // Do not sibcall optimize vararg calls unless the call site is not passing
1499  // any arguments.
1500  if (isVarArg && !Outs.empty())
1501    return false;
1502
1503  // Also avoid sibcall optimization if either caller or callee uses struct
1504  // return semantics.
1505  if (isCalleeStructRet || isCallerStructRet)
1506    return false;
1507
1508  // FIXME: Completely disable sibcall for Thumb1 since Thumb1RegisterInfo::
1509  // emitEpilogue is not ready for them.
1510  // Doing this is tricky, since the LDM/POP instruction on Thumb doesn't take
1511  // LR.  This means if we need to reload LR, it takes an extra instructions,
1512  // which outweighs the value of the tail call; but here we don't know yet
1513  // whether LR is going to be used.  Probably the right approach is to
1514  // generate the tail call here and turn it back into CALL/RET in
1515  // emitEpilogue if LR is used.
1516  if (Subtarget->isThumb1Only())
1517    return false;
1518
1519  // For the moment, we can only do this to functions defined in this
1520  // compilation, or to indirect calls.  A Thumb B to an ARM function,
1521  // or vice versa, is not easily fixed up in the linker unlike BL.
1522  // (We could do this by loading the address of the callee into a register;
1523  // that is an extra instruction over the direct call and burns a register
1524  // as well, so is not likely to be a win.)
1525
1526  // It might be safe to remove this restriction on non-Darwin.
1527
1528  // Thumb1 PIC calls to external symbols use BX, so they can be tail calls,
1529  // but we need to make sure there are enough registers; the only valid
1530  // registers are the 4 used for parameters.  We don't currently do this
1531  // case.
1532  if (isa<ExternalSymbolSDNode>(Callee))
1533      return false;
1534
1535  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1536    const GlobalValue *GV = G->getGlobal();
1537    if (GV->isDeclaration() || GV->isWeakForLinker())
1538      return false;
1539  }
1540
1541  // If the calling conventions do not match, then we'd better make sure the
1542  // results are returned in the same way as what the caller expects.
1543  if (!CCMatch) {
1544    SmallVector<CCValAssign, 16> RVLocs1;
1545    CCState CCInfo1(CalleeCC, false, getTargetMachine(),
1546                    RVLocs1, *DAG.getContext());
1547    CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForNode(CalleeCC, true, isVarArg));
1548
1549    SmallVector<CCValAssign, 16> RVLocs2;
1550    CCState CCInfo2(CallerCC, false, getTargetMachine(),
1551                    RVLocs2, *DAG.getContext());
1552    CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForNode(CallerCC, true, isVarArg));
1553
1554    if (RVLocs1.size() != RVLocs2.size())
1555      return false;
1556    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
1557      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
1558        return false;
1559      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
1560        return false;
1561      if (RVLocs1[i].isRegLoc()) {
1562        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
1563          return false;
1564      } else {
1565        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
1566          return false;
1567      }
1568    }
1569  }
1570
1571  // If the callee takes no arguments then go on to check the results of the
1572  // call.
1573  if (!Outs.empty()) {
1574    // Check if stack adjustment is needed. For now, do not do this if any
1575    // argument is passed on the stack.
1576    SmallVector<CCValAssign, 16> ArgLocs;
1577    CCState CCInfo(CalleeCC, isVarArg, getTargetMachine(),
1578                   ArgLocs, *DAG.getContext());
1579    CCInfo.AnalyzeCallOperands(Outs,
1580                               CCAssignFnForNode(CalleeCC, false, isVarArg));
1581    if (CCInfo.getNextStackOffset()) {
1582      MachineFunction &MF = DAG.getMachineFunction();
1583
1584      // Check if the arguments are already laid out in the right way as
1585      // the caller's fixed stack objects.
1586      MachineFrameInfo *MFI = MF.getFrameInfo();
1587      const MachineRegisterInfo *MRI = &MF.getRegInfo();
1588      const ARMInstrInfo *TII =
1589        ((ARMTargetMachine&)getTargetMachine()).getInstrInfo();
1590      for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
1591           i != e;
1592           ++i, ++realArgIdx) {
1593        CCValAssign &VA = ArgLocs[i];
1594        EVT RegVT = VA.getLocVT();
1595        SDValue Arg = OutVals[realArgIdx];
1596        ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
1597        if (VA.getLocInfo() == CCValAssign::Indirect)
1598          return false;
1599        if (VA.needsCustom()) {
1600          // f64 and vector types are split into multiple registers or
1601          // register/stack-slot combinations.  The types will not match
1602          // the registers; give up on memory f64 refs until we figure
1603          // out what to do about this.
1604          if (!VA.isRegLoc())
1605            return false;
1606          if (!ArgLocs[++i].isRegLoc())
1607            return false;
1608          if (RegVT == MVT::v2f64) {
1609            if (!ArgLocs[++i].isRegLoc())
1610              return false;
1611            if (!ArgLocs[++i].isRegLoc())
1612              return false;
1613          }
1614        } else if (!VA.isRegLoc()) {
1615          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
1616                                   MFI, MRI, TII))
1617            return false;
1618        }
1619      }
1620    }
1621  }
1622
1623  return true;
1624}
1625
1626SDValue
1627ARMTargetLowering::LowerReturn(SDValue Chain,
1628                               CallingConv::ID CallConv, bool isVarArg,
1629                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1630                               const SmallVectorImpl<SDValue> &OutVals,
1631                               DebugLoc dl, SelectionDAG &DAG) const {
1632
1633  // CCValAssign - represent the assignment of the return value to a location.
1634  SmallVector<CCValAssign, 16> RVLocs;
1635
1636  // CCState - Info about the registers and stack slots.
1637  CCState CCInfo(CallConv, isVarArg, getTargetMachine(), RVLocs,
1638                 *DAG.getContext());
1639
1640  // Analyze outgoing return values.
1641  CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv, /* Return */ true,
1642                                               isVarArg));
1643
1644  // If this is the first return lowered for this function, add
1645  // the regs to the liveout set for the function.
1646  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
1647    for (unsigned i = 0; i != RVLocs.size(); ++i)
1648      if (RVLocs[i].isRegLoc())
1649        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
1650  }
1651
1652  SDValue Flag;
1653
1654  // Copy the result values into the output registers.
1655  for (unsigned i = 0, realRVLocIdx = 0;
1656       i != RVLocs.size();
1657       ++i, ++realRVLocIdx) {
1658    CCValAssign &VA = RVLocs[i];
1659    assert(VA.isRegLoc() && "Can only return in registers!");
1660
1661    SDValue Arg = OutVals[realRVLocIdx];
1662
1663    switch (VA.getLocInfo()) {
1664    default: llvm_unreachable("Unknown loc info!");
1665    case CCValAssign::Full: break;
1666    case CCValAssign::BCvt:
1667      Arg = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getLocVT(), Arg);
1668      break;
1669    }
1670
1671    if (VA.needsCustom()) {
1672      if (VA.getLocVT() == MVT::v2f64) {
1673        // Extract the first half and return it in two registers.
1674        SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1675                                   DAG.getConstant(0, MVT::i32));
1676        SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl,
1677                                       DAG.getVTList(MVT::i32, MVT::i32), Half);
1678
1679        Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), HalfGPRs, Flag);
1680        Flag = Chain.getValue(1);
1681        VA = RVLocs[++i]; // skip ahead to next loc
1682        Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
1683                                 HalfGPRs.getValue(1), Flag);
1684        Flag = Chain.getValue(1);
1685        VA = RVLocs[++i]; // skip ahead to next loc
1686
1687        // Extract the 2nd half and fall through to handle it as an f64 value.
1688        Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1689                          DAG.getConstant(1, MVT::i32));
1690      }
1691      // Legalize ret f64 -> ret 2 x i32.  We always have fmrrd if f64 is
1692      // available.
1693      SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
1694                                  DAG.getVTList(MVT::i32, MVT::i32), &Arg, 1);
1695      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd, Flag);
1696      Flag = Chain.getValue(1);
1697      VA = RVLocs[++i]; // skip ahead to next loc
1698      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd.getValue(1),
1699                               Flag);
1700    } else
1701      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
1702
1703    // Guarantee that all emitted copies are
1704    // stuck together, avoiding something bad.
1705    Flag = Chain.getValue(1);
1706  }
1707
1708  SDValue result;
1709  if (Flag.getNode())
1710    result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain, Flag);
1711  else // Return Void
1712    result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain);
1713
1714  return result;
1715}
1716
1717// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
1718// their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
1719// one of the above mentioned nodes. It has to be wrapped because otherwise
1720// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
1721// be used to form addressing mode. These wrapped nodes will be selected
1722// into MOVi.
1723static SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
1724  EVT PtrVT = Op.getValueType();
1725  // FIXME there is no actual debug info here
1726  DebugLoc dl = Op.getDebugLoc();
1727  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1728  SDValue Res;
1729  if (CP->isMachineConstantPoolEntry())
1730    Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
1731                                    CP->getAlignment());
1732  else
1733    Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
1734                                    CP->getAlignment());
1735  return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
1736}
1737
1738unsigned ARMTargetLowering::getJumpTableEncoding() const {
1739  return MachineJumpTableInfo::EK_Inline;
1740}
1741
1742SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op,
1743                                             SelectionDAG &DAG) const {
1744  MachineFunction &MF = DAG.getMachineFunction();
1745  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1746  unsigned ARMPCLabelIndex = 0;
1747  DebugLoc DL = Op.getDebugLoc();
1748  EVT PtrVT = getPointerTy();
1749  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1750  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
1751  SDValue CPAddr;
1752  if (RelocM == Reloc::Static) {
1753    CPAddr = DAG.getTargetConstantPool(BA, PtrVT, 4);
1754  } else {
1755    unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
1756    ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1757    ARMConstantPoolValue *CPV = new ARMConstantPoolValue(BA, ARMPCLabelIndex,
1758                                                         ARMCP::CPBlockAddress,
1759                                                         PCAdj);
1760    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1761  }
1762  CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr);
1763  SDValue Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), CPAddr,
1764                               MachinePointerInfo::getConstantPool(),
1765                               false, false, 0);
1766  if (RelocM == Reloc::Static)
1767    return Result;
1768  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1769  return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel);
1770}
1771
1772// Lower ISD::GlobalTLSAddress using the "general dynamic" model
1773SDValue
1774ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
1775                                                 SelectionDAG &DAG) const {
1776  DebugLoc dl = GA->getDebugLoc();
1777  EVT PtrVT = getPointerTy();
1778  unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
1779  MachineFunction &MF = DAG.getMachineFunction();
1780  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1781  unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1782  ARMConstantPoolValue *CPV =
1783    new ARMConstantPoolValue(GA->getGlobal(), ARMPCLabelIndex,
1784                             ARMCP::CPValue, PCAdj, "tlsgd", true);
1785  SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1786  Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
1787  Argument = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Argument,
1788                         MachinePointerInfo::getConstantPool(),
1789                         false, false, 0);
1790  SDValue Chain = Argument.getValue(1);
1791
1792  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1793  Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);
1794
1795  // call __tls_get_addr.
1796  ArgListTy Args;
1797  ArgListEntry Entry;
1798  Entry.Node = Argument;
1799  Entry.Ty = (const Type *) Type::getInt32Ty(*DAG.getContext());
1800  Args.push_back(Entry);
1801  // FIXME: is there useful debug info available here?
1802  std::pair<SDValue, SDValue> CallResult =
1803    LowerCallTo(Chain, (const Type *) Type::getInt32Ty(*DAG.getContext()),
1804                false, false, false, false,
1805                0, CallingConv::C, false, /*isReturnValueUsed=*/true,
1806                DAG.getExternalSymbol("__tls_get_addr", PtrVT), Args, DAG, dl);
1807  return CallResult.first;
1808}
1809
1810// Lower ISD::GlobalTLSAddress using the "initial exec" or
1811// "local exec" model.
1812SDValue
1813ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
1814                                        SelectionDAG &DAG) const {
1815  const GlobalValue *GV = GA->getGlobal();
1816  DebugLoc dl = GA->getDebugLoc();
1817  SDValue Offset;
1818  SDValue Chain = DAG.getEntryNode();
1819  EVT PtrVT = getPointerTy();
1820  // Get the Thread Pointer
1821  SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
1822
1823  if (GV->isDeclaration()) {
1824    MachineFunction &MF = DAG.getMachineFunction();
1825    ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1826    unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1827    // Initial exec model.
1828    unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
1829    ARMConstantPoolValue *CPV =
1830      new ARMConstantPoolValue(GA->getGlobal(), ARMPCLabelIndex,
1831                               ARMCP::CPValue, PCAdj, "gottpoff", true);
1832    Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1833    Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
1834    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
1835                         MachinePointerInfo::getConstantPool(),
1836                         false, false, 0);
1837    Chain = Offset.getValue(1);
1838
1839    SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1840    Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
1841
1842    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
1843                         MachinePointerInfo::getConstantPool(),
1844                         false, false, 0);
1845  } else {
1846    // local exec model
1847    ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV, "tpoff");
1848    Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1849    Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
1850    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
1851                         MachinePointerInfo::getConstantPool(),
1852                         false, false, 0);
1853  }
1854
1855  // The address of the thread local variable is the add of the thread
1856  // pointer with the offset of the variable.
1857  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
1858}
1859
1860SDValue
1861ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
1862  // TODO: implement the "local dynamic" model
1863  assert(Subtarget->isTargetELF() &&
1864         "TLS not implemented for non-ELF targets");
1865  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
1866  // If the relocation model is PIC, use the "General Dynamic" TLS Model,
1867  // otherwise use the "Local Exec" TLS Model
1868  if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
1869    return LowerToTLSGeneralDynamicModel(GA, DAG);
1870  else
1871    return LowerToTLSExecModels(GA, DAG);
1872}
1873
1874SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
1875                                                 SelectionDAG &DAG) const {
1876  EVT PtrVT = getPointerTy();
1877  DebugLoc dl = Op.getDebugLoc();
1878  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
1879  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
1880  if (RelocM == Reloc::PIC_) {
1881    bool UseGOTOFF = GV->hasLocalLinkage() || GV->hasHiddenVisibility();
1882    ARMConstantPoolValue *CPV =
1883      new ARMConstantPoolValue(GV, UseGOTOFF ? "GOTOFF" : "GOT");
1884    SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1885    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1886    SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
1887                                 CPAddr,
1888                                 MachinePointerInfo::getConstantPool(),
1889                                 false, false, 0);
1890    SDValue Chain = Result.getValue(1);
1891    SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
1892    Result = DAG.getNode(ISD::ADD, dl, PtrVT, Result, GOT);
1893    if (!UseGOTOFF)
1894      Result = DAG.getLoad(PtrVT, dl, Chain, Result,
1895                           MachinePointerInfo::getGOT(), false, false, 0);
1896    return Result;
1897  } else {
1898    // If we have T2 ops, we can materialize the address directly via movt/movw
1899    // pair. This is always cheaper.
1900    if (Subtarget->useMovt()) {
1901      return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
1902                         DAG.getTargetGlobalAddress(GV, dl, PtrVT));
1903    } else {
1904      SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
1905      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1906      return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
1907                         MachinePointerInfo::getConstantPool(),
1908                         false, false, 0);
1909    }
1910  }
1911}
1912
1913SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
1914                                                    SelectionDAG &DAG) const {
1915  MachineFunction &MF = DAG.getMachineFunction();
1916  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1917  unsigned ARMPCLabelIndex = 0;
1918  EVT PtrVT = getPointerTy();
1919  DebugLoc dl = Op.getDebugLoc();
1920  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
1921  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
1922  SDValue CPAddr;
1923  if (RelocM == Reloc::Static)
1924    CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
1925  else {
1926    ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1927    unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : (Subtarget->isThumb()?4:8);
1928    ARMConstantPoolValue *CPV =
1929      new ARMConstantPoolValue(GV, ARMPCLabelIndex, ARMCP::CPValue, PCAdj);
1930    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1931  }
1932  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1933
1934  SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
1935                               MachinePointerInfo::getConstantPool(),
1936                               false, false, 0);
1937  SDValue Chain = Result.getValue(1);
1938
1939  if (RelocM == Reloc::PIC_) {
1940    SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1941    Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
1942  }
1943
1944  if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
1945    Result = DAG.getLoad(PtrVT, dl, Chain, Result, MachinePointerInfo::getGOT(),
1946                         false, false, 0);
1947
1948  return Result;
1949}
1950
1951SDValue ARMTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op,
1952                                                    SelectionDAG &DAG) const {
1953  assert(Subtarget->isTargetELF() &&
1954         "GLOBAL OFFSET TABLE not implemented for non-ELF targets");
1955  MachineFunction &MF = DAG.getMachineFunction();
1956  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1957  unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1958  EVT PtrVT = getPointerTy();
1959  DebugLoc dl = Op.getDebugLoc();
1960  unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
1961  ARMConstantPoolValue *CPV = new ARMConstantPoolValue(*DAG.getContext(),
1962                                                       "_GLOBAL_OFFSET_TABLE_",
1963                                                       ARMPCLabelIndex, PCAdj);
1964  SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1965  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1966  SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
1967                               MachinePointerInfo::getConstantPool(),
1968                               false, false, 0);
1969  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1970  return DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
1971}
1972
1973SDValue
1974ARMTargetLowering::LowerEH_SJLJ_DISPATCHSETUP(SDValue Op, SelectionDAG &DAG)
1975  const {
1976  DebugLoc dl = Op.getDebugLoc();
1977  return DAG.getNode(ARMISD::EH_SJLJ_DISPATCHSETUP, dl, MVT::Other,
1978                     Op.getOperand(0), Op.getOperand(1));
1979}
1980
1981SDValue
1982ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const {
1983  DebugLoc dl = Op.getDebugLoc();
1984  SDValue Val = DAG.getConstant(0, MVT::i32);
1985  return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl, MVT::i32, Op.getOperand(0),
1986                     Op.getOperand(1), Val);
1987}
1988
1989SDValue
1990ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const {
1991  DebugLoc dl = Op.getDebugLoc();
1992  return DAG.getNode(ARMISD::EH_SJLJ_LONGJMP, dl, MVT::Other, Op.getOperand(0),
1993                     Op.getOperand(1), DAG.getConstant(0, MVT::i32));
1994}
1995
1996SDValue
1997ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG,
1998                                          const ARMSubtarget *Subtarget) const {
1999  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2000  DebugLoc dl = Op.getDebugLoc();
2001  switch (IntNo) {
2002  default: return SDValue();    // Don't custom lower most intrinsics.
2003  case Intrinsic::arm_thread_pointer: {
2004    EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2005    return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
2006  }
2007  case Intrinsic::eh_sjlj_lsda: {
2008    MachineFunction &MF = DAG.getMachineFunction();
2009    ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2010    unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
2011    EVT PtrVT = getPointerTy();
2012    DebugLoc dl = Op.getDebugLoc();
2013    Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2014    SDValue CPAddr;
2015    unsigned PCAdj = (RelocM != Reloc::PIC_)
2016      ? 0 : (Subtarget->isThumb() ? 4 : 8);
2017    ARMConstantPoolValue *CPV =
2018      new ARMConstantPoolValue(MF.getFunction(), ARMPCLabelIndex,
2019                               ARMCP::CPLSDA, PCAdj);
2020    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2021    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2022    SDValue Result =
2023      DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2024                  MachinePointerInfo::getConstantPool(),
2025                  false, false, 0);
2026
2027    if (RelocM == Reloc::PIC_) {
2028      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2029      Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2030    }
2031    return Result;
2032  }
2033  }
2034}
2035
2036static SDValue LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG,
2037                               const ARMSubtarget *Subtarget) {
2038  DebugLoc dl = Op.getDebugLoc();
2039  if (!Subtarget->hasDataBarrier()) {
2040    // Some ARMv6 cpus can support data barriers with an mcr instruction.
2041    // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
2042    // here.
2043    assert(Subtarget->hasV6Ops() && !Subtarget->isThumb1Only() &&
2044           "Unexpected ISD::MEMBARRIER encountered. Should be libcall!");
2045    return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
2046                       DAG.getConstant(0, MVT::i32));
2047  }
2048
2049  SDValue Op5 = Op.getOperand(5);
2050  bool isDeviceBarrier = cast<ConstantSDNode>(Op5)->getZExtValue() != 0;
2051  unsigned isLL = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
2052  unsigned isLS = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
2053  bool isOnlyStoreBarrier = (isLL == 0 && isLS == 0);
2054
2055  ARM_MB::MemBOpt DMBOpt;
2056  if (isDeviceBarrier)
2057    DMBOpt = isOnlyStoreBarrier ? ARM_MB::ST : ARM_MB::SY;
2058  else
2059    DMBOpt = isOnlyStoreBarrier ? ARM_MB::ISHST : ARM_MB::ISH;
2060  return DAG.getNode(ARMISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0),
2061                     DAG.getConstant(DMBOpt, MVT::i32));
2062}
2063
2064static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG,
2065                             const ARMSubtarget *Subtarget) {
2066  // ARM pre v5TE and Thumb1 does not have preload instructions.
2067  if (!(Subtarget->isThumb2() ||
2068        (!Subtarget->isThumb1Only() && Subtarget->hasV5TEOps())))
2069    // Just preserve the chain.
2070    return Op.getOperand(0);
2071
2072  DebugLoc dl = Op.getDebugLoc();
2073  unsigned isRead = ~cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() & 1;
2074  if (!isRead &&
2075      (!Subtarget->hasV7Ops() || !Subtarget->hasMPExtension()))
2076    // ARMv7 with MP extension has PLDW.
2077    return Op.getOperand(0);
2078
2079  if (Subtarget->isThumb())
2080    // Invert the bits.
2081    isRead = ~isRead & 1;
2082  unsigned isData = Subtarget->isThumb() ? 0 : 1;
2083
2084  // Currently there is no intrinsic that matches pli.
2085  return DAG.getNode(ARMISD::PRELOAD, dl, MVT::Other, Op.getOperand(0),
2086                     Op.getOperand(1), DAG.getConstant(isRead, MVT::i32),
2087                     DAG.getConstant(isData, MVT::i32));
2088}
2089
2090static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) {
2091  MachineFunction &MF = DAG.getMachineFunction();
2092  ARMFunctionInfo *FuncInfo = MF.getInfo<ARMFunctionInfo>();
2093
2094  // vastart just stores the address of the VarArgsFrameIndex slot into the
2095  // memory location argument.
