ARMISelLowering.cpp revision cca82149adef8306a295abdc963213ae3b11bbb6
1//===-- ARMISelLowering.cpp - ARM DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that ARM uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "arm-isel"
16#include "ARM.h"
17#include "ARMAddressingModes.h"
18#include "ARMCallingConv.h"
19#include "ARMConstantPoolValue.h"
20#include "ARMISelLowering.h"
21#include "ARMMachineFunctionInfo.h"
22#include "ARMPerfectShuffle.h"
23#include "ARMRegisterInfo.h"
24#include "ARMSubtarget.h"
25#include "ARMTargetMachine.h"
26#include "ARMTargetObjectFile.h"
27#include "llvm/CallingConv.h"
28#include "llvm/Constants.h"
29#include "llvm/Function.h"
30#include "llvm/GlobalValue.h"
31#include "llvm/Instruction.h"
32#include "llvm/Instructions.h"
33#include "llvm/Intrinsics.h"
34#include "llvm/Type.h"
35#include "llvm/CodeGen/CallingConvLower.h"
36#include "llvm/CodeGen/IntrinsicLowering.h"
37#include "llvm/CodeGen/MachineBasicBlock.h"
38#include "llvm/CodeGen/MachineFrameInfo.h"
39#include "llvm/CodeGen/MachineFunction.h"
40#include "llvm/CodeGen/MachineInstrBuilder.h"
41#include "llvm/CodeGen/MachineRegisterInfo.h"
42#include "llvm/CodeGen/PseudoSourceValue.h"
43#include "llvm/CodeGen/SelectionDAG.h"
44#include "llvm/MC/MCSectionMachO.h"
45#include "llvm/Target/TargetOptions.h"
46#include "llvm/ADT/VectorExtras.h"
47#include "llvm/ADT/StringExtras.h"
48#include "llvm/ADT/Statistic.h"
49#include "llvm/Support/CommandLine.h"
50#include "llvm/Support/ErrorHandling.h"
51#include "llvm/Support/MathExtras.h"
52#include "llvm/Support/raw_ostream.h"
53#include <sstream>
54using namespace llvm;
55
56STATISTIC(NumTailCalls, "Number of tail calls");
57STATISTIC(NumMovwMovt, "Number of GAs materialized with movw + movt");
58
59// This option should go away when tail calls fully work.
60static cl::opt<bool>
61EnableARMTailCalls("arm-tail-calls", cl::Hidden,
62  cl::desc("Generate tail calls (TEMPORARY OPTION)."),
63  cl::init(false));
64
65cl::opt<bool>
66EnableARMLongCalls("arm-long-calls", cl::Hidden,
67  cl::desc("Generate calls via indirect call instructions"),
68  cl::init(false));
69
70static cl::opt<bool>
71ARMInterworking("arm-interworking", cl::Hidden,
72  cl::desc("Enable / disable ARM interworking (for debugging only)"),
73  cl::init(true));
74
75// The APCS parameter registers.
76static const unsigned GPRArgRegs[] = {
77  ARM::R0, ARM::R1, ARM::R2, ARM::R3
78};
79
80void ARMTargetLowering::addTypeForNEON(EVT VT, EVT PromotedLdStVT,
81                                       EVT PromotedBitwiseVT) {
82  if (VT != PromotedLdStVT) {
83    setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote);
84    AddPromotedToType (ISD::LOAD, VT.getSimpleVT(),
85                       PromotedLdStVT.getSimpleVT());
86
87    setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote);
88    AddPromotedToType (ISD::STORE, VT.getSimpleVT(),
89                       PromotedLdStVT.getSimpleVT());
90  }
91
92  EVT ElemTy = VT.getVectorElementType();
93  if (ElemTy != MVT::i64 && ElemTy != MVT::f64)
94    setOperationAction(ISD::VSETCC, VT.getSimpleVT(), Custom);
95  setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT.getSimpleVT(), Custom);
96  if (ElemTy != MVT::i32) {
97    setOperationAction(ISD::SINT_TO_FP, VT.getSimpleVT(), Expand);
98    setOperationAction(ISD::UINT_TO_FP, VT.getSimpleVT(), Expand);
99    setOperationAction(ISD::FP_TO_SINT, VT.getSimpleVT(), Expand);
100    setOperationAction(ISD::FP_TO_UINT, VT.getSimpleVT(), Expand);
101  }
102  setOperationAction(ISD::BUILD_VECTOR, VT.getSimpleVT(), Custom);
103  setOperationAction(ISD::VECTOR_SHUFFLE, VT.getSimpleVT(), Custom);
104  setOperationAction(ISD::CONCAT_VECTORS, VT.getSimpleVT(), Legal);
105  setOperationAction(ISD::EXTRACT_SUBVECTOR, VT.getSimpleVT(), Legal);
106  setOperationAction(ISD::SELECT, VT.getSimpleVT(), Expand);
107  setOperationAction(ISD::SELECT_CC, VT.getSimpleVT(), Expand);
108  if (VT.isInteger()) {
109    setOperationAction(ISD::SHL, VT.getSimpleVT(), Custom);
110    setOperationAction(ISD::SRA, VT.getSimpleVT(), Custom);
111    setOperationAction(ISD::SRL, VT.getSimpleVT(), Custom);
112    setLoadExtAction(ISD::SEXTLOAD, VT.getSimpleVT(), Expand);
113    setLoadExtAction(ISD::ZEXTLOAD, VT.getSimpleVT(), Expand);
114    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
115         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
116      setTruncStoreAction(VT.getSimpleVT(),
117                          (MVT::SimpleValueType)InnerVT, Expand);
118  }
119  setLoadExtAction(ISD::EXTLOAD, VT.getSimpleVT(), Expand);
120
121  // Promote all bit-wise operations.
122  if (VT.isInteger() && VT != PromotedBitwiseVT) {
123    setOperationAction(ISD::AND, VT.getSimpleVT(), Promote);
124    AddPromotedToType (ISD::AND, VT.getSimpleVT(),
125                       PromotedBitwiseVT.getSimpleVT());
126    setOperationAction(ISD::OR,  VT.getSimpleVT(), Promote);
127    AddPromotedToType (ISD::OR,  VT.getSimpleVT(),
128                       PromotedBitwiseVT.getSimpleVT());
129    setOperationAction(ISD::XOR, VT.getSimpleVT(), Promote);
130    AddPromotedToType (ISD::XOR, VT.getSimpleVT(),
131                       PromotedBitwiseVT.getSimpleVT());
132  }
133
134  // Neon does not support vector divide/remainder operations.
135  setOperationAction(ISD::SDIV, VT.getSimpleVT(), Expand);
136  setOperationAction(ISD::UDIV, VT.getSimpleVT(), Expand);
137  setOperationAction(ISD::FDIV, VT.getSimpleVT(), Expand);
138  setOperationAction(ISD::SREM, VT.getSimpleVT(), Expand);
139  setOperationAction(ISD::UREM, VT.getSimpleVT(), Expand);
140  setOperationAction(ISD::FREM, VT.getSimpleVT(), Expand);
141}
142
143void ARMTargetLowering::addDRTypeForNEON(EVT VT) {
144  addRegisterClass(VT, ARM::DPRRegisterClass);
145  addTypeForNEON(VT, MVT::f64, MVT::v2i32);
146}
147
148void ARMTargetLowering::addQRTypeForNEON(EVT VT) {
149  addRegisterClass(VT, ARM::QPRRegisterClass);
150  addTypeForNEON(VT, MVT::v2f64, MVT::v4i32);
151}
152
153static TargetLoweringObjectFile *createTLOF(TargetMachine &TM) {
154  if (TM.getSubtarget<ARMSubtarget>().isTargetDarwin())
155    return new TargetLoweringObjectFileMachO();
156
157  return new ARMElfTargetObjectFile();
158}
159
160ARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
161    : TargetLowering(TM, createTLOF(TM)) {
162  Subtarget = &TM.getSubtarget<ARMSubtarget>();
163  RegInfo = TM.getRegisterInfo();
164  Itins = TM.getInstrItineraryData();
165
166  if (Subtarget->isTargetDarwin()) {
167    // Uses VFP for Thumb libfuncs if available.
168    if (Subtarget->isThumb() && Subtarget->hasVFP2()) {
169      // Single-precision floating-point arithmetic.
170      setLibcallName(RTLIB::ADD_F32, "__addsf3vfp");
171      setLibcallName(RTLIB::SUB_F32, "__subsf3vfp");
172      setLibcallName(RTLIB::MUL_F32, "__mulsf3vfp");
173      setLibcallName(RTLIB::DIV_F32, "__divsf3vfp");
174
175      // Double-precision floating-point arithmetic.
176      setLibcallName(RTLIB::ADD_F64, "__adddf3vfp");
177      setLibcallName(RTLIB::SUB_F64, "__subdf3vfp");
178      setLibcallName(RTLIB::MUL_F64, "__muldf3vfp");
179      setLibcallName(RTLIB::DIV_F64, "__divdf3vfp");
180
181      // Single-precision comparisons.
182      setLibcallName(RTLIB::OEQ_F32, "__eqsf2vfp");
183      setLibcallName(RTLIB::UNE_F32, "__nesf2vfp");
184      setLibcallName(RTLIB::OLT_F32, "__ltsf2vfp");
185      setLibcallName(RTLIB::OLE_F32, "__lesf2vfp");
186      setLibcallName(RTLIB::OGE_F32, "__gesf2vfp");
187      setLibcallName(RTLIB::OGT_F32, "__gtsf2vfp");
188      setLibcallName(RTLIB::UO_F32,  "__unordsf2vfp");
189      setLibcallName(RTLIB::O_F32,   "__unordsf2vfp");
190
191      setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
192      setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETNE);
193      setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
194      setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
195      setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
196      setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
197      setCmpLibcallCC(RTLIB::UO_F32,  ISD::SETNE);
198      setCmpLibcallCC(RTLIB::O_F32,   ISD::SETEQ);
199
200      // Double-precision comparisons.
201      setLibcallName(RTLIB::OEQ_F64, "__eqdf2vfp");
202      setLibcallName(RTLIB::UNE_F64, "__nedf2vfp");
203      setLibcallName(RTLIB::OLT_F64, "__ltdf2vfp");
204      setLibcallName(RTLIB::OLE_F64, "__ledf2vfp");
205      setLibcallName(RTLIB::OGE_F64, "__gedf2vfp");
206      setLibcallName(RTLIB::OGT_F64, "__gtdf2vfp");
207      setLibcallName(RTLIB::UO_F64,  "__unorddf2vfp");
208      setLibcallName(RTLIB::O_F64,   "__unorddf2vfp");
209
210      setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
211      setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETNE);
212      setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
213      setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
214      setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
215      setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
216      setCmpLibcallCC(RTLIB::UO_F64,  ISD::SETNE);
217      setCmpLibcallCC(RTLIB::O_F64,   ISD::SETEQ);
218
219      // Floating-point to integer conversions.
220      // i64 conversions are done via library routines even when generating VFP
221      // instructions, so use the same ones.
222      setLibcallName(RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp");
223      setLibcallName(RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp");
224      setLibcallName(RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp");
225      setLibcallName(RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp");
226
227      // Conversions between floating types.
228      setLibcallName(RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp");
229      setLibcallName(RTLIB::FPEXT_F32_F64,   "__extendsfdf2vfp");
230
231      // Integer to floating-point conversions.
232      // i64 conversions are done via library routines even when generating VFP
233      // instructions, so use the same ones.
234      // FIXME: There appears to be some naming inconsistency in ARM libgcc:
235      // e.g., __floatunsidf vs. __floatunssidfvfp.
236      setLibcallName(RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp");
237      setLibcallName(RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp");
238      setLibcallName(RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp");
239      setLibcallName(RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp");
240    }
241  }
242
243  // These libcalls are not available in 32-bit.
244  setLibcallName(RTLIB::SHL_I128, 0);
245  setLibcallName(RTLIB::SRL_I128, 0);
246  setLibcallName(RTLIB::SRA_I128, 0);
247
248  if (Subtarget->isAAPCS_ABI()) {
249    // Double-precision floating-point arithmetic helper functions
250    // RTABI chapter 4.1.2, Table 2
251    setLibcallName(RTLIB::ADD_F64, "__aeabi_dadd");
252    setLibcallName(RTLIB::DIV_F64, "__aeabi_ddiv");
253    setLibcallName(RTLIB::MUL_F64, "__aeabi_dmul");
254    setLibcallName(RTLIB::SUB_F64, "__aeabi_dsub");
255    setLibcallCallingConv(RTLIB::ADD_F64, CallingConv::ARM_AAPCS);
256    setLibcallCallingConv(RTLIB::DIV_F64, CallingConv::ARM_AAPCS);
257    setLibcallCallingConv(RTLIB::MUL_F64, CallingConv::ARM_AAPCS);
258    setLibcallCallingConv(RTLIB::SUB_F64, CallingConv::ARM_AAPCS);
259
260    // Double-precision floating-point comparison helper functions
261    // RTABI chapter 4.1.2, Table 3
262    setLibcallName(RTLIB::OEQ_F64, "__aeabi_dcmpeq");
263    setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
264    setLibcallName(RTLIB::UNE_F64, "__aeabi_dcmpeq");
265    setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETEQ);
266    setLibcallName(RTLIB::OLT_F64, "__aeabi_dcmplt");
267    setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
268    setLibcallName(RTLIB::OLE_F64, "__aeabi_dcmple");
269    setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
270    setLibcallName(RTLIB::OGE_F64, "__aeabi_dcmpge");
271    setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
272    setLibcallName(RTLIB::OGT_F64, "__aeabi_dcmpgt");
273    setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
274    setLibcallName(RTLIB::UO_F64,  "__aeabi_dcmpun");
275    setCmpLibcallCC(RTLIB::UO_F64,  ISD::SETNE);
276    setLibcallName(RTLIB::O_F64,   "__aeabi_dcmpun");
277    setCmpLibcallCC(RTLIB::O_F64,   ISD::SETEQ);
278    setLibcallCallingConv(RTLIB::OEQ_F64, CallingConv::ARM_AAPCS);
279    setLibcallCallingConv(RTLIB::UNE_F64, CallingConv::ARM_AAPCS);
280    setLibcallCallingConv(RTLIB::OLT_F64, CallingConv::ARM_AAPCS);
281    setLibcallCallingConv(RTLIB::OLE_F64, CallingConv::ARM_AAPCS);
282    setLibcallCallingConv(RTLIB::OGE_F64, CallingConv::ARM_AAPCS);
283    setLibcallCallingConv(RTLIB::OGT_F64, CallingConv::ARM_AAPCS);
284    setLibcallCallingConv(RTLIB::UO_F64, CallingConv::ARM_AAPCS);
285    setLibcallCallingConv(RTLIB::O_F64, CallingConv::ARM_AAPCS);
286
287    // Single-precision floating-point arithmetic helper functions
288    // RTABI chapter 4.1.2, Table 4
289    setLibcallName(RTLIB::ADD_F32, "__aeabi_fadd");
290    setLibcallName(RTLIB::DIV_F32, "__aeabi_fdiv");
291    setLibcallName(RTLIB::MUL_F32, "__aeabi_fmul");
292    setLibcallName(RTLIB::SUB_F32, "__aeabi_fsub");
293    setLibcallCallingConv(RTLIB::ADD_F32, CallingConv::ARM_AAPCS);
294    setLibcallCallingConv(RTLIB::DIV_F32, CallingConv::ARM_AAPCS);
295    setLibcallCallingConv(RTLIB::MUL_F32, CallingConv::ARM_AAPCS);
296    setLibcallCallingConv(RTLIB::SUB_F32, CallingConv::ARM_AAPCS);
297
298    // Single-precision floating-point comparison helper functions
299    // RTABI chapter 4.1.2, Table 5
300    setLibcallName(RTLIB::OEQ_F32, "__aeabi_fcmpeq");
301    setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
302    setLibcallName(RTLIB::UNE_F32, "__aeabi_fcmpeq");
303    setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETEQ);
304    setLibcallName(RTLIB::OLT_F32, "__aeabi_fcmplt");
305    setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
306    setLibcallName(RTLIB::OLE_F32, "__aeabi_fcmple");
307    setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
308    setLibcallName(RTLIB::OGE_F32, "__aeabi_fcmpge");
309    setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
310    setLibcallName(RTLIB::OGT_F32, "__aeabi_fcmpgt");
311    setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
312    setLibcallName(RTLIB::UO_F32,  "__aeabi_fcmpun");
313    setCmpLibcallCC(RTLIB::UO_F32,  ISD::SETNE);
314    setLibcallName(RTLIB::O_F32,   "__aeabi_fcmpun");
315    setCmpLibcallCC(RTLIB::O_F32,   ISD::SETEQ);
316    setLibcallCallingConv(RTLIB::OEQ_F32, CallingConv::ARM_AAPCS);
317    setLibcallCallingConv(RTLIB::UNE_F32, CallingConv::ARM_AAPCS);
318    setLibcallCallingConv(RTLIB::OLT_F32, CallingConv::ARM_AAPCS);
319    setLibcallCallingConv(RTLIB::OLE_F32, CallingConv::ARM_AAPCS);
320    setLibcallCallingConv(RTLIB::OGE_F32, CallingConv::ARM_AAPCS);
321    setLibcallCallingConv(RTLIB::OGT_F32, CallingConv::ARM_AAPCS);
322    setLibcallCallingConv(RTLIB::UO_F32, CallingConv::ARM_AAPCS);
323    setLibcallCallingConv(RTLIB::O_F32, CallingConv::ARM_AAPCS);
324
325    // Floating-point to integer conversions.
326    // RTABI chapter 4.1.2, Table 6
327    setLibcallName(RTLIB::FPTOSINT_F64_I32, "__aeabi_d2iz");
328    setLibcallName(RTLIB::FPTOUINT_F64_I32, "__aeabi_d2uiz");
329    setLibcallName(RTLIB::FPTOSINT_F64_I64, "__aeabi_d2lz");
330    setLibcallName(RTLIB::FPTOUINT_F64_I64, "__aeabi_d2ulz");
331    setLibcallName(RTLIB::FPTOSINT_F32_I32, "__aeabi_f2iz");
332    setLibcallName(RTLIB::FPTOUINT_F32_I32, "__aeabi_f2uiz");
333    setLibcallName(RTLIB::FPTOSINT_F32_I64, "__aeabi_f2lz");
334    setLibcallName(RTLIB::FPTOUINT_F32_I64, "__aeabi_f2ulz");
335    setLibcallCallingConv(RTLIB::FPTOSINT_F64_I32, CallingConv::ARM_AAPCS);
336    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I32, CallingConv::ARM_AAPCS);
337    setLibcallCallingConv(RTLIB::FPTOSINT_F64_I64, CallingConv::ARM_AAPCS);
338    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::ARM_AAPCS);
339    setLibcallCallingConv(RTLIB::FPTOSINT_F32_I32, CallingConv::ARM_AAPCS);
340    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I32, CallingConv::ARM_AAPCS);
341    setLibcallCallingConv(RTLIB::FPTOSINT_F32_I64, CallingConv::ARM_AAPCS);
342    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::ARM_AAPCS);
343
344    // Conversions between floating types.
345    // RTABI chapter 4.1.2, Table 7
346    setLibcallName(RTLIB::FPROUND_F64_F32, "__aeabi_d2f");
347    setLibcallName(RTLIB::FPEXT_F32_F64,   "__aeabi_f2d");
348    setLibcallCallingConv(RTLIB::FPROUND_F64_F32, CallingConv::ARM_AAPCS);
349    setLibcallCallingConv(RTLIB::FPEXT_F32_F64, CallingConv::ARM_AAPCS);
350
351    // Integer to floating-point conversions.
352    // RTABI chapter 4.1.2, Table 8
353    setLibcallName(RTLIB::SINTTOFP_I32_F64, "__aeabi_i2d");
354    setLibcallName(RTLIB::UINTTOFP_I32_F64, "__aeabi_ui2d");
355    setLibcallName(RTLIB::SINTTOFP_I64_F64, "__aeabi_l2d");
356    setLibcallName(RTLIB::UINTTOFP_I64_F64, "__aeabi_ul2d");
357    setLibcallName(RTLIB::SINTTOFP_I32_F32, "__aeabi_i2f");
358    setLibcallName(RTLIB::UINTTOFP_I32_F32, "__aeabi_ui2f");
359    setLibcallName(RTLIB::SINTTOFP_I64_F32, "__aeabi_l2f");
360    setLibcallName(RTLIB::UINTTOFP_I64_F32, "__aeabi_ul2f");
361    setLibcallCallingConv(RTLIB::SINTTOFP_I32_F64, CallingConv::ARM_AAPCS);
362    setLibcallCallingConv(RTLIB::UINTTOFP_I32_F64, CallingConv::ARM_AAPCS);
363    setLibcallCallingConv(RTLIB::SINTTOFP_I64_F64, CallingConv::ARM_AAPCS);
364    setLibcallCallingConv(RTLIB::UINTTOFP_I64_F64, CallingConv::ARM_AAPCS);
365    setLibcallCallingConv(RTLIB::SINTTOFP_I32_F32, CallingConv::ARM_AAPCS);
366    setLibcallCallingConv(RTLIB::UINTTOFP_I32_F32, CallingConv::ARM_AAPCS);
367    setLibcallCallingConv(RTLIB::SINTTOFP_I64_F32, CallingConv::ARM_AAPCS);
368    setLibcallCallingConv(RTLIB::UINTTOFP_I64_F32, CallingConv::ARM_AAPCS);
369
370    // Long long helper functions
371    // RTABI chapter 4.2, Table 9
372    setLibcallName(RTLIB::MUL_I64,  "__aeabi_lmul");
373    setLibcallName(RTLIB::SDIV_I64, "__aeabi_ldivmod");
374    setLibcallName(RTLIB::UDIV_I64, "__aeabi_uldivmod");
375    setLibcallName(RTLIB::SHL_I64, "__aeabi_llsl");
376    setLibcallName(RTLIB::SRL_I64, "__aeabi_llsr");
377    setLibcallName(RTLIB::SRA_I64, "__aeabi_lasr");
378    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::ARM_AAPCS);
379    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::ARM_AAPCS);
380    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::ARM_AAPCS);
381    setLibcallCallingConv(RTLIB::SHL_I64, CallingConv::ARM_AAPCS);
382    setLibcallCallingConv(RTLIB::SRL_I64, CallingConv::ARM_AAPCS);
383    setLibcallCallingConv(RTLIB::SRA_I64, CallingConv::ARM_AAPCS);
384
385    // Integer division functions
386    // RTABI chapter 4.3.1
387    setLibcallName(RTLIB::SDIV_I8,  "__aeabi_idiv");
388    setLibcallName(RTLIB::SDIV_I16, "__aeabi_idiv");
389    setLibcallName(RTLIB::SDIV_I32, "__aeabi_idiv");
390    setLibcallName(RTLIB::UDIV_I8,  "__aeabi_uidiv");
391    setLibcallName(RTLIB::UDIV_I16, "__aeabi_uidiv");
392    setLibcallName(RTLIB::UDIV_I32, "__aeabi_uidiv");
393    setLibcallCallingConv(RTLIB::SDIV_I8, CallingConv::ARM_AAPCS);
394    setLibcallCallingConv(RTLIB::SDIV_I16, CallingConv::ARM_AAPCS);
395    setLibcallCallingConv(RTLIB::SDIV_I32, CallingConv::ARM_AAPCS);
396    setLibcallCallingConv(RTLIB::UDIV_I8, CallingConv::ARM_AAPCS);
397    setLibcallCallingConv(RTLIB::UDIV_I16, CallingConv::ARM_AAPCS);
398    setLibcallCallingConv(RTLIB::UDIV_I32, CallingConv::ARM_AAPCS);
399  }
400
401  // Use divmod iOS compiler-rt calls.
402  if (Subtarget->getTargetTriple().getOS() == Triple::IOS) {
403    setLibcallName(RTLIB::SDIVREM_I32, "__divmodsi4");
404    setLibcallName(RTLIB::UDIVREM_I32, "__udivmodsi4");
405  }
406
407  if (Subtarget->isThumb1Only())
408    addRegisterClass(MVT::i32, ARM::tGPRRegisterClass);
409  else
410    addRegisterClass(MVT::i32, ARM::GPRRegisterClass);
411  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
412    addRegisterClass(MVT::f32, ARM::SPRRegisterClass);
413    if (!Subtarget->isFPOnlySP())
414      addRegisterClass(MVT::f64, ARM::DPRRegisterClass);
415
416    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
417  }
418
419  if (Subtarget->hasNEON()) {
420    addDRTypeForNEON(MVT::v2f32);
421    addDRTypeForNEON(MVT::v8i8);
422    addDRTypeForNEON(MVT::v4i16);
423    addDRTypeForNEON(MVT::v2i32);
424    addDRTypeForNEON(MVT::v1i64);
425
426    addQRTypeForNEON(MVT::v4f32);
427    addQRTypeForNEON(MVT::v2f64);
428    addQRTypeForNEON(MVT::v16i8);
429    addQRTypeForNEON(MVT::v8i16);
430    addQRTypeForNEON(MVT::v4i32);
431    addQRTypeForNEON(MVT::v2i64);
432
433    // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
434    // neither Neon nor VFP support any arithmetic operations on it.
435    setOperationAction(ISD::FADD, MVT::v2f64, Expand);
436    setOperationAction(ISD::FSUB, MVT::v2f64, Expand);
437    setOperationAction(ISD::FMUL, MVT::v2f64, Expand);
438    setOperationAction(ISD::FDIV, MVT::v2f64, Expand);
439    setOperationAction(ISD::FREM, MVT::v2f64, Expand);
440    setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand);
441    setOperationAction(ISD::VSETCC, MVT::v2f64, Expand);
442    setOperationAction(ISD::FNEG, MVT::v2f64, Expand);
443    setOperationAction(ISD::FABS, MVT::v2f64, Expand);
444    setOperationAction(ISD::FSQRT, MVT::v2f64, Expand);
445    setOperationAction(ISD::FSIN, MVT::v2f64, Expand);
446    setOperationAction(ISD::FCOS, MVT::v2f64, Expand);
447    setOperationAction(ISD::FPOWI, MVT::v2f64, Expand);
448    setOperationAction(ISD::FPOW, MVT::v2f64, Expand);
449    setOperationAction(ISD::FLOG, MVT::v2f64, Expand);
450    setOperationAction(ISD::FLOG2, MVT::v2f64, Expand);
451    setOperationAction(ISD::FLOG10, MVT::v2f64, Expand);
452    setOperationAction(ISD::FEXP, MVT::v2f64, Expand);
453    setOperationAction(ISD::FEXP2, MVT::v2f64, Expand);
454    setOperationAction(ISD::FCEIL, MVT::v2f64, Expand);
455    setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand);
456    setOperationAction(ISD::FRINT, MVT::v2f64, Expand);
457    setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand);
458    setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand);
459
460    setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand);
461
462    // Neon does not support some operations on v1i64 and v2i64 types.
463    setOperationAction(ISD::MUL, MVT::v1i64, Expand);
464    // Custom handling for some quad-vector types to detect VMULL.
465    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
466    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
467    setOperationAction(ISD::MUL, MVT::v2i64, Custom);
468    // Custom handling for some vector types to avoid expensive expansions
469    setOperationAction(ISD::SDIV, MVT::v4i16, Custom);
470    setOperationAction(ISD::SDIV, MVT::v8i8, Custom);
471    setOperationAction(ISD::UDIV, MVT::v4i16, Custom);
472    setOperationAction(ISD::UDIV, MVT::v8i8, Custom);
473    setOperationAction(ISD::VSETCC, MVT::v1i64, Expand);
474    setOperationAction(ISD::VSETCC, MVT::v2i64, Expand);
475    // Neon does not have single instruction SINT_TO_FP and UINT_TO_FP with
476    // a destination type that is wider than the source.
477    setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
478    setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
479
480    setTargetDAGCombine(ISD::INTRINSIC_VOID);
481    setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
482    setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
483    setTargetDAGCombine(ISD::SHL);
484    setTargetDAGCombine(ISD::SRL);
485    setTargetDAGCombine(ISD::SRA);
486    setTargetDAGCombine(ISD::SIGN_EXTEND);
487    setTargetDAGCombine(ISD::ZERO_EXTEND);
488    setTargetDAGCombine(ISD::ANY_EXTEND);
489    setTargetDAGCombine(ISD::SELECT_CC);
490    setTargetDAGCombine(ISD::BUILD_VECTOR);
491    setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
492    setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
493    setTargetDAGCombine(ISD::STORE);
494  }
495
496  computeRegisterProperties();
497
498  // ARM does not have f32 extending load.
499  setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
500
501  // ARM does not have i1 sign extending load.
502  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
503
504  // ARM supports all 4 flavors of integer indexed load / store.
505  if (!Subtarget->isThumb1Only()) {
506    for (unsigned im = (unsigned)ISD::PRE_INC;
507         im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
508      setIndexedLoadAction(im,  MVT::i1,  Legal);
509      setIndexedLoadAction(im,  MVT::i8,  Legal);
510      setIndexedLoadAction(im,  MVT::i16, Legal);
511      setIndexedLoadAction(im,  MVT::i32, Legal);
512      setIndexedStoreAction(im, MVT::i1,  Legal);
513      setIndexedStoreAction(im, MVT::i8,  Legal);
514      setIndexedStoreAction(im, MVT::i16, Legal);
515      setIndexedStoreAction(im, MVT::i32, Legal);
516    }
517  }
518
519  // i64 operation support.
520  setOperationAction(ISD::MUL,     MVT::i64, Expand);
521  setOperationAction(ISD::MULHU,   MVT::i32, Expand);
522  if (Subtarget->isThumb1Only()) {
523    setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
524    setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
525  }
526  if (Subtarget->isThumb1Only() || !Subtarget->hasV6Ops())
527    setOperationAction(ISD::MULHS, MVT::i32, Expand);
528
529  setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
530  setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
531  setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
532  setOperationAction(ISD::SRL,       MVT::i64, Custom);
533  setOperationAction(ISD::SRA,       MVT::i64, Custom);
534
535  // ARM does not have ROTL.
