ARMISelLowering.cpp revision c892aeb26601cc5109490d30c7e170cb07f84428
1//===-- ARMISelLowering.cpp - ARM DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that ARM uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "arm-isel"
16#include "ARM.h"
17#include "ARMCallingConv.h"
18#include "ARMConstantPoolValue.h"
19#include "ARMISelLowering.h"
20#include "ARMMachineFunctionInfo.h"
21#include "ARMPerfectShuffle.h"
22#include "ARMRegisterInfo.h"
23#include "ARMSubtarget.h"
24#include "ARMTargetMachine.h"
25#include "ARMTargetObjectFile.h"
26#include "MCTargetDesc/ARMAddressingModes.h"
27#include "llvm/CallingConv.h"
28#include "llvm/Constants.h"
29#include "llvm/Function.h"
30#include "llvm/GlobalValue.h"
31#include "llvm/Instruction.h"
32#include "llvm/Instructions.h"
33#include "llvm/Intrinsics.h"
34#include "llvm/Type.h"
35#include "llvm/CodeGen/CallingConvLower.h"
36#include "llvm/CodeGen/IntrinsicLowering.h"
37#include "llvm/CodeGen/MachineBasicBlock.h"
38#include "llvm/CodeGen/MachineFrameInfo.h"
39#include "llvm/CodeGen/MachineFunction.h"
40#include "llvm/CodeGen/MachineInstrBuilder.h"
41#include "llvm/CodeGen/MachineModuleInfo.h"
42#include "llvm/CodeGen/MachineRegisterInfo.h"
43#include "llvm/CodeGen/SelectionDAG.h"
44#include "llvm/MC/MCSectionMachO.h"
45#include "llvm/Target/TargetOptions.h"
46#include "llvm/ADT/StringExtras.h"
47#include "llvm/ADT/Statistic.h"
48#include "llvm/Support/CommandLine.h"
49#include "llvm/Support/ErrorHandling.h"
50#include "llvm/Support/MathExtras.h"
51#include "llvm/Support/raw_ostream.h"
52#include <sstream>
53using namespace llvm;
54
55STATISTIC(NumTailCalls, "Number of tail calls");
56STATISTIC(NumMovwMovt, "Number of GAs materialized with movw + movt");
57
58// This option should go away when tail calls fully work.
59static cl::opt<bool>
60EnableARMTailCalls("arm-tail-calls", cl::Hidden,
61  cl::desc("Generate tail calls (TEMPORARY OPTION)."),
62  cl::init(false));
63
64cl::opt<bool>
65EnableARMLongCalls("arm-long-calls", cl::Hidden,
66  cl::desc("Generate calls via indirect call instructions"),
67  cl::init(false));
68
69static cl::opt<bool>
70ARMInterworking("arm-interworking", cl::Hidden,
71  cl::desc("Enable / disable ARM interworking (for debugging only)"),
72  cl::init(true));
73
74namespace {
75  class ARMCCState : public CCState {
76  public:
77    ARMCCState(CallingConv::ID CC, bool isVarArg, MachineFunction &MF,
78               const TargetMachine &TM, SmallVector<CCValAssign, 16> &locs,
79               LLVMContext &C, ParmContext PC)
80        : CCState(CC, isVarArg, MF, TM, locs, C) {
81      assert(((PC == Call) || (PC == Prologue)) &&
82             "ARMCCState users must specify whether their context is call"
83             "or prologue generation.");
84      CallOrPrologue = PC;
85    }
86  };
87}
88
89// The APCS parameter registers.
90static const unsigned GPRArgRegs[] = {
91  ARM::R0, ARM::R1, ARM::R2, ARM::R3
92};
93
94void ARMTargetLowering::addTypeForNEON(EVT VT, EVT PromotedLdStVT,
95                                       EVT PromotedBitwiseVT) {
96  if (VT != PromotedLdStVT) {
97    setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote);
98    AddPromotedToType (ISD::LOAD, VT.getSimpleVT(),
99                       PromotedLdStVT.getSimpleVT());
100
101    setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote);
102    AddPromotedToType (ISD::STORE, VT.getSimpleVT(),
103                       PromotedLdStVT.getSimpleVT());
104  }
105
106  EVT ElemTy = VT.getVectorElementType();
107  if (ElemTy != MVT::i64 && ElemTy != MVT::f64)
108    setOperationAction(ISD::SETCC, VT.getSimpleVT(), Custom);
109  setOperationAction(ISD::INSERT_VECTOR_ELT, VT.getSimpleVT(), Custom);
110  setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT.getSimpleVT(), Custom);
111  if (ElemTy == MVT::i32) {
112    setOperationAction(ISD::SINT_TO_FP, VT.getSimpleVT(), Custom);
113    setOperationAction(ISD::UINT_TO_FP, VT.getSimpleVT(), Custom);
114    setOperationAction(ISD::FP_TO_SINT, VT.getSimpleVT(), Custom);
115    setOperationAction(ISD::FP_TO_UINT, VT.getSimpleVT(), Custom);
116  } else {
117    setOperationAction(ISD::SINT_TO_FP, VT.getSimpleVT(), Expand);
118    setOperationAction(ISD::UINT_TO_FP, VT.getSimpleVT(), Expand);
119    setOperationAction(ISD::FP_TO_SINT, VT.getSimpleVT(), Expand);
120    setOperationAction(ISD::FP_TO_UINT, VT.getSimpleVT(), Expand);
121  }
122  setOperationAction(ISD::BUILD_VECTOR, VT.getSimpleVT(), Custom);
123  setOperationAction(ISD::VECTOR_SHUFFLE, VT.getSimpleVT(), Custom);
124  setOperationAction(ISD::CONCAT_VECTORS, VT.getSimpleVT(), Legal);
125  setOperationAction(ISD::EXTRACT_SUBVECTOR, VT.getSimpleVT(), Legal);
126  setOperationAction(ISD::SELECT, VT.getSimpleVT(), Expand);
127  setOperationAction(ISD::SELECT_CC, VT.getSimpleVT(), Expand);
128  setOperationAction(ISD::SIGN_EXTEND_INREG, VT.getSimpleVT(), Expand);
129  if (VT.isInteger()) {
130    setOperationAction(ISD::SHL, VT.getSimpleVT(), Custom);
131    setOperationAction(ISD::SRA, VT.getSimpleVT(), Custom);
132    setOperationAction(ISD::SRL, VT.getSimpleVT(), Custom);
133  }
134
135  // Promote all bit-wise operations.
136  if (VT.isInteger() && VT != PromotedBitwiseVT) {
137    setOperationAction(ISD::AND, VT.getSimpleVT(), Promote);
138    AddPromotedToType (ISD::AND, VT.getSimpleVT(),
139                       PromotedBitwiseVT.getSimpleVT());
140    setOperationAction(ISD::OR,  VT.getSimpleVT(), Promote);
141    AddPromotedToType (ISD::OR,  VT.getSimpleVT(),
142                       PromotedBitwiseVT.getSimpleVT());
143    setOperationAction(ISD::XOR, VT.getSimpleVT(), Promote);
144    AddPromotedToType (ISD::XOR, VT.getSimpleVT(),
145                       PromotedBitwiseVT.getSimpleVT());
146  }
147
148  // Neon does not support vector divide/remainder operations.
149  setOperationAction(ISD::SDIV, VT.getSimpleVT(), Expand);
150  setOperationAction(ISD::UDIV, VT.getSimpleVT(), Expand);
151  setOperationAction(ISD::FDIV, VT.getSimpleVT(), Expand);
152  setOperationAction(ISD::SREM, VT.getSimpleVT(), Expand);
153  setOperationAction(ISD::UREM, VT.getSimpleVT(), Expand);
154  setOperationAction(ISD::FREM, VT.getSimpleVT(), Expand);
155}
156
157void ARMTargetLowering::addDRTypeForNEON(EVT VT) {
158  addRegisterClass(VT, ARM::DPRRegisterClass);
159  addTypeForNEON(VT, MVT::f64, MVT::v2i32);
160}
161
162void ARMTargetLowering::addQRTypeForNEON(EVT VT) {
163  addRegisterClass(VT, ARM::QPRRegisterClass);
164  addTypeForNEON(VT, MVT::v2f64, MVT::v4i32);
165}
166
167static TargetLoweringObjectFile *createTLOF(TargetMachine &TM) {
168  if (TM.getSubtarget<ARMSubtarget>().isTargetDarwin())
169    return new TargetLoweringObjectFileMachO();
170
171  return new ARMElfTargetObjectFile();
172}
173
174ARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
175    : TargetLowering(TM, createTLOF(TM)) {
176  Subtarget = &TM.getSubtarget<ARMSubtarget>();
177  RegInfo = TM.getRegisterInfo();
178  Itins = TM.getInstrItineraryData();
179
180  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
181
182  if (Subtarget->isTargetDarwin()) {
183    // Uses VFP for Thumb libfuncs if available.
184    if (Subtarget->isThumb() && Subtarget->hasVFP2()) {
185      // Single-precision floating-point arithmetic.
186      setLibcallName(RTLIB::ADD_F32, "__addsf3vfp");
187      setLibcallName(RTLIB::SUB_F32, "__subsf3vfp");
188      setLibcallName(RTLIB::MUL_F32, "__mulsf3vfp");
189      setLibcallName(RTLIB::DIV_F32, "__divsf3vfp");
190
191      // Double-precision floating-point arithmetic.
192      setLibcallName(RTLIB::ADD_F64, "__adddf3vfp");
193      setLibcallName(RTLIB::SUB_F64, "__subdf3vfp");
194      setLibcallName(RTLIB::MUL_F64, "__muldf3vfp");
195      setLibcallName(RTLIB::DIV_F64, "__divdf3vfp");
196
197      // Single-precision comparisons.
198      setLibcallName(RTLIB::OEQ_F32, "__eqsf2vfp");
199      setLibcallName(RTLIB::UNE_F32, "__nesf2vfp");
200      setLibcallName(RTLIB::OLT_F32, "__ltsf2vfp");
201      setLibcallName(RTLIB::OLE_F32, "__lesf2vfp");
202      setLibcallName(RTLIB::OGE_F32, "__gesf2vfp");
203      setLibcallName(RTLIB::OGT_F32, "__gtsf2vfp");
204      setLibcallName(RTLIB::UO_F32,  "__unordsf2vfp");
205      setLibcallName(RTLIB::O_F32,   "__unordsf2vfp");
206
207      setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
208      setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETNE);
209      setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
210      setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
211      setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
212      setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
213      setCmpLibcallCC(RTLIB::UO_F32,  ISD::SETNE);
214      setCmpLibcallCC(RTLIB::O_F32,   ISD::SETEQ);
215
216      // Double-precision comparisons.
217      setLibcallName(RTLIB::OEQ_F64, "__eqdf2vfp");
218      setLibcallName(RTLIB::UNE_F64, "__nedf2vfp");
219      setLibcallName(RTLIB::OLT_F64, "__ltdf2vfp");
220      setLibcallName(RTLIB::OLE_F64, "__ledf2vfp");
221      setLibcallName(RTLIB::OGE_F64, "__gedf2vfp");
222      setLibcallName(RTLIB::OGT_F64, "__gtdf2vfp");
223      setLibcallName(RTLIB::UO_F64,  "__unorddf2vfp");
224      setLibcallName(RTLIB::O_F64,   "__unorddf2vfp");
225
226      setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
227      setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETNE);
228      setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
229      setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
230      setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
231      setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
232      setCmpLibcallCC(RTLIB::UO_F64,  ISD::SETNE);
233      setCmpLibcallCC(RTLIB::O_F64,   ISD::SETEQ);
234
235      // Floating-point to integer conversions.
236      // i64 conversions are done via library routines even when generating VFP
237      // instructions, so use the same ones.
238      setLibcallName(RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp");
239      setLibcallName(RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp");
240      setLibcallName(RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp");
241      setLibcallName(RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp");
242
243      // Conversions between floating types.
244      setLibcallName(RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp");
245      setLibcallName(RTLIB::FPEXT_F32_F64,   "__extendsfdf2vfp");
246
247      // Integer to floating-point conversions.
248      // i64 conversions are done via library routines even when generating VFP
249      // instructions, so use the same ones.
250      // FIXME: There appears to be some naming inconsistency in ARM libgcc:
251      // e.g., __floatunsidf vs. __floatunssidfvfp.
252      setLibcallName(RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp");
253      setLibcallName(RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp");
254      setLibcallName(RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp");
255      setLibcallName(RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp");
256    }
257  }
258
259  // These libcalls are not available in 32-bit.
260  setLibcallName(RTLIB::SHL_I128, 0);
261  setLibcallName(RTLIB::SRL_I128, 0);
262  setLibcallName(RTLIB::SRA_I128, 0);
263
264  if (Subtarget->isAAPCS_ABI() && !Subtarget->isTargetDarwin()) {
265    // Double-precision floating-point arithmetic helper functions
266    // RTABI chapter 4.1.2, Table 2
267    setLibcallName(RTLIB::ADD_F64, "__aeabi_dadd");
268    setLibcallName(RTLIB::DIV_F64, "__aeabi_ddiv");
269    setLibcallName(RTLIB::MUL_F64, "__aeabi_dmul");
270    setLibcallName(RTLIB::SUB_F64, "__aeabi_dsub");
271    setLibcallCallingConv(RTLIB::ADD_F64, CallingConv::ARM_AAPCS);
272    setLibcallCallingConv(RTLIB::DIV_F64, CallingConv::ARM_AAPCS);
273    setLibcallCallingConv(RTLIB::MUL_F64, CallingConv::ARM_AAPCS);
274    setLibcallCallingConv(RTLIB::SUB_F64, CallingConv::ARM_AAPCS);
275
276    // Double-precision floating-point comparison helper functions
277    // RTABI chapter 4.1.2, Table 3
278    setLibcallName(RTLIB::OEQ_F64, "__aeabi_dcmpeq");
279    setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
280    setLibcallName(RTLIB::UNE_F64, "__aeabi_dcmpeq");
281    setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETEQ);
282    setLibcallName(RTLIB::OLT_F64, "__aeabi_dcmplt");
283    setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
284    setLibcallName(RTLIB::OLE_F64, "__aeabi_dcmple");
285    setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
286    setLibcallName(RTLIB::OGE_F64, "__aeabi_dcmpge");
287    setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
288    setLibcallName(RTLIB::OGT_F64, "__aeabi_dcmpgt");
289    setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
290    setLibcallName(RTLIB::UO_F64,  "__aeabi_dcmpun");
291    setCmpLibcallCC(RTLIB::UO_F64,  ISD::SETNE);
292    setLibcallName(RTLIB::O_F64,   "__aeabi_dcmpun");
293    setCmpLibcallCC(RTLIB::O_F64,   ISD::SETEQ);
294    setLibcallCallingConv(RTLIB::OEQ_F64, CallingConv::ARM_AAPCS);
295    setLibcallCallingConv(RTLIB::UNE_F64, CallingConv::ARM_AAPCS);
296    setLibcallCallingConv(RTLIB::OLT_F64, CallingConv::ARM_AAPCS);
297    setLibcallCallingConv(RTLIB::OLE_F64, CallingConv::ARM_AAPCS);
298    setLibcallCallingConv(RTLIB::OGE_F64, CallingConv::ARM_AAPCS);
299    setLibcallCallingConv(RTLIB::OGT_F64, CallingConv::ARM_AAPCS);
300    setLibcallCallingConv(RTLIB::UO_F64, CallingConv::ARM_AAPCS);
301    setLibcallCallingConv(RTLIB::O_F64, CallingConv::ARM_AAPCS);
302
303    // Single-precision floating-point arithmetic helper functions
304    // RTABI chapter 4.1.2, Table 4
305    setLibcallName(RTLIB::ADD_F32, "__aeabi_fadd");
306    setLibcallName(RTLIB::DIV_F32, "__aeabi_fdiv");
307    setLibcallName(RTLIB::MUL_F32, "__aeabi_fmul");
308    setLibcallName(RTLIB::SUB_F32, "__aeabi_fsub");
309    setLibcallCallingConv(RTLIB::ADD_F32, CallingConv::ARM_AAPCS);
310    setLibcallCallingConv(RTLIB::DIV_F32, CallingConv::ARM_AAPCS);
311    setLibcallCallingConv(RTLIB::MUL_F32, CallingConv::ARM_AAPCS);
312    setLibcallCallingConv(RTLIB::SUB_F32, CallingConv::ARM_AAPCS);
313
314    // Single-precision floating-point comparison helper functions
315    // RTABI chapter 4.1.2, Table 5
316    setLibcallName(RTLIB::OEQ_F32, "__aeabi_fcmpeq");
317    setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
318    setLibcallName(RTLIB::UNE_F32, "__aeabi_fcmpeq");
319    setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETEQ);
320    setLibcallName(RTLIB::OLT_F32, "__aeabi_fcmplt");
321    setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
322    setLibcallName(RTLIB::OLE_F32, "__aeabi_fcmple");
323    setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
324    setLibcallName(RTLIB::OGE_F32, "__aeabi_fcmpge");
325    setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
326    setLibcallName(RTLIB::OGT_F32, "__aeabi_fcmpgt");
327    setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
328    setLibcallName(RTLIB::UO_F32,  "__aeabi_fcmpun");
329    setCmpLibcallCC(RTLIB::UO_F32,  ISD::SETNE);
330    setLibcallName(RTLIB::O_F32,   "__aeabi_fcmpun");
331    setCmpLibcallCC(RTLIB::O_F32,   ISD::SETEQ);
332    setLibcallCallingConv(RTLIB::OEQ_F32, CallingConv::ARM_AAPCS);
333    setLibcallCallingConv(RTLIB::UNE_F32, CallingConv::ARM_AAPCS);
334    setLibcallCallingConv(RTLIB::OLT_F32, CallingConv::ARM_AAPCS);
335    setLibcallCallingConv(RTLIB::OLE_F32, CallingConv::ARM_AAPCS);
336    setLibcallCallingConv(RTLIB::OGE_F32, CallingConv::ARM_AAPCS);
337    setLibcallCallingConv(RTLIB::OGT_F32, CallingConv::ARM_AAPCS);
338    setLibcallCallingConv(RTLIB::UO_F32, CallingConv::ARM_AAPCS);
339    setLibcallCallingConv(RTLIB::O_F32, CallingConv::ARM_AAPCS);
340
341    // Floating-point to integer conversions.
342    // RTABI chapter 4.1.2, Table 6
343    setLibcallName(RTLIB::FPTOSINT_F64_I32, "__aeabi_d2iz");
344    setLibcallName(RTLIB::FPTOUINT_F64_I32, "__aeabi_d2uiz");
345    setLibcallName(RTLIB::FPTOSINT_F64_I64, "__aeabi_d2lz");
346    setLibcallName(RTLIB::FPTOUINT_F64_I64, "__aeabi_d2ulz");
347    setLibcallName(RTLIB::FPTOSINT_F32_I32, "__aeabi_f2iz");
348    setLibcallName(RTLIB::FPTOUINT_F32_I32, "__aeabi_f2uiz");
349    setLibcallName(RTLIB::FPTOSINT_F32_I64, "__aeabi_f2lz");
350    setLibcallName(RTLIB::FPTOUINT_F32_I64, "__aeabi_f2ulz");
351    setLibcallCallingConv(RTLIB::FPTOSINT_F64_I32, CallingConv::ARM_AAPCS);
352    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I32, CallingConv::ARM_AAPCS);
353    setLibcallCallingConv(RTLIB::FPTOSINT_F64_I64, CallingConv::ARM_AAPCS);
354    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::ARM_AAPCS);
355    setLibcallCallingConv(RTLIB::FPTOSINT_F32_I32, CallingConv::ARM_AAPCS);
356    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I32, CallingConv::ARM_AAPCS);
357    setLibcallCallingConv(RTLIB::FPTOSINT_F32_I64, CallingConv::ARM_AAPCS);
358    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::ARM_AAPCS);
359
360    // Conversions between floating types.
361    // RTABI chapter 4.1.2, Table 7
362    setLibcallName(RTLIB::FPROUND_F64_F32, "__aeabi_d2f");
363    setLibcallName(RTLIB::FPEXT_F32_F64,   "__aeabi_f2d");
364    setLibcallCallingConv(RTLIB::FPROUND_F64_F32, CallingConv::ARM_AAPCS);
365    setLibcallCallingConv(RTLIB::FPEXT_F32_F64, CallingConv::ARM_AAPCS);
366
367    // Integer to floating-point conversions.
368    // RTABI chapter 4.1.2, Table 8
369    setLibcallName(RTLIB::SINTTOFP_I32_F64, "__aeabi_i2d");
370    setLibcallName(RTLIB::UINTTOFP_I32_F64, "__aeabi_ui2d");
371    setLibcallName(RTLIB::SINTTOFP_I64_F64, "__aeabi_l2d");
372    setLibcallName(RTLIB::UINTTOFP_I64_F64, "__aeabi_ul2d");
373    setLibcallName(RTLIB::SINTTOFP_I32_F32, "__aeabi_i2f");
374    setLibcallName(RTLIB::UINTTOFP_I32_F32, "__aeabi_ui2f");
375    setLibcallName(RTLIB::SINTTOFP_I64_F32, "__aeabi_l2f");
376    setLibcallName(RTLIB::UINTTOFP_I64_F32, "__aeabi_ul2f");
377    setLibcallCallingConv(RTLIB::SINTTOFP_I32_F64, CallingConv::ARM_AAPCS);
378    setLibcallCallingConv(RTLIB::UINTTOFP_I32_F64, CallingConv::ARM_AAPCS);
379    setLibcallCallingConv(RTLIB::SINTTOFP_I64_F64, CallingConv::ARM_AAPCS);
380    setLibcallCallingConv(RTLIB::UINTTOFP_I64_F64, CallingConv::ARM_AAPCS);
381    setLibcallCallingConv(RTLIB::SINTTOFP_I32_F32, CallingConv::ARM_AAPCS);
382    setLibcallCallingConv(RTLIB::UINTTOFP_I32_F32, CallingConv::ARM_AAPCS);
383    setLibcallCallingConv(RTLIB::SINTTOFP_I64_F32, CallingConv::ARM_AAPCS);
384    setLibcallCallingConv(RTLIB::UINTTOFP_I64_F32, CallingConv::ARM_AAPCS);
385
386    // Long long helper functions
387    // RTABI chapter 4.2, Table 9
388    setLibcallName(RTLIB::MUL_I64,  "__aeabi_lmul");
389    setLibcallName(RTLIB::SHL_I64, "__aeabi_llsl");
390    setLibcallName(RTLIB::SRL_I64, "__aeabi_llsr");
391    setLibcallName(RTLIB::SRA_I64, "__aeabi_lasr");
392    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::ARM_AAPCS);
393    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::ARM_AAPCS);
394    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::ARM_AAPCS);
395    setLibcallCallingConv(RTLIB::SHL_I64, CallingConv::ARM_AAPCS);
396    setLibcallCallingConv(RTLIB::SRL_I64, CallingConv::ARM_AAPCS);
397    setLibcallCallingConv(RTLIB::SRA_I64, CallingConv::ARM_AAPCS);
398
399    // Integer division functions
400    // RTABI chapter 4.3.1
401    setLibcallName(RTLIB::SDIV_I8,  "__aeabi_idiv");
402    setLibcallName(RTLIB::SDIV_I16, "__aeabi_idiv");
403    setLibcallName(RTLIB::SDIV_I32, "__aeabi_idiv");
404    setLibcallName(RTLIB::SDIV_I64, "__aeabi_ldivmod");
405    setLibcallName(RTLIB::UDIV_I8,  "__aeabi_uidiv");
406    setLibcallName(RTLIB::UDIV_I16, "__aeabi_uidiv");
407    setLibcallName(RTLIB::UDIV_I32, "__aeabi_uidiv");
408    setLibcallName(RTLIB::UDIV_I64, "__aeabi_uldivmod");
409    setLibcallCallingConv(RTLIB::SDIV_I8, CallingConv::ARM_AAPCS);
410    setLibcallCallingConv(RTLIB::SDIV_I16, CallingConv::ARM_AAPCS);
411    setLibcallCallingConv(RTLIB::SDIV_I32, CallingConv::ARM_AAPCS);
412    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::ARM_AAPCS);
413    setLibcallCallingConv(RTLIB::UDIV_I8, CallingConv::ARM_AAPCS);
414    setLibcallCallingConv(RTLIB::UDIV_I16, CallingConv::ARM_AAPCS);
415    setLibcallCallingConv(RTLIB::UDIV_I32, CallingConv::ARM_AAPCS);
416    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::ARM_AAPCS);
417
418    // Memory operations
419    // RTABI chapter 4.3.4
420    setLibcallName(RTLIB::MEMCPY,  "__aeabi_memcpy");
421    setLibcallName(RTLIB::MEMMOVE, "__aeabi_memmove");
422    setLibcallName(RTLIB::MEMSET,  "__aeabi_memset");
423    setLibcallCallingConv(RTLIB::MEMCPY, CallingConv::ARM_AAPCS);
424    setLibcallCallingConv(RTLIB::MEMMOVE, CallingConv::ARM_AAPCS);
425    setLibcallCallingConv(RTLIB::MEMSET, CallingConv::ARM_AAPCS);
426  }
427
428  // Use divmod compiler-rt calls for iOS 5.0 and later.
429  if (Subtarget->getTargetTriple().getOS() == Triple::IOS &&
430      !Subtarget->getTargetTriple().isOSVersionLT(5, 0)) {
431    setLibcallName(RTLIB::SDIVREM_I32, "__divmodsi4");
432    setLibcallName(RTLIB::UDIVREM_I32, "__udivmodsi4");
433  }
434
435  if (Subtarget->isThumb1Only())
436    addRegisterClass(MVT::i32, ARM::tGPRRegisterClass);
437  else
438    addRegisterClass(MVT::i32, ARM::GPRRegisterClass);
439  if (!TM.Options.UseSoftFloat && Subtarget->hasVFP2() &&
440      !Subtarget->isThumb1Only()) {
441    addRegisterClass(MVT::f32, ARM::SPRRegisterClass);
442    if (!Subtarget->isFPOnlySP())
443      addRegisterClass(MVT::f64, ARM::DPRRegisterClass);
444
445    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
446  }
447
448  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
449       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
450    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
451         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
452      setTruncStoreAction((MVT::SimpleValueType)VT,
453                          (MVT::SimpleValueType)InnerVT, Expand);
454    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
455    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
456    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
457  }
458
459  if (Subtarget->hasNEON()) {
460    addDRTypeForNEON(MVT::v2f32);
461    addDRTypeForNEON(MVT::v8i8);
462    addDRTypeForNEON(MVT::v4i16);
463    addDRTypeForNEON(MVT::v2i32);
464    addDRTypeForNEON(MVT::v1i64);
465
466    addQRTypeForNEON(MVT::v4f32);
467    addQRTypeForNEON(MVT::v2f64);
468    addQRTypeForNEON(MVT::v16i8);
469    addQRTypeForNEON(MVT::v8i16);
470    addQRTypeForNEON(MVT::v4i32);
471    addQRTypeForNEON(MVT::v2i64);
472
473    // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
474    // neither Neon nor VFP support any arithmetic operations on it.
475    // The same with v4f32. But keep in mind that vadd, vsub, vmul are natively
476    // supported for v4f32.
477    setOperationAction(ISD::FADD, MVT::v2f64, Expand);
478    setOperationAction(ISD::FSUB, MVT::v2f64, Expand);
479    setOperationAction(ISD::FMUL, MVT::v2f64, Expand);
480    // FIXME: Code duplication: FDIV and FREM are expanded always, see
481    // ARMTargetLowering::addTypeForNEON method for details.
482    setOperationAction(ISD::FDIV, MVT::v2f64, Expand);
483    setOperationAction(ISD::FREM, MVT::v2f64, Expand);
484    // FIXME: Create unittest.
485    // In another words, find a way when "copysign" appears in DAG with vector
486    // operands.
487    setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand);
488    // FIXME: Code duplication: SETCC has custom operation action, see
489    // ARMTargetLowering::addTypeForNEON method for details.
490    setOperationAction(ISD::SETCC, MVT::v2f64, Expand);
491    // FIXME: Create unittest for FNEG and for FABS.
492    setOperationAction(ISD::FNEG, MVT::v2f64, Expand);
493    setOperationAction(ISD::FABS, MVT::v2f64, Expand);
494    setOperationAction(ISD::FSQRT, MVT::v2f64, Expand);
495    setOperationAction(ISD::FSIN, MVT::v2f64, Expand);
496    setOperationAction(ISD::FCOS, MVT::v2f64, Expand);
497    setOperationAction(ISD::FPOWI, MVT::v2f64, Expand);
498    setOperationAction(ISD::FPOW, MVT::v2f64, Expand);
499    setOperationAction(ISD::FLOG, MVT::v2f64, Expand);
500    setOperationAction(ISD::FLOG2, MVT::v2f64, Expand);
501    setOperationAction(ISD::FLOG10, MVT::v2f64, Expand);
502    setOperationAction(ISD::FEXP, MVT::v2f64, Expand);
503    setOperationAction(ISD::FEXP2, MVT::v2f64, Expand);
504    // FIXME: Create unittest for FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR.
505    setOperationAction(ISD::FCEIL, MVT::v2f64, Expand);
506    setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand);
507    setOperationAction(ISD::FRINT, MVT::v2f64, Expand);
508    setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand);
509    setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand);
510
511    setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
512    setOperationAction(ISD::FSIN, MVT::v4f32, Expand);
513    setOperationAction(ISD::FCOS, MVT::v4f32, Expand);
514    setOperationAction(ISD::FPOWI, MVT::v4f32, Expand);
515    setOperationAction(ISD::FPOW, MVT::v4f32, Expand);
516    setOperationAction(ISD::FLOG, MVT::v4f32, Expand);
517    setOperationAction(ISD::FLOG2, MVT::v4f32, Expand);
518    setOperationAction(ISD::FLOG10, MVT::v4f32, Expand);
519    setOperationAction(ISD::FEXP, MVT::v4f32, Expand);
520    setOperationAction(ISD::FEXP2, MVT::v4f32, Expand);
521
522    // Neon does not support some operations on v1i64 and v2i64 types.
523    setOperationAction(ISD::MUL, MVT::v1i64, Expand);
524    // Custom handling for some quad-vector types to detect VMULL.
525    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
526    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
527    setOperationAction(ISD::MUL, MVT::v2i64, Custom);
528    // Custom handling for some vector types to avoid expensive expansions
529    setOperationAction(ISD::SDIV, MVT::v4i16, Custom);
530    setOperationAction(ISD::SDIV, MVT::v8i8, Custom);
531    setOperationAction(ISD::UDIV, MVT::v4i16, Custom);
532    setOperationAction(ISD::UDIV, MVT::v8i8, Custom);
533    setOperationAction(ISD::SETCC, MVT::v1i64, Expand);
534    setOperationAction(ISD::SETCC, MVT::v2i64, Expand);
535    // Neon does not have single instruction SINT_TO_FP and UINT_TO_FP with
536    // a destination type that is wider than the source, and nor does
537    // it have a FP_TO_[SU]INT instruction with a narrower destination than
538    // source.
539    setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
540    setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
541    setOperationAction(ISD::FP_TO_UINT, MVT::v4i16, Custom);
542    setOperationAction(ISD::FP_TO_SINT, MVT::v4i16, Custom);
543
544    setTargetDAGCombine(ISD::INTRINSIC_VOID);
545    setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
546    setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
547    setTargetDAGCombine(ISD::SHL);
548    setTargetDAGCombine(ISD::SRL);
549    setTargetDAGCombine(ISD::SRA);
550    setTargetDAGCombine(ISD::SIGN_EXTEND);
551    setTargetDAGCombine(ISD::ZERO_EXTEND);
552    setTargetDAGCombine(ISD::ANY_EXTEND);
553    setTargetDAGCombine(ISD::SELECT_CC);
554    setTargetDAGCombine(ISD::BUILD_VECTOR);
555    setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
556    setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
557    setTargetDAGCombine(ISD::STORE);
558    setTargetDAGCombine(ISD::FP_TO_SINT);
559    setTargetDAGCombine(ISD::FP_TO_UINT);
560    setTargetDAGCombine(ISD::FDIV);
561
562    // It is legal to extload from v4i8 to v4i16 or v4i32.
563    MVT Tys[6] = {MVT::v8i8, MVT::v4i8, MVT::v2i8,
564                  MVT::v4i16, MVT::v2i16,
565                  MVT::v2i32};
566    for (unsigned i = 0; i < 6; ++i) {
567      setLoadExtAction(ISD::EXTLOAD, Tys[i], Legal);
568      setLoadExtAction(ISD::ZEXTLOAD, Tys[i], Legal);
569      setLoadExtAction(ISD::SEXTLOAD, Tys[i], Legal);
570    }
571  }
572
573  computeRegisterProperties();
574
575  // ARM does not have f32 extending load.
576  setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
577
578  // ARM does not have i1 sign extending load.
579  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
580
581  // ARM supports all 4 flavors of integer indexed load / store.
582  if (!Subtarget->isThumb1Only()) {
583    for (unsigned im = (unsigned)ISD::PRE_INC;
584         im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
585      setIndexedLoadAction(im,  MVT::i1,  Legal);
586      setIndexedLoadAction(im,  MVT::i8,  Legal);
587      setIndexedLoadAction(im,  MVT::i16, Legal);
588      setIndexedLoadAction(im,  MVT::i32, Legal);
589      setIndexedStoreAction(im, MVT::i1,  Legal);
590      setIndexedStoreAction(im, MVT::i8,  Legal);
591      setIndexedStoreAction(im, MVT::i16, Legal);
592      setIndexedStoreAction(im, MVT::i32, Legal);
593    }
594  }
595
596  // i64 operation support.
597  setOperationAction(ISD::MUL,     MVT::i64, Expand);
598  setOperationAction(ISD::MULHU,   MVT::i32, Expand);
599  if (Subtarget->isThumb1Only()) {
600    setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
601    setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
602  }
603  if (Subtarget->isThumb1Only() || !Subtarget->hasV6Ops()
604      || (Subtarget->isThumb2() && !Subtarget->hasThumb2DSP()))
605    setOperationAction(ISD::MULHS, MVT::i32, Expand);
606
607  setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
608  setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
609  setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
610  setOperationAction(ISD::SRL,       MVT::i64, Custom);
611  setOperationAction(ISD::SRA,       MVT::i64, Custom);
612
613  if (!Subtarget->isThumb1Only()) {
614    // FIXME: We should do this for Thumb1 as well.
615    setOperationAction(ISD::ADDC,    MVT::i32, Custom);
616    setOperationAction(ISD::ADDE,    MVT::i32, Custom);
617    setOperationAction(ISD::SUBC,    MVT::i32, Custom);
618    setOperationAction(ISD::SUBE,    MVT::i32, Custom);
619  }
620
621  // ARM does not have ROTL.
622  setOperationAction(ISD::ROTL,  MVT::i32, Expand);
623  setOperationAction(ISD::CTTZ,  MVT::i32, Custom);
624  setOperationAction(ISD::CTPOP, MVT::i32, Expand);
625  if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only())
626    setOperationAction(ISD::CTLZ, MVT::i32, Expand);
627
628  // These just redirect to CTTZ and CTLZ on ARM.
629  setOperationAction(ISD::CTTZ_ZERO_UNDEF  , MVT::i32  , Expand);
630  setOperationAction(ISD::CTLZ_ZERO_UNDEF  , MVT::i32  , Expand);
631
632  // Only ARMv6 has BSWAP.
633  if (!Subtarget->hasV6Ops())
634    setOperationAction(ISD::BSWAP, MVT::i32, Expand);
635
636  // These are expanded into libcalls.
637  if (!Subtarget->hasDivide() || !Subtarget->isThumb2()) {
638    // v7M has a hardware divider
639    setOperationAction(ISD::SDIV,  MVT::i32, Expand);
640    setOperationAction(ISD::UDIV,  MVT::i32, Expand);
641  }
642  setOperationAction(ISD::SREM,  MVT::i32, Expand);
643  setOperationAction(ISD::UREM,  MVT::i32, Expand);
644  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
645  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
646
647  setOperationAction(ISD::GlobalAddress, MVT::i32,   Custom);
648  setOperationAction(ISD::ConstantPool,  MVT::i32,   Custom);
649  setOperationAction(ISD::GLOBAL_OFFSET_TABLE, MVT::i32, Custom);
650  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
651  setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
652
653  setOperationAction(ISD::TRAP, MVT::Other, Legal);
654
655  // Use the default implementation.
656  setOperationAction(ISD::VASTART,            MVT::Other, Custom);
657  setOperationAction(ISD::VAARG,              MVT::Other, Expand);
658  setOperationAction(ISD::VACOPY,             MVT::Other, Expand);
659  setOperationAction(ISD::VAEND,              MVT::Other, Expand);
660  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
661  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
662
663  if (!Subtarget->isTargetDarwin()) {
664    // Non-Darwin platforms may return values in these registers via the
665    // personality function.
666    setOperationAction(ISD::EHSELECTION,      MVT::i32,   Expand);
667    setOperationAction(ISD::EXCEPTIONADDR,    MVT::i32,   Expand);
668    setExceptionPointerRegister(ARM::R0);
669    setExceptionSelectorRegister(ARM::R1);
670  }
671
672  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
673  // ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use
674  // the default expansion.
675  // FIXME: This should be checking for v6k, not just v6.
676  if (Subtarget->hasDataBarrier() ||
677      (Subtarget->hasV6Ops() && !Subtarget->isThumb())) {
678    // membarrier needs custom lowering; the rest are legal and handled
679    // normally.
680    setOperationAction(ISD::MEMBARRIER, MVT::Other, Custom);
681    setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
682    // Custom lowering for 64-bit ops
683    setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i64, Custom);
684    setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i64, Custom);
685    setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i64, Custom);
686    setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i64, Custom);
687    setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i64, Custom);
688    setOperationAction(ISD::ATOMIC_SWAP,  MVT::i64, Custom);
689    setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i64, Custom);
690    // Automatically insert fences (dmb ist) around ATOMIC_SWAP etc.
691    setInsertFencesForAtomic(true);
692  } else {
693    // Set them all for expansion, which will force libcalls.
694    setOperationAction(ISD::MEMBARRIER, MVT::Other, Expand);
695    setOperationAction(ISD::ATOMIC_FENCE,   MVT::Other, Expand);
696    setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i32, Expand);
697    setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Expand);
698    setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Expand);
699    setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Expand);
700    setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Expand);
701    setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Expand);
702    setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Expand);
703    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand);
704    setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Expand);
705    setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Expand);
706    setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Expand);
707    setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Expand);
708    // Mark ATOMIC_LOAD and ATOMIC_STORE custom so we can handle the
709    // Unordered/Monotonic case.
710    setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
711    setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
712    // Since the libcalls include locking, fold in the fences
713    setShouldFoldAtomicFences(true);
714  }
715
716  setOperationAction(ISD::PREFETCH,         MVT::Other, Custom);
717
718  // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
719  if (!Subtarget->hasV6Ops()) {
720    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
721    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
722  }
723  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
724
725  if (!TM.Options.UseSoftFloat && Subtarget->hasVFP2() &&
726      !Subtarget->isThumb1Only()) {
727    // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
728    // iff target supports vfp2.
729    setOperationAction(ISD::BITCAST, MVT::i64, Custom);
730    setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
731  }
732
733  // We want to custom lower some of our intrinsics.
734  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
735  if (Subtarget->isTargetDarwin()) {
736    setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
737    setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
738    setLibcallName(RTLIB::UNWIND_RESUME, "_Unwind_SjLj_Resume");
739  }
740
741  setOperationAction(ISD::SETCC,     MVT::i32, Expand);
742  setOperationAction(ISD::SETCC,     MVT::f32, Expand);
743  setOperationAction(ISD::SETCC,     MVT::f64, Expand);
744  setOperationAction(ISD::SELECT,    MVT::i32, Custom);
745  setOperationAction(ISD::SELECT,    MVT::f32, Custom);
746  setOperationAction(ISD::SELECT,    MVT::f64, Custom);
747  setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
748  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
749  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
750
751  setOperationAction(ISD::BRCOND,    MVT::Other, Expand);
752  setOperationAction(ISD::BR_CC,     MVT::i32,   Custom);
753  setOperationAction(ISD::BR_CC,     MVT::f32,   Custom);
754  setOperationAction(ISD::BR_CC,     MVT::f64,   Custom);
755  setOperationAction(ISD::BR_JT,     MVT::Other, Custom);
756
757  // We don't support sin/cos/fmod/copysign/pow
758  setOperationAction(ISD::FSIN,      MVT::f64, Expand);
759  setOperationAction(ISD::FSIN,      MVT::f32, Expand);
760  setOperationAction(ISD::FCOS,      MVT::f32, Expand);
761  setOperationAction(ISD::FCOS,      MVT::f64, Expand);
762  setOperationAction(ISD::FREM,      MVT::f64, Expand);
763  setOperationAction(ISD::FREM,      MVT::f32, Expand);
764  if (!TM.Options.UseSoftFloat && Subtarget->hasVFP2() &&
765      !Subtarget->isThumb1Only()) {
766    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
767    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
768  }
769  setOperationAction(ISD::FPOW,      MVT::f64, Expand);
770  setOperationAction(ISD::FPOW,      MVT::f32, Expand);
771
772  setOperationAction(ISD::FMA, MVT::f64, Expand);
773  setOperationAction(ISD::FMA, MVT::f32, Expand);
774
775  // Various VFP goodness
776  if (!TM.Options.UseSoftFloat && !Subtarget->isThumb1Only()) {
777    // int <-> fp are custom expanded into bit_convert + ARMISD ops.
778    if (Subtarget->hasVFP2()) {
779      setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
780      setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
781      setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
782      setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
783    }
784    // Special handling for half-precision FP.
785    if (!Subtarget->hasFP16()) {
786      setOperationAction(ISD::FP16_TO_FP32, MVT::f32, Expand);
787      setOperationAction(ISD::FP32_TO_FP16, MVT::i32, Expand);
788    }
789  }
790
791  // We have target-specific dag combine patterns for the following nodes:
792  // ARMISD::VMOVRRD  - No need to call setTargetDAGCombine
793  setTargetDAGCombine(ISD::ADD);
794  setTargetDAGCombine(ISD::SUB);
795  setTargetDAGCombine(ISD::MUL);
796
797  if (Subtarget->hasV6T2Ops() || Subtarget->hasNEON()) {
798    setTargetDAGCombine(ISD::AND);
799    setTargetDAGCombine(ISD::OR);
800    setTargetDAGCombine(ISD::XOR);
801  }
802
803  setStackPointerRegisterToSaveRestore(ARM::SP);
804
805  if (TM.Options.UseSoftFloat || Subtarget->isThumb1Only() ||
806      !Subtarget->hasVFP2())
807    setSchedulingPreference(Sched::RegPressure);
808  else
809    setSchedulingPreference(Sched::Hybrid);
810
811  //// temporary - rewrite interface to use type
812  maxStoresPerMemcpy = maxStoresPerMemcpyOptSize = 1;
813  maxStoresPerMemset = 16;
814  maxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
815
816  // On ARM arguments smaller than 4 bytes are extended, so all arguments
817  // are at least 4 bytes aligned.
818  setMinStackArgumentAlignment(4);
819
820  benefitFromCodePlacementOpt = true;
821
822  setMinFunctionAlignment(Subtarget->isThumb() ? 1 : 2);
823}
824
825// FIXME: It might make sense to define the representative register class as the
826// nearest super-register that has a non-null superset. For example, DPR_VFP2 is
827// a super-register of SPR, and DPR is a superset if DPR_VFP2. Consequently,
828// SPR's representative would be DPR_VFP2. This should work well if register
829// pressure tracking were modified such that a register use would increment the
830// pressure of the register class's representative and all of it's super
831// classes' representatives transitively. We have not implemented this because
832// of the difficulty prior to coalescing of modeling operand register classes
833// due to the common occurrence of cross class copies and subregister insertions
834// and extractions.
835std::pair<const TargetRegisterClass*, uint8_t>
836ARMTargetLowering::findRepresentativeClass(EVT VT) const{
837  const TargetRegisterClass *RRC = 0;
838  uint8_t Cost = 1;
839  switch (VT.getSimpleVT().SimpleTy) {
840  default:
841    return TargetLowering::findRepresentativeClass(VT);
842  // Use DPR as representative register class for all floating point
843  // and vector types. Since there are 32 SPR registers and 32 DPR registers so
844  // the cost is 1 for both f32 and f64.
845  case MVT::f32: case MVT::f64: case MVT::v8i8: case MVT::v4i16:
846  case MVT::v2i32: case MVT::v1i64: case MVT::v2f32:
847    RRC = ARM::DPRRegisterClass;
848    // When NEON is used for SP, only half of the register file is available
849    // because operations that define both SP and DP results will be constrained
850    // to the VFP2 class (D0-D15). We currently model this constraint prior to
851    // coalescing by double-counting the SP regs. See the FIXME above.