2096  DebugLoc dl = Op.getDebugLoc();
2097  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2098  SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2099  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2100  return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
2101                      MachinePointerInfo(SV), false, false, 0);
2102}
2103
2104SDValue
2105ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA, CCValAssign &NextVA,
2106                                        SDValue &Root, SelectionDAG &DAG,
2107                                        DebugLoc dl) const {
2108  MachineFunction &MF = DAG.getMachineFunction();
2109  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2110
2111  TargetRegisterClass *RC;
2112  if (AFI->isThumb1OnlyFunction())
2113    RC = ARM::tGPRRegisterClass;
2114  else
2115    RC = ARM::GPRRegisterClass;
2116
2117  // Transform the arguments stored in physical registers into virtual ones.
2118  unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2119  SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
2120
2121  SDValue ArgValue2;
2122  if (NextVA.isMemLoc()) {
2123    MachineFrameInfo *MFI = MF.getFrameInfo();
2124    int FI = MFI->CreateFixedObject(4, NextVA.getLocMemOffset(), true);
2125
2126    // Create load node to retrieve arguments from the stack.
2127    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2128    ArgValue2 = DAG.getLoad(MVT::i32, dl, Root, FIN,
2129                            MachinePointerInfo::getFixedStack(FI),
2130                            false, false, 0);
2131  } else {
2132    Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
2133    ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
2134  }
2135
2136  return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2);
2137}
2138
2139SDValue
2140ARMTargetLowering::LowerFormalArguments(SDValue Chain,
2141                                        CallingConv::ID CallConv, bool isVarArg,
2142                                        const SmallVectorImpl<ISD::InputArg>
2143                                          &Ins,
2144                                        DebugLoc dl, SelectionDAG &DAG,
2145                                        SmallVectorImpl<SDValue> &InVals)
2146                                          const {
2147
2148  MachineFunction &MF = DAG.getMachineFunction();
2149  MachineFrameInfo *MFI = MF.getFrameInfo();
2150
2151  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2152
2153  // Assign locations to all of the incoming arguments.
2154  SmallVector<CCValAssign, 16> ArgLocs;
2155  CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs,
2156                 *DAG.getContext());
2157  CCInfo.AnalyzeFormalArguments(Ins,
2158                                CCAssignFnForNode(CallConv, /* Return*/ false,
2159                                                  isVarArg));
2160
2161  SmallVector<SDValue, 16> ArgValues;
2162
2163  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2164    CCValAssign &VA = ArgLocs[i];
2165
2166    // Arguments stored in registers.
2167    if (VA.isRegLoc()) {
2168      EVT RegVT = VA.getLocVT();
2169
2170      SDValue ArgValue;
2171      if (VA.needsCustom()) {
2172        // f64 and vector types are split up into multiple registers or
2173        // combinations of registers and stack slots.
2174        if (VA.getLocVT() == MVT::v2f64) {
2175          SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i],
2176                                                   Chain, DAG, dl);
2177          VA = ArgLocs[++i]; // skip ahead to next loc
2178          SDValue ArgValue2;
2179          if (VA.isMemLoc()) {
2180            int FI = MFI->CreateFixedObject(8, VA.getLocMemOffset(), true);
2181            SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2182            ArgValue2 = DAG.getLoad(MVT::f64, dl, Chain, FIN,
2183                                    MachinePointerInfo::getFixedStack(FI),
2184                                    false, false, 0);
2185          } else {
2186            ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i],
2187                                             Chain, DAG, dl);
2188          }
2189          ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
2190          ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
2191                                 ArgValue, ArgValue1, DAG.getIntPtrConstant(0));
2192          ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
2193                                 ArgValue, ArgValue2, DAG.getIntPtrConstant(1));
2194        } else
2195          ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
2196
2197      } else {
2198        TargetRegisterClass *RC;
2199
2200        if (RegVT == MVT::f32)
2201          RC = ARM::SPRRegisterClass;
2202        else if (RegVT == MVT::f64)
2203          RC = ARM::DPRRegisterClass;
2204        else if (RegVT == MVT::v2f64)
2205          RC = ARM::QPRRegisterClass;
2206        else if (RegVT == MVT::i32)
2207          RC = (AFI->isThumb1OnlyFunction() ?
2208                ARM::tGPRRegisterClass : ARM::GPRRegisterClass);
2209        else
2210          llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
2211
2212        // Transform the arguments in physical registers into virtual ones.
2213        unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2214        ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
2215      }
2216
2217      // If this is an 8 or 16-bit value, it is really passed promoted
2218      // to 32 bits.  Insert an assert[sz]ext to capture this, then
2219      // truncate to the right size.
2220      switch (VA.getLocInfo()) {
2221      default: llvm_unreachable("Unknown loc info!");
2222      case CCValAssign::Full: break;
2223      case CCValAssign::BCvt:
2224        ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
2225        break;
2226      case CCValAssign::SExt:
2227        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
2228                               DAG.getValueType(VA.getValVT()));
2229        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
2230        break;
2231      case CCValAssign::ZExt:
2232        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
2233                               DAG.getValueType(VA.getValVT()));
2234        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
2235        break;
2236      }
2237
2238      InVals.push_back(ArgValue);
2239
2240    } else { // VA.isRegLoc()
2241
2242      // sanity check
2243      assert(VA.isMemLoc());
2244      assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered");
2245
2246      unsigned ArgSize = VA.getLocVT().getSizeInBits()/8;
2247      int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(), true);
2248
2249      // Create load nodes to retrieve arguments from the stack.
2250      SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2251      InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
2252                                   MachinePointerInfo::getFixedStack(FI),
2253                                   false, false, 0));
2254    }
2255  }
2256
2257  // varargs
2258  if (isVarArg) {
2259    static const unsigned GPRArgRegs[] = {
2260      ARM::R0, ARM::R1, ARM::R2, ARM::R3
2261    };
2262
2263    unsigned NumGPRs = CCInfo.getFirstUnallocated
2264      (GPRArgRegs, sizeof(GPRArgRegs) / sizeof(GPRArgRegs[0]));
2265
2266    unsigned Align = MF.getTarget().getFrameInfo()->getStackAlignment();
2267    unsigned VARegSize = (4 - NumGPRs) * 4;
2268    unsigned VARegSaveSize = (VARegSize + Align - 1) & ~(Align - 1);
2269    unsigned ArgOffset = CCInfo.getNextStackOffset();
2270    if (VARegSaveSize) {
2271      // If this function is vararg, store any remaining integer argument regs
2272      // to their spots on the stack so that they may be loaded by deferencing
2273      // the result of va_next.
2274      AFI->setVarArgsRegSaveSize(VARegSaveSize);
2275      AFI->setVarArgsFrameIndex(
2276        MFI->CreateFixedObject(VARegSaveSize,
2277                               ArgOffset + VARegSaveSize - VARegSize,
2278                               false));
2279      SDValue FIN = DAG.getFrameIndex(AFI->getVarArgsFrameIndex(),
2280                                      getPointerTy());
2281
2282      SmallVector<SDValue, 4> MemOps;
2283      for (; NumGPRs < 4; ++NumGPRs) {
2284        TargetRegisterClass *RC;
2285        if (AFI->isThumb1OnlyFunction())
2286          RC = ARM::tGPRRegisterClass;
2287        else
2288          RC = ARM::GPRRegisterClass;
2289
2290        unsigned VReg = MF.addLiveIn(GPRArgRegs[NumGPRs], RC);
2291        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
2292        SDValue Store =
2293          DAG.getStore(Val.getValue(1), dl, Val, FIN,
2294               MachinePointerInfo::getFixedStack(AFI->getVarArgsFrameIndex()),
2295                       false, false, 0);
2296        MemOps.push_back(Store);
2297        FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN,
2298                          DAG.getConstant(4, getPointerTy()));
2299      }
2300      if (!MemOps.empty())
2301        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2302                            &MemOps[0], MemOps.size());
2303    } else
2304      // This will point to the next argument passed via stack.
2305      AFI->setVarArgsFrameIndex(MFI->CreateFixedObject(4, ArgOffset, true));
2306  }
2307
2308  return Chain;
2309}
2310
2311/// isFloatingPointZero - Return true if this is +0.0.
2312static bool isFloatingPointZero(SDValue Op) {
2313  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
2314    return CFP->getValueAPF().isPosZero();
2315  else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
2316    // Maybe this has already been legalized into the constant pool?
2317    if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
2318      SDValue WrapperOp = Op.getOperand(1).getOperand(0);
2319      if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
2320        if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
2321          return CFP->getValueAPF().isPosZero();
2322    }
2323  }
2324  return false;
2325}
2326
2327/// Returns appropriate ARM CMP (cmp) and corresponding condition code for
2328/// the given operands.
2329SDValue
2330ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
2331                             SDValue &ARMcc, SelectionDAG &DAG,
2332                             DebugLoc dl) const {
2333  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
2334    unsigned C = RHSC->getZExtValue();
2335    if (!isLegalICmpImmediate(C)) {
2336      // Constant does not fit, try adjusting it by one?
2337      switch (CC) {
2338      default: break;
2339      case ISD::SETLT:
2340      case ISD::SETGE:
2341        if (C != 0x80000000 && isLegalICmpImmediate(C-1)) {
2342          CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
2343          RHS = DAG.getConstant(C-1, MVT::i32);
2344        }
2345        break;
2346      case ISD::SETULT:
2347      case ISD::SETUGE:
2348        if (C != 0 && isLegalICmpImmediate(C-1)) {
2349          CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
2350          RHS = DAG.getConstant(C-1, MVT::i32);
2351        }
2352        break;
2353      case ISD::SETLE:
2354      case ISD::SETGT:
2355        if (C != 0x7fffffff && isLegalICmpImmediate(C+1)) {
2356          CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
2357          RHS = DAG.getConstant(C+1, MVT::i32);
2358        }
2359        break;
2360      case ISD::SETULE:
2361      case ISD::SETUGT:
2362        if (C != 0xffffffff && isLegalICmpImmediate(C+1)) {
2363          CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
2364          RHS = DAG.getConstant(C+1, MVT::i32);
2365        }
2366        break;
2367      }
2368    }
2369  }
2370
2371  ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
2372  ARMISD::NodeType CompareType;
2373  switch (CondCode) {
2374  default:
2375    CompareType = ARMISD::CMP;
2376    break;
2377  case ARMCC::EQ:
2378  case ARMCC::NE:
2379    // Uses only Z Flag
2380    CompareType = ARMISD::CMPZ;
2381    break;
2382  }
2383  ARMcc = DAG.getConstant(CondCode, MVT::i32);
2384  return DAG.getNode(CompareType, dl, MVT::Flag, LHS, RHS);
2385}
2386
2387/// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
2388SDValue
2389ARMTargetLowering::getVFPCmp(SDValue LHS, SDValue RHS, SelectionDAG &DAG,
2390                             DebugLoc dl) const {
2391  SDValue Cmp;
2392  if (!isFloatingPointZero(RHS))
2393    Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Flag, LHS, RHS);
2394  else
2395    Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Flag, LHS);
2396  return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Flag, Cmp);
2397}
2398
2399SDValue ARMTargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
2400  SDValue Cond = Op.getOperand(0);
2401  SDValue SelectTrue = Op.getOperand(1);
2402  SDValue SelectFalse = Op.getOperand(2);
2403  DebugLoc dl = Op.getDebugLoc();
2404
2405  // Convert:
2406  //
2407  //   (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond)
2408  //   (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond)
2409  //
2410  if (Cond.getOpcode() == ARMISD::CMOV && Cond.hasOneUse()) {
2411    const ConstantSDNode *CMOVTrue =
2412      dyn_cast<ConstantSDNode>(Cond.getOperand(0));
2413    const ConstantSDNode *CMOVFalse =
2414      dyn_cast<ConstantSDNode>(Cond.getOperand(1));
2415
2416    if (CMOVTrue && CMOVFalse) {
2417      unsigned CMOVTrueVal = CMOVTrue->getZExtValue();
2418      unsigned CMOVFalseVal = CMOVFalse->getZExtValue();
2419
2420      SDValue True;
2421      SDValue False;
2422      if (CMOVTrueVal == 1 && CMOVFalseVal == 0) {
2423        True = SelectTrue;
2424        False = SelectFalse;
2425      } else if (CMOVTrueVal == 0 && CMOVFalseVal == 1) {
2426        True = SelectFalse;
2427        False = SelectTrue;
2428      }
2429
2430      if (True.getNode() && False.getNode()) {
2431        EVT VT = Cond.getValueType();
2432        SDValue ARMcc = Cond.getOperand(2);
2433        SDValue CCR = Cond.getOperand(3);
2434        SDValue Cmp = Cond.getOperand(4);
2435        return DAG.getNode(ARMISD::CMOV, dl, VT, True, False, ARMcc, CCR, Cmp);
2436      }
2437    }
2438  }
2439
2440  return DAG.getSelectCC(dl, Cond,
2441                         DAG.getConstant(0, Cond.getValueType()),
2442                         SelectTrue, SelectFalse, ISD::SETNE);
2443}
2444
2445SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
2446  EVT VT = Op.getValueType();
2447  SDValue LHS = Op.getOperand(0);
2448  SDValue RHS = Op.getOperand(1);
2449  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2450  SDValue TrueVal = Op.getOperand(2);
2451  SDValue FalseVal = Op.getOperand(3);
2452  DebugLoc dl = Op.getDebugLoc();
2453
2454  if (LHS.getValueType() == MVT::i32) {
2455    SDValue ARMcc;
2456    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2457    SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
2458    return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, CCR,Cmp);
2459  }
2460
2461  ARMCC::CondCodes CondCode, CondCode2;
2462  FPCCToARMCC(CC, CondCode, CondCode2);
2463
2464  SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
2465  SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
2466  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2467  SDValue Result = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal,
2468                               ARMcc, CCR, Cmp);
2469  if (CondCode2 != ARMCC::AL) {
2470    SDValue ARMcc2 = DAG.getConstant(CondCode2, MVT::i32);
2471    // FIXME: Needs another CMP because flag can have but one use.
2472    SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl);
2473    Result = DAG.getNode(ARMISD::CMOV, dl, VT,
2474                         Result, TrueVal, ARMcc2, CCR, Cmp2);
2475  }
2476  return Result;
2477}
2478
2479/// canChangeToInt - Given the fp compare operand, return true if it is suitable
2480/// to morph to an integer compare sequence.
2481static bool canChangeToInt(SDValue Op, bool &SeenZero,
2482                           const ARMSubtarget *Subtarget) {
2483  SDNode *N = Op.getNode();
2484  if (!N->hasOneUse())
2485    // Otherwise it requires moving the value from fp to integer registers.
2486    return false;
2487  if (!N->getNumValues())
2488    return false;
2489  EVT VT = Op.getValueType();
2490  if (VT != MVT::f32 && !Subtarget->isFPBrccSlow())
2491    // f32 case is generally profitable. f64 case only makes sense when vcmpe +
2492    // vmrs are very slow, e.g. cortex-a8.
2493    return false;
2494
2495  if (isFloatingPointZero(Op)) {
2496    SeenZero = true;
2497    return true;
2498  }
2499  return ISD::isNormalLoad(N);
2500}
2501
2502static SDValue bitcastf32Toi32(SDValue Op, SelectionDAG &DAG) {
2503  if (isFloatingPointZero(Op))
2504    return DAG.getConstant(0, MVT::i32);
2505
2506  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op))
2507    return DAG.getLoad(MVT::i32, Op.getDebugLoc(),
2508                       Ld->getChain(), Ld->getBasePtr(), Ld->getPointerInfo(),
2509                       Ld->isVolatile(), Ld->isNonTemporal(),
2510                       Ld->getAlignment());
2511
2512  llvm_unreachable("Unknown VFP cmp argument!");
2513}
2514
2515static void expandf64Toi32(SDValue Op, SelectionDAG &DAG,
2516                           SDValue &RetVal1, SDValue &RetVal2) {
2517  if (isFloatingPointZero(Op)) {
2518    RetVal1 = DAG.getConstant(0, MVT::i32);
2519    RetVal2 = DAG.getConstant(0, MVT::i32);
2520    return;
2521  }
2522
2523  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) {
2524    SDValue Ptr = Ld->getBasePtr();
2525    RetVal1 = DAG.getLoad(MVT::i32, Op.getDebugLoc(),
2526                          Ld->getChain(), Ptr,
2527                          Ld->getPointerInfo(),
2528                          Ld->isVolatile(), Ld->isNonTemporal(),
2529                          Ld->getAlignment());
2530
2531    EVT PtrType = Ptr.getValueType();
2532    unsigned NewAlign = MinAlign(Ld->getAlignment(), 4);
2533    SDValue NewPtr = DAG.getNode(ISD::ADD, Op.getDebugLoc(),
2534                                 PtrType, Ptr, DAG.getConstant(4, PtrType));
2535    RetVal2 = DAG.getLoad(MVT::i32, Op.getDebugLoc(),
2536                          Ld->getChain(), NewPtr,
2537                          Ld->getPointerInfo().getWithOffset(4),
2538                          Ld->isVolatile(), Ld->isNonTemporal(),
2539                          NewAlign);
2540    return;
2541  }
2542
2543  llvm_unreachable("Unknown VFP cmp argument!");
2544}
2545
2546/// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some
2547/// f32 and even f64 comparisons to integer ones.
2548SDValue
2549ARMTargetLowering::OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const {
2550  SDValue Chain = Op.getOperand(0);
2551  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
2552  SDValue LHS = Op.getOperand(2);
2553  SDValue RHS = Op.getOperand(3);
2554  SDValue Dest = Op.getOperand(4);
2555  DebugLoc dl = Op.getDebugLoc();
2556
2557  bool SeenZero = false;
2558  if (canChangeToInt(LHS, SeenZero, Subtarget) &&
2559      canChangeToInt(RHS, SeenZero, Subtarget) &&
2560      // If one of the operand is zero, it's safe to ignore the NaN case since
2561      // we only care about equality comparisons.
2562      (SeenZero || (DAG.isKnownNeverNaN(LHS) && DAG.isKnownNeverNaN(RHS)))) {
2563    // If unsafe fp math optimization is enabled and there are no othter uses of
2564    // the CMP operands, and the condition code is EQ oe NE, we can optimize it
2565    // to an integer comparison.
2566    if (CC == ISD::SETOEQ)
2567      CC = ISD::SETEQ;
2568    else if (CC == ISD::SETUNE)
2569      CC = ISD::SETNE;
2570
2571    SDValue ARMcc;
2572    if (LHS.getValueType() == MVT::f32) {
2573      LHS = bitcastf32Toi32(LHS, DAG);
2574      RHS = bitcastf32Toi32(RHS, DAG);
2575      SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
2576      SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2577      return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
2578                         Chain, Dest, ARMcc, CCR, Cmp);
2579    }
2580
2581    SDValue LHS1, LHS2;
2582    SDValue RHS1, RHS2;
2583    expandf64Toi32(LHS, DAG, LHS1, LHS2);
2584    expandf64Toi32(RHS, DAG, RHS1, RHS2);
2585    ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
2586    ARMcc = DAG.getConstant(CondCode, MVT::i32);
2587    SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Flag);
2588    SDValue Ops[] = { Chain, ARMcc, LHS1, LHS2, RHS1, RHS2, Dest };
2589    return DAG.getNode(ARMISD::BCC_i64, dl, VTList, Ops, 7);
2590  }
2591
2592  return SDValue();
2593}
2594
2595SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
2596  SDValue Chain = Op.getOperand(0);
2597  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
2598  SDValue LHS = Op.getOperand(2);
2599  SDValue RHS = Op.getOperand(3);
2600  SDValue Dest = Op.getOperand(4);
2601  DebugLoc dl = Op.getDebugLoc();
2602
2603  if (LHS.getValueType() == MVT::i32) {
2604    SDValue ARMcc;
2605    SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
2606    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2607    return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
2608                       Chain, Dest, ARMcc, CCR, Cmp);
2609  }
2610
2611  assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
2612
2613  if (UnsafeFPMath &&
2614      (CC == ISD::SETEQ || CC == ISD::SETOEQ ||
2615       CC == ISD::SETNE || CC == ISD::SETUNE)) {
2616    SDValue Result = OptimizeVFPBrcond(Op, DAG);
2617    if (Result.getNode())
2618      return Result;
2619  }
2620
2621  ARMCC::CondCodes CondCode, CondCode2;
2622  FPCCToARMCC(CC, CondCode, CondCode2);
2623
2624  SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
2625  SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
2626  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2627  SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Flag);
2628  SDValue Ops[] = { Chain, Dest, ARMcc, CCR, Cmp };
2629  SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
2630  if (CondCode2 != ARMCC::AL) {
2631    ARMcc = DAG.getConstant(CondCode2, MVT::i32);
2632    SDValue Ops[] = { Res, Dest, ARMcc, CCR, Res.getValue(1) };
2633    Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
2634  }
2635  return Res;
2636}
2637
2638SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
2639  SDValue Chain = Op.getOperand(0);
2640  SDValue Table = Op.getOperand(1);
2641  SDValue Index = Op.getOperand(2);
2642  DebugLoc dl = Op.getDebugLoc();
2643
2644  EVT PTy = getPointerTy();
2645  JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
2646  ARMFunctionInfo *AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
2647  SDValue UId = DAG.getConstant(AFI->createJumpTableUId(), PTy);
2648  SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
2649  Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI, UId);
2650  Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, PTy));
2651  SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
2652  if (Subtarget->isThumb2()) {
2653    // Thumb2 uses a two-level jump. That is, it jumps into the jump table
2654    // which does another jump to the destination. This also makes it easier
2655    // to translate it to TBB / TBH later.
2656    // FIXME: This might not work if the function is extremely large.