536  setOperationAction(ISD::ROTL,  MVT::i32, Expand);
537  setOperationAction(ISD::CTTZ,  MVT::i32, Custom);
538  setOperationAction(ISD::CTPOP, MVT::i32, Expand);
539  if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only())
540    setOperationAction(ISD::CTLZ, MVT::i32, Expand);
541
542  // Only ARMv6 has BSWAP.
543  if (!Subtarget->hasV6Ops())
544    setOperationAction(ISD::BSWAP, MVT::i32, Expand);
545
546  // These are expanded into libcalls.
547  if (!Subtarget->hasDivide() || !Subtarget->isThumb2()) {
548    // v7M has a hardware divider
549    setOperationAction(ISD::SDIV,  MVT::i32, Expand);
550    setOperationAction(ISD::UDIV,  MVT::i32, Expand);
551  }
552  setOperationAction(ISD::SREM,  MVT::i32, Expand);
553  setOperationAction(ISD::UREM,  MVT::i32, Expand);
554  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
555  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
556
557  setOperationAction(ISD::GlobalAddress, MVT::i32,   Custom);
558  setOperationAction(ISD::ConstantPool,  MVT::i32,   Custom);
559  setOperationAction(ISD::GLOBAL_OFFSET_TABLE, MVT::i32, Custom);
560  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
561  setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
562
563  setOperationAction(ISD::TRAP, MVT::Other, Legal);
564
565  // Use the default implementation.
566  setOperationAction(ISD::VASTART,            MVT::Other, Custom);
567  setOperationAction(ISD::VAARG,              MVT::Other, Expand);
568  setOperationAction(ISD::VACOPY,             MVT::Other, Expand);
569  setOperationAction(ISD::VAEND,              MVT::Other, Expand);
570  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
571  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
572  setOperationAction(ISD::EHSELECTION,        MVT::i32,   Expand);
573  setOperationAction(ISD::EXCEPTIONADDR,      MVT::i32,   Expand);
574  setExceptionPointerRegister(ARM::R0);
575  setExceptionSelectorRegister(ARM::R1);
576
577  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
578  // ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use
579  // the default expansion.
580  if (Subtarget->hasDataBarrier() ||
581      (Subtarget->hasV6Ops() && !Subtarget->isThumb())) {
582    // membarrier needs custom lowering; the rest are legal and handled
583    // normally.
584    setOperationAction(ISD::MEMBARRIER, MVT::Other, Custom);
585  } else {
586    // Set them all for expansion, which will force libcalls.
587    setOperationAction(ISD::MEMBARRIER, MVT::Other, Expand);
588    setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i8,  Expand);
589    setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i16, Expand);
590    setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i32, Expand);
591    setOperationAction(ISD::ATOMIC_SWAP,      MVT::i8,  Expand);
592    setOperationAction(ISD::ATOMIC_SWAP,      MVT::i16, Expand);
593    setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Expand);
594    setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i8,  Expand);
595    setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i16, Expand);
596    setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Expand);
597    setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i8,  Expand);
598    setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i16, Expand);
599    setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Expand);
600    setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i8,  Expand);
601    setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i16, Expand);
602    setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Expand);
603    setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i8,  Expand);
604    setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i16, Expand);
605    setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Expand);
606    setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i8,  Expand);
607    setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i16, Expand);
608    setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Expand);
609    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i8,  Expand);
610    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i16, Expand);
611    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand);
612    setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i8,  Expand);
613    setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i16, Expand);
614    setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Expand);
615    setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i8,  Expand);
616    setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i16, Expand);
617    setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Expand);
618    setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i8,  Expand);
619    setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i16, Expand);
620    setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Expand);
621    setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i8,  Expand);
622    setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i16, Expand);
623    setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Expand);
624    // Since the libcalls include locking, fold in the fences
625    setShouldFoldAtomicFences(true);
626  }
627  // 64-bit versions are always libcalls (for now)
628  setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i64, Expand);
629  setOperationAction(ISD::ATOMIC_SWAP,      MVT::i64, Expand);
630  setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i64, Expand);
631  setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i64, Expand);
632  setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i64, Expand);
633  setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i64, Expand);
634  setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i64, Expand);
635  setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Expand);
636
637  setOperationAction(ISD::PREFETCH,         MVT::Other, Custom);
638
639  // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
640  if (!Subtarget->hasV6Ops()) {
641    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
642    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
643  }
644  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
645
646  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
647    // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
648    // iff target supports vfp2.
649    setOperationAction(ISD::BITCAST, MVT::i64, Custom);
650    setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
651  }
652
653  // We want to custom lower some of our intrinsics.
654  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
655  if (Subtarget->isTargetDarwin()) {
656    setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
657    setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
658    setOperationAction(ISD::EH_SJLJ_DISPATCHSETUP, MVT::Other, Custom);
659  }
660
661  setOperationAction(ISD::SETCC,     MVT::i32, Expand);
662  setOperationAction(ISD::SETCC,     MVT::f32, Expand);
663  setOperationAction(ISD::SETCC,     MVT::f64, Expand);
664  setOperationAction(ISD::SELECT,    MVT::i32, Custom);
665  setOperationAction(ISD::SELECT,    MVT::f32, Custom);
666  setOperationAction(ISD::SELECT,    MVT::f64, Custom);
667  setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
668  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
669  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
670
671  setOperationAction(ISD::BRCOND,    MVT::Other, Expand);
672  setOperationAction(ISD::BR_CC,     MVT::i32,   Custom);
673  setOperationAction(ISD::BR_CC,     MVT::f32,   Custom);
674  setOperationAction(ISD::BR_CC,     MVT::f64,   Custom);
675  setOperationAction(ISD::BR_JT,     MVT::Other, Custom);
676
677  // We don't support sin/cos/fmod/copysign/pow
678  setOperationAction(ISD::FSIN,      MVT::f64, Expand);
679  setOperationAction(ISD::FSIN,      MVT::f32, Expand);
680  setOperationAction(ISD::FCOS,      MVT::f32, Expand);
681  setOperationAction(ISD::FCOS,      MVT::f64, Expand);
682  setOperationAction(ISD::FREM,      MVT::f64, Expand);
683  setOperationAction(ISD::FREM,      MVT::f32, Expand);
684  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
685    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
686    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
687  }
688  setOperationAction(ISD::FPOW,      MVT::f64, Expand);
689  setOperationAction(ISD::FPOW,      MVT::f32, Expand);
690
691  // Various VFP goodness
692  if (!UseSoftFloat && !Subtarget->isThumb1Only()) {
693    // int <-> fp are custom expanded into bit_convert + ARMISD ops.
694    if (Subtarget->hasVFP2()) {
695      setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
696      setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
697      setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
698      setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
699    }
700    // Special handling for half-precision FP.
701    if (!Subtarget->hasFP16()) {
702      setOperationAction(ISD::FP16_TO_FP32, MVT::f32, Expand);
703      setOperationAction(ISD::FP32_TO_FP16, MVT::i32, Expand);
704    }
705  }
706
707  // We have target-specific dag combine patterns for the following nodes:
708  // ARMISD::VMOVRRD  - No need to call setTargetDAGCombine
709  setTargetDAGCombine(ISD::ADD);
710  setTargetDAGCombine(ISD::SUB);
711  setTargetDAGCombine(ISD::MUL);
712
713  if (Subtarget->hasV6T2Ops() || Subtarget->hasNEON())
714    setTargetDAGCombine(ISD::OR);
715  if (Subtarget->hasNEON())
716    setTargetDAGCombine(ISD::AND);
717
718  setStackPointerRegisterToSaveRestore(ARM::SP);
719
720  if (UseSoftFloat || Subtarget->isThumb1Only() || !Subtarget->hasVFP2())
721    setSchedulingPreference(Sched::RegPressure);
722  else
723    setSchedulingPreference(Sched::Hybrid);
724
725  //// temporary - rewrite interface to use type
726  maxStoresPerMemcpy = maxStoresPerMemcpyOptSize = 1;
727
728  // On ARM arguments smaller than 4 bytes are extended, so all arguments
729  // are at least 4 bytes aligned.
730  setMinStackArgumentAlignment(4);
731
732  benefitFromCodePlacementOpt = true;
733}
734
735// FIXME: It might make sense to define the representative register class as the
736// nearest super-register that has a non-null superset. For example, DPR_VFP2 is
737// a super-register of SPR, and DPR is a superset if DPR_VFP2. Consequently,
738// SPR's representative would be DPR_VFP2. This should work well if register
739// pressure tracking were modified such that a register use would increment the
740// pressure of the register class's representative and all of it's super
741// classes' representatives transitively. We have not implemented this because
742// of the difficulty prior to coalescing of modeling operand register classes
743// due to the common occurrence of cross class copies and subregister insertions
744// and extractions.
745std::pair<const TargetRegisterClass*, uint8_t>
746ARMTargetLowering::findRepresentativeClass(EVT VT) const{
747  const TargetRegisterClass *RRC = 0;
748  uint8_t Cost = 1;
749  switch (VT.getSimpleVT().SimpleTy) {
750  default:
751    return TargetLowering::findRepresentativeClass(VT);
752  // Use DPR as representative register class for all floating point
753  // and vector types. Since there are 32 SPR registers and 32 DPR registers so
754  // the cost is 1 for both f32 and f64.
755  case MVT::f32: case MVT::f64: case MVT::v8i8: case MVT::v4i16:
756  case MVT::v2i32: case MVT::v1i64: case MVT::v2f32:
757    RRC = ARM::DPRRegisterClass;
758    // When NEON is used for SP, only half of the register file is available
759    // because operations that define both SP and DP results will be constrained
760    // to the VFP2 class (D0-D15). We currently model this constraint prior to
761    // coalescing by double-counting the SP regs. See the FIXME above.
762    if (Subtarget->useNEONForSinglePrecisionFP())
763      Cost = 2;
764    break;
765  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
766  case MVT::v4f32: case MVT::v2f64:
767    RRC = ARM::DPRRegisterClass;
768    Cost = 2;
769    break;
770  case MVT::v4i64:
771    RRC = ARM::DPRRegisterClass;
772    Cost = 4;
773    break;
774  case MVT::v8i64:
775    RRC = ARM::DPRRegisterClass;
776    Cost = 8;
777    break;
778  }
779  return std::make_pair(RRC, Cost);
780}
781
782const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
783  switch (Opcode) {
784  default: return 0;
785  case ARMISD::Wrapper:       return "ARMISD::Wrapper";
786  case ARMISD::WrapperDYN:    return "ARMISD::WrapperDYN";
787  case ARMISD::WrapperPIC:    return "ARMISD::WrapperPIC";
788  case ARMISD::WrapperJT:     return "ARMISD::WrapperJT";
789  case ARMISD::CALL:          return "ARMISD::CALL";
790  case ARMISD::CALL_PRED:     return "ARMISD::CALL_PRED";
791  case ARMISD::CALL_NOLINK:   return "ARMISD::CALL_NOLINK";
792  case ARMISD::tCALL:         return "ARMISD::tCALL";
793  case ARMISD::BRCOND:        return "ARMISD::BRCOND";
794  case ARMISD::BR_JT:         return "ARMISD::BR_JT";
795  case ARMISD::BR2_JT:        return "ARMISD::BR2_JT";
796  case ARMISD::RET_FLAG:      return "ARMISD::RET_FLAG";
797  case ARMISD::PIC_ADD:       return "ARMISD::PIC_ADD";
798  case ARMISD::CMP:           return "ARMISD::CMP";
799  case ARMISD::CMPZ:          return "ARMISD::CMPZ";
800  case ARMISD::CMPFP:         return "ARMISD::CMPFP";
801  case ARMISD::CMPFPw0:       return "ARMISD::CMPFPw0";
802  case ARMISD::BCC_i64:       return "ARMISD::BCC_i64";
803  case ARMISD::FMSTAT:        return "ARMISD::FMSTAT";
804  case ARMISD::CMOV:          return "ARMISD::CMOV";
805
806  case ARMISD::RBIT:          return "ARMISD::RBIT";
807
808  case ARMISD::FTOSI:         return "ARMISD::FTOSI";
809  case ARMISD::FTOUI:         return "ARMISD::FTOUI";
810  case ARMISD::SITOF:         return "ARMISD::SITOF";
811  case ARMISD::UITOF:         return "ARMISD::UITOF";
812
813  case ARMISD::SRL_FLAG:      return "ARMISD::SRL_FLAG";
814  case ARMISD::SRA_FLAG:      return "ARMISD::SRA_FLAG";
815  case ARMISD::RRX:           return "ARMISD::RRX";
816
817  case ARMISD::VMOVRRD:       return "ARMISD::VMOVRRD";
818  case ARMISD::VMOVDRR:       return "ARMISD::VMOVDRR";
819
820  case ARMISD::EH_SJLJ_SETJMP: return "ARMISD::EH_SJLJ_SETJMP";
821  case ARMISD::EH_SJLJ_LONGJMP:return "ARMISD::EH_SJLJ_LONGJMP";
822  case ARMISD::EH_SJLJ_DISPATCHSETUP:return "ARMISD::EH_SJLJ_DISPATCHSETUP";
823
824  case ARMISD::TC_RETURN:     return "ARMISD::TC_RETURN";
825
826  case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER";
827
828  case ARMISD::DYN_ALLOC:     return "ARMISD::DYN_ALLOC";
829
830  case ARMISD::MEMBARRIER:    return "ARMISD::MEMBARRIER";
831  case ARMISD::MEMBARRIER_MCR: return "ARMISD::MEMBARRIER_MCR";
832
833  case ARMISD::PRELOAD:       return "ARMISD::PRELOAD";
834
835  case ARMISD::VCEQ:          return "ARMISD::VCEQ";
836  case ARMISD::VCEQZ:         return "ARMISD::VCEQZ";
837  case ARMISD::VCGE:          return "ARMISD::VCGE";
838  case ARMISD::VCGEZ:         return "ARMISD::VCGEZ";
839  case ARMISD::VCLEZ:         return "ARMISD::VCLEZ";
840  case ARMISD::VCGEU:         return "ARMISD::VCGEU";
841  case ARMISD::VCGT:          return "ARMISD::VCGT";
842  case ARMISD::VCGTZ:         return "ARMISD::VCGTZ";
843  case ARMISD::VCLTZ:         return "ARMISD::VCLTZ";
844  case ARMISD::VCGTU:         return "ARMISD::VCGTU";
845  case ARMISD::VTST:          return "ARMISD::VTST";
846
847  case ARMISD::VSHL:          return "ARMISD::VSHL";
848  case ARMISD::VSHRs:         return "ARMISD::VSHRs";
849  case ARMISD::VSHRu:         return "ARMISD::VSHRu";
850  case ARMISD::VSHLLs:        return "ARMISD::VSHLLs";
851  case ARMISD::VSHLLu:        return "ARMISD::VSHLLu";
852  case ARMISD::VSHLLi:        return "ARMISD::VSHLLi";
853  case ARMISD::VSHRN:         return "ARMISD::VSHRN";
854  case ARMISD::VRSHRs:        return "ARMISD::VRSHRs";
855  case ARMISD::VRSHRu:        return "ARMISD::VRSHRu";
856  case ARMISD::VRSHRN:        return "ARMISD::VRSHRN";
857  case ARMISD::VQSHLs:        return "ARMISD::VQSHLs";
858  case ARMISD::VQSHLu:        return "ARMISD::VQSHLu";
859  case ARMISD::VQSHLsu:       return "ARMISD::VQSHLsu";
860  case ARMISD::VQSHRNs:       return "ARMISD::VQSHRNs";
861  case ARMISD::VQSHRNu:       return "ARMISD::VQSHRNu";
862  case ARMISD::VQSHRNsu:      return "ARMISD::VQSHRNsu";
863  case ARMISD::VQRSHRNs:      return "ARMISD::VQRSHRNs";
864  case ARMISD::VQRSHRNu:      return "ARMISD::VQRSHRNu";
865  case ARMISD::VQRSHRNsu:     return "ARMISD::VQRSHRNsu";
866  case ARMISD::VGETLANEu:     return "ARMISD::VGETLANEu";
867  case ARMISD::VGETLANEs:     return "ARMISD::VGETLANEs";
868  case ARMISD::VMOVIMM:       return "ARMISD::VMOVIMM";
869  case ARMISD::VMVNIMM:       return "ARMISD::VMVNIMM";
870  case ARMISD::VDUP:          return "ARMISD::VDUP";
871  case ARMISD::VDUPLANE:      return "ARMISD::VDUPLANE";
872  case ARMISD::VEXT:          return "ARMISD::VEXT";
873  case ARMISD::VREV64:        return "ARMISD::VREV64";
874  case ARMISD::VREV32:        return "ARMISD::VREV32";
875  case ARMISD::VREV16:        return "ARMISD::VREV16";
876  case ARMISD::VZIP:          return "ARMISD::VZIP";
877  case ARMISD::VUZP:          return "ARMISD::VUZP";
878  case ARMISD::VTRN:          return "ARMISD::VTRN";
879  case ARMISD::VTBL1:         return "ARMISD::VTBL1";
880  case ARMISD::VTBL2:         return "ARMISD::VTBL2";
881  case ARMISD::VMULLs:        return "ARMISD::VMULLs";
882  case ARMISD::VMULLu:        return "ARMISD::VMULLu";
883  case ARMISD::BUILD_VECTOR:  return "ARMISD::BUILD_VECTOR";
884  case ARMISD::FMAX:          return "ARMISD::FMAX";
885  case ARMISD::FMIN:          return "ARMISD::FMIN";
886  case ARMISD::BFI:           return "ARMISD::BFI";
887  case ARMISD::VORRIMM:       return "ARMISD::VORRIMM";
888  case ARMISD::VBICIMM:       return "ARMISD::VBICIMM";
889  case ARMISD::VBSL:          return "ARMISD::VBSL";
890  case ARMISD::VLD2DUP:       return "ARMISD::VLD2DUP";
891  case ARMISD::VLD3DUP:       return "ARMISD::VLD3DUP";
892  case ARMISD::VLD4DUP:       return "ARMISD::VLD4DUP";
893  case ARMISD::VLD1_UPD:      return "ARMISD::VLD1_UPD";
894  case ARMISD::VLD2_UPD:      return "ARMISD::VLD2_UPD";
895  case ARMISD::VLD3_UPD:      return "ARMISD::VLD3_UPD";
896  case ARMISD::VLD4_UPD:      return "ARMISD::VLD4_UPD";
897  case ARMISD::VLD2LN_UPD:    return "ARMISD::VLD2LN_UPD";
898  case ARMISD::VLD3LN_UPD:    return "ARMISD::VLD3LN_UPD";
899  case ARMISD::VLD4LN_UPD:    return "ARMISD::VLD4LN_UPD";
900  case ARMISD::VLD2DUP_UPD:   return "ARMISD::VLD2DUP_UPD";
901  case ARMISD::VLD3DUP_UPD:   return "ARMISD::VLD3DUP_UPD";
902  case ARMISD::VLD4DUP_UPD:   return "ARMISD::VLD4DUP_UPD";
903  case ARMISD::VST1_UPD:      return "ARMISD::VST1_UPD";
904  case ARMISD::VST2_UPD:      return "ARMISD::VST2_UPD";
905  case ARMISD::VST3_UPD:      return "ARMISD::VST3_UPD";
906  case ARMISD::VST4_UPD:      return "ARMISD::VST4_UPD";
907  case ARMISD::VST2LN_UPD:    return "ARMISD::VST2LN_UPD";
908  case ARMISD::VST3LN_UPD:    return "ARMISD::VST3LN_UPD";
909  case ARMISD::VST4LN_UPD:    return "ARMISD::VST4LN_UPD";
910  }
911}
912
913/// getRegClassFor - Return the register class that should be used for the
914/// specified value type.
915TargetRegisterClass *ARMTargetLowering::getRegClassFor(EVT VT) const {
916  // Map v4i64 to QQ registers but do not make the type legal. Similarly map
917  // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
918  // load / store 4 to 8 consecutive D registers.
919  if (Subtarget->hasNEON()) {
920    if (VT == MVT::v4i64)
921      return ARM::QQPRRegisterClass;
922    else if (VT == MVT::v8i64)
923      return ARM::QQQQPRRegisterClass;
924  }
925  return TargetLowering::getRegClassFor(VT);
926}
927
928// Create a fast isel object.
929FastISel *
930ARMTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
931  return ARM::createFastISel(funcInfo);
932}
933
934/// getFunctionAlignment - Return the Log2 alignment of this function.
935unsigned ARMTargetLowering::getFunctionAlignment(const Function *F) const {
936  return getTargetMachine().getSubtarget<ARMSubtarget>().isThumb() ? 1 : 2;
937}
938
939/// getMaximalGlobalOffset - Returns the maximal possible offset which can
940/// be used for loads / stores from the global.
941unsigned ARMTargetLowering::getMaximalGlobalOffset() const {
942  return (Subtarget->isThumb1Only() ? 127 : 4095);
943}
944
945Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const {
946  unsigned NumVals = N->getNumValues();
947  if (!NumVals)
948    return Sched::RegPressure;
949
950  for (unsigned i = 0; i != NumVals; ++i) {
951    EVT VT = N->getValueType(i);
952    if (VT == MVT::Glue || VT == MVT::Other)
953      continue;
954    if (VT.isFloatingPoint() || VT.isVector())
955      return Sched::Latency;
956  }
957
958  if (!N->isMachineOpcode())
959    return Sched::RegPressure;
960
961  // Load are scheduled for latency even if there instruction itinerary
962  // is not available.
963  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
964  const TargetInstrDesc &TID = TII->get(N->getMachineOpcode());
965
966  if (TID.getNumDefs() == 0)
967    return Sched::RegPressure;
968  if (!Itins->isEmpty() &&
969      Itins->getOperandCycle(TID.getSchedClass(), 0) > 2)
970    return Sched::Latency;
971
972  return Sched::RegPressure;
973}
974
975//===----------------------------------------------------------------------===//
976// Lowering Code
977//===----------------------------------------------------------------------===//
978
979/// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
980static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
981  switch (CC) {
982  default: llvm_unreachable("Unknown condition code!");
983  case ISD::SETNE:  return ARMCC::NE;
984  case ISD::SETEQ:  return ARMCC::EQ;
985  case ISD::SETGT:  return ARMCC::GT;
986  case ISD::SETGE:  return ARMCC::GE;
987  case ISD::SETLT:  return ARMCC::LT;
988  case ISD::SETLE:  return ARMCC::LE;
989  case ISD::SETUGT: return ARMCC::HI;
990  case ISD::SETUGE: return ARMCC::HS;
991  case ISD::SETULT: return ARMCC::LO;
992  case ISD::SETULE: return ARMCC::LS;
993  }
994}
995
996/// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
997static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
998                        ARMCC::CondCodes &CondCode2) {
999  CondCode2 = ARMCC::AL;
1000  switch (CC) {
1001  default: llvm_unreachable("Unknown FP condition!");
1002  case ISD::SETEQ:
1003  case ISD::SETOEQ: CondCode = ARMCC::EQ; break;
1004  case ISD::SETGT:
1005  case ISD::SETOGT: CondCode = ARMCC::GT; break;
1006  case ISD::SETGE:
1007  case ISD::SETOGE: CondCode = ARMCC::GE; break;
1008  case ISD::SETOLT: CondCode = ARMCC::MI; break;
1009  case ISD::SETOLE: CondCode = ARMCC::LS; break;
1010  case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break;
1011  case ISD::SETO:   CondCode = ARMCC::VC; break;
1012  case ISD::SETUO:  CondCode = ARMCC::VS; break;
1013  case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break;
1014  case ISD::SETUGT: CondCode = ARMCC::HI; break;
1015  case ISD::SETUGE: CondCode = ARMCC::PL; break;
1016  case ISD::SETLT:
1017  case ISD::SETULT: CondCode = ARMCC::LT; break;
1018  case ISD::SETLE:
1019  case ISD::SETULE: CondCode = ARMCC::LE; break;
1020  case ISD::SETNE:
1021  case ISD::SETUNE: CondCode = ARMCC::NE; break;
1022  }
1023}
1024
1025//===----------------------------------------------------------------------===//
1026//                      Calling Convention Implementation
1027//===----------------------------------------------------------------------===//
1028
1029#include "ARMGenCallingConv.inc"
1030
1031/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
1032/// given CallingConvention value.
1033CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC,
1034                                                 bool Return,
1035                                                 bool isVarArg) const {
1036  switch (CC) {
1037  default:
1038    llvm_unreachable("Unsupported calling convention");
1039  case CallingConv::Fast:
1040    if (Subtarget->hasVFP2() && !isVarArg) {
1041      if (!Subtarget->isAAPCS_ABI())
1042        return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
1043      // For AAPCS ABI targets, just use VFP variant of the calling convention.
1044      return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1045    }
1046    // Fallthrough
1047  case CallingConv::C: {
1048    // Use target triple & subtarget features to do actual dispatch.
1049    if (!Subtarget->isAAPCS_ABI())
1050      return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
1051    else if (Subtarget->hasVFP2() &&
1052             FloatABIType == FloatABI::Hard && !isVarArg)
1053      return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1054    return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
1055  }
1056  case CallingConv::ARM_AAPCS_VFP:
1057    return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1058  case CallingConv::ARM_AAPCS:
1059    return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
1060  case CallingConv::ARM_APCS:
1061    return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
1062  }
1063}
1064
1065/// LowerCallResult - Lower the result values of a call into the
1066/// appropriate copies out of appropriate physical registers.
1067SDValue
1068ARMTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1069                                   CallingConv::ID CallConv, bool isVarArg,
1070                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1071                                   DebugLoc dl, SelectionDAG &DAG,
1072                                   SmallVectorImpl<SDValue> &InVals) const {
1073
1074  // Assign locations to each value returned by this call.
1075  SmallVector<CCValAssign, 16> RVLocs;
1076  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1077                 RVLocs, *DAG.getContext());
1078  CCInfo.AnalyzeCallResult(Ins,
1079                           CCAssignFnForNode(CallConv, /* Return*/ true,
1080                                             isVarArg));
1081
1082  // Copy all of the result registers out of their specified physreg.
1083  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1084    CCValAssign VA = RVLocs[i];
1085
1086    SDValue Val;
1087    if (VA.needsCustom()) {
1088      // Handle f64 or half of a v2f64.
1089      SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1090                                      InFlag);
1091      Chain = Lo.getValue(1);
1092      InFlag = Lo.getValue(2);
1093      VA = RVLocs[++i]; // skip ahead to next loc
1094      SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1095                                      InFlag);
1096      Chain = Hi.getValue(1);
1097      InFlag = Hi.getValue(2);
1098      Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1099
1100      if (VA.getLocVT() == MVT::v2f64) {
1101        SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
1102        Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1103                          DAG.getConstant(0, MVT::i32));
1104
1105        VA = RVLocs[++i]; // skip ahead to next loc
1106        Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1107        Chain = Lo.getValue(1);
1108        InFlag = Lo.getValue(2);
1109        VA = RVLocs[++i]; // skip ahead to next loc
1110        Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1111        Chain = Hi.getValue(1);
1112        InFlag = Hi.getValue(2);
1113        Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1114        Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1115                          DAG.getConstant(1, MVT::i32));
1116      }
1117    } else {
1118      Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
1119                               InFlag);
1120      Chain = Val.getValue(1);
1121      InFlag = Val.getValue(2);
1122    }
1123
1124    switch (VA.getLocInfo()) {
1125    default: llvm_unreachable("Unknown loc info!");
1126    case CCValAssign::Full: break;
1127    case CCValAssign::BCvt:
1128      Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val);
1129      break;
1130    }
1131
1132    InVals.push_back(Val);
1133  }
1134
1135  return Chain;
1136}
1137
1138/// LowerMemOpCallTo - Store the argument to the stack.
1139SDValue
1140ARMTargetLowering::LowerMemOpCallTo(SDValue Chain,
1141                                    SDValue StackPtr, SDValue Arg,
1142                                    DebugLoc dl, SelectionDAG &DAG,
1143                                    const CCValAssign &VA,
1144                                    ISD::ArgFlagsTy Flags) const {
1145  unsigned LocMemOffset = VA.getLocMemOffset();
1146  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1147  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1148  return DAG.getStore(Chain, dl, Arg, PtrOff,
1149                      MachinePointerInfo::getStack(LocMemOffset),
1150                      false, false, 0);
1151}
1152
1153void ARMTargetLowering::PassF64ArgInRegs(DebugLoc dl, SelectionDAG &DAG,
1154                                         SDValue Chain, SDValue &Arg,
1155                                         RegsToPassVector &RegsToPass,
1156                                         CCValAssign &VA, CCValAssign &NextVA,
1157                                         SDValue &StackPtr,
1158                                         SmallVector<SDValue, 8> &MemOpChains,
1159                                         ISD::ArgFlagsTy Flags) const {
1160
1161  SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
1162                              DAG.getVTList(MVT::i32, MVT::i32), Arg);
1163  RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd));
1164
1165  if (NextVA.isRegLoc())
1166    RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1)));
1167  else {
1168    assert(NextVA.isMemLoc());
1169    if (StackPtr.getNode() == 0)
1170      StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
1171
1172    MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1),
1173                                           dl, DAG, NextVA,
1174                                           Flags));
1175  }
1176}
1177
1178/// LowerCall - Lowering a call into a callseq_start <-
1179/// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
1180/// nodes.
1181SDValue
1182ARMTargetLowering::LowerCall(SDValue Chain, SDValue Callee,
1183                             CallingConv::ID CallConv, bool isVarArg,
1184                             bool &isTailCall,
1185                             const SmallVectorImpl<ISD::OutputArg> &Outs,
1186                             const SmallVectorImpl<SDValue> &OutVals,
1187                             const SmallVectorImpl<ISD::InputArg> &Ins,
1188                             DebugLoc dl, SelectionDAG &DAG,
1189                             SmallVectorImpl<SDValue> &InVals) const {
1190  MachineFunction &MF = DAG.getMachineFunction();
1191  bool IsStructRet    = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
1192  bool IsSibCall = false;
1193  // Temporarily disable tail calls so things don't break.