852    if (Subtarget->useNEONForSinglePrecisionFP())
853      Cost = 2;
854    break;
855  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
856  case MVT::v4f32: case MVT::v2f64:
857    RRC = ARM::DPRRegisterClass;
858    Cost = 2;
859    break;
860  case MVT::v4i64:
861    RRC = ARM::DPRRegisterClass;
862    Cost = 4;
863    break;
864  case MVT::v8i64:
865    RRC = ARM::DPRRegisterClass;
866    Cost = 8;
867    break;
868  }
869  return std::make_pair(RRC, Cost);
870}
871
872const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
873  switch (Opcode) {
874  default: return 0;
875  case ARMISD::Wrapper:       return "ARMISD::Wrapper";
876  case ARMISD::WrapperDYN:    return "ARMISD::WrapperDYN";
877  case ARMISD::WrapperPIC:    return "ARMISD::WrapperPIC";
878  case ARMISD::WrapperJT:     return "ARMISD::WrapperJT";
879  case ARMISD::CALL:          return "ARMISD::CALL";
880  case ARMISD::CALL_PRED:     return "ARMISD::CALL_PRED";
881  case ARMISD::CALL_NOLINK:   return "ARMISD::CALL_NOLINK";
882  case ARMISD::tCALL:         return "ARMISD::tCALL";
883  case ARMISD::BRCOND:        return "ARMISD::BRCOND";
884  case ARMISD::BR_JT:         return "ARMISD::BR_JT";
885  case ARMISD::BR2_JT:        return "ARMISD::BR2_JT";
886  case ARMISD::RET_FLAG:      return "ARMISD::RET_FLAG";
887  case ARMISD::PIC_ADD:       return "ARMISD::PIC_ADD";
888  case ARMISD::CMP:           return "ARMISD::CMP";
889  case ARMISD::CMPZ:          return "ARMISD::CMPZ";
890  case ARMISD::CMPFP:         return "ARMISD::CMPFP";
891  case ARMISD::CMPFPw0:       return "ARMISD::CMPFPw0";
892  case ARMISD::BCC_i64:       return "ARMISD::BCC_i64";
893  case ARMISD::FMSTAT:        return "ARMISD::FMSTAT";
894
895  case ARMISD::CMOV:          return "ARMISD::CMOV";
896  case ARMISD::CAND:          return "ARMISD::CAND";
897  case ARMISD::COR:           return "ARMISD::COR";
898  case ARMISD::CXOR:          return "ARMISD::CXOR";
899
900  case ARMISD::RBIT:          return "ARMISD::RBIT";
901
902  case ARMISD::FTOSI:         return "ARMISD::FTOSI";
903  case ARMISD::FTOUI:         return "ARMISD::FTOUI";
904  case ARMISD::SITOF:         return "ARMISD::SITOF";
905  case ARMISD::UITOF:         return "ARMISD::UITOF";
906
907  case ARMISD::SRL_FLAG:      return "ARMISD::SRL_FLAG";
908  case ARMISD::SRA_FLAG:      return "ARMISD::SRA_FLAG";
909  case ARMISD::RRX:           return "ARMISD::RRX";
910
911  case ARMISD::ADDC:          return "ARMISD::ADDC";
912  case ARMISD::ADDE:          return "ARMISD::ADDE";
913  case ARMISD::SUBC:          return "ARMISD::SUBC";
914  case ARMISD::SUBE:          return "ARMISD::SUBE";
915
916  case ARMISD::VMOVRRD:       return "ARMISD::VMOVRRD";
917  case ARMISD::VMOVDRR:       return "ARMISD::VMOVDRR";
918
919  case ARMISD::EH_SJLJ_SETJMP: return "ARMISD::EH_SJLJ_SETJMP";
920  case ARMISD::EH_SJLJ_LONGJMP:return "ARMISD::EH_SJLJ_LONGJMP";
921
922  case ARMISD::TC_RETURN:     return "ARMISD::TC_RETURN";
923
924  case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER";
925
926  case ARMISD::DYN_ALLOC:     return "ARMISD::DYN_ALLOC";
927
928  case ARMISD::MEMBARRIER:    return "ARMISD::MEMBARRIER";
929  case ARMISD::MEMBARRIER_MCR: return "ARMISD::MEMBARRIER_MCR";
930
931  case ARMISD::PRELOAD:       return "ARMISD::PRELOAD";
932
933  case ARMISD::VCEQ:          return "ARMISD::VCEQ";
934  case ARMISD::VCEQZ:         return "ARMISD::VCEQZ";
935  case ARMISD::VCGE:          return "ARMISD::VCGE";
936  case ARMISD::VCGEZ:         return "ARMISD::VCGEZ";
937  case ARMISD::VCLEZ:         return "ARMISD::VCLEZ";
938  case ARMISD::VCGEU:         return "ARMISD::VCGEU";
939  case ARMISD::VCGT:          return "ARMISD::VCGT";
940  case ARMISD::VCGTZ:         return "ARMISD::VCGTZ";
941  case ARMISD::VCLTZ:         return "ARMISD::VCLTZ";
942  case ARMISD::VCGTU:         return "ARMISD::VCGTU";
943  case ARMISD::VTST:          return "ARMISD::VTST";
944
945  case ARMISD::VSHL:          return "ARMISD::VSHL";
946  case ARMISD::VSHRs:         return "ARMISD::VSHRs";
947  case ARMISD::VSHRu:         return "ARMISD::VSHRu";
948  case ARMISD::VSHLLs:        return "ARMISD::VSHLLs";
949  case ARMISD::VSHLLu:        return "ARMISD::VSHLLu";
950  case ARMISD::VSHLLi:        return "ARMISD::VSHLLi";
951  case ARMISD::VSHRN:         return "ARMISD::VSHRN";
952  case ARMISD::VRSHRs:        return "ARMISD::VRSHRs";
953  case ARMISD::VRSHRu:        return "ARMISD::VRSHRu";
954  case ARMISD::VRSHRN:        return "ARMISD::VRSHRN";
955  case ARMISD::VQSHLs:        return "ARMISD::VQSHLs";
956  case ARMISD::VQSHLu:        return "ARMISD::VQSHLu";
957  case ARMISD::VQSHLsu:       return "ARMISD::VQSHLsu";
958  case ARMISD::VQSHRNs:       return "ARMISD::VQSHRNs";
959  case ARMISD::VQSHRNu:       return "ARMISD::VQSHRNu";
960  case ARMISD::VQSHRNsu:      return "ARMISD::VQSHRNsu";
961  case ARMISD::VQRSHRNs:      return "ARMISD::VQRSHRNs";
962  case ARMISD::VQRSHRNu:      return "ARMISD::VQRSHRNu";
963  case ARMISD::VQRSHRNsu:     return "ARMISD::VQRSHRNsu";
964  case ARMISD::VGETLANEu:     return "ARMISD::VGETLANEu";
965  case ARMISD::VGETLANEs:     return "ARMISD::VGETLANEs";
966  case ARMISD::VMOVIMM:       return "ARMISD::VMOVIMM";
967  case ARMISD::VMVNIMM:       return "ARMISD::VMVNIMM";
968  case ARMISD::VMOVFPIMM:     return "ARMISD::VMOVFPIMM";
969  case ARMISD::VDUP:          return "ARMISD::VDUP";
970  case ARMISD::VDUPLANE:      return "ARMISD::VDUPLANE";
971  case ARMISD::VEXT:          return "ARMISD::VEXT";
972  case ARMISD::VREV64:        return "ARMISD::VREV64";
973  case ARMISD::VREV32:        return "ARMISD::VREV32";
974  case ARMISD::VREV16:        return "ARMISD::VREV16";
975  case ARMISD::VZIP:          return "ARMISD::VZIP";
976  case ARMISD::VUZP:          return "ARMISD::VUZP";
977  case ARMISD::VTRN:          return "ARMISD::VTRN";
978  case ARMISD::VTBL1:         return "ARMISD::VTBL1";
979  case ARMISD::VTBL2:         return "ARMISD::VTBL2";
980  case ARMISD::VMULLs:        return "ARMISD::VMULLs";
981  case ARMISD::VMULLu:        return "ARMISD::VMULLu";
982  case ARMISD::BUILD_VECTOR:  return "ARMISD::BUILD_VECTOR";
983  case ARMISD::FMAX:          return "ARMISD::FMAX";
984  case ARMISD::FMIN:          return "ARMISD::FMIN";
985  case ARMISD::BFI:           return "ARMISD::BFI";
986  case ARMISD::VORRIMM:       return "ARMISD::VORRIMM";
987  case ARMISD::VBICIMM:       return "ARMISD::VBICIMM";
988  case ARMISD::VBSL:          return "ARMISD::VBSL";
989  case ARMISD::VLD2DUP:       return "ARMISD::VLD2DUP";
990  case ARMISD::VLD3DUP:       return "ARMISD::VLD3DUP";
991  case ARMISD::VLD4DUP:       return "ARMISD::VLD4DUP";
992  case ARMISD::VLD1_UPD:      return "ARMISD::VLD1_UPD";
993  case ARMISD::VLD2_UPD:      return "ARMISD::VLD2_UPD";
994  case ARMISD::VLD3_UPD:      return "ARMISD::VLD3_UPD";
995  case ARMISD::VLD4_UPD:      return "ARMISD::VLD4_UPD";
996  case ARMISD::VLD2LN_UPD:    return "ARMISD::VLD2LN_UPD";
997  case ARMISD::VLD3LN_UPD:    return "ARMISD::VLD3LN_UPD";
998  case ARMISD::VLD4LN_UPD:    return "ARMISD::VLD4LN_UPD";
999  case ARMISD::VLD2DUP_UPD:   return "ARMISD::VLD2DUP_UPD";
1000  case ARMISD::VLD3DUP_UPD:   return "ARMISD::VLD3DUP_UPD";
1001  case ARMISD::VLD4DUP_UPD:   return "ARMISD::VLD4DUP_UPD";
1002  case ARMISD::VST1_UPD:      return "ARMISD::VST1_UPD";
1003  case ARMISD::VST2_UPD:      return "ARMISD::VST2_UPD";
1004  case ARMISD::VST3_UPD:      return "ARMISD::VST3_UPD";
1005  case ARMISD::VST4_UPD:      return "ARMISD::VST4_UPD";
1006  case ARMISD::VST2LN_UPD:    return "ARMISD::VST2LN_UPD";
1007  case ARMISD::VST3LN_UPD:    return "ARMISD::VST3LN_UPD";
1008  case ARMISD::VST4LN_UPD:    return "ARMISD::VST4LN_UPD";
1009  }
1010}
1011
1012EVT ARMTargetLowering::getSetCCResultType(EVT VT) const {
1013  if (!VT.isVector()) return getPointerTy();
1014  return VT.changeVectorElementTypeToInteger();
1015}
1016
1017/// getRegClassFor - Return the register class that should be used for the
1018/// specified value type.
1019const TargetRegisterClass *ARMTargetLowering::getRegClassFor(EVT VT) const {
1020  // Map v4i64 to QQ registers but do not make the type legal. Similarly map
1021  // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
1022  // load / store 4 to 8 consecutive D registers.
1023  if (Subtarget->hasNEON()) {
1024    if (VT == MVT::v4i64)
1025      return ARM::QQPRRegisterClass;
1026    else if (VT == MVT::v8i64)
1027      return ARM::QQQQPRRegisterClass;
1028  }
1029  return TargetLowering::getRegClassFor(VT);
1030}
1031
1032// Create a fast isel object.
1033FastISel *
1034ARMTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
1035  return ARM::createFastISel(funcInfo);
1036}
1037
1038/// getMaximalGlobalOffset - Returns the maximal possible offset which can
1039/// be used for loads / stores from the global.
1040unsigned ARMTargetLowering::getMaximalGlobalOffset() const {
1041  return (Subtarget->isThumb1Only() ? 127 : 4095);
1042}
1043
1044Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const {
1045  unsigned NumVals = N->getNumValues();
1046  if (!NumVals)
1047    return Sched::RegPressure;
1048
1049  for (unsigned i = 0; i != NumVals; ++i) {
1050    EVT VT = N->getValueType(i);
1051    if (VT == MVT::Glue || VT == MVT::Other)
1052      continue;
1053    if (VT.isFloatingPoint() || VT.isVector())
1054      return Sched::ILP;
1055  }
1056
1057  if (!N->isMachineOpcode())
1058    return Sched::RegPressure;
1059
1060  // Load are scheduled for latency even if there instruction itinerary
1061  // is not available.
1062  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1063  const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
1064
1065  if (MCID.getNumDefs() == 0)
1066    return Sched::RegPressure;
1067  if (!Itins->isEmpty() &&
1068      Itins->getOperandCycle(MCID.getSchedClass(), 0) > 2)
1069    return Sched::ILP;
1070
1071  return Sched::RegPressure;
1072}
1073
1074//===----------------------------------------------------------------------===//
1075// Lowering Code
1076//===----------------------------------------------------------------------===//
1077
1078/// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
1079static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
1080  switch (CC) {
1081  default: llvm_unreachable("Unknown condition code!");
1082  case ISD::SETNE:  return ARMCC::NE;
1083  case ISD::SETEQ:  return ARMCC::EQ;
1084  case ISD::SETGT:  return ARMCC::GT;
1085  case ISD::SETGE:  return ARMCC::GE;
1086  case ISD::SETLT:  return ARMCC::LT;
1087  case ISD::SETLE:  return ARMCC::LE;
1088  case ISD::SETUGT: return ARMCC::HI;
1089  case ISD::SETUGE: return ARMCC::HS;
1090  case ISD::SETULT: return ARMCC::LO;
1091  case ISD::SETULE: return ARMCC::LS;
1092  }
1093}
1094
1095/// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
1096static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
1097                        ARMCC::CondCodes &CondCode2) {
1098  CondCode2 = ARMCC::AL;
1099  switch (CC) {
1100  default: llvm_unreachable("Unknown FP condition!");
1101  case ISD::SETEQ:
1102  case ISD::SETOEQ: CondCode = ARMCC::EQ; break;
1103  case ISD::SETGT:
1104  case ISD::SETOGT: CondCode = ARMCC::GT; break;
1105  case ISD::SETGE:
1106  case ISD::SETOGE: CondCode = ARMCC::GE; break;
1107  case ISD::SETOLT: CondCode = ARMCC::MI; break;
1108  case ISD::SETOLE: CondCode = ARMCC::LS; break;
1109  case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break;
1110  case ISD::SETO:   CondCode = ARMCC::VC; break;
1111  case ISD::SETUO:  CondCode = ARMCC::VS; break;
1112  case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break;
1113  case ISD::SETUGT: CondCode = ARMCC::HI; break;
1114  case ISD::SETUGE: CondCode = ARMCC::PL; break;
1115  case ISD::SETLT:
1116  case ISD::SETULT: CondCode = ARMCC::LT; break;
1117  case ISD::SETLE:
1118  case ISD::SETULE: CondCode = ARMCC::LE; break;
1119  case ISD::SETNE:
1120  case ISD::SETUNE: CondCode = ARMCC::NE; break;
1121  }
1122}
1123
1124//===----------------------------------------------------------------------===//
1125//                      Calling Convention Implementation
1126//===----------------------------------------------------------------------===//
1127
1128#include "ARMGenCallingConv.inc"
1129
1130/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
1131/// given CallingConvention value.
1132CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC,
1133                                                 bool Return,
1134                                                 bool isVarArg) const {
1135  switch (CC) {
1136  default:
1137    llvm_unreachable("Unsupported calling convention");
1138  case CallingConv::Fast:
1139    if (Subtarget->hasVFP2() && !isVarArg) {
1140      if (!Subtarget->isAAPCS_ABI())
1141        return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
1142      // For AAPCS ABI targets, just use VFP variant of the calling convention.
1143      return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1144    }
1145    // Fallthrough
1146  case CallingConv::C: {
1147    // Use target triple & subtarget features to do actual dispatch.
1148    if (!Subtarget->isAAPCS_ABI())
1149      return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
1150    else if (Subtarget->hasVFP2() &&
1151             getTargetMachine().Options.FloatABIType == FloatABI::Hard &&
1152             !isVarArg)
1153      return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1154    return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
1155  }
1156  case CallingConv::ARM_AAPCS_VFP:
1157    if (!isVarArg)
1158      return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1159    // Fallthrough
1160  case CallingConv::ARM_AAPCS:
1161    return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
1162  case CallingConv::ARM_APCS:
1163    return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
1164  }
1165}
1166
1167/// LowerCallResult - Lower the result values of a call into the
1168/// appropriate copies out of appropriate physical registers.
1169SDValue
1170ARMTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1171                                   CallingConv::ID CallConv, bool isVarArg,
1172                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1173                                   DebugLoc dl, SelectionDAG &DAG,
1174                                   SmallVectorImpl<SDValue> &InVals) const {
1175
1176  // Assign locations to each value returned by this call.
1177  SmallVector<CCValAssign, 16> RVLocs;
1178  ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1179                    getTargetMachine(), RVLocs, *DAG.getContext(), Call);
1180  CCInfo.AnalyzeCallResult(Ins,
1181                           CCAssignFnForNode(CallConv, /* Return*/ true,
1182                                             isVarArg));
1183
1184  // Copy all of the result registers out of their specified physreg.
1185  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1186    CCValAssign VA = RVLocs[i];
1187
1188    SDValue Val;
1189    if (VA.needsCustom()) {
1190      // Handle f64 or half of a v2f64.
1191      SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1192                                      InFlag);
1193      Chain = Lo.getValue(1);
1194      InFlag = Lo.getValue(2);
1195      VA = RVLocs[++i]; // skip ahead to next loc
1196      SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1197                                      InFlag);
1198      Chain = Hi.getValue(1);
1199      InFlag = Hi.getValue(2);
1200      Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1201
1202      if (VA.getLocVT() == MVT::v2f64) {
1203        SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
1204        Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1205                          DAG.getConstant(0, MVT::i32));
1206
1207        VA = RVLocs[++i]; // skip ahead to next loc
1208        Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1209        Chain = Lo.getValue(1);
1210        InFlag = Lo.getValue(2);
1211        VA = RVLocs[++i]; // skip ahead to next loc
1212        Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1213        Chain = Hi.getValue(1);
1214        InFlag = Hi.getValue(2);
1215        Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1216        Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1217                          DAG.getConstant(1, MVT::i32));
1218      }
1219    } else {
1220      Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
1221                               InFlag);
1222      Chain = Val.getValue(1);
1223      InFlag = Val.getValue(2);
1224    }
1225
1226    switch (VA.getLocInfo()) {
1227    default: llvm_unreachable("Unknown loc info!");
1228    case CCValAssign::Full: break;
1229    case CCValAssign::BCvt:
1230      Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val);
1231      break;
1232    }
1233
1234    InVals.push_back(Val);
1235  }
1236
1237  return Chain;
1238}
1239
1240/// LowerMemOpCallTo - Store the argument to the stack.
1241SDValue
1242ARMTargetLowering::LowerMemOpCallTo(SDValue Chain,
1243                                    SDValue StackPtr, SDValue Arg,
1244                                    DebugLoc dl, SelectionDAG &DAG,
1245                                    const CCValAssign &VA,
1246                                    ISD::ArgFlagsTy Flags) const {
1247  unsigned LocMemOffset = VA.getLocMemOffset();
1248  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1249  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1250  return DAG.getStore(Chain, dl, Arg, PtrOff,
1251                      MachinePointerInfo::getStack(LocMemOffset),
1252                      false, false, 0);
1253}
1254
1255void ARMTargetLowering::PassF64ArgInRegs(DebugLoc dl, SelectionDAG &DAG,
1256                                         SDValue Chain, SDValue &Arg,
1257                                         RegsToPassVector &RegsToPass,
1258                                         CCValAssign &VA, CCValAssign &NextVA,
1259                                         SDValue &StackPtr,
1260                                         SmallVector<SDValue, 8> &MemOpChains,
1261                                         ISD::ArgFlagsTy Flags) const {
1262
1263  SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
1264                              DAG.getVTList(MVT::i32, MVT::i32), Arg);
1265  RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd));
1266
1267  if (NextVA.isRegLoc())
1268    RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1)));
1269  else {
1270    assert(NextVA.isMemLoc());
1271    if (StackPtr.getNode() == 0)
1272      StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
1273
1274    MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1),
1275                                           dl, DAG, NextVA,
1276                                           Flags));
1277  }
1278}
1279
1280/// LowerCall - Lowering a call into a callseq_start <-
1281/// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
1282/// nodes.
1283SDValue
1284ARMTargetLowering::LowerCall(SDValue Chain, SDValue Callee,
1285                             CallingConv::ID CallConv, bool isVarArg,
1286                             bool &isTailCall,
1287                             const SmallVectorImpl<ISD::OutputArg> &Outs,
1288                             const SmallVectorImpl<SDValue> &OutVals,
1289                             const SmallVectorImpl<ISD::InputArg> &Ins,
1290                             DebugLoc dl, SelectionDAG &DAG,
1291                             SmallVectorImpl<SDValue> &InVals) const {
1292  MachineFunction &MF = DAG.getMachineFunction();
1293  bool IsStructRet    = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
1294  bool IsSibCall = false;
1295  // Disable tail calls if they're not supported.
1296  if (!EnableARMTailCalls && !Subtarget->supportsTailCall())
1297    isTailCall = false;
1298  if (isTailCall) {
1299    // Check if it's really possible to do a tail call.
1300    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1301                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
1302                                                   Outs, OutVals, Ins, DAG);
1303    // We don't support GuaranteedTailCallOpt for ARM, only automatically
1304    // detected sibcalls.
1305    if (isTailCall) {
1306      ++NumTailCalls;
1307      IsSibCall = true;
1308    }
1309  }
1310
1311  // Analyze operands of the call, assigning locations to each operand.
1312  SmallVector<CCValAssign, 16> ArgLocs;
1313  ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1314                 getTargetMachine(), ArgLocs, *DAG.getContext(), Call);
1315  CCInfo.AnalyzeCallOperands(Outs,
1316                             CCAssignFnForNode(CallConv, /* Return*/ false,
1317                                               isVarArg));
1318
1319  // Get a count of how many bytes are to be pushed on the stack.
1320  unsigned NumBytes = CCInfo.getNextStackOffset();
1321
1322  // For tail calls, memory operands are available in our caller's stack.
1323  if (IsSibCall)
1324    NumBytes = 0;
1325
1326  // Adjust the stack pointer for the new arguments...
1327  // These operations are automatically eliminated by the prolog/epilog pass
1328  if (!IsSibCall)
1329    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
1330
1331  SDValue StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
1332
1333  RegsToPassVector RegsToPass;
1334  SmallVector<SDValue, 8> MemOpChains;
1335
1336  // Walk the register/memloc assignments, inserting copies/loads.  In the case
1337  // of tail call optimization, arguments are handled later.
1338  for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
1339       i != e;
1340       ++i, ++realArgIdx) {
1341    CCValAssign &VA = ArgLocs[i];
1342    SDValue Arg = OutVals[realArgIdx];
1343    ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
1344    bool isByVal = Flags.isByVal();
1345
1346    // Promote the value if needed.
1347    switch (VA.getLocInfo()) {
1348    default: llvm_unreachable("Unknown loc info!");
1349    case CCValAssign::Full: break;
1350    case CCValAssign::SExt:
1351      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
1352      break;
1353    case CCValAssign::ZExt:
1354      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
1355      break;
1356    case CCValAssign::AExt:
1357      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
1358      break;
1359    case CCValAssign::BCvt:
1360      Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
1361      break;
1362    }
1363
1364    // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
1365    if (VA.needsCustom()) {
1366      if (VA.getLocVT() == MVT::v2f64) {
1367        SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1368                                  DAG.getConstant(0, MVT::i32));
1369        SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1370                                  DAG.getConstant(1, MVT::i32));
1371
1372        PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass,
1373                         VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1374
1375        VA = ArgLocs[++i]; // skip ahead to next loc
1376        if (VA.isRegLoc()) {
1377          PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass,
1378                           VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1379        } else {
1380          assert(VA.isMemLoc());
1381
1382          MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Op1,
1383                                                 dl, DAG, VA, Flags));
1384        }
1385      } else {
1386        PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
1387                         StackPtr, MemOpChains, Flags);
1388      }
1389    } else if (VA.isRegLoc()) {
1390      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1391    } else if (isByVal) {
1392      assert(VA.isMemLoc());
1393      unsigned offset = 0;
1394
1395      // True if this byval aggregate will be split between registers
1396      // and memory.
1397      if (CCInfo.isFirstByValRegValid()) {
1398        EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1399        unsigned int i, j;
1400        for (i = 0, j = CCInfo.getFirstByValReg(); j < ARM::R4; i++, j++) {
1401          SDValue Const = DAG.getConstant(4*i, MVT::i32);
1402          SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
1403          SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
1404                                     MachinePointerInfo(),
1405                                     false, false, false, 0);
1406          MemOpChains.push_back(Load.getValue(1));
1407          RegsToPass.push_back(std::make_pair(j, Load));
1408        }
1409        offset = ARM::R4 - CCInfo.getFirstByValReg();
1410        CCInfo.clearFirstByValReg();
1411      }
1412
1413      unsigned LocMemOffset = VA.getLocMemOffset();
1414      SDValue StkPtrOff = DAG.getIntPtrConstant(LocMemOffset);
1415      SDValue Dst = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr,
1416                                StkPtrOff);
1417      SDValue SrcOffset = DAG.getIntPtrConstant(4*offset);
1418      SDValue Src = DAG.getNode(ISD::ADD, dl, getPointerTy(), Arg, SrcOffset);
1419      SDValue SizeNode = DAG.getConstant(Flags.getByValSize() - 4*offset,
1420                                         MVT::i32);
1421      MemOpChains.push_back(DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode,
1422                                          Flags.getByValAlign(),
1423                                          /*isVolatile=*/false,
1424                                          /*AlwaysInline=*/false,
1425                                          MachinePointerInfo(0),
1426                                          MachinePointerInfo(0)));
1427
1428    } else if (!IsSibCall) {
1429      assert(VA.isMemLoc());
1430
1431      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
1432                                             dl, DAG, VA, Flags));
1433    }
1434  }
1435
1436  if (!MemOpChains.empty())
1437    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1438                        &MemOpChains[0], MemOpChains.size());
1439
1440  // Build a sequence of copy-to-reg nodes chained together with token chain
1441  // and flag operands which copy the outgoing args into the appropriate regs.
1442  SDValue InFlag;
1443  // Tail call byval lowering might overwrite argument registers so in case of
1444  // tail call optimization the copies to registers are lowered later.
1445  if (!isTailCall)
1446    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1447      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1448                               RegsToPass[i].second, InFlag);
1449      InFlag = Chain.getValue(1);
1450    }
1451
1452  // For tail calls lower the arguments to the 'real' stack slot.
1453  if (isTailCall) {
1454    // Force all the incoming stack arguments to be loaded from the stack
1455    // before any new outgoing arguments are stored to the stack, because the
1456    // outgoing stack slots may alias the incoming argument stack slots, and
1457    // the alias isn't otherwise explicit. This is slightly more conservative
1458    // than necessary, because it means that each store effectively depends
1459    // on every argument instead of just those arguments it would clobber.
1460
1461    // Do not flag preceding copytoreg stuff together with the following stuff.
1462    InFlag = SDValue();
1463    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1464      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1465                               RegsToPass[i].second, InFlag);
1466      InFlag = Chain.getValue(1);
1467    }
1468    InFlag =SDValue();
1469  }
1470
1471  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
1472  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
1473  // node so that legalize doesn't hack it.
1474  bool isDirect = false;
1475  bool isARMFunc = false;
1476  bool isLocalARMFunc = false;
1477  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1478
1479  if (EnableARMLongCalls) {
1480    assert (getTargetMachine().getRelocationModel() == Reloc::Static
1481            && "long-calls with non-static relocation model!");
1482    // Handle a global address or an external symbol. If it's not one of
1483    // those, the target's already in a register, so we don't need to do
1484    // anything extra.
1485    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1486      const GlobalValue *GV = G->getGlobal();
1487      // Create a constant pool entry for the callee address
1488      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1489      ARMConstantPoolValue *CPV =
1490        ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, 0);
1491
1492      // Get the address of the callee into a register
1493      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1494      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1495      Callee = DAG.getLoad(getPointerTy(), dl,
1496                           DAG.getEntryNode(), CPAddr,
1497                           MachinePointerInfo::getConstantPool(),
1498                           false, false, false, 0);
1499    } else if (ExternalSymbolSDNode *S=dyn_cast<ExternalSymbolSDNode>(Callee)) {
1500      const char *Sym = S->getSymbol();
1501
1502      // Create a constant pool entry for the callee address
1503      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1504      ARMConstantPoolValue *CPV =
1505        ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
1506                                      ARMPCLabelIndex, 0);
1507      // Get the address of the callee into a register
1508      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1509      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1510      Callee = DAG.getLoad(getPointerTy(), dl,
1511                           DAG.getEntryNode(), CPAddr,
1512                           MachinePointerInfo::getConstantPool(),
1513                           false, false, false, 0);
1514    }
1515  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1516    const GlobalValue *GV = G->getGlobal();
1517    isDirect = true;
1518    bool isExt = GV->isDeclaration() || GV->isWeakForLinker();
1519    bool isStub = (isExt && Subtarget->isTargetDarwin()) &&
1520                   getTargetMachine().getRelocationModel() != Reloc::Static;
1521    isARMFunc = !Subtarget->isThumb() || isStub;
1522    // ARM call to a local ARM function is predicable.
1523    isLocalARMFunc = !Subtarget->isThumb() && (!isExt || !ARMInterworking);
1524    // tBX takes a register source operand.
1525    if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
1526      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1527      ARMConstantPoolValue *CPV =
1528        ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, 4);
1529      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1530      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1531      Callee = DAG.getLoad(getPointerTy(), dl,
1532                           DAG.getEntryNode(), CPAddr,
1533                           MachinePointerInfo::getConstantPool(),
1534                           false, false, false, 0);
1535      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1536      Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
1537                           getPointerTy(), Callee, PICLabel);
1538    } else {
1539      // On ELF targets for PIC code, direct calls should go through the PLT
1540      unsigned OpFlags = 0;
1541      if (Subtarget->isTargetELF() &&
1542                  getTargetMachine().getRelocationModel() == Reloc::PIC_)
1543        OpFlags = ARMII::MO_PLT;
1544      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
1545    }
1546  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1547    isDirect = true;
1548    bool isStub = Subtarget->isTargetDarwin() &&
1549                  getTargetMachine().getRelocationModel() != Reloc::Static;
1550    isARMFunc = !Subtarget->isThumb() || isStub;
1551    // tBX takes a register source operand.
1552    const char *Sym = S->getSymbol();
1553    if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
1554      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1555      ARMConstantPoolValue *CPV =
1556        ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
1557                                      ARMPCLabelIndex, 4);
1558      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1559      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1560      Callee = DAG.getLoad(getPointerTy(), dl,
1561                           DAG.getEntryNode(), CPAddr,
1562                           MachinePointerInfo::getConstantPool(),
1563                           false, false, false, 0);
1564      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1565      Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
1566                           getPointerTy(), Callee, PICLabel);
1567    } else {
1568      unsigned OpFlags = 0;
1569      // On ELF targets for PIC code, direct calls should go through the PLT
1570      if (Subtarget->isTargetELF() &&
1571                  getTargetMachine().getRelocationModel() == Reloc::PIC_)
1572        OpFlags = ARMII::MO_PLT;
1573      Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlags);
1574    }
1575  }
1576
1577  // FIXME: handle tail calls differently.
1578  unsigned CallOpc;
1579  if (Subtarget->isThumb()) {
1580    if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps())
1581      CallOpc = ARMISD::CALL_NOLINK;
1582    else
1583      CallOpc = isARMFunc ? ARMISD::CALL : ARMISD::tCALL;
1584  } else {
1585    CallOpc = (isDirect || Subtarget->hasV5TOps())
1586      ? (isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL)
1587      : ARMISD::CALL_NOLINK;
1588  }
1589
1590  std::vector<SDValue> Ops;
1591  Ops.push_back(Chain);
1592  Ops.push_back(Callee);
1593
1594  // Add argument registers to the end of the list so that they are known live
1595  // into the call.
1596  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1597    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1598                                  RegsToPass[i].second.getValueType()));
1599
1600  if (InFlag.getNode())
1601    Ops.push_back(InFlag);
1602
1603  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1604  if (isTailCall)
1605    return DAG.getNode(ARMISD::TC_RETURN, dl, NodeTys, &Ops[0], Ops.size());
1606
1607  // Returns a chain and a flag for retval copy to use.
1608  Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size());
1609  InFlag = Chain.getValue(1);
1610
1611  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
1612                             DAG.getIntPtrConstant(0, true), InFlag);
1613  if (!Ins.empty())
1614    InFlag = Chain.getValue(1);
1615
1616  // Handle result values, copying them out of physregs into vregs that we
1617  // return.
1618  return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins,
1619                         dl, DAG, InVals);
1620}
1621
1622/// HandleByVal - Every parameter *after* a byval parameter is passed
1623/// on the stack.  Remember the next parameter register to allocate,
1624/// and then confiscate the rest of the parameter registers to insure
1625/// this.
1626void
1627llvm::ARMTargetLowering::HandleByVal(CCState *State, unsigned &size) const {
1628  unsigned reg = State->AllocateReg(GPRArgRegs, 4);
1629  assert((State->getCallOrPrologue() == Prologue ||
1630          State->getCallOrPrologue() == Call) &&
1631         "unhandled ParmContext");
1632  if ((!State->isFirstByValRegValid()) &&
1633      (ARM::R0 <= reg) && (reg <= ARM::R3)) {
1634    State->setFirstByValReg(reg);
1635    // At a call site, a byval parameter that is split between
1636    // registers and memory needs its size truncated here.  In a
1637    // function prologue, such byval parameters are reassembled in
1638    // memory, and are not truncated.
1639    if (State->getCallOrPrologue() == Call) {
1640      unsigned excess = 4 * (ARM::R4 - reg);
1641      assert(size >= excess && "expected larger existing stack allocation");
1642      size -= excess;
1643    }
1644  }
1645  // Confiscate any remaining parameter registers to preclude their
1646  // assignment to subsequent parameters.
1647  while (State->AllocateReg(GPRArgRegs, 4))
1648    ;
1649}
1650
1651/// MatchingStackOffset - Return true if the given stack call argument is
1652/// already available in the same position (relatively) of the caller's
1653/// incoming argument stack.
1654static
1655bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
1656                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
1657                         const ARMInstrInfo *TII) {
1658  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
1659  int FI = INT_MAX;
1660  if (Arg.getOpcode() == ISD::CopyFromReg) {
1661    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
1662    if (!TargetRegisterInfo::isVirtualRegister(VR))
1663      return false;
1664    MachineInstr *Def = MRI->getVRegDef(VR);
1665    if (!Def)
1666      return false;
1667    if (!Flags.isByVal()) {
1668      if (!TII->isLoadFromStackSlot(Def, FI))
1669        return false;
1670    } else {
1671      return false;
1672    }
1673  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
1674    if (Flags.isByVal())
1675      // ByVal argument is passed in as a pointer but it's now being
1676      // dereferenced. e.g.
1677      // define @foo(%struct.X* %A) {
1678      //   tail call @bar(%struct.X* byval %A)
1679      // }
1680      return false;
1681    SDValue Ptr = Ld->getBasePtr();
1682    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
1683    if (!FINode)
1684      return false;
1685    FI = FINode->getIndex();
1686  } else
1687    return false;
1688
1689  assert(FI != INT_MAX);
1690  if (!MFI->isFixedObjectIndex(FI))
1691    return false;
1692  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
1693}
1694
1695/// IsEligibleForTailCallOptimization - Check whether the call is eligible
1696/// for tail call optimization. Targets which want to do tail call
1697/// optimization should implement this function.
1698bool
1699ARMTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
1700                                                     CallingConv::ID CalleeCC,
1701                                                     bool isVarArg,
1702                                                     bool isCalleeStructRet,
1703                                                     bool isCallerStructRet,
1704                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
1705                                    const SmallVectorImpl<SDValue> &OutVals,
1706                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1707                                                     SelectionDAG& DAG) const {
1708  const Function *CallerF = DAG.getMachineFunction().getFunction();
1709  CallingConv::ID CallerCC = CallerF->getCallingConv();
1710  bool CCMatch = CallerCC == CalleeCC;
1711
1712  // Look for obvious safe cases to perform tail call optimization that do not
1713  // require ABI changes. This is what gcc calls sibcall.
1714
1715  // Do not sibcall optimize vararg calls unless the call site is not passing
1716  // any arguments.
1717  if (isVarArg && !Outs.empty())
1718    return false;
1719
1720  // Also avoid sibcall optimization if either caller or callee uses struct
1721  // return semantics.
1722  if (isCalleeStructRet || isCallerStructRet)
1723    return false;
1724
1725  // FIXME: Completely disable sibcall for Thumb1 since Thumb1RegisterInfo::
1726  // emitEpilogue is not ready for them. Thumb tail calls also use t2B, as
1727  // the Thumb1 16-bit unconditional branch doesn't have sufficient relocation
1728  // support in the assembler and linker to be used. This would need to be
1729  // fixed to fully support tail calls in Thumb1.
1730  //
1731  // Doing this is tricky, since the LDM/POP instruction on Thumb doesn't take
1732  // LR.  This means if we need to reload LR, it takes an extra instructions,
1733  // which outweighs the value of the tail call; but here we don't know yet
1734  // whether LR is going to be used.  Probably the right approach is to
1735  // generate the tail call here and turn it back into CALL/RET in
1736  // emitEpilogue if LR is used.
1737
1738  // Thumb1 PIC calls to external symbols use BX, so they can be tail calls,
1739  // but we need to make sure there are enough registers; the only valid
1740  // registers are the 4 used for parameters.  We don't currently do this
1741  // case.
1742  if (Subtarget->isThumb1Only())
1743    return false;
1744
1745  // If the calling conventions do not match, then we'd better make sure the
1746  // results are returned in the same way as what the caller expects.
1747  if (!CCMatch) {
1748    SmallVector<CCValAssign, 16> RVLocs1;
1749    ARMCCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
1750                       getTargetMachine(), RVLocs1, *DAG.getContext(), Call);
1751    CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForNode(CalleeCC, true, isVarArg));
1752
1753    SmallVector<CCValAssign, 16> RVLocs2;
1754    ARMCCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
1755                       getTargetMachine(), RVLocs2, *DAG.getContext(), Call);
1756    CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForNode(CallerCC, true, isVarArg));
1757
1758    if (RVLocs1.size() != RVLocs2.size())
1759      return false;
1760    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
1761      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
1762        return false;
1763      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
1764        return false;
1765      if (RVLocs1[i].isRegLoc()) {
1766        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
1767          return false;
1768      } else {
1769        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
1770          return false;
1771      }
1772    }
1773  }
1774
1775  // If the callee takes no arguments then go on to check the results of the
1776  // call.
1777  if (!Outs.empty()) {
1778    // Check if stack adjustment is needed. For now, do not do this if any
1779    // argument is passed on the stack.
1780    SmallVector<CCValAssign, 16> ArgLocs;
1781    ARMCCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
1782                      getTargetMachine(), ArgLocs, *DAG.getContext(), Call);
1783    CCInfo.AnalyzeCallOperands(Outs,
1784                               CCAssignFnForNode(CalleeCC, false, isVarArg));
1785    if (CCInfo.getNextStackOffset()) {
1786      MachineFunction &MF = DAG.getMachineFunction();
1787
1788      // Check if the arguments are already laid out in the right way as
1789      // the caller's fixed stack objects.
1790      MachineFrameInfo *MFI = MF.getFrameInfo();
1791      const MachineRegisterInfo *MRI = &MF.getRegInfo();
1792      const ARMInstrInfo *TII =
1793        ((ARMTargetMachine&)getTargetMachine()).getInstrInfo();
1794      for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
1795           i != e;
1796           ++i, ++realArgIdx) {
1797        CCValAssign &VA = ArgLocs[i];
1798        EVT RegVT = VA.getLocVT();
1799        SDValue Arg = OutVals[realArgIdx];
1800        ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
1801        if (VA.getLocInfo() == CCValAssign::Indirect)
1802          return false;
1803        if (VA.needsCustom()) {
1804          // f64 and vector types are split into multiple registers or
1805          // register/stack-slot combinations.  The types will not match
1806          // the registers; give up on memory f64 refs until we figure
1807          // out what to do about this.
1808          if (!VA.isRegLoc())
1809            return false;
1810          if (!ArgLocs[++i].isRegLoc())
1811            return false;
1812          if (RegVT == MVT::v2f64) {
1813            if (!ArgLocs[++i].isRegLoc())
1814              return false;
1815            if (!ArgLocs[++i].isRegLoc())
1816              return false;
1817          }
1818        } else if (!VA.isRegLoc()) {
1819          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
1820                                   MFI, MRI, TII))
1821            return false;
1822        }
1823      }
1824    }
1825  }
1826
1827  return true;
1828}
1829
1830SDValue
1831ARMTargetLowering::LowerReturn(SDValue Chain,
1832                               CallingConv::ID CallConv, bool isVarArg,
1833                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1834                               const SmallVectorImpl<SDValue> &OutVals,
1835                               DebugLoc dl, SelectionDAG &DAG) const {
1836
1837  // CCValAssign - represent the assignment of the return value to a location.
1838  SmallVector<CCValAssign, 16> RVLocs;
1839
1840  // CCState - Info about the registers and stack slots.
1841  ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1842                    getTargetMachine(), RVLocs, *DAG.getContext(), Call);
1843
1844  // Analyze outgoing return values.
1845  CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv, /* Return */ true,
1846                                               isVarArg));
1847
1848  // If this is the first return lowered for this function, add
1849  // the regs to the liveout set for the function.
1850  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
1851    for (unsigned i = 0; i != RVLocs.size(); ++i)
1852      if (RVLocs[i].isRegLoc())
1853        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
1854  }
1855
1856  SDValue Flag;
1857
1858  // Copy the result values into the output registers.
1859  for (unsigned i = 0, realRVLocIdx = 0;
1860       i != RVLocs.size();
1861       ++i, ++realRVLocIdx) {
1862    CCValAssign &VA = RVLocs[i];
1863    assert(VA.isRegLoc() && "Can only return in registers!");
1864
1865    SDValue Arg = OutVals[realRVLocIdx];
1866
1867    switch (VA.getLocInfo()) {
1868    default: llvm_unreachable("Unknown loc info!");
1869    case CCValAssign::Full: break;
1870    case CCValAssign::BCvt:
1871      Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
1872      break;
1873    }
1874
1875    if (VA.needsCustom()) {
1876      if (VA.getLocVT() == MVT::v2f64) {
1877        // Extract the first half and return it in two registers.
1878        SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1879                                   DAG.getConstant(0, MVT::i32));
1880        SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl,
1881                                       DAG.getVTList(MVT::i32, MVT::i32), Half);
1882
1883        Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), HalfGPRs, Flag);
1884        Flag = Chain.getValue(1);
1885        VA = RVLocs[++i]; // skip ahead to next loc
1886        Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
1887                                 HalfGPRs.getValue(1), Flag);
1888        Flag = Chain.getValue(1);
1889        VA = RVLocs[++i]; // skip ahead to next loc
1890
1891        // Extract the 2nd half and fall through to handle it as an f64 value.
1892        Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1893                          DAG.getConstant(1, MVT::i32));
1894      }
1895      // Legalize ret f64 -> ret 2 x i32.  We always have fmrrd if f64 is
1896      // available.
1897      SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
1898                                  DAG.getVTList(MVT::i32, MVT::i32), &Arg, 1);
1899      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd, Flag);
1900      Flag = Chain.getValue(1);
1901      VA = RVLocs[++i]; // skip ahead to next loc
1902      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd.getValue(1),
1903                               Flag);
1904    } else
1905      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
1906
1907    // Guarantee that all emitted copies are
1908    // stuck together, avoiding something bad.
1909    Flag = Chain.getValue(1);
1910  }
1911
1912  SDValue result;
1913  if (Flag.getNode())
1914    result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain, Flag);
1915  else // Return Void
1916    result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain);
1917
1918  return result;
1919}
1920
1921bool ARMTargetLowering::isUsedByReturnOnly(SDNode *N) const {
1922  if (N->getNumValues() != 1)
1923    return false;
1924  if (!N->hasNUsesOfValue(1, 0))
1925    return false;
1926
1927  unsigned NumCopies = 0;
1928  SDNode* Copies[2] = { 0, 0 };
1929  SDNode *Use = *N->use_begin();
1930  if (Use->getOpcode() == ISD::CopyToReg) {
1931    Copies[NumCopies++] = Use;
1932  } else if (Use->getOpcode() == ARMISD::VMOVRRD) {
1933    // f64 returned in a pair of GPRs.
1934    for (SDNode::use_iterator UI = Use->use_begin(), UE = Use->use_end();
1935         UI != UE; ++UI) {
1936      if (UI->getOpcode() != ISD::CopyToReg)
1937        return false;
1938      Copies[UI.getUse().getResNo()] = *UI;
1939      ++NumCopies;
1940    }
1941  } else if (Use->getOpcode() == ISD::BITCAST) {
1942    // f32 returned in a single GPR.
1943    if (!Use->hasNUsesOfValue(1, 0))
1944      return false;
1945    Use = *Use->use_begin();
1946    if (Use->getOpcode() != ISD::CopyToReg || !Use->hasNUsesOfValue(1, 0))
1947      return false;
1948    Copies[NumCopies++] = Use;
1949  } else {
1950    return false;
1951  }
1952
1953  if (NumCopies != 1 && NumCopies != 2)
1954    return false;
1955
1956  bool HasRet = false;
1957  for (unsigned i = 0; i < NumCopies; ++i) {
1958    SDNode *Copy = Copies[i];
1959    for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1960         UI != UE; ++UI) {
1961      if (UI->getOpcode() == ISD::CopyToReg) {
1962        SDNode *Use = *UI;
1963        if (Use == Copies[0] || ((NumCopies == 2) && (Use == Copies[1])))
1964          continue;
1965        return false;
1966      }
1967      if (UI->getOpcode() != ARMISD::RET_FLAG)
1968        return false;
1969      HasRet = true;
1970    }
1971  }
1972
1973  return HasRet;
1974}
1975
1976bool ARMTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
1977  if (!EnableARMTailCalls)
1978    return false;
1979
1980  if (!CI->isTailCall())
1981    return false;
1982
1983  return !Subtarget->isThumb1Only();
1984}
1985
1986// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
1987// their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
1988// one of the above mentioned nodes. It has to be wrapped because otherwise
1989// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
1990// be used to form addressing mode. These wrapped nodes will be selected
1991// into MOVi.
1992static SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
1993  EVT PtrVT = Op.getValueType();
1994  // FIXME there is no actual debug info here
1995  DebugLoc dl = Op.getDebugLoc();
1996  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1997  SDValue Res;
1998  if (CP->isMachineConstantPoolEntry())
1999    Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
2000                                    CP->getAlignment());
2001  else
2002    Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
2003                                    CP->getAlignment());
2004  return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
2005}
2006
2007unsigned ARMTargetLowering::getJumpTableEncoding() const {
2008  return MachineJumpTableInfo::EK_Inline;
2009}
2010
2011SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op,
2012                                             SelectionDAG &DAG) const {
2013  MachineFunction &MF = DAG.getMachineFunction();
2014  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2015  unsigned ARMPCLabelIndex = 0;
2016  DebugLoc DL = Op.getDebugLoc();
2017  EVT PtrVT = getPointerTy();
2018  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
2019  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2020  SDValue CPAddr;
2021  if (RelocM == Reloc::Static) {
2022    CPAddr = DAG.getTargetConstantPool(BA, PtrVT, 4);
2023  } else {
2024    unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
2025    ARMPCLabelIndex = AFI->createPICLabelUId();
2026    ARMConstantPoolValue *CPV =
2027      ARMConstantPoolConstant::Create(BA, ARMPCLabelIndex,
2028                                      ARMCP::CPBlockAddress, PCAdj);
2029    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2030  }
2031  CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr);
2032  SDValue Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), CPAddr,
2033                               MachinePointerInfo::getConstantPool(),
2034                               false, false, false, 0);
2035  if (RelocM == Reloc::Static)
2036    return Result;
2037  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2038  return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel);
2039}
2040
2041// Lower ISD::GlobalTLSAddress using the "general dynamic" model
2042SDValue
2043ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
2044                                                 SelectionDAG &DAG) const {
2045  DebugLoc dl = GA->getDebugLoc();
2046  EVT PtrVT = getPointerTy();
2047  unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
2048  MachineFunction &MF = DAG.getMachineFunction();
2049  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2050  unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2051  ARMConstantPoolValue *CPV =
2052    ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
2053                                    ARMCP::CPValue, PCAdj, ARMCP::TLSGD, true);
2054  SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2055  Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
2056  Argument = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Argument,
2057                         MachinePointerInfo::getConstantPool(),
2058                         false, false, false, 0);
2059  SDValue Chain = Argument.getValue(1);
2060
2061  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2062  Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);
2063
2064  // call __tls_get_addr.
2065  ArgListTy Args;
2066  ArgListEntry Entry;
2067  Entry.Node = Argument;
2068  Entry.Ty = (Type *) Type::getInt32Ty(*DAG.getContext());
2069  Args.push_back(Entry);
2070  // FIXME: is there useful debug info available here?
2071  std::pair<SDValue, SDValue> CallResult =
2072    LowerCallTo(Chain, (Type *) Type::getInt32Ty(*DAG.getContext()),
2073                false, false, false, false,
2074                0, CallingConv::C, false, /*isReturnValueUsed=*/true,
2075                DAG.getExternalSymbol("__tls_get_addr", PtrVT), Args, DAG, dl);
2076  return CallResult.first;
2077}
2078
2079// Lower ISD::GlobalTLSAddress using the "initial exec" or
2080// "local exec" model.
2081SDValue
2082ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
2083                                        SelectionDAG &DAG) const {
2084  const GlobalValue *GV = GA->getGlobal();
2085  DebugLoc dl = GA->getDebugLoc();
2086  SDValue Offset;
2087  SDValue Chain = DAG.getEntryNode();
2088  EVT PtrVT = getPointerTy();
2089  // Get the Thread Pointer
2090  SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
2091
2092  if (GV->isDeclaration()) {
2093    MachineFunction &MF = DAG.getMachineFunction();
2094    ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2095    unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2096    // Initial exec model.
2097    unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
2098    ARMConstantPoolValue *CPV =
2099      ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
2100                                      ARMCP::CPValue, PCAdj, ARMCP::GOTTPOFF,
2101                                      true);
2102    Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2103    Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
2104    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
2105                         MachinePointerInfo::getConstantPool(),
2106                         false, false, false, 0);
2107    Chain = Offset.getValue(1);
2108
2109    SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2110    Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
2111
2112    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
2113                         MachinePointerInfo::getConstantPool(),
2114                         false, false, false, 0);
2115  } else {
2116    // local exec model
2117    ARMConstantPoolValue *CPV =
2118      ARMConstantPoolConstant::Create(GV, ARMCP::TPOFF);
2119    Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2120    Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
2121    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
2122                         MachinePointerInfo::getConstantPool(),
2123                         false, false, false, 0);
2124  }
2125
2126  // The address of the thread local variable is the add of the thread
2127  // pointer with the offset of the variable.