2657    return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain,
2658                       Addr, Op.getOperand(2), JTI, UId);
2659  }
2660  if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2661    Addr = DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr,
2662                       MachinePointerInfo::getJumpTable(),
2663                       false, false, 0);
2664    Chain = Addr.getValue(1);
2665    Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, Table);
2666    return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
2667  } else {
2668    Addr = DAG.getLoad(PTy, dl, Chain, Addr,
2669                       MachinePointerInfo::getJumpTable(), false, false, 0);
2670    Chain = Addr.getValue(1);
2671    return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
2672  }
2673}
2674
2675static SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
2676  DebugLoc dl = Op.getDebugLoc();
2677  unsigned Opc;
2678
2679  switch (Op.getOpcode()) {
2680  default:
2681    assert(0 && "Invalid opcode!");
2682  case ISD::FP_TO_SINT:
2683    Opc = ARMISD::FTOSI;
2684    break;
2685  case ISD::FP_TO_UINT:
2686    Opc = ARMISD::FTOUI;
2687    break;
2688  }
2689  Op = DAG.getNode(Opc, dl, MVT::f32, Op.getOperand(0));
2690  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
2691}
2692
2693static SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
2694  EVT VT = Op.getValueType();
2695  DebugLoc dl = Op.getDebugLoc();
2696  unsigned Opc;
2697
2698  switch (Op.getOpcode()) {
2699  default:
2700    assert(0 && "Invalid opcode!");
2701  case ISD::SINT_TO_FP:
2702    Opc = ARMISD::SITOF;
2703    break;
2704  case ISD::UINT_TO_FP:
2705    Opc = ARMISD::UITOF;
2706    break;
2707  }
2708
2709  Op = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, Op.getOperand(0));
2710  return DAG.getNode(Opc, dl, VT, Op);
2711}
2712
2713SDValue ARMTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
2714  // Implement fcopysign with a fabs and a conditional fneg.
2715  SDValue Tmp0 = Op.getOperand(0);
2716  SDValue Tmp1 = Op.getOperand(1);
2717  DebugLoc dl = Op.getDebugLoc();
2718  EVT VT = Op.getValueType();
2719  EVT SrcVT = Tmp1.getValueType();
2720  SDValue AbsVal = DAG.getNode(ISD::FABS, dl, VT, Tmp0);
2721  SDValue ARMcc = DAG.getConstant(ARMCC::LT, MVT::i32);
2722  SDValue FP0 = DAG.getConstantFP(0.0, SrcVT);
2723  SDValue Cmp = getVFPCmp(Tmp1, FP0, DAG, dl);
2724  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2725  return DAG.getNode(ARMISD::CNEG, dl, VT, AbsVal, AbsVal, ARMcc, CCR, Cmp);
2726}
2727
2728SDValue ARMTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{
2729  MachineFunction &MF = DAG.getMachineFunction();
2730  MachineFrameInfo *MFI = MF.getFrameInfo();
2731  MFI->setReturnAddressIsTaken(true);
2732
2733  EVT VT = Op.getValueType();
2734  DebugLoc dl = Op.getDebugLoc();
2735  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2736  if (Depth) {
2737    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
2738    SDValue Offset = DAG.getConstant(4, MVT::i32);
2739    return DAG.getLoad(VT, dl, DAG.getEntryNode(),
2740                       DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
2741                       MachinePointerInfo(), false, false, 0);
2742  }
2743
2744  // Return LR, which contains the return address. Mark it an implicit live-in.
2745  unsigned Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32));
2746  return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
2747}
2748
2749SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
2750  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2751  MFI->setFrameAddressIsTaken(true);
2752
2753  EVT VT = Op.getValueType();
2754  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
2755  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2756  unsigned FrameReg = (Subtarget->isThumb() || Subtarget->isTargetDarwin())
2757    ? ARM::R7 : ARM::R11;
2758  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
2759  while (Depth--)
2760    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
2761                            MachinePointerInfo(),
2762                            false, false, 0);
2763  return FrameAddr;
2764}
2765
2766/// ExpandBIT_CONVERT - If the target supports VFP, this function is called to
2767/// expand a bit convert where either the source or destination type is i64 to
2768/// use a VMOVDRR or VMOVRRD node.  This should not be done when the non-i64
2769/// operand type is illegal (e.g., v2f32 for a target that doesn't support
2770/// vectors), since the legalizer won't know what to do with that.
2771static SDValue ExpandBIT_CONVERT(SDNode *N, SelectionDAG &DAG) {
2772  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2773  DebugLoc dl = N->getDebugLoc();
2774  SDValue Op = N->getOperand(0);
2775
2776  // This function is only supposed to be called for i64 types, either as the
2777  // source or destination of the bit convert.
2778  EVT SrcVT = Op.getValueType();
2779  EVT DstVT = N->getValueType(0);
2780  assert((SrcVT == MVT::i64 || DstVT == MVT::i64) &&
2781         "ExpandBIT_CONVERT called for non-i64 type");
2782
2783  // Turn i64->f64 into VMOVDRR.
2784  if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) {
2785    SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
2786                             DAG.getConstant(0, MVT::i32));
2787    SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
2788                             DAG.getConstant(1, MVT::i32));
2789    return DAG.getNode(ISD::BIT_CONVERT, dl, DstVT,
2790                       DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi));
2791  }
2792
2793  // Turn f64->i64 into VMOVRRD.
2794  if (DstVT == MVT::i64 && TLI.isTypeLegal(SrcVT)) {
2795    SDValue Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
2796                              DAG.getVTList(MVT::i32, MVT::i32), &Op, 1);
2797    // Merge the pieces into a single i64 value.
2798    return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1));
2799  }
2800
2801  return SDValue();
2802}
2803
2804/// getZeroVector - Returns a vector of specified type with all zero elements.
2805/// Zero vectors are used to represent vector negation and in those cases
2806/// will be implemented with the NEON VNEG instruction.  However, VNEG does
2807/// not support i64 elements, so sometimes the zero vectors will need to be
2808/// explicitly constructed.  Regardless, use a canonical VMOV to create the
2809/// zero vector.
2810static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
2811  assert(VT.isVector() && "Expected a vector type");
2812  // The canonical modified immediate encoding of a zero vector is....0!
2813  SDValue EncodedVal = DAG.getTargetConstant(0, MVT::i32);
2814  EVT VmovVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
2815  SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, EncodedVal);
2816  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vmov);
2817}
2818
2819/// LowerShiftRightParts - Lower SRA_PARTS, which returns two
2820/// i32 values and take a 2 x i32 value to shift plus a shift amount.
2821SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op,
2822                                                SelectionDAG &DAG) const {
2823  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
2824  EVT VT = Op.getValueType();
2825  unsigned VTBits = VT.getSizeInBits();
2826  DebugLoc dl = Op.getDebugLoc();
2827  SDValue ShOpLo = Op.getOperand(0);
2828  SDValue ShOpHi = Op.getOperand(1);
2829  SDValue ShAmt  = Op.getOperand(2);
2830  SDValue ARMcc;
2831  unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
2832
2833  assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
2834
2835  SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
2836                                 DAG.getConstant(VTBits, MVT::i32), ShAmt);
2837  SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
2838  SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
2839                                   DAG.getConstant(VTBits, MVT::i32));
2840  SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
2841  SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2842  SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
2843
2844  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2845  SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
2846                          ARMcc, DAG, dl);
2847  SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
2848  SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc,
2849                           CCR, Cmp);
2850
2851  SDValue Ops[2] = { Lo, Hi };
2852  return DAG.getMergeValues(Ops, 2, dl);
2853}
2854
2855/// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
2856/// i32 values and take a 2 x i32 value to shift plus a shift amount.
2857SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op,
2858                                               SelectionDAG &DAG) const {
2859  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
2860  EVT VT = Op.getValueType();
2861  unsigned VTBits = VT.getSizeInBits();
2862  DebugLoc dl = Op.getDebugLoc();
2863  SDValue ShOpLo = Op.getOperand(0);
2864  SDValue ShOpHi = Op.getOperand(1);
2865  SDValue ShAmt  = Op.getOperand(2);
2866  SDValue ARMcc;
2867
2868  assert(Op.getOpcode() == ISD::SHL_PARTS);
2869  SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
2870                                 DAG.getConstant(VTBits, MVT::i32), ShAmt);
2871  SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
2872  SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
2873                                   DAG.getConstant(VTBits, MVT::i32));
2874  SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
2875  SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
2876
2877  SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2878  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2879  SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
2880                          ARMcc, DAG, dl);
2881  SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
2882  SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, Tmp3, ARMcc,
2883                           CCR, Cmp);
2884
2885  SDValue Ops[2] = { Lo, Hi };
2886  return DAG.getMergeValues(Ops, 2, dl);
2887}
2888
2889SDValue ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
2890                                            SelectionDAG &DAG) const {
2891  // The rounding mode is in bits 23:22 of the FPSCR.
2892  // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
2893  // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
2894  // so that the shift + and get folded into a bitfield extract.
2895  DebugLoc dl = Op.getDebugLoc();
2896  SDValue FPSCR = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::i32,
2897                              DAG.getConstant(Intrinsic::arm_get_fpscr,
2898                                              MVT::i32));
2899  SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPSCR,
2900                                  DAG.getConstant(1U << 22, MVT::i32));
2901  SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds,
2902                              DAG.getConstant(22, MVT::i32));
2903  return DAG.getNode(ISD::AND, dl, MVT::i32, RMODE,
2904                     DAG.getConstant(3, MVT::i32));
2905}
2906
2907static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG,
2908                         const ARMSubtarget *ST) {
2909  EVT VT = N->getValueType(0);
2910  DebugLoc dl = N->getDebugLoc();
2911
2912  if (!ST->hasV6T2Ops())
2913    return SDValue();
2914
2915  SDValue rbit = DAG.getNode(ARMISD::RBIT, dl, VT, N->getOperand(0));
2916  return DAG.getNode(ISD::CTLZ, dl, VT, rbit);
2917}
2918
2919static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
2920                          const ARMSubtarget *ST) {
2921  EVT VT = N->getValueType(0);
2922  DebugLoc dl = N->getDebugLoc();
2923
2924  // Lower vector shifts on NEON to use VSHL.
2925  if (VT.isVector()) {
2926    assert(ST->hasNEON() && "unexpected vector shift");
2927
2928    // Left shifts translate directly to the vshiftu intrinsic.
2929    if (N->getOpcode() == ISD::SHL)
2930      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
2931                         DAG.getConstant(Intrinsic::arm_neon_vshiftu, MVT::i32),
2932                         N->getOperand(0), N->getOperand(1));
2933
2934    assert((N->getOpcode() == ISD::SRA ||
2935            N->getOpcode() == ISD::SRL) && "unexpected vector shift opcode");
2936
2937    // NEON uses the same intrinsics for both left and right shifts.  For
2938    // right shifts, the shift amounts are negative, so negate the vector of
2939    // shift amounts.
2940    EVT ShiftVT = N->getOperand(1).getValueType();
2941    SDValue NegatedCount = DAG.getNode(ISD::SUB, dl, ShiftVT,
2942                                       getZeroVector(ShiftVT, DAG, dl),
2943                                       N->getOperand(1));
2944    Intrinsic::ID vshiftInt = (N->getOpcode() == ISD::SRA ?
2945                               Intrinsic::arm_neon_vshifts :
2946                               Intrinsic::arm_neon_vshiftu);
2947    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
2948                       DAG.getConstant(vshiftInt, MVT::i32),
2949                       N->getOperand(0), NegatedCount);
2950  }
2951
2952  // We can get here for a node like i32 = ISD::SHL i32, i64
2953  if (VT != MVT::i64)
2954    return SDValue();
2955
2956  assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) &&
2957         "Unknown shift to lower!");
2958
2959  // We only lower SRA, SRL of 1 here, all others use generic lowering.
2960  if (!isa<ConstantSDNode>(N->getOperand(1)) ||
2961      cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 1)
2962    return SDValue();
2963
2964  // If we are in thumb mode, we don't have RRX.
2965  if (ST->isThumb1Only()) return SDValue();
2966
2967  // Okay, we have a 64-bit SRA or SRL of 1.  Lower this to an RRX expr.
2968  SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
2969                           DAG.getConstant(0, MVT::i32));
2970  SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
2971                           DAG.getConstant(1, MVT::i32));
2972
2973  // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
2974  // captures the result into a carry flag.
2975  unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
2976  Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Flag), &Hi, 1);
2977
2978  // The low part is an ARMISD::RRX operand, which shifts the carry in.
2979  Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));
2980
2981  // Merge the pieces into a single i64 value.
2982 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
2983}
2984
2985static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
2986  SDValue TmpOp0, TmpOp1;
2987  bool Invert = false;
2988  bool Swap = false;
2989  unsigned Opc = 0;
2990
2991  SDValue Op0 = Op.getOperand(0);
2992  SDValue Op1 = Op.getOperand(1);
2993  SDValue CC = Op.getOperand(2);
2994  EVT VT = Op.getValueType();
2995  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
2996  DebugLoc dl = Op.getDebugLoc();
2997
2998  if (Op.getOperand(1).getValueType().isFloatingPoint()) {
2999    switch (SetCCOpcode) {
3000    default: llvm_unreachable("Illegal FP comparison"); break;
3001    case ISD::SETUNE:
3002    case ISD::SETNE:  Invert = true; // Fallthrough
3003    case ISD::SETOEQ:
3004    case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
3005    case ISD::SETOLT:
3006    case ISD::SETLT: Swap = true; // Fallthrough
3007    case ISD::SETOGT:
3008    case ISD::SETGT:  Opc = ARMISD::VCGT; break;
3009    case ISD::SETOLE:
3010    case ISD::SETLE:  Swap = true; // Fallthrough
3011    case ISD::SETOGE:
3012    case ISD::SETGE: Opc = ARMISD::VCGE; break;
3013    case ISD::SETUGE: Swap = true; // Fallthrough
3014    case ISD::SETULE: Invert = true; Opc = ARMISD::VCGT; break;
3015    case ISD::SETUGT: Swap = true; // Fallthrough
3016    case ISD::SETULT: Invert = true; Opc = ARMISD::VCGE; break;
3017    case ISD::SETUEQ: Invert = true; // Fallthrough
3018    case ISD::SETONE:
3019      // Expand this to (OLT | OGT).
3020      TmpOp0 = Op0;
3021      TmpOp1 = Op1;
3022      Opc = ISD::OR;
3023      Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
3024      Op1 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp0, TmpOp1);
3025      break;
3026    case ISD::SETUO: Invert = true; // Fallthrough
3027    case ISD::SETO:
3028      // Expand this to (OLT | OGE).
3029      TmpOp0 = Op0;
3030      TmpOp1 = Op1;
3031      Opc = ISD::OR;
3032      Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
3033      Op1 = DAG.getNode(ARMISD::VCGE, dl, VT, TmpOp0, TmpOp1);
3034      break;
3035    }
3036  } else {
3037    // Integer comparisons.
3038    switch (SetCCOpcode) {
3039    default: llvm_unreachable("Illegal integer comparison"); break;
3040    case ISD::SETNE:  Invert = true;
3041    case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
3042    case ISD::SETLT:  Swap = true;
3043    case ISD::SETGT:  Opc = ARMISD::VCGT; break;
3044    case ISD::SETLE:  Swap = true;
3045    case ISD::SETGE:  Opc = ARMISD::VCGE; break;
3046    case ISD::SETULT: Swap = true;
3047    case ISD::SETUGT: Opc = ARMISD::VCGTU; break;
3048    case ISD::SETULE: Swap = true;
3049    case ISD::SETUGE: Opc = ARMISD::VCGEU; break;
3050    }
3051
3052    // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
3053    if (Opc == ARMISD::VCEQ) {
3054
3055      SDValue AndOp;
3056      if (ISD::isBuildVectorAllZeros(Op1.getNode()))
3057        AndOp = Op0;
3058      else if (ISD::isBuildVectorAllZeros(Op0.getNode()))
3059        AndOp = Op1;
3060
3061      // Ignore bitconvert.
3062      if (AndOp.getNode() && AndOp.getOpcode() == ISD::BIT_CONVERT)
3063        AndOp = AndOp.getOperand(0);
3064
3065      if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) {
3066        Opc = ARMISD::VTST;
3067        Op0 = DAG.getNode(ISD::BIT_CONVERT, dl, VT, AndOp.getOperand(0));
3068        Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, VT, AndOp.getOperand(1));
3069        Invert = !Invert;
3070      }
3071    }
3072  }
3073
3074  if (Swap)
3075    std::swap(Op0, Op1);
3076
3077  // If one of the operands is a constant vector zero, attempt to fold the
3078  // comparison to a specialized compare-against-zero form.
3079  SDValue SingleOp;
3080  if (ISD::isBuildVectorAllZeros(Op1.getNode()))
3081    SingleOp = Op0;
3082  else if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
3083    if (Opc == ARMISD::VCGE)
3084      Opc = ARMISD::VCLEZ;
3085    else if (Opc == ARMISD::VCGT)
3086      Opc = ARMISD::VCLTZ;
3087    SingleOp = Op1;
3088  }
3089
3090  SDValue Result;
3091  if (SingleOp.getNode()) {
3092    switch (Opc) {
3093    case ARMISD::VCEQ:
3094      Result = DAG.getNode(ARMISD::VCEQZ, dl, VT, SingleOp); break;
3095    case ARMISD::VCGE:
3096      Result = DAG.getNode(ARMISD::VCGEZ, dl, VT, SingleOp); break;
3097    case ARMISD::VCLEZ:
3098      Result = DAG.getNode(ARMISD::VCLEZ, dl, VT, SingleOp); break;
3099    case ARMISD::VCGT:
3100      Result = DAG.getNode(ARMISD::VCGTZ, dl, VT, SingleOp); break;
3101    case ARMISD::VCLTZ:
3102      Result = DAG.getNode(ARMISD::VCLTZ, dl, VT, SingleOp); break;
3103    default:
3104      Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
3105    }
3106  } else {
3107     Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
3108  }
3109
3110  if (Invert)
3111    Result = DAG.getNOT(dl, Result, VT);
3112
3113  return Result;
3114}
3115
3116/// isNEONModifiedImm - Check if the specified splat value corresponds to a
3117/// valid vector constant for a NEON instruction with a "modified immediate"
3118/// operand (e.g., VMOV).  If so, return the encoded value.
3119static SDValue isNEONModifiedImm(uint64_t SplatBits, uint64_t SplatUndef,
3120                                 unsigned SplatBitSize, SelectionDAG &DAG,
3121                                 EVT &VT, bool is128Bits, NEONModImmType type) {
3122  unsigned OpCmode, Imm;
3123
3124  // SplatBitSize is set to the smallest size that splats the vector, so a
3125  // zero vector will always have SplatBitSize == 8.  However, NEON modified
3126  // immediate instructions others than VMOV do not support the 8-bit encoding
3127  // of a zero vector, and the default encoding of zero is supposed to be the
3128  // 32-bit version.
3129  if (SplatBits == 0)
3130    SplatBitSize = 32;
3131
3132  switch (SplatBitSize) {
3133  case 8:
3134    if (type != VMOVModImm)
3135      return SDValue();
3136    // Any 1-byte value is OK.  Op=0, Cmode=1110.
3137    assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
3138    OpCmode = 0xe;
3139    Imm = SplatBits;
3140    VT = is128Bits ? MVT::v16i8 : MVT::v8i8;
3141    break;
3142
3143  case 16:
3144    // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
3145    VT = is128Bits ? MVT::v8i16 : MVT::v4i16;
3146    if ((SplatBits & ~0xff) == 0) {
3147      // Value = 0x00nn: Op=x, Cmode=100x.
3148      OpCmode = 0x8;
3149      Imm = SplatBits;
3150      break;
3151    }
3152    if ((SplatBits & ~0xff00) == 0) {
3153      // Value = 0xnn00: Op=x, Cmode=101x.
3154      OpCmode = 0xa;
3155      Imm = SplatBits >> 8;
3156      break;
3157    }
3158    return SDValue();
3159
3160  case 32:
3161    // NEON's 32-bit VMOV supports splat values where:
3162    // * only one byte is nonzero, or
3163    // * the least significant byte is 0xff and the second byte is nonzero, or
3164    // * the least significant 2 bytes are 0xff and the third is nonzero.
3165    VT = is128Bits ? MVT::v4i32 : MVT::v2i32;
3166    if ((SplatBits & ~0xff) == 0) {
3167      // Value = 0x000000nn: Op=x, Cmode=000x.
3168      OpCmode = 0;
3169      Imm = SplatBits;
3170      break;
3171    }
3172    if ((SplatBits & ~0xff00) == 0) {
3173      // Value = 0x0000nn00: Op=x, Cmode=001x.
3174      OpCmode = 0x2;
3175      Imm = SplatBits >> 8;
3176      break;
3177    }
3178    if ((SplatBits & ~0xff0000) == 0) {
3179      // Value = 0x00nn0000: Op=x, Cmode=010x.
3180      OpCmode = 0x4;
3181      Imm = SplatBits >> 16;
3182      break;
3183    }
3184    if ((SplatBits & ~0xff000000) == 0) {
3185      // Value = 0xnn000000: Op=x, Cmode=011x.
3186      OpCmode = 0x6;
3187      Imm = SplatBits >> 24;
3188      break;
3189    }
3190
3191    // cmode == 0b1100 and cmode == 0b1101 are not supported for VORR or VBIC
3192    if (type == OtherModImm) return SDValue();
3193
3194    if ((SplatBits & ~0xffff) == 0 &&
3195        ((SplatBits | SplatUndef) & 0xff) == 0xff) {
3196      // Value = 0x0000nnff: Op=x, Cmode=1100.
3197      OpCmode = 0xc;
3198      Imm = SplatBits >> 8;
3199      SplatBits |= 0xff;
3200      break;
3201    }
3202
3203    if ((SplatBits & ~0xffffff) == 0 &&
3204        ((SplatBits | SplatUndef) & 0xffff) == 0xffff) {
3205      // Value = 0x00nnffff: Op=x, Cmode=1101.
3206      OpCmode = 0xd;
3207      Imm = SplatBits >> 16;
3208      SplatBits |= 0xffff;
3209      break;
3210    }
3211
3212    // Note: there are a few 32-bit splat values (specifically: 00ffff00,
3213    // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
3214    // VMOV.I32.  A (very) minor optimization would be to replicate the value
3215    // and fall through here to test for a valid 64-bit splat.  But, then the
3216    // caller would also need to check and handle the change in size.