1194  if (!EnableARMTailCalls)
1195    isTailCall = false;
1196  if (isTailCall) {
1197    // Check if it's really possible to do a tail call.
1198    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1199                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
1200                                                   Outs, OutVals, Ins, DAG);
1201    // We don't support GuaranteedTailCallOpt for ARM, only automatically
1202    // detected sibcalls.
1203    if (isTailCall) {
1204      ++NumTailCalls;
1205      IsSibCall = true;
1206    }
1207  }
1208
1209  // Analyze operands of the call, assigning locations to each operand.
1210  SmallVector<CCValAssign, 16> ArgLocs;
1211  CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs,
1212                 *DAG.getContext());
1213  CCInfo.setCallOrPrologue(Call);
1214  CCInfo.AnalyzeCallOperands(Outs,
1215                             CCAssignFnForNode(CallConv, /* Return*/ false,
1216                                               isVarArg));
1217
1218  // Get a count of how many bytes are to be pushed on the stack.
1219  unsigned NumBytes = CCInfo.getNextStackOffset();
1220
1221  // For tail calls, memory operands are available in our caller's stack.
1222  if (IsSibCall)
1223    NumBytes = 0;
1224
1225  // Adjust the stack pointer for the new arguments...
1226  // These operations are automatically eliminated by the prolog/epilog pass
1227  if (!IsSibCall)
1228    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
1229
1230  SDValue StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
1231
1232  RegsToPassVector RegsToPass;
1233  SmallVector<SDValue, 8> MemOpChains;
1234
1235  // Walk the register/memloc assignments, inserting copies/loads.  In the case
1236  // of tail call optimization, arguments are handled later.
1237  for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
1238       i != e;
1239       ++i, ++realArgIdx) {
1240    CCValAssign &VA = ArgLocs[i];
1241    SDValue Arg = OutVals[realArgIdx];
1242    ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
1243    bool isByVal = Flags.isByVal();
1244
1245    // Promote the value if needed.
1246    switch (VA.getLocInfo()) {
1247    default: llvm_unreachable("Unknown loc info!");
1248    case CCValAssign::Full: break;
1249    case CCValAssign::SExt:
1250      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
1251      break;
1252    case CCValAssign::ZExt:
1253      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
1254      break;
1255    case CCValAssign::AExt:
1256      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
1257      break;
1258    case CCValAssign::BCvt:
1259      Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
1260      break;
1261    }
1262
1263    // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
1264    if (VA.needsCustom()) {
1265      if (VA.getLocVT() == MVT::v2f64) {
1266        SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1267                                  DAG.getConstant(0, MVT::i32));
1268        SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1269                                  DAG.getConstant(1, MVT::i32));
1270
1271        PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass,
1272                         VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1273
1274        VA = ArgLocs[++i]; // skip ahead to next loc
1275        if (VA.isRegLoc()) {
1276          PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass,
1277                           VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1278        } else {
1279          assert(VA.isMemLoc());
1280
1281          MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Op1,
1282                                                 dl, DAG, VA, Flags));
1283        }
1284      } else {
1285        PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
1286                         StackPtr, MemOpChains, Flags);
1287      }
1288    } else if (VA.isRegLoc()) {
1289      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1290    } else if (isByVal) {
1291      assert(VA.isMemLoc());
1292      unsigned offset = 0;
1293
1294      // True if this byval aggregate will be split between registers
1295      // and memory.
1296      if (CCInfo.isFirstByValRegValid()) {
1297        EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1298        unsigned int i, j;
1299        for (i = 0, j = CCInfo.getFirstByValReg(); j < ARM::R4; i++, j++) {
1300          SDValue Const = DAG.getConstant(4*i, MVT::i32);
1301          SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
1302          SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
1303                                     MachinePointerInfo(),
1304                                     false, false, 0);
1305          MemOpChains.push_back(Load.getValue(1));
1306          RegsToPass.push_back(std::make_pair(j, Load));
1307        }
1308        offset = ARM::R4 - CCInfo.getFirstByValReg();
1309        CCInfo.clearFirstByValReg();
1310      }
1311
1312      unsigned LocMemOffset = VA.getLocMemOffset();
1313      SDValue StkPtrOff = DAG.getIntPtrConstant(LocMemOffset);
1314      SDValue Dst = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr,
1315                                StkPtrOff);
1316      SDValue SrcOffset = DAG.getIntPtrConstant(4*offset);
1317      SDValue Src = DAG.getNode(ISD::ADD, dl, getPointerTy(), Arg, SrcOffset);
1318      SDValue SizeNode = DAG.getConstant(Flags.getByValSize() - 4*offset,
1319                                         MVT::i32);
1320      MemOpChains.push_back(DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode,
1321                                          Flags.getByValAlign(),
1322                                          /*isVolatile=*/false,
1323                                          /*AlwaysInline=*/false,
1324                                          MachinePointerInfo(0),
1325                                          MachinePointerInfo(0)));
1326
1327    } else if (!IsSibCall) {
1328      assert(VA.isMemLoc());
1329
1330      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
1331                                             dl, DAG, VA, Flags));
1332    }
1333  }
1334
1335  if (!MemOpChains.empty())
1336    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1337                        &MemOpChains[0], MemOpChains.size());
1338
1339  // Build a sequence of copy-to-reg nodes chained together with token chain
1340  // and flag operands which copy the outgoing args into the appropriate regs.
1341  SDValue InFlag;
1342  // Tail call byval lowering might overwrite argument registers so in case of
1343  // tail call optimization the copies to registers are lowered later.
1344  if (!isTailCall)
1345    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1346      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1347                               RegsToPass[i].second, InFlag);
1348      InFlag = Chain.getValue(1);
1349    }
1350
1351  // For tail calls lower the arguments to the 'real' stack slot.
1352  if (isTailCall) {
1353    // Force all the incoming stack arguments to be loaded from the stack
1354    // before any new outgoing arguments are stored to the stack, because the
1355    // outgoing stack slots may alias the incoming argument stack slots, and
1356    // the alias isn't otherwise explicit. This is slightly more conservative
1357    // than necessary, because it means that each store effectively depends
1358    // on every argument instead of just those arguments it would clobber.
1359
1360    // Do not flag preceding copytoreg stuff together with the following stuff.
1361    InFlag = SDValue();
1362    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1363      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1364                               RegsToPass[i].second, InFlag);
1365      InFlag = Chain.getValue(1);
1366    }
1367    InFlag =SDValue();
1368  }
1369
1370  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
1371  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
1372  // node so that legalize doesn't hack it.
1373  bool isDirect = false;
1374  bool isARMFunc = false;
1375  bool isLocalARMFunc = false;
1376  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1377
1378  if (EnableARMLongCalls) {
1379    assert (getTargetMachine().getRelocationModel() == Reloc::Static
1380            && "long-calls with non-static relocation model!");
1381    // Handle a global address or an external symbol. If it's not one of
1382    // those, the target's already in a register, so we don't need to do
1383    // anything extra.
1384    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1385      const GlobalValue *GV = G->getGlobal();
1386      // Create a constant pool entry for the callee address
1387      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1388      ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV,
1389                                                           ARMPCLabelIndex,
1390                                                           ARMCP::CPValue, 0);
1391      // Get the address of the callee into a register
1392      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1393      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1394      Callee = DAG.getLoad(getPointerTy(), dl,
1395                           DAG.getEntryNode(), CPAddr,
1396                           MachinePointerInfo::getConstantPool(),
1397                           false, false, 0);
1398    } else if (ExternalSymbolSDNode *S=dyn_cast<ExternalSymbolSDNode>(Callee)) {
1399      const char *Sym = S->getSymbol();
1400
1401      // Create a constant pool entry for the callee address
1402      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1403      ARMConstantPoolValue *CPV = new ARMConstantPoolValue(*DAG.getContext(),
1404                                                       Sym, ARMPCLabelIndex, 0);
1405      // Get the address of the callee into a register
1406      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1407      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1408      Callee = DAG.getLoad(getPointerTy(), dl,
1409                           DAG.getEntryNode(), CPAddr,
1410                           MachinePointerInfo::getConstantPool(),
1411                           false, false, 0);
1412    }
1413  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1414    const GlobalValue *GV = G->getGlobal();
1415    isDirect = true;
1416    bool isExt = GV->isDeclaration() || GV->isWeakForLinker();
1417    bool isStub = (isExt && Subtarget->isTargetDarwin()) &&
1418                   getTargetMachine().getRelocationModel() != Reloc::Static;
1419    isARMFunc = !Subtarget->isThumb() || isStub;
1420    // ARM call to a local ARM function is predicable.
1421    isLocalARMFunc = !Subtarget->isThumb() && (!isExt || !ARMInterworking);
1422    // tBX takes a register source operand.
1423    if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
1424      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1425      ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV,
1426                                                           ARMPCLabelIndex,
1427                                                           ARMCP::CPValue, 4);
1428      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1429      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1430      Callee = DAG.getLoad(getPointerTy(), dl,
1431                           DAG.getEntryNode(), CPAddr,
1432                           MachinePointerInfo::getConstantPool(),
1433                           false, false, 0);
1434      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1435      Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
1436                           getPointerTy(), Callee, PICLabel);
1437    } else {
1438      // On ELF targets for PIC code, direct calls should go through the PLT
1439      unsigned OpFlags = 0;
1440      if (Subtarget->isTargetELF() &&
1441                  getTargetMachine().getRelocationModel() == Reloc::PIC_)
1442        OpFlags = ARMII::MO_PLT;
1443      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
1444    }
1445  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1446    isDirect = true;
1447    bool isStub = Subtarget->isTargetDarwin() &&
1448                  getTargetMachine().getRelocationModel() != Reloc::Static;
1449    isARMFunc = !Subtarget->isThumb() || isStub;
1450    // tBX takes a register source operand.
1451    const char *Sym = S->getSymbol();
1452    if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
1453      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1454      ARMConstantPoolValue *CPV = new ARMConstantPoolValue(*DAG.getContext(),
1455                                                       Sym, ARMPCLabelIndex, 4);
1456      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1457      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1458      Callee = DAG.getLoad(getPointerTy(), dl,
1459                           DAG.getEntryNode(), CPAddr,
1460                           MachinePointerInfo::getConstantPool(),
1461                           false, false, 0);
1462      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1463      Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
1464                           getPointerTy(), Callee, PICLabel);
1465    } else {
1466      unsigned OpFlags = 0;
1467      // On ELF targets for PIC code, direct calls should go through the PLT
1468      if (Subtarget->isTargetELF() &&
1469                  getTargetMachine().getRelocationModel() == Reloc::PIC_)
1470        OpFlags = ARMII::MO_PLT;
1471      Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlags);
1472    }
1473  }
1474
1475  // FIXME: handle tail calls differently.
1476  unsigned CallOpc;
1477  if (Subtarget->isThumb()) {
1478    if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps())
1479      CallOpc = ARMISD::CALL_NOLINK;
1480    else
1481      CallOpc = isARMFunc ? ARMISD::CALL : ARMISD::tCALL;
1482  } else {
1483    CallOpc = (isDirect || Subtarget->hasV5TOps())
1484      ? (isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL)
1485      : ARMISD::CALL_NOLINK;
1486  }
1487
1488  std::vector<SDValue> Ops;
1489  Ops.push_back(Chain);
1490  Ops.push_back(Callee);
1491
1492  // Add argument registers to the end of the list so that they are known live
1493  // into the call.
1494  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1495    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1496                                  RegsToPass[i].second.getValueType()));
1497
1498  if (InFlag.getNode())
1499    Ops.push_back(InFlag);
1500
1501  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1502  if (isTailCall)
1503    return DAG.getNode(ARMISD::TC_RETURN, dl, NodeTys, &Ops[0], Ops.size());
1504
1505  // Returns a chain and a flag for retval copy to use.
1506  Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size());
1507  InFlag = Chain.getValue(1);
1508
1509  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
1510                             DAG.getIntPtrConstant(0, true), InFlag);
1511  if (!Ins.empty())
1512    InFlag = Chain.getValue(1);
1513
1514  // Handle result values, copying them out of physregs into vregs that we
1515  // return.
1516  return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins,
1517                         dl, DAG, InVals);
1518}
1519
1520/// HandleByVal - Every parameter *after* a byval parameter is passed
1521/// on the stack.  Remember the next parameter register to allocate,
1522/// and then confiscate the rest of the parameter registers to insure
1523/// this.
1524void
1525llvm::ARMTargetLowering::HandleByVal(CCState *State, unsigned &size) const {
1526  unsigned reg = State->AllocateReg(GPRArgRegs, 4);
1527  assert((State->getCallOrPrologue() == Prologue ||
1528          State->getCallOrPrologue() == Call) &&
1529         "unhandled ParmContext");
1530  if ((!State->isFirstByValRegValid()) &&
1531      (ARM::R0 <= reg) && (reg <= ARM::R3)) {
1532    State->setFirstByValReg(reg);
1533    // At a call site, a byval parameter that is split between
1534    // registers and memory needs its size truncated here.  In a
1535    // function prologue, such byval parameters are reassembled in
1536    // memory, and are not truncated.
1537    if (State->getCallOrPrologue() == Call) {
1538      unsigned excess = 4 * (ARM::R4 - reg);
1539      assert(size >= excess && "expected larger existing stack allocation");
1540      size -= excess;
1541    }
1542  }
1543  // Confiscate any remaining parameter registers to preclude their
1544  // assignment to subsequent parameters.
1545  while (State->AllocateReg(GPRArgRegs, 4))
1546    ;
1547}
1548
1549/// MatchingStackOffset - Return true if the given stack call argument is
1550/// already available in the same position (relatively) of the caller's
1551/// incoming argument stack.
1552static
1553bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
1554                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
1555                         const ARMInstrInfo *TII) {
1556  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
1557  int FI = INT_MAX;
1558  if (Arg.getOpcode() == ISD::CopyFromReg) {
1559    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
1560    if (!TargetRegisterInfo::isVirtualRegister(VR))
1561      return false;
1562    MachineInstr *Def = MRI->getVRegDef(VR);
1563    if (!Def)
1564      return false;
1565    if (!Flags.isByVal()) {
1566      if (!TII->isLoadFromStackSlot(Def, FI))
1567        return false;
1568    } else {
1569      return false;
1570    }
1571  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
1572    if (Flags.isByVal())
1573      // ByVal argument is passed in as a pointer but it's now being
1574      // dereferenced. e.g.
1575      // define @foo(%struct.X* %A) {
1576      //   tail call @bar(%struct.X* byval %A)
1577      // }
1578      return false;
1579    SDValue Ptr = Ld->getBasePtr();
1580    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
1581    if (!FINode)
1582      return false;
1583    FI = FINode->getIndex();
1584  } else
1585    return false;
1586
1587  assert(FI != INT_MAX);
1588  if (!MFI->isFixedObjectIndex(FI))
1589    return false;
1590  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
1591}
1592
1593/// IsEligibleForTailCallOptimization - Check whether the call is eligible
1594/// for tail call optimization. Targets which want to do tail call
1595/// optimization should implement this function.
1596bool
1597ARMTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
1598                                                     CallingConv::ID CalleeCC,
1599                                                     bool isVarArg,
1600                                                     bool isCalleeStructRet,
1601                                                     bool isCallerStructRet,
1602                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
1603                                    const SmallVectorImpl<SDValue> &OutVals,
1604                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1605                                                     SelectionDAG& DAG) const {
1606  const Function *CallerF = DAG.getMachineFunction().getFunction();
1607  CallingConv::ID CallerCC = CallerF->getCallingConv();
1608  bool CCMatch = CallerCC == CalleeCC;
1609
1610  // Look for obvious safe cases to perform tail call optimization that do not
1611  // require ABI changes. This is what gcc calls sibcall.
1612
1613  // Do not sibcall optimize vararg calls unless the call site is not passing
1614  // any arguments.
1615  if (isVarArg && !Outs.empty())
1616    return false;
1617
1618  // Also avoid sibcall optimization if either caller or callee uses struct
1619  // return semantics.
1620  if (isCalleeStructRet || isCallerStructRet)
1621    return false;
1622
1623  // FIXME: Completely disable sibcall for Thumb1 since Thumb1RegisterInfo::
1624  // emitEpilogue is not ready for them.
1625  // Doing this is tricky, since the LDM/POP instruction on Thumb doesn't take
1626  // LR.  This means if we need to reload LR, it takes an extra instructions,
1627  // which outweighs the value of the tail call; but here we don't know yet
1628  // whether LR is going to be used.  Probably the right approach is to
1629  // generate the tail call here and turn it back into CALL/RET in
1630  // emitEpilogue if LR is used.
1631
1632  // Thumb1 PIC calls to external symbols use BX, so they can be tail calls,
1633  // but we need to make sure there are enough registers; the only valid
1634  // registers are the 4 used for parameters.  We don't currently do this
1635  // case.
1636  if (Subtarget->isThumb1Only())
1637    return false;
1638
1639  // If the calling conventions do not match, then we'd better make sure the
1640  // results are returned in the same way as what the caller expects.
1641  if (!CCMatch) {
1642    SmallVector<CCValAssign, 16> RVLocs1;
1643    CCState CCInfo1(CalleeCC, false, getTargetMachine(),
1644                    RVLocs1, *DAG.getContext());
1645    CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForNode(CalleeCC, true, isVarArg));
1646
1647    SmallVector<CCValAssign, 16> RVLocs2;
1648    CCState CCInfo2(CallerCC, false, getTargetMachine(),
1649                    RVLocs2, *DAG.getContext());
1650    CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForNode(CallerCC, true, isVarArg));
1651
1652    if (RVLocs1.size() != RVLocs2.size())
1653      return false;
1654    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
1655      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
1656        return false;
1657      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
1658        return false;
1659      if (RVLocs1[i].isRegLoc()) {
1660        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
1661          return false;
1662      } else {
1663        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
1664          return false;
1665      }
1666    }
1667  }
1668
1669  // If the callee takes no arguments then go on to check the results of the
1670  // call.
1671  if (!Outs.empty()) {
1672    // Check if stack adjustment is needed. For now, do not do this if any
1673    // argument is passed on the stack.
1674    SmallVector<CCValAssign, 16> ArgLocs;
1675    CCState CCInfo(CalleeCC, isVarArg, getTargetMachine(),
1676                   ArgLocs, *DAG.getContext());
1677    CCInfo.AnalyzeCallOperands(Outs,
1678                               CCAssignFnForNode(CalleeCC, false, isVarArg));
1679    if (CCInfo.getNextStackOffset()) {
1680      MachineFunction &MF = DAG.getMachineFunction();
1681
1682      // Check if the arguments are already laid out in the right way as
1683      // the caller's fixed stack objects.
1684      MachineFrameInfo *MFI = MF.getFrameInfo();
1685      const MachineRegisterInfo *MRI = &MF.getRegInfo();
1686      const ARMInstrInfo *TII =
1687        ((ARMTargetMachine&)getTargetMachine()).getInstrInfo();
1688      for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
1689           i != e;
1690           ++i, ++realArgIdx) {
1691        CCValAssign &VA = ArgLocs[i];
1692        EVT RegVT = VA.getLocVT();
1693        SDValue Arg = OutVals[realArgIdx];
1694        ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
1695        if (VA.getLocInfo() == CCValAssign::Indirect)
1696          return false;
1697        if (VA.needsCustom()) {
1698          // f64 and vector types are split into multiple registers or
1699          // register/stack-slot combinations.  The types will not match
1700          // the registers; give up on memory f64 refs until we figure
1701          // out what to do about this.
1702          if (!VA.isRegLoc())
1703            return false;
1704          if (!ArgLocs[++i].isRegLoc())
1705            return false;
1706          if (RegVT == MVT::v2f64) {
1707            if (!ArgLocs[++i].isRegLoc())
1708              return false;
1709            if (!ArgLocs[++i].isRegLoc())
1710              return false;
1711          }
1712        } else if (!VA.isRegLoc()) {
1713          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
1714                                   MFI, MRI, TII))
1715            return false;
1716        }
1717      }
1718    }
1719  }
1720
1721  return true;
1722}
1723
1724SDValue
1725ARMTargetLowering::LowerReturn(SDValue Chain,
1726                               CallingConv::ID CallConv, bool isVarArg,
1727                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1728                               const SmallVectorImpl<SDValue> &OutVals,
1729                               DebugLoc dl, SelectionDAG &DAG) const {
1730
1731  // CCValAssign - represent the assignment of the return value to a location.
1732  SmallVector<CCValAssign, 16> RVLocs;
1733
1734  // CCState - Info about the registers and stack slots.
1735  CCState CCInfo(CallConv, isVarArg, getTargetMachine(), RVLocs,
1736                 *DAG.getContext());
1737
1738  // Analyze outgoing return values.
1739  CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv, /* Return */ true,
1740                                               isVarArg));
1741
1742  // If this is the first return lowered for this function, add
1743  // the regs to the liveout set for the function.
1744  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
1745    for (unsigned i = 0; i != RVLocs.size(); ++i)
1746      if (RVLocs[i].isRegLoc())
1747        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
1748  }
1749
1750  SDValue Flag;
1751
1752  // Copy the result values into the output registers.
1753  for (unsigned i = 0, realRVLocIdx = 0;
1754       i != RVLocs.size();
1755       ++i, ++realRVLocIdx) {
1756    CCValAssign &VA = RVLocs[i];
1757    assert(VA.isRegLoc() && "Can only return in registers!");
1758
1759    SDValue Arg = OutVals[realRVLocIdx];
1760
1761    switch (VA.getLocInfo()) {
1762    default: llvm_unreachable("Unknown loc info!");
1763    case CCValAssign::Full: break;
1764    case CCValAssign::BCvt:
1765      Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
1766      break;
1767    }
1768
1769    if (VA.needsCustom()) {
1770      if (VA.getLocVT() == MVT::v2f64) {
1771        // Extract the first half and return it in two registers.
1772        SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1773                                   DAG.getConstant(0, MVT::i32));
1774        SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl,
1775                                       DAG.getVTList(MVT::i32, MVT::i32), Half);
1776
1777        Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), HalfGPRs, Flag);
1778        Flag = Chain.getValue(1);
1779        VA = RVLocs[++i]; // skip ahead to next loc
1780        Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
1781                                 HalfGPRs.getValue(1), Flag);
1782        Flag = Chain.getValue(1);
1783        VA = RVLocs[++i]; // skip ahead to next loc
1784
1785        // Extract the 2nd half and fall through to handle it as an f64 value.
1786        Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1787                          DAG.getConstant(1, MVT::i32));
1788      }
1789      // Legalize ret f64 -> ret 2 x i32.  We always have fmrrd if f64 is
1790      // available.
1791      SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
1792                                  DAG.getVTList(MVT::i32, MVT::i32), &Arg, 1);
1793      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd, Flag);
1794      Flag = Chain.getValue(1);
1795      VA = RVLocs[++i]; // skip ahead to next loc
1796      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd.getValue(1),
1797                               Flag);
1798    } else
1799      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
1800
1801    // Guarantee that all emitted copies are
1802    // stuck together, avoiding something bad.
1803    Flag = Chain.getValue(1);
1804  }
1805
1806  SDValue result;
1807  if (Flag.getNode())
1808    result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain, Flag);
1809  else // Return Void
1810    result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain);
1811
1812  return result;
1813}
1814
1815bool ARMTargetLowering::isUsedByReturnOnly(SDNode *N) const {
1816  if (N->getNumValues() != 1)
1817    return false;
1818  if (!N->hasNUsesOfValue(1, 0))
1819    return false;
1820
1821  unsigned NumCopies = 0;
1822  SDNode* Copies[2];
1823  SDNode *Use = *N->use_begin();
1824  if (Use->getOpcode() == ISD::CopyToReg) {
1825    Copies[NumCopies++] = Use;
1826  } else if (Use->getOpcode() == ARMISD::VMOVRRD) {
1827    // f64 returned in a pair of GPRs.
1828    for (SDNode::use_iterator UI = Use->use_begin(), UE = Use->use_end();
1829         UI != UE; ++UI) {
1830      if (UI->getOpcode() != ISD::CopyToReg)
1831        return false;
1832      Copies[UI.getUse().getResNo()] = *UI;
1833      ++NumCopies;
1834    }
1835  } else if (Use->getOpcode() == ISD::BITCAST) {
1836    // f32 returned in a single GPR.
1837    if (!Use->hasNUsesOfValue(1, 0))
1838      return false;
1839    Use = *Use->use_begin();
1840    if (Use->getOpcode() != ISD::CopyToReg || !Use->hasNUsesOfValue(1, 0))
1841      return false;
1842    Copies[NumCopies++] = Use;
1843  } else {
1844    return false;
1845  }
1846
1847  if (NumCopies != 1 && NumCopies != 2)
1848    return false;
1849
1850  bool HasRet = false;
1851  for (unsigned i = 0; i < NumCopies; ++i) {
1852    SDNode *Copy = Copies[i];
1853    for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1854         UI != UE; ++UI) {
1855      if (UI->getOpcode() == ISD::CopyToReg) {
1856        SDNode *Use = *UI;
1857        if (Use == Copies[0] || Use == Copies[1])
1858          continue;
1859        return false;
1860      }
1861      if (UI->getOpcode() != ARMISD::RET_FLAG)
1862        return false;
1863      HasRet = true;
1864    }
1865  }
1866
1867  return HasRet;
1868}
1869
1870bool ARMTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
1871  if (!EnableARMTailCalls)
1872    return false;
1873
1874  if (!CI->isTailCall())
1875    return false;
1876
1877  return !Subtarget->isThumb1Only();
1878}
1879
1880// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
1881// their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
1882// one of the above mentioned nodes. It has to be wrapped because otherwise
1883// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
1884// be used to form addressing mode. These wrapped nodes will be selected
1885// into MOVi.
1886static SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
1887  EVT PtrVT = Op.getValueType();
1888  // FIXME there is no actual debug info here
1889  DebugLoc dl = Op.getDebugLoc();
1890  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1891  SDValue Res;
1892  if (CP->isMachineConstantPoolEntry())
1893    Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
1894                                    CP->getAlignment());
1895  else
1896    Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
1897                                    CP->getAlignment());
1898  return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
1899}
1900
1901unsigned ARMTargetLowering::getJumpTableEncoding() const {
1902  return MachineJumpTableInfo::EK_Inline;
1903}
1904
1905SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op,
1906                                             SelectionDAG &DAG) const {
1907  MachineFunction &MF = DAG.getMachineFunction();
1908  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1909  unsigned ARMPCLabelIndex = 0;
1910  DebugLoc DL = Op.getDebugLoc();
1911  EVT PtrVT = getPointerTy();
1912  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1913  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
1914  SDValue CPAddr;
1915  if (RelocM == Reloc::Static) {
1916    CPAddr = DAG.getTargetConstantPool(BA, PtrVT, 4);
1917  } else {
1918    unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
1919    ARMPCLabelIndex = AFI->createPICLabelUId();
1920    ARMConstantPoolValue *CPV = new ARMConstantPoolValue(BA, ARMPCLabelIndex,
1921                                                         ARMCP::CPBlockAddress,
1922                                                         PCAdj);
1923    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1924  }
1925  CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr);
1926  SDValue Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), CPAddr,
1927                               MachinePointerInfo::getConstantPool(),
1928                               false, false, 0);
1929  if (RelocM == Reloc::Static)
1930    return Result;
1931  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1932  return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel);
1933}
1934
1935// Lower ISD::GlobalTLSAddress using the "general dynamic" model
1936SDValue
1937ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
1938                                                 SelectionDAG &DAG) const {
1939  DebugLoc dl = GA->getDebugLoc();
1940  EVT PtrVT = getPointerTy();
1941  unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
1942  MachineFunction &MF = DAG.getMachineFunction();
1943  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1944  unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1945  ARMConstantPoolValue *CPV =
1946    new ARMConstantPoolValue(GA->getGlobal(), ARMPCLabelIndex,
1947                             ARMCP::CPValue, PCAdj, ARMCP::TLSGD, true);
1948  SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1949  Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
1950  Argument = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Argument,
1951                         MachinePointerInfo::getConstantPool(),
1952                         false, false, 0);
1953  SDValue Chain = Argument.getValue(1);
1954
1955  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1956  Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);
1957
1958  // call __tls_get_addr.
1959  ArgListTy Args;
1960  ArgListEntry Entry;
1961  Entry.Node = Argument;
1962  Entry.Ty = (const Type *) Type::getInt32Ty(*DAG.getContext());
1963  Args.push_back(Entry);
1964  // FIXME: is there useful debug info available here?
1965  std::pair<SDValue, SDValue> CallResult =
1966    LowerCallTo(Chain, (const Type *) Type::getInt32Ty(*DAG.getContext()),
1967                false, false, false, false,
1968                0, CallingConv::C, false, /*isReturnValueUsed=*/true,
1969                DAG.getExternalSymbol("__tls_get_addr", PtrVT), Args, DAG, dl);
1970  return CallResult.first;
1971}
1972
1973// Lower ISD::GlobalTLSAddress using the "initial exec" or
1974// "local exec" model.
1975SDValue
1976ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
1977                                        SelectionDAG &DAG) const {
1978  const GlobalValue *GV = GA->getGlobal();
1979  DebugLoc dl = GA->getDebugLoc();
1980  SDValue Offset;
1981  SDValue Chain = DAG.getEntryNode();
1982  EVT PtrVT = getPointerTy();
1983  // Get the Thread Pointer
1984  SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
1985
1986  if (GV->isDeclaration()) {
1987    MachineFunction &MF = DAG.getMachineFunction();
1988    ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1989    unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1990    // Initial exec model.