2128  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
2129}
2130
2131SDValue
2132ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
2133  // TODO: implement the "local dynamic" model
2134  assert(Subtarget->isTargetELF() &&
2135         "TLS not implemented for non-ELF targets");
2136  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2137  // If the relocation model is PIC, use the "General Dynamic" TLS Model,
2138  // otherwise use the "Local Exec" TLS Model
2139  if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
2140    return LowerToTLSGeneralDynamicModel(GA, DAG);
2141  else
2142    return LowerToTLSExecModels(GA, DAG);
2143}
2144
2145SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
2146                                                 SelectionDAG &DAG) const {
2147  EVT PtrVT = getPointerTy();
2148  DebugLoc dl = Op.getDebugLoc();
2149  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
2150  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2151  if (RelocM == Reloc::PIC_) {
2152    bool UseGOTOFF = GV->hasLocalLinkage() || GV->hasHiddenVisibility();
2153    ARMConstantPoolValue *CPV =
2154      ARMConstantPoolConstant::Create(GV,
2155                                      UseGOTOFF ? ARMCP::GOTOFF : ARMCP::GOT);
2156    SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2157    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2158    SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
2159                                 CPAddr,
2160                                 MachinePointerInfo::getConstantPool(),
2161                                 false, false, false, 0);
2162    SDValue Chain = Result.getValue(1);
2163    SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
2164    Result = DAG.getNode(ISD::ADD, dl, PtrVT, Result, GOT);
2165    if (!UseGOTOFF)
2166      Result = DAG.getLoad(PtrVT, dl, Chain, Result,
2167                           MachinePointerInfo::getGOT(),
2168                           false, false, false, 0);
2169    return Result;
2170  }
2171
2172  // If we have T2 ops, we can materialize the address directly via movt/movw
2173  // pair. This is always cheaper.
2174  if (Subtarget->useMovt()) {
2175    ++NumMovwMovt;
2176    // FIXME: Once remat is capable of dealing with instructions with register
2177    // operands, expand this into two nodes.
2178    return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
2179                       DAG.getTargetGlobalAddress(GV, dl, PtrVT));
2180  } else {
2181    SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
2182    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2183    return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2184                       MachinePointerInfo::getConstantPool(),
2185                       false, false, false, 0);
2186  }
2187}
2188
2189SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
2190                                                    SelectionDAG &DAG) const {
2191  EVT PtrVT = getPointerTy();
2192  DebugLoc dl = Op.getDebugLoc();
2193  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
2194  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2195  MachineFunction &MF = DAG.getMachineFunction();
2196  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2197
2198  // FIXME: Enable this for static codegen when tool issues are fixed.  Also
2199  // update ARMFastISel::ARMMaterializeGV.
2200  if (Subtarget->useMovt() && RelocM != Reloc::Static) {
2201    ++NumMovwMovt;
2202    // FIXME: Once remat is capable of dealing with instructions with register
2203    // operands, expand this into two nodes.
2204    if (RelocM == Reloc::Static)
2205      return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
2206                                 DAG.getTargetGlobalAddress(GV, dl, PtrVT));
2207
2208    unsigned Wrapper = (RelocM == Reloc::PIC_)
2209      ? ARMISD::WrapperPIC : ARMISD::WrapperDYN;
2210    SDValue Result = DAG.getNode(Wrapper, dl, PtrVT,
2211                                 DAG.getTargetGlobalAddress(GV, dl, PtrVT));
2212    if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
2213      Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
2214                           MachinePointerInfo::getGOT(),
2215                           false, false, false, 0);
2216    return Result;
2217  }
2218
2219  unsigned ARMPCLabelIndex = 0;
2220  SDValue CPAddr;
2221  if (RelocM == Reloc::Static) {
2222    CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
2223  } else {
2224    ARMPCLabelIndex = AFI->createPICLabelUId();
2225    unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : (Subtarget->isThumb()?4:8);
2226    ARMConstantPoolValue *CPV =
2227      ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue,
2228                                      PCAdj);
2229    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2230  }
2231  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2232
2233  SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2234                               MachinePointerInfo::getConstantPool(),
2235                               false, false, false, 0);
2236  SDValue Chain = Result.getValue(1);
2237
2238  if (RelocM == Reloc::PIC_) {
2239    SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2240    Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2241  }
2242
2243  if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
2244    Result = DAG.getLoad(PtrVT, dl, Chain, Result, MachinePointerInfo::getGOT(),
2245                         false, false, false, 0);
2246
2247  return Result;
2248}
2249
2250SDValue ARMTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op,
2251                                                    SelectionDAG &DAG) const {
2252  assert(Subtarget->isTargetELF() &&
2253         "GLOBAL OFFSET TABLE not implemented for non-ELF targets");
2254  MachineFunction &MF = DAG.getMachineFunction();
2255  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2256  unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2257  EVT PtrVT = getPointerTy();
2258  DebugLoc dl = Op.getDebugLoc();
2259  unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
2260  ARMConstantPoolValue *CPV =
2261    ARMConstantPoolSymbol::Create(*DAG.getContext(), "_GLOBAL_OFFSET_TABLE_",
2262                                  ARMPCLabelIndex, PCAdj);
2263  SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2264  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2265  SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2266                               MachinePointerInfo::getConstantPool(),
2267                               false, false, false, 0);
2268  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2269  return DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2270}
2271
2272SDValue
2273ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const {
2274  DebugLoc dl = Op.getDebugLoc();
2275  SDValue Val = DAG.getConstant(0, MVT::i32);
2276  return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl,
2277                     DAG.getVTList(MVT::i32, MVT::Other), Op.getOperand(0),
2278                     Op.getOperand(1), Val);
2279}
2280
2281SDValue
2282ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const {
2283  DebugLoc dl = Op.getDebugLoc();
2284  return DAG.getNode(ARMISD::EH_SJLJ_LONGJMP, dl, MVT::Other, Op.getOperand(0),
2285                     Op.getOperand(1), DAG.getConstant(0, MVT::i32));
2286}
2287
2288SDValue
2289ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG,
2290                                          const ARMSubtarget *Subtarget) const {
2291  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2292  DebugLoc dl = Op.getDebugLoc();
2293  switch (IntNo) {
2294  default: return SDValue();    // Don't custom lower most intrinsics.
2295  case Intrinsic::arm_thread_pointer: {
2296    EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2297    return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
2298  }
2299  case Intrinsic::eh_sjlj_lsda: {
2300    MachineFunction &MF = DAG.getMachineFunction();
2301    ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2302    unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2303    EVT PtrVT = getPointerTy();
2304    DebugLoc dl = Op.getDebugLoc();
2305    Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2306    SDValue CPAddr;
2307    unsigned PCAdj = (RelocM != Reloc::PIC_)
2308      ? 0 : (Subtarget->isThumb() ? 4 : 8);
2309    ARMConstantPoolValue *CPV =
2310      ARMConstantPoolConstant::Create(MF.getFunction(), ARMPCLabelIndex,
2311                                      ARMCP::CPLSDA, PCAdj);
2312    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2313    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2314    SDValue Result =
2315      DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2316                  MachinePointerInfo::getConstantPool(),
2317                  false, false, false, 0);
2318
2319    if (RelocM == Reloc::PIC_) {
2320      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2321      Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2322    }
2323    return Result;
2324  }
2325  case Intrinsic::arm_neon_vmulls:
2326  case Intrinsic::arm_neon_vmullu: {
2327    unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmulls)
2328      ? ARMISD::VMULLs : ARMISD::VMULLu;
2329    return DAG.getNode(NewOpc, Op.getDebugLoc(), Op.getValueType(),
2330                       Op.getOperand(1), Op.getOperand(2));
2331  }
2332  }
2333}
2334
2335static SDValue LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG,
2336                               const ARMSubtarget *Subtarget) {
2337  DebugLoc dl = Op.getDebugLoc();
2338  if (!Subtarget->hasDataBarrier()) {
2339    // Some ARMv6 cpus can support data barriers with an mcr instruction.
2340    // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
2341    // here.
2342    assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&
2343           "Unexpected ISD::MEMBARRIER encountered. Should be libcall!");
2344    return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
2345                       DAG.getConstant(0, MVT::i32));
2346  }
2347
2348  SDValue Op5 = Op.getOperand(5);
2349  bool isDeviceBarrier = cast<ConstantSDNode>(Op5)->getZExtValue() != 0;
2350  unsigned isLL = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
2351  unsigned isLS = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
2352  bool isOnlyStoreBarrier = (isLL == 0 && isLS == 0);
2353
2354  ARM_MB::MemBOpt DMBOpt;
2355  if (isDeviceBarrier)
2356    DMBOpt = isOnlyStoreBarrier ? ARM_MB::ST : ARM_MB::SY;
2357  else
2358    DMBOpt = isOnlyStoreBarrier ? ARM_MB::ISHST : ARM_MB::ISH;
2359  return DAG.getNode(ARMISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0),
2360                     DAG.getConstant(DMBOpt, MVT::i32));
2361}
2362
2363
2364static SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG,
2365                                 const ARMSubtarget *Subtarget) {
2366  // FIXME: handle "fence singlethread" more efficiently.
2367  DebugLoc dl = Op.getDebugLoc();
2368  if (!Subtarget->hasDataBarrier()) {
2369    // Some ARMv6 cpus can support data barriers with an mcr instruction.
2370    // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
2371    // here.
2372    assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&
2373           "Unexpected ISD::MEMBARRIER encountered. Should be libcall!");
2374    return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
2375                       DAG.getConstant(0, MVT::i32));
2376  }
2377
2378  return DAG.getNode(ARMISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0),
2379                     DAG.getConstant(ARM_MB::ISH, MVT::i32));
2380}
2381
2382static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG,
2383                             const ARMSubtarget *Subtarget) {
2384  // ARM pre v5TE and Thumb1 does not have preload instructions.
2385  if (!(Subtarget->isThumb2() ||
2386        (!Subtarget->isThumb1Only() && Subtarget->hasV5TEOps())))
2387    // Just preserve the chain.
2388    return Op.getOperand(0);
2389
2390  DebugLoc dl = Op.getDebugLoc();
2391  unsigned isRead = ~cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() & 1;
2392  if (!isRead &&
2393      (!Subtarget->hasV7Ops() || !Subtarget->hasMPExtension()))
2394    // ARMv7 with MP extension has PLDW.
2395    return Op.getOperand(0);
2396
2397  unsigned isData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
2398  if (Subtarget->isThumb()) {
2399    // Invert the bits.
2400    isRead = ~isRead & 1;
2401    isData = ~isData & 1;
2402  }
2403
2404  return DAG.getNode(ARMISD::PRELOAD, dl, MVT::Other, Op.getOperand(0),
2405                     Op.getOperand(1), DAG.getConstant(isRead, MVT::i32),
2406                     DAG.getConstant(isData, MVT::i32));
2407}
2408
2409static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) {
2410  MachineFunction &MF = DAG.getMachineFunction();
2411  ARMFunctionInfo *FuncInfo = MF.getInfo<ARMFunctionInfo>();
2412
2413  // vastart just stores the address of the VarArgsFrameIndex slot into the
2414  // memory location argument.
2415  DebugLoc dl = Op.getDebugLoc();
2416  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2417  SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2418  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2419  return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
2420                      MachinePointerInfo(SV), false, false, 0);
2421}
2422
2423SDValue
2424ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA, CCValAssign &NextVA,
2425                                        SDValue &Root, SelectionDAG &DAG,
2426                                        DebugLoc dl) const {
2427  MachineFunction &MF = DAG.getMachineFunction();
2428  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2429
2430  const TargetRegisterClass *RC;
2431  if (AFI->isThumb1OnlyFunction())
2432    RC = ARM::tGPRRegisterClass;
2433  else
2434    RC = ARM::GPRRegisterClass;
2435
2436  // Transform the arguments stored in physical registers into virtual ones.
2437  unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2438  SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
2439
2440  SDValue ArgValue2;
2441  if (NextVA.isMemLoc()) {
2442    MachineFrameInfo *MFI = MF.getFrameInfo();
2443    int FI = MFI->CreateFixedObject(4, NextVA.getLocMemOffset(), true);
2444
2445    // Create load node to retrieve arguments from the stack.
2446    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2447    ArgValue2 = DAG.getLoad(MVT::i32, dl, Root, FIN,
2448                            MachinePointerInfo::getFixedStack(FI),
2449                            false, false, false, 0);
2450  } else {
2451    Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
2452    ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
2453  }
2454
2455  return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2);
2456}
2457
2458void
2459ARMTargetLowering::computeRegArea(CCState &CCInfo, MachineFunction &MF,
2460                                  unsigned &VARegSize, unsigned &VARegSaveSize)
2461  const {
2462  unsigned NumGPRs;
2463  if (CCInfo.isFirstByValRegValid())
2464    NumGPRs = ARM::R4 - CCInfo.getFirstByValReg();
2465  else {
2466    unsigned int firstUnalloced;
2467    firstUnalloced = CCInfo.getFirstUnallocated(GPRArgRegs,
2468                                                sizeof(GPRArgRegs) /
2469                                                sizeof(GPRArgRegs[0]));
2470    NumGPRs = (firstUnalloced <= 3) ? (4 - firstUnalloced) : 0;
2471  }
2472
2473  unsigned Align = MF.getTarget().getFrameLowering()->getStackAlignment();
2474  VARegSize = NumGPRs * 4;
2475  VARegSaveSize = (VARegSize + Align - 1) & ~(Align - 1);
2476}
2477
2478// The remaining GPRs hold either the beginning of variable-argument
2479// data, or the beginning of an aggregate passed by value (usuall
2480// byval).  Either way, we allocate stack slots adjacent to the data
2481// provided by our caller, and store the unallocated registers there.
2482// If this is a variadic function, the va_list pointer will begin with
2483// these values; otherwise, this reassembles a (byval) structure that
2484// was split between registers and memory.
2485void
2486ARMTargetLowering::VarArgStyleRegisters(CCState &CCInfo, SelectionDAG &DAG,
2487                                        DebugLoc dl, SDValue &Chain,
2488                                        unsigned ArgOffset) const {
2489  MachineFunction &MF = DAG.getMachineFunction();
2490  MachineFrameInfo *MFI = MF.getFrameInfo();
2491  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2492  unsigned firstRegToSaveIndex;
2493  if (CCInfo.isFirstByValRegValid())
2494    firstRegToSaveIndex = CCInfo.getFirstByValReg() - ARM::R0;
2495  else {
2496    firstRegToSaveIndex = CCInfo.getFirstUnallocated
2497      (GPRArgRegs, sizeof(GPRArgRegs) / sizeof(GPRArgRegs[0]));
2498  }
2499
2500  unsigned VARegSize, VARegSaveSize;
2501  computeRegArea(CCInfo, MF, VARegSize, VARegSaveSize);
2502  if (VARegSaveSize) {
2503    // If this function is vararg, store any remaining integer argument regs
2504    // to their spots on the stack so that they may be loaded by deferencing
2505    // the result of va_next.
2506    AFI->setVarArgsRegSaveSize(VARegSaveSize);
2507    AFI->setVarArgsFrameIndex(MFI->CreateFixedObject(VARegSaveSize,
2508                                                     ArgOffset + VARegSaveSize
2509                                                     - VARegSize,
2510                                                     false));
2511    SDValue FIN = DAG.getFrameIndex(AFI->getVarArgsFrameIndex(),
2512                                    getPointerTy());
2513
2514    SmallVector<SDValue, 4> MemOps;
2515    for (; firstRegToSaveIndex < 4; ++firstRegToSaveIndex) {
2516      const TargetRegisterClass *RC;
2517      if (AFI->isThumb1OnlyFunction())
2518        RC = ARM::tGPRRegisterClass;
2519      else
2520        RC = ARM::GPRRegisterClass;
2521
2522      unsigned VReg = MF.addLiveIn(GPRArgRegs[firstRegToSaveIndex], RC);
2523      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
2524      SDValue Store =
2525        DAG.getStore(Val.getValue(1), dl, Val, FIN,
2526                 MachinePointerInfo::getFixedStack(AFI->getVarArgsFrameIndex()),
2527                     false, false, 0);
2528      MemOps.push_back(Store);
2529      FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN,
2530                        DAG.getConstant(4, getPointerTy()));
2531    }
2532    if (!MemOps.empty())
2533      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2534                          &MemOps[0], MemOps.size());
2535  } else
2536    // This will point to the next argument passed via stack.
2537    AFI->setVarArgsFrameIndex(MFI->CreateFixedObject(4, ArgOffset, true));
2538}
2539
2540SDValue
2541ARMTargetLowering::LowerFormalArguments(SDValue Chain,
2542                                        CallingConv::ID CallConv, bool isVarArg,
2543                                        const SmallVectorImpl<ISD::InputArg>
2544                                          &Ins,
2545                                        DebugLoc dl, SelectionDAG &DAG,
2546                                        SmallVectorImpl<SDValue> &InVals)
2547                                          const {
2548  MachineFunction &MF = DAG.getMachineFunction();
2549  MachineFrameInfo *MFI = MF.getFrameInfo();
2550
2551  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2552
2553  // Assign locations to all of the incoming arguments.
2554  SmallVector<CCValAssign, 16> ArgLocs;
2555  ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2556                    getTargetMachine(), ArgLocs, *DAG.getContext(), Prologue);
2557  CCInfo.AnalyzeFormalArguments(Ins,
2558                                CCAssignFnForNode(CallConv, /* Return*/ false,
2559                                                  isVarArg));
2560
2561  SmallVector<SDValue, 16> ArgValues;
2562  int lastInsIndex = -1;
2563
2564  SDValue ArgValue;
2565  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2566    CCValAssign &VA = ArgLocs[i];
2567
2568    // Arguments stored in registers.
2569    if (VA.isRegLoc()) {
2570      EVT RegVT = VA.getLocVT();
2571
2572      if (VA.needsCustom()) {
2573        // f64 and vector types are split up into multiple registers or
2574        // combinations of registers and stack slots.
2575        if (VA.getLocVT() == MVT::v2f64) {
2576          SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i],
2577                                                   Chain, DAG, dl);
2578          VA = ArgLocs[++i]; // skip ahead to next loc
2579          SDValue ArgValue2;
2580          if (VA.isMemLoc()) {
2581            int FI = MFI->CreateFixedObject(8, VA.getLocMemOffset(), true);
2582            SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2583            ArgValue2 = DAG.getLoad(MVT::f64, dl, Chain, FIN,
2584                                    MachinePointerInfo::getFixedStack(FI),
2585                                    false, false, false, 0);
2586          } else {
2587            ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i],
2588                                             Chain, DAG, dl);
2589          }
2590          ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
2591          ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
2592                                 ArgValue, ArgValue1, DAG.getIntPtrConstant(0));
2593          ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
2594                                 ArgValue, ArgValue2, DAG.getIntPtrConstant(1));
2595        } else
2596          ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
2597
2598      } else {
2599        const TargetRegisterClass *RC;
2600
2601        if (RegVT == MVT::f32)
2602          RC = ARM::SPRRegisterClass;
2603        else if (RegVT == MVT::f64)
2604          RC = ARM::DPRRegisterClass;
2605        else if (RegVT == MVT::v2f64)
2606          RC = ARM::QPRRegisterClass;
2607        else if (RegVT == MVT::i32)
2608          RC = (AFI->isThumb1OnlyFunction() ?
2609                ARM::tGPRRegisterClass : ARM::GPRRegisterClass);
2610        else
2611          llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
2612
2613        // Transform the arguments in physical registers into virtual ones.
2614        unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2615        ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
2616      }
2617
2618      // If this is an 8 or 16-bit value, it is really passed promoted
2619      // to 32 bits.  Insert an assert[sz]ext to capture this, then
2620      // truncate to the right size.
2621      switch (VA.getLocInfo()) {
2622      default: llvm_unreachable("Unknown loc info!");
2623      case CCValAssign::Full: break;
2624      case CCValAssign::BCvt:
2625        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
2626        break;
2627      case CCValAssign::SExt:
2628        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
2629                               DAG.getValueType(VA.getValVT()));
2630        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
2631        break;
2632      case CCValAssign::ZExt:
2633        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
2634                               DAG.getValueType(VA.getValVT()));
2635        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
2636        break;
2637      }
2638
2639      InVals.push_back(ArgValue);
2640
2641    } else { // VA.isRegLoc()
2642
2643      // sanity check
2644      assert(VA.isMemLoc());
2645      assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered");
2646
2647      int index = ArgLocs[i].getValNo();
2648
2649      // Some Ins[] entries become multiple ArgLoc[] entries.
2650      // Process them only once.
2651      if (index != lastInsIndex)
2652        {
2653          ISD::ArgFlagsTy Flags = Ins[index].Flags;
2654          // FIXME: For now, all byval parameter objects are marked mutable.
2655          // This can be changed with more analysis.
2656          // In case of tail call optimization mark all arguments mutable.
2657          // Since they could be overwritten by lowering of arguments in case of
2658          // a tail call.
2659          if (Flags.isByVal()) {
2660            unsigned VARegSize, VARegSaveSize;
2661            computeRegArea(CCInfo, MF, VARegSize, VARegSaveSize);
2662            VarArgStyleRegisters(CCInfo, DAG, dl, Chain, 0);
2663            unsigned Bytes = Flags.getByValSize() - VARegSize;
2664            if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
2665            int FI = MFI->CreateFixedObject(Bytes,
2666                                            VA.getLocMemOffset(), false);
2667            InVals.push_back(DAG.getFrameIndex(FI, getPointerTy()));
2668          } else {
2669            int FI = MFI->CreateFixedObject(VA.getLocVT().getSizeInBits()/8,
2670                                            VA.getLocMemOffset(), true);
2671
2672            // Create load nodes to retrieve arguments from the stack.
2673            SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2674            InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
2675                                         MachinePointerInfo::getFixedStack(FI),
2676                                         false, false, false, 0));
2677          }
2678          lastInsIndex = index;
2679        }
2680    }
2681  }
2682
2683  // varargs
2684  if (isVarArg)
2685    VarArgStyleRegisters(CCInfo, DAG, dl, Chain, CCInfo.getNextStackOffset());
2686
2687  return Chain;
2688}
2689
2690/// isFloatingPointZero - Return true if this is +0.0.
2691static bool isFloatingPointZero(SDValue Op) {
2692  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
2693    return CFP->getValueAPF().isPosZero();
2694  else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
2695    // Maybe this has already been legalized into the constant pool?
2696    if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
2697      SDValue WrapperOp = Op.getOperand(1).getOperand(0);
2698      if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
2699        if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
2700          return CFP->getValueAPF().isPosZero();
2701    }
2702  }
2703  return false;
2704}
2705
2706/// Returns appropriate ARM CMP (cmp) and corresponding condition code for
2707/// the given operands.
2708SDValue
2709ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
2710                             SDValue &ARMcc, SelectionDAG &DAG,
2711                             DebugLoc dl) const {
2712  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
2713    unsigned C = RHSC->getZExtValue();
2714    if (!isLegalICmpImmediate(C)) {
2715      // Constant does not fit, try adjusting it by one?
2716      switch (CC) {
2717      default: break;
2718      case ISD::SETLT:
2719      case ISD::SETGE:
2720        if (C != 0x80000000 && isLegalICmpImmediate(C-1)) {
2721          CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
2722          RHS = DAG.getConstant(C-1, MVT::i32);
2723        }
2724        break;
2725      case ISD::SETULT:
2726      case ISD::SETUGE:
2727        if (C != 0 && isLegalICmpImmediate(C-1)) {
2728          CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
2729          RHS = DAG.getConstant(C-1, MVT::i32);
2730        }
2731        break;
2732      case ISD::SETLE:
2733      case ISD::SETGT:
2734        if (C != 0x7fffffff && isLegalICmpImmediate(C+1)) {
2735          CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
2736          RHS = DAG.getConstant(C+1, MVT::i32);
2737        }
2738        break;
2739      case ISD::SETULE:
2740      case ISD::SETUGT:
2741        if (C != 0xffffffff && isLegalICmpImmediate(C+1)) {
2742          CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
2743          RHS = DAG.getConstant(C+1, MVT::i32);
2744        }
2745        break;
2746      }
2747    }
2748  }
2749
2750  ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
2751  ARMISD::NodeType CompareType;
2752  switch (CondCode) {
2753  default:
2754    CompareType = ARMISD::CMP;
2755    break;
2756  case ARMCC::EQ:
2757  case ARMCC::NE:
2758    // Uses only Z Flag
2759    CompareType = ARMISD::CMPZ;
2760    break;
2761  }
2762  ARMcc = DAG.getConstant(CondCode, MVT::i32);
2763  return DAG.getNode(CompareType, dl, MVT::Glue, LHS, RHS);
2764}
2765
2766/// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
2767SDValue
2768ARMTargetLowering::getVFPCmp(SDValue LHS, SDValue RHS, SelectionDAG &DAG,
2769                             DebugLoc dl) const {
2770  SDValue Cmp;
2771  if (!isFloatingPointZero(RHS))
2772    Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Glue, LHS, RHS);
2773  else
2774    Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Glue, LHS);
2775  return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Glue, Cmp);
2776}
2777
2778/// duplicateCmp - Glue values can have only one use, so this function
2779/// duplicates a comparison node.
2780SDValue
2781ARMTargetLowering::duplicateCmp(SDValue Cmp, SelectionDAG &DAG) const {
2782  unsigned Opc = Cmp.getOpcode();
2783  DebugLoc DL = Cmp.getDebugLoc();
2784  if (Opc == ARMISD::CMP || Opc == ARMISD::CMPZ)
2785    return DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
2786
2787  assert(Opc == ARMISD::FMSTAT && "unexpected comparison operation");
2788  Cmp = Cmp.getOperand(0);
2789  Opc = Cmp.getOpcode();
2790  if (Opc == ARMISD::CMPFP)
2791    Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
2792  else {
2793    assert(Opc == ARMISD::CMPFPw0 && "unexpected operand of FMSTAT");
2794    Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0));
2795  }
2796  return DAG.getNode(ARMISD::FMSTAT, DL, MVT::Glue, Cmp);
2797}
2798
2799SDValue ARMTargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
2800  SDValue Cond = Op.getOperand(0);
2801  SDValue SelectTrue = Op.getOperand(1);
2802  SDValue SelectFalse = Op.getOperand(2);
2803  DebugLoc dl = Op.getDebugLoc();
2804
2805  // Convert:
2806  //
2807  //   (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond)
2808  //   (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond)
2809  //
2810  if (Cond.getOpcode() == ARMISD::CMOV && Cond.hasOneUse()) {
2811    const ConstantSDNode *CMOVTrue =
2812      dyn_cast<ConstantSDNode>(Cond.getOperand(0));
2813    const ConstantSDNode *CMOVFalse =
2814      dyn_cast<ConstantSDNode>(Cond.getOperand(1));
2815
2816    if (CMOVTrue && CMOVFalse) {
2817      unsigned CMOVTrueVal = CMOVTrue->getZExtValue();
2818      unsigned CMOVFalseVal = CMOVFalse->getZExtValue();
2819
2820      SDValue True;
2821      SDValue False;
2822      if (CMOVTrueVal == 1 && CMOVFalseVal == 0) {
2823        True = SelectTrue;
2824        False = SelectFalse;
2825      } else if (CMOVTrueVal == 0 && CMOVFalseVal == 1) {
2826        True = SelectFalse;
2827        False = SelectTrue;
2828      }
2829
2830      if (True.getNode() && False.getNode()) {
2831        EVT VT = Op.getValueType();
2832        SDValue ARMcc = Cond.getOperand(2);
2833        SDValue CCR = Cond.getOperand(3);
2834        SDValue Cmp = duplicateCmp(Cond.getOperand(4), DAG);
2835        assert(True.getValueType() == VT);
2836        return DAG.getNode(ARMISD::CMOV, dl, VT, True, False, ARMcc, CCR, Cmp);
2837      }
2838    }
2839  }
2840
2841  return DAG.getSelectCC(dl, Cond,
2842                         DAG.getConstant(0, Cond.getValueType()),
2843                         SelectTrue, SelectFalse, ISD::SETNE);
2844}
2845
2846SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
2847  EVT VT = Op.getValueType();
2848  SDValue LHS = Op.getOperand(0);
2849  SDValue RHS = Op.getOperand(1);
2850  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2851  SDValue TrueVal = Op.getOperand(2);
2852  SDValue FalseVal = Op.getOperand(3);
2853  DebugLoc dl = Op.getDebugLoc();
2854
2855  if (LHS.getValueType() == MVT::i32) {
2856    SDValue ARMcc;
2857    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2858    SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
2859    return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, CCR,Cmp);
2860  }
2861
2862  ARMCC::CondCodes CondCode, CondCode2;
2863  FPCCToARMCC(CC, CondCode, CondCode2);
2864
2865  SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
2866  SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
2867  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2868  SDValue Result = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal,
2869                               ARMcc, CCR, Cmp);
2870  if (CondCode2 != ARMCC::AL) {
2871    SDValue ARMcc2 = DAG.getConstant(CondCode2, MVT::i32);
2872    // FIXME: Needs another CMP because flag can have but one use.
2873    SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl);
2874    Result = DAG.getNode(ARMISD::CMOV, dl, VT,
2875                         Result, TrueVal, ARMcc2, CCR, Cmp2);
2876  }
2877  return Result;
2878}
2879
2880/// canChangeToInt - Given the fp compare operand, return true if it is suitable
2881/// to morph to an integer compare sequence.
2882static bool canChangeToInt(SDValue Op, bool &SeenZero,
2883                           const ARMSubtarget *Subtarget) {
2884  SDNode *N = Op.getNode();
2885  if (!N->hasOneUse())
2886    // Otherwise it requires moving the value from fp to integer registers.
2887    return false;
2888  if (!N->getNumValues())
2889    return false;
2890  EVT VT = Op.getValueType();
2891  if (VT != MVT::f32 && !Subtarget->isFPBrccSlow())
2892    // f32 case is generally profitable. f64 case only makes sense when vcmpe +
2893    // vmrs are very slow, e.g. cortex-a8.
2894    return false;
2895
2896  if (isFloatingPointZero(Op)) {
2897    SeenZero = true;
2898    return true;
2899  }
2900  return ISD::isNormalLoad(N);
2901}
2902
2903static SDValue bitcastf32Toi32(SDValue Op, SelectionDAG &DAG) {
2904  if (isFloatingPointZero(Op))
2905    return DAG.getConstant(0, MVT::i32);
2906
2907  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op))
2908    return DAG.getLoad(MVT::i32, Op.getDebugLoc(),
2909                       Ld->getChain(), Ld->getBasePtr(), Ld->getPointerInfo(),
2910                       Ld->isVolatile(), Ld->isNonTemporal(),
2911                       Ld->isInvariant(), Ld->getAlignment());
2912
2913  llvm_unreachable("Unknown VFP cmp argument!");
2914}
2915
2916static void expandf64Toi32(SDValue Op, SelectionDAG &DAG,
2917                           SDValue &RetVal1, SDValue &RetVal2) {
2918  if (isFloatingPointZero(Op)) {
2919    RetVal1 = DAG.getConstant(0, MVT::i32);
2920    RetVal2 = DAG.getConstant(0, MVT::i32);
2921    return;
2922  }
2923
2924  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) {
2925    SDValue Ptr = Ld->getBasePtr();
2926    RetVal1 = DAG.getLoad(MVT::i32, Op.getDebugLoc(),
2927                          Ld->getChain(), Ptr,
2928                          Ld->getPointerInfo(),
2929                          Ld->isVolatile(), Ld->isNonTemporal(),
2930                          Ld->isInvariant(), Ld->getAlignment());
2931
2932    EVT PtrType = Ptr.getValueType();
2933    unsigned NewAlign = MinAlign(Ld->getAlignment(), 4);
2934    SDValue NewPtr = DAG.getNode(ISD::ADD, Op.getDebugLoc(),
2935                                 PtrType, Ptr, DAG.getConstant(4, PtrType));
2936    RetVal2 = DAG.getLoad(MVT::i32, Op.getDebugLoc(),
2937                          Ld->getChain(), NewPtr,
2938                          Ld->getPointerInfo().getWithOffset(4),
2939                          Ld->isVolatile(), Ld->isNonTemporal(),
2940                          Ld->isInvariant(), NewAlign);
2941    return;
2942  }
2943
2944  llvm_unreachable("Unknown VFP cmp argument!");
2945}
2946
2947/// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some
2948/// f32 and even f64 comparisons to integer ones.
2949SDValue
2950ARMTargetLowering::OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const {
2951  SDValue Chain = Op.getOperand(0);
2952  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
2953  SDValue LHS = Op.getOperand(2);
2954  SDValue RHS = Op.getOperand(3);
2955  SDValue Dest = Op.getOperand(4);
2956  DebugLoc dl = Op.getDebugLoc();
2957
2958  bool SeenZero = false;
2959  if (canChangeToInt(LHS, SeenZero, Subtarget) &&
2960      canChangeToInt(RHS, SeenZero, Subtarget) &&
2961      // If one of the operand is zero, it's safe to ignore the NaN case since
2962      // we only care about equality comparisons.
2963      (SeenZero || (DAG.isKnownNeverNaN(LHS) && DAG.isKnownNeverNaN(RHS)))) {
2964    // If unsafe fp math optimization is enabled and there are no other uses of
2965    // the CMP operands, and the condition code is EQ or NE, we can optimize it
2966    // to an integer comparison.
2967    if (CC == ISD::SETOEQ)
2968      CC = ISD::SETEQ;
2969    else if (CC == ISD::SETUNE)
2970      CC = ISD::SETNE;
2971
2972    SDValue ARMcc;
2973    if (LHS.getValueType() == MVT::f32) {
2974      LHS = bitcastf32Toi32(LHS, DAG);
2975      RHS = bitcastf32Toi32(RHS, DAG);
2976      SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
2977      SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2978      return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
2979                         Chain, Dest, ARMcc, CCR, Cmp);
2980    }
2981
2982    SDValue LHS1, LHS2;
2983    SDValue RHS1, RHS2;
2984    expandf64Toi32(LHS, DAG, LHS1, LHS2);
2985    expandf64Toi32(RHS, DAG, RHS1, RHS2);
2986    ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
2987    ARMcc = DAG.getConstant(CondCode, MVT::i32);
2988    SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
2989    SDValue Ops[] = { Chain, ARMcc, LHS1, LHS2, RHS1, RHS2, Dest };
2990    return DAG.getNode(ARMISD::BCC_i64, dl, VTList, Ops, 7);
2991  }
2992
2993  return SDValue();
2994}
2995
2996SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
2997  SDValue Chain = Op.getOperand(0);
2998  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
2999  SDValue LHS = Op.getOperand(2);
3000  SDValue RHS = Op.getOperand(3);
3001  SDValue Dest = Op.getOperand(4);
3002  DebugLoc dl = Op.getDebugLoc();
3003
3004  if (LHS.getValueType() == MVT::i32) {
3005    SDValue ARMcc;
3006    SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
3007    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3008    return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
3009                       Chain, Dest, ARMcc, CCR, Cmp);
3010  }
3011
3012  assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
3013
3014  if (getTargetMachine().Options.UnsafeFPMath &&
3015      (CC == ISD::SETEQ || CC == ISD::SETOEQ ||
3016       CC == ISD::SETNE || CC == ISD::SETUNE)) {
3017    SDValue Result = OptimizeVFPBrcond(Op, DAG);
3018    if (Result.getNode())
3019      return Result;
3020  }
3021
3022  ARMCC::CondCodes CondCode, CondCode2;
3023  FPCCToARMCC(CC, CondCode, CondCode2);
3024
3025  SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
3026  SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
3027  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3028  SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
3029  SDValue Ops[] = { Chain, Dest, ARMcc, CCR, Cmp };
3030  SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
3031  if (CondCode2 != ARMCC::AL) {
3032    ARMcc = DAG.getConstant(CondCode2, MVT::i32);
3033    SDValue Ops[] = { Res, Dest, ARMcc, CCR, Res.getValue(1) };
3034    Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
3035  }
3036  return Res;
3037}
3038
3039SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
3040  SDValue Chain = Op.getOperand(0);
3041  SDValue Table = Op.getOperand(1);
3042  SDValue Index = Op.getOperand(2);
3043  DebugLoc dl = Op.getDebugLoc();
3044
3045  EVT PTy = getPointerTy();
3046  JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
3047  ARMFunctionInfo *AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
3048  SDValue UId = DAG.getConstant(AFI->createJumpTableUId(), PTy);
3049  SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
3050  Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI, UId);
3051  Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, PTy));
3052  SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
3053  if (Subtarget->isThumb2()) {
3054    // Thumb2 uses a two-level jump. That is, it jumps into the jump table
3055    // which does another jump to the destination. This also makes it easier
3056    // to translate it to TBB / TBH later.
3057    // FIXME: This might not work if the function is extremely large.
3058    return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain,
3059                       Addr, Op.getOperand(2), JTI, UId);
3060  }
3061  if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
3062    Addr = DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr,
3063                       MachinePointerInfo::getJumpTable(),
3064                       false, false, false, 0);
3065    Chain = Addr.getValue(1);
3066    Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, Table);
3067    return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
3068  } else {
3069    Addr = DAG.getLoad(PTy, dl, Chain, Addr,
3070                       MachinePointerInfo::getJumpTable(),
3071                       false, false, false, 0);
3072    Chain = Addr.getValue(1);
3073    return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
3074  }
3075}
3076
3077static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
3078  EVT VT = Op.getValueType();
3079  DebugLoc dl = Op.getDebugLoc();
3080
3081  if (Op.getValueType().getVectorElementType() == MVT::i32) {
3082    if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::f32)
3083      return Op;
3084    return DAG.UnrollVectorOp(Op.getNode());
3085  }
3086
3087  assert(Op.getOperand(0).getValueType() == MVT::v4f32 &&
3088         "Invalid type for custom lowering!");
3089  if (VT != MVT::v4i16)
3090    return DAG.UnrollVectorOp(Op.getNode());
3091
3092  Op = DAG.getNode(Op.getOpcode(), dl, MVT::v4i32, Op.getOperand(0));
3093  return DAG.getNode(ISD::TRUNCATE, dl, VT, Op);
3094}
3095
3096static SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
3097  EVT VT = Op.getValueType();
3098  if (VT.isVector())
3099    return LowerVectorFP_TO_INT(Op, DAG);
3100
3101  DebugLoc dl = Op.getDebugLoc();
3102  unsigned Opc;
3103
3104  switch (Op.getOpcode()) {
3105  default: llvm_unreachable("Invalid opcode!");
3106  case ISD::FP_TO_SINT:
3107    Opc = ARMISD::FTOSI;
3108    break;
3109  case ISD::FP_TO_UINT:
3110    Opc = ARMISD::FTOUI;
3111    break;
3112  }
3113  Op = DAG.getNode(Opc, dl, MVT::f32, Op.getOperand(0));
3114  return DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3115}
3116
3117static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
3118  EVT VT = Op.getValueType();
3119  DebugLoc dl = Op.getDebugLoc();
3120
3121  if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i32) {
3122    if (VT.getVectorElementType() == MVT::f32)
3123      return Op;
3124    return DAG.UnrollVectorOp(Op.getNode());
3125  }
3126
3127  assert(Op.getOperand(0).getValueType() == MVT::v4i16 &&
3128         "Invalid type for custom lowering!");
3129  if (VT != MVT::v4f32)
3130    return DAG.UnrollVectorOp(Op.getNode());
3131
3132  unsigned CastOpc;
3133  unsigned Opc;
3134  switch (Op.getOpcode()) {
3135  default: llvm_unreachable("Invalid opcode!");
3136  case ISD::SINT_TO_FP:
3137    CastOpc = ISD::SIGN_EXTEND;
3138    Opc = ISD::SINT_TO_FP;
3139    break;
3140  case ISD::UINT_TO_FP:
3141    CastOpc = ISD::ZERO_EXTEND;
3142    Opc = ISD::UINT_TO_FP;
3143    break;
3144  }
3145
3146  Op = DAG.getNode(CastOpc, dl, MVT::v4i32, Op.getOperand(0));
3147  return DAG.getNode(Opc, dl, VT, Op);
3148}
3149
3150static SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
3151  EVT VT = Op.getValueType();
3152  if (VT.isVector())
3153    return LowerVectorINT_TO_FP(Op, DAG);
3154
3155  DebugLoc dl = Op.getDebugLoc();
3156  unsigned Opc;
3157
3158  switch (Op.getOpcode()) {
3159  default: llvm_unreachable("Invalid opcode!");
3160  case ISD::SINT_TO_FP:
3161    Opc = ARMISD::SITOF;
3162    break;
3163  case ISD::UINT_TO_FP:
3164    Opc = ARMISD::UITOF;
3165    break;
3166  }
3167
3168  Op = DAG.getNode(ISD::BITCAST, dl, MVT::f32, Op.getOperand(0));
3169  return DAG.getNode(Opc, dl, VT, Op);
3170}
3171
3172SDValue ARMTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
3173  // Implement fcopysign with a fabs and a conditional fneg.
3174  SDValue Tmp0 = Op.getOperand(0);
3175  SDValue Tmp1 = Op.getOperand(1);
3176  DebugLoc dl = Op.getDebugLoc();
3177  EVT VT = Op.getValueType();
3178  EVT SrcVT = Tmp1.getValueType();
3179  bool InGPR = Tmp0.getOpcode() == ISD::BITCAST ||
3180    Tmp0.getOpcode() == ARMISD::VMOVDRR;
3181  bool UseNEON = !InGPR && Subtarget->hasNEON();
3182
3183  if (UseNEON) {
3184    // Use VBSL to copy the sign bit.
3185    unsigned EncodedVal = ARM_AM::createNEONModImm(0x6, 0x80);
3186    SDValue Mask = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v2i32,
3187                               DAG.getTargetConstant(EncodedVal, MVT::i32));
3188    EVT OpVT = (VT == MVT::f32) ? MVT::v2i32 : MVT::v1i64;
3189    if (VT == MVT::f64)
3190      Mask = DAG.getNode(ARMISD::VSHL, dl, OpVT,
3191                         DAG.getNode(ISD::BITCAST, dl, OpVT, Mask),
3192                         DAG.getConstant(32, MVT::i32));
3193    else /*if (VT == MVT::f32)*/
3194      Tmp0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp0);
3195    if (SrcVT == MVT::f32) {
3196      Tmp1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp1);
3197      if (VT == MVT::f64)
3198        Tmp1 = DAG.getNode(ARMISD::VSHL, dl, OpVT,
3199                           DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1),
3200                           DAG.getConstant(32, MVT::i32));
3201    } else if (VT == MVT::f32)
3202      Tmp1 = DAG.getNode(ARMISD::VSHRu, dl, MVT::v1i64,
3203                         DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, Tmp1),
3204                         DAG.getConstant(32, MVT::i32));
3205    Tmp0 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp0);
3206    Tmp1 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1);
3207
3208    SDValue AllOnes = DAG.getTargetConstant(ARM_AM::createNEONModImm(0xe, 0xff),
3209                                            MVT::i32);
3210    AllOnes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v8i8, AllOnes);
3211    SDValue MaskNot = DAG.getNode(ISD::XOR, dl, OpVT, Mask,
3212                                  DAG.getNode(ISD::BITCAST, dl, OpVT, AllOnes));
3213
3214    SDValue Res = DAG.getNode(ISD::OR, dl, OpVT,
3215                              DAG.getNode(ISD::AND, dl, OpVT, Tmp1, Mask),
3216                              DAG.getNode(ISD::AND, dl, OpVT, Tmp0, MaskNot));
3217    if (VT == MVT::f32) {
3218      Res = DAG.getNode(ISD::BITCAST, dl, MVT::v2f32, Res);
3219      Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, Res,
3220                        DAG.getConstant(0, MVT::i32));
3221    } else {
3222      Res = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Res);
3223    }
3224
3225    return Res;
3226  }
3227
3228  // Bitcast operand 1 to i32.
3229  if (SrcVT == MVT::f64)
3230    Tmp1 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
3231                       &Tmp1, 1).getValue(1);
3232  Tmp1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp1);
3233
3234  // Or in the signbit with integer operations.
3235  SDValue Mask1 = DAG.getConstant(0x80000000, MVT::i32);
3236  SDValue Mask2 = DAG.getConstant(0x7fffffff, MVT::i32);
3237  Tmp1 = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp1, Mask1);
3238  if (VT == MVT::f32) {
3239    Tmp0 = DAG.getNode(ISD::AND, dl, MVT::i32,
3240                       DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp0), Mask2);
3241    return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
3242                       DAG.getNode(ISD::OR, dl, MVT::i32, Tmp0, Tmp1));
3243  }
3244
3245  // f64: Or the high part with signbit and then combine two parts.
3246  Tmp0 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
3247                     &Tmp0, 1);
3248  SDValue Lo = Tmp0.getValue(0);
3249  SDValue Hi = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp0.getValue(1), Mask2);
3250  Hi = DAG.getNode(ISD::OR, dl, MVT::i32, Hi, Tmp1);
3251  return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
3252}
3253
3254SDValue ARMTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{
3255  MachineFunction &MF = DAG.getMachineFunction();
3256  MachineFrameInfo *MFI = MF.getFrameInfo();
3257  MFI->setReturnAddressIsTaken(true);
3258
3259  EVT VT = Op.getValueType();
3260  DebugLoc dl = Op.getDebugLoc();
3261  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3262  if (Depth) {
3263    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
3264    SDValue Offset = DAG.getConstant(4, MVT::i32);
3265    return DAG.getLoad(VT, dl, DAG.getEntryNode(),
3266                       DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
3267                       MachinePointerInfo(), false, false, false, 0);
3268  }
3269
3270  // Return LR, which contains the return address. Mark it an implicit live-in.
3271  unsigned Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32));
3272  return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
3273}
3274
3275SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
3276  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3277  MFI->setFrameAddressIsTaken(true);
3278
3279  EVT VT = Op.getValueType();
3280  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
3281  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3282  unsigned FrameReg = (Subtarget->isThumb() || Subtarget->isTargetDarwin())
3283    ? ARM::R7 : ARM::R11;
3284  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
3285  while (Depth--)
3286    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
3287                            MachinePointerInfo(),
3288                            false, false, false, 0);
3289  return FrameAddr;
3290}
3291
3292/// ExpandBITCAST - If the target supports VFP, this function is called to
3293/// expand a bit convert where either the source or destination type is i64 to
3294/// use a VMOVDRR or VMOVRRD node.  This should not be done when the non-i64
3295/// operand type is illegal (e.g., v2f32 for a target that doesn't support
3296/// vectors), since the legalizer won't know what to do with that.
3297static SDValue ExpandBITCAST(SDNode *N, SelectionDAG &DAG) {
3298  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3299  DebugLoc dl = N->getDebugLoc();
3300  SDValue Op = N->getOperand(0);
3301
3302  // This function is only supposed to be called for i64 types, either as the
3303  // source or destination of the bit convert.
3304  EVT SrcVT = Op.getValueType();
3305  EVT DstVT = N->getValueType(0);
3306  assert((SrcVT == MVT::i64 || DstVT == MVT::i64) &&
3307         "ExpandBITCAST called for non-i64 type");
3308
3309  // Turn i64->f64 into VMOVDRR.
3310  if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) {
3311    SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
3312                             DAG.getConstant(0, MVT::i32));
3313    SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
3314                             DAG.getConstant(1, MVT::i32));
3315    return DAG.getNode(ISD::BITCAST, dl, DstVT,
3316                       DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi));
3317  }
3318
3319  // Turn f64->i64 into VMOVRRD.
3320  if (DstVT == MVT::i64 && TLI.isTypeLegal(SrcVT)) {
3321    SDValue Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
3322                              DAG.getVTList(MVT::i32, MVT::i32), &Op, 1);
3323    // Merge the pieces into a single i64 value.
3324    return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1));
3325  }
3326
3327  return SDValue();
3328}
3329
3330/// getZeroVector - Returns a vector of specified type with all zero elements.
3331/// Zero vectors are used to represent vector negation and in those cases
3332/// will be implemented with the NEON VNEG instruction.  However, VNEG does
3333/// not support i64 elements, so sometimes the zero vectors will need to be
3334/// explicitly constructed.  Regardless, use a canonical VMOV to create the
3335/// zero vector.