3217    return SDValue();
3218
3219  case 64: {
3220    if (type != VMOVModImm)
3221      return SDValue();
3222    // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
3223    uint64_t BitMask = 0xff;
3224    uint64_t Val = 0;
3225    unsigned ImmMask = 1;
3226    Imm = 0;
3227    for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
3228      if (((SplatBits | SplatUndef) & BitMask) == BitMask) {
3229        Val |= BitMask;
3230        Imm |= ImmMask;
3231      } else if ((SplatBits & BitMask) != 0) {
3232        return SDValue();
3233      }
3234      BitMask <<= 8;
3235      ImmMask <<= 1;
3236    }
3237    // Op=1, Cmode=1110.
3238    OpCmode = 0x1e;
3239    SplatBits = Val;
3240    VT = is128Bits ? MVT::v2i64 : MVT::v1i64;
3241    break;
3242  }
3243
3244  default:
3245    llvm_unreachable("unexpected size for isNEONModifiedImm");
3246    return SDValue();
3247  }
3248
3249  unsigned EncodedVal = ARM_AM::createNEONModImm(OpCmode, Imm);
3250  return DAG.getTargetConstant(EncodedVal, MVT::i32);
3251}
3252
3253static bool isVEXTMask(const SmallVectorImpl<int> &M, EVT VT,
3254                       bool &ReverseVEXT, unsigned &Imm) {
3255  unsigned NumElts = VT.getVectorNumElements();
3256  ReverseVEXT = false;
3257
3258  // Assume that the first shuffle index is not UNDEF.  Fail if it is.
3259  if (M[0] < 0)
3260    return false;
3261
3262  Imm = M[0];
3263
3264  // If this is a VEXT shuffle, the immediate value is the index of the first
3265  // element.  The other shuffle indices must be the successive elements after
3266  // the first one.
3267  unsigned ExpectedElt = Imm;
3268  for (unsigned i = 1; i < NumElts; ++i) {
3269    // Increment the expected index.  If it wraps around, it may still be
3270    // a VEXT but the source vectors must be swapped.
3271    ExpectedElt += 1;
3272    if (ExpectedElt == NumElts * 2) {
3273      ExpectedElt = 0;
3274      ReverseVEXT = true;
3275    }
3276
3277    if (M[i] < 0) continue; // ignore UNDEF indices
3278    if (ExpectedElt != static_cast<unsigned>(M[i]))
3279      return false;
3280  }
3281
3282  // Adjust the index value if the source operands will be swapped.
3283  if (ReverseVEXT)
3284    Imm -= NumElts;
3285
3286  return true;
3287}
3288
3289/// isVREVMask - Check if a vector shuffle corresponds to a VREV
3290/// instruction with the specified blocksize.  (The order of the elements
3291/// within each block of the vector is reversed.)
3292static bool isVREVMask(const SmallVectorImpl<int> &M, EVT VT,
3293                       unsigned BlockSize) {
3294  assert((BlockSize==16 || BlockSize==32 || BlockSize==64) &&
3295         "Only possible block sizes for VREV are: 16, 32, 64");
3296
3297  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3298  if (EltSz == 64)
3299    return false;
3300
3301  unsigned NumElts = VT.getVectorNumElements();
3302  unsigned BlockElts = M[0] + 1;
3303  // If the first shuffle index is UNDEF, be optimistic.
3304  if (M[0] < 0)
3305    BlockElts = BlockSize / EltSz;
3306
3307  if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
3308    return false;
3309
3310  for (unsigned i = 0; i < NumElts; ++i) {
3311    if (M[i] < 0) continue; // ignore UNDEF indices
3312    if ((unsigned) M[i] != (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts))
3313      return false;
3314  }
3315
3316  return true;
3317}
3318
3319static bool isVTRNMask(const SmallVectorImpl<int> &M, EVT VT,
3320                       unsigned &WhichResult) {
3321  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3322  if (EltSz == 64)
3323    return false;
3324
3325  unsigned NumElts = VT.getVectorNumElements();
3326  WhichResult = (M[0] == 0 ? 0 : 1);
3327  for (unsigned i = 0; i < NumElts; i += 2) {
3328    if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) ||
3329        (M[i+1] >= 0 && (unsigned) M[i+1] != i + NumElts + WhichResult))
3330      return false;
3331  }
3332  return true;
3333}
3334
3335/// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
3336/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
3337/// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
3338static bool isVTRN_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
3339                                unsigned &WhichResult) {
3340  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3341  if (EltSz == 64)
3342    return false;
3343
3344  unsigned NumElts = VT.getVectorNumElements();
3345  WhichResult = (M[0] == 0 ? 0 : 1);
3346  for (unsigned i = 0; i < NumElts; i += 2) {
3347    if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) ||
3348        (M[i+1] >= 0 && (unsigned) M[i+1] != i + WhichResult))
3349      return false;
3350  }
3351  return true;
3352}
3353
3354static bool isVUZPMask(const SmallVectorImpl<int> &M, EVT VT,
3355                       unsigned &WhichResult) {
3356  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3357  if (EltSz == 64)
3358    return false;
3359
3360  unsigned NumElts = VT.getVectorNumElements();
3361  WhichResult = (M[0] == 0 ? 0 : 1);
3362  for (unsigned i = 0; i != NumElts; ++i) {
3363    if (M[i] < 0) continue; // ignore UNDEF indices
3364    if ((unsigned) M[i] != 2 * i + WhichResult)
3365      return false;
3366  }
3367
3368  // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3369  if (VT.is64BitVector() && EltSz == 32)
3370    return false;
3371
3372  return true;
3373}
3374
3375/// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
3376/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
3377/// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
3378static bool isVUZP_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
3379                                unsigned &WhichResult) {
3380  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3381  if (EltSz == 64)
3382    return false;
3383
3384  unsigned Half = VT.getVectorNumElements() / 2;
3385  WhichResult = (M[0] == 0 ? 0 : 1);
3386  for (unsigned j = 0; j != 2; ++j) {
3387    unsigned Idx = WhichResult;
3388    for (unsigned i = 0; i != Half; ++i) {
3389      int MIdx = M[i + j * Half];
3390      if (MIdx >= 0 && (unsigned) MIdx != Idx)
3391        return false;
3392      Idx += 2;
3393    }
3394  }
3395
3396  // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3397  if (VT.is64BitVector() && EltSz == 32)
3398    return false;
3399
3400  return true;
3401}
3402
3403static bool isVZIPMask(const SmallVectorImpl<int> &M, EVT VT,
3404                       unsigned &WhichResult) {
3405  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3406  if (EltSz == 64)
3407    return false;
3408
3409  unsigned NumElts = VT.getVectorNumElements();
3410  WhichResult = (M[0] == 0 ? 0 : 1);
3411  unsigned Idx = WhichResult * NumElts / 2;
3412  for (unsigned i = 0; i != NumElts; i += 2) {
3413    if ((M[i] >= 0 && (unsigned) M[i] != Idx) ||
3414        (M[i+1] >= 0 && (unsigned) M[i+1] != Idx + NumElts))
3415      return false;
3416    Idx += 1;
3417  }
3418
3419  // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3420  if (VT.is64BitVector() && EltSz == 32)
3421    return false;
3422
3423  return true;
3424}
3425
3426/// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
3427/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
3428/// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
3429static bool isVZIP_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
3430                                unsigned &WhichResult) {
3431  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3432  if (EltSz == 64)
3433    return false;
3434
3435  unsigned NumElts = VT.getVectorNumElements();
3436  WhichResult = (M[0] == 0 ? 0 : 1);
3437  unsigned Idx = WhichResult * NumElts / 2;
3438  for (unsigned i = 0; i != NumElts; i += 2) {
3439    if ((M[i] >= 0 && (unsigned) M[i] != Idx) ||
3440        (M[i+1] >= 0 && (unsigned) M[i+1] != Idx))
3441      return false;
3442    Idx += 1;
3443  }
3444
3445  // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3446  if (VT.is64BitVector() && EltSz == 32)
3447    return false;
3448
3449  return true;
3450}
3451
3452// If N is an integer constant that can be moved into a register in one
3453// instruction, return an SDValue of such a constant (will become a MOV
3454// instruction).  Otherwise return null.
3455static SDValue IsSingleInstrConstant(SDValue N, SelectionDAG &DAG,
3456                                     const ARMSubtarget *ST, DebugLoc dl) {
3457  uint64_t Val;
3458  if (!isa<ConstantSDNode>(N))
3459    return SDValue();
3460  Val = cast<ConstantSDNode>(N)->getZExtValue();
3461
3462  if (ST->isThumb1Only()) {
3463    if (Val <= 255 || ~Val <= 255)
3464      return DAG.getConstant(Val, MVT::i32);
3465  } else {
3466    if (ARM_AM::getSOImmVal(Val) != -1 || ARM_AM::getSOImmVal(~Val) != -1)
3467      return DAG.getConstant(Val, MVT::i32);
3468  }
3469  return SDValue();
3470}
3471
3472// If this is a case we can't handle, return null and let the default
3473// expansion code take care of it.
3474static SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
3475                                 const ARMSubtarget *ST) {
3476  BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
3477  DebugLoc dl = Op.getDebugLoc();
3478  EVT VT = Op.getValueType();
3479
3480  APInt SplatBits, SplatUndef;
3481  unsigned SplatBitSize;
3482  bool HasAnyUndefs;
3483  if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
3484    if (SplatBitSize <= 64) {
3485      // Check if an immediate VMOV works.
3486      EVT VmovVT;
3487      SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
3488                                      SplatUndef.getZExtValue(), SplatBitSize,
3489                                      DAG, VmovVT, VT.is128BitVector(),
3490                                      VMOVModImm);
3491      if (Val.getNode()) {
3492        SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, Val);
3493        return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vmov);
3494      }
3495
3496      // Try an immediate VMVN.
3497      uint64_t NegatedImm = (SplatBits.getZExtValue() ^
3498                             ((1LL << SplatBitSize) - 1));
3499      Val = isNEONModifiedImm(NegatedImm,
3500                                      SplatUndef.getZExtValue(), SplatBitSize,
3501                                      DAG, VmovVT, VT.is128BitVector(),
3502                                      VMVNModImm);
3503      if (Val.getNode()) {
3504        SDValue Vmov = DAG.getNode(ARMISD::VMVNIMM, dl, VmovVT, Val);
3505        return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vmov);
3506      }
3507    }
3508  }
3509
3510  // Scan through the operands to see if only one value is used.
3511  unsigned NumElts = VT.getVectorNumElements();
3512  bool isOnlyLowElement = true;
3513  bool usesOnlyOneValue = true;
3514  bool isConstant = true;
3515  SDValue Value;
3516  for (unsigned i = 0; i < NumElts; ++i) {
3517    SDValue V = Op.getOperand(i);
3518    if (V.getOpcode() == ISD::UNDEF)
3519      continue;
3520    if (i > 0)
3521      isOnlyLowElement = false;
3522    if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
3523      isConstant = false;
3524
3525    if (!Value.getNode())
3526      Value = V;
3527    else if (V != Value)
3528      usesOnlyOneValue = false;
3529  }
3530
3531  if (!Value.getNode())
3532    return DAG.getUNDEF(VT);
3533
3534  if (isOnlyLowElement)
3535    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
3536
3537  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
3538
3539  // Use VDUP for non-constant splats.  For f32 constant splats, reduce to
3540  // i32 and try again.
3541  if (usesOnlyOneValue && EltSize <= 32) {
3542    if (!isConstant)
3543      return DAG.getNode(ARMISD::VDUP, dl, VT, Value);
3544    if (VT.getVectorElementType().isFloatingPoint()) {
3545      SmallVector<SDValue, 8> Ops;
3546      for (unsigned i = 0; i < NumElts; ++i)
3547        Ops.push_back(DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32,
3548                                  Op.getOperand(i)));
3549      SDValue Val = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, &Ops[0],
3550                                NumElts);
3551      Val = LowerBUILD_VECTOR(Val, DAG, ST);
3552      if (Val.getNode())
3553        return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Val);
3554    }
3555    SDValue Val = IsSingleInstrConstant(Value, DAG, ST, dl);
3556    if (Val.getNode())
3557      return DAG.getNode(ARMISD::VDUP, dl, VT, Val);
3558  }
3559
3560  // If all elements are constants and the case above didn't get hit, fall back
3561  // to the default expansion, which will generate a load from the constant
3562  // pool.
3563  if (isConstant)
3564    return SDValue();
3565
3566  // Vectors with 32- or 64-bit elements can be built by directly assigning
3567  // the subregisters.  Lower it to an ARMISD::BUILD_VECTOR so the operands
3568  // will be legalized.
3569  if (EltSize >= 32) {
3570    // Do the expansion with floating-point types, since that is what the VFP
3571    // registers are defined to use, and since i64 is not legal.
3572    EVT EltVT = EVT::getFloatingPointVT(EltSize);
3573    EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
3574    SmallVector<SDValue, 8> Ops;
3575    for (unsigned i = 0; i < NumElts; ++i)
3576      Ops.push_back(DAG.getNode(ISD::BIT_CONVERT, dl, EltVT, Op.getOperand(i)));
3577    SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts);
3578    return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Val);
3579  }
3580
3581  return SDValue();
3582}
3583
3584/// isShuffleMaskLegal - Targets can use this to indicate that they only
3585/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
3586/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
3587/// are assumed to be legal.
3588bool
3589ARMTargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
3590                                      EVT VT) const {
3591  if (VT.getVectorNumElements() == 4 &&
3592      (VT.is128BitVector() || VT.is64BitVector())) {
3593    unsigned PFIndexes[4];
3594    for (unsigned i = 0; i != 4; ++i) {
3595      if (M[i] < 0)
3596        PFIndexes[i] = 8;
3597      else
3598        PFIndexes[i] = M[i];
3599    }
3600
3601    // Compute the index in the perfect shuffle table.
3602    unsigned PFTableIndex =
3603      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
3604    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
3605    unsigned Cost = (PFEntry >> 30);
3606
3607    if (Cost <= 4)
3608      return true;
3609  }
3610
3611  bool ReverseVEXT;
3612  unsigned Imm, WhichResult;
3613
3614  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
3615  return (EltSize >= 32 ||
3616          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
3617          isVREVMask(M, VT, 64) ||
3618          isVREVMask(M, VT, 32) ||
3619          isVREVMask(M, VT, 16) ||
3620          isVEXTMask(M, VT, ReverseVEXT, Imm) ||
3621          isVTRNMask(M, VT, WhichResult) ||
3622          isVUZPMask(M, VT, WhichResult) ||
3623          isVZIPMask(M, VT, WhichResult) ||
3624          isVTRN_v_undef_Mask(M, VT, WhichResult) ||
3625          isVUZP_v_undef_Mask(M, VT, WhichResult) ||
3626          isVZIP_v_undef_Mask(M, VT, WhichResult));
3627}
3628
3629/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
3630/// the specified operations to build the shuffle.
3631static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
3632                                      SDValue RHS, SelectionDAG &DAG,
3633                                      DebugLoc dl) {
3634  unsigned OpNum = (PFEntry >> 26) & 0x0F;
3635  unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
3636  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
3637
3638  enum {
3639    OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
3640    OP_VREV,
3641    OP_VDUP0,
3642    OP_VDUP1,
3643    OP_VDUP2,
3644    OP_VDUP3,
3645    OP_VEXT1,
3646    OP_VEXT2,
3647    OP_VEXT3,
3648    OP_VUZPL, // VUZP, left result
3649    OP_VUZPR, // VUZP, right result
3650    OP_VZIPL, // VZIP, left result
3651    OP_VZIPR, // VZIP, right result
3652    OP_VTRNL, // VTRN, left result
3653    OP_VTRNR  // VTRN, right result
3654  };
3655
3656  if (OpNum == OP_COPY) {
3657    if (LHSID == (1*9+2)*9+3) return LHS;
3658    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
3659    return RHS;
3660  }
3661
3662  SDValue OpLHS, OpRHS;
3663  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
3664  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
3665  EVT VT = OpLHS.getValueType();
3666
3667  switch (OpNum) {
3668  default: llvm_unreachable("Unknown shuffle opcode!");
3669  case OP_VREV:
3670    return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS);
3671  case OP_VDUP0:
3672  case OP_VDUP1:
3673  case OP_VDUP2:
3674  case OP_VDUP3:
3675    return DAG.getNode(ARMISD::VDUPLANE, dl, VT,
3676                       OpLHS, DAG.getConstant(OpNum-OP_VDUP0, MVT::i32));
3677  case OP_VEXT1:
3678  case OP_VEXT2:
3679  case OP_VEXT3:
3680    return DAG.getNode(ARMISD::VEXT, dl, VT,
3681                       OpLHS, OpRHS,
3682                       DAG.getConstant(OpNum-OP_VEXT1+1, MVT::i32));
3683  case OP_VUZPL:
3684  case OP_VUZPR:
3685    return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
3686                       OpLHS, OpRHS).getValue(OpNum-OP_VUZPL);
3687  case OP_VZIPL:
3688  case OP_VZIPR:
3689    return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
3690                       OpLHS, OpRHS).getValue(OpNum-OP_VZIPL);
3691  case OP_VTRNL:
3692  case OP_VTRNR:
3693    return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
3694                       OpLHS, OpRHS).getValue(OpNum-OP_VTRNL);
3695  }
3696}
3697
3698static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
3699  SDValue V1 = Op.getOperand(0);
3700  SDValue V2 = Op.getOperand(1);
3701  DebugLoc dl = Op.getDebugLoc();
3702  EVT VT = Op.getValueType();
3703  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
3704  SmallVector<int, 8> ShuffleMask;
3705
3706  // Convert shuffles that are directly supported on NEON to target-specific
3707  // DAG nodes, instead of keeping them as shuffles and matching them again
3708  // during code selection.  This is more efficient and avoids the possibility
3709  // of inconsistencies between legalization and selection.
3710  // FIXME: floating-point vectors should be canonicalized to integer vectors
3711  // of the same time so that they get CSEd properly.
3712  SVN->getMask(ShuffleMask);
3713
3714  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
3715  if (EltSize <= 32) {
3716    if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0], VT)) {
3717      int Lane = SVN->getSplatIndex();
3718      // If this is undef splat, generate it via "just" vdup, if possible.
3719      if (Lane == -1) Lane = 0;
3720
3721      if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
3722        return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
3723      }
3724      return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1,
3725                         DAG.getConstant(Lane, MVT::i32));
3726    }
3727
3728    bool ReverseVEXT;
3729    unsigned Imm;
3730    if (isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) {
3731      if (ReverseVEXT)
3732        std::swap(V1, V2);
3733      return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2,
3734                         DAG.getConstant(Imm, MVT::i32));
3735    }
3736
3737    if (isVREVMask(ShuffleMask, VT, 64))
3738      return DAG.getNode(ARMISD::VREV64, dl, VT, V1);
3739    if (isVREVMask(ShuffleMask, VT, 32))
3740      return DAG.getNode(ARMISD::VREV32, dl, VT, V1);
3741    if (isVREVMask(ShuffleMask, VT, 16))
3742      return DAG.getNode(ARMISD::VREV16, dl, VT, V1);
3743
3744    // Check for Neon shuffles that modify both input vectors in place.
3745    // If both results are used, i.e., if there are two shuffles with the same
3746    // source operands and with masks corresponding to both results of one of
3747    // these operations, DAG memoization will ensure that a single node is
3748    // used for both shuffles.
3749    unsigned WhichResult;
3750    if (isVTRNMask(ShuffleMask, VT, WhichResult))
3751      return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
3752                         V1, V2).getValue(WhichResult);
3753    if (isVUZPMask(ShuffleMask, VT, WhichResult))
3754      return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
3755                         V1, V2).getValue(WhichResult);
3756    if (isVZIPMask(ShuffleMask, VT, WhichResult))
3757      return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
3758                         V1, V2).getValue(WhichResult);
3759
3760    if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult))
3761      return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
3762                         V1, V1).getValue(WhichResult);
3763    if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult))
3764      return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
3765                         V1, V1).getValue(WhichResult);
3766    if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult))
3767      return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
3768                         V1, V1).getValue(WhichResult);
3769  }
3770
3771  // If the shuffle is not directly supported and it has 4 elements, use
3772  // the PerfectShuffle-generated table to synthesize it from other shuffles.
3773  unsigned NumElts = VT.getVectorNumElements();
3774  if (NumElts == 4) {
3775    unsigned PFIndexes[4];
3776    for (unsigned i = 0; i != 4; ++i) {
3777      if (ShuffleMask[i] < 0)
3778        PFIndexes[i] = 8;
3779      else
3780        PFIndexes[i] = ShuffleMask[i];
3781    }
3782
3783    // Compute the index in the perfect shuffle table.
3784    unsigned PFTableIndex =
3785      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
3786    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
3787    unsigned Cost = (PFEntry >> 30);
3788
3789    if (Cost <= 4)
3790      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
3791  }
3792
3793  // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs.
3794  if (EltSize >= 32) {
3795    // Do the expansion with floating-point types, since that is what the VFP
3796    // registers are defined to use, and since i64 is not legal.
3797    EVT EltVT = EVT::getFloatingPointVT(EltSize);
3798    EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
3799    V1 = DAG.getNode(ISD::BIT_CONVERT, dl, VecVT, V1);
3800    V2 = DAG.getNode(ISD::BIT_CONVERT, dl, VecVT, V2);
3801    SmallVector<SDValue, 8> Ops;
3802    for (unsigned i = 0; i < NumElts; ++i) {
3803      if (ShuffleMask[i] < 0)
3804        Ops.push_back(DAG.getUNDEF(EltVT));
3805      else
3806        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
3807                                  ShuffleMask[i] < (int)NumElts ? V1 : V2,
3808                                  DAG.getConstant(ShuffleMask[i] & (NumElts-1),
3809                                                  MVT::i32)));
3810    }
3811    SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts);
3812    return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Val);
3813  }
3814
3815  return SDValue();
3816}
3817
3818static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
3819  // EXTRACT_VECTOR_ELT is legal only for immediate indexes.