1991    unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
1992    ARMConstantPoolValue *CPV =
1993      new ARMConstantPoolValue(GA->getGlobal(), ARMPCLabelIndex,
1994                               ARMCP::CPValue, PCAdj, ARMCP::GOTTPOFF, true);
1995    Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1996    Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
1997    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
1998                         MachinePointerInfo::getConstantPool(),
1999                         false, false, 0);
2000    Chain = Offset.getValue(1);
2001
2002    SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2003    Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
2004
2005    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
2006                         MachinePointerInfo::getConstantPool(),
2007                         false, false, 0);
2008  } else {
2009    // local exec model
2010    ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV, ARMCP::TPOFF);
2011    Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2012    Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
2013    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
2014                         MachinePointerInfo::getConstantPool(),
2015                         false, false, 0);
2016  }
2017
2018  // The address of the thread local variable is the add of the thread
2019  // pointer with the offset of the variable.
2020  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
2021}
2022
2023SDValue
2024ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
2025  // TODO: implement the "local dynamic" model
2026  assert(Subtarget->isTargetELF() &&
2027         "TLS not implemented for non-ELF targets");
2028  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2029  // If the relocation model is PIC, use the "General Dynamic" TLS Model,
2030  // otherwise use the "Local Exec" TLS Model
2031  if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
2032    return LowerToTLSGeneralDynamicModel(GA, DAG);
2033  else
2034    return LowerToTLSExecModels(GA, DAG);
2035}
2036
2037SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
2038                                                 SelectionDAG &DAG) const {
2039  EVT PtrVT = getPointerTy();
2040  DebugLoc dl = Op.getDebugLoc();
2041  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
2042  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2043  if (RelocM == Reloc::PIC_) {
2044    bool UseGOTOFF = GV->hasLocalLinkage() || GV->hasHiddenVisibility();
2045    ARMConstantPoolValue *CPV =
2046      new ARMConstantPoolValue(GV, UseGOTOFF ? ARMCP::GOTOFF : ARMCP::GOT);
2047    SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2048    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2049    SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
2050                                 CPAddr,
2051                                 MachinePointerInfo::getConstantPool(),
2052                                 false, false, 0);
2053    SDValue Chain = Result.getValue(1);
2054    SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
2055    Result = DAG.getNode(ISD::ADD, dl, PtrVT, Result, GOT);
2056    if (!UseGOTOFF)
2057      Result = DAG.getLoad(PtrVT, dl, Chain, Result,
2058                           MachinePointerInfo::getGOT(), false, false, 0);
2059    return Result;
2060  }
2061
2062  // If we have T2 ops, we can materialize the address directly via movt/movw
2063  // pair. This is always cheaper.
2064  if (Subtarget->useMovt()) {
2065    ++NumMovwMovt;
2066    // FIXME: Once remat is capable of dealing with instructions with register
2067    // operands, expand this into two nodes.
2068    return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
2069                       DAG.getTargetGlobalAddress(GV, dl, PtrVT));
2070  } else {
2071    SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
2072    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2073    return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2074                       MachinePointerInfo::getConstantPool(),
2075                       false, false, 0);
2076  }
2077}
2078
2079SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
2080                                                    SelectionDAG &DAG) const {
2081  EVT PtrVT = getPointerTy();
2082  DebugLoc dl = Op.getDebugLoc();
2083  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
2084  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2085  MachineFunction &MF = DAG.getMachineFunction();
2086  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2087
2088  if (Subtarget->useMovt()) {
2089    ++NumMovwMovt;
2090    // FIXME: Once remat is capable of dealing with instructions with register
2091    // operands, expand this into two nodes.
2092    if (RelocM == Reloc::Static)
2093      return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
2094                                 DAG.getTargetGlobalAddress(GV, dl, PtrVT));
2095
2096    unsigned Wrapper = (RelocM == Reloc::PIC_)
2097      ? ARMISD::WrapperPIC : ARMISD::WrapperDYN;
2098    SDValue Result = DAG.getNode(Wrapper, dl, PtrVT,
2099                                 DAG.getTargetGlobalAddress(GV, dl, PtrVT));
2100    if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
2101      Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
2102                           MachinePointerInfo::getGOT(), false, false, 0);
2103    return Result;
2104  }
2105
2106  unsigned ARMPCLabelIndex = 0;
2107  SDValue CPAddr;
2108  if (RelocM == Reloc::Static) {
2109    CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
2110  } else {
2111    ARMPCLabelIndex = AFI->createPICLabelUId();
2112    unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : (Subtarget->isThumb()?4:8);
2113    ARMConstantPoolValue *CPV =
2114      new ARMConstantPoolValue(GV, ARMPCLabelIndex, ARMCP::CPValue, PCAdj);
2115    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2116  }
2117  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2118
2119  SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2120                               MachinePointerInfo::getConstantPool(),
2121                               false, false, 0);
2122  SDValue Chain = Result.getValue(1);
2123
2124  if (RelocM == Reloc::PIC_) {
2125    SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2126    Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2127  }
2128
2129  if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
2130    Result = DAG.getLoad(PtrVT, dl, Chain, Result, MachinePointerInfo::getGOT(),
2131                         false, false, 0);
2132
2133  return Result;
2134}
2135
2136SDValue ARMTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op,
2137                                                    SelectionDAG &DAG) const {
2138  assert(Subtarget->isTargetELF() &&
2139         "GLOBAL OFFSET TABLE not implemented for non-ELF targets");
2140  MachineFunction &MF = DAG.getMachineFunction();
2141  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2142  unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2143  EVT PtrVT = getPointerTy();
2144  DebugLoc dl = Op.getDebugLoc();
2145  unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
2146  ARMConstantPoolValue *CPV = new ARMConstantPoolValue(*DAG.getContext(),
2147                                                       "_GLOBAL_OFFSET_TABLE_",
2148                                                       ARMPCLabelIndex, PCAdj);
2149  SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2150  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2151  SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2152                               MachinePointerInfo::getConstantPool(),
2153                               false, false, 0);
2154  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2155  return DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2156}
2157
2158SDValue
2159ARMTargetLowering::LowerEH_SJLJ_DISPATCHSETUP(SDValue Op, SelectionDAG &DAG)
2160  const {
2161  DebugLoc dl = Op.getDebugLoc();
2162  return DAG.getNode(ARMISD::EH_SJLJ_DISPATCHSETUP, dl, MVT::Other,
2163                     Op.getOperand(0));
2164}
2165
2166SDValue
2167ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const {
2168  DebugLoc dl = Op.getDebugLoc();
2169  SDValue Val = DAG.getConstant(0, MVT::i32);
2170  return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl, MVT::i32, Op.getOperand(0),
2171                     Op.getOperand(1), Val);
2172}
2173
2174SDValue
2175ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const {
2176  DebugLoc dl = Op.getDebugLoc();
2177  return DAG.getNode(ARMISD::EH_SJLJ_LONGJMP, dl, MVT::Other, Op.getOperand(0),
2178                     Op.getOperand(1), DAG.getConstant(0, MVT::i32));
2179}
2180
2181SDValue
2182ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG,
2183                                          const ARMSubtarget *Subtarget) const {
2184  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2185  DebugLoc dl = Op.getDebugLoc();
2186  switch (IntNo) {
2187  default: return SDValue();    // Don't custom lower most intrinsics.
2188  case Intrinsic::arm_thread_pointer: {
2189    EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2190    return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
2191  }
2192  case Intrinsic::eh_sjlj_lsda: {
2193    MachineFunction &MF = DAG.getMachineFunction();
2194    ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2195    unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2196    EVT PtrVT = getPointerTy();
2197    DebugLoc dl = Op.getDebugLoc();
2198    Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2199    SDValue CPAddr;
2200    unsigned PCAdj = (RelocM != Reloc::PIC_)
2201      ? 0 : (Subtarget->isThumb() ? 4 : 8);
2202    ARMConstantPoolValue *CPV =
2203      new ARMConstantPoolValue(MF.getFunction(), ARMPCLabelIndex,
2204                               ARMCP::CPLSDA, PCAdj);
2205    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2206    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2207    SDValue Result =
2208      DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2209                  MachinePointerInfo::getConstantPool(),
2210                  false, false, 0);
2211
2212    if (RelocM == Reloc::PIC_) {
2213      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2214      Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2215    }
2216    return Result;
2217  }
2218  case Intrinsic::arm_neon_vmulls:
2219  case Intrinsic::arm_neon_vmullu: {
2220    unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmulls)
2221      ? ARMISD::VMULLs : ARMISD::VMULLu;
2222    return DAG.getNode(NewOpc, Op.getDebugLoc(), Op.getValueType(),
2223                       Op.getOperand(1), Op.getOperand(2));
2224  }
2225  }
2226}
2227
2228static SDValue LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG,
2229                               const ARMSubtarget *Subtarget) {
2230  DebugLoc dl = Op.getDebugLoc();
2231  if (!Subtarget->hasDataBarrier()) {
2232    // Some ARMv6 cpus can support data barriers with an mcr instruction.
2233    // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
2234    // here.
2235    assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&
2236           "Unexpected ISD::MEMBARRIER encountered. Should be libcall!");
2237    return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
2238                       DAG.getConstant(0, MVT::i32));
2239  }
2240
2241  SDValue Op5 = Op.getOperand(5);
2242  bool isDeviceBarrier = cast<ConstantSDNode>(Op5)->getZExtValue() != 0;
2243  unsigned isLL = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
2244  unsigned isLS = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
2245  bool isOnlyStoreBarrier = (isLL == 0 && isLS == 0);
2246
2247  ARM_MB::MemBOpt DMBOpt;
2248  if (isDeviceBarrier)
2249    DMBOpt = isOnlyStoreBarrier ? ARM_MB::ST : ARM_MB::SY;
2250  else
2251    DMBOpt = isOnlyStoreBarrier ? ARM_MB::ISHST : ARM_MB::ISH;
2252  return DAG.getNode(ARMISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0),
2253                     DAG.getConstant(DMBOpt, MVT::i32));
2254}
2255
2256static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG,
2257                             const ARMSubtarget *Subtarget) {
2258  // ARM pre v5TE and Thumb1 does not have preload instructions.
2259  if (!(Subtarget->isThumb2() ||
2260        (!Subtarget->isThumb1Only() && Subtarget->hasV5TEOps())))
2261    // Just preserve the chain.
2262    return Op.getOperand(0);
2263
2264  DebugLoc dl = Op.getDebugLoc();
2265  unsigned isRead = ~cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() & 1;
2266  if (!isRead &&
2267      (!Subtarget->hasV7Ops() || !Subtarget->hasMPExtension()))
2268    // ARMv7 with MP extension has PLDW.
2269    return Op.getOperand(0);
2270
2271  if (Subtarget->isThumb())
2272    // Invert the bits.
2273    isRead = ~isRead & 1;
2274  unsigned isData = Subtarget->isThumb() ? 0 : 1;
2275
2276  // Currently there is no intrinsic that matches pli.
2277  return DAG.getNode(ARMISD::PRELOAD, dl, MVT::Other, Op.getOperand(0),
2278                     Op.getOperand(1), DAG.getConstant(isRead, MVT::i32),
2279                     DAG.getConstant(isData, MVT::i32));
2280}
2281
2282static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) {
2283  MachineFunction &MF = DAG.getMachineFunction();
2284  ARMFunctionInfo *FuncInfo = MF.getInfo<ARMFunctionInfo>();
2285
2286  // vastart just stores the address of the VarArgsFrameIndex slot into the
2287  // memory location argument.
2288  DebugLoc dl = Op.getDebugLoc();
2289  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2290  SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2291  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2292  return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
2293                      MachinePointerInfo(SV), false, false, 0);
2294}
2295
2296SDValue
2297ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA, CCValAssign &NextVA,
2298                                        SDValue &Root, SelectionDAG &DAG,
2299                                        DebugLoc dl) const {
2300  MachineFunction &MF = DAG.getMachineFunction();
2301  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2302
2303  TargetRegisterClass *RC;
2304  if (AFI->isThumb1OnlyFunction())
2305    RC = ARM::tGPRRegisterClass;
2306  else
2307    RC = ARM::GPRRegisterClass;
2308
2309  // Transform the arguments stored in physical registers into virtual ones.
2310  unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2311  SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
2312
2313  SDValue ArgValue2;
2314  if (NextVA.isMemLoc()) {
2315    MachineFrameInfo *MFI = MF.getFrameInfo();
2316    int FI = MFI->CreateFixedObject(4, NextVA.getLocMemOffset(), true);
2317
2318    // Create load node to retrieve arguments from the stack.
2319    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2320    ArgValue2 = DAG.getLoad(MVT::i32, dl, Root, FIN,
2321                            MachinePointerInfo::getFixedStack(FI),
2322                            false, false, 0);
2323  } else {
2324    Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
2325    ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
2326  }
2327
2328  return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2);
2329}
2330
2331void
2332ARMTargetLowering::computeRegArea(CCState &CCInfo, MachineFunction &MF,
2333                                  unsigned &VARegSize, unsigned &VARegSaveSize)
2334  const {
2335  unsigned NumGPRs;
2336  if (CCInfo.isFirstByValRegValid())
2337    NumGPRs = ARM::R4 - CCInfo.getFirstByValReg();
2338  else {
2339    unsigned int firstUnalloced;
2340    firstUnalloced = CCInfo.getFirstUnallocated(GPRArgRegs,
2341                                                sizeof(GPRArgRegs) /
2342                                                sizeof(GPRArgRegs[0]));
2343    NumGPRs = (firstUnalloced <= 3) ? (4 - firstUnalloced) : 0;
2344  }
2345
2346  unsigned Align = MF.getTarget().getFrameLowering()->getStackAlignment();
2347  VARegSize = NumGPRs * 4;
2348  VARegSaveSize = (VARegSize + Align - 1) & ~(Align - 1);
2349}
2350
2351// The remaining GPRs hold either the beginning of variable-argument
2352// data, or the beginning of an aggregate passed by value (usuall
2353// byval).  Either way, we allocate stack slots adjacent to the data
2354// provided by our caller, and store the unallocated registers there.
2355// If this is a variadic function, the va_list pointer will begin with
2356// these values; otherwise, this reassembles a (byval) structure that
2357// was split between registers and memory.
2358void
2359ARMTargetLowering::VarArgStyleRegisters(CCState &CCInfo, SelectionDAG &DAG,
2360                                        DebugLoc dl, SDValue &Chain,
2361                                        unsigned ArgOffset) const {
2362  MachineFunction &MF = DAG.getMachineFunction();
2363  MachineFrameInfo *MFI = MF.getFrameInfo();
2364  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2365  unsigned firstRegToSaveIndex;
2366  if (CCInfo.isFirstByValRegValid())
2367    firstRegToSaveIndex = CCInfo.getFirstByValReg() - ARM::R0;
2368  else {
2369    firstRegToSaveIndex = CCInfo.getFirstUnallocated
2370      (GPRArgRegs, sizeof(GPRArgRegs) / sizeof(GPRArgRegs[0]));
2371  }
2372
2373  unsigned VARegSize, VARegSaveSize;
2374  computeRegArea(CCInfo, MF, VARegSize, VARegSaveSize);
2375  if (VARegSaveSize) {
2376    // If this function is vararg, store any remaining integer argument regs
2377    // to their spots on the stack so that they may be loaded by deferencing
2378    // the result of va_next.
2379    AFI->setVarArgsRegSaveSize(VARegSaveSize);
2380    AFI->setVarArgsFrameIndex(MFI->CreateFixedObject(VARegSaveSize,
2381                                                     ArgOffset + VARegSaveSize
2382                                                     - VARegSize,
2383                                                     false));
2384    SDValue FIN = DAG.getFrameIndex(AFI->getVarArgsFrameIndex(),
2385                                    getPointerTy());
2386
2387    SmallVector<SDValue, 4> MemOps;
2388    for (; firstRegToSaveIndex < 4; ++firstRegToSaveIndex) {
2389      TargetRegisterClass *RC;
2390      if (AFI->isThumb1OnlyFunction())
2391        RC = ARM::tGPRRegisterClass;
2392      else
2393        RC = ARM::GPRRegisterClass;
2394
2395      unsigned VReg = MF.addLiveIn(GPRArgRegs[firstRegToSaveIndex], RC);
2396      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
2397      SDValue Store =
2398        DAG.getStore(Val.getValue(1), dl, Val, FIN,
2399                 MachinePointerInfo::getFixedStack(AFI->getVarArgsFrameIndex()),
2400                     false, false, 0);
2401      MemOps.push_back(Store);
2402      FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN,
2403                        DAG.getConstant(4, getPointerTy()));
2404    }
2405    if (!MemOps.empty())
2406      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2407                          &MemOps[0], MemOps.size());
2408  } else
2409    // This will point to the next argument passed via stack.
2410    AFI->setVarArgsFrameIndex(MFI->CreateFixedObject(4, ArgOffset, true));
2411}
2412
2413SDValue
2414ARMTargetLowering::LowerFormalArguments(SDValue Chain,
2415                                        CallingConv::ID CallConv, bool isVarArg,
2416                                        const SmallVectorImpl<ISD::InputArg>
2417                                          &Ins,
2418                                        DebugLoc dl, SelectionDAG &DAG,
2419                                        SmallVectorImpl<SDValue> &InVals)
2420                                          const {
2421  MachineFunction &MF = DAG.getMachineFunction();
2422  MachineFrameInfo *MFI = MF.getFrameInfo();
2423
2424  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2425
2426  // Assign locations to all of the incoming arguments.
2427  SmallVector<CCValAssign, 16> ArgLocs;
2428  CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs,
2429                 *DAG.getContext());
2430  CCInfo.setCallOrPrologue(Prologue);
2431  CCInfo.AnalyzeFormalArguments(Ins,
2432                                CCAssignFnForNode(CallConv, /* Return*/ false,
2433                                                  isVarArg));
2434
2435  SmallVector<SDValue, 16> ArgValues;
2436  int lastInsIndex = -1;
2437
2438  SDValue ArgValue;
2439  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2440    CCValAssign &VA = ArgLocs[i];
2441
2442    // Arguments stored in registers.
2443    if (VA.isRegLoc()) {
2444      EVT RegVT = VA.getLocVT();
2445
2446      if (VA.needsCustom()) {
2447        // f64 and vector types are split up into multiple registers or
2448        // combinations of registers and stack slots.
2449        if (VA.getLocVT() == MVT::v2f64) {
2450          SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i],
2451                                                   Chain, DAG, dl);
2452          VA = ArgLocs[++i]; // skip ahead to next loc
2453          SDValue ArgValue2;
2454          if (VA.isMemLoc()) {
2455            int FI = MFI->CreateFixedObject(8, VA.getLocMemOffset(), true);
2456            SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2457            ArgValue2 = DAG.getLoad(MVT::f64, dl, Chain, FIN,
2458                                    MachinePointerInfo::getFixedStack(FI),
2459                                    false, false, 0);
2460          } else {
2461            ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i],
2462                                             Chain, DAG, dl);
2463          }
2464          ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
2465          ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
2466                                 ArgValue, ArgValue1, DAG.getIntPtrConstant(0));
2467          ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
2468                                 ArgValue, ArgValue2, DAG.getIntPtrConstant(1));
2469        } else
2470          ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
2471
2472      } else {
2473        TargetRegisterClass *RC;
2474
2475        if (RegVT == MVT::f32)
2476          RC = ARM::SPRRegisterClass;
2477        else if (RegVT == MVT::f64)
2478          RC = ARM::DPRRegisterClass;
2479        else if (RegVT == MVT::v2f64)
2480          RC = ARM::QPRRegisterClass;
2481        else if (RegVT == MVT::i32)
2482          RC = (AFI->isThumb1OnlyFunction() ?
2483                ARM::tGPRRegisterClass : ARM::GPRRegisterClass);
2484        else
2485          llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
2486
2487        // Transform the arguments in physical registers into virtual ones.
2488        unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2489        ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
2490      }
2491
2492      // If this is an 8 or 16-bit value, it is really passed promoted
2493      // to 32 bits.  Insert an assert[sz]ext to capture this, then
2494      // truncate to the right size.
2495      switch (VA.getLocInfo()) {
2496      default: llvm_unreachable("Unknown loc info!");
2497      case CCValAssign::Full: break;
2498      case CCValAssign::BCvt:
2499        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
2500        break;
2501      case CCValAssign::SExt:
2502        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
2503                               DAG.getValueType(VA.getValVT()));
2504        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
2505        break;
2506      case CCValAssign::ZExt:
2507        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
2508                               DAG.getValueType(VA.getValVT()));
2509        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
2510        break;
2511      }
2512
2513      InVals.push_back(ArgValue);
2514
2515    } else { // VA.isRegLoc()
2516
2517      // sanity check
2518      assert(VA.isMemLoc());
2519      assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered");
2520
2521      int index = ArgLocs[i].getValNo();
2522
2523      // Some Ins[] entries become multiple ArgLoc[] entries.
2524      // Process them only once.
2525      if (index != lastInsIndex)
2526        {
2527          ISD::ArgFlagsTy Flags = Ins[index].Flags;
2528          // FIXME: For now, all byval parameter objects are marked mutable.
2529          // This can be changed with more analysis.
2530          // In case of tail call optimization mark all arguments mutable.
2531          // Since they could be overwritten by lowering of arguments in case of
2532          // a tail call.
2533          if (Flags.isByVal()) {
2534            unsigned VARegSize, VARegSaveSize;
2535            computeRegArea(CCInfo, MF, VARegSize, VARegSaveSize);
2536            VarArgStyleRegisters(CCInfo, DAG, dl, Chain, 0);
2537            unsigned Bytes = Flags.getByValSize() - VARegSize;
2538            if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
2539            int FI = MFI->CreateFixedObject(Bytes,
2540                                            VA.getLocMemOffset(), false);
2541            InVals.push_back(DAG.getFrameIndex(FI, getPointerTy()));
2542          } else {
2543            int FI = MFI->CreateFixedObject(VA.getLocVT().getSizeInBits()/8,
2544                                            VA.getLocMemOffset(), true);
2545
2546            // Create load nodes to retrieve arguments from the stack.
2547            SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2548            InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
2549                                         MachinePointerInfo::getFixedStack(FI),
2550                                         false, false, 0));
2551          }
2552          lastInsIndex = index;
2553        }
2554    }
2555  }
2556
2557  // varargs
2558  if (isVarArg)
2559    VarArgStyleRegisters(CCInfo, DAG, dl, Chain, CCInfo.getNextStackOffset());
2560
2561  return Chain;
2562}
2563
2564/// isFloatingPointZero - Return true if this is +0.0.
2565static bool isFloatingPointZero(SDValue Op) {
2566  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
2567    return CFP->getValueAPF().isPosZero();
2568  else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
2569    // Maybe this has already been legalized into the constant pool?
2570    if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
2571      SDValue WrapperOp = Op.getOperand(1).getOperand(0);
2572      if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
2573        if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
2574          return CFP->getValueAPF().isPosZero();
2575    }
2576  }
2577  return false;
2578}
2579
2580/// Returns appropriate ARM CMP (cmp) and corresponding condition code for
2581/// the given operands.
2582SDValue
2583ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
2584                             SDValue &ARMcc, SelectionDAG &DAG,
2585                             DebugLoc dl) const {
2586  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
2587    unsigned C = RHSC->getZExtValue();
2588    if (!isLegalICmpImmediate(C)) {
2589      // Constant does not fit, try adjusting it by one?
2590      switch (CC) {
2591      default: break;
2592      case ISD::SETLT:
2593      case ISD::SETGE:
2594        if (C != 0x80000000 && isLegalICmpImmediate(C-1)) {
2595          CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
2596          RHS = DAG.getConstant(C-1, MVT::i32);
2597        }
2598        break;
2599      case ISD::SETULT:
2600      case ISD::SETUGE:
2601        if (C != 0 && isLegalICmpImmediate(C-1)) {
2602          CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
2603          RHS = DAG.getConstant(C-1, MVT::i32);
2604        }
2605        break;
2606      case ISD::SETLE:
2607      case ISD::SETGT:
2608        if (C != 0x7fffffff && isLegalICmpImmediate(C+1)) {
2609          CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
2610          RHS = DAG.getConstant(C+1, MVT::i32);
2611        }
2612        break;
2613      case ISD::SETULE:
2614      case ISD::SETUGT:
2615        if (C != 0xffffffff && isLegalICmpImmediate(C+1)) {
2616          CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
2617          RHS = DAG.getConstant(C+1, MVT::i32);
2618        }
2619        break;
2620      }
2621    }
2622  }
2623
2624  ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
2625  ARMISD::NodeType CompareType;
2626  switch (CondCode) {
2627  default:
2628    CompareType = ARMISD::CMP;
2629    break;
2630  case ARMCC::EQ:
2631  case ARMCC::NE:
2632    // Uses only Z Flag
2633    CompareType = ARMISD::CMPZ;
2634    break;
2635  }
2636  ARMcc = DAG.getConstant(CondCode, MVT::i32);
2637  return DAG.getNode(CompareType, dl, MVT::Glue, LHS, RHS);
2638}
2639
2640/// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
2641SDValue
2642ARMTargetLowering::getVFPCmp(SDValue LHS, SDValue RHS, SelectionDAG &DAG,
2643                             DebugLoc dl) const {
2644  SDValue Cmp;
2645  if (!isFloatingPointZero(RHS))
2646    Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Glue, LHS, RHS);
2647  else
2648    Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Glue, LHS);
2649  return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Glue, Cmp);
2650}
2651
2652/// duplicateCmp - Glue values can have only one use, so this function
2653/// duplicates a comparison node.
2654SDValue
2655ARMTargetLowering::duplicateCmp(SDValue Cmp, SelectionDAG &DAG) const {
2656  unsigned Opc = Cmp.getOpcode();
2657  DebugLoc DL = Cmp.getDebugLoc();
2658  if (Opc == ARMISD::CMP || Opc == ARMISD::CMPZ)
2659    return DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
2660
2661  assert(Opc == ARMISD::FMSTAT && "unexpected comparison operation");
2662  Cmp = Cmp.getOperand(0);
2663  Opc = Cmp.getOpcode();
2664  if (Opc == ARMISD::CMPFP)
2665    Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
2666  else {
2667    assert(Opc == ARMISD::CMPFPw0 && "unexpected operand of FMSTAT");
2668    Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0));
2669  }
2670  return DAG.getNode(ARMISD::FMSTAT, DL, MVT::Glue, Cmp);
2671}
2672
2673SDValue ARMTargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
2674  SDValue Cond = Op.getOperand(0);
2675  SDValue SelectTrue = Op.getOperand(1);
2676  SDValue SelectFalse = Op.getOperand(2);
2677  DebugLoc dl = Op.getDebugLoc();
2678
2679  // Convert:
2680  //
2681  //   (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond)
2682  //   (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond)
2683  //
2684  if (Cond.getOpcode() == ARMISD::CMOV && Cond.hasOneUse()) {
2685    const ConstantSDNode *CMOVTrue =
2686      dyn_cast<ConstantSDNode>(Cond.getOperand(0));
2687    const ConstantSDNode *CMOVFalse =
2688      dyn_cast<ConstantSDNode>(Cond.getOperand(1));
2689
2690    if (CMOVTrue && CMOVFalse) {
2691      unsigned CMOVTrueVal = CMOVTrue->getZExtValue();
2692      unsigned CMOVFalseVal = CMOVFalse->getZExtValue();
2693
2694      SDValue True;
2695      SDValue False;
2696      if (CMOVTrueVal == 1 && CMOVFalseVal == 0) {
2697        True = SelectTrue;
2698        False = SelectFalse;
2699      } else if (CMOVTrueVal == 0 && CMOVFalseVal == 1) {
2700        True = SelectFalse;
2701        False = SelectTrue;
2702      }
2703
2704      if (True.getNode() && False.getNode()) {
2705        EVT VT = Cond.getValueType();
2706        SDValue ARMcc = Cond.getOperand(2);
2707        SDValue CCR = Cond.getOperand(3);
2708        SDValue Cmp = duplicateCmp(Cond.getOperand(4), DAG);
2709        return DAG.getNode(ARMISD::CMOV, dl, VT, True, False, ARMcc, CCR, Cmp);
2710      }
2711    }
2712  }
2713
2714  return DAG.getSelectCC(dl, Cond,
2715                         DAG.getConstant(0, Cond.getValueType()),
2716                         SelectTrue, SelectFalse, ISD::SETNE);
2717}
2718
2719SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
2720  EVT VT = Op.getValueType();
2721  SDValue LHS = Op.getOperand(0);
2722  SDValue RHS = Op.getOperand(1);
2723  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2724  SDValue TrueVal = Op.getOperand(2);
2725  SDValue FalseVal = Op.getOperand(3);
2726  DebugLoc dl = Op.getDebugLoc();
2727
2728  if (LHS.getValueType() == MVT::i32) {
2729    SDValue ARMcc;
2730    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2731    SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
2732    return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, CCR,Cmp);
2733  }
2734
2735  ARMCC::CondCodes CondCode, CondCode2;
2736  FPCCToARMCC(CC, CondCode, CondCode2);
2737
2738  SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
2739  SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
2740  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2741  SDValue Result = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal,
2742                               ARMcc, CCR, Cmp);
2743  if (CondCode2 != ARMCC::AL) {
2744    SDValue ARMcc2 = DAG.getConstant(CondCode2, MVT::i32);
2745    // FIXME: Needs another CMP because flag can have but one use.
2746    SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl);
2747    Result = DAG.getNode(ARMISD::CMOV, dl, VT,
2748                         Result, TrueVal, ARMcc2, CCR, Cmp2);
2749  }
2750  return Result;
2751}
2752
2753/// canChangeToInt - Given the fp compare operand, return true if it is suitable
2754/// to morph to an integer compare sequence.
2755static bool canChangeToInt(SDValue Op, bool &SeenZero,
2756                           const ARMSubtarget *Subtarget) {
2757  SDNode *N = Op.getNode();
2758  if (!N->hasOneUse())
2759    // Otherwise it requires moving the value from fp to integer registers.
2760    return false;
2761  if (!N->getNumValues())
2762    return false;
2763  EVT VT = Op.getValueType();
2764  if (VT != MVT::f32 && !Subtarget->isFPBrccSlow())
2765    // f32 case is generally profitable. f64 case only makes sense when vcmpe +
2766    // vmrs are very slow, e.g. cortex-a8.