3336static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
3337  assert(VT.isVector() && "Expected a vector type");
3338  // The canonical modified immediate encoding of a zero vector is....0!
3339  SDValue EncodedVal = DAG.getTargetConstant(0, MVT::i32);
3340  EVT VmovVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
3341  SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, EncodedVal);
3342  return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
3343}
3344
3345/// LowerShiftRightParts - Lower SRA_PARTS, which returns two
3346/// i32 values and take a 2 x i32 value to shift plus a shift amount.
3347SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op,
3348                                                SelectionDAG &DAG) const {
3349  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
3350  EVT VT = Op.getValueType();
3351  unsigned VTBits = VT.getSizeInBits();
3352  DebugLoc dl = Op.getDebugLoc();
3353  SDValue ShOpLo = Op.getOperand(0);
3354  SDValue ShOpHi = Op.getOperand(1);
3355  SDValue ShAmt  = Op.getOperand(2);
3356  SDValue ARMcc;
3357  unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
3358
3359  assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
3360
3361  SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
3362                                 DAG.getConstant(VTBits, MVT::i32), ShAmt);
3363  SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
3364  SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
3365                                   DAG.getConstant(VTBits, MVT::i32));
3366  SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
3367  SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
3368  SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
3369
3370  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3371  SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
3372                          ARMcc, DAG, dl);
3373  SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
3374  SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc,
3375                           CCR, Cmp);
3376
3377  SDValue Ops[2] = { Lo, Hi };
3378  return DAG.getMergeValues(Ops, 2, dl);
3379}
3380
3381/// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
3382/// i32 values and take a 2 x i32 value to shift plus a shift amount.
3383SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op,
3384                                               SelectionDAG &DAG) const {
3385  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
3386  EVT VT = Op.getValueType();
3387  unsigned VTBits = VT.getSizeInBits();
3388  DebugLoc dl = Op.getDebugLoc();
3389  SDValue ShOpLo = Op.getOperand(0);
3390  SDValue ShOpHi = Op.getOperand(1);
3391  SDValue ShAmt  = Op.getOperand(2);
3392  SDValue ARMcc;
3393
3394  assert(Op.getOpcode() == ISD::SHL_PARTS);
3395  SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
3396                                 DAG.getConstant(VTBits, MVT::i32), ShAmt);
3397  SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
3398  SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
3399                                   DAG.getConstant(VTBits, MVT::i32));
3400  SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
3401  SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
3402
3403  SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
3404  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3405  SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
3406                          ARMcc, DAG, dl);
3407  SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
3408  SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, Tmp3, ARMcc,
3409                           CCR, Cmp);
3410
3411  SDValue Ops[2] = { Lo, Hi };
3412  return DAG.getMergeValues(Ops, 2, dl);
3413}
3414
3415SDValue ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
3416                                            SelectionDAG &DAG) const {
3417  // The rounding mode is in bits 23:22 of the FPSCR.
3418  // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
3419  // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
3420  // so that the shift + and get folded into a bitfield extract.
3421  DebugLoc dl = Op.getDebugLoc();
3422  SDValue FPSCR = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::i32,
3423                              DAG.getConstant(Intrinsic::arm_get_fpscr,
3424                                              MVT::i32));
3425  SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPSCR,
3426                                  DAG.getConstant(1U << 22, MVT::i32));
3427  SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds,
3428                              DAG.getConstant(22, MVT::i32));
3429  return DAG.getNode(ISD::AND, dl, MVT::i32, RMODE,
3430                     DAG.getConstant(3, MVT::i32));
3431}
3432
3433static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG,
3434                         const ARMSubtarget *ST) {
3435  EVT VT = N->getValueType(0);
3436  DebugLoc dl = N->getDebugLoc();
3437
3438  if (!ST->hasV6T2Ops())
3439    return SDValue();
3440
3441  SDValue rbit = DAG.getNode(ARMISD::RBIT, dl, VT, N->getOperand(0));
3442  return DAG.getNode(ISD::CTLZ, dl, VT, rbit);
3443}
3444
3445static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
3446                          const ARMSubtarget *ST) {
3447  EVT VT = N->getValueType(0);
3448  DebugLoc dl = N->getDebugLoc();
3449
3450  if (!VT.isVector())
3451    return SDValue();
3452
3453  // Lower vector shifts on NEON to use VSHL.
3454  assert(ST->hasNEON() && "unexpected vector shift");
3455
3456  // Left shifts translate directly to the vshiftu intrinsic.
3457  if (N->getOpcode() == ISD::SHL)
3458    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
3459                       DAG.getConstant(Intrinsic::arm_neon_vshiftu, MVT::i32),
3460                       N->getOperand(0), N->getOperand(1));
3461
3462  assert((N->getOpcode() == ISD::SRA ||
3463          N->getOpcode() == ISD::SRL) && "unexpected vector shift opcode");
3464
3465  // NEON uses the same intrinsics for both left and right shifts.  For
3466  // right shifts, the shift amounts are negative, so negate the vector of
3467  // shift amounts.
3468  EVT ShiftVT = N->getOperand(1).getValueType();
3469  SDValue NegatedCount = DAG.getNode(ISD::SUB, dl, ShiftVT,
3470                                     getZeroVector(ShiftVT, DAG, dl),
3471                                     N->getOperand(1));
3472  Intrinsic::ID vshiftInt = (N->getOpcode() == ISD::SRA ?
3473                             Intrinsic::arm_neon_vshifts :
3474                             Intrinsic::arm_neon_vshiftu);
3475  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
3476                     DAG.getConstant(vshiftInt, MVT::i32),
3477                     N->getOperand(0), NegatedCount);
3478}
3479
3480static SDValue Expand64BitShift(SDNode *N, SelectionDAG &DAG,
3481                                const ARMSubtarget *ST) {
3482  EVT VT = N->getValueType(0);
3483  DebugLoc dl = N->getDebugLoc();
3484
3485  // We can get here for a node like i32 = ISD::SHL i32, i64
3486  if (VT != MVT::i64)
3487    return SDValue();
3488
3489  assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) &&
3490         "Unknown shift to lower!");
3491
3492  // We only lower SRA, SRL of 1 here, all others use generic lowering.
3493  if (!isa<ConstantSDNode>(N->getOperand(1)) ||
3494      cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 1)
3495    return SDValue();
3496
3497  // If we are in thumb mode, we don't have RRX.
3498  if (ST->isThumb1Only()) return SDValue();
3499
3500  // Okay, we have a 64-bit SRA or SRL of 1.  Lower this to an RRX expr.
3501  SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
3502                           DAG.getConstant(0, MVT::i32));
3503  SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
3504                           DAG.getConstant(1, MVT::i32));
3505
3506  // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
3507  // captures the result into a carry flag.
3508  unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
3509  Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Glue), &Hi, 1);
3510
3511  // The low part is an ARMISD::RRX operand, which shifts the carry in.
3512  Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));
3513
3514  // Merge the pieces into a single i64 value.
3515 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
3516}
3517
3518static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
3519  SDValue TmpOp0, TmpOp1;
3520  bool Invert = false;
3521  bool Swap = false;
3522  unsigned Opc = 0;
3523
3524  SDValue Op0 = Op.getOperand(0);
3525  SDValue Op1 = Op.getOperand(1);
3526  SDValue CC = Op.getOperand(2);
3527  EVT VT = Op.getValueType();
3528  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
3529  DebugLoc dl = Op.getDebugLoc();
3530
3531  if (Op.getOperand(1).getValueType().isFloatingPoint()) {
3532    switch (SetCCOpcode) {
3533    default: llvm_unreachable("Illegal FP comparison");
3534    case ISD::SETUNE:
3535    case ISD::SETNE:  Invert = true; // Fallthrough
3536    case ISD::SETOEQ:
3537    case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
3538    case ISD::SETOLT:
3539    case ISD::SETLT: Swap = true; // Fallthrough
3540    case ISD::SETOGT:
3541    case ISD::SETGT:  Opc = ARMISD::VCGT; break;
3542    case ISD::SETOLE:
3543    case ISD::SETLE:  Swap = true; // Fallthrough
3544    case ISD::SETOGE:
3545    case ISD::SETGE: Opc = ARMISD::VCGE; break;
3546    case ISD::SETUGE: Swap = true; // Fallthrough
3547    case ISD::SETULE: Invert = true; Opc = ARMISD::VCGT; break;
3548    case ISD::SETUGT: Swap = true; // Fallthrough
3549    case ISD::SETULT: Invert = true; Opc = ARMISD::VCGE; break;
3550    case ISD::SETUEQ: Invert = true; // Fallthrough
3551    case ISD::SETONE:
3552      // Expand this to (OLT | OGT).
3553      TmpOp0 = Op0;
3554      TmpOp1 = Op1;
3555      Opc = ISD::OR;
3556      Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
3557      Op1 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp0, TmpOp1);
3558      break;
3559    case ISD::SETUO: Invert = true; // Fallthrough
3560    case ISD::SETO:
3561      // Expand this to (OLT | OGE).
3562      TmpOp0 = Op0;
3563      TmpOp1 = Op1;
3564      Opc = ISD::OR;
3565      Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
3566      Op1 = DAG.getNode(ARMISD::VCGE, dl, VT, TmpOp0, TmpOp1);
3567      break;
3568    }
3569  } else {
3570    // Integer comparisons.
3571    switch (SetCCOpcode) {
3572    default: llvm_unreachable("Illegal integer comparison");
3573    case ISD::SETNE:  Invert = true;
3574    case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
3575    case ISD::SETLT:  Swap = true;
3576    case ISD::SETGT:  Opc = ARMISD::VCGT; break;
3577    case ISD::SETLE:  Swap = true;
3578    case ISD::SETGE:  Opc = ARMISD::VCGE; break;
3579    case ISD::SETULT: Swap = true;
3580    case ISD::SETUGT: Opc = ARMISD::VCGTU; break;
3581    case ISD::SETULE: Swap = true;
3582    case ISD::SETUGE: Opc = ARMISD::VCGEU; break;
3583    }
3584
3585    // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
3586    if (Opc == ARMISD::VCEQ) {
3587
3588      SDValue AndOp;
3589      if (ISD::isBuildVectorAllZeros(Op1.getNode()))
3590        AndOp = Op0;
3591      else if (ISD::isBuildVectorAllZeros(Op0.getNode()))
3592        AndOp = Op1;
3593
3594      // Ignore bitconvert.
3595      if (AndOp.getNode() && AndOp.getOpcode() == ISD::BITCAST)
3596        AndOp = AndOp.getOperand(0);
3597
3598      if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) {
3599        Opc = ARMISD::VTST;
3600        Op0 = DAG.getNode(ISD::BITCAST, dl, VT, AndOp.getOperand(0));
3601        Op1 = DAG.getNode(ISD::BITCAST, dl, VT, AndOp.getOperand(1));
3602        Invert = !Invert;
3603      }
3604    }
3605  }
3606
3607  if (Swap)
3608    std::swap(Op0, Op1);
3609
3610  // If one of the operands is a constant vector zero, attempt to fold the
3611  // comparison to a specialized compare-against-zero form.
3612  SDValue SingleOp;
3613  if (ISD::isBuildVectorAllZeros(Op1.getNode()))
3614    SingleOp = Op0;
3615  else if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
3616    if (Opc == ARMISD::VCGE)
3617      Opc = ARMISD::VCLEZ;
3618    else if (Opc == ARMISD::VCGT)
3619      Opc = ARMISD::VCLTZ;
3620    SingleOp = Op1;
3621  }
3622
3623  SDValue Result;
3624  if (SingleOp.getNode()) {
3625    switch (Opc) {
3626    case ARMISD::VCEQ:
3627      Result = DAG.getNode(ARMISD::VCEQZ, dl, VT, SingleOp); break;
3628    case ARMISD::VCGE:
3629      Result = DAG.getNode(ARMISD::VCGEZ, dl, VT, SingleOp); break;
3630    case ARMISD::VCLEZ:
3631      Result = DAG.getNode(ARMISD::VCLEZ, dl, VT, SingleOp); break;
3632    case ARMISD::VCGT:
3633      Result = DAG.getNode(ARMISD::VCGTZ, dl, VT, SingleOp); break;
3634    case ARMISD::VCLTZ:
3635      Result = DAG.getNode(ARMISD::VCLTZ, dl, VT, SingleOp); break;
3636    default:
3637      Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
3638    }
3639  } else {
3640     Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
3641  }
3642
3643  if (Invert)
3644    Result = DAG.getNOT(dl, Result, VT);
3645
3646  return Result;
3647}
3648
3649/// isNEONModifiedImm - Check if the specified splat value corresponds to a
3650/// valid vector constant for a NEON instruction with a "modified immediate"
3651/// operand (e.g., VMOV).  If so, return the encoded value.
3652static SDValue isNEONModifiedImm(uint64_t SplatBits, uint64_t SplatUndef,
3653                                 unsigned SplatBitSize, SelectionDAG &DAG,
3654                                 EVT &VT, bool is128Bits, NEONModImmType type) {
3655  unsigned OpCmode, Imm;
3656
3657  // SplatBitSize is set to the smallest size that splats the vector, so a
3658  // zero vector will always have SplatBitSize == 8.  However, NEON modified
3659  // immediate instructions others than VMOV do not support the 8-bit encoding
3660  // of a zero vector, and the default encoding of zero is supposed to be the
3661  // 32-bit version.
3662  if (SplatBits == 0)
3663    SplatBitSize = 32;
3664
3665  switch (SplatBitSize) {
3666  case 8:
3667    if (type != VMOVModImm)
3668      return SDValue();
3669    // Any 1-byte value is OK.  Op=0, Cmode=1110.
3670    assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
3671    OpCmode = 0xe;
3672    Imm = SplatBits;
3673    VT = is128Bits ? MVT::v16i8 : MVT::v8i8;
3674    break;
3675
3676  case 16:
3677    // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
3678    VT = is128Bits ? MVT::v8i16 : MVT::v4i16;
3679    if ((SplatBits & ~0xff) == 0) {
3680      // Value = 0x00nn: Op=x, Cmode=100x.
3681      OpCmode = 0x8;
3682      Imm = SplatBits;
3683      break;
3684    }
3685    if ((SplatBits & ~0xff00) == 0) {
3686      // Value = 0xnn00: Op=x, Cmode=101x.
3687      OpCmode = 0xa;
3688      Imm = SplatBits >> 8;
3689      break;
3690    }
3691    return SDValue();
3692
3693  case 32:
3694    // NEON's 32-bit VMOV supports splat values where:
3695    // * only one byte is nonzero, or
3696    // * the least significant byte is 0xff and the second byte is nonzero, or
3697    // * the least significant 2 bytes are 0xff and the third is nonzero.
3698    VT = is128Bits ? MVT::v4i32 : MVT::v2i32;
3699    if ((SplatBits & ~0xff) == 0) {
3700      // Value = 0x000000nn: Op=x, Cmode=000x.
3701      OpCmode = 0;
3702      Imm = SplatBits;
3703      break;
3704    }
3705    if ((SplatBits & ~0xff00) == 0) {
3706      // Value = 0x0000nn00: Op=x, Cmode=001x.
3707      OpCmode = 0x2;
3708      Imm = SplatBits >> 8;
3709      break;
3710    }
3711    if ((SplatBits & ~0xff0000) == 0) {
3712      // Value = 0x00nn0000: Op=x, Cmode=010x.
3713      OpCmode = 0x4;
3714      Imm = SplatBits >> 16;
3715      break;
3716    }
3717    if ((SplatBits & ~0xff000000) == 0) {
3718      // Value = 0xnn000000: Op=x, Cmode=011x.
3719      OpCmode = 0x6;
3720      Imm = SplatBits >> 24;
3721      break;
3722    }
3723
3724    // cmode == 0b1100 and cmode == 0b1101 are not supported for VORR or VBIC
3725    if (type == OtherModImm) return SDValue();
3726
3727    if ((SplatBits & ~0xffff) == 0 &&
3728        ((SplatBits | SplatUndef) & 0xff) == 0xff) {
3729      // Value = 0x0000nnff: Op=x, Cmode=1100.
3730      OpCmode = 0xc;
3731      Imm = SplatBits >> 8;
3732      SplatBits |= 0xff;
3733      break;
3734    }
3735
3736    if ((SplatBits & ~0xffffff) == 0 &&
3737        ((SplatBits | SplatUndef) & 0xffff) == 0xffff) {
3738      // Value = 0x00nnffff: Op=x, Cmode=1101.
3739      OpCmode = 0xd;
3740      Imm = SplatBits >> 16;
3741      SplatBits |= 0xffff;
3742      break;
3743    }
3744
3745    // Note: there are a few 32-bit splat values (specifically: 00ffff00,
3746    // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
3747    // VMOV.I32.  A (very) minor optimization would be to replicate the value
3748    // and fall through here to test for a valid 64-bit splat.  But, then the
3749    // caller would also need to check and handle the change in size.
3750    return SDValue();
3751
3752  case 64: {
3753    if (type != VMOVModImm)
3754      return SDValue();
3755    // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
3756    uint64_t BitMask = 0xff;
3757    uint64_t Val = 0;
3758    unsigned ImmMask = 1;
3759    Imm = 0;
3760    for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
3761      if (((SplatBits | SplatUndef) & BitMask) == BitMask) {
3762        Val |= BitMask;
3763        Imm |= ImmMask;
3764      } else if ((SplatBits & BitMask) != 0) {
3765        return SDValue();
3766      }
3767      BitMask <<= 8;
3768      ImmMask <<= 1;
3769    }
3770    // Op=1, Cmode=1110.
3771    OpCmode = 0x1e;
3772    SplatBits = Val;
3773    VT = is128Bits ? MVT::v2i64 : MVT::v1i64;
3774    break;
3775  }
3776
3777  default:
3778    llvm_unreachable("unexpected size for isNEONModifiedImm");
3779  }
3780
3781  unsigned EncodedVal = ARM_AM::createNEONModImm(OpCmode, Imm);
3782  return DAG.getTargetConstant(EncodedVal, MVT::i32);
3783}
3784
3785static bool isVEXTMask(ArrayRef<int> M, EVT VT,
3786                       bool &ReverseVEXT, unsigned &Imm) {
3787  unsigned NumElts = VT.getVectorNumElements();
3788  ReverseVEXT = false;
3789
3790  // Assume that the first shuffle index is not UNDEF.  Fail if it is.
3791  if (M[0] < 0)
3792    return false;
3793
3794  Imm = M[0];
3795
3796  // If this is a VEXT shuffle, the immediate value is the index of the first
3797  // element.  The other shuffle indices must be the successive elements after
3798  // the first one.
3799  unsigned ExpectedElt = Imm;
3800  for (unsigned i = 1; i < NumElts; ++i) {
3801    // Increment the expected index.  If it wraps around, it may still be
3802    // a VEXT but the source vectors must be swapped.
3803    ExpectedElt += 1;
3804    if (ExpectedElt == NumElts * 2) {
3805      ExpectedElt = 0;
3806      ReverseVEXT = true;
3807    }
3808
3809    if (M[i] < 0) continue; // ignore UNDEF indices
3810    if (ExpectedElt != static_cast<unsigned>(M[i]))
3811      return false;
3812  }
3813
3814  // Adjust the index value if the source operands will be swapped.
3815  if (ReverseVEXT)
3816    Imm -= NumElts;
3817
3818  return true;
3819}
3820
3821/// isVREVMask - Check if a vector shuffle corresponds to a VREV
3822/// instruction with the specified blocksize.  (The order of the elements
3823/// within each block of the vector is reversed.)
3824static bool isVREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) {
3825  assert((BlockSize==16 || BlockSize==32 || BlockSize==64) &&
3826         "Only possible block sizes for VREV are: 16, 32, 64");
3827
3828  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3829  if (EltSz == 64)
3830    return false;
3831
3832  unsigned NumElts = VT.getVectorNumElements();
3833  unsigned BlockElts = M[0] + 1;
3834  // If the first shuffle index is UNDEF, be optimistic.
3835  if (M[0] < 0)
3836    BlockElts = BlockSize / EltSz;
3837
3838  if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
3839    return false;
3840
3841  for (unsigned i = 0; i < NumElts; ++i) {
3842    if (M[i] < 0) continue; // ignore UNDEF indices
3843    if ((unsigned) M[i] != (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts))
3844      return false;
3845  }
3846
3847  return true;
3848}
3849
3850static bool isVTBLMask(ArrayRef<int> M, EVT VT) {
3851  // We can handle <8 x i8> vector shuffles. If the index in the mask is out of
3852  // range, then 0 is placed into the resulting vector. So pretty much any mask
3853  // of 8 elements can work here.
3854  return VT == MVT::v8i8 && M.size() == 8;
3855}
3856
3857static bool isVTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
3858  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3859  if (EltSz == 64)
3860    return false;
3861
3862  unsigned NumElts = VT.getVectorNumElements();
3863  WhichResult = (M[0] == 0 ? 0 : 1);
3864  for (unsigned i = 0; i < NumElts; i += 2) {
3865    if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) ||
3866        (M[i+1] >= 0 && (unsigned) M[i+1] != i + NumElts + WhichResult))
3867      return false;
3868  }
3869  return true;
3870}
3871
3872/// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
3873/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
3874/// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
3875static bool isVTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
3876  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3877  if (EltSz == 64)
3878    return false;
3879
3880  unsigned NumElts = VT.getVectorNumElements();
3881  WhichResult = (M[0] == 0 ? 0 : 1);
3882  for (unsigned i = 0; i < NumElts; i += 2) {
3883    if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) ||
3884        (M[i+1] >= 0 && (unsigned) M[i+1] != i + WhichResult))
3885      return false;
3886  }
3887  return true;
3888}
3889
3890static bool isVUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
3891  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3892  if (EltSz == 64)
3893    return false;
3894
3895  unsigned NumElts = VT.getVectorNumElements();
3896  WhichResult = (M[0] == 0 ? 0 : 1);
3897  for (unsigned i = 0; i != NumElts; ++i) {
3898    if (M[i] < 0) continue; // ignore UNDEF indices
3899    if ((unsigned) M[i] != 2 * i + WhichResult)
3900      return false;
3901  }
3902
3903  // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3904  if (VT.is64BitVector() && EltSz == 32)
3905    return false;
3906
3907  return true;
3908}
3909
3910/// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
3911/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
3912/// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
3913static bool isVUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
3914  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3915  if (EltSz == 64)
3916    return false;
3917
3918  unsigned Half = VT.getVectorNumElements() / 2;
3919  WhichResult = (M[0] == 0 ? 0 : 1);
3920  for (unsigned j = 0; j != 2; ++j) {
3921    unsigned Idx = WhichResult;
3922    for (unsigned i = 0; i != Half; ++i) {
3923      int MIdx = M[i + j * Half];
3924      if (MIdx >= 0 && (unsigned) MIdx != Idx)
3925        return false;
3926      Idx += 2;
3927    }
3928  }
3929
3930  // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3931  if (VT.is64BitVector() && EltSz == 32)
3932    return false;
3933
3934  return true;
3935}
3936
3937static bool isVZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
3938  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3939  if (EltSz == 64)
3940    return false;
3941
3942  unsigned NumElts = VT.getVectorNumElements();
3943  WhichResult = (M[0] == 0 ? 0 : 1);
3944  unsigned Idx = WhichResult * NumElts / 2;
3945  for (unsigned i = 0; i != NumElts; i += 2) {
3946    if ((M[i] >= 0 && (unsigned) M[i] != Idx) ||
3947        (M[i+1] >= 0 && (unsigned) M[i+1] != Idx + NumElts))
3948      return false;
3949    Idx += 1;
3950  }
3951
3952  // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3953  if (VT.is64BitVector() && EltSz == 32)
3954    return false;
3955
3956  return true;
3957}
3958
3959/// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
3960/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
3961/// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
3962static bool isVZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
3963  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3964  if (EltSz == 64)
3965    return false;
3966
3967  unsigned NumElts = VT.getVectorNumElements();
3968  WhichResult = (M[0] == 0 ? 0 : 1);
3969  unsigned Idx = WhichResult * NumElts / 2;
3970  for (unsigned i = 0; i != NumElts; i += 2) {
3971    if ((M[i] >= 0 && (unsigned) M[i] != Idx) ||
3972        (M[i+1] >= 0 && (unsigned) M[i+1] != Idx))
3973      return false;
3974    Idx += 1;
3975  }
3976
3977  // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3978  if (VT.is64BitVector() && EltSz == 32)
3979    return false;
3980
3981  return true;
3982}
3983
3984// If N is an integer constant that can be moved into a register in one
3985// instruction, return an SDValue of such a constant (will become a MOV
3986// instruction).  Otherwise return null.
3987static SDValue IsSingleInstrConstant(SDValue N, SelectionDAG &DAG,
3988                                     const ARMSubtarget *ST, DebugLoc dl) {
3989  uint64_t Val;
3990  if (!isa<ConstantSDNode>(N))
3991    return SDValue();
3992  Val = cast<ConstantSDNode>(N)->getZExtValue();
3993
3994  if (ST->isThumb1Only()) {
3995    if (Val <= 255 || ~Val <= 255)
3996      return DAG.getConstant(Val, MVT::i32);
3997  } else {
3998    if (ARM_AM::getSOImmVal(Val) != -1 || ARM_AM::getSOImmVal(~Val) != -1)
3999      return DAG.getConstant(Val, MVT::i32);
4000  }
4001  return SDValue();
4002}
4003
4004// If this is a case we can't handle, return null and let the default
4005// expansion code take care of it.
4006SDValue ARMTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
4007                                             const ARMSubtarget *ST) const {
4008  BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
4009  DebugLoc dl = Op.getDebugLoc();
4010  EVT VT = Op.getValueType();
4011
4012  APInt SplatBits, SplatUndef;
4013  unsigned SplatBitSize;
4014  bool HasAnyUndefs;
4015  if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
4016    if (SplatBitSize <= 64) {
4017      // Check if an immediate VMOV works.
4018      EVT VmovVT;
4019      SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
4020                                      SplatUndef.getZExtValue(), SplatBitSize,
4021                                      DAG, VmovVT, VT.is128BitVector(),
4022                                      VMOVModImm);
4023      if (Val.getNode()) {
4024        SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, Val);
4025        return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
4026      }
4027
4028      // Try an immediate VMVN.
4029      uint64_t NegatedImm = (~SplatBits).getZExtValue();
4030      Val = isNEONModifiedImm(NegatedImm,
4031                                      SplatUndef.getZExtValue(), SplatBitSize,
4032                                      DAG, VmovVT, VT.is128BitVector(),
4033                                      VMVNModImm);
4034      if (Val.getNode()) {
4035        SDValue Vmov = DAG.getNode(ARMISD::VMVNIMM, dl, VmovVT, Val);
4036        return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
4037      }
4038
4039      // Use vmov.f32 to materialize other v2f32 and v4f32 splats.
4040      if ((VT == MVT::v2f32 || VT == MVT::v4f32) && SplatBitSize == 32) {
4041        int ImmVal = ARM_AM::getFP32Imm(SplatBits);
4042        if (ImmVal != -1) {
4043          SDValue Val = DAG.getTargetConstant(ImmVal, MVT::i32);
4044          return DAG.getNode(ARMISD::VMOVFPIMM, dl, VT, Val);
4045        }
4046      }
4047    }
4048  }
4049
4050  // Scan through the operands to see if only one value is used.
4051  unsigned NumElts = VT.getVectorNumElements();
4052  bool isOnlyLowElement = true;
4053  bool usesOnlyOneValue = true;
4054  bool isConstant = true;
4055  SDValue Value;
4056  for (unsigned i = 0; i < NumElts; ++i) {
4057    SDValue V = Op.getOperand(i);
4058    if (V.getOpcode() == ISD::UNDEF)
4059      continue;
4060    if (i > 0)
4061      isOnlyLowElement = false;
4062    if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
4063      isConstant = false;
4064
4065    if (!Value.getNode())
4066      Value = V;
4067    else if (V != Value)
4068      usesOnlyOneValue = false;
4069  }
4070
4071  if (!Value.getNode())
4072    return DAG.getUNDEF(VT);
4073
4074  if (isOnlyLowElement)
4075    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
4076
4077  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4078
4079  // Use VDUP for non-constant splats.  For f32 constant splats, reduce to
4080  // i32 and try again.
4081  if (usesOnlyOneValue && EltSize <= 32) {
4082    if (!isConstant)
4083      return DAG.getNode(ARMISD::VDUP, dl, VT, Value);
4084    if (VT.getVectorElementType().isFloatingPoint()) {
4085      SmallVector<SDValue, 8> Ops;
4086      for (unsigned i = 0; i < NumElts; ++i)
4087        Ops.push_back(DAG.getNode(ISD::BITCAST, dl, MVT::i32,
4088                                  Op.getOperand(i)));
4089      EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
4090      SDValue Val = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, &Ops[0], NumElts);
4091      Val = LowerBUILD_VECTOR(Val, DAG, ST);
4092      if (Val.getNode())
4093        return DAG.getNode(ISD::BITCAST, dl, VT, Val);
4094    }
4095    SDValue Val = IsSingleInstrConstant(Value, DAG, ST, dl);
4096    if (Val.getNode())
4097      return DAG.getNode(ARMISD::VDUP, dl, VT, Val);
4098  }
4099
4100  // If all elements are constants and the case above didn't get hit, fall back
4101  // to the default expansion, which will generate a load from the constant
4102  // pool.
4103  if (isConstant)
4104    return SDValue();
4105
4106  // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
4107  if (NumElts >= 4) {
4108    SDValue shuffle = ReconstructShuffle(Op, DAG);
4109    if (shuffle != SDValue())
4110      return shuffle;
4111  }
4112
4113  // Vectors with 32- or 64-bit elements can be built by directly assigning
4114  // the subregisters.  Lower it to an ARMISD::BUILD_VECTOR so the operands
4115  // will be legalized.
4116  if (EltSize >= 32) {
4117    // Do the expansion with floating-point types, since that is what the VFP
4118    // registers are defined to use, and since i64 is not legal.
4119    EVT EltVT = EVT::getFloatingPointVT(EltSize);
4120    EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
4121    SmallVector<SDValue, 8> Ops;
4122    for (unsigned i = 0; i < NumElts; ++i)
4123      Ops.push_back(DAG.getNode(ISD::BITCAST, dl, EltVT, Op.getOperand(i)));
4124    SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts);
4125    return DAG.getNode(ISD::BITCAST, dl, VT, Val);
4126  }
4127
4128  return SDValue();
4129}
4130
4131// Gather data to see if the operation can be modelled as a
4132// shuffle in combination with VEXTs.
4133SDValue ARMTargetLowering::ReconstructShuffle(SDValue Op,
4134                                              SelectionDAG &DAG) const {
4135  DebugLoc dl = Op.getDebugLoc();
4136  EVT VT = Op.getValueType();
4137  unsigned NumElts = VT.getVectorNumElements();
4138
4139  SmallVector<SDValue, 2> SourceVecs;
4140  SmallVector<unsigned, 2> MinElts;
4141  SmallVector<unsigned, 2> MaxElts;
4142
4143  for (unsigned i = 0; i < NumElts; ++i) {
4144    SDValue V = Op.getOperand(i);
4145    if (V.getOpcode() == ISD::UNDEF)
4146      continue;
4147    else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) {
4148      // A shuffle can only come from building a vector from various
4149      // elements of other vectors.
4150      return SDValue();
4151    } else if (V.getOperand(0).getValueType().getVectorElementType() !=
4152               VT.getVectorElementType()) {
4153      // This code doesn't know how to handle shuffles where the vector
4154      // element types do not match (this happens because type legalization
4155      // promotes the return type of EXTRACT_VECTOR_ELT).
4156      // FIXME: It might be appropriate to extend this code to handle
4157      // mismatched types.
4158      return SDValue();
4159    }
4160
4161    // Record this extraction against the appropriate vector if possible...
4162    SDValue SourceVec = V.getOperand(0);
4163    unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
4164    bool FoundSource = false;
4165    for (unsigned j = 0; j < SourceVecs.size(); ++j) {
4166      if (SourceVecs[j] == SourceVec) {
4167        if (MinElts[j] > EltNo)
4168          MinElts[j] = EltNo;
4169        if (MaxElts[j] < EltNo)
4170          MaxElts[j] = EltNo;
4171        FoundSource = true;
4172        break;
4173      }
4174    }
4175
4176    // Or record a new source if not...
4177    if (!FoundSource) {
4178      SourceVecs.push_back(SourceVec);
4179      MinElts.push_back(EltNo);
4180      MaxElts.push_back(EltNo);
4181    }
4182  }
4183
4184  // Currently only do something sane when at most two source vectors
4185  // involved.
4186  if (SourceVecs.size() > 2)
4187    return SDValue();
4188
4189  SDValue ShuffleSrcs[2] = {DAG.getUNDEF(VT), DAG.getUNDEF(VT) };
4190  int VEXTOffsets[2] = {0, 0};
4191
4192  // This loop extracts the usage patterns of the source vectors
4193  // and prepares appropriate SDValues for a shuffle if possible.
4194  for (unsigned i = 0; i < SourceVecs.size(); ++i) {
4195    if (SourceVecs[i].getValueType() == VT) {
4196      // No VEXT necessary
4197      ShuffleSrcs[i] = SourceVecs[i];
4198      VEXTOffsets[i] = 0;
4199      continue;
4200    } else if (SourceVecs[i].getValueType().getVectorNumElements() < NumElts) {
4201      // It probably isn't worth padding out a smaller vector just to
4202      // break it down again in a shuffle.
4203      return SDValue();
4204    }
4205
4206    // Since only 64-bit and 128-bit vectors are legal on ARM and
4207    // we've eliminated the other cases...
4208    assert(SourceVecs[i].getValueType().getVectorNumElements() == 2*NumElts &&
4209           "unexpected vector sizes in ReconstructShuffle");
4210
4211    if (MaxElts[i] - MinElts[i] >= NumElts) {
4212      // Span too large for a VEXT to cope
4213      return SDValue();
4214    }
4215
4216    if (MinElts[i] >= NumElts) {
4217      // The extraction can just take the second half
4218      VEXTOffsets[i] = NumElts;
4219      ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4220                                   SourceVecs[i],
4221                                   DAG.getIntPtrConstant(NumElts));
4222    } else if (MaxElts[i] < NumElts) {
4223      // The extraction can just take the first half
4224      VEXTOffsets[i] = 0;
4225      ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4226                                   SourceVecs[i],
4227                                   DAG.getIntPtrConstant(0));
4228    } else {
4229      // An actual VEXT is needed
4230      VEXTOffsets[i] = MinElts[i];
4231      SDValue VEXTSrc1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4232                                     SourceVecs[i],
4233                                     DAG.getIntPtrConstant(0));
4234      SDValue VEXTSrc2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4235                                     SourceVecs[i],
4236                                     DAG.getIntPtrConstant(NumElts));
4237      ShuffleSrcs[i] = DAG.getNode(ARMISD::VEXT, dl, VT, VEXTSrc1, VEXTSrc2,
4238                                   DAG.getConstant(VEXTOffsets[i], MVT::i32));
4239    }
4240  }
4241
4242  SmallVector<int, 8> Mask;
4243
4244  for (unsigned i = 0; i < NumElts; ++i) {
4245    SDValue Entry = Op.getOperand(i);
4246    if (Entry.getOpcode() == ISD::UNDEF) {
4247      Mask.push_back(-1);
4248      continue;
4249    }
4250
4251    SDValue ExtractVec = Entry.getOperand(0);
4252    int ExtractElt = cast<ConstantSDNode>(Op.getOperand(i)
4253                                          .getOperand(1))->getSExtValue();
4254    if (ExtractVec == SourceVecs[0]) {
4255      Mask.push_back(ExtractElt - VEXTOffsets[0]);
4256    } else {
4257      Mask.push_back(ExtractElt + NumElts - VEXTOffsets[1]);
4258    }
4259  }
4260
4261  // Final check before we try to produce nonsense...
4262  if (isShuffleMaskLegal(Mask, VT))
4263    return DAG.getVectorShuffle(VT, dl, ShuffleSrcs[0], ShuffleSrcs[1],
4264                                &Mask[0]);
4265
4266  return SDValue();
4267}
4268
4269/// isShuffleMaskLegal - Targets can use this to indicate that they only
4270/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
4271/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
4272/// are assumed to be legal.
4273bool
4274ARMTargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
4275                                      EVT VT) const {
4276  if (VT.getVectorNumElements() == 4 &&
4277      (VT.is128BitVector() || VT.is64BitVector())) {
4278    unsigned PFIndexes[4];
4279    for (unsigned i = 0; i != 4; ++i) {
4280      if (M[i] < 0)
4281        PFIndexes[i] = 8;
4282      else
4283        PFIndexes[i] = M[i];
4284    }
4285
4286    // Compute the index in the perfect shuffle table.
4287    unsigned PFTableIndex =
4288      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
4289    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
4290    unsigned Cost = (PFEntry >> 30);
4291
4292    if (Cost <= 4)
4293      return true;
4294  }
4295
4296  bool ReverseVEXT;
4297  unsigned Imm, WhichResult;
4298
4299  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4300  return (EltSize >= 32 ||
4301          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
4302          isVREVMask(M, VT, 64) ||
4303          isVREVMask(M, VT, 32) ||
4304          isVREVMask(M, VT, 16) ||
4305          isVEXTMask(M, VT, ReverseVEXT, Imm) ||
4306          isVTBLMask(M, VT) ||
4307          isVTRNMask(M, VT, WhichResult) ||
4308          isVUZPMask(M, VT, WhichResult) ||
4309          isVZIPMask(M, VT, WhichResult) ||
4310          isVTRN_v_undef_Mask(M, VT, WhichResult) ||
4311          isVUZP_v_undef_Mask(M, VT, WhichResult) ||
4312          isVZIP_v_undef_Mask(M, VT, WhichResult));
4313}
4314
4315/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
4316/// the specified operations to build the shuffle.
4317static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
4318                                      SDValue RHS, SelectionDAG &DAG,
4319                                      DebugLoc dl) {
4320  unsigned OpNum = (PFEntry >> 26) & 0x0F;
4321  unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
4322  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
4323
4324  enum {
4325    OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
4326    OP_VREV,
4327    OP_VDUP0,
4328    OP_VDUP1,
4329    OP_VDUP2,
4330    OP_VDUP3,
4331    OP_VEXT1,
4332    OP_VEXT2,
4333    OP_VEXT3,
4334    OP_VUZPL, // VUZP, left result
4335    OP_VUZPR, // VUZP, right result
4336    OP_VZIPL, // VZIP, left result
4337    OP_VZIPR, // VZIP, right result
4338    OP_VTRNL, // VTRN, left result
4339    OP_VTRNR  // VTRN, right result
4340  };
4341
4342  if (OpNum == OP_COPY) {
4343    if (LHSID == (1*9+2)*9+3) return LHS;
4344    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
4345    return RHS;
4346  }
4347
4348  SDValue OpLHS, OpRHS;
4349  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
4350  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
4351  EVT VT = OpLHS.getValueType();
4352
4353  switch (OpNum) {
4354  default: llvm_unreachable("Unknown shuffle opcode!");
4355  case OP_VREV:
4356    // VREV divides the vector in half and swaps within the half.
4357    if (VT.getVectorElementType() == MVT::i32 ||
4358        VT.getVectorElementType() == MVT::f32)
4359      return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS);
4360    // vrev <4 x i16> -> VREV32
4361    if (VT.getVectorElementType() == MVT::i16)
4362      return DAG.getNode(ARMISD::VREV32, dl, VT, OpLHS);
4363    // vrev <4 x i8> -> VREV16
4364    assert(VT.getVectorElementType() == MVT::i8);
4365    return DAG.getNode(ARMISD::VREV16, dl, VT, OpLHS);
4366  case OP_VDUP0:
4367  case OP_VDUP1:
4368  case OP_VDUP2:
4369  case OP_VDUP3:
4370    return DAG.getNode(ARMISD::VDUPLANE, dl, VT,
4371                       OpLHS, DAG.getConstant(OpNum-OP_VDUP0, MVT::i32));
4372  case OP_VEXT1:
4373  case OP_VEXT2:
4374  case OP_VEXT3:
4375    return DAG.getNode(ARMISD::VEXT, dl, VT,
4376                       OpLHS, OpRHS,
4377                       DAG.getConstant(OpNum-OP_VEXT1+1, MVT::i32));
4378  case OP_VUZPL:
4379  case OP_VUZPR:
4380    return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
4381                       OpLHS, OpRHS).getValue(OpNum-OP_VUZPL);
4382  case OP_VZIPL:
4383  case OP_VZIPR:
4384    return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
4385                       OpLHS, OpRHS).getValue(OpNum-OP_VZIPL);
4386  case OP_VTRNL:
4387  case OP_VTRNR:
4388    return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
4389                       OpLHS, OpRHS).getValue(OpNum-OP_VTRNL);
4390  }
4391}
4392
4393static SDValue LowerVECTOR_SHUFFLEv8i8(SDValue Op,
4394                                       ArrayRef<int> ShuffleMask,
4395                                       SelectionDAG &DAG) {
4396  // Check to see if we can use the VTBL instruction.
4397  SDValue V1 = Op.getOperand(0);
4398  SDValue V2 = Op.getOperand(1);
4399  DebugLoc DL = Op.getDebugLoc();
4400
4401  SmallVector<SDValue, 8> VTBLMask;
4402  for (ArrayRef<int>::iterator
4403         I = ShuffleMask.begin(), E = ShuffleMask.end(); I != E; ++I)
4404    VTBLMask.push_back(DAG.getConstant(*I, MVT::i32));
4405
4406  if (V2.getNode()->getOpcode() == ISD::UNDEF)
4407    return DAG.getNode(ARMISD::VTBL1, DL, MVT::v8i8, V1,
4408                       DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i8,
4409                                   &VTBLMask[0], 8));
4410
4411  return DAG.getNode(ARMISD::VTBL2, DL, MVT::v8i8, V1, V2,
4412                     DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i8,
4413                                 &VTBLMask[0], 8));
4414}
4415
4416static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
4417  SDValue V1 = Op.getOperand(0);
4418  SDValue V2 = Op.getOperand(1);
4419  DebugLoc dl = Op.getDebugLoc();
4420  EVT VT = Op.getValueType();
4421  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
4422
4423  // Convert shuffles that are directly supported on NEON to target-specific
4424  // DAG nodes, instead of keeping them as shuffles and matching them again
4425  // during code selection.  This is more efficient and avoids the possibility
4426  // of inconsistencies between legalization and selection.
4427  // FIXME: floating-point vectors should be canonicalized to integer vectors
4428  // of the same time so that they get CSEd properly.
4429  ArrayRef<int> ShuffleMask = SVN->getMask();
4430
4431  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4432  if (EltSize <= 32) {
4433    if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0], VT)) {
4434      int Lane = SVN->getSplatIndex();
4435      // If this is undef splat, generate it via "just" vdup, if possible.
4436      if (Lane == -1) Lane = 0;
4437
4438      // Test if V1 is a SCALAR_TO_VECTOR.
4439      if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
4440        return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
4441      }
4442      // Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR
4443      // (and probably will turn into a SCALAR_TO_VECTOR once legalization
4444      // reaches it).
4445      if (Lane == 0 && V1.getOpcode() == ISD::BUILD_VECTOR &&
4446          !isa<ConstantSDNode>(V1.getOperand(0))) {
4447        bool IsScalarToVector = true;
4448        for (unsigned i = 1, e = V1.getNumOperands(); i != e; ++i)
4449          if (V1.getOperand(i).getOpcode() != ISD::UNDEF) {
4450            IsScalarToVector = false;
4451            break;
4452          }
4453        if (IsScalarToVector)
4454          return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
4455      }
4456      return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1,
4457                         DAG.getConstant(Lane, MVT::i32));
4458    }
4459
4460    bool ReverseVEXT;
4461    unsigned Imm;
4462    if (isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) {
4463      if (ReverseVEXT)
4464        std::swap(V1, V2);
4465      return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2,
4466                         DAG.getConstant(Imm, MVT::i32));
4467    }
4468
4469    if (isVREVMask(ShuffleMask, VT, 64))
4470      return DAG.getNode(ARMISD::VREV64, dl, VT, V1);
4471    if (isVREVMask(ShuffleMask, VT, 32))
4472      return DAG.getNode(ARMISD::VREV32, dl, VT, V1);
4473    if (isVREVMask(ShuffleMask, VT, 16))
4474      return DAG.getNode(ARMISD::VREV16, dl, VT, V1);
4475
4476    // Check for Neon shuffles that modify both input vectors in place.
4477    // If both results are used, i.e., if there are two shuffles with the same
4478    // source operands and with masks corresponding to both results of one of
4479    // these operations, DAG memoization will ensure that a single node is
4480    // used for both shuffles.
4481    unsigned WhichResult;
4482    if (isVTRNMask(ShuffleMask, VT, WhichResult))
4483      return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
4484                         V1, V2).getValue(WhichResult);
4485    if (isVUZPMask(ShuffleMask, VT, WhichResult))
4486      return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
4487                         V1, V2).getValue(WhichResult);
4488    if (isVZIPMask(ShuffleMask, VT, WhichResult))
4489      return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
4490                         V1, V2).getValue(WhichResult);
4491
4492    if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult))
4493      return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
4494                         V1, V1).getValue(WhichResult);
4495    if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult))
4496      return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
4497                         V1, V1).getValue(WhichResult);
4498    if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult))
4499      return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
4500                         V1, V1).getValue(WhichResult);
4501  }
4502
4503  // If the shuffle is not directly supported and it has 4 elements, use
4504  // the PerfectShuffle-generated table to synthesize it from other shuffles.
4505  unsigned NumElts = VT.getVectorNumElements();
4506  if (NumElts == 4) {
4507    unsigned PFIndexes[4];
4508    for (unsigned i = 0; i != 4; ++i) {
4509      if (ShuffleMask[i] < 0)
4510        PFIndexes[i] = 8;
4511      else
4512        PFIndexes[i] = ShuffleMask[i];
4513    }
4514
4515    // Compute the index in the perfect shuffle table.
4516    unsigned PFTableIndex =
4517      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
4518    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
4519    unsigned Cost = (PFEntry >> 30);
4520
4521    if (Cost <= 4)
4522      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
4523  }
4524
4525  // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs.
4526  if (EltSize >= 32) {
4527    // Do the expansion with floating-point types, since that is what the VFP
4528    // registers are defined to use, and since i64 is not legal.
4529    EVT EltVT = EVT::getFloatingPointVT(EltSize);
4530    EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
4531    V1 = DAG.getNode(ISD::BITCAST, dl, VecVT, V1);
4532    V2 = DAG.getNode(ISD::BITCAST, dl, VecVT, V2);
4533    SmallVector<SDValue, 8> Ops;
4534    for (unsigned i = 0; i < NumElts; ++i) {
4535      if (ShuffleMask[i] < 0)
4536        Ops.push_back(DAG.getUNDEF(EltVT));
4537      else
4538        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
4539                                  ShuffleMask[i] < (int)NumElts ? V1 : V2,
4540                                  DAG.getConstant(ShuffleMask[i] & (NumElts-1),
4541                                                  MVT::i32)));
4542    }
4543    SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts);
4544    return DAG.getNode(ISD::BITCAST, dl, VT, Val);
4545  }
4546
4547  if (VT == MVT::v8i8) {
4548    SDValue NewOp = LowerVECTOR_SHUFFLEv8i8(Op, ShuffleMask, DAG);
4549    if (NewOp.getNode())
4550      return NewOp;
4551  }
4552
4553  return SDValue();
4554}
4555
4556static SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4557  // INSERT_VECTOR_ELT is legal only for immediate indexes.
4558  SDValue Lane = Op.getOperand(2);
4559  if (!isa<ConstantSDNode>(Lane))
4560    return SDValue();
4561
4562  return Op;
4563}
4564
4565static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4566  // EXTRACT_VECTOR_ELT is legal only for immediate indexes.