3820  SDValue Lane = Op.getOperand(1);
3821  if (!isa<ConstantSDNode>(Lane))
3822    return SDValue();
3823
3824  SDValue Vec = Op.getOperand(0);
3825  if (Op.getValueType() == MVT::i32 &&
3826      Vec.getValueType().getVectorElementType().getSizeInBits() < 32) {
3827    DebugLoc dl = Op.getDebugLoc();
3828    return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
3829  }
3830
3831  return Op;
3832}
3833
3834static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
3835  // The only time a CONCAT_VECTORS operation can have legal types is when
3836  // two 64-bit vectors are concatenated to a 128-bit vector.
3837  assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 &&
3838         "unexpected CONCAT_VECTORS");
3839  DebugLoc dl = Op.getDebugLoc();
3840  SDValue Val = DAG.getUNDEF(MVT::v2f64);
3841  SDValue Op0 = Op.getOperand(0);
3842  SDValue Op1 = Op.getOperand(1);
3843  if (Op0.getOpcode() != ISD::UNDEF)
3844    Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
3845                      DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f64, Op0),
3846                      DAG.getIntPtrConstant(0));
3847  if (Op1.getOpcode() != ISD::UNDEF)
3848    Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
3849                      DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f64, Op1),
3850                      DAG.getIntPtrConstant(1));
3851  return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Val);
3852}
3853
3854/// SkipExtension - For a node that is either a SIGN_EXTEND, ZERO_EXTEND, or
3855/// an extending load, return the unextended value.
3856static SDValue SkipExtension(SDNode *N, SelectionDAG &DAG) {
3857  if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
3858    return N->getOperand(0);
3859  LoadSDNode *LD = cast<LoadSDNode>(N);
3860  return DAG.getLoad(LD->getMemoryVT(), N->getDebugLoc(), LD->getChain(),
3861                     LD->getBasePtr(), LD->getPointerInfo(), LD->isVolatile(),
3862                     LD->isNonTemporal(), LD->getAlignment());
3863}
3864
3865static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
3866  // Multiplications are only custom-lowered for 128-bit vectors so that
3867  // VMULL can be detected.  Otherwise v2i64 multiplications are not legal.
3868  EVT VT = Op.getValueType();
3869  assert(VT.is128BitVector() && "unexpected type for custom-lowering ISD::MUL");
3870  SDNode *N0 = Op.getOperand(0).getNode();
3871  SDNode *N1 = Op.getOperand(1).getNode();
3872  unsigned NewOpc = 0;
3873  if ((N0->getOpcode() == ISD::SIGN_EXTEND || ISD::isSEXTLoad(N0)) &&
3874      (N1->getOpcode() == ISD::SIGN_EXTEND || ISD::isSEXTLoad(N1))) {
3875    NewOpc = ARMISD::VMULLs;
3876  } else if ((N0->getOpcode() == ISD::ZERO_EXTEND || ISD::isZEXTLoad(N0)) &&
3877             (N1->getOpcode() == ISD::ZERO_EXTEND || ISD::isZEXTLoad(N1))) {
3878    NewOpc = ARMISD::VMULLu;
3879  } else if (VT == MVT::v2i64) {
3880    // Fall through to expand this.  It is not legal.
3881    return SDValue();
3882  } else {
3883    // Other vector multiplications are legal.
3884    return Op;
3885  }
3886
3887  // Legalize to a VMULL instruction.
3888  DebugLoc DL = Op.getDebugLoc();
3889  SDValue Op0 = SkipExtension(N0, DAG);
3890  SDValue Op1 = SkipExtension(N1, DAG);
3891
3892  assert(Op0.getValueType().is64BitVector() &&
3893         Op1.getValueType().is64BitVector() &&
3894         "unexpected types for extended operands to VMULL");
3895  return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
3896}
3897
3898SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
3899  switch (Op.getOpcode()) {
3900  default: llvm_unreachable("Don't know how to custom lower this!");
3901  case ISD::ConstantPool:  return LowerConstantPool(Op, DAG);
3902  case ISD::BlockAddress:  return LowerBlockAddress(Op, DAG);
3903  case ISD::GlobalAddress:
3904    return Subtarget->isTargetDarwin() ? LowerGlobalAddressDarwin(Op, DAG) :
3905      LowerGlobalAddressELF(Op, DAG);
3906  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
3907  case ISD::SELECT:        return LowerSELECT(Op, DAG);
3908  case ISD::SELECT_CC:     return LowerSELECT_CC(Op, DAG);
3909  case ISD::BR_CC:         return LowerBR_CC(Op, DAG);
3910  case ISD::BR_JT:         return LowerBR_JT(Op, DAG);
3911  case ISD::VASTART:       return LowerVASTART(Op, DAG);
3912  case ISD::MEMBARRIER:    return LowerMEMBARRIER(Op, DAG, Subtarget);
3913  case ISD::PREFETCH:      return LowerPREFETCH(Op, DAG, Subtarget);
3914  case ISD::SINT_TO_FP:
3915  case ISD::UINT_TO_FP:    return LowerINT_TO_FP(Op, DAG);
3916  case ISD::FP_TO_SINT:
3917  case ISD::FP_TO_UINT:    return LowerFP_TO_INT(Op, DAG);
3918  case ISD::FCOPYSIGN:     return LowerFCOPYSIGN(Op, DAG);
3919  case ISD::RETURNADDR:    return LowerRETURNADDR(Op, DAG);
3920  case ISD::FRAMEADDR:     return LowerFRAMEADDR(Op, DAG);
3921  case ISD::GLOBAL_OFFSET_TABLE: return LowerGLOBAL_OFFSET_TABLE(Op, DAG);
3922  case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG);
3923  case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG);
3924  case ISD::EH_SJLJ_DISPATCHSETUP: return LowerEH_SJLJ_DISPATCHSETUP(Op, DAG);
3925  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG,
3926                                                               Subtarget);
3927  case ISD::BIT_CONVERT:   return ExpandBIT_CONVERT(Op.getNode(), DAG);
3928  case ISD::SHL:
3929  case ISD::SRL:
3930  case ISD::SRA:           return LowerShift(Op.getNode(), DAG, Subtarget);
3931  case ISD::SHL_PARTS:     return LowerShiftLeftParts(Op, DAG);
3932  case ISD::SRL_PARTS:
3933  case ISD::SRA_PARTS:     return LowerShiftRightParts(Op, DAG);
3934  case ISD::CTTZ:          return LowerCTTZ(Op.getNode(), DAG, Subtarget);
3935  case ISD::VSETCC:        return LowerVSETCC(Op, DAG);
3936  case ISD::BUILD_VECTOR:  return LowerBUILD_VECTOR(Op, DAG, Subtarget);
3937  case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
3938  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
3939  case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
3940  case ISD::FLT_ROUNDS_:   return LowerFLT_ROUNDS_(Op, DAG);
3941  case ISD::MUL:           return LowerMUL(Op, DAG);
3942  }
3943  return SDValue();
3944}
3945
3946/// ReplaceNodeResults - Replace the results of node with an illegal result
3947/// type with new values built out of custom code.
3948void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
3949                                           SmallVectorImpl<SDValue>&Results,
3950                                           SelectionDAG &DAG) const {
3951  SDValue Res;
3952  switch (N->getOpcode()) {
3953  default:
3954    llvm_unreachable("Don't know how to custom expand this!");
3955    break;
3956  case ISD::BIT_CONVERT:
3957    Res = ExpandBIT_CONVERT(N, DAG);
3958    break;
3959  case ISD::SRL:
3960  case ISD::SRA:
3961    Res = LowerShift(N, DAG, Subtarget);
3962    break;
3963  }
3964  if (Res.getNode())
3965    Results.push_back(Res);
3966}
3967
3968//===----------------------------------------------------------------------===//
3969//                           ARM Scheduler Hooks
3970//===----------------------------------------------------------------------===//
3971
3972MachineBasicBlock *
3973ARMTargetLowering::EmitAtomicCmpSwap(MachineInstr *MI,
3974                                     MachineBasicBlock *BB,
3975                                     unsigned Size) const {
3976  unsigned dest    = MI->getOperand(0).getReg();
3977  unsigned ptr     = MI->getOperand(1).getReg();
3978  unsigned oldval  = MI->getOperand(2).getReg();
3979  unsigned newval  = MI->getOperand(3).getReg();
3980  unsigned scratch = BB->getParent()->getRegInfo()
3981    .createVirtualRegister(ARM::GPRRegisterClass);
3982  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
3983  DebugLoc dl = MI->getDebugLoc();
3984  bool isThumb2 = Subtarget->isThumb2();
3985
3986  unsigned ldrOpc, strOpc;
3987  switch (Size) {
3988  default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
3989  case 1:
3990    ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
3991    strOpc = isThumb2 ? ARM::t2LDREXB : ARM::STREXB;
3992    break;
3993  case 2:
3994    ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
3995    strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
3996    break;
3997  case 4:
3998    ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
3999    strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
4000    break;
4001  }
4002
4003  MachineFunction *MF = BB->getParent();
4004  const BasicBlock *LLVM_BB = BB->getBasicBlock();
4005  MachineFunction::iterator It = BB;
4006  ++It; // insert the new blocks after the current block
4007
4008  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
4009  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
4010  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
4011  MF->insert(It, loop1MBB);
4012  MF->insert(It, loop2MBB);
4013  MF->insert(It, exitMBB);
4014
4015  // Transfer the remainder of BB and its successor edges to exitMBB.
4016  exitMBB->splice(exitMBB->begin(), BB,
4017                  llvm::next(MachineBasicBlock::iterator(MI)),
4018                  BB->end());
4019  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
4020
4021  //  thisMBB:
4022  //   ...
4023  //   fallthrough --> loop1MBB
4024  BB->addSuccessor(loop1MBB);
4025
4026  // loop1MBB:
4027  //   ldrex dest, [ptr]
4028  //   cmp dest, oldval
4029  //   bne exitMBB
4030  BB = loop1MBB;
4031  AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr));
4032  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
4033                 .addReg(dest).addReg(oldval));
4034  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
4035    .addMBB(exitMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
4036  BB->addSuccessor(loop2MBB);
4037  BB->addSuccessor(exitMBB);
4038
4039  // loop2MBB:
4040  //   strex scratch, newval, [ptr]
4041  //   cmp scratch, #0
4042  //   bne loop1MBB
4043  BB = loop2MBB;
4044  AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(newval)
4045                 .addReg(ptr));
4046  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
4047                 .addReg(scratch).addImm(0));
4048  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
4049    .addMBB(loop1MBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
4050  BB->addSuccessor(loop1MBB);
4051  BB->addSuccessor(exitMBB);
4052
4053  //  exitMBB:
4054  //   ...
4055  BB = exitMBB;
4056
4057  MI->eraseFromParent();   // The instruction is gone now.
4058
4059  return BB;
4060}
4061
4062MachineBasicBlock *
4063ARMTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
4064                                    unsigned Size, unsigned BinOpcode) const {
4065  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
4066  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4067
4068  const BasicBlock *LLVM_BB = BB->getBasicBlock();
4069  MachineFunction *MF = BB->getParent();
4070  MachineFunction::iterator It = BB;
4071  ++It;
4072
4073  unsigned dest = MI->getOperand(0).getReg();
4074  unsigned ptr = MI->getOperand(1).getReg();
4075  unsigned incr = MI->getOperand(2).getReg();
4076  DebugLoc dl = MI->getDebugLoc();
4077
4078  bool isThumb2 = Subtarget->isThumb2();
4079  unsigned ldrOpc, strOpc;
4080  switch (Size) {
4081  default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
4082  case 1:
4083    ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
4084    strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
4085    break;
4086  case 2:
4087    ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
4088    strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
4089    break;
4090  case 4:
4091    ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
4092    strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
4093    break;
4094  }
4095
4096  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
4097  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
4098  MF->insert(It, loopMBB);
4099  MF->insert(It, exitMBB);
4100
4101  // Transfer the remainder of BB and its successor edges to exitMBB.
4102  exitMBB->splice(exitMBB->begin(), BB,
4103                  llvm::next(MachineBasicBlock::iterator(MI)),
4104                  BB->end());
4105  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
4106
4107  MachineRegisterInfo &RegInfo = MF->getRegInfo();
4108  unsigned scratch = RegInfo.createVirtualRegister(ARM::GPRRegisterClass);
4109  unsigned scratch2 = (!BinOpcode) ? incr :
4110    RegInfo.createVirtualRegister(ARM::GPRRegisterClass);
4111
4112  //  thisMBB:
4113  //   ...
4114  //   fallthrough --> loopMBB
4115  BB->addSuccessor(loopMBB);
4116
4117  //  loopMBB:
4118  //   ldrex dest, ptr
4119  //   <binop> scratch2, dest, incr
4120  //   strex scratch, scratch2, ptr
4121  //   cmp scratch, #0
4122  //   bne- loopMBB
4123  //   fallthrough --> exitMBB
4124  BB = loopMBB;
4125  AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr));
4126  if (BinOpcode) {
4127    // operand order needs to go the other way for NAND
4128    if (BinOpcode == ARM::BICrr || BinOpcode == ARM::t2BICrr)
4129      AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
4130                     addReg(incr).addReg(dest)).addReg(0);
4131    else
4132      AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
4133                     addReg(dest).addReg(incr)).addReg(0);
4134  }
4135
4136  AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(scratch2)
4137                 .addReg(ptr));
4138  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
4139                 .addReg(scratch).addImm(0));
4140  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
4141    .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
4142
4143  BB->addSuccessor(loopMBB);
4144  BB->addSuccessor(exitMBB);
4145
4146  //  exitMBB:
4147  //   ...
4148  BB = exitMBB;
4149
4150  MI->eraseFromParent();   // The instruction is gone now.
4151
4152  return BB;
4153}
4154
4155static
4156MachineBasicBlock *OtherSucc(MachineBasicBlock *MBB, MachineBasicBlock *Succ) {
4157  for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
4158       E = MBB->succ_end(); I != E; ++I)
4159    if (*I != Succ)
4160      return *I;
4161  llvm_unreachable("Expecting a BB with two successors!");
4162}
4163
4164MachineBasicBlock *
4165ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
4166                                               MachineBasicBlock *BB) const {
4167  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4168  DebugLoc dl = MI->getDebugLoc();
4169  bool isThumb2 = Subtarget->isThumb2();
4170  switch (MI->getOpcode()) {
4171  default:
4172    MI->dump();
4173    llvm_unreachable("Unexpected instr type to insert");
4174
4175  case ARM::ATOMIC_LOAD_ADD_I8:
4176     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
4177  case ARM::ATOMIC_LOAD_ADD_I16:
4178     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
4179  case ARM::ATOMIC_LOAD_ADD_I32:
4180     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
4181
4182  case ARM::ATOMIC_LOAD_AND_I8:
4183     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
4184  case ARM::ATOMIC_LOAD_AND_I16:
4185     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
4186  case ARM::ATOMIC_LOAD_AND_I32:
4187     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
4188
4189  case ARM::ATOMIC_LOAD_OR_I8:
4190     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
4191  case ARM::ATOMIC_LOAD_OR_I16:
4192     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
4193  case ARM::ATOMIC_LOAD_OR_I32:
4194     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
4195
4196  case ARM::ATOMIC_LOAD_XOR_I8:
4197     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
4198  case ARM::ATOMIC_LOAD_XOR_I16:
4199     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
4200  case ARM::ATOMIC_LOAD_XOR_I32:
4201     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
4202
4203  case ARM::ATOMIC_LOAD_NAND_I8:
4204     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
4205  case ARM::ATOMIC_LOAD_NAND_I16:
4206     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
4207  case ARM::ATOMIC_LOAD_NAND_I32:
4208     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
4209
4210  case ARM::ATOMIC_LOAD_SUB_I8:
4211     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
4212  case ARM::ATOMIC_LOAD_SUB_I16:
4213     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
4214  case ARM::ATOMIC_LOAD_SUB_I32:
4215     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
4216
4217  case ARM::ATOMIC_SWAP_I8:  return EmitAtomicBinary(MI, BB, 1, 0);
4218  case ARM::ATOMIC_SWAP_I16: return EmitAtomicBinary(MI, BB, 2, 0);
4219  case ARM::ATOMIC_SWAP_I32: return EmitAtomicBinary(MI, BB, 4, 0);
4220
4221  case ARM::ATOMIC_CMP_SWAP_I8:  return EmitAtomicCmpSwap(MI, BB, 1);
4222  case ARM::ATOMIC_CMP_SWAP_I16: return EmitAtomicCmpSwap(MI, BB, 2);
4223  case ARM::ATOMIC_CMP_SWAP_I32: return EmitAtomicCmpSwap(MI, BB, 4);
4224
4225  case ARM::tMOVCCr_pseudo: {
4226    // To "insert" a SELECT_CC instruction, we actually have to insert the
4227    // diamond control-flow pattern.  The incoming instruction knows the
4228    // destination vreg to set, the condition code register to branch on, the
4229    // true/false values to select between, and a branch opcode to use.
4230    const BasicBlock *LLVM_BB = BB->getBasicBlock();
4231    MachineFunction::iterator It = BB;
4232    ++It;
4233
4234    //  thisMBB:
4235    //  ...
4236    //   TrueVal = ...
4237    //   cmpTY ccX, r1, r2
4238    //   bCC copy1MBB
4239    //   fallthrough --> copy0MBB
4240    MachineBasicBlock *thisMBB  = BB;
4241    MachineFunction *F = BB->getParent();
4242    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
4243    MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
4244    F->insert(It, copy0MBB);
4245    F->insert(It, sinkMBB);
4246
4247    // Transfer the remainder of BB and its successor edges to sinkMBB.
4248    sinkMBB->splice(sinkMBB->begin(), BB,
4249                    llvm::next(MachineBasicBlock::iterator(MI)),
4250                    BB->end());
4251    sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
4252
4253    BB->addSuccessor(copy0MBB);
4254    BB->addSuccessor(sinkMBB);
4255
4256    BuildMI(BB, dl, TII->get(ARM::tBcc)).addMBB(sinkMBB)
4257      .addImm(MI->getOperand(3).getImm()).addReg(MI->getOperand(4).getReg());
4258
4259    //  copy0MBB:
4260    //   %FalseValue = ...
4261    //   # fallthrough to sinkMBB
4262    BB = copy0MBB;
4263
4264    // Update machine-CFG edges
4265    BB->addSuccessor(sinkMBB);
4266
4267    //  sinkMBB:
4268    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
4269    //  ...
4270    BB = sinkMBB;
4271    BuildMI(*BB, BB->begin(), dl,
4272            TII->get(ARM::PHI), MI->getOperand(0).getReg())
4273      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
4274      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
4275
4276    MI->eraseFromParent();   // The pseudo instruction is gone now.
4277    return BB;
4278  }
4279
4280  case ARM::BCCi64:
4281  case ARM::BCCZi64: {
4282    // Compare both parts that make up the double comparison separately for
4283    // equality.
4284    bool RHSisZero = MI->getOpcode() == ARM::BCCZi64;
4285
4286    unsigned LHS1 = MI->getOperand(1).getReg();
4287    unsigned LHS2 = MI->getOperand(2).getReg();
4288    if (RHSisZero) {
4289      AddDefaultPred(BuildMI(BB, dl,
4290                             TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
4291                     .addReg(LHS1).addImm(0));
4292      BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
4293        .addReg(LHS2).addImm(0)
4294        .addImm(ARMCC::EQ).addReg(ARM::CPSR);
4295    } else {
4296      unsigned RHS1 = MI->getOperand(3).getReg();
4297      unsigned RHS2 = MI->getOperand(4).getReg();
4298      AddDefaultPred(BuildMI(BB, dl,
4299                             TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
4300                     .addReg(LHS1).addReg(RHS1));
4301      BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
4302        .addReg(LHS2).addReg(RHS2)
4303        .addImm(ARMCC::EQ).addReg(ARM::CPSR);
4304    }
4305
4306    MachineBasicBlock *destMBB = MI->getOperand(RHSisZero ? 3 : 5).getMBB();
4307    MachineBasicBlock *exitMBB = OtherSucc(BB, destMBB);
4308    if (MI->getOperand(0).getImm() == ARMCC::NE)
4309      std::swap(destMBB, exitMBB);
4310
4311    BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
4312      .addMBB(destMBB).addImm(ARMCC::EQ).addReg(ARM::CPSR);
4313    BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2B : ARM::B))
4314      .addMBB(exitMBB);
4315
4316    MI->eraseFromParent();   // The pseudo instruction is gone now.
4317    return BB;
4318  }
4319  }
4320}
4321
4322//===----------------------------------------------------------------------===//
4323//                           ARM Optimization Hooks
4324//===----------------------------------------------------------------------===//
4325
4326static
4327SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
4328                            TargetLowering::DAGCombinerInfo &DCI) {
4329  SelectionDAG &DAG = DCI.DAG;
4330  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4331  EVT VT = N->getValueType(0);
4332  unsigned Opc = N->getOpcode();
4333  bool isSlctCC = Slct.getOpcode() == ISD::SELECT_CC;
4334  SDValue LHS = isSlctCC ? Slct.getOperand(2) : Slct.getOperand(1);
4335  SDValue RHS = isSlctCC ? Slct.getOperand(3) : Slct.getOperand(2);
4336  ISD::CondCode CC = ISD::SETCC_INVALID;
4337
4338  if (isSlctCC) {
4339    CC = cast<CondCodeSDNode>(Slct.getOperand(4))->get();
4340  } else {
4341    SDValue CCOp = Slct.getOperand(0);
4342    if (CCOp.getOpcode() == ISD::SETCC)
4343      CC = cast<CondCodeSDNode>(CCOp.getOperand(2))->get();
4344  }
4345
4346  bool DoXform = false;
4347  bool InvCC = false;
4348  assert ((Opc == ISD::ADD || (Opc == ISD::SUB && Slct == N->getOperand(1))) &&
4349          "Bad input!");
4350
4351  if (LHS.getOpcode() == ISD::Constant &&
4352      cast<ConstantSDNode>(LHS)->isNullValue()) {
4353    DoXform = true;
4354  } else if (CC != ISD::SETCC_INVALID &&
4355             RHS.getOpcode() == ISD::Constant &&
4356             cast<ConstantSDNode>(RHS)->isNullValue()) {
4357    std::swap(LHS, RHS);
4358    SDValue Op0 = Slct.getOperand(0);
4359    EVT OpVT = isSlctCC ? Op0.getValueType() :
4360                          Op0.getOperand(0).getValueType();
4361    bool isInt = OpVT.isInteger();
4362    CC = ISD::getSetCCInverse(CC, isInt);
4363
4364    if (!TLI.isCondCodeLegal(CC, OpVT))
4365      return SDValue();         // Inverse operator isn't legal.