2767    return false;
2768
2769  if (isFloatingPointZero(Op)) {
2770    SeenZero = true;
2771    return true;
2772  }
2773  return ISD::isNormalLoad(N);
2774}
2775
2776static SDValue bitcastf32Toi32(SDValue Op, SelectionDAG &DAG) {
2777  if (isFloatingPointZero(Op))
2778    return DAG.getConstant(0, MVT::i32);
2779
2780  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op))
2781    return DAG.getLoad(MVT::i32, Op.getDebugLoc(),
2782                       Ld->getChain(), Ld->getBasePtr(), Ld->getPointerInfo(),
2783                       Ld->isVolatile(), Ld->isNonTemporal(),
2784                       Ld->getAlignment());
2785
2786  llvm_unreachable("Unknown VFP cmp argument!");
2787}
2788
2789static void expandf64Toi32(SDValue Op, SelectionDAG &DAG,
2790                           SDValue &RetVal1, SDValue &RetVal2) {
2791  if (isFloatingPointZero(Op)) {
2792    RetVal1 = DAG.getConstant(0, MVT::i32);
2793    RetVal2 = DAG.getConstant(0, MVT::i32);
2794    return;
2795  }
2796
2797  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) {
2798    SDValue Ptr = Ld->getBasePtr();
2799    RetVal1 = DAG.getLoad(MVT::i32, Op.getDebugLoc(),
2800                          Ld->getChain(), Ptr,
2801                          Ld->getPointerInfo(),
2802                          Ld->isVolatile(), Ld->isNonTemporal(),
2803                          Ld->getAlignment());
2804
2805    EVT PtrType = Ptr.getValueType();
2806    unsigned NewAlign = MinAlign(Ld->getAlignment(), 4);
2807    SDValue NewPtr = DAG.getNode(ISD::ADD, Op.getDebugLoc(),
2808                                 PtrType, Ptr, DAG.getConstant(4, PtrType));
2809    RetVal2 = DAG.getLoad(MVT::i32, Op.getDebugLoc(),
2810                          Ld->getChain(), NewPtr,
2811                          Ld->getPointerInfo().getWithOffset(4),
2812                          Ld->isVolatile(), Ld->isNonTemporal(),
2813                          NewAlign);
2814    return;
2815  }
2816
2817  llvm_unreachable("Unknown VFP cmp argument!");
2818}
2819
2820/// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some
2821/// f32 and even f64 comparisons to integer ones.
2822SDValue
2823ARMTargetLowering::OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const {
2824  SDValue Chain = Op.getOperand(0);
2825  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
2826  SDValue LHS = Op.getOperand(2);
2827  SDValue RHS = Op.getOperand(3);
2828  SDValue Dest = Op.getOperand(4);
2829  DebugLoc dl = Op.getDebugLoc();
2830
2831  bool SeenZero = false;
2832  if (canChangeToInt(LHS, SeenZero, Subtarget) &&
2833      canChangeToInt(RHS, SeenZero, Subtarget) &&
2834      // If one of the operand is zero, it's safe to ignore the NaN case since
2835      // we only care about equality comparisons.
2836      (SeenZero || (DAG.isKnownNeverNaN(LHS) && DAG.isKnownNeverNaN(RHS)))) {
2837    // If unsafe fp math optimization is enabled and there are no other uses of
2838    // the CMP operands, and the condition code is EQ or NE, we can optimize it
2839    // to an integer comparison.
2840    if (CC == ISD::SETOEQ)
2841      CC = ISD::SETEQ;
2842    else if (CC == ISD::SETUNE)
2843      CC = ISD::SETNE;
2844
2845    SDValue ARMcc;
2846    if (LHS.getValueType() == MVT::f32) {
2847      LHS = bitcastf32Toi32(LHS, DAG);
2848      RHS = bitcastf32Toi32(RHS, DAG);
2849      SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
2850      SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2851      return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
2852                         Chain, Dest, ARMcc, CCR, Cmp);
2853    }
2854
2855    SDValue LHS1, LHS2;
2856    SDValue RHS1, RHS2;
2857    expandf64Toi32(LHS, DAG, LHS1, LHS2);
2858    expandf64Toi32(RHS, DAG, RHS1, RHS2);
2859    ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
2860    ARMcc = DAG.getConstant(CondCode, MVT::i32);
2861    SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
2862    SDValue Ops[] = { Chain, ARMcc, LHS1, LHS2, RHS1, RHS2, Dest };
2863    return DAG.getNode(ARMISD::BCC_i64, dl, VTList, Ops, 7);
2864  }
2865
2866  return SDValue();
2867}
2868
2869SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
2870  SDValue Chain = Op.getOperand(0);
2871  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
2872  SDValue LHS = Op.getOperand(2);
2873  SDValue RHS = Op.getOperand(3);
2874  SDValue Dest = Op.getOperand(4);
2875  DebugLoc dl = Op.getDebugLoc();
2876
2877  if (LHS.getValueType() == MVT::i32) {
2878    SDValue ARMcc;
2879    SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
2880    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2881    return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
2882                       Chain, Dest, ARMcc, CCR, Cmp);
2883  }
2884
2885  assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
2886
2887  if (UnsafeFPMath &&
2888      (CC == ISD::SETEQ || CC == ISD::SETOEQ ||
2889       CC == ISD::SETNE || CC == ISD::SETUNE)) {
2890    SDValue Result = OptimizeVFPBrcond(Op, DAG);
2891    if (Result.getNode())
2892      return Result;
2893  }
2894
2895  ARMCC::CondCodes CondCode, CondCode2;
2896  FPCCToARMCC(CC, CondCode, CondCode2);
2897
2898  SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
2899  SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
2900  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2901  SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
2902  SDValue Ops[] = { Chain, Dest, ARMcc, CCR, Cmp };
2903  SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
2904  if (CondCode2 != ARMCC::AL) {
2905    ARMcc = DAG.getConstant(CondCode2, MVT::i32);
2906    SDValue Ops[] = { Res, Dest, ARMcc, CCR, Res.getValue(1) };
2907    Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
2908  }
2909  return Res;
2910}
2911
2912SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
2913  SDValue Chain = Op.getOperand(0);
2914  SDValue Table = Op.getOperand(1);
2915  SDValue Index = Op.getOperand(2);
2916  DebugLoc dl = Op.getDebugLoc();
2917
2918  EVT PTy = getPointerTy();
2919  JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
2920  ARMFunctionInfo *AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
2921  SDValue UId = DAG.getConstant(AFI->createJumpTableUId(), PTy);
2922  SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
2923  Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI, UId);
2924  Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, PTy));
2925  SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
2926  if (Subtarget->isThumb2()) {
2927    // Thumb2 uses a two-level jump. That is, it jumps into the jump table
2928    // which does another jump to the destination. This also makes it easier
2929    // to translate it to TBB / TBH later.
2930    // FIXME: This might not work if the function is extremely large.
2931    return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain,
2932                       Addr, Op.getOperand(2), JTI, UId);
2933  }
2934  if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2935    Addr = DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr,
2936                       MachinePointerInfo::getJumpTable(),
2937                       false, false, 0);
2938    Chain = Addr.getValue(1);
2939    Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, Table);
2940    return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
2941  } else {
2942    Addr = DAG.getLoad(PTy, dl, Chain, Addr,
2943                       MachinePointerInfo::getJumpTable(), false, false, 0);
2944    Chain = Addr.getValue(1);
2945    return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
2946  }
2947}
2948
2949static SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
2950  DebugLoc dl = Op.getDebugLoc();
2951  unsigned Opc;
2952
2953  switch (Op.getOpcode()) {
2954  default:
2955    assert(0 && "Invalid opcode!");
2956  case ISD::FP_TO_SINT:
2957    Opc = ARMISD::FTOSI;
2958    break;
2959  case ISD::FP_TO_UINT:
2960    Opc = ARMISD::FTOUI;
2961    break;
2962  }
2963  Op = DAG.getNode(Opc, dl, MVT::f32, Op.getOperand(0));
2964  return DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
2965}
2966
2967static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
2968  EVT VT = Op.getValueType();
2969  DebugLoc dl = Op.getDebugLoc();
2970
2971  EVT OperandVT = Op.getOperand(0).getValueType();
2972  assert(OperandVT == MVT::v4i16 && "Invalid type for custom lowering!");
2973  if (VT != MVT::v4f32)
2974    return DAG.UnrollVectorOp(Op.getNode());
2975
2976  unsigned CastOpc;
2977  unsigned Opc;
2978  switch (Op.getOpcode()) {
2979  default:
2980    assert(0 && "Invalid opcode!");
2981  case ISD::SINT_TO_FP:
2982    CastOpc = ISD::SIGN_EXTEND;
2983    Opc = ISD::SINT_TO_FP;
2984    break;
2985  case ISD::UINT_TO_FP:
2986    CastOpc = ISD::ZERO_EXTEND;
2987    Opc = ISD::UINT_TO_FP;
2988    break;
2989  }
2990
2991  Op = DAG.getNode(CastOpc, dl, MVT::v4i32, Op.getOperand(0));
2992  return DAG.getNode(Opc, dl, VT, Op);
2993}
2994
2995static SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
2996  EVT VT = Op.getValueType();
2997  if (VT.isVector())
2998    return LowerVectorINT_TO_FP(Op, DAG);
2999
3000  DebugLoc dl = Op.getDebugLoc();
3001  unsigned Opc;
3002
3003  switch (Op.getOpcode()) {
3004  default:
3005    assert(0 && "Invalid opcode!");
3006  case ISD::SINT_TO_FP:
3007    Opc = ARMISD::SITOF;
3008    break;
3009  case ISD::UINT_TO_FP:
3010    Opc = ARMISD::UITOF;
3011    break;
3012  }
3013
3014  Op = DAG.getNode(ISD::BITCAST, dl, MVT::f32, Op.getOperand(0));
3015  return DAG.getNode(Opc, dl, VT, Op);
3016}
3017
3018SDValue ARMTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
3019  // Implement fcopysign with a fabs and a conditional fneg.
3020  SDValue Tmp0 = Op.getOperand(0);
3021  SDValue Tmp1 = Op.getOperand(1);
3022  DebugLoc dl = Op.getDebugLoc();
3023  EVT VT = Op.getValueType();
3024  EVT SrcVT = Tmp1.getValueType();
3025  bool InGPR = Tmp0.getOpcode() == ISD::BITCAST ||
3026    Tmp0.getOpcode() == ARMISD::VMOVDRR;
3027  bool UseNEON = !InGPR && Subtarget->hasNEON();
3028
3029  if (UseNEON) {
3030    // Use VBSL to copy the sign bit.
3031    unsigned EncodedVal = ARM_AM::createNEONModImm(0x6, 0x80);
3032    SDValue Mask = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v2i32,
3033                               DAG.getTargetConstant(EncodedVal, MVT::i32));
3034    EVT OpVT = (VT == MVT::f32) ? MVT::v2i32 : MVT::v1i64;
3035    if (VT == MVT::f64)
3036      Mask = DAG.getNode(ARMISD::VSHL, dl, OpVT,
3037                         DAG.getNode(ISD::BITCAST, dl, OpVT, Mask),
3038                         DAG.getConstant(32, MVT::i32));
3039    else /*if (VT == MVT::f32)*/
3040      Tmp0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp0);
3041    if (SrcVT == MVT::f32) {
3042      Tmp1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp1);
3043      if (VT == MVT::f64)
3044        Tmp1 = DAG.getNode(ARMISD::VSHL, dl, OpVT,
3045                           DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1),
3046                           DAG.getConstant(32, MVT::i32));
3047    } else if (VT == MVT::f32)
3048      Tmp1 = DAG.getNode(ARMISD::VSHRu, dl, MVT::v1i64,
3049                         DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, Tmp1),
3050                         DAG.getConstant(32, MVT::i32));
3051    Tmp0 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp0);
3052    Tmp1 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1);
3053
3054    SDValue AllOnes = DAG.getTargetConstant(ARM_AM::createNEONModImm(0xe, 0xff),
3055                                            MVT::i32);
3056    AllOnes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v8i8, AllOnes);
3057    SDValue MaskNot = DAG.getNode(ISD::XOR, dl, OpVT, Mask,
3058                                  DAG.getNode(ISD::BITCAST, dl, OpVT, AllOnes));
3059
3060    SDValue Res = DAG.getNode(ISD::OR, dl, OpVT,
3061                              DAG.getNode(ISD::AND, dl, OpVT, Tmp1, Mask),
3062                              DAG.getNode(ISD::AND, dl, OpVT, Tmp0, MaskNot));
3063    if (VT == MVT::f32) {
3064      Res = DAG.getNode(ISD::BITCAST, dl, MVT::v2f32, Res);
3065      Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, Res,
3066                        DAG.getConstant(0, MVT::i32));
3067    } else {
3068      Res = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Res);
3069    }
3070
3071    return Res;
3072  }
3073
3074  // Bitcast operand 1 to i32.
3075  if (SrcVT == MVT::f64)
3076    Tmp1 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
3077                       &Tmp1, 1).getValue(1);
3078  Tmp1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp1);
3079
3080  // Or in the signbit with integer operations.
3081  SDValue Mask1 = DAG.getConstant(0x80000000, MVT::i32);
3082  SDValue Mask2 = DAG.getConstant(0x7fffffff, MVT::i32);
3083  Tmp1 = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp1, Mask1);
3084  if (VT == MVT::f32) {
3085    Tmp0 = DAG.getNode(ISD::AND, dl, MVT::i32,
3086                       DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp0), Mask2);
3087    return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
3088                       DAG.getNode(ISD::OR, dl, MVT::i32, Tmp0, Tmp1));
3089  }
3090
3091  // f64: Or the high part with signbit and then combine two parts.
3092  Tmp0 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
3093                     &Tmp0, 1);
3094  SDValue Lo = Tmp0.getValue(0);
3095  SDValue Hi = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp0.getValue(1), Mask2);
3096  Hi = DAG.getNode(ISD::OR, dl, MVT::i32, Hi, Tmp1);
3097  return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
3098}
3099
3100SDValue ARMTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{
3101  MachineFunction &MF = DAG.getMachineFunction();
3102  MachineFrameInfo *MFI = MF.getFrameInfo();
3103  MFI->setReturnAddressIsTaken(true);
3104
3105  EVT VT = Op.getValueType();
3106  DebugLoc dl = Op.getDebugLoc();
3107  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3108  if (Depth) {
3109    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
3110    SDValue Offset = DAG.getConstant(4, MVT::i32);
3111    return DAG.getLoad(VT, dl, DAG.getEntryNode(),
3112                       DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
3113                       MachinePointerInfo(), false, false, 0);
3114  }
3115
3116  // Return LR, which contains the return address. Mark it an implicit live-in.
3117  unsigned Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32));
3118  return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
3119}
3120
3121SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
3122  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3123  MFI->setFrameAddressIsTaken(true);
3124
3125  EVT VT = Op.getValueType();
3126  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
3127  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3128  unsigned FrameReg = (Subtarget->isThumb() || Subtarget->isTargetDarwin())
3129    ? ARM::R7 : ARM::R11;
3130  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
3131  while (Depth--)
3132    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
3133                            MachinePointerInfo(),
3134                            false, false, 0);
3135  return FrameAddr;
3136}
3137
3138/// ExpandBITCAST - If the target supports VFP, this function is called to
3139/// expand a bit convert where either the source or destination type is i64 to
3140/// use a VMOVDRR or VMOVRRD node.  This should not be done when the non-i64
3141/// operand type is illegal (e.g., v2f32 for a target that doesn't support
3142/// vectors), since the legalizer won't know what to do with that.
3143static SDValue ExpandBITCAST(SDNode *N, SelectionDAG &DAG) {
3144  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3145  DebugLoc dl = N->getDebugLoc();
3146  SDValue Op = N->getOperand(0);
3147
3148  // This function is only supposed to be called for i64 types, either as the
3149  // source or destination of the bit convert.
3150  EVT SrcVT = Op.getValueType();
3151  EVT DstVT = N->getValueType(0);
3152  assert((SrcVT == MVT::i64 || DstVT == MVT::i64) &&
3153         "ExpandBITCAST called for non-i64 type");
3154
3155  // Turn i64->f64 into VMOVDRR.
3156  if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) {
3157    SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
3158                             DAG.getConstant(0, MVT::i32));
3159    SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
3160                             DAG.getConstant(1, MVT::i32));
3161    return DAG.getNode(ISD::BITCAST, dl, DstVT,
3162                       DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi));
3163  }
3164
3165  // Turn f64->i64 into VMOVRRD.
3166  if (DstVT == MVT::i64 && TLI.isTypeLegal(SrcVT)) {
3167    SDValue Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
3168                              DAG.getVTList(MVT::i32, MVT::i32), &Op, 1);
3169    // Merge the pieces into a single i64 value.
3170    return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1));
3171  }
3172
3173  return SDValue();
3174}
3175
3176/// getZeroVector - Returns a vector of specified type with all zero elements.
3177/// Zero vectors are used to represent vector negation and in those cases
3178/// will be implemented with the NEON VNEG instruction.  However, VNEG does
3179/// not support i64 elements, so sometimes the zero vectors will need to be
3180/// explicitly constructed.  Regardless, use a canonical VMOV to create the
3181/// zero vector.
3182static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
3183  assert(VT.isVector() && "Expected a vector type");
3184  // The canonical modified immediate encoding of a zero vector is....0!
3185  SDValue EncodedVal = DAG.getTargetConstant(0, MVT::i32);
3186  EVT VmovVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
3187  SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, EncodedVal);
3188  return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
3189}
3190
3191/// LowerShiftRightParts - Lower SRA_PARTS, which returns two
3192/// i32 values and take a 2 x i32 value to shift plus a shift amount.
3193SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op,
3194                                                SelectionDAG &DAG) const {
3195  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
3196  EVT VT = Op.getValueType();
3197  unsigned VTBits = VT.getSizeInBits();
3198  DebugLoc dl = Op.getDebugLoc();
3199  SDValue ShOpLo = Op.getOperand(0);
3200  SDValue ShOpHi = Op.getOperand(1);
3201  SDValue ShAmt  = Op.getOperand(2);
3202  SDValue ARMcc;
3203  unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
3204
3205  assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
3206
3207  SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
3208                                 DAG.getConstant(VTBits, MVT::i32), ShAmt);
3209  SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
3210  SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
3211                                   DAG.getConstant(VTBits, MVT::i32));
3212  SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
3213  SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
3214  SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
3215
3216  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3217  SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
3218                          ARMcc, DAG, dl);
3219  SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
3220  SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc,
3221                           CCR, Cmp);
3222
3223  SDValue Ops[2] = { Lo, Hi };
3224  return DAG.getMergeValues(Ops, 2, dl);
3225}
3226
3227/// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
3228/// i32 values and take a 2 x i32 value to shift plus a shift amount.
3229SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op,
3230                                               SelectionDAG &DAG) const {
3231  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
3232  EVT VT = Op.getValueType();
3233  unsigned VTBits = VT.getSizeInBits();
3234  DebugLoc dl = Op.getDebugLoc();
3235  SDValue ShOpLo = Op.getOperand(0);
3236  SDValue ShOpHi = Op.getOperand(1);
3237  SDValue ShAmt  = Op.getOperand(2);
3238  SDValue ARMcc;
3239
3240  assert(Op.getOpcode() == ISD::SHL_PARTS);
3241  SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
3242                                 DAG.getConstant(VTBits, MVT::i32), ShAmt);
3243  SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
3244  SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
3245                                   DAG.getConstant(VTBits, MVT::i32));
3246  SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
3247  SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
3248
3249  SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
3250  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3251  SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
3252                          ARMcc, DAG, dl);
3253  SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
3254  SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, Tmp3, ARMcc,
3255                           CCR, Cmp);
3256
3257  SDValue Ops[2] = { Lo, Hi };
3258  return DAG.getMergeValues(Ops, 2, dl);
3259}
3260
3261SDValue ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
3262                                            SelectionDAG &DAG) const {
3263  // The rounding mode is in bits 23:22 of the FPSCR.
3264  // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
3265  // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
3266  // so that the shift + and get folded into a bitfield extract.
3267  DebugLoc dl = Op.getDebugLoc();
3268  SDValue FPSCR = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::i32,
3269                              DAG.getConstant(Intrinsic::arm_get_fpscr,
3270                                              MVT::i32));
3271  SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPSCR,
3272                                  DAG.getConstant(1U << 22, MVT::i32));
3273  SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds,
3274                              DAG.getConstant(22, MVT::i32));
3275  return DAG.getNode(ISD::AND, dl, MVT::i32, RMODE,
3276                     DAG.getConstant(3, MVT::i32));
3277}
3278
3279static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG,
3280                         const ARMSubtarget *ST) {
3281  EVT VT = N->getValueType(0);
3282  DebugLoc dl = N->getDebugLoc();
3283
3284  if (!ST->hasV6T2Ops())
3285    return SDValue();
3286
3287  SDValue rbit = DAG.getNode(ARMISD::RBIT, dl, VT, N->getOperand(0));
3288  return DAG.getNode(ISD::CTLZ, dl, VT, rbit);
3289}
3290
3291static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
3292                          const ARMSubtarget *ST) {
3293  EVT VT = N->getValueType(0);
3294  DebugLoc dl = N->getDebugLoc();
3295
3296  if (!VT.isVector())
3297    return SDValue();
3298
3299  // Lower vector shifts on NEON to use VSHL.
3300  assert(ST->hasNEON() && "unexpected vector shift");
3301
3302  // Left shifts translate directly to the vshiftu intrinsic.
3303  if (N->getOpcode() == ISD::SHL)
3304    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
3305                       DAG.getConstant(Intrinsic::arm_neon_vshiftu, MVT::i32),
3306                       N->getOperand(0), N->getOperand(1));
3307
3308  assert((N->getOpcode() == ISD::SRA ||
3309          N->getOpcode() == ISD::SRL) && "unexpected vector shift opcode");
3310
3311  // NEON uses the same intrinsics for both left and right shifts.  For
3312  // right shifts, the shift amounts are negative, so negate the vector of
3313  // shift amounts.
3314  EVT ShiftVT = N->getOperand(1).getValueType();
3315  SDValue NegatedCount = DAG.getNode(ISD::SUB, dl, ShiftVT,
3316                                     getZeroVector(ShiftVT, DAG, dl),
3317                                     N->getOperand(1));
3318  Intrinsic::ID vshiftInt = (N->getOpcode() == ISD::SRA ?
3319                             Intrinsic::arm_neon_vshifts :
3320                             Intrinsic::arm_neon_vshiftu);
3321  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
3322                     DAG.getConstant(vshiftInt, MVT::i32),
3323                     N->getOperand(0), NegatedCount);
3324}
3325
3326static SDValue Expand64BitShift(SDNode *N, SelectionDAG &DAG,
3327                                const ARMSubtarget *ST) {
3328  EVT VT = N->getValueType(0);
3329  DebugLoc dl = N->getDebugLoc();
3330
3331  // We can get here for a node like i32 = ISD::SHL i32, i64
3332  if (VT != MVT::i64)
3333    return SDValue();
3334
3335  assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) &&
3336         "Unknown shift to lower!");
3337
3338  // We only lower SRA, SRL of 1 here, all others use generic lowering.
3339  if (!isa<ConstantSDNode>(N->getOperand(1)) ||
3340      cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 1)
3341    return SDValue();
3342
3343  // If we are in thumb mode, we don't have RRX.
3344  if (ST->isThumb1Only()) return SDValue();
3345
3346  // Okay, we have a 64-bit SRA or SRL of 1.  Lower this to an RRX expr.
3347  SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
3348                           DAG.getConstant(0, MVT::i32));
3349  SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
3350                           DAG.getConstant(1, MVT::i32));
3351
3352  // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
3353  // captures the result into a carry flag.
3354  unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
3355  Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Glue), &Hi, 1);
3356
3357  // The low part is an ARMISD::RRX operand, which shifts the carry in.
3358  Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));
3359
3360  // Merge the pieces into a single i64 value.
3361 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
3362}
3363
3364static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
3365  SDValue TmpOp0, TmpOp1;
3366  bool Invert = false;
3367  bool Swap = false;
3368  unsigned Opc = 0;
3369
3370  SDValue Op0 = Op.getOperand(0);
3371  SDValue Op1 = Op.getOperand(1);
3372  SDValue CC = Op.getOperand(2);
3373  EVT VT = Op.getValueType();
3374  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
3375  DebugLoc dl = Op.getDebugLoc();
3376
3377  if (Op.getOperand(1).getValueType().isFloatingPoint()) {
3378    switch (SetCCOpcode) {
3379    default: llvm_unreachable("Illegal FP comparison"); break;
3380    case ISD::SETUNE:
3381    case ISD::SETNE:  Invert = true; // Fallthrough
3382    case ISD::SETOEQ:
3383    case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
3384    case ISD::SETOLT:
3385    case ISD::SETLT: Swap = true; // Fallthrough
3386    case ISD::SETOGT:
3387    case ISD::SETGT:  Opc = ARMISD::VCGT; break;
3388    case ISD::SETOLE:
3389    case ISD::SETLE:  Swap = true; // Fallthrough
3390    case ISD::SETOGE:
3391    case ISD::SETGE: Opc = ARMISD::VCGE; break;
3392    case ISD::SETUGE: Swap = true; // Fallthrough
3393    case ISD::SETULE: Invert = true; Opc = ARMISD::VCGT; break;
3394    case ISD::SETUGT: Swap = true; // Fallthrough
3395    case ISD::SETULT: Invert = true; Opc = ARMISD::VCGE; break;
3396    case ISD::SETUEQ: Invert = true; // Fallthrough
3397    case ISD::SETONE:
3398      // Expand this to (OLT | OGT).
3399      TmpOp0 = Op0;
3400      TmpOp1 = Op1;
3401      Opc = ISD::OR;
3402      Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
3403      Op1 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp0, TmpOp1);
3404      break;
3405    case ISD::SETUO: Invert = true; // Fallthrough
3406    case ISD::SETO:
3407      // Expand this to (OLT | OGE).
3408      TmpOp0 = Op0;
3409      TmpOp1 = Op1;
3410      Opc = ISD::OR;
3411      Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
3412      Op1 = DAG.getNode(ARMISD::VCGE, dl, VT, TmpOp0, TmpOp1);
3413      break;
3414    }
3415  } else {
3416    // Integer comparisons.
3417    switch (SetCCOpcode) {
3418    default: llvm_unreachable("Illegal integer comparison"); break;
3419    case ISD::SETNE:  Invert = true;
3420    case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
3421    case ISD::SETLT:  Swap = true;
3422    case ISD::SETGT:  Opc = ARMISD::VCGT; break;
3423    case ISD::SETLE:  Swap = true;
3424    case ISD::SETGE:  Opc = ARMISD::VCGE; break;
3425    case ISD::SETULT: Swap = true;
3426    case ISD::SETUGT: Opc = ARMISD::VCGTU; break;
3427    case ISD::SETULE: Swap = true;
3428    case ISD::SETUGE: Opc = ARMISD::VCGEU; break;
3429    }
3430
3431    // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
3432    if (Opc == ARMISD::VCEQ) {
3433
3434      SDValue AndOp;
3435      if (ISD::isBuildVectorAllZeros(Op1.getNode()))
3436        AndOp = Op0;
3437      else if (ISD::isBuildVectorAllZeros(Op0.getNode()))
3438        AndOp = Op1;
3439
3440      // Ignore bitconvert.
3441      if (AndOp.getNode() && AndOp.getOpcode() == ISD::BITCAST)
3442        AndOp = AndOp.getOperand(0);
3443
3444      if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) {
3445        Opc = ARMISD::VTST;
3446        Op0 = DAG.getNode(ISD::BITCAST, dl, VT, AndOp.getOperand(0));
3447        Op1 = DAG.getNode(ISD::BITCAST, dl, VT, AndOp.getOperand(1));
3448        Invert = !Invert;
3449      }
3450    }
3451  }
3452
3453  if (Swap)
3454    std::swap(Op0, Op1);
3455
3456  // If one of the operands is a constant vector zero, attempt to fold the
3457  // comparison to a specialized compare-against-zero form.
3458  SDValue SingleOp;
3459  if (ISD::isBuildVectorAllZeros(Op1.getNode()))
3460    SingleOp = Op0;
3461  else if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
3462    if (Opc == ARMISD::VCGE)
3463      Opc = ARMISD::VCLEZ;
3464    else if (Opc == ARMISD::VCGT)
3465      Opc = ARMISD::VCLTZ;
3466    SingleOp = Op1;
3467  }
3468
3469  SDValue Result;
3470  if (SingleOp.getNode()) {
3471    switch (Opc) {
3472    case ARMISD::VCEQ:
3473      Result = DAG.getNode(ARMISD::VCEQZ, dl, VT, SingleOp); break;
3474    case ARMISD::VCGE:
3475      Result = DAG.getNode(ARMISD::VCGEZ, dl, VT, SingleOp); break;
3476    case ARMISD::VCLEZ:
3477      Result = DAG.getNode(ARMISD::VCLEZ, dl, VT, SingleOp); break;
3478    case ARMISD::VCGT:
3479      Result = DAG.getNode(ARMISD::VCGTZ, dl, VT, SingleOp); break;
3480    case ARMISD::VCLTZ:
3481      Result = DAG.getNode(ARMISD::VCLTZ, dl, VT, SingleOp); break;
3482    default:
3483      Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
3484    }
3485  } else {
3486     Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
3487  }
3488
3489  if (Invert)
3490    Result = DAG.getNOT(dl, Result, VT);
3491
3492  return Result;
3493}
3494
3495/// isNEONModifiedImm - Check if the specified splat value corresponds to a
3496/// valid vector constant for a NEON instruction with a "modified immediate"
3497/// operand (e.g., VMOV).  If so, return the encoded value.