4567  SDValue Lane = Op.getOperand(1);
4568  if (!isa<ConstantSDNode>(Lane))
4569    return SDValue();
4570
4571  SDValue Vec = Op.getOperand(0);
4572  if (Op.getValueType() == MVT::i32 &&
4573      Vec.getValueType().getVectorElementType().getSizeInBits() < 32) {
4574    DebugLoc dl = Op.getDebugLoc();
4575    return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
4576  }
4577
4578  return Op;
4579}
4580
4581static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
4582  // The only time a CONCAT_VECTORS operation can have legal types is when
4583  // two 64-bit vectors are concatenated to a 128-bit vector.
4584  assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 &&
4585         "unexpected CONCAT_VECTORS");
4586  DebugLoc dl = Op.getDebugLoc();
4587  SDValue Val = DAG.getUNDEF(MVT::v2f64);
4588  SDValue Op0 = Op.getOperand(0);
4589  SDValue Op1 = Op.getOperand(1);
4590  if (Op0.getOpcode() != ISD::UNDEF)
4591    Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
4592                      DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op0),
4593                      DAG.getIntPtrConstant(0));
4594  if (Op1.getOpcode() != ISD::UNDEF)
4595    Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
4596                      DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op1),
4597                      DAG.getIntPtrConstant(1));
4598  return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Val);
4599}
4600
4601/// isExtendedBUILD_VECTOR - Check if N is a constant BUILD_VECTOR where each
4602/// element has been zero/sign-extended, depending on the isSigned parameter,
4603/// from an integer type half its size.
4604static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
4605                                   bool isSigned) {
4606  // A v2i64 BUILD_VECTOR will have been legalized to a BITCAST from v4i32.
4607  EVT VT = N->getValueType(0);
4608  if (VT == MVT::v2i64 && N->getOpcode() == ISD::BITCAST) {
4609    SDNode *BVN = N->getOperand(0).getNode();
4610    if (BVN->getValueType(0) != MVT::v4i32 ||
4611        BVN->getOpcode() != ISD::BUILD_VECTOR)
4612      return false;
4613    unsigned LoElt = DAG.getTargetLoweringInfo().isBigEndian() ? 1 : 0;
4614    unsigned HiElt = 1 - LoElt;
4615    ConstantSDNode *Lo0 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt));
4616    ConstantSDNode *Hi0 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt));
4617    ConstantSDNode *Lo1 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt+2));
4618    ConstantSDNode *Hi1 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt+2));
4619    if (!Lo0 || !Hi0 || !Lo1 || !Hi1)
4620      return false;
4621    if (isSigned) {
4622      if (Hi0->getSExtValue() == Lo0->getSExtValue() >> 32 &&
4623          Hi1->getSExtValue() == Lo1->getSExtValue() >> 32)
4624        return true;
4625    } else {
4626      if (Hi0->isNullValue() && Hi1->isNullValue())
4627        return true;
4628    }
4629    return false;
4630  }
4631
4632  if (N->getOpcode() != ISD::BUILD_VECTOR)
4633    return false;
4634
4635  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
4636    SDNode *Elt = N->getOperand(i).getNode();
4637    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
4638      unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4639      unsigned HalfSize = EltSize / 2;
4640      if (isSigned) {
4641        if (!isIntN(HalfSize, C->getSExtValue()))
4642          return false;
4643      } else {
4644        if (!isUIntN(HalfSize, C->getZExtValue()))
4645          return false;
4646      }
4647      continue;
4648    }
4649    return false;
4650  }
4651
4652  return true;
4653}
4654
4655/// isSignExtended - Check if a node is a vector value that is sign-extended
4656/// or a constant BUILD_VECTOR with sign-extended elements.
4657static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
4658  if (N->getOpcode() == ISD::SIGN_EXTEND || ISD::isSEXTLoad(N))
4659    return true;
4660  if (isExtendedBUILD_VECTOR(N, DAG, true))
4661    return true;
4662  return false;
4663}
4664
4665/// isZeroExtended - Check if a node is a vector value that is zero-extended
4666/// or a constant BUILD_VECTOR with zero-extended elements.
4667static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
4668  if (N->getOpcode() == ISD::ZERO_EXTEND || ISD::isZEXTLoad(N))
4669    return true;
4670  if (isExtendedBUILD_VECTOR(N, DAG, false))
4671    return true;
4672  return false;
4673}
4674
4675/// SkipExtension - For a node that is a SIGN_EXTEND, ZERO_EXTEND, extending
4676/// load, or BUILD_VECTOR with extended elements, return the unextended value.
4677static SDValue SkipExtension(SDNode *N, SelectionDAG &DAG) {
4678  if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
4679    return N->getOperand(0);
4680  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N))
4681    return DAG.getLoad(LD->getMemoryVT(), N->getDebugLoc(), LD->getChain(),
4682                       LD->getBasePtr(), LD->getPointerInfo(), LD->isVolatile(),
4683                       LD->isNonTemporal(), LD->isInvariant(),
4684                       LD->getAlignment());
4685  // Otherwise, the value must be a BUILD_VECTOR.  For v2i64, it will
4686  // have been legalized as a BITCAST from v4i32.
4687  if (N->getOpcode() == ISD::BITCAST) {
4688    SDNode *BVN = N->getOperand(0).getNode();
4689    assert(BVN->getOpcode() == ISD::BUILD_VECTOR &&
4690           BVN->getValueType(0) == MVT::v4i32 && "expected v4i32 BUILD_VECTOR");
4691    unsigned LowElt = DAG.getTargetLoweringInfo().isBigEndian() ? 1 : 0;
4692    return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(), MVT::v2i32,
4693                       BVN->getOperand(LowElt), BVN->getOperand(LowElt+2));
4694  }
4695  // Construct a new BUILD_VECTOR with elements truncated to half the size.
4696  assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
4697  EVT VT = N->getValueType(0);
4698  unsigned EltSize = VT.getVectorElementType().getSizeInBits() / 2;
4699  unsigned NumElts = VT.getVectorNumElements();
4700  MVT TruncVT = MVT::getIntegerVT(EltSize);
4701  SmallVector<SDValue, 8> Ops;
4702  for (unsigned i = 0; i != NumElts; ++i) {
4703    ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
4704    const APInt &CInt = C->getAPIntValue();
4705    Ops.push_back(DAG.getConstant(CInt.trunc(EltSize), TruncVT));
4706  }
4707  return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(),
4708                     MVT::getVectorVT(TruncVT, NumElts), Ops.data(), NumElts);
4709}
4710
4711static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
4712  unsigned Opcode = N->getOpcode();
4713  if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
4714    SDNode *N0 = N->getOperand(0).getNode();
4715    SDNode *N1 = N->getOperand(1).getNode();
4716    return N0->hasOneUse() && N1->hasOneUse() &&
4717      isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
4718  }
4719  return false;
4720}
4721
4722static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
4723  unsigned Opcode = N->getOpcode();
4724  if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
4725    SDNode *N0 = N->getOperand(0).getNode();
4726    SDNode *N1 = N->getOperand(1).getNode();
4727    return N0->hasOneUse() && N1->hasOneUse() &&
4728      isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
4729  }
4730  return false;
4731}
4732
4733static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
4734  // Multiplications are only custom-lowered for 128-bit vectors so that
4735  // VMULL can be detected.  Otherwise v2i64 multiplications are not legal.
4736  EVT VT = Op.getValueType();
4737  assert(VT.is128BitVector() && "unexpected type for custom-lowering ISD::MUL");
4738  SDNode *N0 = Op.getOperand(0).getNode();
4739  SDNode *N1 = Op.getOperand(1).getNode();
4740  unsigned NewOpc = 0;
4741  bool isMLA = false;
4742  bool isN0SExt = isSignExtended(N0, DAG);
4743  bool isN1SExt = isSignExtended(N1, DAG);
4744  if (isN0SExt && isN1SExt)
4745    NewOpc = ARMISD::VMULLs;
4746  else {
4747    bool isN0ZExt = isZeroExtended(N0, DAG);
4748    bool isN1ZExt = isZeroExtended(N1, DAG);
4749    if (isN0ZExt && isN1ZExt)
4750      NewOpc = ARMISD::VMULLu;
4751    else if (isN1SExt || isN1ZExt) {
4752      // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
4753      // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
4754      if (isN1SExt && isAddSubSExt(N0, DAG)) {
4755        NewOpc = ARMISD::VMULLs;
4756        isMLA = true;
4757      } else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
4758        NewOpc = ARMISD::VMULLu;
4759        isMLA = true;
4760      } else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
4761        std::swap(N0, N1);
4762        NewOpc = ARMISD::VMULLu;
4763        isMLA = true;
4764      }
4765    }
4766
4767    if (!NewOpc) {
4768      if (VT == MVT::v2i64)
4769        // Fall through to expand this.  It is not legal.
4770        return SDValue();
4771      else
4772        // Other vector multiplications are legal.
4773        return Op;
4774    }
4775  }
4776
4777  // Legalize to a VMULL instruction.
4778  DebugLoc DL = Op.getDebugLoc();
4779  SDValue Op0;
4780  SDValue Op1 = SkipExtension(N1, DAG);
4781  if (!isMLA) {
4782    Op0 = SkipExtension(N0, DAG);
4783    assert(Op0.getValueType().is64BitVector() &&
4784           Op1.getValueType().is64BitVector() &&
4785           "unexpected types for extended operands to VMULL");
4786    return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
4787  }
4788
4789  // Optimizing (zext A + zext B) * C, to (VMULL A, C) + (VMULL B, C) during
4790  // isel lowering to take advantage of no-stall back to back vmul + vmla.
4791  //   vmull q0, d4, d6
4792  //   vmlal q0, d5, d6
4793  // is faster than
4794  //   vaddl q0, d4, d5
4795  //   vmovl q1, d6
4796  //   vmul  q0, q0, q1
4797  SDValue N00 = SkipExtension(N0->getOperand(0).getNode(), DAG);
4798  SDValue N01 = SkipExtension(N0->getOperand(1).getNode(), DAG);
4799  EVT Op1VT = Op1.getValueType();
4800  return DAG.getNode(N0->getOpcode(), DL, VT,
4801                     DAG.getNode(NewOpc, DL, VT,
4802                               DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
4803                     DAG.getNode(NewOpc, DL, VT,
4804                               DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
4805}
4806
4807static SDValue
4808LowerSDIV_v4i8(SDValue X, SDValue Y, DebugLoc dl, SelectionDAG &DAG) {
4809  // Convert to float
4810  // float4 xf = vcvt_f32_s32(vmovl_s16(a.lo));
4811  // float4 yf = vcvt_f32_s32(vmovl_s16(b.lo));
4812  X = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, X);
4813  Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, Y);
4814  X = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, X);
4815  Y = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, Y);
4816  // Get reciprocal estimate.
4817  // float4 recip = vrecpeq_f32(yf);
4818  Y = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
4819                   DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), Y);
4820  // Because char has a smaller range than uchar, we can actually get away
4821  // without any newton steps.  This requires that we use a weird bias
4822  // of 0xb000, however (again, this has been exhaustively tested).
4823  // float4 result = as_float4(as_int4(xf*recip) + 0xb000);
4824  X = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, X, Y);
4825  X = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, X);
4826  Y = DAG.getConstant(0xb000, MVT::i32);
4827  Y = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Y, Y, Y, Y);
4828  X = DAG.getNode(ISD::ADD, dl, MVT::v4i32, X, Y);
4829  X = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, X);
4830  // Convert back to short.
4831  X = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, X);
4832  X = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, X);
4833  return X;
4834}
4835
4836static SDValue
4837LowerSDIV_v4i16(SDValue N0, SDValue N1, DebugLoc dl, SelectionDAG &DAG) {
4838  SDValue N2;
4839  // Convert to float.
4840  // float4 yf = vcvt_f32_s32(vmovl_s16(y));
4841  // float4 xf = vcvt_f32_s32(vmovl_s16(x));
4842  N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N0);
4843  N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N1);
4844  N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
4845  N1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
4846
4847  // Use reciprocal estimate and one refinement step.
4848  // float4 recip = vrecpeq_f32(yf);
4849  // recip *= vrecpsq_f32(yf, recip);
4850  N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
4851                   DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), N1);
4852  N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
4853                   DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
4854                   N1, N2);
4855  N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
4856  // Because short has a smaller range than ushort, we can actually get away
4857  // with only a single newton step.  This requires that we use a weird bias
4858  // of 89, however (again, this has been exhaustively tested).
4859  // float4 result = as_float4(as_int4(xf*recip) + 0x89);
4860  N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
4861  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
4862  N1 = DAG.getConstant(0x89, MVT::i32);
4863  N1 = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, N1, N1, N1, N1);
4864  N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
4865  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
4866  // Convert back to integer and return.
4867  // return vmovn_s32(vcvt_s32_f32(result));
4868  N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
4869  N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
4870  return N0;
4871}
4872
4873static SDValue LowerSDIV(SDValue Op, SelectionDAG &DAG) {
4874  EVT VT = Op.getValueType();
4875  assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
4876         "unexpected type for custom-lowering ISD::SDIV");
4877
4878  DebugLoc dl = Op.getDebugLoc();
4879  SDValue N0 = Op.getOperand(0);
4880  SDValue N1 = Op.getOperand(1);
4881  SDValue N2, N3;
4882
4883  if (VT == MVT::v8i8) {
4884    N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N0);
4885    N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N1);
4886
4887    N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
4888                     DAG.getIntPtrConstant(4));
4889    N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
4890                     DAG.getIntPtrConstant(4));
4891    N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
4892                     DAG.getIntPtrConstant(0));
4893    N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
4894                     DAG.getIntPtrConstant(0));
4895
4896    N0 = LowerSDIV_v4i8(N0, N1, dl, DAG); // v4i16
4897    N2 = LowerSDIV_v4i8(N2, N3, dl, DAG); // v4i16
4898
4899    N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
4900    N0 = LowerCONCAT_VECTORS(N0, DAG);
4901
4902    N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v8i8, N0);
4903    return N0;
4904  }
4905  return LowerSDIV_v4i16(N0, N1, dl, DAG);
4906}
4907
4908static SDValue LowerUDIV(SDValue Op, SelectionDAG &DAG) {
4909  EVT VT = Op.getValueType();
4910  assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
4911         "unexpected type for custom-lowering ISD::UDIV");
4912
4913  DebugLoc dl = Op.getDebugLoc();
4914  SDValue N0 = Op.getOperand(0);
4915  SDValue N1 = Op.getOperand(1);
4916  SDValue N2, N3;
4917
4918  if (VT == MVT::v8i8) {
4919    N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N0);
4920    N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N1);
4921
4922    N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
4923                     DAG.getIntPtrConstant(4));
4924    N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
4925                     DAG.getIntPtrConstant(4));
4926    N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
4927                     DAG.getIntPtrConstant(0));
4928    N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
4929                     DAG.getIntPtrConstant(0));
4930
4931    N0 = LowerSDIV_v4i16(N0, N1, dl, DAG); // v4i16
4932    N2 = LowerSDIV_v4i16(N2, N3, dl, DAG); // v4i16
4933
4934    N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
4935    N0 = LowerCONCAT_VECTORS(N0, DAG);
4936
4937    N0 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v8i8,
4938                     DAG.getConstant(Intrinsic::arm_neon_vqmovnsu, MVT::i32),
4939                     N0);
4940    return N0;
4941  }
4942
4943  // v4i16 sdiv ... Convert to float.
4944  // float4 yf = vcvt_f32_s32(vmovl_u16(y));
4945  // float4 xf = vcvt_f32_s32(vmovl_u16(x));
4946  N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N0);
4947  N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N1);
4948  N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
4949  SDValue BN1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
4950
4951  // Use reciprocal estimate and two refinement steps.
4952  // float4 recip = vrecpeq_f32(yf);
4953  // recip *= vrecpsq_f32(yf, recip);
4954  // recip *= vrecpsq_f32(yf, recip);
4955  N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
4956                   DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), BN1);
4957  N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
4958                   DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
4959                   BN1, N2);
4960  N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
4961  N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
4962                   DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
4963                   BN1, N2);
4964  N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
4965  // Simply multiplying by the reciprocal estimate can leave us a few ulps
4966  // too low, so we add 2 ulps (exhaustive testing shows that this is enough,
4967  // and that it will never cause us to return an answer too large).
4968  // float4 result = as_float4(as_int4(xf*recip) + 2);
4969  N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
4970  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
4971  N1 = DAG.getConstant(2, MVT::i32);
4972  N1 = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, N1, N1, N1, N1);
4973  N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
4974  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
4975  // Convert back to integer and return.
4976  // return vmovn_u32(vcvt_s32_f32(result));
4977  N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
4978  N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
4979  return N0;
4980}
4981
4982static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
4983  EVT VT = Op.getNode()->getValueType(0);
4984  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
4985
4986  unsigned Opc;
4987  bool ExtraOp = false;
4988  switch (Op.getOpcode()) {
4989  default: llvm_unreachable("Invalid code");
4990  case ISD::ADDC: Opc = ARMISD::ADDC; break;
4991  case ISD::ADDE: Opc = ARMISD::ADDE; ExtraOp = true; break;
4992  case ISD::SUBC: Opc = ARMISD::SUBC; break;
4993  case ISD::SUBE: Opc = ARMISD::SUBE; ExtraOp = true; break;
4994  }
4995
4996  if (!ExtraOp)
4997    return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
4998                       Op.getOperand(1));
4999  return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
5000                     Op.getOperand(1), Op.getOperand(2));
5001}
5002
5003static SDValue LowerAtomicLoadStore(SDValue Op, SelectionDAG &DAG) {
5004  // Monotonic load/store is legal for all targets
5005  if (cast<AtomicSDNode>(Op)->getOrdering() <= Monotonic)
5006    return Op;
5007
5008  // Aquire/Release load/store is not legal for targets without a
5009  // dmb or equivalent available.
5010  return SDValue();
5011}
5012
5013
5014static void
5015ReplaceATOMIC_OP_64(SDNode *Node, SmallVectorImpl<SDValue>& Results,
5016                    SelectionDAG &DAG, unsigned NewOp) {
5017  DebugLoc dl = Node->getDebugLoc();
5018  assert (Node->getValueType(0) == MVT::i64 &&
5019          "Only know how to expand i64 atomics");
5020
5021  SmallVector<SDValue, 6> Ops;
5022  Ops.push_back(Node->getOperand(0)); // Chain
5023  Ops.push_back(Node->getOperand(1)); // Ptr
5024  // Low part of Val1
5025  Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5026                            Node->getOperand(2), DAG.getIntPtrConstant(0)));
5027  // High part of Val1
5028  Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5029                            Node->getOperand(2), DAG.getIntPtrConstant(1)));
5030  if (NewOp == ARMISD::ATOMCMPXCHG64_DAG) {
5031    // High part of Val1
5032    Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5033                              Node->getOperand(3), DAG.getIntPtrConstant(0)));
5034    // High part of Val2
5035    Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5036                              Node->getOperand(3), DAG.getIntPtrConstant(1)));
5037  }
5038  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
5039  SDValue Result =
5040    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops.data(), Ops.size(), MVT::i64,
5041                            cast<MemSDNode>(Node)->getMemOperand());
5042  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1) };
5043  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
5044  Results.push_back(Result.getValue(2));
5045}
5046
5047SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
5048  switch (Op.getOpcode()) {
5049  default: llvm_unreachable("Don't know how to custom lower this!");
5050  case ISD::ConstantPool:  return LowerConstantPool(Op, DAG);
5051  case ISD::BlockAddress:  return LowerBlockAddress(Op, DAG);
5052  case ISD::GlobalAddress:
5053    return Subtarget->isTargetDarwin() ? LowerGlobalAddressDarwin(Op, DAG) :
5054      LowerGlobalAddressELF(Op, DAG);
5055  case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
5056  case ISD::SELECT:        return LowerSELECT(Op, DAG);
5057  case ISD::SELECT_CC:     return LowerSELECT_CC(Op, DAG);
5058  case ISD::BR_CC:         return LowerBR_CC(Op, DAG);
5059  case ISD::BR_JT:         return LowerBR_JT(Op, DAG);
5060  case ISD::VASTART:       return LowerVASTART(Op, DAG);
5061  case ISD::MEMBARRIER:    return LowerMEMBARRIER(Op, DAG, Subtarget);
5062  case ISD::ATOMIC_FENCE:  return LowerATOMIC_FENCE(Op, DAG, Subtarget);
5063  case ISD::PREFETCH:      return LowerPREFETCH(Op, DAG, Subtarget);
5064  case ISD::SINT_TO_FP:
5065  case ISD::UINT_TO_FP:    return LowerINT_TO_FP(Op, DAG);
5066  case ISD::FP_TO_SINT:
5067  case ISD::FP_TO_UINT:    return LowerFP_TO_INT(Op, DAG);
5068  case ISD::FCOPYSIGN:     return LowerFCOPYSIGN(Op, DAG);
5069  case ISD::RETURNADDR:    return LowerRETURNADDR(Op, DAG);
5070  case ISD::FRAMEADDR:     return LowerFRAMEADDR(Op, DAG);
5071  case ISD::GLOBAL_OFFSET_TABLE: return LowerGLOBAL_OFFSET_TABLE(Op, DAG);
5072  case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG);
5073  case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG);
5074  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG,
5075                                                               Subtarget);
5076  case ISD::BITCAST:       return ExpandBITCAST(Op.getNode(), DAG);
5077  case ISD::SHL:
5078  case ISD::SRL:
5079  case ISD::SRA:           return LowerShift(Op.getNode(), DAG, Subtarget);
5080  case ISD::SHL_PARTS:     return LowerShiftLeftParts(Op, DAG);
5081  case ISD::SRL_PARTS:
5082  case ISD::SRA_PARTS:     return LowerShiftRightParts(Op, DAG);
5083  case ISD::CTTZ:          return LowerCTTZ(Op.getNode(), DAG, Subtarget);
5084  case ISD::SETCC:         return LowerVSETCC(Op, DAG);
5085  case ISD::BUILD_VECTOR:  return LowerBUILD_VECTOR(Op, DAG, Subtarget);
5086  case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
5087  case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
5088  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
5089  case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
5090  case ISD::FLT_ROUNDS_:   return LowerFLT_ROUNDS_(Op, DAG);
5091  case ISD::MUL:           return LowerMUL(Op, DAG);
5092  case ISD::SDIV:          return LowerSDIV(Op, DAG);
5093  case ISD::UDIV:          return LowerUDIV(Op, DAG);
5094  case ISD::ADDC:
5095  case ISD::ADDE:
5096  case ISD::SUBC:
5097  case ISD::SUBE:          return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
5098  case ISD::ATOMIC_LOAD:
5099  case ISD::ATOMIC_STORE:  return LowerAtomicLoadStore(Op, DAG);
5100  }
5101}
5102
5103/// ReplaceNodeResults - Replace the results of node with an illegal result
5104/// type with new values built out of custom code.
5105void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
5106                                           SmallVectorImpl<SDValue>&Results,
5107                                           SelectionDAG &DAG) const {
5108  SDValue Res;
5109  switch (N->getOpcode()) {
5110  default:
5111    llvm_unreachable("Don't know how to custom expand this!");
5112  case ISD::BITCAST:
5113    Res = ExpandBITCAST(N, DAG);
5114    break;
5115  case ISD::SRL:
5116  case ISD::SRA:
5117    Res = Expand64BitShift(N, DAG, Subtarget);
5118    break;
5119  case ISD::ATOMIC_LOAD_ADD:
5120    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMADD64_DAG);
5121    return;
5122  case ISD::ATOMIC_LOAD_AND:
5123    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMAND64_DAG);
5124    return;
5125  case ISD::ATOMIC_LOAD_NAND:
5126    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMNAND64_DAG);
5127    return;
5128  case ISD::ATOMIC_LOAD_OR:
5129    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMOR64_DAG);
5130    return;
5131  case ISD::ATOMIC_LOAD_SUB:
5132    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMSUB64_DAG);
5133    return;
5134  case ISD::ATOMIC_LOAD_XOR:
5135    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMXOR64_DAG);
5136    return;
5137  case ISD::ATOMIC_SWAP:
5138    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMSWAP64_DAG);
5139    return;
5140  case ISD::ATOMIC_CMP_SWAP:
5141    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMCMPXCHG64_DAG);
5142    return;
5143  }
5144  if (Res.getNode())
5145    Results.push_back(Res);
5146}
5147
5148//===----------------------------------------------------------------------===//
5149//                           ARM Scheduler Hooks
5150//===----------------------------------------------------------------------===//
5151
5152MachineBasicBlock *
5153ARMTargetLowering::EmitAtomicCmpSwap(MachineInstr *MI,
5154                                     MachineBasicBlock *BB,
5155                                     unsigned Size) const {
5156  unsigned dest    = MI->getOperand(0).getReg();
5157  unsigned ptr     = MI->getOperand(1).getReg();
5158  unsigned oldval  = MI->getOperand(2).getReg();
5159  unsigned newval  = MI->getOperand(3).getReg();
5160  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5161  DebugLoc dl = MI->getDebugLoc();
5162  bool isThumb2 = Subtarget->isThumb2();
5163
5164  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
5165  unsigned scratch =
5166    MRI.createVirtualRegister(isThumb2 ? ARM::rGPRRegisterClass
5167                                       : ARM::GPRRegisterClass);
5168
5169  if (isThumb2) {
5170    MRI.constrainRegClass(dest, ARM::rGPRRegisterClass);
5171    MRI.constrainRegClass(oldval, ARM::rGPRRegisterClass);
5172    MRI.constrainRegClass(newval, ARM::rGPRRegisterClass);
5173  }
5174
5175  unsigned ldrOpc, strOpc;
5176  switch (Size) {
5177  default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
5178  case 1:
5179    ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
5180    strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
5181    break;
5182  case 2:
5183    ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
5184    strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
5185    break;
5186  case 4:
5187    ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
5188    strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
5189    break;
5190  }
5191
5192  MachineFunction *MF = BB->getParent();
5193  const BasicBlock *LLVM_BB = BB->getBasicBlock();
5194  MachineFunction::iterator It = BB;
5195  ++It; // insert the new blocks after the current block
5196
5197  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
5198  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
5199  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5200  MF->insert(It, loop1MBB);
5201  MF->insert(It, loop2MBB);
5202  MF->insert(It, exitMBB);
5203
5204  // Transfer the remainder of BB and its successor edges to exitMBB.
5205  exitMBB->splice(exitMBB->begin(), BB,
5206                  llvm::next(MachineBasicBlock::iterator(MI)),
5207                  BB->end());
5208  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5209
5210  //  thisMBB:
5211  //   ...
5212  //   fallthrough --> loop1MBB
5213  BB->addSuccessor(loop1MBB);
5214
5215  // loop1MBB:
5216  //   ldrex dest, [ptr]
5217  //   cmp dest, oldval
5218  //   bne exitMBB
5219  BB = loop1MBB;
5220  MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
5221  if (ldrOpc == ARM::t2LDREX)
5222    MIB.addImm(0);
5223  AddDefaultPred(MIB);
5224  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
5225                 .addReg(dest).addReg(oldval));
5226  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5227    .addMBB(exitMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5228  BB->addSuccessor(loop2MBB);
5229  BB->addSuccessor(exitMBB);
5230
5231  // loop2MBB:
5232  //   strex scratch, newval, [ptr]
5233  //   cmp scratch, #0
5234  //   bne loop1MBB
5235  BB = loop2MBB;
5236  MIB = BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(newval).addReg(ptr);
5237  if (strOpc == ARM::t2STREX)
5238    MIB.addImm(0);
5239  AddDefaultPred(MIB);
5240  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
5241                 .addReg(scratch).addImm(0));
5242  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5243    .addMBB(loop1MBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5244  BB->addSuccessor(loop1MBB);
5245  BB->addSuccessor(exitMBB);
5246
5247  //  exitMBB:
5248  //   ...
5249  BB = exitMBB;
5250
5251  MI->eraseFromParent();   // The instruction is gone now.
5252
5253  return BB;
5254}
5255
5256MachineBasicBlock *
5257ARMTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
5258                                    unsigned Size, unsigned BinOpcode) const {
5259  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
5260  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5261
5262  const BasicBlock *LLVM_BB = BB->getBasicBlock();
5263  MachineFunction *MF = BB->getParent();
5264  MachineFunction::iterator It = BB;
5265  ++It;
5266
5267  unsigned dest = MI->getOperand(0).getReg();
5268  unsigned ptr = MI->getOperand(1).getReg();
5269  unsigned incr = MI->getOperand(2).getReg();
5270  DebugLoc dl = MI->getDebugLoc();
5271  bool isThumb2 = Subtarget->isThumb2();
5272
5273  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
5274  if (isThumb2) {
5275    MRI.constrainRegClass(dest, ARM::rGPRRegisterClass);
5276    MRI.constrainRegClass(ptr, ARM::rGPRRegisterClass);
5277  }
5278
5279  unsigned ldrOpc, strOpc;
5280  switch (Size) {
5281  default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
5282  case 1:
5283    ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
5284    strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
5285    break;
5286  case 2:
5287    ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
5288    strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
5289    break;
5290  case 4:
5291    ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
5292    strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
5293    break;
5294  }
5295
5296  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5297  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5298  MF->insert(It, loopMBB);
5299  MF->insert(It, exitMBB);
5300
5301  // Transfer the remainder of BB and its successor edges to exitMBB.
5302  exitMBB->splice(exitMBB->begin(), BB,
5303                  llvm::next(MachineBasicBlock::iterator(MI)),
5304                  BB->end());
5305  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5306
5307  const TargetRegisterClass *TRC =
5308    isThumb2 ? ARM::tGPRRegisterClass : ARM::GPRRegisterClass;
5309  unsigned scratch = MRI.createVirtualRegister(TRC);
5310  unsigned scratch2 = (!BinOpcode) ? incr : MRI.createVirtualRegister(TRC);
5311
5312  //  thisMBB:
5313  //   ...
5314  //   fallthrough --> loopMBB
5315  BB->addSuccessor(loopMBB);
5316
5317  //  loopMBB:
5318  //   ldrex dest, ptr
5319  //   <binop> scratch2, dest, incr
5320  //   strex scratch, scratch2, ptr
5321  //   cmp scratch, #0
5322  //   bne- loopMBB
5323  //   fallthrough --> exitMBB
5324  BB = loopMBB;
5325  MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
5326  if (ldrOpc == ARM::t2LDREX)
5327    MIB.addImm(0);
5328  AddDefaultPred(MIB);
5329  if (BinOpcode) {
5330    // operand order needs to go the other way for NAND
5331    if (BinOpcode == ARM::BICrr || BinOpcode == ARM::t2BICrr)
5332      AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
5333                     addReg(incr).addReg(dest)).addReg(0);
5334    else
5335      AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
5336                     addReg(dest).addReg(incr)).addReg(0);
5337  }
5338
5339  MIB = BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(scratch2).addReg(ptr);
5340  if (strOpc == ARM::t2STREX)
5341    MIB.addImm(0);
5342  AddDefaultPred(MIB);
5343  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
5344                 .addReg(scratch).addImm(0));
5345  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5346    .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5347
5348  BB->addSuccessor(loopMBB);
5349  BB->addSuccessor(exitMBB);
5350
5351  //  exitMBB:
5352  //   ...
5353  BB = exitMBB;
5354
5355  MI->eraseFromParent();   // The instruction is gone now.
5356
5357  return BB;
5358}
5359
5360MachineBasicBlock *
5361ARMTargetLowering::EmitAtomicBinaryMinMax(MachineInstr *MI,
5362                                          MachineBasicBlock *BB,
5363                                          unsigned Size,
5364                                          bool signExtend,
5365                                          ARMCC::CondCodes Cond) const {
5366  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5367
5368  const BasicBlock *LLVM_BB = BB->getBasicBlock();
5369  MachineFunction *MF = BB->getParent();
5370  MachineFunction::iterator It = BB;
5371  ++It;
5372
5373  unsigned dest = MI->getOperand(0).getReg();
5374  unsigned ptr = MI->getOperand(1).getReg();
5375  unsigned incr = MI->getOperand(2).getReg();
5376  unsigned oldval = dest;
5377  DebugLoc dl = MI->getDebugLoc();
5378  bool isThumb2 = Subtarget->isThumb2();
5379
5380  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
5381  if (isThumb2) {
5382    MRI.constrainRegClass(dest, ARM::rGPRRegisterClass);
5383    MRI.constrainRegClass(ptr, ARM::rGPRRegisterClass);
5384  }
5385
5386  unsigned ldrOpc, strOpc, extendOpc;
5387  switch (Size) {
5388  default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
5389  case 1:
5390    ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
5391    strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
5392    extendOpc = isThumb2 ? ARM::t2SXTB : ARM::SXTB;
5393    break;
5394  case 2:
5395    ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
5396    strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
5397    extendOpc = isThumb2 ? ARM::t2SXTH : ARM::SXTH;
5398    break;
5399  case 4:
5400    ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
5401    strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
5402    extendOpc = 0;
5403    break;
5404  }
5405
5406  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5407  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5408  MF->insert(It, loopMBB);
5409  MF->insert(It, exitMBB);
5410
5411  // Transfer the remainder of BB and its successor edges to exitMBB.
5412  exitMBB->splice(exitMBB->begin(), BB,
5413                  llvm::next(MachineBasicBlock::iterator(MI)),
5414                  BB->end());
5415  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5416
5417  const TargetRegisterClass *TRC =
5418    isThumb2 ? ARM::tGPRRegisterClass : ARM::GPRRegisterClass;
5419  unsigned scratch = MRI.createVirtualRegister(TRC);
5420  unsigned scratch2 = MRI.createVirtualRegister(TRC);
5421
5422  //  thisMBB:
5423  //   ...
5424  //   fallthrough --> loopMBB
5425  BB->addSuccessor(loopMBB);
5426
5427  //  loopMBB:
5428  //   ldrex dest, ptr
5429  //   (sign extend dest, if required)
5430  //   cmp dest, incr
5431  //   cmov.cond scratch2, dest, incr
5432  //   strex scratch, scratch2, ptr
5433  //   cmp scratch, #0
5434  //   bne- loopMBB
5435  //   fallthrough --> exitMBB
5436  BB = loopMBB;
5437  MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
5438  if (ldrOpc == ARM::t2LDREX)
5439    MIB.addImm(0);
5440  AddDefaultPred(MIB);
5441
5442  // Sign extend the value, if necessary.
5443  if (signExtend && extendOpc) {
5444    oldval = MRI.createVirtualRegister(ARM::GPRRegisterClass);
5445    AddDefaultPred(BuildMI(BB, dl, TII->get(extendOpc), oldval)
5446                     .addReg(dest)
5447                     .addImm(0));
5448  }
5449
5450  // Build compare and cmov instructions.
5451  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
5452                 .addReg(oldval).addReg(incr));
5453  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2MOVCCr : ARM::MOVCCr), scratch2)
5454         .addReg(oldval).addReg(incr).addImm(Cond).addReg(ARM::CPSR);
5455
5456  MIB = BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(scratch2).addReg(ptr);
5457  if (strOpc == ARM::t2STREX)
5458    MIB.addImm(0);
5459  AddDefaultPred(MIB);
5460  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
5461                 .addReg(scratch).addImm(0));
5462  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5463    .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5464
5465  BB->addSuccessor(loopMBB);
5466  BB->addSuccessor(exitMBB);
5467
5468  //  exitMBB:
5469  //   ...
5470  BB = exitMBB;
5471
5472  MI->eraseFromParent();   // The instruction is gone now.
5473
5474  return BB;
5475}
5476
5477MachineBasicBlock *
5478ARMTargetLowering::EmitAtomicBinary64(MachineInstr *MI, MachineBasicBlock *BB,
5479                                      unsigned Op1, unsigned Op2,
5480                                      bool NeedsCarry, bool IsCmpxchg) const {
5481  // This also handles ATOMIC_SWAP, indicated by Op1==0.
5482  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5483
5484  const BasicBlock *LLVM_BB = BB->getBasicBlock();
5485  MachineFunction *MF = BB->getParent();
5486  MachineFunction::iterator It = BB;
5487  ++It;
5488
5489  unsigned destlo = MI->getOperand(0).getReg();
5490  unsigned desthi = MI->getOperand(1).getReg();
5491  unsigned ptr = MI->getOperand(2).getReg();
5492  unsigned vallo = MI->getOperand(3).getReg();
5493  unsigned valhi = MI->getOperand(4).getReg();
5494  DebugLoc dl = MI->getDebugLoc();
5495  bool isThumb2 = Subtarget->isThumb2();
5496
5497  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
5498  if (isThumb2) {
5499    MRI.constrainRegClass(destlo, ARM::rGPRRegisterClass);
5500    MRI.constrainRegClass(desthi, ARM::rGPRRegisterClass);
5501    MRI.constrainRegClass(ptr, ARM::rGPRRegisterClass);
5502  }
5503
5504  unsigned ldrOpc = isThumb2 ? ARM::t2LDREXD : ARM::LDREXD;
5505  unsigned strOpc = isThumb2 ? ARM::t2STREXD : ARM::STREXD;
5506
5507  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5508  MachineBasicBlock *contBB = 0, *cont2BB = 0;
5509  if (IsCmpxchg) {
5510    contBB = MF->CreateMachineBasicBlock(LLVM_BB);
5511    cont2BB = MF->CreateMachineBasicBlock(LLVM_BB);
5512  }
5513  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5514  MF->insert(It, loopMBB);
5515  if (IsCmpxchg) {
5516    MF->insert(It, contBB);
5517    MF->insert(It, cont2BB);
5518  }
5519  MF->insert(It, exitMBB);
5520
5521  // Transfer the remainder of BB and its successor edges to exitMBB.
5522  exitMBB->splice(exitMBB->begin(), BB,
5523                  llvm::next(MachineBasicBlock::iterator(MI)),
5524                  BB->end());
5525  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5526
5527  const TargetRegisterClass *TRC =
5528    isThumb2 ? ARM::tGPRRegisterClass : ARM::GPRRegisterClass;
5529  unsigned storesuccess = MRI.createVirtualRegister(TRC);
5530
5531  //  thisMBB:
5532  //   ...
5533  //   fallthrough --> loopMBB
5534  BB->addSuccessor(loopMBB);
5535
5536  //  loopMBB:
5537  //   ldrexd r2, r3, ptr
5538  //   <binopa> r0, r2, incr
5539  //   <binopb> r1, r3, incr
5540  //   strexd storesuccess, r0, r1, ptr
5541  //   cmp storesuccess, #0
5542  //   bne- loopMBB
5543  //   fallthrough --> exitMBB
5544  //
5545  // Note that the registers are explicitly specified because there is not any
5546  // way to force the register allocator to allocate a register pair.
5547  //
5548  // FIXME: The hardcoded registers are not necessary for Thumb2, but we
5549  // need to properly enforce the restriction that the two output registers
5550  // for ldrexd must be different.
5551  BB = loopMBB;
5552  // Load
5553  AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc))
5554                 .addReg(ARM::R2, RegState::Define)
5555                 .addReg(ARM::R3, RegState::Define).addReg(ptr));
5556  // Copy r2/r3 into dest.  (This copy will normally be coalesced.)
5557  BuildMI(BB, dl, TII->get(TargetOpcode::COPY), destlo).addReg(ARM::R2);
5558  BuildMI(BB, dl, TII->get(TargetOpcode::COPY), desthi).addReg(ARM::R3);
5559
5560  if (IsCmpxchg) {
5561    // Add early exit
5562    for (unsigned i = 0; i < 2; i++) {
5563      AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr :
5564                                                         ARM::CMPrr))
5565                     .addReg(i == 0 ? destlo : desthi)
5566                     .addReg(i == 0 ? vallo : valhi));
5567      BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5568        .addMBB(exitMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5569      BB->addSuccessor(exitMBB);
5570      BB->addSuccessor(i == 0 ? contBB : cont2BB);
5571      BB = (i == 0 ? contBB : cont2BB);
5572    }
5573
5574    // Copy to physregs for strexd
5575    unsigned setlo = MI->getOperand(5).getReg();
5576    unsigned sethi = MI->getOperand(6).getReg();
5577    BuildMI(BB, dl, TII->get(TargetOpcode::COPY), ARM::R0).addReg(setlo);
5578    BuildMI(BB, dl, TII->get(TargetOpcode::COPY), ARM::R1).addReg(sethi);
5579  } else if (Op1) {
5580    // Perform binary operation
5581    AddDefaultPred(BuildMI(BB, dl, TII->get(Op1), ARM::R0)
5582                   .addReg(destlo).addReg(vallo))
5583        .addReg(NeedsCarry ? ARM::CPSR : 0, getDefRegState(NeedsCarry));
5584    AddDefaultPred(BuildMI(BB, dl, TII->get(Op2), ARM::R1)
5585                   .addReg(desthi).addReg(valhi)).addReg(0);
5586  } else {
5587    // Copy to physregs for strexd
5588    BuildMI(BB, dl, TII->get(TargetOpcode::COPY), ARM::R0).addReg(vallo);
5589    BuildMI(BB, dl, TII->get(TargetOpcode::COPY), ARM::R1).addReg(valhi);
5590  }
5591
5592  // Store
5593  AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), storesuccess)
5594                 .addReg(ARM::R0).addReg(ARM::R1).addReg(ptr));
5595  // Cmp+jump
5596  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
5597                 .addReg(storesuccess).addImm(0));
5598  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5599    .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5600
5601  BB->addSuccessor(loopMBB);
5602  BB->addSuccessor(exitMBB);
5603
5604  //  exitMBB:
5605  //   ...
5606  BB = exitMBB;
5607
5608  MI->eraseFromParent();   // The instruction is gone now.
5609
5610  return BB;
5611}
5612
5613/// SetupEntryBlockForSjLj - Insert code into the entry block that creates and
5614/// registers the function context.
5615void ARMTargetLowering::
5616SetupEntryBlockForSjLj(MachineInstr *MI, MachineBasicBlock *MBB,
5617                       MachineBasicBlock *DispatchBB, int FI) const {
5618  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5619  DebugLoc dl = MI->getDebugLoc();
5620  MachineFunction *MF = MBB->getParent();
5621  MachineRegisterInfo *MRI = &MF->getRegInfo();
5622  MachineConstantPool *MCP = MF->getConstantPool();
5623  ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>();
5624  const Function *F = MF->getFunction();
5625
5626  bool isThumb = Subtarget->isThumb();
5627  bool isThumb2 = Subtarget->isThumb2();
5628
5629  unsigned PCLabelId = AFI->createPICLabelUId();
5630  unsigned PCAdj = (isThumb || isThumb2) ? 4 : 8;
5631  ARMConstantPoolValue *CPV =
5632    ARMConstantPoolMBB::Create(F->getContext(), DispatchBB, PCLabelId, PCAdj);
5633  unsigned CPI = MCP->getConstantPoolIndex(CPV, 4);
5634
5635  const TargetRegisterClass *TRC =
5636    isThumb ? ARM::tGPRRegisterClass : ARM::GPRRegisterClass;
5637
5638  // Grab constant pool and fixed stack memory operands.
5639  MachineMemOperand *CPMMO =
5640    MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(),
5641                             MachineMemOperand::MOLoad, 4, 4);
5642
5643  MachineMemOperand *FIMMOSt =
5644    MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
5645                             MachineMemOperand::MOStore, 4, 4);
5646
5647  // Load the address of the dispatch MBB into the jump buffer.
5648  if (isThumb2) {
5649    // Incoming value: jbuf
5650    //   ldr.n  r5, LCPI1_1
5651    //   orr    r5, r5, #1
5652    //   add    r5, pc
5653    //   str    r5, [$jbuf, #+4] ; &jbuf[1]
5654    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
5655    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2LDRpci), NewVReg1)
5656                   .addConstantPoolIndex(CPI)
5657                   .addMemOperand(CPMMO));
5658    // Set the low bit because of thumb mode.
5659    unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
5660    AddDefaultCC(
5661      AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2ORRri), NewVReg2)
5662                     .addReg(NewVReg1, RegState::Kill)
5663                     .addImm(0x01)));
5664    unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
5665    BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg3)
5666      .addReg(NewVReg2, RegState::Kill)
5667      .addImm(PCLabelId);
5668    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2STRi12))
5669                   .addReg(NewVReg3, RegState::Kill)
5670                   .addFrameIndex(FI)
5671                   .addImm(36)  // &jbuf[1] :: pc
5672                   .addMemOperand(FIMMOSt));
5673  } else if (isThumb) {
5674    // Incoming value: jbuf
5675    //   ldr.n  r1, LCPI1_4
5676    //   add    r1, pc
5677    //   mov    r2, #1
5678    //   orrs   r1, r2
5679    //   add    r2, $jbuf, #+4 ; &jbuf[1]
5680    //   str    r1, [r2]
5681    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
5682    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tLDRpci), NewVReg1)
5683                   .addConstantPoolIndex(CPI)
5684                   .addMemOperand(CPMMO));
5685    unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
5686    BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg2)
5687      .addReg(NewVReg1, RegState::Kill)
5688      .addImm(PCLabelId);
5689    // Set the low bit because of thumb mode.
5690    unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
5691    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tMOVi8), NewVReg3)
5692                   .addReg(ARM::CPSR, RegState::Define)
5693                   .addImm(1));
5694    unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
5695    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tORR), NewVReg4)
5696                   .addReg(ARM::CPSR, RegState::Define)
5697                   .addReg(NewVReg2, RegState::Kill)
5698                   .addReg(NewVReg3, RegState::Kill));
5699    unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
5700    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tADDrSPi), NewVReg5)
5701                   .addFrameIndex(FI)
5702                   .addImm(36)); // &jbuf[1] :: pc
5703    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tSTRi))
5704                   .addReg(NewVReg4, RegState::Kill)
5705                   .addReg(NewVReg5, RegState::Kill)
5706                   .addImm(0)
5707                   .addMemOperand(FIMMOSt));
5708  } else {
5709    // Incoming value: jbuf
5710    //   ldr  r1, LCPI1_1
5711    //   add  r1, pc, r1
5712    //   str  r1, [$jbuf, #+4] ; &jbuf[1]
5713    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
5714    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::LDRi12),  NewVReg1)
5715                   .addConstantPoolIndex(CPI)
5716                   .addImm(0)
5717                   .addMemOperand(CPMMO));
5718    unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
5719    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::PICADD), NewVReg2)
5720                   .addReg(NewVReg1, RegState::Kill)
5721                   .addImm(PCLabelId));
5722    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::STRi12))
5723                   .addReg(NewVReg2, RegState::Kill)
5724                   .addFrameIndex(FI)
5725                   .addImm(36)  // &jbuf[1] :: pc
5726                   .addMemOperand(FIMMOSt));
5727  }
5728}
5729
5730MachineBasicBlock *ARMTargetLowering::
5731EmitSjLjDispatchBlock(MachineInstr *MI, MachineBasicBlock *MBB) const {
5732  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5733  DebugLoc dl = MI->getDebugLoc();
5734  MachineFunction *MF = MBB->getParent();
5735  MachineRegisterInfo *MRI = &MF->getRegInfo();
5736  ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>();
5737  MachineFrameInfo *MFI = MF->getFrameInfo();
5738  int FI = MFI->getFunctionContextIndex();
5739
5740  const TargetRegisterClass *TRC =
5741    Subtarget->isThumb() ? ARM::tGPRRegisterClass : ARM::GPRRegisterClass;
5742
5743  // Get a mapping of the call site numbers to all of the landing pads they're
5744  // associated with.
5745  DenseMap<unsigned, SmallVector<MachineBasicBlock*, 2> > CallSiteNumToLPad;
5746  unsigned MaxCSNum = 0;
5747  MachineModuleInfo &MMI = MF->getMMI();
5748  for (MachineFunction::iterator BB = MF->begin(), E = MF->end(); BB != E; ++BB) {
5749    if (!BB->isLandingPad()) continue;
5750
5751    // FIXME: We should assert that the EH_LABEL is the first MI in the landing
5752    // pad.