4366
4367    DoXform = true;
4368    InvCC = true;
4369  }
4370
4371  if (DoXform) {
4372    SDValue Result = DAG.getNode(Opc, RHS.getDebugLoc(), VT, OtherOp, RHS);
4373    if (isSlctCC)
4374      return DAG.getSelectCC(N->getDebugLoc(), OtherOp, Result,
4375                             Slct.getOperand(0), Slct.getOperand(1), CC);
4376    SDValue CCOp = Slct.getOperand(0);
4377    if (InvCC)
4378      CCOp = DAG.getSetCC(Slct.getDebugLoc(), CCOp.getValueType(),
4379                          CCOp.getOperand(0), CCOp.getOperand(1), CC);
4380    return DAG.getNode(ISD::SELECT, N->getDebugLoc(), VT,
4381                       CCOp, OtherOp, Result);
4382  }
4383  return SDValue();
4384}
4385
4386/// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
4387/// operands N0 and N1.  This is a helper for PerformADDCombine that is
4388/// called with the default operands, and if that fails, with commuted
4389/// operands.
4390static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
4391                                         TargetLowering::DAGCombinerInfo &DCI) {
4392  // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
4393  if (N0.getOpcode() == ISD::SELECT && N0.getNode()->hasOneUse()) {
4394    SDValue Result = combineSelectAndUse(N, N0, N1, DCI);
4395    if (Result.getNode()) return Result;
4396  }
4397  return SDValue();
4398}
4399
4400/// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
4401///
4402static SDValue PerformADDCombine(SDNode *N,
4403                                 TargetLowering::DAGCombinerInfo &DCI) {
4404  SDValue N0 = N->getOperand(0);
4405  SDValue N1 = N->getOperand(1);
4406
4407  // First try with the default operand order.
4408  SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI);
4409  if (Result.getNode())
4410    return Result;
4411
4412  // If that didn't work, try again with the operands commuted.
4413  return PerformADDCombineWithOperands(N, N1, N0, DCI);
4414}
4415
4416/// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
4417///
4418static SDValue PerformSUBCombine(SDNode *N,
4419                                 TargetLowering::DAGCombinerInfo &DCI) {
4420  SDValue N0 = N->getOperand(0);
4421  SDValue N1 = N->getOperand(1);
4422
4423  // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
4424  if (N1.getOpcode() == ISD::SELECT && N1.getNode()->hasOneUse()) {
4425    SDValue Result = combineSelectAndUse(N, N1, N0, DCI);
4426    if (Result.getNode()) return Result;
4427  }
4428
4429  return SDValue();
4430}
4431
4432static SDValue PerformMULCombine(SDNode *N,
4433                                 TargetLowering::DAGCombinerInfo &DCI,
4434                                 const ARMSubtarget *Subtarget) {
4435  SelectionDAG &DAG = DCI.DAG;
4436
4437  if (Subtarget->isThumb1Only())
4438    return SDValue();
4439
4440  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
4441    return SDValue();
4442
4443  EVT VT = N->getValueType(0);
4444  if (VT != MVT::i32)
4445    return SDValue();
4446
4447  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
4448  if (!C)
4449    return SDValue();
4450
4451  uint64_t MulAmt = C->getZExtValue();
4452  unsigned ShiftAmt = CountTrailingZeros_64(MulAmt);
4453  ShiftAmt = ShiftAmt & (32 - 1);
4454  SDValue V = N->getOperand(0);
4455  DebugLoc DL = N->getDebugLoc();
4456
4457  SDValue Res;
4458  MulAmt >>= ShiftAmt;
4459  if (isPowerOf2_32(MulAmt - 1)) {
4460    // (mul x, 2^N + 1) => (add (shl x, N), x)
4461    Res = DAG.getNode(ISD::ADD, DL, VT,
4462                      V, DAG.getNode(ISD::SHL, DL, VT,
4463                                     V, DAG.getConstant(Log2_32(MulAmt-1),
4464                                                        MVT::i32)));
4465  } else if (isPowerOf2_32(MulAmt + 1)) {
4466    // (mul x, 2^N - 1) => (sub (shl x, N), x)
4467    Res = DAG.getNode(ISD::SUB, DL, VT,
4468                      DAG.getNode(ISD::SHL, DL, VT,
4469                                  V, DAG.getConstant(Log2_32(MulAmt+1),
4470                                                     MVT::i32)),
4471                                                     V);
4472  } else
4473    return SDValue();
4474
4475  if (ShiftAmt != 0)
4476    Res = DAG.getNode(ISD::SHL, DL, VT, Res,
4477                      DAG.getConstant(ShiftAmt, MVT::i32));
4478
4479  // Do not add new nodes to DAG combiner worklist.
4480  DCI.CombineTo(N, Res, false);
4481  return SDValue();
4482}
4483
4484static SDValue PerformANDCombine(SDNode *N,
4485                                TargetLowering::DAGCombinerInfo &DCI) {
4486  // Attempt to use immediate-form VBIC
4487  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
4488  DebugLoc dl = N->getDebugLoc();
4489  EVT VT = N->getValueType(0);
4490  SelectionDAG &DAG = DCI.DAG;
4491
4492  APInt SplatBits, SplatUndef;
4493  unsigned SplatBitSize;
4494  bool HasAnyUndefs;
4495  if (BVN &&
4496      BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
4497    if (SplatBitSize <= 64) {
4498      EVT VbicVT;
4499      SDValue Val = isNEONModifiedImm((~SplatBits).getZExtValue(),
4500                                      SplatUndef.getZExtValue(), SplatBitSize,
4501                                      DAG, VbicVT, VT.is128BitVector(),
4502                                      OtherModImm);
4503      if (Val.getNode()) {
4504        SDValue Input =
4505          DAG.getNode(ISD::BIT_CONVERT, dl, VbicVT, N->getOperand(0));
4506        SDValue Vbic = DAG.getNode(ARMISD::VBICIMM, dl, VbicVT, Input, Val);
4507        return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vbic);
4508      }
4509    }
4510  }
4511
4512  return SDValue();
4513}
4514
4515/// PerformORCombine - Target-specific dag combine xforms for ISD::OR
4516static SDValue PerformORCombine(SDNode *N,
4517                                TargetLowering::DAGCombinerInfo &DCI,
4518                                const ARMSubtarget *Subtarget) {
4519  // Attempt to use immediate-form VORR
4520  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
4521  DebugLoc dl = N->getDebugLoc();
4522  EVT VT = N->getValueType(0);
4523  SelectionDAG &DAG = DCI.DAG;
4524
4525  APInt SplatBits, SplatUndef;
4526  unsigned SplatBitSize;
4527  bool HasAnyUndefs;
4528  if (BVN && Subtarget->hasNEON() &&
4529      BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
4530    if (SplatBitSize <= 64) {
4531      EVT VorrVT;
4532      SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
4533                                      SplatUndef.getZExtValue(), SplatBitSize,
4534                                      DAG, VorrVT, VT.is128BitVector(),
4535                                      OtherModImm);
4536      if (Val.getNode()) {
4537        SDValue Input =
4538          DAG.getNode(ISD::BIT_CONVERT, dl, VorrVT, N->getOperand(0));
4539        SDValue Vorr = DAG.getNode(ARMISD::VORRIMM, dl, VorrVT, Input, Val);
4540        return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vorr);
4541      }
4542    }
4543  }
4544
4545  // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when
4546  // reasonable.
4547
4548  // BFI is only available on V6T2+
4549  if (Subtarget->isThumb1Only() || !Subtarget->hasV6T2Ops())
4550    return SDValue();
4551
4552  SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
4553  DebugLoc DL = N->getDebugLoc();
4554  // 1) or (and A, mask), val => ARMbfi A, val, mask
4555  //      iff (val & mask) == val
4556  //
4557  // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
4558  //  2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2)
4559  //          && CountPopulation_32(mask) == CountPopulation_32(~mask2)
4560  //  2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2)
4561  //          && CountPopulation_32(mask) == CountPopulation_32(~mask2)
4562  //  (i.e., copy a bitfield value into another bitfield of the same width)
4563  if (N0.getOpcode() != ISD::AND)
4564    return SDValue();
4565
4566  if (VT != MVT::i32)
4567    return SDValue();
4568
4569
4570  // The value and the mask need to be constants so we can verify this is
4571  // actually a bitfield set. If the mask is 0xffff, we can do better
4572  // via a movt instruction, so don't use BFI in that case.
4573  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
4574  if (!C)
4575    return SDValue();
4576  unsigned Mask = C->getZExtValue();
4577  if (Mask == 0xffff)
4578    return SDValue();
4579  SDValue Res;
4580  // Case (1): or (and A, mask), val => ARMbfi A, val, mask
4581  if ((C = dyn_cast<ConstantSDNode>(N1))) {
4582    unsigned Val = C->getZExtValue();
4583    if (!ARM::isBitFieldInvertedMask(Mask) || (Val & ~Mask) != Val)
4584      return SDValue();
4585    Val >>= CountTrailingZeros_32(~Mask);
4586
4587    Res = DAG.getNode(ARMISD::BFI, DL, VT, N0.getOperand(0),
4588                      DAG.getConstant(Val, MVT::i32),
4589                      DAG.getConstant(Mask, MVT::i32));
4590
4591    // Do not add new nodes to DAG combiner worklist.
4592    DCI.CombineTo(N, Res, false);
4593  } else if (N1.getOpcode() == ISD::AND) {
4594    // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
4595    C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
4596    if (!C)
4597      return SDValue();
4598    unsigned Mask2 = C->getZExtValue();
4599
4600    if (ARM::isBitFieldInvertedMask(Mask) &&
4601        ARM::isBitFieldInvertedMask(~Mask2) &&
4602        (CountPopulation_32(Mask) == CountPopulation_32(~Mask2))) {
4603      // The pack halfword instruction works better for masks that fit it,
4604      // so use that when it's available.
4605      if (Subtarget->hasT2ExtractPack() &&
4606          (Mask == 0xffff || Mask == 0xffff0000))
4607        return SDValue();
4608      // 2a
4609      unsigned lsb = CountTrailingZeros_32(Mask2);
4610      Res = DAG.getNode(ISD::SRL, DL, VT, N1.getOperand(0),
4611                        DAG.getConstant(lsb, MVT::i32));
4612      Res = DAG.getNode(ARMISD::BFI, DL, VT, N0.getOperand(0), Res,
4613                        DAG.getConstant(Mask, MVT::i32));
4614      // Do not add new nodes to DAG combiner worklist.
4615      DCI.CombineTo(N, Res, false);
4616    } else if (ARM::isBitFieldInvertedMask(~Mask) &&
4617               ARM::isBitFieldInvertedMask(Mask2) &&
4618               (CountPopulation_32(~Mask) == CountPopulation_32(Mask2))) {
4619      // The pack halfword instruction works better for masks that fit it,
4620      // so use that when it's available.
4621      if (Subtarget->hasT2ExtractPack() &&
4622          (Mask2 == 0xffff || Mask2 == 0xffff0000))
4623        return SDValue();
4624      // 2b
4625      unsigned lsb = CountTrailingZeros_32(Mask);
4626      Res = DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0),
4627                        DAG.getConstant(lsb, MVT::i32));
4628      Res = DAG.getNode(ARMISD::BFI, DL, VT, N1.getOperand(0), Res,
4629                                DAG.getConstant(Mask2, MVT::i32));
4630      // Do not add new nodes to DAG combiner worklist.
4631      DCI.CombineTo(N, Res, false);
4632    }
4633  }
4634
4635  return SDValue();
4636}
4637
4638/// PerformVMOVRRDCombine - Target-specific dag combine xforms for
4639/// ARMISD::VMOVRRD.
4640static SDValue PerformVMOVRRDCombine(SDNode *N,
4641                                     TargetLowering::DAGCombinerInfo &DCI) {
4642  // vmovrrd(vmovdrr x, y) -> x,y
4643  SDValue InDouble = N->getOperand(0);
4644  if (InDouble.getOpcode() == ARMISD::VMOVDRR)
4645    return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
4646  return SDValue();
4647}
4648
4649/// PerformVMOVDRRCombine - Target-specific dag combine xforms for
4650/// ARMISD::VMOVDRR.  This is also used for BUILD_VECTORs with 2 operands.
4651static SDValue PerformVMOVDRRCombine(SDNode *N, SelectionDAG &DAG) {
4652  // N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X)
4653  SDValue Op0 = N->getOperand(0);
4654  SDValue Op1 = N->getOperand(1);
4655  if (Op0.getOpcode() == ISD::BIT_CONVERT)
4656    Op0 = Op0.getOperand(0);
4657  if (Op1.getOpcode() == ISD::BIT_CONVERT)
4658    Op1 = Op1.getOperand(0);
4659  if (Op0.getOpcode() == ARMISD::VMOVRRD &&
4660      Op0.getNode() == Op1.getNode() &&
4661      Op0.getResNo() == 0 && Op1.getResNo() == 1)
4662    return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(),
4663                       N->getValueType(0), Op0.getOperand(0));
4664  return SDValue();
4665}
4666
4667/// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for
4668/// ISD::BUILD_VECTOR.
4669static SDValue PerformBUILD_VECTORCombine(SDNode *N, SelectionDAG &DAG) {
4670  // build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X):
4671  // VMOVRRD is introduced when legalizing i64 types.  It forces the i64 value
4672  // into a pair of GPRs, which is fine when the value is used as a scalar,
4673  // but if the i64 value is converted to a vector, we need to undo the VMOVRRD.
4674  if (N->getNumOperands() == 2)
4675    return PerformVMOVDRRCombine(N, DAG);
4676
4677  return SDValue();
4678}
4679
4680/// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for
4681/// ISD::VECTOR_SHUFFLE.
4682static SDValue PerformVECTOR_SHUFFLECombine(SDNode *N, SelectionDAG &DAG) {
4683  // The LLVM shufflevector instruction does not require the shuffle mask
4684  // length to match the operand vector length, but ISD::VECTOR_SHUFFLE does
4685  // have that requirement.  When translating to ISD::VECTOR_SHUFFLE, if the
4686  // operands do not match the mask length, they are extended by concatenating
4687  // them with undef vectors.  That is probably the right thing for other
4688  // targets, but for NEON it is better to concatenate two double-register
4689  // size vector operands into a single quad-register size vector.  Do that
4690  // transformation here:
4691  //   shuffle(concat(v1, undef), concat(v2, undef)) ->
4692  //   shuffle(concat(v1, v2), undef)
4693  SDValue Op0 = N->getOperand(0);
4694  SDValue Op1 = N->getOperand(1);
4695  if (Op0.getOpcode() != ISD::CONCAT_VECTORS ||
4696      Op1.getOpcode() != ISD::CONCAT_VECTORS ||
4697      Op0.getNumOperands() != 2 ||
4698      Op1.getNumOperands() != 2)
4699    return SDValue();
4700  SDValue Concat0Op1 = Op0.getOperand(1);
4701  SDValue Concat1Op1 = Op1.getOperand(1);
4702  if (Concat0Op1.getOpcode() != ISD::UNDEF ||
4703      Concat1Op1.getOpcode() != ISD::UNDEF)
4704    return SDValue();
4705  // Skip the transformation if any of the types are illegal.
4706  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4707  EVT VT = N->getValueType(0);
4708  if (!TLI.isTypeLegal(VT) ||
4709      !TLI.isTypeLegal(Concat0Op1.getValueType()) ||
4710      !TLI.isTypeLegal(Concat1Op1.getValueType()))
4711    return SDValue();
4712
4713  SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, N->getDebugLoc(), VT,
4714                                  Op0.getOperand(0), Op1.getOperand(0));
4715  // Translate the shuffle mask.
4716  SmallVector<int, 16> NewMask;
4717  unsigned NumElts = VT.getVectorNumElements();
4718  unsigned HalfElts = NumElts/2;
4719  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
4720  for (unsigned n = 0; n < NumElts; ++n) {
4721    int MaskElt = SVN->getMaskElt(n);
4722    int NewElt = -1;
4723    if (MaskElt < (int)HalfElts)
4724      NewElt = MaskElt;
4725    else if (MaskElt >= (int)NumElts && MaskElt < (int)(NumElts + HalfElts))
4726      NewElt = HalfElts + MaskElt - NumElts;
4727    NewMask.push_back(NewElt);
4728  }
4729  return DAG.getVectorShuffle(VT, N->getDebugLoc(), NewConcat,
4730                              DAG.getUNDEF(VT), NewMask.data());
4731}
4732
4733/// PerformVDUPLANECombine - Target-specific dag combine xforms for
4734/// ARMISD::VDUPLANE.
4735static SDValue PerformVDUPLANECombine(SDNode *N, SelectionDAG &DAG) {
4736  // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is
4737  // redundant.
4738  SDValue Op = N->getOperand(0);
4739  EVT VT = N->getValueType(0);
4740
4741  // Ignore bit_converts.
4742  while (Op.getOpcode() == ISD::BIT_CONVERT)
4743    Op = Op.getOperand(0);
4744  if (Op.getOpcode() != ARMISD::VMOVIMM && Op.getOpcode() != ARMISD::VMVNIMM)
4745    return SDValue();
4746
4747  // Make sure the VMOV element size is not bigger than the VDUPLANE elements.
4748  unsigned EltSize = Op.getValueType().getVectorElementType().getSizeInBits();
4749  // The canonical VMOV for a zero vector uses a 32-bit element size.
4750  unsigned Imm = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4751  unsigned EltBits;
4752  if (ARM_AM::decodeNEONModImm(Imm, EltBits) == 0)
4753    EltSize = 8;
4754  if (EltSize > VT.getVectorElementType().getSizeInBits())
4755    return SDValue();
4756
4757  return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(), VT, Op);
4758}
4759
4760/// getVShiftImm - Check if this is a valid build_vector for the immediate
4761/// operand of a vector shift operation, where all the elements of the
4762/// build_vector must have the same constant integer value.
4763static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
4764  // Ignore bit_converts.
4765  while (Op.getOpcode() == ISD::BIT_CONVERT)
4766    Op = Op.getOperand(0);
4767  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
4768  APInt SplatBits, SplatUndef;
4769  unsigned SplatBitSize;
4770  bool HasAnyUndefs;
4771  if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
4772                                      HasAnyUndefs, ElementBits) ||
4773      SplatBitSize > ElementBits)
4774    return false;
4775  Cnt = SplatBits.getSExtValue();
4776  return true;
4777}
4778
4779/// isVShiftLImm - Check if this is a valid build_vector for the immediate
4780/// operand of a vector shift left operation.  That value must be in the range:
4781///   0 <= Value < ElementBits for a left shift; or
4782///   0 <= Value <= ElementBits for a long left shift.
4783static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
4784  assert(VT.isVector() && "vector shift count is not a vector type");
4785  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
4786  if (! getVShiftImm(Op, ElementBits, Cnt))
4787    return false;
4788  return (Cnt >= 0 && (isLong ? Cnt-1 : Cnt) < ElementBits);
4789}
4790
4791/// isVShiftRImm - Check if this is a valid build_vector for the immediate
4792/// operand of a vector shift right operation.  For a shift opcode, the value
4793/// is positive, but for an intrinsic the value count must be negative. The
4794/// absolute value must be in the range:
4795///   1 <= |Value| <= ElementBits for a right shift; or
4796///   1 <= |Value| <= ElementBits/2 for a narrow right shift.
4797static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
4798                         int64_t &Cnt) {
4799  assert(VT.isVector() && "vector shift count is not a vector type");
4800  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
4801  if (! getVShiftImm(Op, ElementBits, Cnt))
4802    return false;
4803  if (isIntrinsic)
4804    Cnt = -Cnt;
4805  return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits/2 : ElementBits));
4806}
4807
4808/// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
4809static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
4810  unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
4811  switch (IntNo) {
4812  default:
4813    // Don't do anything for most intrinsics.
4814    break;
4815
4816  // Vector shifts: check for immediate versions and lower them.
4817  // Note: This is done during DAG combining instead of DAG legalizing because
4818  // the build_vectors for 64-bit vector element shift counts are generally
4819  // not legal, and it is hard to see their values after they get legalized to
4820  // loads from a constant pool.