3498static SDValue isNEONModifiedImm(uint64_t SplatBits, uint64_t SplatUndef,
3499                                 unsigned SplatBitSize, SelectionDAG &DAG,
3500                                 EVT &VT, bool is128Bits, NEONModImmType type) {
3501  unsigned OpCmode, Imm;
3502
3503  // SplatBitSize is set to the smallest size that splats the vector, so a
3504  // zero vector will always have SplatBitSize == 8.  However, NEON modified
3505  // immediate instructions others than VMOV do not support the 8-bit encoding
3506  // of a zero vector, and the default encoding of zero is supposed to be the
3507  // 32-bit version.
3508  if (SplatBits == 0)
3509    SplatBitSize = 32;
3510
3511  switch (SplatBitSize) {
3512  case 8:
3513    if (type != VMOVModImm)
3514      return SDValue();
3515    // Any 1-byte value is OK.  Op=0, Cmode=1110.
3516    assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
3517    OpCmode = 0xe;
3518    Imm = SplatBits;
3519    VT = is128Bits ? MVT::v16i8 : MVT::v8i8;
3520    break;
3521
3522  case 16:
3523    // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
3524    VT = is128Bits ? MVT::v8i16 : MVT::v4i16;
3525    if ((SplatBits & ~0xff) == 0) {
3526      // Value = 0x00nn: Op=x, Cmode=100x.
3527      OpCmode = 0x8;
3528      Imm = SplatBits;
3529      break;
3530    }
3531    if ((SplatBits & ~0xff00) == 0) {
3532      // Value = 0xnn00: Op=x, Cmode=101x.
3533      OpCmode = 0xa;
3534      Imm = SplatBits >> 8;
3535      break;
3536    }
3537    return SDValue();
3538
3539  case 32:
3540    // NEON's 32-bit VMOV supports splat values where:
3541    // * only one byte is nonzero, or
3542    // * the least significant byte is 0xff and the second byte is nonzero, or
3543    // * the least significant 2 bytes are 0xff and the third is nonzero.
3544    VT = is128Bits ? MVT::v4i32 : MVT::v2i32;
3545    if ((SplatBits & ~0xff) == 0) {
3546      // Value = 0x000000nn: Op=x, Cmode=000x.
3547      OpCmode = 0;
3548      Imm = SplatBits;
3549      break;
3550    }
3551    if ((SplatBits & ~0xff00) == 0) {
3552      // Value = 0x0000nn00: Op=x, Cmode=001x.
3553      OpCmode = 0x2;
3554      Imm = SplatBits >> 8;
3555      break;
3556    }
3557    if ((SplatBits & ~0xff0000) == 0) {
3558      // Value = 0x00nn0000: Op=x, Cmode=010x.
3559      OpCmode = 0x4;
3560      Imm = SplatBits >> 16;
3561      break;
3562    }
3563    if ((SplatBits & ~0xff000000) == 0) {
3564      // Value = 0xnn000000: Op=x, Cmode=011x.
3565      OpCmode = 0x6;
3566      Imm = SplatBits >> 24;
3567      break;
3568    }
3569
3570    // cmode == 0b1100 and cmode == 0b1101 are not supported for VORR or VBIC
3571    if (type == OtherModImm) return SDValue();
3572
3573    if ((SplatBits & ~0xffff) == 0 &&
3574        ((SplatBits | SplatUndef) & 0xff) == 0xff) {
3575      // Value = 0x0000nnff: Op=x, Cmode=1100.
3576      OpCmode = 0xc;
3577      Imm = SplatBits >> 8;
3578      SplatBits |= 0xff;
3579      break;
3580    }
3581
3582    if ((SplatBits & ~0xffffff) == 0 &&
3583        ((SplatBits | SplatUndef) & 0xffff) == 0xffff) {
3584      // Value = 0x00nnffff: Op=x, Cmode=1101.
3585      OpCmode = 0xd;
3586      Imm = SplatBits >> 16;
3587      SplatBits |= 0xffff;
3588      break;
3589    }
3590
3591    // Note: there are a few 32-bit splat values (specifically: 00ffff00,
3592    // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
3593    // VMOV.I32.  A (very) minor optimization would be to replicate the value
3594    // and fall through here to test for a valid 64-bit splat.  But, then the
3595    // caller would also need to check and handle the change in size.
3596    return SDValue();
3597
3598  case 64: {
3599    if (type != VMOVModImm)
3600      return SDValue();
3601    // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
3602    uint64_t BitMask = 0xff;
3603    uint64_t Val = 0;
3604    unsigned ImmMask = 1;
3605    Imm = 0;
3606    for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
3607      if (((SplatBits | SplatUndef) & BitMask) == BitMask) {
3608        Val |= BitMask;
3609        Imm |= ImmMask;
3610      } else if ((SplatBits & BitMask) != 0) {
3611        return SDValue();
3612      }
3613      BitMask <<= 8;
3614      ImmMask <<= 1;
3615    }
3616    // Op=1, Cmode=1110.
3617    OpCmode = 0x1e;
3618    SplatBits = Val;
3619    VT = is128Bits ? MVT::v2i64 : MVT::v1i64;
3620    break;
3621  }
3622
3623  default:
3624    llvm_unreachable("unexpected size for isNEONModifiedImm");
3625    return SDValue();
3626  }
3627
3628  unsigned EncodedVal = ARM_AM::createNEONModImm(OpCmode, Imm);
3629  return DAG.getTargetConstant(EncodedVal, MVT::i32);
3630}
3631
3632static bool isVEXTMask(const SmallVectorImpl<int> &M, EVT VT,
3633                       bool &ReverseVEXT, unsigned &Imm) {
3634  unsigned NumElts = VT.getVectorNumElements();
3635  ReverseVEXT = false;
3636
3637  // Assume that the first shuffle index is not UNDEF.  Fail if it is.
3638  if (M[0] < 0)
3639    return false;
3640
3641  Imm = M[0];
3642
3643  // If this is a VEXT shuffle, the immediate value is the index of the first
3644  // element.  The other shuffle indices must be the successive elements after
3645  // the first one.
3646  unsigned ExpectedElt = Imm;
3647  for (unsigned i = 1; i < NumElts; ++i) {
3648    // Increment the expected index.  If it wraps around, it may still be
3649    // a VEXT but the source vectors must be swapped.
3650    ExpectedElt += 1;
3651    if (ExpectedElt == NumElts * 2) {
3652      ExpectedElt = 0;
3653      ReverseVEXT = true;
3654    }
3655
3656    if (M[i] < 0) continue; // ignore UNDEF indices
3657    if (ExpectedElt != static_cast<unsigned>(M[i]))
3658      return false;
3659  }
3660
3661  // Adjust the index value if the source operands will be swapped.
3662  if (ReverseVEXT)
3663    Imm -= NumElts;
3664
3665  return true;
3666}
3667
3668/// isVREVMask - Check if a vector shuffle corresponds to a VREV
3669/// instruction with the specified blocksize.  (The order of the elements
3670/// within each block of the vector is reversed.)
3671static bool isVREVMask(const SmallVectorImpl<int> &M, EVT VT,
3672                       unsigned BlockSize) {
3673  assert((BlockSize==16 || BlockSize==32 || BlockSize==64) &&
3674         "Only possible block sizes for VREV are: 16, 32, 64");
3675
3676  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3677  if (EltSz == 64)
3678    return false;
3679
3680  unsigned NumElts = VT.getVectorNumElements();
3681  unsigned BlockElts = M[0] + 1;
3682  // If the first shuffle index is UNDEF, be optimistic.
3683  if (M[0] < 0)
3684    BlockElts = BlockSize / EltSz;
3685
3686  if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
3687    return false;
3688
3689  for (unsigned i = 0; i < NumElts; ++i) {
3690    if (M[i] < 0) continue; // ignore UNDEF indices
3691    if ((unsigned) M[i] != (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts))
3692      return false;
3693  }
3694
3695  return true;
3696}
3697
3698static bool isVTBLMask(const SmallVectorImpl<int> &M, EVT VT) {
3699  // We can handle <8 x i8> vector shuffles. If the index in the mask is out of
3700  // range, then 0 is placed into the resulting vector. So pretty much any mask
3701  // of 8 elements can work here.
3702  return VT == MVT::v8i8 && M.size() == 8;
3703}
3704
3705static bool isVTRNMask(const SmallVectorImpl<int> &M, EVT VT,
3706                       unsigned &WhichResult) {
3707  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3708  if (EltSz == 64)
3709    return false;
3710
3711  unsigned NumElts = VT.getVectorNumElements();
3712  WhichResult = (M[0] == 0 ? 0 : 1);
3713  for (unsigned i = 0; i < NumElts; i += 2) {
3714    if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) ||
3715        (M[i+1] >= 0 && (unsigned) M[i+1] != i + NumElts + WhichResult))
3716      return false;
3717  }
3718  return true;
3719}
3720
3721/// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
3722/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
3723/// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
3724static bool isVTRN_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
3725                                unsigned &WhichResult) {
3726  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3727  if (EltSz == 64)
3728    return false;
3729
3730  unsigned NumElts = VT.getVectorNumElements();
3731  WhichResult = (M[0] == 0 ? 0 : 1);
3732  for (unsigned i = 0; i < NumElts; i += 2) {
3733    if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) ||
3734        (M[i+1] >= 0 && (unsigned) M[i+1] != i + WhichResult))
3735      return false;
3736  }
3737  return true;
3738}
3739
3740static bool isVUZPMask(const SmallVectorImpl<int> &M, EVT VT,
3741                       unsigned &WhichResult) {
3742  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3743  if (EltSz == 64)
3744    return false;
3745
3746  unsigned NumElts = VT.getVectorNumElements();
3747  WhichResult = (M[0] == 0 ? 0 : 1);
3748  for (unsigned i = 0; i != NumElts; ++i) {
3749    if (M[i] < 0) continue; // ignore UNDEF indices
3750    if ((unsigned) M[i] != 2 * i + WhichResult)
3751      return false;
3752  }
3753
3754  // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3755  if (VT.is64BitVector() && EltSz == 32)
3756    return false;
3757
3758  return true;
3759}
3760
3761/// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
3762/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
3763/// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
3764static bool isVUZP_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
3765                                unsigned &WhichResult) {
3766  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3767  if (EltSz == 64)
3768    return false;
3769
3770  unsigned Half = VT.getVectorNumElements() / 2;
3771  WhichResult = (M[0] == 0 ? 0 : 1);
3772  for (unsigned j = 0; j != 2; ++j) {
3773    unsigned Idx = WhichResult;
3774    for (unsigned i = 0; i != Half; ++i) {
3775      int MIdx = M[i + j * Half];
3776      if (MIdx >= 0 && (unsigned) MIdx != Idx)
3777        return false;
3778      Idx += 2;
3779    }
3780  }
3781
3782  // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3783  if (VT.is64BitVector() && EltSz == 32)
3784    return false;
3785
3786  return true;
3787}
3788
3789static bool isVZIPMask(const SmallVectorImpl<int> &M, EVT VT,
3790                       unsigned &WhichResult) {
3791  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3792  if (EltSz == 64)
3793    return false;
3794
3795  unsigned NumElts = VT.getVectorNumElements();
3796  WhichResult = (M[0] == 0 ? 0 : 1);
3797  unsigned Idx = WhichResult * NumElts / 2;
3798  for (unsigned i = 0; i != NumElts; i += 2) {
3799    if ((M[i] >= 0 && (unsigned) M[i] != Idx) ||
3800        (M[i+1] >= 0 && (unsigned) M[i+1] != Idx + NumElts))
3801      return false;
3802    Idx += 1;
3803  }
3804
3805  // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3806  if (VT.is64BitVector() && EltSz == 32)
3807    return false;
3808
3809  return true;
3810}
3811
3812/// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
3813/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
3814/// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
3815static bool isVZIP_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
3816                                unsigned &WhichResult) {
3817  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3818  if (EltSz == 64)
3819    return false;
3820
3821  unsigned NumElts = VT.getVectorNumElements();
3822  WhichResult = (M[0] == 0 ? 0 : 1);
3823  unsigned Idx = WhichResult * NumElts / 2;
3824  for (unsigned i = 0; i != NumElts; i += 2) {
3825    if ((M[i] >= 0 && (unsigned) M[i] != Idx) ||
3826        (M[i+1] >= 0 && (unsigned) M[i+1] != Idx))
3827      return false;
3828    Idx += 1;
3829  }
3830
3831  // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3832  if (VT.is64BitVector() && EltSz == 32)
3833    return false;
3834
3835  return true;
3836}
3837
3838// If N is an integer constant that can be moved into a register in one
3839// instruction, return an SDValue of such a constant (will become a MOV
3840// instruction).  Otherwise return null.
3841static SDValue IsSingleInstrConstant(SDValue N, SelectionDAG &DAG,
3842                                     const ARMSubtarget *ST, DebugLoc dl) {
3843  uint64_t Val;
3844  if (!isa<ConstantSDNode>(N))
3845    return SDValue();
3846  Val = cast<ConstantSDNode>(N)->getZExtValue();
3847
3848  if (ST->isThumb1Only()) {
3849    if (Val <= 255 || ~Val <= 255)
3850      return DAG.getConstant(Val, MVT::i32);
3851  } else {
3852    if (ARM_AM::getSOImmVal(Val) != -1 || ARM_AM::getSOImmVal(~Val) != -1)
3853      return DAG.getConstant(Val, MVT::i32);
3854  }
3855  return SDValue();
3856}
3857
3858// If this is a case we can't handle, return null and let the default
3859// expansion code take care of it.
3860SDValue ARMTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
3861                                             const ARMSubtarget *ST) const {
3862  BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
3863  DebugLoc dl = Op.getDebugLoc();
3864  EVT VT = Op.getValueType();
3865
3866  APInt SplatBits, SplatUndef;
3867  unsigned SplatBitSize;
3868  bool HasAnyUndefs;
3869  if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
3870    if (SplatBitSize <= 64) {
3871      // Check if an immediate VMOV works.
3872      EVT VmovVT;
3873      SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
3874                                      SplatUndef.getZExtValue(), SplatBitSize,
3875                                      DAG, VmovVT, VT.is128BitVector(),
3876                                      VMOVModImm);
3877      if (Val.getNode()) {
3878        SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, Val);
3879        return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
3880      }
3881
3882      // Try an immediate VMVN.
3883      uint64_t NegatedImm = (SplatBits.getZExtValue() ^
3884                             ((1LL << SplatBitSize) - 1));
3885      Val = isNEONModifiedImm(NegatedImm,
3886                                      SplatUndef.getZExtValue(), SplatBitSize,
3887                                      DAG, VmovVT, VT.is128BitVector(),
3888                                      VMVNModImm);
3889      if (Val.getNode()) {
3890        SDValue Vmov = DAG.getNode(ARMISD::VMVNIMM, dl, VmovVT, Val);
3891        return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
3892      }
3893    }
3894  }
3895
3896  // Scan through the operands to see if only one value is used.
3897  unsigned NumElts = VT.getVectorNumElements();
3898  bool isOnlyLowElement = true;
3899  bool usesOnlyOneValue = true;
3900  bool isConstant = true;
3901  SDValue Value;
3902  for (unsigned i = 0; i < NumElts; ++i) {
3903    SDValue V = Op.getOperand(i);
3904    if (V.getOpcode() == ISD::UNDEF)
3905      continue;
3906    if (i > 0)
3907      isOnlyLowElement = false;
3908    if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
3909      isConstant = false;
3910
3911    if (!Value.getNode())
3912      Value = V;
3913    else if (V != Value)
3914      usesOnlyOneValue = false;
3915  }
3916
3917  if (!Value.getNode())
3918    return DAG.getUNDEF(VT);
3919
3920  if (isOnlyLowElement)
3921    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
3922
3923  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
3924
3925  // Use VDUP for non-constant splats.  For f32 constant splats, reduce to
3926  // i32 and try again.
3927  if (usesOnlyOneValue && EltSize <= 32) {
3928    if (!isConstant)
3929      return DAG.getNode(ARMISD::VDUP, dl, VT, Value);
3930    if (VT.getVectorElementType().isFloatingPoint()) {
3931      SmallVector<SDValue, 8> Ops;
3932      for (unsigned i = 0; i < NumElts; ++i)
3933        Ops.push_back(DAG.getNode(ISD::BITCAST, dl, MVT::i32,
3934                                  Op.getOperand(i)));
3935      EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
3936      SDValue Val = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, &Ops[0], NumElts);
3937      Val = LowerBUILD_VECTOR(Val, DAG, ST);
3938      if (Val.getNode())
3939        return DAG.getNode(ISD::BITCAST, dl, VT, Val);
3940    }
3941    SDValue Val = IsSingleInstrConstant(Value, DAG, ST, dl);
3942    if (Val.getNode())
3943      return DAG.getNode(ARMISD::VDUP, dl, VT, Val);
3944  }
3945
3946  // If all elements are constants and the case above didn't get hit, fall back
3947  // to the default expansion, which will generate a load from the constant
3948  // pool.
3949  if (isConstant)
3950    return SDValue();
3951
3952  // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
3953  if (NumElts >= 4) {
3954    SDValue shuffle = ReconstructShuffle(Op, DAG);
3955    if (shuffle != SDValue())
3956      return shuffle;
3957  }
3958
3959  // Vectors with 32- or 64-bit elements can be built by directly assigning
3960  // the subregisters.  Lower it to an ARMISD::BUILD_VECTOR so the operands
3961  // will be legalized.
3962  if (EltSize >= 32) {
3963    // Do the expansion with floating-point types, since that is what the VFP
3964    // registers are defined to use, and since i64 is not legal.
3965    EVT EltVT = EVT::getFloatingPointVT(EltSize);
3966    EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
3967    SmallVector<SDValue, 8> Ops;
3968    for (unsigned i = 0; i < NumElts; ++i)
3969      Ops.push_back(DAG.getNode(ISD::BITCAST, dl, EltVT, Op.getOperand(i)));
3970    SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts);
3971    return DAG.getNode(ISD::BITCAST, dl, VT, Val);
3972  }
3973
3974  return SDValue();
3975}
3976
3977// Gather data to see if the operation can be modelled as a
3978// shuffle in combination with VEXTs.
3979SDValue ARMTargetLowering::ReconstructShuffle(SDValue Op,
3980                                              SelectionDAG &DAG) const {
3981  DebugLoc dl = Op.getDebugLoc();
3982  EVT VT = Op.getValueType();
3983  unsigned NumElts = VT.getVectorNumElements();
3984
3985  SmallVector<SDValue, 2> SourceVecs;
3986  SmallVector<unsigned, 2> MinElts;
3987  SmallVector<unsigned, 2> MaxElts;
3988
3989  for (unsigned i = 0; i < NumElts; ++i) {
3990    SDValue V = Op.getOperand(i);
3991    if (V.getOpcode() == ISD::UNDEF)
3992      continue;
3993    else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) {
3994      // A shuffle can only come from building a vector from various
3995      // elements of other vectors.
3996      return SDValue();
3997    }
3998
3999    // Record this extraction against the appropriate vector if possible...
4000    SDValue SourceVec = V.getOperand(0);
4001    unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
4002    bool FoundSource = false;
4003    for (unsigned j = 0; j < SourceVecs.size(); ++j) {
4004      if (SourceVecs[j] == SourceVec) {
4005        if (MinElts[j] > EltNo)
4006          MinElts[j] = EltNo;
4007        if (MaxElts[j] < EltNo)
4008          MaxElts[j] = EltNo;
4009        FoundSource = true;
4010        break;
4011      }
4012    }
4013
4014    // Or record a new source if not...
4015    if (!FoundSource) {
4016      SourceVecs.push_back(SourceVec);
4017      MinElts.push_back(EltNo);
4018      MaxElts.push_back(EltNo);
4019    }
4020  }
4021
4022  // Currently only do something sane when at most two source vectors
4023  // involved.
4024  if (SourceVecs.size() > 2)
4025    return SDValue();
4026
4027  SDValue ShuffleSrcs[2] = {DAG.getUNDEF(VT), DAG.getUNDEF(VT) };
4028  int VEXTOffsets[2] = {0, 0};
4029
4030  // This loop extracts the usage patterns of the source vectors
4031  // and prepares appropriate SDValues for a shuffle if possible.
4032  for (unsigned i = 0; i < SourceVecs.size(); ++i) {
4033    if (SourceVecs[i].getValueType() == VT) {
4034      // No VEXT necessary
4035      ShuffleSrcs[i] = SourceVecs[i];
4036      VEXTOffsets[i] = 0;
4037      continue;
4038    } else if (SourceVecs[i].getValueType().getVectorNumElements() < NumElts) {
4039      // It probably isn't worth padding out a smaller vector just to
4040      // break it down again in a shuffle.
4041      return SDValue();
4042    }
4043
4044    // Since only 64-bit and 128-bit vectors are legal on ARM and
4045    // we've eliminated the other cases...
4046    assert(SourceVecs[i].getValueType().getVectorNumElements() == 2*NumElts &&
4047           "unexpected vector sizes in ReconstructShuffle");
4048
4049    if (MaxElts[i] - MinElts[i] >= NumElts) {
4050      // Span too large for a VEXT to cope
4051      return SDValue();
4052    }
4053
4054    if (MinElts[i] >= NumElts) {
4055      // The extraction can just take the second half
4056      VEXTOffsets[i] = NumElts;
4057      ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4058                                   SourceVecs[i],
4059                                   DAG.getIntPtrConstant(NumElts));
4060    } else if (MaxElts[i] < NumElts) {
4061      // The extraction can just take the first half
4062      VEXTOffsets[i] = 0;
4063      ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4064                                   SourceVecs[i],
4065                                   DAG.getIntPtrConstant(0));
4066    } else {
4067      // An actual VEXT is needed
4068      VEXTOffsets[i] = MinElts[i];
4069      SDValue VEXTSrc1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4070                                     SourceVecs[i],
4071                                     DAG.getIntPtrConstant(0));
4072      SDValue VEXTSrc2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4073                                     SourceVecs[i],
4074                                     DAG.getIntPtrConstant(NumElts));
4075      ShuffleSrcs[i] = DAG.getNode(ARMISD::VEXT, dl, VT, VEXTSrc1, VEXTSrc2,
4076                                   DAG.getConstant(VEXTOffsets[i], MVT::i32));
4077    }
4078  }
4079
4080  SmallVector<int, 8> Mask;
4081
4082  for (unsigned i = 0; i < NumElts; ++i) {
4083    SDValue Entry = Op.getOperand(i);
4084    if (Entry.getOpcode() == ISD::UNDEF) {
4085      Mask.push_back(-1);
4086      continue;
4087    }
4088
4089    SDValue ExtractVec = Entry.getOperand(0);
4090    int ExtractElt = cast<ConstantSDNode>(Op.getOperand(i)
4091                                          .getOperand(1))->getSExtValue();
4092    if (ExtractVec == SourceVecs[0]) {
4093      Mask.push_back(ExtractElt - VEXTOffsets[0]);
4094    } else {
4095      Mask.push_back(ExtractElt + NumElts - VEXTOffsets[1]);
4096    }
4097  }
4098
4099  // Final check before we try to produce nonsense...
4100  if (isShuffleMaskLegal(Mask, VT))
4101    return DAG.getVectorShuffle(VT, dl, ShuffleSrcs[0], ShuffleSrcs[1],
4102                                &Mask[0]);
4103
4104  return SDValue();
4105}
4106
4107/// isShuffleMaskLegal - Targets can use this to indicate that they only
4108/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
4109/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
4110/// are assumed to be legal.
4111bool
4112ARMTargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
4113                                      EVT VT) const {
4114  if (VT.getVectorNumElements() == 4 &&
4115      (VT.is128BitVector() || VT.is64BitVector())) {
4116    unsigned PFIndexes[4];
4117    for (unsigned i = 0; i != 4; ++i) {
4118      if (M[i] < 0)
4119        PFIndexes[i] = 8;
4120      else
4121        PFIndexes[i] = M[i];
4122    }
4123
4124    // Compute the index in the perfect shuffle table.
4125    unsigned PFTableIndex =
4126      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
4127    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
4128    unsigned Cost = (PFEntry >> 30);
4129
4130    if (Cost <= 4)
4131      return true;
4132  }
4133
4134  bool ReverseVEXT;
4135  unsigned Imm, WhichResult;
4136
4137  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4138  return (EltSize >= 32 ||
4139          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
4140          isVREVMask(M, VT, 64) ||
4141          isVREVMask(M, VT, 32) ||
4142          isVREVMask(M, VT, 16) ||
4143          isVEXTMask(M, VT, ReverseVEXT, Imm) ||
4144          isVTBLMask(M, VT) ||
4145          isVTRNMask(M, VT, WhichResult) ||
4146          isVUZPMask(M, VT, WhichResult) ||
4147          isVZIPMask(M, VT, WhichResult) ||
4148          isVTRN_v_undef_Mask(M, VT, WhichResult) ||
4149          isVUZP_v_undef_Mask(M, VT, WhichResult) ||
4150          isVZIP_v_undef_Mask(M, VT, WhichResult));
4151}
4152
4153/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
4154/// the specified operations to build the shuffle.
4155static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
4156                                      SDValue RHS, SelectionDAG &DAG,
4157                                      DebugLoc dl) {
4158  unsigned OpNum = (PFEntry >> 26) & 0x0F;
4159  unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
4160  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
4161
4162  enum {
4163    OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
4164    OP_VREV,
4165    OP_VDUP0,
4166    OP_VDUP1,
4167    OP_VDUP2,
4168    OP_VDUP3,
4169    OP_VEXT1,
4170    OP_VEXT2,
4171    OP_VEXT3,
4172    OP_VUZPL, // VUZP, left result
4173    OP_VUZPR, // VUZP, right result
4174    OP_VZIPL, // VZIP, left result
4175    OP_VZIPR, // VZIP, right result
4176    OP_VTRNL, // VTRN, left result
4177    OP_VTRNR  // VTRN, right result
4178  };
4179
4180  if (OpNum == OP_COPY) {
4181    if (LHSID == (1*9+2)*9+3) return LHS;
4182    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
4183    return RHS;
4184  }
4185
4186  SDValue OpLHS, OpRHS;
4187  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
4188  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
4189  EVT VT = OpLHS.getValueType();
4190
4191  switch (OpNum) {
4192  default: llvm_unreachable("Unknown shuffle opcode!");
4193  case OP_VREV:
4194    return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS);
4195  case OP_VDUP0:
4196  case OP_VDUP1:
4197  case OP_VDUP2:
4198  case OP_VDUP3:
4199    return DAG.getNode(ARMISD::VDUPLANE, dl, VT,
4200                       OpLHS, DAG.getConstant(OpNum-OP_VDUP0, MVT::i32));
4201  case OP_VEXT1:
4202  case OP_VEXT2:
4203  case OP_VEXT3:
4204    return DAG.getNode(ARMISD::VEXT, dl, VT,
4205                       OpLHS, OpRHS,
4206                       DAG.getConstant(OpNum-OP_VEXT1+1, MVT::i32));
4207  case OP_VUZPL:
4208  case OP_VUZPR:
4209    return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
4210                       OpLHS, OpRHS).getValue(OpNum-OP_VUZPL);
4211  case OP_VZIPL:
4212  case OP_VZIPR:
4213    return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
4214                       OpLHS, OpRHS).getValue(OpNum-OP_VZIPL);
4215  case OP_VTRNL:
4216  case OP_VTRNR:
4217    return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
4218                       OpLHS, OpRHS).getValue(OpNum-OP_VTRNL);
4219  }
4220}
4221
4222static SDValue LowerVECTOR_SHUFFLEv8i8(SDValue Op,
4223                                       SmallVectorImpl<int> &ShuffleMask,
4224                                       SelectionDAG &DAG) {
4225  // Check to see if we can use the VTBL instruction.
4226  SDValue V1 = Op.getOperand(0);
4227  SDValue V2 = Op.getOperand(1);
4228  DebugLoc DL = Op.getDebugLoc();
4229
4230  SmallVector<SDValue, 8> VTBLMask;
4231  for (SmallVectorImpl<int>::iterator
4232         I = ShuffleMask.begin(), E = ShuffleMask.end(); I != E; ++I)
4233    VTBLMask.push_back(DAG.getConstant(*I, MVT::i32));
4234
4235  if (V2.getNode()->getOpcode() == ISD::UNDEF)
4236    return DAG.getNode(ARMISD::VTBL1, DL, MVT::v8i8, V1,
4237                       DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i8,
4238                                   &VTBLMask[0], 8));
4239
4240  return DAG.getNode(ARMISD::VTBL2, DL, MVT::v8i8, V1, V2,
4241                     DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i8,
4242                                 &VTBLMask[0], 8));
4243}
4244
4245static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
4246  SDValue V1 = Op.getOperand(0);
4247  SDValue V2 = Op.getOperand(1);
4248  DebugLoc dl = Op.getDebugLoc();
4249  EVT VT = Op.getValueType();
4250  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
4251  SmallVector<int, 8> ShuffleMask;
4252
4253  // Convert shuffles that are directly supported on NEON to target-specific
4254  // DAG nodes, instead of keeping them as shuffles and matching them again
4255  // during code selection.  This is more efficient and avoids the possibility
4256  // of inconsistencies between legalization and selection.
4257  // FIXME: floating-point vectors should be canonicalized to integer vectors
4258  // of the same time so that they get CSEd properly.
4259  SVN->getMask(ShuffleMask);
4260
4261  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4262  if (EltSize <= 32) {
4263    if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0], VT)) {
4264      int Lane = SVN->getSplatIndex();
4265      // If this is undef splat, generate it via "just" vdup, if possible.