5753    for (MachineBasicBlock::iterator
5754           II = BB->begin(), IE = BB->end(); II != IE; ++II) {
5755      if (!II->isEHLabel()) continue;
5756
5757      MCSymbol *Sym = II->getOperand(0).getMCSymbol();
5758      if (!MMI.hasCallSiteLandingPad(Sym)) continue;
5759
5760      SmallVectorImpl<unsigned> &CallSiteIdxs = MMI.getCallSiteLandingPad(Sym);
5761      for (SmallVectorImpl<unsigned>::iterator
5762             CSI = CallSiteIdxs.begin(), CSE = CallSiteIdxs.end();
5763           CSI != CSE; ++CSI) {
5764        CallSiteNumToLPad[*CSI].push_back(BB);
5765        MaxCSNum = std::max(MaxCSNum, *CSI);
5766      }
5767      break;
5768    }
5769  }
5770
5771  // Get an ordered list of the machine basic blocks for the jump table.
5772  std::vector<MachineBasicBlock*> LPadList;
5773  SmallPtrSet<MachineBasicBlock*, 64> InvokeBBs;
5774  LPadList.reserve(CallSiteNumToLPad.size());
5775  for (unsigned I = 1; I <= MaxCSNum; ++I) {
5776    SmallVectorImpl<MachineBasicBlock*> &MBBList = CallSiteNumToLPad[I];
5777    for (SmallVectorImpl<MachineBasicBlock*>::iterator
5778           II = MBBList.begin(), IE = MBBList.end(); II != IE; ++II) {
5779      LPadList.push_back(*II);
5780      InvokeBBs.insert((*II)->pred_begin(), (*II)->pred_end());
5781    }
5782  }
5783
5784  assert(!LPadList.empty() &&
5785         "No landing pad destinations for the dispatch jump table!");
5786
5787  // Create the jump table and associated information.
5788  MachineJumpTableInfo *JTI =
5789    MF->getOrCreateJumpTableInfo(MachineJumpTableInfo::EK_Inline);
5790  unsigned MJTI = JTI->createJumpTableIndex(LPadList);
5791  unsigned UId = AFI->createJumpTableUId();
5792
5793  // Create the MBBs for the dispatch code.
5794
5795  // Shove the dispatch's address into the return slot in the function context.
5796  MachineBasicBlock *DispatchBB = MF->CreateMachineBasicBlock();
5797  DispatchBB->setIsLandingPad();
5798
5799  MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
5800  BuildMI(TrapBB, dl, TII->get(Subtarget->isThumb() ? ARM::tTRAP : ARM::TRAP));
5801  DispatchBB->addSuccessor(TrapBB);
5802
5803  MachineBasicBlock *DispContBB = MF->CreateMachineBasicBlock();
5804  DispatchBB->addSuccessor(DispContBB);
5805
5806  // Insert and MBBs.
5807  MF->insert(MF->end(), DispatchBB);
5808  MF->insert(MF->end(), DispContBB);
5809  MF->insert(MF->end(), TrapBB);
5810
5811  // Insert code into the entry block that creates and registers the function
5812  // context.
5813  SetupEntryBlockForSjLj(MI, MBB, DispatchBB, FI);
5814
5815  MachineMemOperand *FIMMOLd =
5816    MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
5817                             MachineMemOperand::MOLoad |
5818                             MachineMemOperand::MOVolatile, 4, 4);
5819
5820  if (AFI->isThumb1OnlyFunction())
5821    BuildMI(DispatchBB, dl, TII->get(ARM::tInt_eh_sjlj_dispatchsetup));
5822  else if (!Subtarget->hasVFP2())
5823    BuildMI(DispatchBB, dl, TII->get(ARM::Int_eh_sjlj_dispatchsetup_nofp));
5824  else
5825    BuildMI(DispatchBB, dl, TII->get(ARM::Int_eh_sjlj_dispatchsetup));
5826
5827  unsigned NumLPads = LPadList.size();
5828  if (Subtarget->isThumb2()) {
5829    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
5830    AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2LDRi12), NewVReg1)
5831                   .addFrameIndex(FI)
5832                   .addImm(4)
5833                   .addMemOperand(FIMMOLd));
5834
5835    if (NumLPads < 256) {
5836      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPri))
5837                     .addReg(NewVReg1)
5838                     .addImm(LPadList.size()));
5839    } else {
5840      unsigned VReg1 = MRI->createVirtualRegister(TRC);
5841      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVi16), VReg1)
5842                     .addImm(NumLPads & 0xFFFF));
5843
5844      unsigned VReg2 = VReg1;
5845      if ((NumLPads & 0xFFFF0000) != 0) {
5846        VReg2 = MRI->createVirtualRegister(TRC);
5847        AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVTi16), VReg2)
5848                       .addReg(VReg1)
5849                       .addImm(NumLPads >> 16));
5850      }
5851
5852      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPrr))
5853                     .addReg(NewVReg1)
5854                     .addReg(VReg2));
5855    }
5856
5857    BuildMI(DispatchBB, dl, TII->get(ARM::t2Bcc))
5858      .addMBB(TrapBB)
5859      .addImm(ARMCC::HI)
5860      .addReg(ARM::CPSR);
5861
5862    unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
5863    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::t2LEApcrelJT),NewVReg3)
5864                   .addJumpTableIndex(MJTI)
5865                   .addImm(UId));
5866
5867    unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
5868    AddDefaultCC(
5869      AddDefaultPred(
5870        BuildMI(DispContBB, dl, TII->get(ARM::t2ADDrs), NewVReg4)
5871        .addReg(NewVReg3, RegState::Kill)
5872        .addReg(NewVReg1)
5873        .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))));
5874
5875    BuildMI(DispContBB, dl, TII->get(ARM::t2BR_JT))
5876      .addReg(NewVReg4, RegState::Kill)
5877      .addReg(NewVReg1)
5878      .addJumpTableIndex(MJTI)
5879      .addImm(UId);
5880  } else if (Subtarget->isThumb()) {
5881    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
5882    AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tLDRspi), NewVReg1)
5883                   .addFrameIndex(FI)
5884                   .addImm(1)
5885                   .addMemOperand(FIMMOLd));
5886
5887    if (NumLPads < 256) {
5888      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tCMPi8))
5889                     .addReg(NewVReg1)
5890                     .addImm(NumLPads));
5891    } else {
5892      MachineConstantPool *ConstantPool = MF->getConstantPool();
5893      Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
5894      const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
5895
5896      // MachineConstantPool wants an explicit alignment.
5897      unsigned Align = getTargetData()->getPrefTypeAlignment(Int32Ty);
5898      if (Align == 0)
5899        Align = getTargetData()->getTypeAllocSize(C->getType());
5900      unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
5901
5902      unsigned VReg1 = MRI->createVirtualRegister(TRC);
5903      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tLDRpci))
5904                     .addReg(VReg1, RegState::Define)
5905                     .addConstantPoolIndex(Idx));
5906      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tCMPr))
5907                     .addReg(NewVReg1)
5908                     .addReg(VReg1));
5909    }
5910
5911    BuildMI(DispatchBB, dl, TII->get(ARM::tBcc))
5912      .addMBB(TrapBB)
5913      .addImm(ARMCC::HI)
5914      .addReg(ARM::CPSR);
5915
5916    unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
5917    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLSLri), NewVReg2)
5918                   .addReg(ARM::CPSR, RegState::Define)
5919                   .addReg(NewVReg1)
5920                   .addImm(2));
5921
5922    unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
5923    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLEApcrelJT), NewVReg3)
5924                   .addJumpTableIndex(MJTI)
5925                   .addImm(UId));
5926
5927    unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
5928    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg4)
5929                   .addReg(ARM::CPSR, RegState::Define)
5930                   .addReg(NewVReg2, RegState::Kill)
5931                   .addReg(NewVReg3));
5932
5933    MachineMemOperand *JTMMOLd =
5934      MF->getMachineMemOperand(MachinePointerInfo::getJumpTable(),
5935                               MachineMemOperand::MOLoad, 4, 4);
5936
5937    unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
5938    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLDRi), NewVReg5)
5939                   .addReg(NewVReg4, RegState::Kill)
5940                   .addImm(0)
5941                   .addMemOperand(JTMMOLd));
5942
5943    unsigned NewVReg6 = MRI->createVirtualRegister(TRC);
5944    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg6)
5945                   .addReg(ARM::CPSR, RegState::Define)
5946                   .addReg(NewVReg5, RegState::Kill)
5947                   .addReg(NewVReg3));
5948
5949    BuildMI(DispContBB, dl, TII->get(ARM::tBR_JTr))
5950      .addReg(NewVReg6, RegState::Kill)
5951      .addJumpTableIndex(MJTI)
5952      .addImm(UId);
5953  } else {
5954    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
5955    AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::LDRi12), NewVReg1)
5956                   .addFrameIndex(FI)
5957                   .addImm(4)
5958                   .addMemOperand(FIMMOLd));
5959
5960    if (NumLPads < 256) {
5961      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPri))
5962                     .addReg(NewVReg1)
5963                     .addImm(NumLPads));
5964    } else if (Subtarget->hasV6T2Ops() && isUInt<16>(NumLPads)) {
5965      unsigned VReg1 = MRI->createVirtualRegister(TRC);
5966      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::MOVi16), VReg1)
5967                     .addImm(NumLPads & 0xFFFF));
5968
5969      unsigned VReg2 = VReg1;
5970      if ((NumLPads & 0xFFFF0000) != 0) {
5971        VReg2 = MRI->createVirtualRegister(TRC);
5972        AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::MOVTi16), VReg2)
5973                       .addReg(VReg1)
5974                       .addImm(NumLPads >> 16));
5975      }
5976
5977      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
5978                     .addReg(NewVReg1)
5979                     .addReg(VReg2));
5980    } else {
5981      MachineConstantPool *ConstantPool = MF->getConstantPool();
5982      Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
5983      const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
5984
5985      // MachineConstantPool wants an explicit alignment.
5986      unsigned Align = getTargetData()->getPrefTypeAlignment(Int32Ty);
5987      if (Align == 0)
5988        Align = getTargetData()->getTypeAllocSize(C->getType());
5989      unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
5990
5991      unsigned VReg1 = MRI->createVirtualRegister(TRC);
5992      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::LDRcp))
5993                     .addReg(VReg1, RegState::Define)
5994                     .addConstantPoolIndex(Idx)
5995                     .addImm(0));
5996      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
5997                     .addReg(NewVReg1)
5998                     .addReg(VReg1, RegState::Kill));
5999    }
6000
6001    BuildMI(DispatchBB, dl, TII->get(ARM::Bcc))
6002      .addMBB(TrapBB)
6003      .addImm(ARMCC::HI)
6004      .addReg(ARM::CPSR);
6005
6006    unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
6007    AddDefaultCC(
6008      AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::MOVsi), NewVReg3)
6009                     .addReg(NewVReg1)
6010                     .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))));
6011    unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
6012    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::LEApcrelJT), NewVReg4)
6013                   .addJumpTableIndex(MJTI)
6014                   .addImm(UId));
6015
6016    MachineMemOperand *JTMMOLd =
6017      MF->getMachineMemOperand(MachinePointerInfo::getJumpTable(),
6018                               MachineMemOperand::MOLoad, 4, 4);
6019    unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
6020    AddDefaultPred(
6021      BuildMI(DispContBB, dl, TII->get(ARM::LDRrs), NewVReg5)
6022      .addReg(NewVReg3, RegState::Kill)
6023      .addReg(NewVReg4)
6024      .addImm(0)
6025      .addMemOperand(JTMMOLd));
6026
6027    BuildMI(DispContBB, dl, TII->get(ARM::BR_JTadd))
6028      .addReg(NewVReg5, RegState::Kill)
6029      .addReg(NewVReg4)
6030      .addJumpTableIndex(MJTI)
6031      .addImm(UId);
6032  }
6033
6034  // Add the jump table entries as successors to the MBB.
6035  MachineBasicBlock *PrevMBB = 0;
6036  for (std::vector<MachineBasicBlock*>::iterator
6037         I = LPadList.begin(), E = LPadList.end(); I != E; ++I) {
6038    MachineBasicBlock *CurMBB = *I;
6039    if (PrevMBB != CurMBB)
6040      DispContBB->addSuccessor(CurMBB);
6041    PrevMBB = CurMBB;
6042  }
6043
6044  // N.B. the order the invoke BBs are processed in doesn't matter here.
6045  const ARMBaseInstrInfo *AII = static_cast<const ARMBaseInstrInfo*>(TII);
6046  const ARMBaseRegisterInfo &RI = AII->getRegisterInfo();
6047  const unsigned *SavedRegs = RI.getCalleeSavedRegs(MF);
6048  SmallVector<MachineBasicBlock*, 64> MBBLPads;
6049  for (SmallPtrSet<MachineBasicBlock*, 64>::iterator
6050         I = InvokeBBs.begin(), E = InvokeBBs.end(); I != E; ++I) {
6051    MachineBasicBlock *BB = *I;
6052
6053    // Remove the landing pad successor from the invoke block and replace it
6054    // with the new dispatch block.
6055    SmallVector<MachineBasicBlock*, 4> Successors(BB->succ_begin(),
6056                                                  BB->succ_end());
6057    while (!Successors.empty()) {
6058      MachineBasicBlock *SMBB = Successors.pop_back_val();
6059      if (SMBB->isLandingPad()) {
6060        BB->removeSuccessor(SMBB);
6061        MBBLPads.push_back(SMBB);
6062      }
6063    }
6064
6065    BB->addSuccessor(DispatchBB);
6066
6067    // Find the invoke call and mark all of the callee-saved registers as
6068    // 'implicit defined' so that they're spilled. This prevents code from
6069    // moving instructions to before the EH block, where they will never be
6070    // executed.
6071    for (MachineBasicBlock::reverse_iterator
6072           II = BB->rbegin(), IE = BB->rend(); II != IE; ++II) {
6073      if (!II->isCall()) continue;
6074
6075      DenseMap<unsigned, bool> DefRegs;
6076      for (MachineInstr::mop_iterator
6077             OI = II->operands_begin(), OE = II->operands_end();
6078           OI != OE; ++OI) {
6079        if (!OI->isReg()) continue;
6080        DefRegs[OI->getReg()] = true;
6081      }
6082
6083      MachineInstrBuilder MIB(&*II);
6084
6085      for (unsigned i = 0; SavedRegs[i] != 0; ++i) {
6086        unsigned Reg = SavedRegs[i];
6087        if (Subtarget->isThumb2() &&
6088            !ARM::tGPRRegisterClass->contains(Reg) &&
6089            !ARM::hGPRRegisterClass->contains(Reg))
6090          continue;
6091        else if (Subtarget->isThumb1Only() &&
6092                 !ARM::tGPRRegisterClass->contains(Reg))
6093          continue;
6094        else if (!Subtarget->isThumb() &&
6095                 !ARM::GPRRegisterClass->contains(Reg))
6096          continue;
6097        if (!DefRegs[Reg])
6098          MIB.addReg(Reg, RegState::ImplicitDefine | RegState::Dead);
6099      }
6100
6101      break;
6102    }
6103  }
6104
6105  // Mark all former landing pads as non-landing pads. The dispatch is the only
6106  // landing pad now.
6107  for (SmallVectorImpl<MachineBasicBlock*>::iterator
6108         I = MBBLPads.begin(), E = MBBLPads.end(); I != E; ++I)
6109    (*I)->setIsLandingPad(false);
6110
6111  // The instruction is gone now.
6112  MI->eraseFromParent();
6113
6114  return MBB;
6115}
6116
6117static
6118MachineBasicBlock *OtherSucc(MachineBasicBlock *MBB, MachineBasicBlock *Succ) {
6119  for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
6120       E = MBB->succ_end(); I != E; ++I)
6121    if (*I != Succ)
6122      return *I;
6123  llvm_unreachable("Expecting a BB with two successors!");
6124}
6125
6126MachineBasicBlock *
6127ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
6128                                               MachineBasicBlock *BB) const {
6129  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6130  DebugLoc dl = MI->getDebugLoc();
6131  bool isThumb2 = Subtarget->isThumb2();
6132  switch (MI->getOpcode()) {
6133  default: {
6134    MI->dump();
6135    llvm_unreachable("Unexpected instr type to insert");
6136  }
6137  // The Thumb2 pre-indexed stores have the same MI operands, they just
6138  // define them differently in the .td files from the isel patterns, so
6139  // they need pseudos.
6140  case ARM::t2STR_preidx:
6141    MI->setDesc(TII->get(ARM::t2STR_PRE));
6142    return BB;
6143  case ARM::t2STRB_preidx:
6144    MI->setDesc(TII->get(ARM::t2STRB_PRE));
6145    return BB;
6146  case ARM::t2STRH_preidx:
6147    MI->setDesc(TII->get(ARM::t2STRH_PRE));
6148    return BB;
6149
6150  case ARM::STRi_preidx:
6151  case ARM::STRBi_preidx: {
6152    unsigned NewOpc = MI->getOpcode() == ARM::STRi_preidx ?
6153      ARM::STR_PRE_IMM : ARM::STRB_PRE_IMM;
6154    // Decode the offset.
6155    unsigned Offset = MI->getOperand(4).getImm();
6156    bool isSub = ARM_AM::getAM2Op(Offset) == ARM_AM::sub;
6157    Offset = ARM_AM::getAM2Offset(Offset);
6158    if (isSub)
6159      Offset = -Offset;
6160
6161    MachineMemOperand *MMO = *MI->memoperands_begin();
6162    BuildMI(*BB, MI, dl, TII->get(NewOpc))
6163      .addOperand(MI->getOperand(0))  // Rn_wb
6164      .addOperand(MI->getOperand(1))  // Rt
6165      .addOperand(MI->getOperand(2))  // Rn
6166      .addImm(Offset)                 // offset (skip GPR==zero_reg)
6167      .addOperand(MI->getOperand(5))  // pred
6168      .addOperand(MI->getOperand(6))
6169      .addMemOperand(MMO);
6170    MI->eraseFromParent();
6171    return BB;
6172  }
6173  case ARM::STRr_preidx:
6174  case ARM::STRBr_preidx:
6175  case ARM::STRH_preidx: {
6176    unsigned NewOpc;
6177    switch (MI->getOpcode()) {
6178    default: llvm_unreachable("unexpected opcode!");
6179    case ARM::STRr_preidx: NewOpc = ARM::STR_PRE_REG; break;
6180    case ARM::STRBr_preidx: NewOpc = ARM::STRB_PRE_REG; break;
6181    case ARM::STRH_preidx: NewOpc = ARM::STRH_PRE; break;
6182    }
6183    MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(NewOpc));
6184    for (unsigned i = 0; i < MI->getNumOperands(); ++i)
6185      MIB.addOperand(MI->getOperand(i));
6186    MI->eraseFromParent();
6187    return BB;
6188  }
6189  case ARM::ATOMIC_LOAD_ADD_I8:
6190     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
6191  case ARM::ATOMIC_LOAD_ADD_I16:
6192     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
6193  case ARM::ATOMIC_LOAD_ADD_I32:
6194     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
6195
6196  case ARM::ATOMIC_LOAD_AND_I8:
6197     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
6198  case ARM::ATOMIC_LOAD_AND_I16:
6199     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
6200  case ARM::ATOMIC_LOAD_AND_I32:
6201     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
6202
6203  case ARM::ATOMIC_LOAD_OR_I8:
6204     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
6205  case ARM::ATOMIC_LOAD_OR_I16:
6206     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
6207  case ARM::ATOMIC_LOAD_OR_I32:
6208     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
6209
6210  case ARM::ATOMIC_LOAD_XOR_I8:
6211     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
6212  case ARM::ATOMIC_LOAD_XOR_I16:
6213     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
6214  case ARM::ATOMIC_LOAD_XOR_I32:
6215     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
6216
6217  case ARM::ATOMIC_LOAD_NAND_I8:
6218     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
6219  case ARM::ATOMIC_LOAD_NAND_I16:
6220     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
6221  case ARM::ATOMIC_LOAD_NAND_I32:
6222     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
6223
6224  case ARM::ATOMIC_LOAD_SUB_I8:
6225     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
6226  case ARM::ATOMIC_LOAD_SUB_I16:
6227     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
6228  case ARM::ATOMIC_LOAD_SUB_I32:
6229     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
6230
6231  case ARM::ATOMIC_LOAD_MIN_I8:
6232     return EmitAtomicBinaryMinMax(MI, BB, 1, true, ARMCC::LT);
6233  case ARM::ATOMIC_LOAD_MIN_I16:
6234     return EmitAtomicBinaryMinMax(MI, BB, 2, true, ARMCC::LT);
6235  case ARM::ATOMIC_LOAD_MIN_I32:
6236     return EmitAtomicBinaryMinMax(MI, BB, 4, true, ARMCC::LT);
6237
6238  case ARM::ATOMIC_LOAD_MAX_I8:
6239     return EmitAtomicBinaryMinMax(MI, BB, 1, true, ARMCC::GT);
6240  case ARM::ATOMIC_LOAD_MAX_I16:
6241     return EmitAtomicBinaryMinMax(MI, BB, 2, true, ARMCC::GT);
6242  case ARM::ATOMIC_LOAD_MAX_I32:
6243     return EmitAtomicBinaryMinMax(MI, BB, 4, true, ARMCC::GT);
6244
6245  case ARM::ATOMIC_LOAD_UMIN_I8:
6246     return EmitAtomicBinaryMinMax(MI, BB, 1, false, ARMCC::LO);
6247  case ARM::ATOMIC_LOAD_UMIN_I16:
6248     return EmitAtomicBinaryMinMax(MI, BB, 2, false, ARMCC::LO);
6249  case ARM::ATOMIC_LOAD_UMIN_I32:
6250     return EmitAtomicBinaryMinMax(MI, BB, 4, false, ARMCC::LO);
6251
6252  case ARM::ATOMIC_LOAD_UMAX_I8:
6253     return EmitAtomicBinaryMinMax(MI, BB, 1, false, ARMCC::HI);
6254  case ARM::ATOMIC_LOAD_UMAX_I16:
6255     return EmitAtomicBinaryMinMax(MI, BB, 2, false, ARMCC::HI);
6256  case ARM::ATOMIC_LOAD_UMAX_I32:
6257     return EmitAtomicBinaryMinMax(MI, BB, 4, false, ARMCC::HI);
6258
6259  case ARM::ATOMIC_SWAP_I8:  return EmitAtomicBinary(MI, BB, 1, 0);
6260  case ARM::ATOMIC_SWAP_I16: return EmitAtomicBinary(MI, BB, 2, 0);
6261  case ARM::ATOMIC_SWAP_I32: return EmitAtomicBinary(MI, BB, 4, 0);
6262
6263  case ARM::ATOMIC_CMP_SWAP_I8:  return EmitAtomicCmpSwap(MI, BB, 1);
6264  case ARM::ATOMIC_CMP_SWAP_I16: return EmitAtomicCmpSwap(MI, BB, 2);
6265  case ARM::ATOMIC_CMP_SWAP_I32: return EmitAtomicCmpSwap(MI, BB, 4);
6266
6267
6268  case ARM::ATOMADD6432:
6269    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr,
6270                              isThumb2 ? ARM::t2ADCrr : ARM::ADCrr,
6271                              /*NeedsCarry*/ true);
6272  case ARM::ATOMSUB6432:
6273    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr,
6274                              isThumb2 ? ARM::t2SBCrr : ARM::SBCrr,
6275                              /*NeedsCarry*/ true);
6276  case ARM::ATOMOR6432:
6277    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr,
6278                              isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
6279  case ARM::ATOMXOR6432:
6280    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2EORrr : ARM::EORrr,
6281                              isThumb2 ? ARM::t2EORrr : ARM::EORrr);
6282  case ARM::ATOMAND6432:
6283    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr,
6284                              isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
6285  case ARM::ATOMSWAP6432:
6286    return EmitAtomicBinary64(MI, BB, 0, 0, false);
6287  case ARM::ATOMCMPXCHG6432:
6288    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr,
6289                              isThumb2 ? ARM::t2SBCrr : ARM::SBCrr,
6290                              /*NeedsCarry*/ false, /*IsCmpxchg*/true);
6291
6292  case ARM::tMOVCCr_pseudo: {
6293    // To "insert" a SELECT_CC instruction, we actually have to insert the
6294    // diamond control-flow pattern.  The incoming instruction knows the
6295    // destination vreg to set, the condition code register to branch on, the
6296    // true/false values to select between, and a branch opcode to use.
6297    const BasicBlock *LLVM_BB = BB->getBasicBlock();
6298    MachineFunction::iterator It = BB;
6299    ++It;
6300
6301    //  thisMBB:
6302    //  ...
6303    //   TrueVal = ...
6304    //   cmpTY ccX, r1, r2
6305    //   bCC copy1MBB
6306    //   fallthrough --> copy0MBB
6307    MachineBasicBlock *thisMBB  = BB;
6308    MachineFunction *F = BB->getParent();
6309    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
6310    MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
6311    F->insert(It, copy0MBB);
6312    F->insert(It, sinkMBB);
6313
6314    // Transfer the remainder of BB and its successor edges to sinkMBB.
6315    sinkMBB->splice(sinkMBB->begin(), BB,
6316                    llvm::next(MachineBasicBlock::iterator(MI)),
6317                    BB->end());
6318    sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
6319
6320    BB->addSuccessor(copy0MBB);
6321    BB->addSuccessor(sinkMBB);
6322
6323    BuildMI(BB, dl, TII->get(ARM::tBcc)).addMBB(sinkMBB)
6324      .addImm(MI->getOperand(3).getImm()).addReg(MI->getOperand(4).getReg());
6325
6326    //  copy0MBB:
6327    //   %FalseValue = ...
6328    //   # fallthrough to sinkMBB
6329    BB = copy0MBB;
6330
6331    // Update machine-CFG edges
6332    BB->addSuccessor(sinkMBB);
6333
6334    //  sinkMBB:
6335    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
6336    //  ...
6337    BB = sinkMBB;
6338    BuildMI(*BB, BB->begin(), dl,
6339            TII->get(ARM::PHI), MI->getOperand(0).getReg())
6340      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
6341      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
6342
6343    MI->eraseFromParent();   // The pseudo instruction is gone now.
6344    return BB;
6345  }
6346
6347  case ARM::BCCi64:
6348  case ARM::BCCZi64: {
6349    // If there is an unconditional branch to the other successor, remove it.
6350    BB->erase(llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
6351
6352    // Compare both parts that make up the double comparison separately for
6353    // equality.
6354    bool RHSisZero = MI->getOpcode() == ARM::BCCZi64;
6355
6356    unsigned LHS1 = MI->getOperand(1).getReg();
6357    unsigned LHS2 = MI->getOperand(2).getReg();
6358    if (RHSisZero) {
6359      AddDefaultPred(BuildMI(BB, dl,
6360                             TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
6361                     .addReg(LHS1).addImm(0));
6362      BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
6363        .addReg(LHS2).addImm(0)
6364        .addImm(ARMCC::EQ).addReg(ARM::CPSR);
6365    } else {
6366      unsigned RHS1 = MI->getOperand(3).getReg();
6367      unsigned RHS2 = MI->getOperand(4).getReg();
6368      AddDefaultPred(BuildMI(BB, dl,
6369                             TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
6370                     .addReg(LHS1).addReg(RHS1));
6371      BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
6372        .addReg(LHS2).addReg(RHS2)
6373        .addImm(ARMCC::EQ).addReg(ARM::CPSR);
6374    }
6375
6376    MachineBasicBlock *destMBB = MI->getOperand(RHSisZero ? 3 : 5).getMBB();
6377    MachineBasicBlock *exitMBB = OtherSucc(BB, destMBB);
6378    if (MI->getOperand(0).getImm() == ARMCC::NE)
6379      std::swap(destMBB, exitMBB);
6380
6381    BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
6382      .addMBB(destMBB).addImm(ARMCC::EQ).addReg(ARM::CPSR);
6383    if (isThumb2)
6384      AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2B)).addMBB(exitMBB));
6385    else
6386      BuildMI(BB, dl, TII->get(ARM::B)) .addMBB(exitMBB);
6387
6388    MI->eraseFromParent();   // The pseudo instruction is gone now.
6389    return BB;
6390  }
6391
6392  case ARM::Int_eh_sjlj_setjmp:
6393  case ARM::Int_eh_sjlj_setjmp_nofp:
6394  case ARM::tInt_eh_sjlj_setjmp:
6395  case ARM::t2Int_eh_sjlj_setjmp:
6396  case ARM::t2Int_eh_sjlj_setjmp_nofp:
6397    EmitSjLjDispatchBlock(MI, BB);
6398    return BB;
6399
6400  case ARM::ABS:
6401  case ARM::t2ABS: {
6402    // To insert an ABS instruction, we have to insert the
6403    // diamond control-flow pattern.  The incoming instruction knows the
6404    // source vreg to test against 0, the destination vreg to set,
6405    // the condition code register to branch on, the
6406    // true/false values to select between, and a branch opcode to use.
6407    // It transforms
6408    //     V1 = ABS V0
6409    // into
6410    //     V2 = MOVS V0
6411    //     BCC                      (branch to SinkBB if V0 >= 0)
6412    //     RSBBB: V3 = RSBri V2, 0  (compute ABS if V2 < 0)
6413    //     SinkBB: V1 = PHI(V2, V3)
6414    const BasicBlock *LLVM_BB = BB->getBasicBlock();
6415    MachineFunction::iterator BBI = BB;
6416    ++BBI;
6417    MachineFunction *Fn = BB->getParent();
6418    MachineBasicBlock *RSBBB = Fn->CreateMachineBasicBlock(LLVM_BB);
6419    MachineBasicBlock *SinkBB  = Fn->CreateMachineBasicBlock(LLVM_BB);
6420    Fn->insert(BBI, RSBBB);
6421    Fn->insert(BBI, SinkBB);
6422
6423    unsigned int ABSSrcReg = MI->getOperand(1).getReg();
6424    unsigned int ABSDstReg = MI->getOperand(0).getReg();
6425    bool isThumb2 = Subtarget->isThumb2();
6426    MachineRegisterInfo &MRI = Fn->getRegInfo();
6427    // In Thumb mode S must not be specified if source register is the SP or
6428    // PC and if destination register is the SP, so restrict register class
6429    unsigned NewMovDstReg = MRI.createVirtualRegister(
6430      isThumb2 ? ARM::rGPRRegisterClass : ARM::GPRRegisterClass);
6431    unsigned NewRsbDstReg = MRI.createVirtualRegister(
6432      isThumb2 ? ARM::rGPRRegisterClass : ARM::GPRRegisterClass);
6433
6434    // Transfer the remainder of BB and its successor edges to sinkMBB.
6435    SinkBB->splice(SinkBB->begin(), BB,
6436      llvm::next(MachineBasicBlock::iterator(MI)),
6437      BB->end());
6438    SinkBB->transferSuccessorsAndUpdatePHIs(BB);
6439
6440    BB->addSuccessor(RSBBB);
6441    BB->addSuccessor(SinkBB);
6442
6443    // fall through to SinkMBB
6444    RSBBB->addSuccessor(SinkBB);
6445
6446    // insert a movs at the end of BB
6447    BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2MOVr : ARM::MOVr),
6448      NewMovDstReg)
6449      .addReg(ABSSrcReg, RegState::Kill)
6450      .addImm((unsigned)ARMCC::AL).addReg(0)
6451      .addReg(ARM::CPSR, RegState::Define);
6452
6453    // insert a bcc with opposite CC to ARMCC::MI at the end of BB
6454    BuildMI(BB, dl,
6455      TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)).addMBB(SinkBB)
6456      .addImm(ARMCC::getOppositeCondition(ARMCC::MI)).addReg(ARM::CPSR);
6457
6458    // insert rsbri in RSBBB
6459    // Note: BCC and rsbri will be converted into predicated rsbmi
6460    // by if-conversion pass
6461    BuildMI(*RSBBB, RSBBB->begin(), dl,
6462      TII->get(isThumb2 ? ARM::t2RSBri : ARM::RSBri), NewRsbDstReg)
6463      .addReg(NewMovDstReg, RegState::Kill)
6464      .addImm(0).addImm((unsigned)ARMCC::AL).addReg(0).addReg(0);
6465
6466    // insert PHI in SinkBB,
6467    // reuse ABSDstReg to not change uses of ABS instruction
6468    BuildMI(*SinkBB, SinkBB->begin(), dl,
6469      TII->get(ARM::PHI), ABSDstReg)
6470      .addReg(NewRsbDstReg).addMBB(RSBBB)
6471      .addReg(NewMovDstReg).addMBB(BB);
6472
6473    // remove ABS instruction
6474    MI->eraseFromParent();
6475
6476    // return last added BB
6477    return SinkBB;
6478  }
6479  }
6480}
6481
6482void ARMTargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI,
6483                                                      SDNode *Node) const {
6484  if (!MI->hasPostISelHook()) {
6485    assert(!convertAddSubFlagsOpcode(MI->getOpcode()) &&
6486           "Pseudo flag-setting opcodes must be marked with 'hasPostISelHook'");
6487    return;
6488  }
6489
6490  const MCInstrDesc *MCID = &MI->getDesc();
6491  // Adjust potentially 's' setting instructions after isel, i.e. ADC, SBC, RSB,
6492  // RSC. Coming out of isel, they have an implicit CPSR def, but the optional
6493  // operand is still set to noreg. If needed, set the optional operand's
6494  // register to CPSR, and remove the redundant implicit def.
6495  //
6496  // e.g. ADCS (..., CPSR<imp-def>) -> ADC (... opt:CPSR<def>).
6497
6498  // Rename pseudo opcodes.
6499  unsigned NewOpc = convertAddSubFlagsOpcode(MI->getOpcode());
6500  if (NewOpc) {
6501    const ARMBaseInstrInfo *TII =
6502      static_cast<const ARMBaseInstrInfo*>(getTargetMachine().getInstrInfo());
6503    MCID = &TII->get(NewOpc);
6504
6505    assert(MCID->getNumOperands() == MI->getDesc().getNumOperands() + 1 &&
6506           "converted opcode should be the same except for cc_out");
6507
6508    MI->setDesc(*MCID);
6509
6510    // Add the optional cc_out operand
6511    MI->addOperand(MachineOperand::CreateReg(0, /*isDef=*/true));
6512  }
6513  unsigned ccOutIdx = MCID->getNumOperands() - 1;
6514
6515  // Any ARM instruction that sets the 's' bit should specify an optional
6516  // "cc_out" operand in the last operand position.
6517  if (!MI->hasOptionalDef() || !MCID->OpInfo[ccOutIdx].isOptionalDef()) {
6518    assert(!NewOpc && "Optional cc_out operand required");
6519    return;
6520  }
6521  // Look for an implicit def of CPSR added by MachineInstr ctor. Remove it
6522  // since we already have an optional CPSR def.
6523  bool definesCPSR = false;
6524  bool deadCPSR = false;
6525  for (unsigned i = MCID->getNumOperands(), e = MI->getNumOperands();
6526       i != e; ++i) {
6527    const MachineOperand &MO = MI->getOperand(i);
6528    if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR) {
6529      definesCPSR = true;
6530      if (MO.isDead())
6531        deadCPSR = true;
6532      MI->RemoveOperand(i);
6533      break;
6534    }
6535  }
6536  if (!definesCPSR) {
6537    assert(!NewOpc && "Optional cc_out operand required");
6538    return;
6539  }
6540  assert(deadCPSR == !Node->hasAnyUseOfValue(1) && "inconsistent dead flag");
6541  if (deadCPSR) {
6542    assert(!MI->getOperand(ccOutIdx).getReg() &&
6543           "expect uninitialized optional cc_out operand");
6544    return;
6545  }
6546
6547  // If this instruction was defined with an optional CPSR def and its dag node
6548  // had a live implicit CPSR def, then activate the optional CPSR def.
6549  MachineOperand &MO = MI->getOperand(ccOutIdx);
6550  MO.setReg(ARM::CPSR);
6551  MO.setIsDef(true);
6552}
6553
6554//===----------------------------------------------------------------------===//
6555//                           ARM Optimization Hooks
6556//===----------------------------------------------------------------------===//
6557
6558static
6559SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
6560                            TargetLowering::DAGCombinerInfo &DCI) {
6561  SelectionDAG &DAG = DCI.DAG;
6562  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6563  EVT VT = N->getValueType(0);
6564  unsigned Opc = N->getOpcode();
6565  bool isSlctCC = Slct.getOpcode() == ISD::SELECT_CC;
6566  SDValue LHS = isSlctCC ? Slct.getOperand(2) : Slct.getOperand(1);
6567  SDValue RHS = isSlctCC ? Slct.getOperand(3) : Slct.getOperand(2);
6568  ISD::CondCode CC = ISD::SETCC_INVALID;
6569
6570  if (isSlctCC) {
6571    CC = cast<CondCodeSDNode>(Slct.getOperand(4))->get();
6572  } else {
6573    SDValue CCOp = Slct.getOperand(0);
6574    if (CCOp.getOpcode() == ISD::SETCC)
6575      CC = cast<CondCodeSDNode>(CCOp.getOperand(2))->get();
6576  }
6577
6578  bool DoXform = false;
6579  bool InvCC = false;
6580  assert ((Opc == ISD::ADD || (Opc == ISD::SUB && Slct == N->getOperand(1))) &&
6581          "Bad input!");
6582
6583  if (LHS.getOpcode() == ISD::Constant &&
6584      cast<ConstantSDNode>(LHS)->isNullValue()) {
6585    DoXform = true;
6586  } else if (CC != ISD::SETCC_INVALID &&
6587             RHS.getOpcode() == ISD::Constant &&
6588             cast<ConstantSDNode>(RHS)->isNullValue()) {
6589    std::swap(LHS, RHS);
6590    SDValue Op0 = Slct.getOperand(0);
6591    EVT OpVT = isSlctCC ? Op0.getValueType() :
6592                          Op0.getOperand(0).getValueType();
6593    bool isInt = OpVT.isInteger();
6594    CC = ISD::getSetCCInverse(CC, isInt);
6595
6596    if (!TLI.isCondCodeLegal(CC, OpVT))
6597      return SDValue();         // Inverse operator isn't legal.
6598
6599    DoXform = true;
6600    InvCC = true;
6601  }
6602
6603  if (DoXform) {
6604    SDValue Result = DAG.getNode(Opc, RHS.getDebugLoc(), VT, OtherOp, RHS);
6605    if (isSlctCC)
6606      return DAG.getSelectCC(N->getDebugLoc(), OtherOp, Result,
6607                             Slct.getOperand(0), Slct.getOperand(1), CC);
6608    SDValue CCOp = Slct.getOperand(0);
6609    if (InvCC)
6610      CCOp = DAG.getSetCC(Slct.getDebugLoc(), CCOp.getValueType(),
6611                          CCOp.getOperand(0), CCOp.getOperand(1), CC);
6612    return DAG.getNode(ISD::SELECT, N->getDebugLoc(), VT,
6613                       CCOp, OtherOp, Result);
6614  }
6615  return SDValue();
6616}
6617
6618// AddCombineToVPADDL- For pair-wise add on neon, use the vpaddl instruction
6619// (only after legalization).
6620static SDValue AddCombineToVPADDL(SDNode *N, SDValue N0, SDValue N1,
6621                                 TargetLowering::DAGCombinerInfo &DCI,
6622                                 const ARMSubtarget *Subtarget) {
6623
6624  // Only perform optimization if after legalize, and if NEON is available. We
6625  // also expected both operands to be BUILD_VECTORs.
6626  if (DCI.isBeforeLegalize() || !Subtarget->hasNEON()
6627      || N0.getOpcode() != ISD::BUILD_VECTOR
6628      || N1.getOpcode() != ISD::BUILD_VECTOR)
6629    return SDValue();
6630
6631  // Check output type since VPADDL operand elements can only be 8, 16, or 32.
6632  EVT VT = N->getValueType(0);
6633  if (!VT.isInteger() || VT.getVectorElementType() == MVT::i64)
6634    return SDValue();
6635
6636  // Check that the vector operands are of the right form.
6637  // N0 and N1 are BUILD_VECTOR nodes with N number of EXTRACT_VECTOR
6638  // operands, where N is the size of the formed vector.
6639  // Each EXTRACT_VECTOR should have the same input vector and odd or even
6640  // index such that we have a pair wise add pattern.
6641
6642  // Grab the vector that all EXTRACT_VECTOR nodes should be referencing.
6643  if (N0->getOperand(0)->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
6644    return SDValue();
6645  SDValue Vec = N0->getOperand(0)->getOperand(0);
6646  SDNode *V = Vec.getNode();
6647  unsigned nextIndex = 0;
6648
6649  // For each operands to the ADD which are BUILD_VECTORs,
6650  // check to see if each of their operands are an EXTRACT_VECTOR with
6651  // the same vector and appropriate index.
6652  for (unsigned i = 0, e = N0->getNumOperands(); i != e; ++i) {
6653    if (N0->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT
6654        && N1->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
6655
6656      SDValue ExtVec0 = N0->getOperand(i);
6657      SDValue ExtVec1 = N1->getOperand(i);
6658
6659      // First operand is the vector, verify its the same.
6660      if (V != ExtVec0->getOperand(0).getNode() ||
6661          V != ExtVec1->getOperand(0).getNode())
6662        return SDValue();
6663
6664      // Second is the constant, verify its correct.
6665      ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(ExtVec0->getOperand(1));
6666      ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(ExtVec1->getOperand(1));
6667
6668      // For the constant, we want to see all the even or all the odd.
6669      if (!C0 || !C1 || C0->getZExtValue() != nextIndex
6670          || C1->getZExtValue() != nextIndex+1)
6671        return SDValue();
6672
6673      // Increment index.
6674      nextIndex+=2;
6675    } else
6676      return SDValue();
6677  }
6678
6679  // Create VPADDL node.
6680  SelectionDAG &DAG = DCI.DAG;
6681  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6682
6683  // Build operand list.
6684  SmallVector<SDValue, 8> Ops;
6685  Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpaddls,
6686                                TLI.getPointerTy()));
6687
6688  // Input is the vector.
6689  Ops.push_back(Vec);
6690
6691  // Get widened type and narrowed type.
6692  MVT widenType;
6693  unsigned numElem = VT.getVectorNumElements();
6694  switch (VT.getVectorElementType().getSimpleVT().SimpleTy) {
6695    case MVT::i8: widenType = MVT::getVectorVT(MVT::i16, numElem); break;
6696    case MVT::i16: widenType = MVT::getVectorVT(MVT::i32, numElem); break;
6697    case MVT::i32: widenType = MVT::getVectorVT(MVT::i64, numElem); break;
6698    default:
6699      llvm_unreachable("Invalid vector element type for padd optimization.");
6700  }
6701
6702  SDValue tmp = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, N->getDebugLoc(),
6703                            widenType, &Ops[0], Ops.size());
6704  return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, tmp);
6705}
6706
6707/// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
6708/// operands N0 and N1.  This is a helper for PerformADDCombine that is
6709/// called with the default operands, and if that fails, with commuted
6710/// operands.
6711static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
6712                                          TargetLowering::DAGCombinerInfo &DCI,
6713                                          const ARMSubtarget *Subtarget){
6714
6715  // Attempt to create vpaddl for this add.
6716  SDValue Result = AddCombineToVPADDL(N, N0, N1, DCI, Subtarget);
6717  if (Result.getNode())
6718    return Result;
6719
6720  // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
6721  if (N0.getOpcode() == ISD::SELECT && N0.getNode()->hasOneUse()) {
6722    SDValue Result = combineSelectAndUse(N, N0, N1, DCI);
6723    if (Result.getNode()) return Result;
6724  }
6725  return SDValue();
6726}
6727
6728/// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
6729///
6730static SDValue PerformADDCombine(SDNode *N,
6731                                 TargetLowering::DAGCombinerInfo &DCI,
6732                                 const ARMSubtarget *Subtarget) {
6733  SDValue N0 = N->getOperand(0);
6734  SDValue N1 = N->getOperand(1);
6735
6736  // First try with the default operand order.
6737  SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI, Subtarget);
6738  if (Result.getNode())
6739    return Result;
6740
6741  // If that didn't work, try again with the operands commuted.
6742  return PerformADDCombineWithOperands(N, N1, N0, DCI, Subtarget);
6743}
6744
6745/// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
6746///
6747static SDValue PerformSUBCombine(SDNode *N,
6748                                 TargetLowering::DAGCombinerInfo &DCI) {
6749  SDValue N0 = N->getOperand(0);
6750  SDValue N1 = N->getOperand(1);
6751
6752  // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
6753  if (N1.getOpcode() == ISD::SELECT && N1.getNode()->hasOneUse()) {
6754    SDValue Result = combineSelectAndUse(N, N1, N0, DCI);
6755    if (Result.getNode()) return Result;
6756  }
6757
6758  return SDValue();
6759}
6760
6761/// PerformVMULCombine
6762/// Distribute (A + B) * C to (A * C) + (B * C) to take advantage of the
6763/// special multiplier accumulator forwarding.
6764///   vmul d3, d0, d2
6765///   vmla d3, d1, d2
6766/// is faster than
6767///   vadd d3, d0, d1
6768///   vmul d3, d3, d2
6769static SDValue PerformVMULCombine(SDNode *N,
6770                                  TargetLowering::DAGCombinerInfo &DCI,
6771                                  const ARMSubtarget *Subtarget) {
6772  if (!Subtarget->hasVMLxForwarding())
6773    return SDValue();
6774
6775  SelectionDAG &DAG = DCI.DAG;
6776  SDValue N0 = N->getOperand(0);
6777  SDValue N1 = N->getOperand(1);
6778  unsigned Opcode = N0.getOpcode();
6779  if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
6780      Opcode != ISD::FADD && Opcode != ISD::FSUB) {
6781    Opcode = N1.getOpcode();
6782    if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
6783        Opcode != ISD::FADD && Opcode != ISD::FSUB)
6784      return SDValue();
6785    std::swap(N0, N1);
6786  }
6787
6788  EVT VT = N->getValueType(0);
6789  DebugLoc DL = N->getDebugLoc();
6790  SDValue N00 = N0->getOperand(0);
6791  SDValue N01 = N0->getOperand(1);
6792  return DAG.getNode(Opcode, DL, VT,
6793                     DAG.getNode(ISD::MUL, DL, VT, N00, N1),
6794                     DAG.getNode(ISD::MUL, DL, VT, N01, N1));
6795}
6796
6797static SDValue PerformMULCombine(SDNode *N,
6798                                 TargetLowering::DAGCombinerInfo &DCI,
6799                                 const ARMSubtarget *Subtarget) {
6800  SelectionDAG &DAG = DCI.DAG;
6801
6802  if (Subtarget->isThumb1Only())
6803    return SDValue();
6804
6805  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
6806    return SDValue();
6807
6808  EVT VT = N->getValueType(0);
6809  if (VT.is64BitVector() || VT.is128BitVector())
6810    return PerformVMULCombine(N, DCI, Subtarget);
6811  if (VT != MVT::i32)
6812    return SDValue();
6813
6814  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
6815  if (!C)
6816    return SDValue();
6817
6818  uint64_t MulAmt = C->getZExtValue();
6819  unsigned ShiftAmt = CountTrailingZeros_64(MulAmt);
6820  ShiftAmt = ShiftAmt & (32 - 1);
6821  SDValue V = N->getOperand(0);
6822  DebugLoc DL = N->getDebugLoc();
6823
6824  SDValue Res;
6825  MulAmt >>= ShiftAmt;
6826  if (isPowerOf2_32(MulAmt - 1)) {
6827    // (mul x, 2^N + 1) => (add (shl x, N), x)
6828    Res = DAG.getNode(ISD::ADD, DL, VT,
6829                      V, DAG.getNode(ISD::SHL, DL, VT,
6830                                     V, DAG.getConstant(Log2_32(MulAmt-1),
6831                                                        MVT::i32)));
6832  } else if (isPowerOf2_32(MulAmt + 1)) {
6833    // (mul x, 2^N - 1) => (sub (shl x, N), x)
6834    Res = DAG.getNode(ISD::SUB, DL, VT,
6835                      DAG.getNode(ISD::SHL, DL, VT,
6836                                  V, DAG.getConstant(Log2_32(MulAmt+1),
6837                                                     MVT::i32)),
6838                                                     V);
6839  } else
6840    return SDValue();
6841
6842  if (ShiftAmt != 0)
6843    Res = DAG.getNode(ISD::SHL, DL, VT, Res,
6844                      DAG.getConstant(ShiftAmt, MVT::i32));
6845
6846  // Do not add new nodes to DAG combiner worklist.