4821  case Intrinsic::arm_neon_vshifts:
4822  case Intrinsic::arm_neon_vshiftu:
4823  case Intrinsic::arm_neon_vshiftls:
4824  case Intrinsic::arm_neon_vshiftlu:
4825  case Intrinsic::arm_neon_vshiftn:
4826  case Intrinsic::arm_neon_vrshifts:
4827  case Intrinsic::arm_neon_vrshiftu:
4828  case Intrinsic::arm_neon_vrshiftn:
4829  case Intrinsic::arm_neon_vqshifts:
4830  case Intrinsic::arm_neon_vqshiftu:
4831  case Intrinsic::arm_neon_vqshiftsu:
4832  case Intrinsic::arm_neon_vqshiftns:
4833  case Intrinsic::arm_neon_vqshiftnu:
4834  case Intrinsic::arm_neon_vqshiftnsu:
4835  case Intrinsic::arm_neon_vqrshiftns:
4836  case Intrinsic::arm_neon_vqrshiftnu:
4837  case Intrinsic::arm_neon_vqrshiftnsu: {
4838    EVT VT = N->getOperand(1).getValueType();
4839    int64_t Cnt;
4840    unsigned VShiftOpc = 0;
4841
4842    switch (IntNo) {
4843    case Intrinsic::arm_neon_vshifts:
4844    case Intrinsic::arm_neon_vshiftu:
4845      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) {
4846        VShiftOpc = ARMISD::VSHL;
4847        break;
4848      }
4849      if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) {
4850        VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ?
4851                     ARMISD::VSHRs : ARMISD::VSHRu);
4852        break;
4853      }
4854      return SDValue();
4855
4856    case Intrinsic::arm_neon_vshiftls:
4857    case Intrinsic::arm_neon_vshiftlu:
4858      if (isVShiftLImm(N->getOperand(2), VT, true, Cnt))
4859        break;
4860      llvm_unreachable("invalid shift count for vshll intrinsic");
4861
4862    case Intrinsic::arm_neon_vrshifts:
4863    case Intrinsic::arm_neon_vrshiftu:
4864      if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt))
4865        break;
4866      return SDValue();
4867
4868    case Intrinsic::arm_neon_vqshifts:
4869    case Intrinsic::arm_neon_vqshiftu:
4870      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
4871        break;
4872      return SDValue();
4873
4874    case Intrinsic::arm_neon_vqshiftsu:
4875      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
4876        break;
4877      llvm_unreachable("invalid shift count for vqshlu intrinsic");
4878
4879    case Intrinsic::arm_neon_vshiftn:
4880    case Intrinsic::arm_neon_vrshiftn:
4881    case Intrinsic::arm_neon_vqshiftns:
4882    case Intrinsic::arm_neon_vqshiftnu:
4883    case Intrinsic::arm_neon_vqshiftnsu:
4884    case Intrinsic::arm_neon_vqrshiftns:
4885    case Intrinsic::arm_neon_vqrshiftnu:
4886    case Intrinsic::arm_neon_vqrshiftnsu:
4887      // Narrowing shifts require an immediate right shift.
4888      if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt))
4889        break;
4890      llvm_unreachable("invalid shift count for narrowing vector shift "
4891                       "intrinsic");
4892
4893    default:
4894      llvm_unreachable("unhandled vector shift");
4895    }
4896
4897    switch (IntNo) {
4898    case Intrinsic::arm_neon_vshifts:
4899    case Intrinsic::arm_neon_vshiftu:
4900      // Opcode already set above.
4901      break;
4902    case Intrinsic::arm_neon_vshiftls:
4903    case Intrinsic::arm_neon_vshiftlu:
4904      if (Cnt == VT.getVectorElementType().getSizeInBits())
4905        VShiftOpc = ARMISD::VSHLLi;
4906      else
4907        VShiftOpc = (IntNo == Intrinsic::arm_neon_vshiftls ?
4908                     ARMISD::VSHLLs : ARMISD::VSHLLu);
4909      break;
4910    case Intrinsic::arm_neon_vshiftn:
4911      VShiftOpc = ARMISD::VSHRN; break;
4912    case Intrinsic::arm_neon_vrshifts:
4913      VShiftOpc = ARMISD::VRSHRs; break;
4914    case Intrinsic::arm_neon_vrshiftu:
4915      VShiftOpc = ARMISD::VRSHRu; break;
4916    case Intrinsic::arm_neon_vrshiftn:
4917      VShiftOpc = ARMISD::VRSHRN; break;
4918    case Intrinsic::arm_neon_vqshifts:
4919      VShiftOpc = ARMISD::VQSHLs; break;
4920    case Intrinsic::arm_neon_vqshiftu:
4921      VShiftOpc = ARMISD::VQSHLu; break;
4922    case Intrinsic::arm_neon_vqshiftsu:
4923      VShiftOpc = ARMISD::VQSHLsu; break;
4924    case Intrinsic::arm_neon_vqshiftns:
4925      VShiftOpc = ARMISD::VQSHRNs; break;
4926    case Intrinsic::arm_neon_vqshiftnu:
4927      VShiftOpc = ARMISD::VQSHRNu; break;
4928    case Intrinsic::arm_neon_vqshiftnsu:
4929      VShiftOpc = ARMISD::VQSHRNsu; break;
4930    case Intrinsic::arm_neon_vqrshiftns:
4931      VShiftOpc = ARMISD::VQRSHRNs; break;
4932    case Intrinsic::arm_neon_vqrshiftnu:
4933      VShiftOpc = ARMISD::VQRSHRNu; break;
4934    case Intrinsic::arm_neon_vqrshiftnsu:
4935      VShiftOpc = ARMISD::VQRSHRNsu; break;
4936    }
4937
4938    return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
4939                       N->getOperand(1), DAG.getConstant(Cnt, MVT::i32));
4940  }
4941
4942  case Intrinsic::arm_neon_vshiftins: {
4943    EVT VT = N->getOperand(1).getValueType();
4944    int64_t Cnt;
4945    unsigned VShiftOpc = 0;
4946
4947    if (isVShiftLImm(N->getOperand(3), VT, false, Cnt))
4948      VShiftOpc = ARMISD::VSLI;
4949    else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt))
4950      VShiftOpc = ARMISD::VSRI;
4951    else {
4952      llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
4953    }
4954
4955    return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
4956                       N->getOperand(1), N->getOperand(2),
4957                       DAG.getConstant(Cnt, MVT::i32));
4958  }
4959
4960  case Intrinsic::arm_neon_vqrshifts:
4961  case Intrinsic::arm_neon_vqrshiftu:
4962    // No immediate versions of these to check for.
4963    break;
4964  }
4965
4966  return SDValue();
4967}
4968
4969/// PerformShiftCombine - Checks for immediate versions of vector shifts and
4970/// lowers them.  As with the vector shift intrinsics, this is done during DAG
4971/// combining instead of DAG legalizing because the build_vectors for 64-bit
4972/// vector element shift counts are generally not legal, and it is hard to see
4973/// their values after they get legalized to loads from a constant pool.
4974static SDValue PerformShiftCombine(SDNode *N, SelectionDAG &DAG,
4975                                   const ARMSubtarget *ST) {
4976  EVT VT = N->getValueType(0);
4977
4978  // Nothing to be done for scalar shifts.
4979  if (! VT.isVector())
4980    return SDValue();
4981
4982  assert(ST->hasNEON() && "unexpected vector shift");
4983  int64_t Cnt;
4984
4985  switch (N->getOpcode()) {
4986  default: llvm_unreachable("unexpected shift opcode");
4987
4988  case ISD::SHL:
4989    if (isVShiftLImm(N->getOperand(1), VT, false, Cnt))
4990      return DAG.getNode(ARMISD::VSHL, N->getDebugLoc(), VT, N->getOperand(0),
4991                         DAG.getConstant(Cnt, MVT::i32));
4992    break;
4993
4994  case ISD::SRA:
4995  case ISD::SRL:
4996    if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
4997      unsigned VShiftOpc = (N->getOpcode() == ISD::SRA ?
4998                            ARMISD::VSHRs : ARMISD::VSHRu);
4999      return DAG.getNode(VShiftOpc, N->getDebugLoc(), VT, N->getOperand(0),
5000                         DAG.getConstant(Cnt, MVT::i32));
5001    }
5002  }
5003  return SDValue();
5004}
5005
5006/// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
5007/// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
5008static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG,
5009                                    const ARMSubtarget *ST) {
5010  SDValue N0 = N->getOperand(0);
5011
5012  // Check for sign- and zero-extensions of vector extract operations of 8-
5013  // and 16-bit vector elements.  NEON supports these directly.  They are
5014  // handled during DAG combining because type legalization will promote them
5015  // to 32-bit types and it is messy to recognize the operations after that.
5016  if (ST->hasNEON() && N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
5017    SDValue Vec = N0.getOperand(0);
5018    SDValue Lane = N0.getOperand(1);
5019    EVT VT = N->getValueType(0);
5020    EVT EltVT = N0.getValueType();
5021    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5022
5023    if (VT == MVT::i32 &&
5024        (EltVT == MVT::i8 || EltVT == MVT::i16) &&
5025        TLI.isTypeLegal(Vec.getValueType()) &&
5026        isa<ConstantSDNode>(Lane)) {
5027
5028      unsigned Opc = 0;
5029      switch (N->getOpcode()) {
5030      default: llvm_unreachable("unexpected opcode");
5031      case ISD::SIGN_EXTEND:
5032        Opc = ARMISD::VGETLANEs;
5033        break;
5034      case ISD::ZERO_EXTEND:
5035      case ISD::ANY_EXTEND:
5036        Opc = ARMISD::VGETLANEu;
5037        break;
5038      }
5039      return DAG.getNode(Opc, N->getDebugLoc(), VT, Vec, Lane);
5040    }
5041  }
5042
5043  return SDValue();
5044}
5045
5046/// PerformSELECT_CCCombine - Target-specific DAG combining for ISD::SELECT_CC
5047/// to match f32 max/min patterns to use NEON vmax/vmin instructions.
5048static SDValue PerformSELECT_CCCombine(SDNode *N, SelectionDAG &DAG,
5049                                       const ARMSubtarget *ST) {
5050  // If the target supports NEON, try to use vmax/vmin instructions for f32
5051  // selects like "x < y ? x : y".  Unless the NoNaNsFPMath option is set,
5052  // be careful about NaNs:  NEON's vmax/vmin return NaN if either operand is
5053  // a NaN; only do the transformation when it matches that behavior.
5054
5055  // For now only do this when using NEON for FP operations; if using VFP, it
5056  // is not obvious that the benefit outweighs the cost of switching to the
5057  // NEON pipeline.
5058  if (!ST->hasNEON() || !ST->useNEONForSinglePrecisionFP() ||
5059      N->getValueType(0) != MVT::f32)
5060    return SDValue();
5061
5062  SDValue CondLHS = N->getOperand(0);
5063  SDValue CondRHS = N->getOperand(1);
5064  SDValue LHS = N->getOperand(2);
5065  SDValue RHS = N->getOperand(3);
5066  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
5067
5068  unsigned Opcode = 0;
5069  bool IsReversed;
5070  if (DAG.isEqualTo(LHS, CondLHS) && DAG.isEqualTo(RHS, CondRHS)) {
5071    IsReversed = false; // x CC y ? x : y
5072  } else if (DAG.isEqualTo(LHS, CondRHS) && DAG.isEqualTo(RHS, CondLHS)) {
5073    IsReversed = true ; // x CC y ? y : x
5074  } else {
5075    return SDValue();
5076  }
5077
5078  bool IsUnordered;
5079  switch (CC) {
5080  default: break;
5081  case ISD::SETOLT:
5082  case ISD::SETOLE:
5083  case ISD::SETLT:
5084  case ISD::SETLE:
5085  case ISD::SETULT:
5086  case ISD::SETULE:
5087    // If LHS is NaN, an ordered comparison will be false and the result will
5088    // be the RHS, but vmin(NaN, RHS) = NaN.  Avoid this by checking that LHS
5089    // != NaN.  Likewise, for unordered comparisons, check for RHS != NaN.
5090    IsUnordered = (CC == ISD::SETULT || CC == ISD::SETULE);
5091    if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
5092      break;
5093    // For less-than-or-equal comparisons, "+0 <= -0" will be true but vmin
5094    // will return -0, so vmin can only be used for unsafe math or if one of
5095    // the operands is known to be nonzero.
5096    if ((CC == ISD::SETLE || CC == ISD::SETOLE || CC == ISD::SETULE) &&
5097        !UnsafeFPMath &&
5098        !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
5099      break;
5100    Opcode = IsReversed ? ARMISD::FMAX : ARMISD::FMIN;
5101    break;
5102
5103  case ISD::SETOGT:
5104  case ISD::SETOGE:
5105  case ISD::SETGT:
5106  case ISD::SETGE:
5107  case ISD::SETUGT:
5108  case ISD::SETUGE:
5109    // If LHS is NaN, an ordered comparison will be false and the result will
5110    // be the RHS, but vmax(NaN, RHS) = NaN.  Avoid this by checking that LHS
5111    // != NaN.  Likewise, for unordered comparisons, check for RHS != NaN.
5112    IsUnordered = (CC == ISD::SETUGT || CC == ISD::SETUGE);
5113    if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
5114      break;
5115    // For greater-than-or-equal comparisons, "-0 >= +0" will be true but vmax
5116    // will return +0, so vmax can only be used for unsafe math or if one of
5117    // the operands is known to be nonzero.
5118    if ((CC == ISD::SETGE || CC == ISD::SETOGE || CC == ISD::SETUGE) &&
5119        !UnsafeFPMath &&
5120        !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
5121      break;
5122    Opcode = IsReversed ? ARMISD::FMIN : ARMISD::FMAX;
5123    break;
5124  }
5125
5126  if (!Opcode)
5127    return SDValue();
5128  return DAG.getNode(Opcode, N->getDebugLoc(), N->getValueType(0), LHS, RHS);
5129}
5130
5131SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
5132                                             DAGCombinerInfo &DCI) const {
5133  switch (N->getOpcode()) {
5134  default: break;
5135  case ISD::ADD:        return PerformADDCombine(N, DCI);
5136  case ISD::SUB:        return PerformSUBCombine(N, DCI);
5137  case ISD::MUL:        return PerformMULCombine(N, DCI, Subtarget);
5138  case ISD::OR:         return PerformORCombine(N, DCI, Subtarget);
5139  case ISD::AND:        return PerformANDCombine(N, DCI);
5140  case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI);
5141  case ARMISD::VMOVDRR: return PerformVMOVDRRCombine(N, DCI.DAG);
5142  case ISD::BUILD_VECTOR: return PerformBUILD_VECTORCombine(N, DCI.DAG);
5143  case ISD::VECTOR_SHUFFLE: return PerformVECTOR_SHUFFLECombine(N, DCI.DAG);
5144  case ARMISD::VDUPLANE: return PerformVDUPLANECombine(N, DCI.DAG);
5145  case ISD::INTRINSIC_WO_CHAIN: return PerformIntrinsicCombine(N, DCI.DAG);
5146  case ISD::SHL:
5147  case ISD::SRA:
5148  case ISD::SRL:        return PerformShiftCombine(N, DCI.DAG, Subtarget);
5149  case ISD::SIGN_EXTEND:
5150  case ISD::ZERO_EXTEND:
5151  case ISD::ANY_EXTEND: return PerformExtendCombine(N, DCI.DAG, Subtarget);
5152  case ISD::SELECT_CC:  return PerformSELECT_CCCombine(N, DCI.DAG, Subtarget);
5153  }
5154  return SDValue();
5155}
5156
5157bool ARMTargetLowering::allowsUnalignedMemoryAccesses(EVT VT) const {
5158  if (!Subtarget->allowsUnalignedMem())
5159    return false;
5160
5161  switch (VT.getSimpleVT().SimpleTy) {
5162  default:
5163    return false;
5164  case MVT::i8:
5165  case MVT::i16:
5166  case MVT::i32:
5167    return true;
5168  // FIXME: VLD1 etc with standard alignment is legal.
5169  }
5170}
5171
5172static bool isLegalT1AddressImmediate(int64_t V, EVT VT) {
5173  if (V < 0)
5174    return false;
5175
5176  unsigned Scale = 1;
5177  switch (VT.getSimpleVT().SimpleTy) {
5178  default: return false;
5179  case MVT::i1:
5180  case MVT::i8:
5181    // Scale == 1;
5182    break;
5183  case MVT::i16:
5184    // Scale == 2;
5185    Scale = 2;
5186    break;
5187  case MVT::i32:
5188    // Scale == 4;
5189    Scale = 4;
5190    break;
5191  }
5192
5193  if ((V & (Scale - 1)) != 0)
5194    return false;
5195  V /= Scale;
5196  return V == (V & ((1LL << 5) - 1));
5197}
5198
5199static bool isLegalT2AddressImmediate(int64_t V, EVT VT,
5200                                      const ARMSubtarget *Subtarget) {
5201  bool isNeg = false;
5202  if (V < 0) {
5203    isNeg = true;
5204    V = - V;
5205  }
5206
5207  switch (VT.getSimpleVT().SimpleTy) {
5208  default: return false;
5209  case MVT::i1:
5210  case MVT::i8:
5211  case MVT::i16:
5212  case MVT::i32:
5213    // + imm12 or - imm8
5214    if (isNeg)
5215      return V == (V & ((1LL << 8) - 1));
5216    return V == (V & ((1LL << 12) - 1));
5217  case MVT::f32:
5218  case MVT::f64:
5219    // Same as ARM mode. FIXME: NEON?
5220    if (!Subtarget->hasVFP2())
5221      return false;
5222    if ((V & 3) != 0)
5223      return false;
5224    V >>= 2;
5225    return V == (V & ((1LL << 8) - 1));
5226  }
5227}
5228
5229/// isLegalAddressImmediate - Return true if the integer value can be used
5230/// as the offset of the target addressing mode for load / store of the
5231/// given type.
5232static bool isLegalAddressImmediate(int64_t V, EVT VT,
5233                                    const ARMSubtarget *Subtarget) {
5234  if (V == 0)
5235    return true;
5236
5237  if (!VT.isSimple())
5238    return false;
5239
5240  if (Subtarget->isThumb1Only())
5241    return isLegalT1AddressImmediate(V, VT);
5242  else if (Subtarget->isThumb2())
5243    return isLegalT2AddressImmediate(V, VT, Subtarget);
5244
5245  // ARM mode.
5246  if (V < 0)
5247    V = - V;
5248  switch (VT.getSimpleVT().SimpleTy) {
5249  default: return false;
5250  case MVT::i1:
5251  case MVT::i8:
5252  case MVT::i32:
5253    // +- imm12
5254    return V == (V & ((1LL << 12) - 1));
5255  case MVT::i16:
5256    // +- imm8
5257    return V == (V & ((1LL << 8) - 1));
5258  case MVT::f32:
5259  case MVT::f64:
5260    if (!Subtarget->hasVFP2()) // FIXME: NEON?
5261      return false;
5262    if ((V & 3) != 0)
5263      return false;
5264    V >>= 2;
5265    return V == (V & ((1LL << 8) - 1));
5266  }
5267}
5268
5269bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM,
5270                                                      EVT VT) const {
5271  int Scale = AM.Scale;
5272  if (Scale < 0)
5273    return false;
5274
5275  switch (VT.getSimpleVT().SimpleTy) {
5276  default: return false;
5277  case MVT::i1:
5278  case MVT::i8:
5279  case MVT::i16:
5280  case MVT::i32:
5281    if (Scale == 1)
5282      return true;
5283    // r + r << imm
5284    Scale = Scale & ~1;
5285    return Scale == 2 || Scale == 4 || Scale == 8;
5286  case MVT::i64:
5287    // r + r
5288    if (((unsigned)AM.HasBaseReg + Scale) <= 2)
5289      return true;
5290    return false;
5291  case MVT::isVoid:
5292    // Note, we allow "void" uses (basically, uses that aren't loads or
5293    // stores), because arm allows folding a scale into many arithmetic
5294    // operations.  This should be made more precise and revisited later.
5295
5296    // Allow r << imm, but the imm has to be a multiple of two.
5297    if (Scale & 1) return false;
5298    return isPowerOf2_32(Scale);
5299  }
5300}
5301
5302/// isLegalAddressingMode - Return true if the addressing mode represented
5303/// by AM is legal for this target, for a load/store of the specified type.
5304bool ARMTargetLowering::isLegalAddressingMode(const AddrMode &AM,
5305                                              const Type *Ty) const {
5306  EVT VT = getValueType(Ty, true);
5307  if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget))
5308    return false;
5309
5310  // Can never fold addr of global into load/store.
5311  if (AM.BaseGV)
5312    return false;
5313
5314  switch (AM.Scale) {
5315  case 0:  // no scale reg, must be "r+i" or "r", or "i".
5316    break;
5317  case 1:
5318    if (Subtarget->isThumb1Only())
5319      return false;
5320    // FALL THROUGH.
5321  default:
5322    // ARM doesn't support any R+R*scale+imm addr modes.
5323    if (AM.BaseOffs)
5324      return false;
5325
5326    if (!VT.isSimple())
5327      return false;
5328
5329    if (Subtarget->isThumb2())
5330      return isLegalT2ScaledAddressingMode(AM, VT);
5331
5332    int Scale = AM.Scale;
5333    switch (VT.getSimpleVT().SimpleTy) {
5334    default: return false;
5335    case MVT::i1:
5336    case MVT::i8:
5337    case MVT::i32:
5338      if (Scale < 0) Scale = -Scale;
5339      if (Scale == 1)
5340        return true;
5341      // r + r << imm
5342      return isPowerOf2_32(Scale & ~1);
5343    case MVT::i16:
5344    case MVT::i64:
5345      // r + r
5346      if (((unsigned)AM.HasBaseReg + Scale) <= 2)
5347        return true;
5348      return false;
5349
5350    case MVT::isVoid:
5351      // Note, we allow "void" uses (basically, uses that aren't loads or
5352      // stores), because arm allows folding a scale into many arithmetic
5353      // operations.  This should be made more precise and revisited later.
5354
5355      // Allow r << imm, but the imm has to be a multiple of two.
5356      if (Scale & 1) return false;
5357      return isPowerOf2_32(Scale);
5358    }
5359    break;
5360  }
5361  return true;
5362}
5363
5364/// isLegalICmpImmediate - Return true if the specified immediate is legal
5365/// icmp immediate, that is the target has icmp instructions which can compare
5366/// a register against the immediate without having to materialize the
5367/// immediate into a register.