4266      if (Lane == -1) Lane = 0;
4267
4268      if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
4269        return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
4270      }
4271      return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1,
4272                         DAG.getConstant(Lane, MVT::i32));
4273    }
4274
4275    bool ReverseVEXT;
4276    unsigned Imm;
4277    if (isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) {
4278      if (ReverseVEXT)
4279        std::swap(V1, V2);
4280      return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2,
4281                         DAG.getConstant(Imm, MVT::i32));
4282    }
4283
4284    if (isVREVMask(ShuffleMask, VT, 64))
4285      return DAG.getNode(ARMISD::VREV64, dl, VT, V1);
4286    if (isVREVMask(ShuffleMask, VT, 32))
4287      return DAG.getNode(ARMISD::VREV32, dl, VT, V1);
4288    if (isVREVMask(ShuffleMask, VT, 16))
4289      return DAG.getNode(ARMISD::VREV16, dl, VT, V1);
4290
4291    // Check for Neon shuffles that modify both input vectors in place.
4292    // If both results are used, i.e., if there are two shuffles with the same
4293    // source operands and with masks corresponding to both results of one of
4294    // these operations, DAG memoization will ensure that a single node is
4295    // used for both shuffles.
4296    unsigned WhichResult;
4297    if (isVTRNMask(ShuffleMask, VT, WhichResult))
4298      return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
4299                         V1, V2).getValue(WhichResult);
4300    if (isVUZPMask(ShuffleMask, VT, WhichResult))
4301      return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
4302                         V1, V2).getValue(WhichResult);
4303    if (isVZIPMask(ShuffleMask, VT, WhichResult))
4304      return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
4305                         V1, V2).getValue(WhichResult);
4306
4307    if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult))
4308      return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
4309                         V1, V1).getValue(WhichResult);
4310    if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult))
4311      return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
4312                         V1, V1).getValue(WhichResult);
4313    if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult))
4314      return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
4315                         V1, V1).getValue(WhichResult);
4316  }
4317
4318  // If the shuffle is not directly supported and it has 4 elements, use
4319  // the PerfectShuffle-generated table to synthesize it from other shuffles.
4320  unsigned NumElts = VT.getVectorNumElements();
4321  if (NumElts == 4) {
4322    unsigned PFIndexes[4];
4323    for (unsigned i = 0; i != 4; ++i) {
4324      if (ShuffleMask[i] < 0)
4325        PFIndexes[i] = 8;
4326      else
4327        PFIndexes[i] = ShuffleMask[i];
4328    }
4329
4330    // Compute the index in the perfect shuffle table.
4331    unsigned PFTableIndex =
4332      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
4333    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
4334    unsigned Cost = (PFEntry >> 30);
4335
4336    if (Cost <= 4)
4337      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
4338  }
4339
4340  // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs.
4341  if (EltSize >= 32) {
4342    // Do the expansion with floating-point types, since that is what the VFP
4343    // registers are defined to use, and since i64 is not legal.
4344    EVT EltVT = EVT::getFloatingPointVT(EltSize);
4345    EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
4346    V1 = DAG.getNode(ISD::BITCAST, dl, VecVT, V1);
4347    V2 = DAG.getNode(ISD::BITCAST, dl, VecVT, V2);
4348    SmallVector<SDValue, 8> Ops;
4349    for (unsigned i = 0; i < NumElts; ++i) {
4350      if (ShuffleMask[i] < 0)
4351        Ops.push_back(DAG.getUNDEF(EltVT));
4352      else
4353        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
4354                                  ShuffleMask[i] < (int)NumElts ? V1 : V2,
4355                                  DAG.getConstant(ShuffleMask[i] & (NumElts-1),
4356                                                  MVT::i32)));
4357    }
4358    SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts);
4359    return DAG.getNode(ISD::BITCAST, dl, VT, Val);
4360  }
4361
4362  if (VT == MVT::v8i8) {
4363    SDValue NewOp = LowerVECTOR_SHUFFLEv8i8(Op, ShuffleMask, DAG);
4364    if (NewOp.getNode())
4365      return NewOp;
4366  }
4367
4368  return SDValue();
4369}
4370
4371static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4372  // EXTRACT_VECTOR_ELT is legal only for immediate indexes.
4373  SDValue Lane = Op.getOperand(1);
4374  if (!isa<ConstantSDNode>(Lane))
4375    return SDValue();
4376
4377  SDValue Vec = Op.getOperand(0);
4378  if (Op.getValueType() == MVT::i32 &&
4379      Vec.getValueType().getVectorElementType().getSizeInBits() < 32) {
4380    DebugLoc dl = Op.getDebugLoc();
4381    return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
4382  }
4383
4384  return Op;
4385}
4386
4387static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
4388  // The only time a CONCAT_VECTORS operation can have legal types is when
4389  // two 64-bit vectors are concatenated to a 128-bit vector.
4390  assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 &&
4391         "unexpected CONCAT_VECTORS");
4392  DebugLoc dl = Op.getDebugLoc();
4393  SDValue Val = DAG.getUNDEF(MVT::v2f64);
4394  SDValue Op0 = Op.getOperand(0);
4395  SDValue Op1 = Op.getOperand(1);
4396  if (Op0.getOpcode() != ISD::UNDEF)
4397    Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
4398                      DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op0),
4399                      DAG.getIntPtrConstant(0));
4400  if (Op1.getOpcode() != ISD::UNDEF)
4401    Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
4402                      DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op1),
4403                      DAG.getIntPtrConstant(1));
4404  return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Val);
4405}
4406
4407/// isExtendedBUILD_VECTOR - Check if N is a constant BUILD_VECTOR where each
4408/// element has been zero/sign-extended, depending on the isSigned parameter,
4409/// from an integer type half its size.
4410static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
4411                                   bool isSigned) {
4412  // A v2i64 BUILD_VECTOR will have been legalized to a BITCAST from v4i32.
4413  EVT VT = N->getValueType(0);
4414  if (VT == MVT::v2i64 && N->getOpcode() == ISD::BITCAST) {
4415    SDNode *BVN = N->getOperand(0).getNode();
4416    if (BVN->getValueType(0) != MVT::v4i32 ||
4417        BVN->getOpcode() != ISD::BUILD_VECTOR)
4418      return false;
4419    unsigned LoElt = DAG.getTargetLoweringInfo().isBigEndian() ? 1 : 0;
4420    unsigned HiElt = 1 - LoElt;
4421    ConstantSDNode *Lo0 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt));
4422    ConstantSDNode *Hi0 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt));
4423    ConstantSDNode *Lo1 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt+2));
4424    ConstantSDNode *Hi1 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt+2));
4425    if (!Lo0 || !Hi0 || !Lo1 || !Hi1)
4426      return false;
4427    if (isSigned) {
4428      if (Hi0->getSExtValue() == Lo0->getSExtValue() >> 32 &&
4429          Hi1->getSExtValue() == Lo1->getSExtValue() >> 32)
4430        return true;
4431    } else {
4432      if (Hi0->isNullValue() && Hi1->isNullValue())
4433        return true;
4434    }
4435    return false;
4436  }
4437
4438  if (N->getOpcode() != ISD::BUILD_VECTOR)
4439    return false;
4440
4441  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
4442    SDNode *Elt = N->getOperand(i).getNode();
4443    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
4444      unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4445      unsigned HalfSize = EltSize / 2;
4446      if (isSigned) {
4447        int64_t SExtVal = C->getSExtValue();
4448        if ((SExtVal >> HalfSize) != (SExtVal >> EltSize))
4449          return false;
4450      } else {
4451        if ((C->getZExtValue() >> HalfSize) != 0)
4452          return false;
4453      }
4454      continue;
4455    }
4456    return false;
4457  }
4458
4459  return true;
4460}
4461
4462/// isSignExtended - Check if a node is a vector value that is sign-extended
4463/// or a constant BUILD_VECTOR with sign-extended elements.
4464static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
4465  if (N->getOpcode() == ISD::SIGN_EXTEND || ISD::isSEXTLoad(N))
4466    return true;
4467  if (isExtendedBUILD_VECTOR(N, DAG, true))
4468    return true;
4469  return false;
4470}
4471
4472/// isZeroExtended - Check if a node is a vector value that is zero-extended
4473/// or a constant BUILD_VECTOR with zero-extended elements.
4474static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
4475  if (N->getOpcode() == ISD::ZERO_EXTEND || ISD::isZEXTLoad(N))
4476    return true;
4477  if (isExtendedBUILD_VECTOR(N, DAG, false))
4478    return true;
4479  return false;
4480}
4481
4482/// SkipExtension - For a node that is a SIGN_EXTEND, ZERO_EXTEND, extending
4483/// load, or BUILD_VECTOR with extended elements, return the unextended value.
4484static SDValue SkipExtension(SDNode *N, SelectionDAG &DAG) {
4485  if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
4486    return N->getOperand(0);
4487  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N))
4488    return DAG.getLoad(LD->getMemoryVT(), N->getDebugLoc(), LD->getChain(),
4489                       LD->getBasePtr(), LD->getPointerInfo(), LD->isVolatile(),
4490                       LD->isNonTemporal(), LD->getAlignment());
4491  // Otherwise, the value must be a BUILD_VECTOR.  For v2i64, it will
4492  // have been legalized as a BITCAST from v4i32.
4493  if (N->getOpcode() == ISD::BITCAST) {
4494    SDNode *BVN = N->getOperand(0).getNode();
4495    assert(BVN->getOpcode() == ISD::BUILD_VECTOR &&
4496           BVN->getValueType(0) == MVT::v4i32 && "expected v4i32 BUILD_VECTOR");
4497    unsigned LowElt = DAG.getTargetLoweringInfo().isBigEndian() ? 1 : 0;
4498    return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(), MVT::v2i32,
4499                       BVN->getOperand(LowElt), BVN->getOperand(LowElt+2));
4500  }
4501  // Construct a new BUILD_VECTOR with elements truncated to half the size.
4502  assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
4503  EVT VT = N->getValueType(0);
4504  unsigned EltSize = VT.getVectorElementType().getSizeInBits() / 2;
4505  unsigned NumElts = VT.getVectorNumElements();
4506  MVT TruncVT = MVT::getIntegerVT(EltSize);
4507  SmallVector<SDValue, 8> Ops;
4508  for (unsigned i = 0; i != NumElts; ++i) {
4509    ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
4510    const APInt &CInt = C->getAPIntValue();
4511    Ops.push_back(DAG.getConstant(CInt.trunc(EltSize), TruncVT));
4512  }
4513  return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(),
4514                     MVT::getVectorVT(TruncVT, NumElts), Ops.data(), NumElts);
4515}
4516
4517static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
4518  unsigned Opcode = N->getOpcode();
4519  if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
4520    SDNode *N0 = N->getOperand(0).getNode();
4521    SDNode *N1 = N->getOperand(1).getNode();
4522    return N0->hasOneUse() && N1->hasOneUse() &&
4523      isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
4524  }
4525  return false;
4526}
4527
4528static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
4529  unsigned Opcode = N->getOpcode();
4530  if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
4531    SDNode *N0 = N->getOperand(0).getNode();
4532    SDNode *N1 = N->getOperand(1).getNode();
4533    return N0->hasOneUse() && N1->hasOneUse() &&
4534      isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
4535  }
4536  return false;
4537}
4538
4539static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
4540  // Multiplications are only custom-lowered for 128-bit vectors so that
4541  // VMULL can be detected.  Otherwise v2i64 multiplications are not legal.
4542  EVT VT = Op.getValueType();
4543  assert(VT.is128BitVector() && "unexpected type for custom-lowering ISD::MUL");
4544  SDNode *N0 = Op.getOperand(0).getNode();
4545  SDNode *N1 = Op.getOperand(1).getNode();
4546  unsigned NewOpc = 0;
4547  bool isMLA = false;
4548  bool isN0SExt = isSignExtended(N0, DAG);
4549  bool isN1SExt = isSignExtended(N1, DAG);
4550  if (isN0SExt && isN1SExt)
4551    NewOpc = ARMISD::VMULLs;
4552  else {
4553    bool isN0ZExt = isZeroExtended(N0, DAG);
4554    bool isN1ZExt = isZeroExtended(N1, DAG);
4555    if (isN0ZExt && isN1ZExt)
4556      NewOpc = ARMISD::VMULLu;
4557    else if (isN1SExt || isN1ZExt) {
4558      // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
4559      // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
4560      if (isN1SExt && isAddSubSExt(N0, DAG)) {
4561        NewOpc = ARMISD::VMULLs;
4562        isMLA = true;
4563      } else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
4564        NewOpc = ARMISD::VMULLu;
4565        isMLA = true;
4566      } else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
4567        std::swap(N0, N1);
4568        NewOpc = ARMISD::VMULLu;
4569        isMLA = true;
4570      }
4571    }
4572
4573    if (!NewOpc) {
4574      if (VT == MVT::v2i64)
4575        // Fall through to expand this.  It is not legal.
4576        return SDValue();
4577      else
4578        // Other vector multiplications are legal.
4579        return Op;
4580    }
4581  }
4582
4583  // Legalize to a VMULL instruction.
4584  DebugLoc DL = Op.getDebugLoc();
4585  SDValue Op0;
4586  SDValue Op1 = SkipExtension(N1, DAG);
4587  if (!isMLA) {
4588    Op0 = SkipExtension(N0, DAG);
4589    assert(Op0.getValueType().is64BitVector() &&
4590           Op1.getValueType().is64BitVector() &&
4591           "unexpected types for extended operands to VMULL");
4592    return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
4593  }
4594
4595  // Optimizing (zext A + zext B) * C, to (VMULL A, C) + (VMULL B, C) during
4596  // isel lowering to take advantage of no-stall back to back vmul + vmla.
4597  //   vmull q0, d4, d6
4598  //   vmlal q0, d5, d6
4599  // is faster than
4600  //   vaddl q0, d4, d5
4601  //   vmovl q1, d6
4602  //   vmul  q0, q0, q1
4603  SDValue N00 = SkipExtension(N0->getOperand(0).getNode(), DAG);
4604  SDValue N01 = SkipExtension(N0->getOperand(1).getNode(), DAG);
4605  EVT Op1VT = Op1.getValueType();
4606  return DAG.getNode(N0->getOpcode(), DL, VT,
4607                     DAG.getNode(NewOpc, DL, VT,
4608                               DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
4609                     DAG.getNode(NewOpc, DL, VT,
4610                               DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
4611}
4612
4613static SDValue
4614LowerSDIV_v4i8(SDValue X, SDValue Y, DebugLoc dl, SelectionDAG &DAG) {
4615  // Convert to float
4616  // float4 xf = vcvt_f32_s32(vmovl_s16(a.lo));
4617  // float4 yf = vcvt_f32_s32(vmovl_s16(b.lo));
4618  X = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, X);
4619  Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, Y);
4620  X = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, X);
4621  Y = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, Y);
4622  // Get reciprocal estimate.
4623  // float4 recip = vrecpeq_f32(yf);
4624  Y = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
4625                   DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), Y);
4626  // Because char has a smaller range than uchar, we can actually get away
4627  // without any newton steps.  This requires that we use a weird bias
4628  // of 0xb000, however (again, this has been exhaustively tested).
4629  // float4 result = as_float4(as_int4(xf*recip) + 0xb000);
4630  X = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, X, Y);
4631  X = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, X);
4632  Y = DAG.getConstant(0xb000, MVT::i32);
4633  Y = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Y, Y, Y, Y);
4634  X = DAG.getNode(ISD::ADD, dl, MVT::v4i32, X, Y);
4635  X = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, X);
4636  // Convert back to short.
4637  X = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, X);
4638  X = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, X);
4639  return X;
4640}
4641
4642static SDValue
4643LowerSDIV_v4i16(SDValue N0, SDValue N1, DebugLoc dl, SelectionDAG &DAG) {
4644  SDValue N2;
4645  // Convert to float.
4646  // float4 yf = vcvt_f32_s32(vmovl_s16(y));
4647  // float4 xf = vcvt_f32_s32(vmovl_s16(x));
4648  N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N0);
4649  N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N1);
4650  N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
4651  N1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
4652
4653  // Use reciprocal estimate and one refinement step.
4654  // float4 recip = vrecpeq_f32(yf);
4655  // recip *= vrecpsq_f32(yf, recip);
4656  N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
4657                   DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), N1);
4658  N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
4659                   DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
4660                   N1, N2);
4661  N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
4662  // Because short has a smaller range than ushort, we can actually get away
4663  // with only a single newton step.  This requires that we use a weird bias
4664  // of 89, however (again, this has been exhaustively tested).
4665  // float4 result = as_float4(as_int4(xf*recip) + 89);
4666  N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
4667  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
4668  N1 = DAG.getConstant(89, MVT::i32);
4669  N1 = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, N1, N1, N1, N1);
4670  N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
4671  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
4672  // Convert back to integer and return.
4673  // return vmovn_s32(vcvt_s32_f32(result));
4674  N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
4675  N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
4676  return N0;
4677}
4678
4679static SDValue LowerSDIV(SDValue Op, SelectionDAG &DAG) {
4680  EVT VT = Op.getValueType();
4681  assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
4682         "unexpected type for custom-lowering ISD::SDIV");
4683
4684  DebugLoc dl = Op.getDebugLoc();
4685  SDValue N0 = Op.getOperand(0);
4686  SDValue N1 = Op.getOperand(1);
4687  SDValue N2, N3;
4688
4689  if (VT == MVT::v8i8) {
4690    N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N0);
4691    N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N1);
4692
4693    N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
4694                     DAG.getIntPtrConstant(4));
4695    N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
4696                     DAG.getIntPtrConstant(4));
4697    N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
4698                     DAG.getIntPtrConstant(0));
4699    N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
4700                     DAG.getIntPtrConstant(0));
4701
4702    N0 = LowerSDIV_v4i8(N0, N1, dl, DAG); // v4i16
4703    N2 = LowerSDIV_v4i8(N2, N3, dl, DAG); // v4i16
4704
4705    N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
4706    N0 = LowerCONCAT_VECTORS(N0, DAG);
4707
4708    N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v8i8, N0);
4709    return N0;
4710  }
4711  return LowerSDIV_v4i16(N0, N1, dl, DAG);
4712}
4713
4714static SDValue LowerUDIV(SDValue Op, SelectionDAG &DAG) {
4715  EVT VT = Op.getValueType();
4716  assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
4717         "unexpected type for custom-lowering ISD::UDIV");
4718
4719  DebugLoc dl = Op.getDebugLoc();
4720  SDValue N0 = Op.getOperand(0);
4721  SDValue N1 = Op.getOperand(1);
4722  SDValue N2, N3;
4723
4724  if (VT == MVT::v8i8) {
4725    N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N0);
4726    N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N1);
4727
4728    N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
4729                     DAG.getIntPtrConstant(4));
4730    N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
4731                     DAG.getIntPtrConstant(4));
4732    N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
4733                     DAG.getIntPtrConstant(0));
4734    N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
4735                     DAG.getIntPtrConstant(0));
4736
4737    N0 = LowerSDIV_v4i16(N0, N1, dl, DAG); // v4i16
4738    N2 = LowerSDIV_v4i16(N2, N3, dl, DAG); // v4i16
4739
4740    N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
4741    N0 = LowerCONCAT_VECTORS(N0, DAG);
4742
4743    N0 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v8i8,
4744                     DAG.getConstant(Intrinsic::arm_neon_vqmovnsu, MVT::i32),
4745                     N0);
4746    return N0;
4747  }
4748
4749  // v4i16 sdiv ... Convert to float.
4750  // float4 yf = vcvt_f32_s32(vmovl_u16(y));
4751  // float4 xf = vcvt_f32_s32(vmovl_u16(x));
4752  N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N0);
4753  N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N1);
4754  N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
4755  N1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
4756
4757  // Use reciprocal estimate and two refinement steps.
4758  // float4 recip = vrecpeq_f32(yf);
4759  // recip *= vrecpsq_f32(yf, recip);
4760  // recip *= vrecpsq_f32(yf, recip);
4761  N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
4762                   DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), N1);
4763  N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
4764                   DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
4765                   N1, N2);
4766  N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
4767  N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
4768                   DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
4769                   N1, N2);
4770  N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
4771  // Simply multiplying by the reciprocal estimate can leave us a few ulps
4772  // too low, so we add 2 ulps (exhaustive testing shows that this is enough,
4773  // and that it will never cause us to return an answer too large).
4774  // float4 result = as_float4(as_int4(xf*recip) + 89);
4775  N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
4776  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
4777  N1 = DAG.getConstant(2, MVT::i32);
4778  N1 = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, N1, N1, N1, N1);
4779  N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
4780  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
4781  // Convert back to integer and return.
4782  // return vmovn_u32(vcvt_s32_f32(result));
4783  N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
4784  N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
4785  return N0;
4786}
4787
4788SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
4789  switch (Op.getOpcode()) {
4790  default: llvm_unreachable("Don't know how to custom lower this!");
4791  case ISD::ConstantPool:  return LowerConstantPool(Op, DAG);
4792  case ISD::BlockAddress:  return LowerBlockAddress(Op, DAG);
4793  case ISD::GlobalAddress:
4794    return Subtarget->isTargetDarwin() ? LowerGlobalAddressDarwin(Op, DAG) :
4795      LowerGlobalAddressELF(Op, DAG);
4796  case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
4797  case ISD::SELECT:        return LowerSELECT(Op, DAG);
4798  case ISD::SELECT_CC:     return LowerSELECT_CC(Op, DAG);
4799  case ISD::BR_CC:         return LowerBR_CC(Op, DAG);
4800  case ISD::BR_JT:         return LowerBR_JT(Op, DAG);
4801  case ISD::VASTART:       return LowerVASTART(Op, DAG);
4802  case ISD::MEMBARRIER:    return LowerMEMBARRIER(Op, DAG, Subtarget);
4803  case ISD::PREFETCH:      return LowerPREFETCH(Op, DAG, Subtarget);
4804  case ISD::SINT_TO_FP:
4805  case ISD::UINT_TO_FP:    return LowerINT_TO_FP(Op, DAG);
4806  case ISD::FP_TO_SINT:
4807  case ISD::FP_TO_UINT:    return LowerFP_TO_INT(Op, DAG);
4808  case ISD::FCOPYSIGN:     return LowerFCOPYSIGN(Op, DAG);
4809  case ISD::RETURNADDR:    return LowerRETURNADDR(Op, DAG);
4810  case ISD::FRAMEADDR:     return LowerFRAMEADDR(Op, DAG);
4811  case ISD::GLOBAL_OFFSET_TABLE: return LowerGLOBAL_OFFSET_TABLE(Op, DAG);
4812  case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG);
4813  case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG);
4814  case ISD::EH_SJLJ_DISPATCHSETUP: return LowerEH_SJLJ_DISPATCHSETUP(Op, DAG);
4815  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG,
4816                                                               Subtarget);
4817  case ISD::BITCAST:       return ExpandBITCAST(Op.getNode(), DAG);
4818  case ISD::SHL:
4819  case ISD::SRL:
4820  case ISD::SRA:           return LowerShift(Op.getNode(), DAG, Subtarget);
4821  case ISD::SHL_PARTS:     return LowerShiftLeftParts(Op, DAG);
4822  case ISD::SRL_PARTS:
4823  case ISD::SRA_PARTS:     return LowerShiftRightParts(Op, DAG);
4824  case ISD::CTTZ:          return LowerCTTZ(Op.getNode(), DAG, Subtarget);
4825  case ISD::VSETCC:        return LowerVSETCC(Op, DAG);
4826  case ISD::BUILD_VECTOR:  return LowerBUILD_VECTOR(Op, DAG, Subtarget);
4827  case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
4828  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
4829  case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
4830  case ISD::FLT_ROUNDS_:   return LowerFLT_ROUNDS_(Op, DAG);
4831  case ISD::MUL:           return LowerMUL(Op, DAG);
4832  case ISD::SDIV:          return LowerSDIV(Op, DAG);
4833  case ISD::UDIV:          return LowerUDIV(Op, DAG);
4834  }
4835  return SDValue();
4836}
4837
4838/// ReplaceNodeResults - Replace the results of node with an illegal result
4839/// type with new values built out of custom code.
4840void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
4841                                           SmallVectorImpl<SDValue>&Results,
4842                                           SelectionDAG &DAG) const {
4843  SDValue Res;
4844  switch (N->getOpcode()) {
4845  default:
4846    llvm_unreachable("Don't know how to custom expand this!");
4847    break;
4848  case ISD::BITCAST:
4849    Res = ExpandBITCAST(N, DAG);
4850    break;
4851  case ISD::SRL:
4852  case ISD::SRA:
4853    Res = Expand64BitShift(N, DAG, Subtarget);
4854    break;
4855  }
4856  if (Res.getNode())
4857    Results.push_back(Res);
4858}
4859
4860//===----------------------------------------------------------------------===//
4861//                           ARM Scheduler Hooks
4862//===----------------------------------------------------------------------===//
4863
4864MachineBasicBlock *
4865ARMTargetLowering::EmitAtomicCmpSwap(MachineInstr *MI,
4866                                     MachineBasicBlock *BB,
4867                                     unsigned Size) const {
4868  unsigned dest    = MI->getOperand(0).getReg();
4869  unsigned ptr     = MI->getOperand(1).getReg();
4870  unsigned oldval  = MI->getOperand(2).getReg();
4871  unsigned newval  = MI->getOperand(3).getReg();
4872  unsigned scratch = BB->getParent()->getRegInfo()
4873    .createVirtualRegister(ARM::GPRRegisterClass);
4874  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4875  DebugLoc dl = MI->getDebugLoc();
4876  bool isThumb2 = Subtarget->isThumb2();
4877
4878  unsigned ldrOpc, strOpc;
4879  switch (Size) {
4880  default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
4881  case 1:
4882    ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
4883    strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
4884    break;
4885  case 2:
4886    ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
4887    strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
4888    break;
4889  case 4:
4890    ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
4891    strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
4892    break;
4893  }
4894
4895  MachineFunction *MF = BB->getParent();
4896  const BasicBlock *LLVM_BB = BB->getBasicBlock();
4897  MachineFunction::iterator It = BB;
4898  ++It; // insert the new blocks after the current block
4899
4900  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
4901  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
4902  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
4903  MF->insert(It, loop1MBB);
4904  MF->insert(It, loop2MBB);
4905  MF->insert(It, exitMBB);
4906
4907  // Transfer the remainder of BB and its successor edges to exitMBB.
4908  exitMBB->splice(exitMBB->begin(), BB,
4909                  llvm::next(MachineBasicBlock::iterator(MI)),
4910                  BB->end());
4911  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
4912
4913  //  thisMBB:
4914  //   ...
4915  //   fallthrough --> loop1MBB
4916  BB->addSuccessor(loop1MBB);
4917
4918  // loop1MBB:
4919  //   ldrex dest, [ptr]
4920  //   cmp dest, oldval
4921  //   bne exitMBB
4922  BB = loop1MBB;
4923  AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr));
4924  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
4925                 .addReg(dest).addReg(oldval));
4926  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
4927    .addMBB(exitMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
4928  BB->addSuccessor(loop2MBB);
4929  BB->addSuccessor(exitMBB);
4930
4931  // loop2MBB:
4932  //   strex scratch, newval, [ptr]
4933  //   cmp scratch, #0
4934  //   bne loop1MBB
4935  BB = loop2MBB;
4936  AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(newval)
4937                 .addReg(ptr));
4938  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
4939                 .addReg(scratch).addImm(0));
4940  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
4941    .addMBB(loop1MBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
4942  BB->addSuccessor(loop1MBB);
4943  BB->addSuccessor(exitMBB);
4944
4945  //  exitMBB:
4946  //   ...
4947  BB = exitMBB;
4948
4949  MI->eraseFromParent();   // The instruction is gone now.
4950
4951  return BB;
4952}
4953
4954MachineBasicBlock *
4955ARMTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
4956                                    unsigned Size, unsigned BinOpcode) const {
4957  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
4958  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4959
4960  const BasicBlock *LLVM_BB = BB->getBasicBlock();
4961  MachineFunction *MF = BB->getParent();
4962  MachineFunction::iterator It = BB;
4963  ++It;
4964
4965  unsigned dest = MI->getOperand(0).getReg();
4966  unsigned ptr = MI->getOperand(1).getReg();
4967  unsigned incr = MI->getOperand(2).getReg();
4968  DebugLoc dl = MI->getDebugLoc();
4969
4970  bool isThumb2 = Subtarget->isThumb2();
4971  unsigned ldrOpc, strOpc;
4972  switch (Size) {
4973  default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
4974  case 1:
4975    ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
4976    strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
4977    break;
4978  case 2:
4979    ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
4980    strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
4981    break;
4982  case 4:
4983    ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
4984    strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
4985    break;
4986  }
4987
4988  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
4989  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
4990  MF->insert(It, loopMBB);
4991  MF->insert(It, exitMBB);
4992
4993  // Transfer the remainder of BB and its successor edges to exitMBB.
4994  exitMBB->splice(exitMBB->begin(), BB,
4995                  llvm::next(MachineBasicBlock::iterator(MI)),
4996                  BB->end());
4997  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
4998
4999  MachineRegisterInfo &RegInfo = MF->getRegInfo();
5000  unsigned scratch = RegInfo.createVirtualRegister(ARM::GPRRegisterClass);
5001  unsigned scratch2 = (!BinOpcode) ? incr :
5002    RegInfo.createVirtualRegister(ARM::GPRRegisterClass);
5003
5004  //  thisMBB:
5005  //   ...
5006  //   fallthrough --> loopMBB
5007  BB->addSuccessor(loopMBB);
5008
5009  //  loopMBB:
5010  //   ldrex dest, ptr
5011  //   <binop> scratch2, dest, incr
5012  //   strex scratch, scratch2, ptr
5013  //   cmp scratch, #0
5014  //   bne- loopMBB
5015  //   fallthrough --> exitMBB
5016  BB = loopMBB;
5017  AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr));
5018  if (BinOpcode) {
5019    // operand order needs to go the other way for NAND
5020    if (BinOpcode == ARM::BICrr || BinOpcode == ARM::t2BICrr)
5021      AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
5022                     addReg(incr).addReg(dest)).addReg(0);
5023    else
5024      AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
5025                     addReg(dest).addReg(incr)).addReg(0);
5026  }
5027
5028  AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(scratch2)
5029                 .addReg(ptr));
5030  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
5031                 .addReg(scratch).addImm(0));
5032  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5033    .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5034
5035  BB->addSuccessor(loopMBB);
5036  BB->addSuccessor(exitMBB);
5037
5038  //  exitMBB:
5039  //   ...