6847  DCI.CombineTo(N, Res, false);
6848  return SDValue();
6849}
6850
6851static bool isCMOVWithZeroOrAllOnesLHS(SDValue N, bool AllOnes) {
6852  if (N.getOpcode() != ARMISD::CMOV || !N.getNode()->hasOneUse())
6853    return false;
6854
6855  SDValue FalseVal = N.getOperand(0);
6856  ConstantSDNode *C = dyn_cast<ConstantSDNode>(FalseVal);
6857  if (!C)
6858    return false;
6859  if (AllOnes)
6860    return C->isAllOnesValue();
6861  return C->isNullValue();
6862}
6863
6864/// formConditionalOp - Combine an operation with a conditional move operand
6865/// to form a conditional op. e.g. (or x, (cmov 0, y, cond)) => (or.cond x, y)
6866/// (and x, (cmov -1, y, cond)) => (and.cond, x, y)
6867static SDValue formConditionalOp(SDNode *N, SelectionDAG &DAG,
6868                                 bool Commutable) {
6869  SDValue N0 = N->getOperand(0);
6870  SDValue N1 = N->getOperand(1);
6871
6872  bool isAND = N->getOpcode() == ISD::AND;
6873  bool isCand = isCMOVWithZeroOrAllOnesLHS(N1, isAND);
6874  if (!isCand && Commutable) {
6875    isCand = isCMOVWithZeroOrAllOnesLHS(N0, isAND);
6876    if (isCand)
6877      std::swap(N0, N1);
6878  }
6879  if (!isCand)
6880    return SDValue();
6881
6882  unsigned Opc = 0;
6883  switch (N->getOpcode()) {
6884  default: llvm_unreachable("Unexpected node");
6885  case ISD::AND: Opc = ARMISD::CAND; break;
6886  case ISD::OR:  Opc = ARMISD::COR; break;
6887  case ISD::XOR: Opc = ARMISD::CXOR; break;
6888  }
6889  return DAG.getNode(Opc, N->getDebugLoc(), N->getValueType(0), N0,
6890                     N1.getOperand(1), N1.getOperand(2), N1.getOperand(3),
6891                     N1.getOperand(4));
6892}
6893
6894static SDValue PerformANDCombine(SDNode *N,
6895                                 TargetLowering::DAGCombinerInfo &DCI,
6896                                 const ARMSubtarget *Subtarget) {
6897
6898  // Attempt to use immediate-form VBIC
6899  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
6900  DebugLoc dl = N->getDebugLoc();
6901  EVT VT = N->getValueType(0);
6902  SelectionDAG &DAG = DCI.DAG;
6903
6904  if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
6905    return SDValue();
6906
6907  APInt SplatBits, SplatUndef;
6908  unsigned SplatBitSize;
6909  bool HasAnyUndefs;
6910  if (BVN &&
6911      BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
6912    if (SplatBitSize <= 64) {
6913      EVT VbicVT;
6914      SDValue Val = isNEONModifiedImm((~SplatBits).getZExtValue(),
6915                                      SplatUndef.getZExtValue(), SplatBitSize,
6916                                      DAG, VbicVT, VT.is128BitVector(),
6917                                      OtherModImm);
6918      if (Val.getNode()) {
6919        SDValue Input =
6920          DAG.getNode(ISD::BITCAST, dl, VbicVT, N->getOperand(0));
6921        SDValue Vbic = DAG.getNode(ARMISD::VBICIMM, dl, VbicVT, Input, Val);
6922        return DAG.getNode(ISD::BITCAST, dl, VT, Vbic);
6923      }
6924    }
6925  }
6926
6927  if (!Subtarget->isThumb1Only()) {
6928    // (and x, (cmov -1, y, cond)) => (and.cond x, y)
6929    SDValue CAND = formConditionalOp(N, DAG, true);
6930    if (CAND.getNode())
6931      return CAND;
6932  }
6933
6934  return SDValue();
6935}
6936
6937/// PerformORCombine - Target-specific dag combine xforms for ISD::OR
6938static SDValue PerformORCombine(SDNode *N,
6939                                TargetLowering::DAGCombinerInfo &DCI,
6940                                const ARMSubtarget *Subtarget) {
6941  // Attempt to use immediate-form VORR
6942  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
6943  DebugLoc dl = N->getDebugLoc();
6944  EVT VT = N->getValueType(0);
6945  SelectionDAG &DAG = DCI.DAG;
6946
6947  if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
6948    return SDValue();
6949
6950  APInt SplatBits, SplatUndef;
6951  unsigned SplatBitSize;
6952  bool HasAnyUndefs;
6953  if (BVN && Subtarget->hasNEON() &&
6954      BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
6955    if (SplatBitSize <= 64) {
6956      EVT VorrVT;
6957      SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
6958                                      SplatUndef.getZExtValue(), SplatBitSize,
6959                                      DAG, VorrVT, VT.is128BitVector(),
6960                                      OtherModImm);
6961      if (Val.getNode()) {
6962        SDValue Input =
6963          DAG.getNode(ISD::BITCAST, dl, VorrVT, N->getOperand(0));
6964        SDValue Vorr = DAG.getNode(ARMISD::VORRIMM, dl, VorrVT, Input, Val);
6965        return DAG.getNode(ISD::BITCAST, dl, VT, Vorr);
6966      }
6967    }
6968  }
6969
6970  if (!Subtarget->isThumb1Only()) {
6971    // (or x, (cmov 0, y, cond)) => (or.cond x, y)
6972    SDValue COR = formConditionalOp(N, DAG, true);
6973    if (COR.getNode())
6974      return COR;
6975  }
6976
6977  SDValue N0 = N->getOperand(0);
6978  if (N0.getOpcode() != ISD::AND)
6979    return SDValue();
6980  SDValue N1 = N->getOperand(1);
6981
6982  // (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant.
6983  if (Subtarget->hasNEON() && N1.getOpcode() == ISD::AND && VT.isVector() &&
6984      DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
6985    APInt SplatUndef;
6986    unsigned SplatBitSize;
6987    bool HasAnyUndefs;
6988
6989    BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(1));
6990    APInt SplatBits0;
6991    if (BVN0 && BVN0->isConstantSplat(SplatBits0, SplatUndef, SplatBitSize,
6992                                  HasAnyUndefs) && !HasAnyUndefs) {
6993      BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(1));
6994      APInt SplatBits1;
6995      if (BVN1 && BVN1->isConstantSplat(SplatBits1, SplatUndef, SplatBitSize,
6996                                    HasAnyUndefs) && !HasAnyUndefs &&
6997          SplatBits0 == ~SplatBits1) {
6998        // Canonicalize the vector type to make instruction selection simpler.
6999        EVT CanonicalVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
7000        SDValue Result = DAG.getNode(ARMISD::VBSL, dl, CanonicalVT,
7001                                     N0->getOperand(1), N0->getOperand(0),
7002                                     N1->getOperand(0));
7003        return DAG.getNode(ISD::BITCAST, dl, VT, Result);
7004      }
7005    }
7006  }
7007
7008  // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when
7009  // reasonable.
7010
7011  // BFI is only available on V6T2+
7012  if (Subtarget->isThumb1Only() || !Subtarget->hasV6T2Ops())
7013    return SDValue();
7014
7015  DebugLoc DL = N->getDebugLoc();
7016  // 1) or (and A, mask), val => ARMbfi A, val, mask
7017  //      iff (val & mask) == val
7018  //
7019  // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
7020  //  2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2)
7021  //          && mask == ~mask2
7022  //  2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2)
7023  //          && ~mask == mask2
7024  //  (i.e., copy a bitfield value into another bitfield of the same width)
7025
7026  if (VT != MVT::i32)
7027    return SDValue();
7028
7029  SDValue N00 = N0.getOperand(0);
7030
7031  // The value and the mask need to be constants so we can verify this is
7032  // actually a bitfield set. If the mask is 0xffff, we can do better
7033  // via a movt instruction, so don't use BFI in that case.
7034  SDValue MaskOp = N0.getOperand(1);
7035  ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(MaskOp);
7036  if (!MaskC)
7037    return SDValue();
7038  unsigned Mask = MaskC->getZExtValue();
7039  if (Mask == 0xffff)
7040    return SDValue();
7041  SDValue Res;
7042  // Case (1): or (and A, mask), val => ARMbfi A, val, mask
7043  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
7044  if (N1C) {
7045    unsigned Val = N1C->getZExtValue();
7046    if ((Val & ~Mask) != Val)
7047      return SDValue();
7048
7049    if (ARM::isBitFieldInvertedMask(Mask)) {
7050      Val >>= CountTrailingZeros_32(~Mask);
7051
7052      Res = DAG.getNode(ARMISD::BFI, DL, VT, N00,
7053                        DAG.getConstant(Val, MVT::i32),
7054                        DAG.getConstant(Mask, MVT::i32));
7055
7056      // Do not add new nodes to DAG combiner worklist.
7057      DCI.CombineTo(N, Res, false);
7058      return SDValue();
7059    }
7060  } else if (N1.getOpcode() == ISD::AND) {
7061    // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
7062    ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
7063    if (!N11C)
7064      return SDValue();
7065    unsigned Mask2 = N11C->getZExtValue();
7066
7067    // Mask and ~Mask2 (or reverse) must be equivalent for the BFI pattern
7068    // as is to match.
7069    if (ARM::isBitFieldInvertedMask(Mask) &&
7070        (Mask == ~Mask2)) {
7071      // The pack halfword instruction works better for masks that fit it,
7072      // so use that when it's available.
7073      if (Subtarget->hasT2ExtractPack() &&
7074          (Mask == 0xffff || Mask == 0xffff0000))
7075        return SDValue();
7076      // 2a
7077      unsigned amt = CountTrailingZeros_32(Mask2);
7078      Res = DAG.getNode(ISD::SRL, DL, VT, N1.getOperand(0),
7079                        DAG.getConstant(amt, MVT::i32));
7080      Res = DAG.getNode(ARMISD::BFI, DL, VT, N00, Res,
7081                        DAG.getConstant(Mask, MVT::i32));
7082      // Do not add new nodes to DAG combiner worklist.
7083      DCI.CombineTo(N, Res, false);
7084      return SDValue();
7085    } else if (ARM::isBitFieldInvertedMask(~Mask) &&
7086               (~Mask == Mask2)) {
7087      // The pack halfword instruction works better for masks that fit it,
7088      // so use that when it's available.
7089      if (Subtarget->hasT2ExtractPack() &&
7090          (Mask2 == 0xffff || Mask2 == 0xffff0000))
7091        return SDValue();
7092      // 2b
7093      unsigned lsb = CountTrailingZeros_32(Mask);
7094      Res = DAG.getNode(ISD::SRL, DL, VT, N00,
7095                        DAG.getConstant(lsb, MVT::i32));
7096      Res = DAG.getNode(ARMISD::BFI, DL, VT, N1.getOperand(0), Res,
7097                        DAG.getConstant(Mask2, MVT::i32));
7098      // Do not add new nodes to DAG combiner worklist.
7099      DCI.CombineTo(N, Res, false);
7100      return SDValue();
7101    }
7102  }
7103
7104  if (DAG.MaskedValueIsZero(N1, MaskC->getAPIntValue()) &&
7105      N00.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N00.getOperand(1)) &&
7106      ARM::isBitFieldInvertedMask(~Mask)) {
7107    // Case (3): or (and (shl A, #shamt), mask), B => ARMbfi B, A, ~mask
7108    // where lsb(mask) == #shamt and masked bits of B are known zero.
7109    SDValue ShAmt = N00.getOperand(1);
7110    unsigned ShAmtC = cast<ConstantSDNode>(ShAmt)->getZExtValue();
7111    unsigned LSB = CountTrailingZeros_32(Mask);
7112    if (ShAmtC != LSB)
7113      return SDValue();
7114
7115    Res = DAG.getNode(ARMISD::BFI, DL, VT, N1, N00.getOperand(0),
7116                      DAG.getConstant(~Mask, MVT::i32));
7117
7118    // Do not add new nodes to DAG combiner worklist.
7119    DCI.CombineTo(N, Res, false);
7120  }
7121
7122  return SDValue();
7123}
7124
7125static SDValue PerformXORCombine(SDNode *N,
7126                                 TargetLowering::DAGCombinerInfo &DCI,
7127                                 const ARMSubtarget *Subtarget) {
7128  EVT VT = N->getValueType(0);
7129  SelectionDAG &DAG = DCI.DAG;
7130
7131  if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
7132    return SDValue();
7133
7134  if (!Subtarget->isThumb1Only()) {
7135    // (xor x, (cmov 0, y, cond)) => (xor.cond x, y)
7136    SDValue CXOR = formConditionalOp(N, DAG, true);
7137    if (CXOR.getNode())
7138      return CXOR;
7139  }
7140
7141  return SDValue();
7142}
7143
7144/// PerformBFICombine - (bfi A, (and B, Mask1), Mask2) -> (bfi A, B, Mask2) iff
7145/// the bits being cleared by the AND are not demanded by the BFI.
7146static SDValue PerformBFICombine(SDNode *N,
7147                                 TargetLowering::DAGCombinerInfo &DCI) {
7148  SDValue N1 = N->getOperand(1);
7149  if (N1.getOpcode() == ISD::AND) {
7150    ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
7151    if (!N11C)
7152      return SDValue();
7153    unsigned InvMask = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
7154    unsigned LSB = CountTrailingZeros_32(~InvMask);
7155    unsigned Width = (32 - CountLeadingZeros_32(~InvMask)) - LSB;
7156    unsigned Mask = (1 << Width)-1;
7157    unsigned Mask2 = N11C->getZExtValue();
7158    if ((Mask & (~Mask2)) == 0)
7159      return DCI.DAG.getNode(ARMISD::BFI, N->getDebugLoc(), N->getValueType(0),
7160                             N->getOperand(0), N1.getOperand(0),
7161                             N->getOperand(2));
7162  }
7163  return SDValue();
7164}
7165
7166/// PerformVMOVRRDCombine - Target-specific dag combine xforms for
7167/// ARMISD::VMOVRRD.
7168static SDValue PerformVMOVRRDCombine(SDNode *N,
7169                                     TargetLowering::DAGCombinerInfo &DCI) {
7170  // vmovrrd(vmovdrr x, y) -> x,y
7171  SDValue InDouble = N->getOperand(0);
7172  if (InDouble.getOpcode() == ARMISD::VMOVDRR)
7173    return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
7174
7175  // vmovrrd(load f64) -> (load i32), (load i32)
7176  SDNode *InNode = InDouble.getNode();
7177  if (ISD::isNormalLoad(InNode) && InNode->hasOneUse() &&
7178      InNode->getValueType(0) == MVT::f64 &&
7179      InNode->getOperand(1).getOpcode() == ISD::FrameIndex &&
7180      !cast<LoadSDNode>(InNode)->isVolatile()) {
7181    // TODO: Should this be done for non-FrameIndex operands?
7182    LoadSDNode *LD = cast<LoadSDNode>(InNode);
7183
7184    SelectionDAG &DAG = DCI.DAG;
7185    DebugLoc DL = LD->getDebugLoc();
7186    SDValue BasePtr = LD->getBasePtr();
7187    SDValue NewLD1 = DAG.getLoad(MVT::i32, DL, LD->getChain(), BasePtr,
7188                                 LD->getPointerInfo(), LD->isVolatile(),
7189                                 LD->isNonTemporal(), LD->isInvariant(),
7190                                 LD->getAlignment());
7191
7192    SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
7193                                    DAG.getConstant(4, MVT::i32));
7194    SDValue NewLD2 = DAG.getLoad(MVT::i32, DL, NewLD1.getValue(1), OffsetPtr,
7195                                 LD->getPointerInfo(), LD->isVolatile(),
7196                                 LD->isNonTemporal(), LD->isInvariant(),
7197                                 std::min(4U, LD->getAlignment() / 2));
7198
7199    DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewLD2.getValue(1));
7200    SDValue Result = DCI.CombineTo(N, NewLD1, NewLD2);
7201    DCI.RemoveFromWorklist(LD);
7202    DAG.DeleteNode(LD);
7203    return Result;
7204  }
7205
7206  return SDValue();
7207}
7208
7209/// PerformVMOVDRRCombine - Target-specific dag combine xforms for
7210/// ARMISD::VMOVDRR.  This is also used for BUILD_VECTORs with 2 operands.
7211static SDValue PerformVMOVDRRCombine(SDNode *N, SelectionDAG &DAG) {
7212  // N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X)
7213  SDValue Op0 = N->getOperand(0);
7214  SDValue Op1 = N->getOperand(1);
7215  if (Op0.getOpcode() == ISD::BITCAST)
7216    Op0 = Op0.getOperand(0);
7217  if (Op1.getOpcode() == ISD::BITCAST)
7218    Op1 = Op1.getOperand(0);
7219  if (Op0.getOpcode() == ARMISD::VMOVRRD &&
7220      Op0.getNode() == Op1.getNode() &&
7221      Op0.getResNo() == 0 && Op1.getResNo() == 1)
7222    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(),
7223                       N->getValueType(0), Op0.getOperand(0));
7224  return SDValue();
7225}
7226
7227/// PerformSTORECombine - Target-specific dag combine xforms for
7228/// ISD::STORE.
7229static SDValue PerformSTORECombine(SDNode *N,
7230                                   TargetLowering::DAGCombinerInfo &DCI) {
7231  // Bitcast an i64 store extracted from a vector to f64.
7232  // Otherwise, the i64 value will be legalized to a pair of i32 values.
7233  StoreSDNode *St = cast<StoreSDNode>(N);
7234  SDValue StVal = St->getValue();
7235  if (!ISD::isNormalStore(St) || St->isVolatile())
7236    return SDValue();
7237
7238  if (StVal.getNode()->getOpcode() == ARMISD::VMOVDRR &&
7239      StVal.getNode()->hasOneUse() && !St->isVolatile()) {
7240    SelectionDAG  &DAG = DCI.DAG;
7241    DebugLoc DL = St->getDebugLoc();
7242    SDValue BasePtr = St->getBasePtr();
7243    SDValue NewST1 = DAG.getStore(St->getChain(), DL,
7244                                  StVal.getNode()->getOperand(0), BasePtr,
7245                                  St->getPointerInfo(), St->isVolatile(),
7246                                  St->isNonTemporal(), St->getAlignment());
7247
7248    SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
7249                                    DAG.getConstant(4, MVT::i32));
7250    return DAG.getStore(NewST1.getValue(0), DL, StVal.getNode()->getOperand(1),
7251                        OffsetPtr, St->getPointerInfo(), St->isVolatile(),
7252                        St->isNonTemporal(),
7253                        std::min(4U, St->getAlignment() / 2));
7254  }
7255
7256  if (StVal.getValueType() != MVT::i64 ||
7257      StVal.getNode()->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
7258    return SDValue();
7259
7260  SelectionDAG &DAG = DCI.DAG;
7261  DebugLoc dl = StVal.getDebugLoc();
7262  SDValue IntVec = StVal.getOperand(0);
7263  EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
7264                                 IntVec.getValueType().getVectorNumElements());
7265  SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, IntVec);
7266  SDValue ExtElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7267                               Vec, StVal.getOperand(1));
7268  dl = N->getDebugLoc();
7269  SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ExtElt);
7270  // Make the DAGCombiner fold the bitcasts.
7271  DCI.AddToWorklist(Vec.getNode());
7272  DCI.AddToWorklist(ExtElt.getNode());
7273  DCI.AddToWorklist(V.getNode());
7274  return DAG.getStore(St->getChain(), dl, V, St->getBasePtr(),
7275                      St->getPointerInfo(), St->isVolatile(),
7276                      St->isNonTemporal(), St->getAlignment(),
7277                      St->getTBAAInfo());
7278}
7279
7280/// hasNormalLoadOperand - Check if any of the operands of a BUILD_VECTOR node
7281/// are normal, non-volatile loads.  If so, it is profitable to bitcast an
7282/// i64 vector to have f64 elements, since the value can then be loaded
7283/// directly into a VFP register.
7284static bool hasNormalLoadOperand(SDNode *N) {
7285  unsigned NumElts = N->getValueType(0).getVectorNumElements();
7286  for (unsigned i = 0; i < NumElts; ++i) {
7287    SDNode *Elt = N->getOperand(i).getNode();
7288    if (ISD::isNormalLoad(Elt) && !cast<LoadSDNode>(Elt)->isVolatile())
7289      return true;
7290  }
7291  return false;
7292}
7293
7294/// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for
7295/// ISD::BUILD_VECTOR.
7296static SDValue PerformBUILD_VECTORCombine(SDNode *N,
7297                                          TargetLowering::DAGCombinerInfo &DCI){
7298  // build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X):
7299  // VMOVRRD is introduced when legalizing i64 types.  It forces the i64 value
7300  // into a pair of GPRs, which is fine when the value is used as a scalar,
7301  // but if the i64 value is converted to a vector, we need to undo the VMOVRRD.
7302  SelectionDAG &DAG = DCI.DAG;
7303  if (N->getNumOperands() == 2) {
7304    SDValue RV = PerformVMOVDRRCombine(N, DAG);
7305    if (RV.getNode())
7306      return RV;
7307  }
7308
7309  // Load i64 elements as f64 values so that type legalization does not split
7310  // them up into i32 values.
7311  EVT VT = N->getValueType(0);
7312  if (VT.getVectorElementType() != MVT::i64 || !hasNormalLoadOperand(N))
7313    return SDValue();
7314  DebugLoc dl = N->getDebugLoc();
7315  SmallVector<SDValue, 8> Ops;
7316  unsigned NumElts = VT.getVectorNumElements();
7317  for (unsigned i = 0; i < NumElts; ++i) {
7318    SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(i));
7319    Ops.push_back(V);
7320    // Make the DAGCombiner fold the bitcast.
7321    DCI.AddToWorklist(V.getNode());
7322  }
7323  EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, NumElts);
7324  SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, FloatVT, Ops.data(), NumElts);
7325  return DAG.getNode(ISD::BITCAST, dl, VT, BV);
7326}
7327
7328/// PerformInsertEltCombine - Target-specific dag combine xforms for
7329/// ISD::INSERT_VECTOR_ELT.
7330static SDValue PerformInsertEltCombine(SDNode *N,
7331                                       TargetLowering::DAGCombinerInfo &DCI) {
7332  // Bitcast an i64 load inserted into a vector to f64.
7333  // Otherwise, the i64 value will be legalized to a pair of i32 values.
7334  EVT VT = N->getValueType(0);
7335  SDNode *Elt = N->getOperand(1).getNode();
7336  if (VT.getVectorElementType() != MVT::i64 ||
7337      !ISD::isNormalLoad(Elt) || cast<LoadSDNode>(Elt)->isVolatile())
7338    return SDValue();
7339
7340  SelectionDAG &DAG = DCI.DAG;
7341  DebugLoc dl = N->getDebugLoc();
7342  EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
7343                                 VT.getVectorNumElements());
7344  SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, N->getOperand(0));
7345  SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(1));
7346  // Make the DAGCombiner fold the bitcasts.
7347  DCI.AddToWorklist(Vec.getNode());
7348  DCI.AddToWorklist(V.getNode());
7349  SDValue InsElt = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, FloatVT,
7350                               Vec, V, N->getOperand(2));
7351  return DAG.getNode(ISD::BITCAST, dl, VT, InsElt);
7352}
7353
7354/// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for
7355/// ISD::VECTOR_SHUFFLE.
7356static SDValue PerformVECTOR_SHUFFLECombine(SDNode *N, SelectionDAG &DAG) {
7357  // The LLVM shufflevector instruction does not require the shuffle mask
7358  // length to match the operand vector length, but ISD::VECTOR_SHUFFLE does
7359  // have that requirement.  When translating to ISD::VECTOR_SHUFFLE, if the
7360  // operands do not match the mask length, they are extended by concatenating
7361  // them with undef vectors.  That is probably the right thing for other
7362  // targets, but for NEON it is better to concatenate two double-register
7363  // size vector operands into a single quad-register size vector.  Do that
7364  // transformation here:
7365  //   shuffle(concat(v1, undef), concat(v2, undef)) ->
7366  //   shuffle(concat(v1, v2), undef)
7367  SDValue Op0 = N->getOperand(0);
7368  SDValue Op1 = N->getOperand(1);
7369  if (Op0.getOpcode() != ISD::CONCAT_VECTORS ||
7370      Op1.getOpcode() != ISD::CONCAT_VECTORS ||
7371      Op0.getNumOperands() != 2 ||
7372      Op1.getNumOperands() != 2)
7373    return SDValue();
7374  SDValue Concat0Op1 = Op0.getOperand(1);
7375  SDValue Concat1Op1 = Op1.getOperand(1);
7376  if (Concat0Op1.getOpcode() != ISD::UNDEF ||
7377      Concat1Op1.getOpcode() != ISD::UNDEF)
7378    return SDValue();
7379  // Skip the transformation if any of the types are illegal.
7380  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7381  EVT VT = N->getValueType(0);
7382  if (!TLI.isTypeLegal(VT) ||
7383      !TLI.isTypeLegal(Concat0Op1.getValueType()) ||
7384      !TLI.isTypeLegal(Concat1Op1.getValueType()))
7385    return SDValue();
7386
7387  SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, N->getDebugLoc(), VT,
7388                                  Op0.getOperand(0), Op1.getOperand(0));
7389  // Translate the shuffle mask.
7390  SmallVector<int, 16> NewMask;
7391  unsigned NumElts = VT.getVectorNumElements();
7392  unsigned HalfElts = NumElts/2;
7393  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
7394  for (unsigned n = 0; n < NumElts; ++n) {
7395    int MaskElt = SVN->getMaskElt(n);
7396    int NewElt = -1;
7397    if (MaskElt < (int)HalfElts)
7398      NewElt = MaskElt;
7399    else if (MaskElt >= (int)NumElts && MaskElt < (int)(NumElts + HalfElts))
7400      NewElt = HalfElts + MaskElt - NumElts;
7401    NewMask.push_back(NewElt);
7402  }
7403  return DAG.getVectorShuffle(VT, N->getDebugLoc(), NewConcat,
7404                              DAG.getUNDEF(VT), NewMask.data());
7405}
7406
7407/// CombineBaseUpdate - Target-specific DAG combine function for VLDDUP and
7408/// NEON load/store intrinsics to merge base address updates.
7409static SDValue CombineBaseUpdate(SDNode *N,
7410                                 TargetLowering::DAGCombinerInfo &DCI) {
7411  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
7412    return SDValue();
7413
7414  SelectionDAG &DAG = DCI.DAG;
7415  bool isIntrinsic = (N->getOpcode() == ISD::INTRINSIC_VOID ||
7416                      N->getOpcode() == ISD::INTRINSIC_W_CHAIN);
7417  unsigned AddrOpIdx = (isIntrinsic ? 2 : 1);
7418  SDValue Addr = N->getOperand(AddrOpIdx);
7419
7420  // Search for a use of the address operand that is an increment.
7421  for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
7422         UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
7423    SDNode *User = *UI;
7424    if (User->getOpcode() != ISD::ADD ||
7425        UI.getUse().getResNo() != Addr.getResNo())
7426      continue;
7427
7428    // Check that the add is independent of the load/store.  Otherwise, folding
7429    // it would create a cycle.
7430    if (User->isPredecessorOf(N) || N->isPredecessorOf(User))
7431      continue;
7432
7433    // Find the new opcode for the updating load/store.
7434    bool isLoad = true;
7435    bool isLaneOp = false;
7436    unsigned NewOpc = 0;
7437    unsigned NumVecs = 0;
7438    if (isIntrinsic) {
7439      unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
7440      switch (IntNo) {
7441      default: llvm_unreachable("unexpected intrinsic for Neon base update");
7442      case Intrinsic::arm_neon_vld1:     NewOpc = ARMISD::VLD1_UPD;
7443        NumVecs = 1; break;
7444      case Intrinsic::arm_neon_vld2:     NewOpc = ARMISD::VLD2_UPD;
7445        NumVecs = 2; break;
7446      case Intrinsic::arm_neon_vld3:     NewOpc = ARMISD::VLD3_UPD;
7447        NumVecs = 3; break;
7448      case Intrinsic::arm_neon_vld4:     NewOpc = ARMISD::VLD4_UPD;
7449        NumVecs = 4; break;
7450      case Intrinsic::arm_neon_vld2lane: NewOpc = ARMISD::VLD2LN_UPD;
7451        NumVecs = 2; isLaneOp = true; break;
7452      case Intrinsic::arm_neon_vld3lane: NewOpc = ARMISD::VLD3LN_UPD;
7453        NumVecs = 3; isLaneOp = true; break;
7454      case Intrinsic::arm_neon_vld4lane: NewOpc = ARMISD::VLD4LN_UPD;
7455        NumVecs = 4; isLaneOp = true; break;
7456      case Intrinsic::arm_neon_vst1:     NewOpc = ARMISD::VST1_UPD;
7457        NumVecs = 1; isLoad = false; break;
7458      case Intrinsic::arm_neon_vst2:     NewOpc = ARMISD::VST2_UPD;
7459        NumVecs = 2; isLoad = false; break;
7460      case Intrinsic::arm_neon_vst3:     NewOpc = ARMISD::VST3_UPD;
7461        NumVecs = 3; isLoad = false; break;
7462      case Intrinsic::arm_neon_vst4:     NewOpc = ARMISD::VST4_UPD;
7463        NumVecs = 4; isLoad = false; break;
7464      case Intrinsic::arm_neon_vst2lane: NewOpc = ARMISD::VST2LN_UPD;
7465        NumVecs = 2; isLoad = false; isLaneOp = true; break;
7466      case Intrinsic::arm_neon_vst3lane: NewOpc = ARMISD::VST3LN_UPD;
7467        NumVecs = 3; isLoad = false; isLaneOp = true; break;
7468      case Intrinsic::arm_neon_vst4lane: NewOpc = ARMISD::VST4LN_UPD;
7469        NumVecs = 4; isLoad = false; isLaneOp = true; break;
7470      }
7471    } else {
7472      isLaneOp = true;
7473      switch (N->getOpcode()) {
7474      default: llvm_unreachable("unexpected opcode for Neon base update");
7475      case ARMISD::VLD2DUP: NewOpc = ARMISD::VLD2DUP_UPD; NumVecs = 2; break;
7476      case ARMISD::VLD3DUP: NewOpc = ARMISD::VLD3DUP_UPD; NumVecs = 3; break;
7477      case ARMISD::VLD4DUP: NewOpc = ARMISD::VLD4DUP_UPD; NumVecs = 4; break;
7478      }
7479    }
7480
7481    // Find the size of memory referenced by the load/store.
7482    EVT VecTy;
7483    if (isLoad)
7484      VecTy = N->getValueType(0);
7485    else
7486      VecTy = N->getOperand(AddrOpIdx+1).getValueType();
7487    unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
7488    if (isLaneOp)
7489      NumBytes /= VecTy.getVectorNumElements();
7490
7491    // If the increment is a constant, it must match the memory ref size.
7492    SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
7493    if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
7494      uint64_t IncVal = CInc->getZExtValue();
7495      if (IncVal != NumBytes)
7496        continue;
7497    } else if (NumBytes >= 3 * 16) {
7498      // VLD3/4 and VST3/4 for 128-bit vectors are implemented with two
7499      // separate instructions that make it harder to use a non-constant update.
7500      continue;
7501    }
7502
7503    // Create the new updating load/store node.
7504    EVT Tys[6];
7505    unsigned NumResultVecs = (isLoad ? NumVecs : 0);
7506    unsigned n;
7507    for (n = 0; n < NumResultVecs; ++n)
7508      Tys[n] = VecTy;
7509    Tys[n++] = MVT::i32;
7510    Tys[n] = MVT::Other;
7511    SDVTList SDTys = DAG.getVTList(Tys, NumResultVecs+2);
7512    SmallVector<SDValue, 8> Ops;
7513    Ops.push_back(N->getOperand(0)); // incoming chain
7514    Ops.push_back(N->getOperand(AddrOpIdx));
7515    Ops.push_back(Inc);
7516    for (unsigned i = AddrOpIdx + 1; i < N->getNumOperands(); ++i) {
7517      Ops.push_back(N->getOperand(i));
7518    }
7519    MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N);
7520    SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, N->getDebugLoc(), SDTys,
7521                                           Ops.data(), Ops.size(),
7522                                           MemInt->getMemoryVT(),
7523                                           MemInt->getMemOperand());
7524
7525    // Update the uses.
7526    std::vector<SDValue> NewResults;
7527    for (unsigned i = 0; i < NumResultVecs; ++i) {
7528      NewResults.push_back(SDValue(UpdN.getNode(), i));
7529    }
7530    NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs+1)); // chain
7531    DCI.CombineTo(N, NewResults);
7532    DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
7533
7534    break;
7535  }
7536  return SDValue();
7537}
7538
7539/// CombineVLDDUP - For a VDUPLANE node N, check if its source operand is a
7540/// vldN-lane (N > 1) intrinsic, and if all the other uses of that intrinsic
7541/// are also VDUPLANEs.  If so, combine them to a vldN-dup operation and
7542/// return true.
7543static bool CombineVLDDUP(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
7544  SelectionDAG &DAG = DCI.DAG;
7545  EVT VT = N->getValueType(0);
7546  // vldN-dup instructions only support 64-bit vectors for N > 1.
7547  if (!VT.is64BitVector())
7548    return false;
7549
7550  // Check if the VDUPLANE operand is a vldN-dup intrinsic.
7551  SDNode *VLD = N->getOperand(0).getNode();
7552  if (VLD->getOpcode() != ISD::INTRINSIC_W_CHAIN)
7553    return false;
7554  unsigned NumVecs = 0;
7555  unsigned NewOpc = 0;
7556  unsigned IntNo = cast<ConstantSDNode>(VLD->getOperand(1))->getZExtValue();
7557  if (IntNo == Intrinsic::arm_neon_vld2lane) {
7558    NumVecs = 2;
7559    NewOpc = ARMISD::VLD2DUP;
7560  } else if (IntNo == Intrinsic::arm_neon_vld3lane) {
7561    NumVecs = 3;
7562    NewOpc = ARMISD::VLD3DUP;
7563  } else if (IntNo == Intrinsic::arm_neon_vld4lane) {
7564    NumVecs = 4;
7565    NewOpc = ARMISD::VLD4DUP;
7566  } else {
7567    return false;
7568  }
7569
7570  // First check that all the vldN-lane uses are VDUPLANEs and that the lane
7571  // numbers match the load.
7572  unsigned VLDLaneNo =
7573    cast<ConstantSDNode>(VLD->getOperand(NumVecs+3))->getZExtValue();
7574  for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
7575       UI != UE; ++UI) {
7576    // Ignore uses of the chain result.
7577    if (UI.getUse().getResNo() == NumVecs)
7578      continue;
7579    SDNode *User = *UI;
7580    if (User->getOpcode() != ARMISD::VDUPLANE ||
7581        VLDLaneNo != cast<ConstantSDNode>(User->getOperand(1))->getZExtValue())
7582      return false;
7583  }
7584
7585  // Create the vldN-dup node.
7586  EVT Tys[5];
7587  unsigned n;
7588  for (n = 0; n < NumVecs; ++n)
7589    Tys[n] = VT;
7590  Tys[n] = MVT::Other;
7591  SDVTList SDTys = DAG.getVTList(Tys, NumVecs+1);
7592  SDValue Ops[] = { VLD->getOperand(0), VLD->getOperand(2) };
7593  MemIntrinsicSDNode *VLDMemInt = cast<MemIntrinsicSDNode>(VLD);
7594  SDValue VLDDup = DAG.getMemIntrinsicNode(NewOpc, VLD->getDebugLoc(), SDTys,
7595                                           Ops, 2, VLDMemInt->getMemoryVT(),
7596                                           VLDMemInt->getMemOperand());
7597
7598  // Update the uses.
7599  for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
7600       UI != UE; ++UI) {
7601    unsigned ResNo = UI.getUse().getResNo();
7602    // Ignore uses of the chain result.
7603    if (ResNo == NumVecs)
7604      continue;
7605    SDNode *User = *UI;
7606    DCI.CombineTo(User, SDValue(VLDDup.getNode(), ResNo));
7607  }
7608
7609  // Now the vldN-lane intrinsic is dead except for its chain result.
7610  // Update uses of the chain.
7611  std::vector<SDValue> VLDDupResults;
7612  for (unsigned n = 0; n < NumVecs; ++n)
7613    VLDDupResults.push_back(SDValue(VLDDup.getNode(), n));
7614  VLDDupResults.push_back(SDValue(VLDDup.getNode(), NumVecs));
7615  DCI.CombineTo(VLD, VLDDupResults);
7616
7617  return true;
7618}
7619
7620/// PerformVDUPLANECombine - Target-specific dag combine xforms for
7621/// ARMISD::VDUPLANE.
7622static SDValue PerformVDUPLANECombine(SDNode *N,
7623                                      TargetLowering::DAGCombinerInfo &DCI) {
7624  SDValue Op = N->getOperand(0);
7625
7626  // If the source is a vldN-lane (N > 1) intrinsic, and all the other uses
7627  // of that intrinsic are also VDUPLANEs, combine them to a vldN-dup operation.
7628  if (CombineVLDDUP(N, DCI))
7629    return SDValue(N, 0);
7630
7631  // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is
7632  // redundant.  Ignore bit_converts for now; element sizes are checked below.
7633  while (Op.getOpcode() == ISD::BITCAST)
7634    Op = Op.getOperand(0);
7635  if (Op.getOpcode() != ARMISD::VMOVIMM && Op.getOpcode() != ARMISD::VMVNIMM)
7636    return SDValue();
7637
7638  // Make sure the VMOV element size is not bigger than the VDUPLANE elements.
7639  unsigned EltSize = Op.getValueType().getVectorElementType().getSizeInBits();
7640  // The canonical VMOV for a zero vector uses a 32-bit element size.
7641  unsigned Imm = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7642  unsigned EltBits;
7643  if (ARM_AM::decodeNEONModImm(Imm, EltBits) == 0)
7644    EltSize = 8;
7645  EVT VT = N->getValueType(0);
7646  if (EltSize > VT.getVectorElementType().getSizeInBits())
7647    return SDValue();
7648
7649  return DCI.DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
7650}
7651
7652// isConstVecPow2 - Return true if each vector element is a power of 2, all
7653// elements are the same constant, C, and Log2(C) ranges from 1 to 32.
7654static bool isConstVecPow2(SDValue ConstVec, bool isSigned, uint64_t &C)
7655{
7656  integerPart cN;
7657  integerPart c0 = 0;
7658  for (unsigned I = 0, E = ConstVec.getValueType().getVectorNumElements();
7659       I != E; I++) {
7660    ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(ConstVec.getOperand(I));
7661    if (!C)
7662      return false;
7663
7664    bool isExact;
7665    APFloat APF = C->getValueAPF();
7666    if (APF.convertToInteger(&cN, 64, isSigned, APFloat::rmTowardZero, &isExact)
7667        != APFloat::opOK || !isExact)
7668      return false;
7669
7670    c0 = (I == 0) ? cN : c0;
7671    if (!isPowerOf2_64(cN) || c0 != cN || Log2_64(c0) < 1 || Log2_64(c0) > 32)
7672      return false;
7673  }
7674  C = c0;
7675  return true;
7676}
7677
7678/// PerformVCVTCombine - VCVT (floating-point to fixed-point, Advanced SIMD)
7679/// can replace combinations of VMUL and VCVT (floating-point to integer)
7680/// when the VMUL has a constant operand that is a power of 2.
7681///
7682/// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
7683///  vmul.f32        d16, d17, d16
7684///  vcvt.s32.f32    d16, d16
7685/// becomes:
7686///  vcvt.s32.f32    d16, d16, #3
7687static SDValue PerformVCVTCombine(SDNode *N,
7688                                  TargetLowering::DAGCombinerInfo &DCI,
7689                                  const ARMSubtarget *Subtarget) {
7690  SelectionDAG &DAG = DCI.DAG;
7691  SDValue Op = N->getOperand(0);
7692
7693  if (!Subtarget->hasNEON() || !Op.getValueType().isVector() ||
7694      Op.getOpcode() != ISD::FMUL)
7695    return SDValue();
7696
7697  uint64_t C;
7698  SDValue N0 = Op->getOperand(0);
7699  SDValue ConstVec = Op->getOperand(1);
7700  bool isSigned = N->getOpcode() == ISD::FP_TO_SINT;
7701
7702  if (ConstVec.getOpcode() != ISD::BUILD_VECTOR ||
7703      !isConstVecPow2(ConstVec, isSigned, C))
7704    return SDValue();
7705
7706  unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfp2fxs :
7707    Intrinsic::arm_neon_vcvtfp2fxu;
7708  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, N->getDebugLoc(),
7709                     N->getValueType(0),
7710                     DAG.getConstant(IntrinsicOpcode, MVT::i32), N0,
7711                     DAG.getConstant(Log2_64(C), MVT::i32));
7712}
7713
7714/// PerformVDIVCombine - VCVT (fixed-point to floating-point, Advanced SIMD)
7715/// can replace combinations of VCVT (integer to floating-point) and VDIV
7716/// when the VDIV has a constant operand that is a power of 2.
7717///
7718/// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
7719///  vcvt.f32.s32    d16, d16
7720///  vdiv.f32        d16, d17, d16
7721/// becomes:
7722///  vcvt.f32.s32    d16, d16, #3
7723static SDValue PerformVDIVCombine(SDNode *N,
7724                                  TargetLowering::DAGCombinerInfo &DCI,
7725                                  const ARMSubtarget *Subtarget) {
7726  SelectionDAG &DAG = DCI.DAG;
7727  SDValue Op = N->getOperand(0);
7728  unsigned OpOpcode = Op.getNode()->getOpcode();
7729
7730  if (!Subtarget->hasNEON() || !N->getValueType(0).isVector() ||
7731      (OpOpcode != ISD::SINT_TO_FP && OpOpcode != ISD::UINT_TO_FP))
7732    return SDValue();
7733
7734  uint64_t C;
7735  SDValue ConstVec = N->getOperand(1);
7736  bool isSigned = OpOpcode == ISD::SINT_TO_FP;
7737
7738  if (ConstVec.getOpcode() != ISD::BUILD_VECTOR ||
7739      !isConstVecPow2(ConstVec, isSigned, C))
7740    return SDValue();
7741
7742  unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfxs2fp :
7743    Intrinsic::arm_neon_vcvtfxu2fp;
7744  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, N->getDebugLoc(),
7745                     Op.getValueType(),
7746                     DAG.getConstant(IntrinsicOpcode, MVT::i32),
7747                     Op.getOperand(0), DAG.getConstant(Log2_64(C), MVT::i32));
7748}
7749
7750/// Getvshiftimm - Check if this is a valid build_vector for the immediate
7751/// operand of a vector shift operation, where all the elements of the
7752/// build_vector must have the same constant integer value.
7753static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
7754  // Ignore bit_converts.
7755  while (Op.getOpcode() == ISD::BITCAST)
7756    Op = Op.getOperand(0);
7757  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
7758  APInt SplatBits, SplatUndef;
7759  unsigned SplatBitSize;
7760  bool HasAnyUndefs;
7761  if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
7762                                      HasAnyUndefs, ElementBits) ||
7763      SplatBitSize > ElementBits)
7764    return false;
7765  Cnt = SplatBits.getSExtValue();
7766  return true;
7767}
7768
7769/// isVShiftLImm - Check if this is a valid build_vector for the immediate
7770/// operand of a vector shift left operation.  That value must be in the range:
7771///   0 <= Value < ElementBits for a left shift; or
7772///   0 <= Value <= ElementBits for a long left shift.
7773static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
7774  assert(VT.isVector() && "vector shift count is not a vector type");
7775  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
7776  if (! getVShiftImm(Op, ElementBits, Cnt))
7777    return false;
7778  return (Cnt >= 0 && (isLong ? Cnt-1 : Cnt) < ElementBits);
7779}
7780
7781/// isVShiftRImm - Check if this is a valid build_vector for the immediate
7782/// operand of a vector shift right operation.  For a shift opcode, the value
7783/// is positive, but for an intrinsic the value count must be negative. The
7784/// absolute value must be in the range:
7785///   1 <= |Value| <= ElementBits for a right shift; or
7786///   1 <= |Value| <= ElementBits/2 for a narrow right shift.
7787static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
7788                         int64_t &Cnt) {
7789  assert(VT.isVector() && "vector shift count is not a vector type");
7790  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
7791  if (! getVShiftImm(Op, ElementBits, Cnt))
7792    return false;
7793  if (isIntrinsic)
7794    Cnt = -Cnt;
7795  return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits/2 : ElementBits));
7796}
7797
7798/// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
7799static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
7800  unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
7801  switch (IntNo) {
7802  default:
7803    // Don't do anything for most intrinsics.
7804    break;
7805
7806  // Vector shifts: check for immediate versions and lower them.
7807  // Note: This is done during DAG combining instead of DAG legalizing because
7808  // the build_vectors for 64-bit vector element shift counts are generally
7809  // not legal, and it is hard to see their values after they get legalized to
7810  // loads from a constant pool.
7811  case Intrinsic::arm_neon_vshifts:
7812  case Intrinsic::arm_neon_vshiftu:
7813  case Intrinsic::arm_neon_vshiftls:
7814  case Intrinsic::arm_neon_vshiftlu:
7815  case Intrinsic::arm_neon_vshiftn:
7816  case Intrinsic::arm_neon_vrshifts:
7817  case Intrinsic::arm_neon_vrshiftu:
7818  case Intrinsic::arm_neon_vrshiftn:
7819  case Intrinsic::arm_neon_vqshifts:
7820  case Intrinsic::arm_neon_vqshiftu:
7821  case Intrinsic::arm_neon_vqshiftsu:
7822  case Intrinsic::arm_neon_vqshiftns:
7823  case Intrinsic::arm_neon_vqshiftnu:
7824  case Intrinsic::arm_neon_vqshiftnsu:
7825  case Intrinsic::arm_neon_vqrshiftns:
7826  case Intrinsic::arm_neon_vqrshiftnu:
7827  case Intrinsic::arm_neon_vqrshiftnsu: {
7828    EVT VT = N->getOperand(1).getValueType();
7829    int64_t Cnt;
7830    unsigned VShiftOpc = 0;
7831
7832    switch (IntNo) {
7833    case Intrinsic::arm_neon_vshifts:
7834    case Intrinsic::arm_neon_vshiftu:
7835      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) {
7836        VShiftOpc = ARMISD::VSHL;
7837        break;
7838      }
7839      if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) {
7840        VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ?
7841                     ARMISD::VSHRs : ARMISD::VSHRu);
7842        break;
7843      }
7844      return SDValue();
7845
7846    case Intrinsic::arm_neon_vshiftls:
7847    case Intrinsic::arm_neon_vshiftlu:
7848      if (isVShiftLImm(N->getOperand(2), VT, true, Cnt))
7849        break;
7850      llvm_unreachable("invalid shift count for vshll intrinsic");
7851
7852    case Intrinsic::arm_neon_vrshifts:
7853    case Intrinsic::arm_neon_vrshiftu:
7854      if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt))
7855        break;
7856      return SDValue();
7857
7858    case Intrinsic::arm_neon_vqshifts:
7859    case Intrinsic::arm_neon_vqshiftu:
7860      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
7861        break;
7862      return SDValue();
7863
7864    case Intrinsic::arm_neon_vqshiftsu:
7865      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
7866        break;
7867      llvm_unreachable("invalid shift count for vqshlu intrinsic");
7868
7869    case Intrinsic::arm_neon_vshiftn:
7870    case Intrinsic::arm_neon_vrshiftn:
7871    case Intrinsic::arm_neon_vqshiftns:
7872    case Intrinsic::arm_neon_vqshiftnu:
7873    case Intrinsic::arm_neon_vqshiftnsu:
7874    case Intrinsic::arm_neon_vqrshiftns:
7875    case Intrinsic::arm_neon_vqrshiftnu:
7876    case Intrinsic::arm_neon_vqrshiftnsu:
7877      // Narrowing shifts require an immediate right shift.