5368bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
5369  if (!Subtarget->isThumb())
5370    return ARM_AM::getSOImmVal(Imm) != -1;
5371  if (Subtarget->isThumb2())
5372    return ARM_AM::getT2SOImmVal(Imm) != -1;
5373  return Imm >= 0 && Imm <= 255;
5374}
5375
5376static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT,
5377                                      bool isSEXTLoad, SDValue &Base,
5378                                      SDValue &Offset, bool &isInc,
5379                                      SelectionDAG &DAG) {
5380  if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
5381    return false;
5382
5383  if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
5384    // AddressingMode 3
5385    Base = Ptr->getOperand(0);
5386    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
5387      int RHSC = (int)RHS->getZExtValue();
5388      if (RHSC < 0 && RHSC > -256) {
5389        assert(Ptr->getOpcode() == ISD::ADD);
5390        isInc = false;
5391        Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
5392        return true;
5393      }
5394    }
5395    isInc = (Ptr->getOpcode() == ISD::ADD);
5396    Offset = Ptr->getOperand(1);
5397    return true;
5398  } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
5399    // AddressingMode 2
5400    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
5401      int RHSC = (int)RHS->getZExtValue();
5402      if (RHSC < 0 && RHSC > -0x1000) {
5403        assert(Ptr->getOpcode() == ISD::ADD);
5404        isInc = false;
5405        Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
5406        Base = Ptr->getOperand(0);
5407        return true;
5408      }
5409    }
5410
5411    if (Ptr->getOpcode() == ISD::ADD) {
5412      isInc = true;
5413      ARM_AM::ShiftOpc ShOpcVal= ARM_AM::getShiftOpcForNode(Ptr->getOperand(0));
5414      if (ShOpcVal != ARM_AM::no_shift) {
5415        Base = Ptr->getOperand(1);
5416        Offset = Ptr->getOperand(0);
5417      } else {
5418        Base = Ptr->getOperand(0);
5419        Offset = Ptr->getOperand(1);
5420      }
5421      return true;
5422    }
5423
5424    isInc = (Ptr->getOpcode() == ISD::ADD);
5425    Base = Ptr->getOperand(0);
5426    Offset = Ptr->getOperand(1);
5427    return true;
5428  }
5429
5430  // FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
5431  return false;
5432}
5433
5434static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT,
5435                                     bool isSEXTLoad, SDValue &Base,
5436                                     SDValue &Offset, bool &isInc,
5437                                     SelectionDAG &DAG) {
5438  if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
5439    return false;
5440
5441  Base = Ptr->getOperand(0);
5442  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
5443    int RHSC = (int)RHS->getZExtValue();
5444    if (RHSC < 0 && RHSC > -0x100) { // 8 bits.
5445      assert(Ptr->getOpcode() == ISD::ADD);
5446      isInc = false;
5447      Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
5448      return true;
5449    } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero.
5450      isInc = Ptr->getOpcode() == ISD::ADD;
5451      Offset = DAG.getConstant(RHSC, RHS->getValueType(0));
5452      return true;
5453    }
5454  }
5455
5456  return false;
5457}
5458
5459/// getPreIndexedAddressParts - returns true by value, base pointer and
5460/// offset pointer and addressing mode by reference if the node's address
5461/// can be legally represented as pre-indexed load / store address.
5462bool
5463ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
5464                                             SDValue &Offset,
5465                                             ISD::MemIndexedMode &AM,
5466                                             SelectionDAG &DAG) const {
5467  if (Subtarget->isThumb1Only())
5468    return false;
5469
5470  EVT VT;
5471  SDValue Ptr;
5472  bool isSEXTLoad = false;
5473  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
5474    Ptr = LD->getBasePtr();
5475    VT  = LD->getMemoryVT();
5476    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
5477  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
5478    Ptr = ST->getBasePtr();
5479    VT  = ST->getMemoryVT();
5480  } else
5481    return false;
5482
5483  bool isInc;
5484  bool isLegal = false;
5485  if (Subtarget->isThumb2())
5486    isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
5487                                       Offset, isInc, DAG);
5488  else
5489    isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
5490                                        Offset, isInc, DAG);
5491  if (!isLegal)
5492    return false;
5493
5494  AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
5495  return true;
5496}
5497
5498/// getPostIndexedAddressParts - returns true by value, base pointer and
5499/// offset pointer and addressing mode by reference if this node can be
5500/// combined with a load / store to form a post-indexed load / store.
5501bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
5502                                                   SDValue &Base,
5503                                                   SDValue &Offset,
5504                                                   ISD::MemIndexedMode &AM,
5505                                                   SelectionDAG &DAG) const {
5506  if (Subtarget->isThumb1Only())
5507    return false;
5508
5509  EVT VT;
5510  SDValue Ptr;
5511  bool isSEXTLoad = false;
5512  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
5513    VT  = LD->getMemoryVT();
5514    Ptr = LD->getBasePtr();
5515    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
5516  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
5517    VT  = ST->getMemoryVT();
5518    Ptr = ST->getBasePtr();
5519  } else
5520    return false;
5521
5522  bool isInc;
5523  bool isLegal = false;
5524  if (Subtarget->isThumb2())
5525    isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
5526                                       isInc, DAG);
5527  else
5528    isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
5529                                        isInc, DAG);
5530  if (!isLegal)
5531    return false;
5532
5533  if (Ptr != Base) {
5534    // Swap base ptr and offset to catch more post-index load / store when
5535    // it's legal. In Thumb2 mode, offset must be an immediate.
5536    if (Ptr == Offset && Op->getOpcode() == ISD::ADD &&
5537        !Subtarget->isThumb2())
5538      std::swap(Base, Offset);
5539
5540    // Post-indexed load / store update the base pointer.
5541    if (Ptr != Base)
5542      return false;
5543  }
5544
5545  AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
5546  return true;
5547}
5548
5549void ARMTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
5550                                                       const APInt &Mask,
5551                                                       APInt &KnownZero,
5552                                                       APInt &KnownOne,
5553                                                       const SelectionDAG &DAG,
5554                                                       unsigned Depth) const {
5555  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
5556  switch (Op.getOpcode()) {
5557  default: break;
5558  case ARMISD::CMOV: {
5559    // Bits are known zero/one if known on the LHS and RHS.
5560    DAG.ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
5561    if (KnownZero == 0 && KnownOne == 0) return;
5562
5563    APInt KnownZeroRHS, KnownOneRHS;
5564    DAG.ComputeMaskedBits(Op.getOperand(1), Mask,
5565                          KnownZeroRHS, KnownOneRHS, Depth+1);
5566    KnownZero &= KnownZeroRHS;
5567    KnownOne  &= KnownOneRHS;
5568    return;
5569  }
5570  }
5571}
5572
5573//===----------------------------------------------------------------------===//
5574//                           ARM Inline Assembly Support
5575//===----------------------------------------------------------------------===//
5576
5577/// getConstraintType - Given a constraint letter, return the type of
5578/// constraint it is for this target.
5579ARMTargetLowering::ConstraintType
5580ARMTargetLowering::getConstraintType(const std::string &Constraint) const {
5581  if (Constraint.size() == 1) {
5582    switch (Constraint[0]) {
5583    default:  break;
5584    case 'l': return C_RegisterClass;
5585    case 'w': return C_RegisterClass;
5586    }
5587  }
5588  return TargetLowering::getConstraintType(Constraint);
5589}
5590
5591/// Examine constraint type and operand type and determine a weight value.
5592/// This object must already have been set up with the operand type
5593/// and the current alternative constraint selected.
5594TargetLowering::ConstraintWeight
5595ARMTargetLowering::getSingleConstraintMatchWeight(
5596    AsmOperandInfo &info, const char *constraint) const {
5597  ConstraintWeight weight = CW_Invalid;
5598  Value *CallOperandVal = info.CallOperandVal;
5599    // If we don't have a value, we can't do a match,
5600    // but allow it at the lowest weight.
5601  if (CallOperandVal == NULL)
5602    return CW_Default;
5603  const Type *type = CallOperandVal->getType();
5604  // Look at the constraint type.
5605  switch (*constraint) {
5606  default:
5607    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
5608    break;
5609  case 'l':
5610    if (type->isIntegerTy()) {
5611      if (Subtarget->isThumb())
5612        weight = CW_SpecificReg;
5613      else
5614        weight = CW_Register;
5615    }
5616    break;
5617  case 'w':
5618    if (type->isFloatingPointTy())
5619      weight = CW_Register;
5620    break;
5621  }
5622  return weight;
5623}
5624
5625std::pair<unsigned, const TargetRegisterClass*>
5626ARMTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
5627                                                EVT VT) const {
5628  if (Constraint.size() == 1) {
5629    // GCC ARM Constraint Letters
5630    switch (Constraint[0]) {
5631    case 'l':
5632      if (Subtarget->isThumb())
5633        return std::make_pair(0U, ARM::tGPRRegisterClass);
5634      else
5635        return std::make_pair(0U, ARM::GPRRegisterClass);
5636    case 'r':
5637      return std::make_pair(0U, ARM::GPRRegisterClass);
5638    case 'w':
5639      if (VT == MVT::f32)
5640        return std::make_pair(0U, ARM::SPRRegisterClass);
5641      if (VT.getSizeInBits() == 64)
5642        return std::make_pair(0U, ARM::DPRRegisterClass);
5643      if (VT.getSizeInBits() == 128)
5644        return std::make_pair(0U, ARM::QPRRegisterClass);
5645      break;
5646    }
5647  }
5648  if (StringRef("{cc}").equals_lower(Constraint))
5649    return std::make_pair(unsigned(ARM::CPSR), ARM::CCRRegisterClass);
5650
5651  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
5652}
5653
5654std::vector<unsigned> ARMTargetLowering::
5655getRegClassForInlineAsmConstraint(const std::string &Constraint,
5656                                  EVT VT) const {
5657  if (Constraint.size() != 1)
5658    return std::vector<unsigned>();
5659
5660  switch (Constraint[0]) {      // GCC ARM Constraint Letters
5661  default: break;
5662  case 'l':
5663    return make_vector<unsigned>(ARM::R0, ARM::R1, ARM::R2, ARM::R3,
5664                                 ARM::R4, ARM::R5, ARM::R6, ARM::R7,
5665                                 0);
5666  case 'r':
5667    return make_vector<unsigned>(ARM::R0, ARM::R1, ARM::R2, ARM::R3,
5668                                 ARM::R4, ARM::R5, ARM::R6, ARM::R7,
5669                                 ARM::R8, ARM::R9, ARM::R10, ARM::R11,
5670                                 ARM::R12, ARM::LR, 0);
5671  case 'w':
5672    if (VT == MVT::f32)
5673      return make_vector<unsigned>(ARM::S0, ARM::S1, ARM::S2, ARM::S3,
5674                                   ARM::S4, ARM::S5, ARM::S6, ARM::S7,
5675                                   ARM::S8, ARM::S9, ARM::S10, ARM::S11,
5676                                   ARM::S12,ARM::S13,ARM::S14,ARM::S15,
5677                                   ARM::S16,ARM::S17,ARM::S18,ARM::S19,
5678                                   ARM::S20,ARM::S21,ARM::S22,ARM::S23,
5679                                   ARM::S24,ARM::S25,ARM::S26,ARM::S27,
5680                                   ARM::S28,ARM::S29,ARM::S30,ARM::S31, 0);
5681    if (VT.getSizeInBits() == 64)
5682      return make_vector<unsigned>(ARM::D0, ARM::D1, ARM::D2, ARM::D3,
5683                                   ARM::D4, ARM::D5, ARM::D6, ARM::D7,
5684                                   ARM::D8, ARM::D9, ARM::D10,ARM::D11,
5685                                   ARM::D12,ARM::D13,ARM::D14,ARM::D15, 0);
5686    if (VT.getSizeInBits() == 128)
5687      return make_vector<unsigned>(ARM::Q0, ARM::Q1, ARM::Q2, ARM::Q3,
5688                                   ARM::Q4, ARM::Q5, ARM::Q6, ARM::Q7, 0);
5689      break;
5690  }
5691
5692  return std::vector<unsigned>();
5693}
5694
5695/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
5696/// vector.  If it is invalid, don't add anything to Ops.
5697void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
5698                                                     char Constraint,
5699                                                     std::vector<SDValue>&Ops,
5700                                                     SelectionDAG &DAG) const {
5701  SDValue Result(0, 0);
5702
5703  switch (Constraint) {
5704  default: break;
5705  case 'I': case 'J': case 'K': case 'L':
5706  case 'M': case 'N': case 'O':
5707    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
5708    if (!C)
5709      return;
5710
5711    int64_t CVal64 = C->getSExtValue();
5712    int CVal = (int) CVal64;
5713    // None of these constraints allow values larger than 32 bits.  Check
5714    // that the value fits in an int.
5715    if (CVal != CVal64)
5716      return;
5717
5718    switch (Constraint) {
5719      case 'I':
5720        if (Subtarget->isThumb1Only()) {
5721          // This must be a constant between 0 and 255, for ADD
5722          // immediates.
5723          if (CVal >= 0 && CVal <= 255)
5724            break;
5725        } else if (Subtarget->isThumb2()) {
5726          // A constant that can be used as an immediate value in a
5727          // data-processing instruction.
5728          if (ARM_AM::getT2SOImmVal(CVal) != -1)
5729            break;
5730        } else {
5731          // A constant that can be used as an immediate value in a
5732          // data-processing instruction.
5733          if (ARM_AM::getSOImmVal(CVal) != -1)
5734            break;
5735        }
5736        return;
5737
5738      case 'J':
5739        if (Subtarget->isThumb()) {  // FIXME thumb2
5740          // This must be a constant between -255 and -1, for negated ADD
5741          // immediates. This can be used in GCC with an "n" modifier that
5742          // prints the negated value, for use with SUB instructions. It is
5743          // not useful otherwise but is implemented for compatibility.
5744          if (CVal >= -255 && CVal <= -1)
5745            break;
5746        } else {
5747          // This must be a constant between -4095 and 4095. It is not clear
5748          // what this constraint is intended for. Implemented for
5749          // compatibility with GCC.
5750          if (CVal >= -4095 && CVal <= 4095)
5751            break;
5752        }
5753        return;
5754
5755      case 'K':
5756        if (Subtarget->isThumb1Only()) {
5757          // A 32-bit value where only one byte has a nonzero value. Exclude
5758          // zero to match GCC. This constraint is used by GCC internally for
5759          // constants that can be loaded with a move/shift combination.
5760          // It is not useful otherwise but is implemented for compatibility.
5761          if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal))
5762            break;
5763        } else if (Subtarget->isThumb2()) {
5764          // A constant whose bitwise inverse can be used as an immediate
5765          // value in a data-processing instruction. This can be used in GCC
5766          // with a "B" modifier that prints the inverted value, for use with
5767          // BIC and MVN instructions. It is not useful otherwise but is
5768          // implemented for compatibility.
5769          if (ARM_AM::getT2SOImmVal(~CVal) != -1)
5770            break;
5771        } else {
5772          // A constant whose bitwise inverse can be used as an immediate
5773          // value in a data-processing instruction. This can be used in GCC
5774          // with a "B" modifier that prints the inverted value, for use with
5775          // BIC and MVN instructions. It is not useful otherwise but is
5776          // implemented for compatibility.
5777          if (ARM_AM::getSOImmVal(~CVal) != -1)
5778            break;
5779        }
5780        return;
5781
5782      case 'L':
5783        if (Subtarget->isThumb1Only()) {
5784          // This must be a constant between -7 and 7,
5785          // for 3-operand ADD/SUB immediate instructions.
5786          if (CVal >= -7 && CVal < 7)
5787            break;
5788        } else if (Subtarget->isThumb2()) {
5789          // A constant whose negation can be used as an immediate value in a
5790          // data-processing instruction. This can be used in GCC with an "n"
5791          // modifier that prints the negated value, for use with SUB
5792          // instructions. It is not useful otherwise but is implemented for
5793          // compatibility.
5794          if (ARM_AM::getT2SOImmVal(-CVal) != -1)
5795            break;
5796        } else {
5797          // A constant whose negation can be used as an immediate value in a
5798          // data-processing instruction. This can be used in GCC with an "n"
5799          // modifier that prints the negated value, for use with SUB
5800          // instructions. It is not useful otherwise but is implemented for
5801          // compatibility.
5802          if (ARM_AM::getSOImmVal(-CVal) != -1)
5803            break;
5804        }
5805        return;
5806
5807      case 'M':
5808        if (Subtarget->isThumb()) { // FIXME thumb2
5809          // This must be a multiple of 4 between 0 and 1020, for
5810          // ADD sp + immediate.
5811          if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
5812            break;
5813        } else {
5814          // A power of two or a constant between 0 and 32.  This is used in
5815          // GCC for the shift amount on shifted register operands, but it is
5816          // useful in general for any shift amounts.
5817          if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0))
5818            break;
5819        }
5820        return;
5821
5822      case 'N':
5823        if (Subtarget->isThumb()) {  // FIXME thumb2
5824          // This must be a constant between 0 and 31, for shift amounts.
5825          if (CVal >= 0 && CVal <= 31)
5826            break;
5827        }
5828        return;
5829
5830      case 'O':
5831        if (Subtarget->isThumb()) {  // FIXME thumb2
5832          // This must be a multiple of 4 between -508 and 508, for
5833          // ADD/SUB sp = sp + immediate.
5834          if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
5835            break;
5836        }
5837        return;
5838    }
5839    Result = DAG.getTargetConstant(CVal, Op.getValueType());
5840    break;
5841  }
5842
5843  if (Result.getNode()) {
5844    Ops.push_back(Result);
5845    return;
5846  }
5847  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
5848}
5849
5850bool
5851ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
5852  // The ARM target isn't yet aware of offsets.
5853  return false;
5854}
5855
5856int ARM::getVFPf32Imm(const APFloat &FPImm) {
5857  APInt Imm = FPImm.bitcastToAPInt();
5858  uint32_t Sign = Imm.lshr(31).getZExtValue() & 1;
5859  int32_t Exp = (Imm.lshr(23).getSExtValue() & 0xff) - 127;  // -126 to 127
5860  int64_t Mantissa = Imm.getZExtValue() & 0x7fffff;  // 23 bits
5861
5862  // We can handle 4 bits of mantissa.
5863  // mantissa = (16+UInt(e:f:g:h))/16.
5864  if (Mantissa & 0x7ffff)
5865    return -1;
5866  Mantissa >>= 19;
5867  if ((Mantissa & 0xf) != Mantissa)
5868    return -1;
5869
5870  // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
5871  if (Exp < -3 || Exp > 4)
5872    return -1;
5873  Exp = ((Exp+3) & 0x7) ^ 4;
5874
5875  return ((int)Sign << 7) | (Exp << 4) | Mantissa;
5876}
5877
5878int ARM::getVFPf64Imm(const APFloat &FPImm) {
5879  APInt Imm = FPImm.bitcastToAPInt();
5880  uint64_t Sign = Imm.lshr(63).getZExtValue() & 1;
5881  int64_t Exp = (Imm.lshr(52).getSExtValue() & 0x7ff) - 1023;   // -1022 to 1023
5882  uint64_t Mantissa = Imm.getZExtValue() & 0xfffffffffffffLL;
5883
5884  // We can handle 4 bits of mantissa.
5885  // mantissa = (16+UInt(e:f:g:h))/16.
5886  if (Mantissa & 0xffffffffffffLL)
5887    return -1;
5888  Mantissa >>= 48;
5889  if ((Mantissa & 0xf) != Mantissa)
5890    return -1;
5891
5892  // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
5893  if (Exp < -3 || Exp > 4)
5894    return -1;
5895  Exp = ((Exp+3) & 0x7) ^ 4;
5896
5897  return ((int)Sign << 7) | (Exp << 4) | Mantissa;
5898}
5899
5900bool ARM::isBitFieldInvertedMask(unsigned v) {
5901  if (v == 0xffffffff)
5902    return 0;
5903  // there can be 1's on either or both "outsides", all the "inside"
5904  // bits must be 0's
5905  unsigned int lsb = 0, msb = 31;
5906  while (v & (1 << msb)) --msb;
5907  while (v & (1 << lsb)) ++lsb;
5908  for (unsigned int i = lsb; i <= msb; ++i) {
5909    if (v & (1 << i))
5910      return 0;
5911  }
5912  return 1;
5913}
5914
5915/// isFPImmLegal - Returns true if the target can instruction select the
5916/// specified FP immediate natively. If false, the legalizer will
5917/// materialize the FP immediate as a load from a constant pool.
5918bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
5919  if (!Subtarget->hasVFP3())
5920    return false;
5921  if (VT == MVT::f32)
5922    return ARM::getVFPf32Imm(Imm) != -1;
5923  if (VT == MVT::f64)
5924    return ARM::getVFPf64Imm(Imm) != -1;
5925  return false;
5926}
5927
5928/// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
5929/// MemIntrinsicNodes.  The associated MachineMemOperands record the alignment
5930/// specified in the intrinsic calls.
5931bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
5932                                           const CallInst &I,
5933                                           unsigned Intrinsic) const {
5934  switch (Intrinsic) {
5935  case Intrinsic::arm_neon_vld1:
5936  case Intrinsic::arm_neon_vld2:
5937  case Intrinsic::arm_neon_vld3:
5938  case Intrinsic::arm_neon_vld4:
5939  case Intrinsic::arm_neon_vld2lane:
5940  case Intrinsic::arm_neon_vld3lane:
5941  case Intrinsic::arm_neon_vld4lane: {
5942    Info.opc = ISD::INTRINSIC_W_CHAIN;
5943    // Conservatively set memVT to the entire set of vectors loaded.
5944    uint64_t NumElts = getTargetData()->getTypeAllocSize(I.getType()) / 8;
5945    Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
5946    Info.ptrVal = I.getArgOperand(0);
5947    Info.offset = 0;
5948    Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
5949    Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
5950    Info.vol = false; // volatile loads with NEON intrinsics not supported
5951    Info.readMem = true;
5952    Info.writeMem = false;
5953    return true;
5954  }
5955  case Intrinsic::arm_neon_vst1:
5956  case Intrinsic::arm_neon_vst2:
5957  case Intrinsic::arm_neon_vst3:
5958  case Intrinsic::arm_neon_vst4:
5959  case Intrinsic::arm_neon_vst2lane:
5960  case Intrinsic::arm_neon_vst3lane:
5961  case Intrinsic::arm_neon_vst4lane: {
5962    Info.opc = ISD::INTRINSIC_VOID;
5963    // Conservatively set memVT to the entire set of vectors stored.
5964    unsigned NumElts = 0;
5965    for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
5966      const Type *ArgTy = I.getArgOperand(ArgI)->getType();
5967      if (!ArgTy->isVectorTy())
5968        break;
5969      NumElts += getTargetData()->getTypeAllocSize(ArgTy) / 8;
5970    }
5971    Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
5972    Info.ptrVal = I.getArgOperand(0);
5973    Info.offset = 0;
5974    Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
5975    Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
5976    Info.vol = false; // volatile stores with NEON intrinsics not supported
5977    Info.readMem = false;
5978    Info.writeMem = true;
5979    return true;
5980  }
5981  default:
5982    break;
5983  }
5984
5985  return false;
5986}
5987