7878      if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt))
7879        break;
7880      llvm_unreachable("invalid shift count for narrowing vector shift "
7881                       "intrinsic");
7882
7883    default:
7884      llvm_unreachable("unhandled vector shift");
7885    }
7886
7887    switch (IntNo) {
7888    case Intrinsic::arm_neon_vshifts:
7889    case Intrinsic::arm_neon_vshiftu:
7890      // Opcode already set above.
7891      break;
7892    case Intrinsic::arm_neon_vshiftls:
7893    case Intrinsic::arm_neon_vshiftlu:
7894      if (Cnt == VT.getVectorElementType().getSizeInBits())
7895        VShiftOpc = ARMISD::VSHLLi;
7896      else
7897        VShiftOpc = (IntNo == Intrinsic::arm_neon_vshiftls ?
7898                     ARMISD::VSHLLs : ARMISD::VSHLLu);
7899      break;
7900    case Intrinsic::arm_neon_vshiftn:
7901      VShiftOpc = ARMISD::VSHRN; break;
7902    case Intrinsic::arm_neon_vrshifts:
7903      VShiftOpc = ARMISD::VRSHRs; break;
7904    case Intrinsic::arm_neon_vrshiftu:
7905      VShiftOpc = ARMISD::VRSHRu; break;
7906    case Intrinsic::arm_neon_vrshiftn:
7907      VShiftOpc = ARMISD::VRSHRN; break;
7908    case Intrinsic::arm_neon_vqshifts:
7909      VShiftOpc = ARMISD::VQSHLs; break;
7910    case Intrinsic::arm_neon_vqshiftu:
7911      VShiftOpc = ARMISD::VQSHLu; break;
7912    case Intrinsic::arm_neon_vqshiftsu:
7913      VShiftOpc = ARMISD::VQSHLsu; break;
7914    case Intrinsic::arm_neon_vqshiftns:
7915      VShiftOpc = ARMISD::VQSHRNs; break;
7916    case Intrinsic::arm_neon_vqshiftnu:
7917      VShiftOpc = ARMISD::VQSHRNu; break;
7918    case Intrinsic::arm_neon_vqshiftnsu:
7919      VShiftOpc = ARMISD::VQSHRNsu; break;
7920    case Intrinsic::arm_neon_vqrshiftns:
7921      VShiftOpc = ARMISD::VQRSHRNs; break;
7922    case Intrinsic::arm_neon_vqrshiftnu:
7923      VShiftOpc = ARMISD::VQRSHRNu; break;
7924    case Intrinsic::arm_neon_vqrshiftnsu:
7925      VShiftOpc = ARMISD::VQRSHRNsu; break;
7926    }
7927
7928    return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
7929                       N->getOperand(1), DAG.getConstant(Cnt, MVT::i32));
7930  }
7931
7932  case Intrinsic::arm_neon_vshiftins: {
7933    EVT VT = N->getOperand(1).getValueType();
7934    int64_t Cnt;
7935    unsigned VShiftOpc = 0;
7936
7937    if (isVShiftLImm(N->getOperand(3), VT, false, Cnt))
7938      VShiftOpc = ARMISD::VSLI;
7939    else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt))
7940      VShiftOpc = ARMISD::VSRI;
7941    else {
7942      llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
7943    }
7944
7945    return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
7946                       N->getOperand(1), N->getOperand(2),
7947                       DAG.getConstant(Cnt, MVT::i32));
7948  }
7949
7950  case Intrinsic::arm_neon_vqrshifts:
7951  case Intrinsic::arm_neon_vqrshiftu:
7952    // No immediate versions of these to check for.
7953    break;
7954  }
7955
7956  return SDValue();
7957}
7958
7959/// PerformShiftCombine - Checks for immediate versions of vector shifts and
7960/// lowers them.  As with the vector shift intrinsics, this is done during DAG
7961/// combining instead of DAG legalizing because the build_vectors for 64-bit
7962/// vector element shift counts are generally not legal, and it is hard to see
7963/// their values after they get legalized to loads from a constant pool.
7964static SDValue PerformShiftCombine(SDNode *N, SelectionDAG &DAG,
7965                                   const ARMSubtarget *ST) {
7966  EVT VT = N->getValueType(0);
7967
7968  // Nothing to be done for scalar shifts.
7969  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7970  if (!VT.isVector() || !TLI.isTypeLegal(VT))
7971    return SDValue();
7972
7973  assert(ST->hasNEON() && "unexpected vector shift");
7974  int64_t Cnt;
7975
7976  switch (N->getOpcode()) {
7977  default: llvm_unreachable("unexpected shift opcode");
7978
7979  case ISD::SHL:
7980    if (isVShiftLImm(N->getOperand(1), VT, false, Cnt))
7981      return DAG.getNode(ARMISD::VSHL, N->getDebugLoc(), VT, N->getOperand(0),
7982                         DAG.getConstant(Cnt, MVT::i32));
7983    break;
7984
7985  case ISD::SRA:
7986  case ISD::SRL:
7987    if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
7988      unsigned VShiftOpc = (N->getOpcode() == ISD::SRA ?
7989                            ARMISD::VSHRs : ARMISD::VSHRu);
7990      return DAG.getNode(VShiftOpc, N->getDebugLoc(), VT, N->getOperand(0),
7991                         DAG.getConstant(Cnt, MVT::i32));
7992    }
7993  }
7994  return SDValue();
7995}
7996
7997/// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
7998/// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
7999static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG,
8000                                    const ARMSubtarget *ST) {
8001  SDValue N0 = N->getOperand(0);
8002
8003  // Check for sign- and zero-extensions of vector extract operations of 8-
8004  // and 16-bit vector elements.  NEON supports these directly.  They are
8005  // handled during DAG combining because type legalization will promote them
8006  // to 32-bit types and it is messy to recognize the operations after that.
8007  if (ST->hasNEON() && N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
8008    SDValue Vec = N0.getOperand(0);
8009    SDValue Lane = N0.getOperand(1);
8010    EVT VT = N->getValueType(0);
8011    EVT EltVT = N0.getValueType();
8012    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8013
8014    if (VT == MVT::i32 &&
8015        (EltVT == MVT::i8 || EltVT == MVT::i16) &&
8016        TLI.isTypeLegal(Vec.getValueType()) &&
8017        isa<ConstantSDNode>(Lane)) {
8018
8019      unsigned Opc = 0;
8020      switch (N->getOpcode()) {
8021      default: llvm_unreachable("unexpected opcode");
8022      case ISD::SIGN_EXTEND:
8023        Opc = ARMISD::VGETLANEs;
8024        break;
8025      case ISD::ZERO_EXTEND:
8026      case ISD::ANY_EXTEND:
8027        Opc = ARMISD::VGETLANEu;
8028        break;
8029      }
8030      return DAG.getNode(Opc, N->getDebugLoc(), VT, Vec, Lane);
8031    }
8032  }
8033
8034  return SDValue();
8035}
8036
8037/// PerformSELECT_CCCombine - Target-specific DAG combining for ISD::SELECT_CC
8038/// to match f32 max/min patterns to use NEON vmax/vmin instructions.
8039static SDValue PerformSELECT_CCCombine(SDNode *N, SelectionDAG &DAG,
8040                                       const ARMSubtarget *ST) {
8041  // If the target supports NEON, try to use vmax/vmin instructions for f32
8042  // selects like "x < y ? x : y".  Unless the NoNaNsFPMath option is set,
8043  // be careful about NaNs:  NEON's vmax/vmin return NaN if either operand is
8044  // a NaN; only do the transformation when it matches that behavior.
8045
8046  // For now only do this when using NEON for FP operations; if using VFP, it
8047  // is not obvious that the benefit outweighs the cost of switching to the
8048  // NEON pipeline.
8049  if (!ST->hasNEON() || !ST->useNEONForSinglePrecisionFP() ||
8050      N->getValueType(0) != MVT::f32)
8051    return SDValue();
8052
8053  SDValue CondLHS = N->getOperand(0);
8054  SDValue CondRHS = N->getOperand(1);
8055  SDValue LHS = N->getOperand(2);
8056  SDValue RHS = N->getOperand(3);
8057  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
8058
8059  unsigned Opcode = 0;
8060  bool IsReversed;
8061  if (DAG.isEqualTo(LHS, CondLHS) && DAG.isEqualTo(RHS, CondRHS)) {
8062    IsReversed = false; // x CC y ? x : y
8063  } else if (DAG.isEqualTo(LHS, CondRHS) && DAG.isEqualTo(RHS, CondLHS)) {
8064    IsReversed = true ; // x CC y ? y : x
8065  } else {
8066    return SDValue();
8067  }
8068
8069  bool IsUnordered;
8070  switch (CC) {
8071  default: break;
8072  case ISD::SETOLT:
8073  case ISD::SETOLE:
8074  case ISD::SETLT:
8075  case ISD::SETLE:
8076  case ISD::SETULT:
8077  case ISD::SETULE:
8078    // If LHS is NaN, an ordered comparison will be false and the result will
8079    // be the RHS, but vmin(NaN, RHS) = NaN.  Avoid this by checking that LHS
8080    // != NaN.  Likewise, for unordered comparisons, check for RHS != NaN.
8081    IsUnordered = (CC == ISD::SETULT || CC == ISD::SETULE);
8082    if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
8083      break;
8084    // For less-than-or-equal comparisons, "+0 <= -0" will be true but vmin
8085    // will return -0, so vmin can only be used for unsafe math or if one of
8086    // the operands is known to be nonzero.
8087    if ((CC == ISD::SETLE || CC == ISD::SETOLE || CC == ISD::SETULE) &&
8088        !DAG.getTarget().Options.UnsafeFPMath &&
8089        !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
8090      break;
8091    Opcode = IsReversed ? ARMISD::FMAX : ARMISD::FMIN;
8092    break;
8093
8094  case ISD::SETOGT:
8095  case ISD::SETOGE:
8096  case ISD::SETGT:
8097  case ISD::SETGE:
8098  case ISD::SETUGT:
8099  case ISD::SETUGE:
8100    // If LHS is NaN, an ordered comparison will be false and the result will
8101    // be the RHS, but vmax(NaN, RHS) = NaN.  Avoid this by checking that LHS
8102    // != NaN.  Likewise, for unordered comparisons, check for RHS != NaN.
8103    IsUnordered = (CC == ISD::SETUGT || CC == ISD::SETUGE);
8104    if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
8105      break;
8106    // For greater-than-or-equal comparisons, "-0 >= +0" will be true but vmax
8107    // will return +0, so vmax can only be used for unsafe math or if one of
8108    // the operands is known to be nonzero.
8109    if ((CC == ISD::SETGE || CC == ISD::SETOGE || CC == ISD::SETUGE) &&
8110        !DAG.getTarget().Options.UnsafeFPMath &&
8111        !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
8112      break;
8113    Opcode = IsReversed ? ARMISD::FMIN : ARMISD::FMAX;
8114    break;
8115  }
8116
8117  if (!Opcode)
8118    return SDValue();
8119  return DAG.getNode(Opcode, N->getDebugLoc(), N->getValueType(0), LHS, RHS);
8120}
8121
8122/// PerformCMOVCombine - Target-specific DAG combining for ARMISD::CMOV.
8123SDValue
8124ARMTargetLowering::PerformCMOVCombine(SDNode *N, SelectionDAG &DAG) const {
8125  SDValue Cmp = N->getOperand(4);
8126  if (Cmp.getOpcode() != ARMISD::CMPZ)
8127    // Only looking at EQ and NE cases.
8128    return SDValue();
8129
8130  EVT VT = N->getValueType(0);
8131  DebugLoc dl = N->getDebugLoc();
8132  SDValue LHS = Cmp.getOperand(0);
8133  SDValue RHS = Cmp.getOperand(1);
8134  SDValue FalseVal = N->getOperand(0);
8135  SDValue TrueVal = N->getOperand(1);
8136  SDValue ARMcc = N->getOperand(2);
8137  ARMCC::CondCodes CC =
8138    (ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue();
8139
8140  // Simplify
8141  //   mov     r1, r0
8142  //   cmp     r1, x
8143  //   mov     r0, y
8144  //   moveq   r0, x
8145  // to
8146  //   cmp     r0, x
8147  //   movne   r0, y
8148  //
8149  //   mov     r1, r0
8150  //   cmp     r1, x
8151  //   mov     r0, x
8152  //   movne   r0, y
8153  // to
8154  //   cmp     r0, x
8155  //   movne   r0, y
8156  /// FIXME: Turn this into a target neutral optimization?
8157  SDValue Res;
8158  if (CC == ARMCC::NE && FalseVal == RHS && FalseVal != LHS) {
8159    Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, TrueVal, ARMcc,
8160                      N->getOperand(3), Cmp);
8161  } else if (CC == ARMCC::EQ && TrueVal == RHS) {
8162    SDValue ARMcc;
8163    SDValue NewCmp = getARMCmp(LHS, RHS, ISD::SETNE, ARMcc, DAG, dl);
8164    Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, FalseVal, ARMcc,
8165                      N->getOperand(3), NewCmp);
8166  }
8167
8168  if (Res.getNode()) {
8169    APInt KnownZero, KnownOne;
8170    APInt Mask = APInt::getAllOnesValue(VT.getScalarType().getSizeInBits());
8171    DAG.ComputeMaskedBits(SDValue(N,0), Mask, KnownZero, KnownOne);
8172    // Capture demanded bits information that would be otherwise lost.
8173    if (KnownZero == 0xfffffffe)
8174      Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
8175                        DAG.getValueType(MVT::i1));
8176    else if (KnownZero == 0xffffff00)
8177      Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
8178                        DAG.getValueType(MVT::i8));
8179    else if (KnownZero == 0xffff0000)
8180      Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
8181                        DAG.getValueType(MVT::i16));
8182  }
8183
8184  return Res;
8185}
8186
8187SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
8188                                             DAGCombinerInfo &DCI) const {
8189  switch (N->getOpcode()) {
8190  default: break;
8191  case ISD::ADD:        return PerformADDCombine(N, DCI, Subtarget);
8192  case ISD::SUB:        return PerformSUBCombine(N, DCI);
8193  case ISD::MUL:        return PerformMULCombine(N, DCI, Subtarget);
8194  case ISD::OR:         return PerformORCombine(N, DCI, Subtarget);
8195  case ISD::XOR:        return PerformXORCombine(N, DCI, Subtarget);
8196  case ISD::AND:        return PerformANDCombine(N, DCI, Subtarget);
8197  case ARMISD::BFI:     return PerformBFICombine(N, DCI);
8198  case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI);
8199  case ARMISD::VMOVDRR: return PerformVMOVDRRCombine(N, DCI.DAG);
8200  case ISD::STORE:      return PerformSTORECombine(N, DCI);
8201  case ISD::BUILD_VECTOR: return PerformBUILD_VECTORCombine(N, DCI);
8202  case ISD::INSERT_VECTOR_ELT: return PerformInsertEltCombine(N, DCI);
8203  case ISD::VECTOR_SHUFFLE: return PerformVECTOR_SHUFFLECombine(N, DCI.DAG);
8204  case ARMISD::VDUPLANE: return PerformVDUPLANECombine(N, DCI);
8205  case ISD::FP_TO_SINT:
8206  case ISD::FP_TO_UINT: return PerformVCVTCombine(N, DCI, Subtarget);
8207  case ISD::FDIV:       return PerformVDIVCombine(N, DCI, Subtarget);
8208  case ISD::INTRINSIC_WO_CHAIN: return PerformIntrinsicCombine(N, DCI.DAG);
8209  case ISD::SHL:
8210  case ISD::SRA:
8211  case ISD::SRL:        return PerformShiftCombine(N, DCI.DAG, Subtarget);
8212  case ISD::SIGN_EXTEND:
8213  case ISD::ZERO_EXTEND:
8214  case ISD::ANY_EXTEND: return PerformExtendCombine(N, DCI.DAG, Subtarget);
8215  case ISD::SELECT_CC:  return PerformSELECT_CCCombine(N, DCI.DAG, Subtarget);
8216  case ARMISD::CMOV: return PerformCMOVCombine(N, DCI.DAG);
8217  case ARMISD::VLD2DUP:
8218  case ARMISD::VLD3DUP:
8219  case ARMISD::VLD4DUP:
8220    return CombineBaseUpdate(N, DCI);
8221  case ISD::INTRINSIC_VOID:
8222  case ISD::INTRINSIC_W_CHAIN:
8223    switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
8224    case Intrinsic::arm_neon_vld1:
8225    case Intrinsic::arm_neon_vld2:
8226    case Intrinsic::arm_neon_vld3:
8227    case Intrinsic::arm_neon_vld4:
8228    case Intrinsic::arm_neon_vld2lane:
8229    case Intrinsic::arm_neon_vld3lane:
8230    case Intrinsic::arm_neon_vld4lane:
8231    case Intrinsic::arm_neon_vst1:
8232    case Intrinsic::arm_neon_vst2:
8233    case Intrinsic::arm_neon_vst3:
8234    case Intrinsic::arm_neon_vst4:
8235    case Intrinsic::arm_neon_vst2lane:
8236    case Intrinsic::arm_neon_vst3lane:
8237    case Intrinsic::arm_neon_vst4lane:
8238      return CombineBaseUpdate(N, DCI);
8239    default: break;
8240    }
8241    break;
8242  }
8243  return SDValue();
8244}
8245
8246bool ARMTargetLowering::isDesirableToTransformToIntegerOp(unsigned Opc,
8247                                                          EVT VT) const {
8248  return (VT == MVT::f32) && (Opc == ISD::LOAD || Opc == ISD::STORE);
8249}
8250
8251bool ARMTargetLowering::allowsUnalignedMemoryAccesses(EVT VT) const {
8252  if (!Subtarget->allowsUnalignedMem())
8253    return false;
8254
8255  switch (VT.getSimpleVT().SimpleTy) {
8256  default:
8257    return false;
8258  case MVT::i8:
8259  case MVT::i16:
8260  case MVT::i32:
8261    return true;
8262  // FIXME: VLD1 etc with standard alignment is legal.
8263  }
8264}
8265
8266static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign,
8267                       unsigned AlignCheck) {
8268  return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) &&
8269          (DstAlign == 0 || DstAlign % AlignCheck == 0));
8270}
8271
8272EVT ARMTargetLowering::getOptimalMemOpType(uint64_t Size,
8273                                           unsigned DstAlign, unsigned SrcAlign,
8274                                           bool IsZeroVal,
8275                                           bool MemcpyStrSrc,
8276                                           MachineFunction &MF) const {
8277  const Function *F = MF.getFunction();
8278
8279  // See if we can use NEON instructions for this...
8280  if (IsZeroVal &&
8281      !F->hasFnAttr(Attribute::NoImplicitFloat) &&
8282      Subtarget->hasNEON()) {
8283    if (memOpAlign(SrcAlign, DstAlign, 16) && Size >= 16) {
8284      return MVT::v4i32;
8285    } else if (memOpAlign(SrcAlign, DstAlign, 8) && Size >= 8) {
8286      return MVT::v2i32;
8287    }
8288  }
8289
8290  // Lowering to i32/i16 if the size permits.
8291  if (Size >= 4) {
8292    return MVT::i32;
8293  } else if (Size >= 2) {
8294    return MVT::i16;
8295  }
8296
8297  // Let the target-independent logic figure it out.
8298  return MVT::Other;
8299}
8300
8301static bool isLegalT1AddressImmediate(int64_t V, EVT VT) {
8302  if (V < 0)
8303    return false;
8304
8305  unsigned Scale = 1;
8306  switch (VT.getSimpleVT().SimpleTy) {
8307  default: return false;
8308  case MVT::i1:
8309  case MVT::i8:
8310    // Scale == 1;
8311    break;
8312  case MVT::i16:
8313    // Scale == 2;
8314    Scale = 2;
8315    break;
8316  case MVT::i32:
8317    // Scale == 4;
8318    Scale = 4;
8319    break;
8320  }
8321
8322  if ((V & (Scale - 1)) != 0)
8323    return false;
8324  V /= Scale;
8325  return V == (V & ((1LL << 5) - 1));
8326}
8327
8328static bool isLegalT2AddressImmediate(int64_t V, EVT VT,
8329                                      const ARMSubtarget *Subtarget) {
8330  bool isNeg = false;
8331  if (V < 0) {
8332    isNeg = true;
8333    V = - V;
8334  }
8335
8336  switch (VT.getSimpleVT().SimpleTy) {
8337  default: return false;
8338  case MVT::i1:
8339  case MVT::i8:
8340  case MVT::i16:
8341  case MVT::i32:
8342    // + imm12 or - imm8
8343    if (isNeg)
8344      return V == (V & ((1LL << 8) - 1));
8345    return V == (V & ((1LL << 12) - 1));
8346  case MVT::f32:
8347  case MVT::f64:
8348    // Same as ARM mode. FIXME: NEON?
8349    if (!Subtarget->hasVFP2())
8350      return false;
8351    if ((V & 3) != 0)
8352      return false;
8353    V >>= 2;
8354    return V == (V & ((1LL << 8) - 1));
8355  }
8356}
8357
8358/// isLegalAddressImmediate - Return true if the integer value can be used
8359/// as the offset of the target addressing mode for load / store of the
8360/// given type.
8361static bool isLegalAddressImmediate(int64_t V, EVT VT,
8362                                    const ARMSubtarget *Subtarget) {
8363  if (V == 0)
8364    return true;
8365
8366  if (!VT.isSimple())
8367    return false;
8368
8369  if (Subtarget->isThumb1Only())
8370    return isLegalT1AddressImmediate(V, VT);
8371  else if (Subtarget->isThumb2())
8372    return isLegalT2AddressImmediate(V, VT, Subtarget);
8373
8374  // ARM mode.
8375  if (V < 0)
8376    V = - V;
8377  switch (VT.getSimpleVT().SimpleTy) {
8378  default: return false;
8379  case MVT::i1:
8380  case MVT::i8:
8381  case MVT::i32:
8382    // +- imm12
8383    return V == (V & ((1LL << 12) - 1));
8384  case MVT::i16:
8385    // +- imm8
8386    return V == (V & ((1LL << 8) - 1));
8387  case MVT::f32:
8388  case MVT::f64:
8389    if (!Subtarget->hasVFP2()) // FIXME: NEON?
8390      return false;
8391    if ((V & 3) != 0)
8392      return false;
8393    V >>= 2;
8394    return V == (V & ((1LL << 8) - 1));
8395  }
8396}
8397
8398bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM,
8399                                                      EVT VT) const {
8400  int Scale = AM.Scale;
8401  if (Scale < 0)
8402    return false;
8403
8404  switch (VT.getSimpleVT().SimpleTy) {
8405  default: return false;
8406  case MVT::i1:
8407  case MVT::i8:
8408  case MVT::i16:
8409  case MVT::i32:
8410    if (Scale == 1)
8411      return true;
8412    // r + r << imm
8413    Scale = Scale & ~1;
8414    return Scale == 2 || Scale == 4 || Scale == 8;
8415  case MVT::i64:
8416    // r + r
8417    if (((unsigned)AM.HasBaseReg + Scale) <= 2)
8418      return true;
8419    return false;
8420  case MVT::isVoid:
8421    // Note, we allow "void" uses (basically, uses that aren't loads or
8422    // stores), because arm allows folding a scale into many arithmetic
8423    // operations.  This should be made more precise and revisited later.
8424
8425    // Allow r << imm, but the imm has to be a multiple of two.
8426    if (Scale & 1) return false;
8427    return isPowerOf2_32(Scale);
8428  }
8429}
8430
8431/// isLegalAddressingMode - Return true if the addressing mode represented
8432/// by AM is legal for this target, for a load/store of the specified type.
8433bool ARMTargetLowering::isLegalAddressingMode(const AddrMode &AM,
8434                                              Type *Ty) const {
8435  EVT VT = getValueType(Ty, true);
8436  if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget))
8437    return false;
8438
8439  // Can never fold addr of global into load/store.
8440  if (AM.BaseGV)
8441    return false;
8442
8443  switch (AM.Scale) {
8444  case 0:  // no scale reg, must be "r+i" or "r", or "i".
8445    break;
8446  case 1:
8447    if (Subtarget->isThumb1Only())
8448      return false;
8449    // FALL THROUGH.
8450  default:
8451    // ARM doesn't support any R+R*scale+imm addr modes.
8452    if (AM.BaseOffs)
8453      return false;
8454
8455    if (!VT.isSimple())
8456      return false;
8457
8458    if (Subtarget->isThumb2())
8459      return isLegalT2ScaledAddressingMode(AM, VT);
8460
8461    int Scale = AM.Scale;
8462    switch (VT.getSimpleVT().SimpleTy) {
8463    default: return false;
8464    case MVT::i1:
8465    case MVT::i8:
8466    case MVT::i32:
8467      if (Scale < 0) Scale = -Scale;
8468      if (Scale == 1)
8469        return true;
8470      // r + r << imm
8471      return isPowerOf2_32(Scale & ~1);
8472    case MVT::i16:
8473    case MVT::i64:
8474      // r + r
8475      if (((unsigned)AM.HasBaseReg + Scale) <= 2)
8476        return true;
8477      return false;
8478
8479    case MVT::isVoid:
8480      // Note, we allow "void" uses (basically, uses that aren't loads or
8481      // stores), because arm allows folding a scale into many arithmetic
8482      // operations.  This should be made more precise and revisited later.
8483
8484      // Allow r << imm, but the imm has to be a multiple of two.
8485      if (Scale & 1) return false;
8486      return isPowerOf2_32(Scale);
8487    }
8488  }
8489  return true;
8490}
8491
8492/// isLegalICmpImmediate - Return true if the specified immediate is legal
8493/// icmp immediate, that is the target has icmp instructions which can compare
8494/// a register against the immediate without having to materialize the
8495/// immediate into a register.
8496bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
8497  if (!Subtarget->isThumb())
8498    return ARM_AM::getSOImmVal(Imm) != -1;
8499  if (Subtarget->isThumb2())
8500    return ARM_AM::getT2SOImmVal(Imm) != -1;
8501  return Imm >= 0 && Imm <= 255;
8502}
8503
8504/// isLegalAddImmediate - Return true if the specified immediate is legal
8505/// add immediate, that is the target has add instructions which can add
8506/// a register with the immediate without having to materialize the
8507/// immediate into a register.
8508bool ARMTargetLowering::isLegalAddImmediate(int64_t Imm) const {
8509  return ARM_AM::getSOImmVal(Imm) != -1;
8510}
8511
8512static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT,
8513                                      bool isSEXTLoad, SDValue &Base,
8514                                      SDValue &Offset, bool &isInc,
8515                                      SelectionDAG &DAG) {
8516  if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
8517    return false;
8518
8519  if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
8520    // AddressingMode 3
8521    Base = Ptr->getOperand(0);
8522    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
8523      int RHSC = (int)RHS->getZExtValue();
8524      if (RHSC < 0 && RHSC > -256) {
8525        assert(Ptr->getOpcode() == ISD::ADD);
8526        isInc = false;
8527        Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
8528        return true;
8529      }
8530    }
8531    isInc = (Ptr->getOpcode() == ISD::ADD);
8532    Offset = Ptr->getOperand(1);
8533    return true;
8534  } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
8535    // AddressingMode 2
8536    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
8537      int RHSC = (int)RHS->getZExtValue();
8538      if (RHSC < 0 && RHSC > -0x1000) {
8539        assert(Ptr->getOpcode() == ISD::ADD);
8540        isInc = false;
8541        Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
8542        Base = Ptr->getOperand(0);
8543        return true;
8544      }
8545    }
8546
8547    if (Ptr->getOpcode() == ISD::ADD) {
8548      isInc = true;
8549      ARM_AM::ShiftOpc ShOpcVal=
8550        ARM_AM::getShiftOpcForNode(Ptr->getOperand(0).getOpcode());
8551      if (ShOpcVal != ARM_AM::no_shift) {
8552        Base = Ptr->getOperand(1);
8553        Offset = Ptr->getOperand(0);
8554      } else {
8555        Base = Ptr->getOperand(0);
8556        Offset = Ptr->getOperand(1);
8557      }
8558      return true;
8559    }
8560
8561    isInc = (Ptr->getOpcode() == ISD::ADD);
8562    Base = Ptr->getOperand(0);
8563    Offset = Ptr->getOperand(1);
8564    return true;
8565  }
8566
8567  // FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
8568  return false;
8569}
8570
8571static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT,
8572                                     bool isSEXTLoad, SDValue &Base,
8573                                     SDValue &Offset, bool &isInc,
8574                                     SelectionDAG &DAG) {
8575  if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
8576    return false;
8577
8578  Base = Ptr->getOperand(0);
8579  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
8580    int RHSC = (int)RHS->getZExtValue();
8581    if (RHSC < 0 && RHSC > -0x100) { // 8 bits.
8582      assert(Ptr->getOpcode() == ISD::ADD);
8583      isInc = false;
8584      Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
8585      return true;
8586    } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero.
8587      isInc = Ptr->getOpcode() == ISD::ADD;
8588      Offset = DAG.getConstant(RHSC, RHS->getValueType(0));
8589      return true;
8590    }
8591  }
8592
8593  return false;
8594}
8595
8596/// getPreIndexedAddressParts - returns true by value, base pointer and
8597/// offset pointer and addressing mode by reference if the node's address
8598/// can be legally represented as pre-indexed load / store address.
8599bool
8600ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
8601                                             SDValue &Offset,
8602                                             ISD::MemIndexedMode &AM,
8603                                             SelectionDAG &DAG) const {
8604  if (Subtarget->isThumb1Only())
8605    return false;
8606
8607  EVT VT;
8608  SDValue Ptr;
8609  bool isSEXTLoad = false;
8610  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
8611    Ptr = LD->getBasePtr();
8612    VT  = LD->getMemoryVT();
8613    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
8614  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
8615    Ptr = ST->getBasePtr();
8616    VT  = ST->getMemoryVT();
8617  } else
8618    return false;
8619
8620  bool isInc;
8621  bool isLegal = false;
8622  if (Subtarget->isThumb2())
8623    isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
8624                                       Offset, isInc, DAG);
8625  else
8626    isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
8627                                        Offset, isInc, DAG);
8628  if (!isLegal)
8629    return false;
8630
8631  AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
8632  return true;
8633}
8634
8635/// getPostIndexedAddressParts - returns true by value, base pointer and
8636/// offset pointer and addressing mode by reference if this node can be
8637/// combined with a load / store to form a post-indexed load / store.
8638bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
8639                                                   SDValue &Base,
8640                                                   SDValue &Offset,
8641                                                   ISD::MemIndexedMode &AM,
8642                                                   SelectionDAG &DAG) const {
8643  if (Subtarget->isThumb1Only())
8644    return false;
8645
8646  EVT VT;
8647  SDValue Ptr;
8648  bool isSEXTLoad = false;
8649  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
8650    VT  = LD->getMemoryVT();
8651    Ptr = LD->getBasePtr();
8652    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
8653  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
8654    VT  = ST->getMemoryVT();
8655    Ptr = ST->getBasePtr();
8656  } else
8657    return false;
8658
8659  bool isInc;
8660  bool isLegal = false;
8661  if (Subtarget->isThumb2())
8662    isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
8663                                       isInc, DAG);
8664  else
8665    isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
8666                                        isInc, DAG);
8667  if (!isLegal)
8668    return false;
8669
8670  if (Ptr != Base) {
8671    // Swap base ptr and offset to catch more post-index load / store when
8672    // it's legal. In Thumb2 mode, offset must be an immediate.
8673    if (Ptr == Offset && Op->getOpcode() == ISD::ADD &&
8674        !Subtarget->isThumb2())
8675      std::swap(Base, Offset);
8676
8677    // Post-indexed load / store update the base pointer.
8678    if (Ptr != Base)
8679      return false;
8680  }
8681
8682  AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
8683  return true;
8684}
8685
8686void ARMTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
8687                                                       const APInt &Mask,
8688                                                       APInt &KnownZero,
8689                                                       APInt &KnownOne,
8690                                                       const SelectionDAG &DAG,
8691                                                       unsigned Depth) const {
8692  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
8693  switch (Op.getOpcode()) {
8694  default: break;
8695  case ARMISD::CMOV: {
8696    // Bits are known zero/one if known on the LHS and RHS.
8697    DAG.ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
8698    if (KnownZero == 0 && KnownOne == 0) return;
8699
8700    APInt KnownZeroRHS, KnownOneRHS;
8701    DAG.ComputeMaskedBits(Op.getOperand(1), Mask,
8702                          KnownZeroRHS, KnownOneRHS, Depth+1);
8703    KnownZero &= KnownZeroRHS;
8704    KnownOne  &= KnownOneRHS;
8705    return;
8706  }
8707  }
8708}
8709
8710//===----------------------------------------------------------------------===//
8711//                           ARM Inline Assembly Support
8712//===----------------------------------------------------------------------===//
8713
8714bool ARMTargetLowering::ExpandInlineAsm(CallInst *CI) const {
8715  // Looking for "rev" which is V6+.
8716  if (!Subtarget->hasV6Ops())
8717    return false;
8718
8719  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
8720  std::string AsmStr = IA->getAsmString();
8721  SmallVector<StringRef, 4> AsmPieces;
8722  SplitString(AsmStr, AsmPieces, ";\n");
8723
8724  switch (AsmPieces.size()) {
8725  default: return false;
8726  case 1:
8727    AsmStr = AsmPieces[0];
8728    AsmPieces.clear();
8729    SplitString(AsmStr, AsmPieces, " \t,");
8730
8731    // rev $0, $1
8732    if (AsmPieces.size() == 3 &&
8733        AsmPieces[0] == "rev" && AsmPieces[1] == "$0" && AsmPieces[2] == "$1" &&
8734        IA->getConstraintString().compare(0, 4, "=l,l") == 0) {
8735      IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
8736      if (Ty && Ty->getBitWidth() == 32)
8737        return IntrinsicLowering::LowerToByteSwap(CI);
8738    }
8739    break;
8740  }
8741
8742  return false;
8743}
8744
8745/// getConstraintType - Given a constraint letter, return the type of
8746/// constraint it is for this target.
8747ARMTargetLowering::ConstraintType
8748ARMTargetLowering::getConstraintType(const std::string &Constraint) const {
8749  if (Constraint.size() == 1) {
8750    switch (Constraint[0]) {
8751    default:  break;
8752    case 'l': return C_RegisterClass;
8753    case 'w': return C_RegisterClass;
8754    case 'h': return C_RegisterClass;
8755    case 'x': return C_RegisterClass;
8756    case 't': return C_RegisterClass;
8757    case 'j': return C_Other; // Constant for movw.
8758      // An address with a single base register. Due to the way we
8759      // currently handle addresses it is the same as an 'r' memory constraint.
8760    case 'Q': return C_Memory;
8761    }
8762  } else if (Constraint.size() == 2) {
8763    switch (Constraint[0]) {
8764    default: break;
8765    // All 'U+' constraints are addresses.
8766    case 'U': return C_Memory;
8767    }
8768  }
8769  return TargetLowering::getConstraintType(Constraint);
8770}
8771
8772/// Examine constraint type and operand type and determine a weight value.
8773/// This object must already have been set up with the operand type
8774/// and the current alternative constraint selected.
8775TargetLowering::ConstraintWeight
8776ARMTargetLowering::getSingleConstraintMatchWeight(
8777    AsmOperandInfo &info, const char *constraint) const {
8778  ConstraintWeight weight = CW_Invalid;
8779  Value *CallOperandVal = info.CallOperandVal;
8780    // If we don't have a value, we can't do a match,
8781    // but allow it at the lowest weight.
8782  if (CallOperandVal == NULL)
8783    return CW_Default;
8784  Type *type = CallOperandVal->getType();
8785  // Look at the constraint type.
8786  switch (*constraint) {
8787  default:
8788    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
8789    break;
8790  case 'l':
8791    if (type->isIntegerTy()) {
8792      if (Subtarget->isThumb())
8793        weight = CW_SpecificReg;
8794      else
8795        weight = CW_Register;
8796    }
8797    break;
8798  case 'w':
8799    if (type->isFloatingPointTy())
8800      weight = CW_Register;
8801    break;
8802  }
8803  return weight;
8804}
8805
8806typedef std::pair<unsigned, const TargetRegisterClass*> RCPair;
8807RCPair
8808ARMTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
8809                                                EVT VT) const {
8810  if (Constraint.size() == 1) {
8811    // GCC ARM Constraint Letters
8812    switch (Constraint[0]) {
8813    case 'l': // Low regs or general regs.
8814      if (Subtarget->isThumb())
8815        return RCPair(0U, ARM::tGPRRegisterClass);
8816      else
8817        return RCPair(0U, ARM::GPRRegisterClass);
8818    case 'h': // High regs or no regs.
8819      if (Subtarget->isThumb())
8820        return RCPair(0U, ARM::hGPRRegisterClass);
8821      break;
8822    case 'r':
8823      return RCPair(0U, ARM::GPRRegisterClass);
8824    case 'w':
8825      if (VT == MVT::f32)
8826        return RCPair(0U, ARM::SPRRegisterClass);
8827      if (VT.getSizeInBits() == 64)
8828        return RCPair(0U, ARM::DPRRegisterClass);
8829      if (VT.getSizeInBits() == 128)
8830        return RCPair(0U, ARM::QPRRegisterClass);
8831      break;
8832    case 'x':
8833      if (VT == MVT::f32)
8834        return RCPair(0U, ARM::SPR_8RegisterClass);
8835      if (VT.getSizeInBits() == 64)
8836        return RCPair(0U, ARM::DPR_8RegisterClass);
8837      if (VT.getSizeInBits() == 128)
8838        return RCPair(0U, ARM::QPR_8RegisterClass);
8839      break;
8840    case 't':
8841      if (VT == MVT::f32)
8842        return RCPair(0U, ARM::SPRRegisterClass);
8843      break;
8844    }
8845  }
8846  if (StringRef("{cc}").equals_lower(Constraint))
8847    return std::make_pair(unsigned(ARM::CPSR), ARM::CCRRegisterClass);
8848
8849  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
8850}
8851
8852/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
8853/// vector.  If it is invalid, don't add anything to Ops.
8854void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
8855                                                     std::string &Constraint,
8856                                                     std::vector<SDValue>&Ops,
8857                                                     SelectionDAG &DAG) const {
8858  SDValue Result(0, 0);
8859
8860  // Currently only support length 1 constraints.
8861  if (Constraint.length() != 1) return;
8862
8863  char ConstraintLetter = Constraint[0];
8864  switch (ConstraintLetter) {
8865  default: break;
8866  case 'j':
8867  case 'I': case 'J': case 'K': case 'L':
8868  case 'M': case 'N': case 'O':
8869    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
8870    if (!C)
8871      return;
8872
8873    int64_t CVal64 = C->getSExtValue();
8874    int CVal = (int) CVal64;
8875    // None of these constraints allow values larger than 32 bits.  Check
8876    // that the value fits in an int.
8877    if (CVal != CVal64)
8878      return;
8879
8880    switch (ConstraintLetter) {
8881      case 'j':
8882        // Constant suitable for movw, must be between 0 and
8883        // 65535.
8884        if (Subtarget->hasV6T2Ops())
8885          if (CVal >= 0 && CVal <= 65535)
8886            break;
8887        return;
8888      case 'I':
8889        if (Subtarget->isThumb1Only()) {
8890          // This must be a constant between 0 and 255, for ADD
8891          // immediates.
8892          if (CVal >= 0 && CVal <= 255)
8893            break;
8894        } else if (Subtarget->isThumb2()) {
8895          // A constant that can be used as an immediate value in a
8896          // data-processing instruction.
8897          if (ARM_AM::getT2SOImmVal(CVal) != -1)
8898            break;
8899        } else {
8900          // A constant that can be used as an immediate value in a
8901          // data-processing instruction.
8902          if (ARM_AM::getSOImmVal(CVal) != -1)
8903            break;
8904        }
8905        return;
8906
8907      case 'J':
8908        if (Subtarget->isThumb()) {  // FIXME thumb2
8909          // This must be a constant between -255 and -1, for negated ADD
8910          // immediates. This can be used in GCC with an "n" modifier that
8911          // prints the negated value, for use with SUB instructions. It is
8912          // not useful otherwise but is implemented for compatibility.
8913          if (CVal >= -255 && CVal <= -1)
8914            break;
8915        } else {
8916          // This must be a constant between -4095 and 4095. It is not clear
8917          // what this constraint is intended for. Implemented for
8918          // compatibility with GCC.
8919          if (CVal >= -4095 && CVal <= 4095)
8920            break;
8921        }
8922        return;
8923
8924      case 'K':
8925        if (Subtarget->isThumb1Only()) {
8926          // A 32-bit value where only one byte has a nonzero value. Exclude
8927          // zero to match GCC. This constraint is used by GCC internally for
8928          // constants that can be loaded with a move/shift combination.
8929          // It is not useful otherwise but is implemented for compatibility.
8930          if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal))
8931            break;
8932        } else if (Subtarget->isThumb2()) {
8933          // A constant whose bitwise inverse can be used as an immediate
8934          // value in a data-processing instruction. This can be used in GCC
8935          // with a "B" modifier that prints the inverted value, for use with
8936          // BIC and MVN instructions. It is not useful otherwise but is
8937          // implemented for compatibility.
8938          if (ARM_AM::getT2SOImmVal(~CVal) != -1)
8939            break;
8940        } else {
8941          // A constant whose bitwise inverse can be used as an immediate
8942          // value in a data-processing instruction. This can be used in GCC
8943          // with a "B" modifier that prints the inverted value, for use with
8944          // BIC and MVN instructions. It is not useful otherwise but is
8945          // implemented for compatibility.
8946          if (ARM_AM::getSOImmVal(~CVal) != -1)
8947            break;
8948        }
8949        return;
8950
8951      case 'L':
8952        if (Subtarget->isThumb1Only()) {
8953          // This must be a constant between -7 and 7,
8954          // for 3-operand ADD/SUB immediate instructions.
8955          if (CVal >= -7 && CVal < 7)
8956            break;
8957        } else if (Subtarget->isThumb2()) {
8958          // A constant whose negation can be used as an immediate value in a
8959          // data-processing instruction. This can be used in GCC with an "n"
8960          // modifier that prints the negated value, for use with SUB
8961          // instructions. It is not useful otherwise but is implemented for
8962          // compatibility.
8963          if (ARM_AM::getT2SOImmVal(-CVal) != -1)
8964            break;
8965        } else {
8966          // A constant whose negation can be used as an immediate value in a
8967          // data-processing instruction. This can be used in GCC with an "n"
8968          // modifier that prints the negated value, for use with SUB
8969          // instructions. It is not useful otherwise but is implemented for
8970          // compatibility.
8971          if (ARM_AM::getSOImmVal(-CVal) != -1)
8972            break;
8973        }
8974        return;
8975
8976      case 'M':
8977        if (Subtarget->isThumb()) { // FIXME thumb2
8978          // This must be a multiple of 4 between 0 and 1020, for
8979          // ADD sp + immediate.
8980          if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
8981            break;
8982        } else {
8983          // A power of two or a constant between 0 and 32.  This is used in
8984          // GCC for the shift amount on shifted register operands, but it is
8985          // useful in general for any shift amounts.
8986          if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0))
8987            break;
8988        }
8989        return;
8990
8991      case 'N':
8992        if (Subtarget->isThumb()) {  // FIXME thumb2
8993          // This must be a constant between 0 and 31, for shift amounts.
8994          if (CVal >= 0 && CVal <= 31)
8995            break;
8996        }
8997        return;
8998
8999      case 'O':
9000        if (Subtarget->isThumb()) {  // FIXME thumb2
9001          // This must be a multiple of 4 between -508 and 508, for
9002          // ADD/SUB sp = sp + immediate.
9003          if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
9004            break;
9005        }
9006        return;
9007    }
9008    Result = DAG.getTargetConstant(CVal, Op.getValueType());
9009    break;
9010  }
9011
9012  if (Result.getNode()) {
9013    Ops.push_back(Result);
9014    return;
9015  }
9016  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
9017}
9018
9019bool
9020ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
9021  // The ARM target isn't yet aware of offsets.
9022  return false;
9023}
9024
9025bool ARM::isBitFieldInvertedMask(unsigned v) {
9026  if (v == 0xffffffff)
9027    return 0;
9028  // there can be 1's on either or both "outsides", all the "inside"
9029  // bits must be 0's
9030  unsigned int lsb = 0, msb = 31;
9031  while (v & (1 << msb)) --msb;
9032  while (v & (1 << lsb)) ++lsb;
9033  for (unsigned int i = lsb; i <= msb; ++i) {
9034    if (v & (1 << i))
9035      return 0;
9036  }
9037  return 1;
9038}
9039
9040/// isFPImmLegal - Returns true if the target can instruction select the
9041/// specified FP immediate natively. If false, the legalizer will
9042/// materialize the FP immediate as a load from a constant pool.
9043bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
9044  if (!Subtarget->hasVFP3())
9045    return false;
9046  if (VT == MVT::f32)
9047    return ARM_AM::getFP32Imm(Imm) != -1;
9048  if (VT == MVT::f64)
9049    return ARM_AM::getFP64Imm(Imm) != -1;
9050  return false;
9051}
9052
9053/// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
9054/// MemIntrinsicNodes.  The associated MachineMemOperands record the alignment
9055/// specified in the intrinsic calls.
9056bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
9057                                           const CallInst &I,
9058                                           unsigned Intrinsic) const {
9059  switch (Intrinsic) {
9060  case Intrinsic::arm_neon_vld1:
9061  case Intrinsic::arm_neon_vld2:
9062  case Intrinsic::arm_neon_vld3:
9063  case Intrinsic::arm_neon_vld4:
9064  case Intrinsic::arm_neon_vld2lane:
9065  case Intrinsic::arm_neon_vld3lane:
9066  case Intrinsic::arm_neon_vld4lane: {
9067    Info.opc = ISD::INTRINSIC_W_CHAIN;
9068    // Conservatively set memVT to the entire set of vectors loaded.
9069    uint64_t NumElts = getTargetData()->getTypeAllocSize(I.getType()) / 8;
9070    Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
9071    Info.ptrVal = I.getArgOperand(0);
9072    Info.offset = 0;
9073    Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
9074    Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
9075    Info.vol = false; // volatile loads with NEON intrinsics not supported
9076    Info.readMem = true;
9077    Info.writeMem = false;
9078    return true;
9079  }
9080  case Intrinsic::arm_neon_vst1:
9081  case Intrinsic::arm_neon_vst2:
9082  case Intrinsic::arm_neon_vst3:
9083  case Intrinsic::arm_neon_vst4:
9084  case Intrinsic::arm_neon_vst2lane:
9085  case Intrinsic::arm_neon_vst3lane:
9086  case Intrinsic::arm_neon_vst4lane: {
9087    Info.opc = ISD::INTRINSIC_VOID;
9088    // Conservatively set memVT to the entire set of vectors stored.
9089    unsigned NumElts = 0;
9090    for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
9091      Type *ArgTy = I.getArgOperand(ArgI)->getType();
9092      if (!ArgTy->isVectorTy())
9093        break;
9094      NumElts += getTargetData()->getTypeAllocSize(ArgTy) / 8;
9095    }
9096    Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
9097    Info.ptrVal = I.getArgOperand(0);
9098    Info.offset = 0;
9099    Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
9100    Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
9101    Info.vol = false; // volatile stores with NEON intrinsics not supported
9102    Info.readMem = false;
9103    Info.writeMem = true;
9104    return true;
9105  }
9106  case Intrinsic::arm_strexd: {
9107    Info.opc = ISD::INTRINSIC_W_CHAIN;
9108    Info.memVT = MVT::i64;
9109    Info.ptrVal = I.getArgOperand(2);
9110    Info.offset = 0;
9111    Info.align = 8;
9112    Info.vol = true;
9113    Info.readMem = false;
9114    Info.writeMem = true;
9115    return true;
9116  }
9117  case Intrinsic::arm_ldrexd: {
9118    Info.opc = ISD::INTRINSIC_W_CHAIN;
9119    Info.memVT = MVT::i64;
9120    Info.ptrVal = I.getArgOperand(0);
9121    Info.offset = 0;
9122    Info.align = 8;
9123    Info.vol = true;
9124    Info.readMem = true;
9125    Info.writeMem = false;
9126    return true;
9127  }
9128  default:
9129    break;
9130  }
9131
9132  return false;
9133}
9134