5040  BB = exitMBB;
5041
5042  MI->eraseFromParent();   // The instruction is gone now.
5043
5044  return BB;
5045}
5046
5047MachineBasicBlock *
5048ARMTargetLowering::EmitAtomicBinaryMinMax(MachineInstr *MI,
5049                                          MachineBasicBlock *BB,
5050                                          unsigned Size,
5051                                          bool signExtend,
5052                                          ARMCC::CondCodes Cond) const {
5053  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5054
5055  const BasicBlock *LLVM_BB = BB->getBasicBlock();
5056  MachineFunction *MF = BB->getParent();
5057  MachineFunction::iterator It = BB;
5058  ++It;
5059
5060  unsigned dest = MI->getOperand(0).getReg();
5061  unsigned ptr = MI->getOperand(1).getReg();
5062  unsigned incr = MI->getOperand(2).getReg();
5063  unsigned oldval = dest;
5064  DebugLoc dl = MI->getDebugLoc();
5065
5066  bool isThumb2 = Subtarget->isThumb2();
5067  unsigned ldrOpc, strOpc, extendOpc;
5068  switch (Size) {
5069  default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
5070  case 1:
5071    ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
5072    strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
5073    extendOpc = isThumb2 ? ARM::t2SXTBr : ARM::SXTBr;
5074    break;
5075  case 2:
5076    ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
5077    strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
5078    extendOpc = isThumb2 ? ARM::t2SXTHr : ARM::SXTHr;
5079    break;
5080  case 4:
5081    ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
5082    strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
5083    extendOpc = 0;
5084    break;
5085  }
5086
5087  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5088  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5089  MF->insert(It, loopMBB);
5090  MF->insert(It, exitMBB);
5091
5092  // Transfer the remainder of BB and its successor edges to exitMBB.
5093  exitMBB->splice(exitMBB->begin(), BB,
5094                  llvm::next(MachineBasicBlock::iterator(MI)),
5095                  BB->end());
5096  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5097
5098  MachineRegisterInfo &RegInfo = MF->getRegInfo();
5099  unsigned scratch = RegInfo.createVirtualRegister(ARM::GPRRegisterClass);
5100  unsigned scratch2 = RegInfo.createVirtualRegister(ARM::GPRRegisterClass);
5101
5102  //  thisMBB:
5103  //   ...
5104  //   fallthrough --> loopMBB
5105  BB->addSuccessor(loopMBB);
5106
5107  //  loopMBB:
5108  //   ldrex dest, ptr
5109  //   (sign extend dest, if required)
5110  //   cmp dest, incr
5111  //   cmov.cond scratch2, dest, incr
5112  //   strex scratch, scratch2, ptr
5113  //   cmp scratch, #0
5114  //   bne- loopMBB
5115  //   fallthrough --> exitMBB
5116  BB = loopMBB;
5117  AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr));
5118
5119  // Sign extend the value, if necessary.
5120  if (signExtend && extendOpc) {
5121    oldval = RegInfo.createVirtualRegister(ARM::GPRRegisterClass);
5122    AddDefaultPred(BuildMI(BB, dl, TII->get(extendOpc), oldval).addReg(dest));
5123  }
5124
5125  // Build compare and cmov instructions.
5126  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
5127                 .addReg(oldval).addReg(incr));
5128  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2MOVCCr : ARM::MOVCCr), scratch2)
5129         .addReg(oldval).addReg(incr).addImm(Cond).addReg(ARM::CPSR);
5130
5131  AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(scratch2)
5132                 .addReg(ptr));
5133  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
5134                 .addReg(scratch).addImm(0));
5135  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5136    .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5137
5138  BB->addSuccessor(loopMBB);
5139  BB->addSuccessor(exitMBB);
5140
5141  //  exitMBB:
5142  //   ...
5143  BB = exitMBB;
5144
5145  MI->eraseFromParent();   // The instruction is gone now.
5146
5147  return BB;
5148}
5149
5150static
5151MachineBasicBlock *OtherSucc(MachineBasicBlock *MBB, MachineBasicBlock *Succ) {
5152  for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
5153       E = MBB->succ_end(); I != E; ++I)
5154    if (*I != Succ)
5155      return *I;
5156  llvm_unreachable("Expecting a BB with two successors!");
5157}
5158
5159// FIXME: This opcode table should obviously be expressed in the target
5160// description. We probably just need a "machine opcode" value in the pseudo
5161// instruction. But the ideal solution maybe to simply remove the "S" version
5162// of the opcode altogether.
5163struct AddSubFlagsOpcodePair {
5164  unsigned PseudoOpc;
5165  unsigned MachineOpc;
5166};
5167
5168static AddSubFlagsOpcodePair AddSubFlagsOpcodeMap[] = {
5169  {ARM::ADCSri, ARM::ADCri},
5170  {ARM::ADCSrr, ARM::ADCrr},
5171  {ARM::ADCSrs, ARM::ADCrs},
5172  {ARM::SBCSri, ARM::SBCri},
5173  {ARM::SBCSrr, ARM::SBCrr},
5174  {ARM::SBCSrs, ARM::SBCrs},
5175  {ARM::RSBSri, ARM::RSBri},
5176  {ARM::RSBSrr, ARM::RSBrr},
5177  {ARM::RSBSrs, ARM::RSBrs},
5178  {ARM::RSCSri, ARM::RSCri},
5179  {ARM::RSCSrs, ARM::RSCrs},
5180  {ARM::t2ADCSri, ARM::t2ADCri},
5181  {ARM::t2ADCSrr, ARM::t2ADCrr},
5182  {ARM::t2ADCSrs, ARM::t2ADCrs},
5183  {ARM::t2SBCSri, ARM::t2SBCri},
5184  {ARM::t2SBCSrr, ARM::t2SBCrr},
5185  {ARM::t2SBCSrs, ARM::t2SBCrs},
5186  {ARM::t2RSBSri, ARM::t2RSBri},
5187  {ARM::t2RSBSrs, ARM::t2RSBrs},
5188};
5189
5190// Convert and Add or Subtract with Carry and Flags to a generic opcode with
5191// CPSR<def> operand. e.g. ADCS (...) -> ADC (... CPSR<def>).
5192//
5193// FIXME: Somewhere we should assert that CPSR<def> is in the correct
5194// position to be recognized by the target descrition as the 'S' bit.
5195bool ARMTargetLowering::RemapAddSubWithFlags(MachineInstr *MI,
5196                                             MachineBasicBlock *BB) const {
5197  unsigned OldOpc = MI->getOpcode();
5198  unsigned NewOpc = 0;
5199
5200  // This is only called for instructions that need remapping, so iterating over
5201  // the tiny opcode table is not costly.
5202  static const int NPairs =
5203    sizeof(AddSubFlagsOpcodeMap) / sizeof(AddSubFlagsOpcodePair);
5204  for (AddSubFlagsOpcodePair *Pair = &AddSubFlagsOpcodeMap[0],
5205         *End = &AddSubFlagsOpcodeMap[NPairs]; Pair != End; ++Pair) {
5206    if (OldOpc == Pair->PseudoOpc) {
5207      NewOpc = Pair->MachineOpc;
5208      break;
5209    }
5210  }
5211  if (!NewOpc)
5212    return false;
5213
5214  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5215  DebugLoc dl = MI->getDebugLoc();
5216  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(NewOpc));
5217  for (unsigned i = 0; i < MI->getNumOperands(); ++i)
5218    MIB.addOperand(MI->getOperand(i));
5219  AddDefaultPred(MIB);
5220  MIB.addReg(ARM::CPSR, RegState::Define); // S bit
5221  MI->eraseFromParent();
5222  return true;
5223}
5224
5225MachineBasicBlock *
5226ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
5227                                               MachineBasicBlock *BB) const {
5228  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5229  DebugLoc dl = MI->getDebugLoc();
5230  bool isThumb2 = Subtarget->isThumb2();
5231  switch (MI->getOpcode()) {
5232  default: {
5233    if (RemapAddSubWithFlags(MI, BB))
5234      return BB;
5235
5236    MI->dump();
5237    llvm_unreachable("Unexpected instr type to insert");
5238  }
5239  case ARM::ATOMIC_LOAD_ADD_I8:
5240     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
5241  case ARM::ATOMIC_LOAD_ADD_I16:
5242     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
5243  case ARM::ATOMIC_LOAD_ADD_I32:
5244     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
5245
5246  case ARM::ATOMIC_LOAD_AND_I8:
5247     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
5248  case ARM::ATOMIC_LOAD_AND_I16:
5249     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
5250  case ARM::ATOMIC_LOAD_AND_I32:
5251     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
5252
5253  case ARM::ATOMIC_LOAD_OR_I8:
5254     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
5255  case ARM::ATOMIC_LOAD_OR_I16:
5256     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
5257  case ARM::ATOMIC_LOAD_OR_I32:
5258     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
5259
5260  case ARM::ATOMIC_LOAD_XOR_I8:
5261     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
5262  case ARM::ATOMIC_LOAD_XOR_I16:
5263     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
5264  case ARM::ATOMIC_LOAD_XOR_I32:
5265     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
5266
5267  case ARM::ATOMIC_LOAD_NAND_I8:
5268     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
5269  case ARM::ATOMIC_LOAD_NAND_I16:
5270     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
5271  case ARM::ATOMIC_LOAD_NAND_I32:
5272     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
5273
5274  case ARM::ATOMIC_LOAD_SUB_I8:
5275     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
5276  case ARM::ATOMIC_LOAD_SUB_I16:
5277     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
5278  case ARM::ATOMIC_LOAD_SUB_I32:
5279     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
5280
5281  case ARM::ATOMIC_LOAD_MIN_I8:
5282     return EmitAtomicBinaryMinMax(MI, BB, 1, true, ARMCC::LT);
5283  case ARM::ATOMIC_LOAD_MIN_I16:
5284     return EmitAtomicBinaryMinMax(MI, BB, 2, true, ARMCC::LT);
5285  case ARM::ATOMIC_LOAD_MIN_I32:
5286     return EmitAtomicBinaryMinMax(MI, BB, 4, true, ARMCC::LT);
5287
5288  case ARM::ATOMIC_LOAD_MAX_I8:
5289     return EmitAtomicBinaryMinMax(MI, BB, 1, true, ARMCC::GT);
5290  case ARM::ATOMIC_LOAD_MAX_I16:
5291     return EmitAtomicBinaryMinMax(MI, BB, 2, true, ARMCC::GT);
5292  case ARM::ATOMIC_LOAD_MAX_I32:
5293     return EmitAtomicBinaryMinMax(MI, BB, 4, true, ARMCC::GT);
5294
5295  case ARM::ATOMIC_LOAD_UMIN_I8:
5296     return EmitAtomicBinaryMinMax(MI, BB, 1, false, ARMCC::LO);
5297  case ARM::ATOMIC_LOAD_UMIN_I16:
5298     return EmitAtomicBinaryMinMax(MI, BB, 2, false, ARMCC::LO);
5299  case ARM::ATOMIC_LOAD_UMIN_I32:
5300     return EmitAtomicBinaryMinMax(MI, BB, 4, false, ARMCC::LO);
5301
5302  case ARM::ATOMIC_LOAD_UMAX_I8:
5303     return EmitAtomicBinaryMinMax(MI, BB, 1, false, ARMCC::HI);
5304  case ARM::ATOMIC_LOAD_UMAX_I16:
5305     return EmitAtomicBinaryMinMax(MI, BB, 2, false, ARMCC::HI);
5306  case ARM::ATOMIC_LOAD_UMAX_I32:
5307     return EmitAtomicBinaryMinMax(MI, BB, 4, false, ARMCC::HI);
5308
5309  case ARM::ATOMIC_SWAP_I8:  return EmitAtomicBinary(MI, BB, 1, 0);
5310  case ARM::ATOMIC_SWAP_I16: return EmitAtomicBinary(MI, BB, 2, 0);
5311  case ARM::ATOMIC_SWAP_I32: return EmitAtomicBinary(MI, BB, 4, 0);
5312
5313  case ARM::ATOMIC_CMP_SWAP_I8:  return EmitAtomicCmpSwap(MI, BB, 1);
5314  case ARM::ATOMIC_CMP_SWAP_I16: return EmitAtomicCmpSwap(MI, BB, 2);
5315  case ARM::ATOMIC_CMP_SWAP_I32: return EmitAtomicCmpSwap(MI, BB, 4);
5316
5317  case ARM::tMOVCCr_pseudo: {
5318    // To "insert" a SELECT_CC instruction, we actually have to insert the
5319    // diamond control-flow pattern.  The incoming instruction knows the
5320    // destination vreg to set, the condition code register to branch on, the
5321    // true/false values to select between, and a branch opcode to use.
5322    const BasicBlock *LLVM_BB = BB->getBasicBlock();
5323    MachineFunction::iterator It = BB;
5324    ++It;
5325
5326    //  thisMBB:
5327    //  ...
5328    //   TrueVal = ...
5329    //   cmpTY ccX, r1, r2
5330    //   bCC copy1MBB
5331    //   fallthrough --> copy0MBB
5332    MachineBasicBlock *thisMBB  = BB;
5333    MachineFunction *F = BB->getParent();
5334    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
5335    MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
5336    F->insert(It, copy0MBB);
5337    F->insert(It, sinkMBB);
5338
5339    // Transfer the remainder of BB and its successor edges to sinkMBB.
5340    sinkMBB->splice(sinkMBB->begin(), BB,
5341                    llvm::next(MachineBasicBlock::iterator(MI)),
5342                    BB->end());
5343    sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
5344
5345    BB->addSuccessor(copy0MBB);
5346    BB->addSuccessor(sinkMBB);
5347
5348    BuildMI(BB, dl, TII->get(ARM::tBcc)).addMBB(sinkMBB)
5349      .addImm(MI->getOperand(3).getImm()).addReg(MI->getOperand(4).getReg());
5350
5351    //  copy0MBB:
5352    //   %FalseValue = ...
5353    //   # fallthrough to sinkMBB
5354    BB = copy0MBB;
5355
5356    // Update machine-CFG edges
5357    BB->addSuccessor(sinkMBB);
5358
5359    //  sinkMBB:
5360    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
5361    //  ...
5362    BB = sinkMBB;
5363    BuildMI(*BB, BB->begin(), dl,
5364            TII->get(ARM::PHI), MI->getOperand(0).getReg())
5365      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
5366      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
5367
5368    MI->eraseFromParent();   // The pseudo instruction is gone now.
5369    return BB;
5370  }
5371
5372  case ARM::BCCi64:
5373  case ARM::BCCZi64: {
5374    // If there is an unconditional branch to the other successor, remove it.
5375    BB->erase(llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
5376
5377    // Compare both parts that make up the double comparison separately for
5378    // equality.
5379    bool RHSisZero = MI->getOpcode() == ARM::BCCZi64;
5380
5381    unsigned LHS1 = MI->getOperand(1).getReg();
5382    unsigned LHS2 = MI->getOperand(2).getReg();
5383    if (RHSisZero) {
5384      AddDefaultPred(BuildMI(BB, dl,
5385                             TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
5386                     .addReg(LHS1).addImm(0));
5387      BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
5388        .addReg(LHS2).addImm(0)
5389        .addImm(ARMCC::EQ).addReg(ARM::CPSR);
5390    } else {
5391      unsigned RHS1 = MI->getOperand(3).getReg();
5392      unsigned RHS2 = MI->getOperand(4).getReg();
5393      AddDefaultPred(BuildMI(BB, dl,
5394                             TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
5395                     .addReg(LHS1).addReg(RHS1));
5396      BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
5397        .addReg(LHS2).addReg(RHS2)
5398        .addImm(ARMCC::EQ).addReg(ARM::CPSR);
5399    }
5400
5401    MachineBasicBlock *destMBB = MI->getOperand(RHSisZero ? 3 : 5).getMBB();
5402    MachineBasicBlock *exitMBB = OtherSucc(BB, destMBB);
5403    if (MI->getOperand(0).getImm() == ARMCC::NE)
5404      std::swap(destMBB, exitMBB);
5405
5406    BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5407      .addMBB(destMBB).addImm(ARMCC::EQ).addReg(ARM::CPSR);
5408    BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2B : ARM::B))
5409      .addMBB(exitMBB);
5410
5411    MI->eraseFromParent();   // The pseudo instruction is gone now.
5412    return BB;
5413  }
5414  }
5415}
5416
5417//===----------------------------------------------------------------------===//
5418//                           ARM Optimization Hooks
5419//===----------------------------------------------------------------------===//
5420
5421static
5422SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
5423                            TargetLowering::DAGCombinerInfo &DCI) {
5424  SelectionDAG &DAG = DCI.DAG;
5425  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5426  EVT VT = N->getValueType(0);
5427  unsigned Opc = N->getOpcode();
5428  bool isSlctCC = Slct.getOpcode() == ISD::SELECT_CC;
5429  SDValue LHS = isSlctCC ? Slct.getOperand(2) : Slct.getOperand(1);
5430  SDValue RHS = isSlctCC ? Slct.getOperand(3) : Slct.getOperand(2);
5431  ISD::CondCode CC = ISD::SETCC_INVALID;
5432
5433  if (isSlctCC) {
5434    CC = cast<CondCodeSDNode>(Slct.getOperand(4))->get();
5435  } else {
5436    SDValue CCOp = Slct.getOperand(0);
5437    if (CCOp.getOpcode() == ISD::SETCC)
5438      CC = cast<CondCodeSDNode>(CCOp.getOperand(2))->get();
5439  }
5440
5441  bool DoXform = false;
5442  bool InvCC = false;
5443  assert ((Opc == ISD::ADD || (Opc == ISD::SUB && Slct == N->getOperand(1))) &&
5444          "Bad input!");
5445
5446  if (LHS.getOpcode() == ISD::Constant &&
5447      cast<ConstantSDNode>(LHS)->isNullValue()) {
5448    DoXform = true;
5449  } else if (CC != ISD::SETCC_INVALID &&
5450             RHS.getOpcode() == ISD::Constant &&
5451             cast<ConstantSDNode>(RHS)->isNullValue()) {
5452    std::swap(LHS, RHS);
5453    SDValue Op0 = Slct.getOperand(0);
5454    EVT OpVT = isSlctCC ? Op0.getValueType() :
5455                          Op0.getOperand(0).getValueType();
5456    bool isInt = OpVT.isInteger();
5457    CC = ISD::getSetCCInverse(CC, isInt);
5458
5459    if (!TLI.isCondCodeLegal(CC, OpVT))
5460      return SDValue();         // Inverse operator isn't legal.
5461
5462    DoXform = true;
5463    InvCC = true;
5464  }
5465
5466  if (DoXform) {
5467    SDValue Result = DAG.getNode(Opc, RHS.getDebugLoc(), VT, OtherOp, RHS);
5468    if (isSlctCC)
5469      return DAG.getSelectCC(N->getDebugLoc(), OtherOp, Result,
5470                             Slct.getOperand(0), Slct.getOperand(1), CC);
5471    SDValue CCOp = Slct.getOperand(0);
5472    if (InvCC)
5473      CCOp = DAG.getSetCC(Slct.getDebugLoc(), CCOp.getValueType(),
5474                          CCOp.getOperand(0), CCOp.getOperand(1), CC);
5475    return DAG.getNode(ISD::SELECT, N->getDebugLoc(), VT,
5476                       CCOp, OtherOp, Result);
5477  }
5478  return SDValue();
5479}
5480
5481/// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
5482/// operands N0 and N1.  This is a helper for PerformADDCombine that is
5483/// called with the default operands, and if that fails, with commuted
5484/// operands.
5485static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
5486                                         TargetLowering::DAGCombinerInfo &DCI) {
5487  // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
5488  if (N0.getOpcode() == ISD::SELECT && N0.getNode()->hasOneUse()) {
5489    SDValue Result = combineSelectAndUse(N, N0, N1, DCI);
5490    if (Result.getNode()) return Result;
5491  }
5492  return SDValue();
5493}
5494
5495/// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
5496///
5497static SDValue PerformADDCombine(SDNode *N,
5498                                 TargetLowering::DAGCombinerInfo &DCI) {
5499  SDValue N0 = N->getOperand(0);
5500  SDValue N1 = N->getOperand(1);
5501
5502  // First try with the default operand order.
5503  SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI);
5504  if (Result.getNode())
5505    return Result;
5506
5507  // If that didn't work, try again with the operands commuted.
5508  return PerformADDCombineWithOperands(N, N1, N0, DCI);
5509}
5510
5511/// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
5512///
5513static SDValue PerformSUBCombine(SDNode *N,
5514                                 TargetLowering::DAGCombinerInfo &DCI) {
5515  SDValue N0 = N->getOperand(0);
5516  SDValue N1 = N->getOperand(1);
5517
5518  // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
5519  if (N1.getOpcode() == ISD::SELECT && N1.getNode()->hasOneUse()) {
5520    SDValue Result = combineSelectAndUse(N, N1, N0, DCI);
5521    if (Result.getNode()) return Result;
5522  }
5523
5524  return SDValue();
5525}
5526
5527/// PerformVMULCombine
5528/// Distribute (A + B) * C to (A * C) + (B * C) to take advantage of the
5529/// special multiplier accumulator forwarding.
5530///   vmul d3, d0, d2
5531///   vmla d3, d1, d2
5532/// is faster than
5533///   vadd d3, d0, d1
5534///   vmul d3, d3, d2
5535static SDValue PerformVMULCombine(SDNode *N,
5536                                  TargetLowering::DAGCombinerInfo &DCI,
5537                                  const ARMSubtarget *Subtarget) {
5538  if (!Subtarget->hasVMLxForwarding())
5539    return SDValue();
5540
5541  SelectionDAG &DAG = DCI.DAG;
5542  SDValue N0 = N->getOperand(0);
5543  SDValue N1 = N->getOperand(1);
5544  unsigned Opcode = N0.getOpcode();
5545  if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
5546      Opcode != ISD::FADD && Opcode != ISD::FSUB) {
5547    Opcode = N0.getOpcode();
5548    if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
5549        Opcode != ISD::FADD && Opcode != ISD::FSUB)
5550      return SDValue();
5551    std::swap(N0, N1);
5552  }
5553
5554  EVT VT = N->getValueType(0);
5555  DebugLoc DL = N->getDebugLoc();
5556  SDValue N00 = N0->getOperand(0);
5557  SDValue N01 = N0->getOperand(1);
5558  return DAG.getNode(Opcode, DL, VT,
5559                     DAG.getNode(ISD::MUL, DL, VT, N00, N1),
5560                     DAG.getNode(ISD::MUL, DL, VT, N01, N1));
5561}
5562
5563static SDValue PerformMULCombine(SDNode *N,
5564                                 TargetLowering::DAGCombinerInfo &DCI,
5565                                 const ARMSubtarget *Subtarget) {
5566  SelectionDAG &DAG = DCI.DAG;
5567
5568  if (Subtarget->isThumb1Only())
5569    return SDValue();
5570
5571  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
5572    return SDValue();
5573
5574  EVT VT = N->getValueType(0);
5575  if (VT.is64BitVector() || VT.is128BitVector())
5576    return PerformVMULCombine(N, DCI, Subtarget);
5577  if (VT != MVT::i32)
5578    return SDValue();
5579
5580  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
5581  if (!C)
5582    return SDValue();
5583
5584  uint64_t MulAmt = C->getZExtValue();
5585  unsigned ShiftAmt = CountTrailingZeros_64(MulAmt);
5586  ShiftAmt = ShiftAmt & (32 - 1);
5587  SDValue V = N->getOperand(0);
5588  DebugLoc DL = N->getDebugLoc();
5589
5590  SDValue Res;
5591  MulAmt >>= ShiftAmt;
5592  if (isPowerOf2_32(MulAmt - 1)) {
5593    // (mul x, 2^N + 1) => (add (shl x, N), x)
5594    Res = DAG.getNode(ISD::ADD, DL, VT,
5595                      V, DAG.getNode(ISD::SHL, DL, VT,
5596                                     V, DAG.getConstant(Log2_32(MulAmt-1),
5597                                                        MVT::i32)));
5598  } else if (isPowerOf2_32(MulAmt + 1)) {
5599    // (mul x, 2^N - 1) => (sub (shl x, N), x)
5600    Res = DAG.getNode(ISD::SUB, DL, VT,
5601                      DAG.getNode(ISD::SHL, DL, VT,
5602                                  V, DAG.getConstant(Log2_32(MulAmt+1),
5603                                                     MVT::i32)),
5604                                                     V);
5605  } else
5606    return SDValue();
5607
5608  if (ShiftAmt != 0)
5609    Res = DAG.getNode(ISD::SHL, DL, VT, Res,
5610                      DAG.getConstant(ShiftAmt, MVT::i32));
5611
5612  // Do not add new nodes to DAG combiner worklist.
5613  DCI.CombineTo(N, Res, false);
5614  return SDValue();
5615}
5616
5617static SDValue PerformANDCombine(SDNode *N,
5618                                TargetLowering::DAGCombinerInfo &DCI) {
5619
5620  // Attempt to use immediate-form VBIC
5621  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
5622  DebugLoc dl = N->getDebugLoc();
5623  EVT VT = N->getValueType(0);
5624  SelectionDAG &DAG = DCI.DAG;
5625
5626  if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
5627    return SDValue();
5628
5629  APInt SplatBits, SplatUndef;
5630  unsigned SplatBitSize;
5631  bool HasAnyUndefs;
5632  if (BVN &&
5633      BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
5634    if (SplatBitSize <= 64) {
5635      EVT VbicVT;
5636      SDValue Val = isNEONModifiedImm((~SplatBits).getZExtValue(),
5637                                      SplatUndef.getZExtValue(), SplatBitSize,
5638                                      DAG, VbicVT, VT.is128BitVector(),
5639                                      OtherModImm);
5640      if (Val.getNode()) {
5641        SDValue Input =
5642          DAG.getNode(ISD::BITCAST, dl, VbicVT, N->getOperand(0));
5643        SDValue Vbic = DAG.getNode(ARMISD::VBICIMM, dl, VbicVT, Input, Val);
5644        return DAG.getNode(ISD::BITCAST, dl, VT, Vbic);
5645      }
5646    }
5647  }
5648
5649  return SDValue();
5650}
5651
5652/// PerformORCombine - Target-specific dag combine xforms for ISD::OR
5653static SDValue PerformORCombine(SDNode *N,
5654                                TargetLowering::DAGCombinerInfo &DCI,
5655                                const ARMSubtarget *Subtarget) {
5656  // Attempt to use immediate-form VORR
5657  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
5658  DebugLoc dl = N->getDebugLoc();
5659  EVT VT = N->getValueType(0);
5660  SelectionDAG &DAG = DCI.DAG;
5661
5662  if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
5663    return SDValue();
5664
5665  APInt SplatBits, SplatUndef;
5666  unsigned SplatBitSize;
5667  bool HasAnyUndefs;
5668  if (BVN && Subtarget->hasNEON() &&
5669      BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
5670    if (SplatBitSize <= 64) {
5671      EVT VorrVT;
5672      SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
5673                                      SplatUndef.getZExtValue(), SplatBitSize,
5674                                      DAG, VorrVT, VT.is128BitVector(),
5675                                      OtherModImm);
5676      if (Val.getNode()) {
5677        SDValue Input =
5678          DAG.getNode(ISD::BITCAST, dl, VorrVT, N->getOperand(0));
5679        SDValue Vorr = DAG.getNode(ARMISD::VORRIMM, dl, VorrVT, Input, Val);
5680        return DAG.getNode(ISD::BITCAST, dl, VT, Vorr);
5681      }
5682    }
5683  }
5684
5685  SDValue N0 = N->getOperand(0);
5686  if (N0.getOpcode() != ISD::AND)
5687    return SDValue();
5688  SDValue N1 = N->getOperand(1);
5689
5690  // (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant.
5691  if (Subtarget->hasNEON() && N1.getOpcode() == ISD::AND && VT.isVector() &&
5692      DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
5693    APInt SplatUndef;
5694    unsigned SplatBitSize;
5695    bool HasAnyUndefs;
5696
5697    BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(1));
5698    APInt SplatBits0;
5699    if (BVN0 && BVN0->isConstantSplat(SplatBits0, SplatUndef, SplatBitSize,
5700                                  HasAnyUndefs) && !HasAnyUndefs) {
5701      BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(1));
5702      APInt SplatBits1;
5703      if (BVN1 && BVN1->isConstantSplat(SplatBits1, SplatUndef, SplatBitSize,
5704                                    HasAnyUndefs) && !HasAnyUndefs &&
5705          SplatBits0 == ~SplatBits1) {
5706        // Canonicalize the vector type to make instruction selection simpler.
5707        EVT CanonicalVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
5708        SDValue Result = DAG.getNode(ARMISD::VBSL, dl, CanonicalVT,
5709                                     N0->getOperand(1), N0->getOperand(0),
5710                                     N1->getOperand(0));
5711        return DAG.getNode(ISD::BITCAST, dl, VT, Result);
5712      }
5713    }
5714  }
5715
5716  // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when
5717  // reasonable.
5718
5719  // BFI is only available on V6T2+
5720  if (Subtarget->isThumb1Only() || !Subtarget->hasV6T2Ops())
5721    return SDValue();
5722
5723  DebugLoc DL = N->getDebugLoc();
5724  // 1) or (and A, mask), val => ARMbfi A, val, mask
5725  //      iff (val & mask) == val
5726  //
5727  // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
5728  //  2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2)
5729  //          && mask == ~mask2
5730  //  2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2)
5731  //          && ~mask == mask2
5732  //  (i.e., copy a bitfield value into another bitfield of the same width)
5733
5734  if (VT != MVT::i32)
5735    return SDValue();
5736
5737  SDValue N00 = N0.getOperand(0);
5738
5739  // The value and the mask need to be constants so we can verify this is
5740  // actually a bitfield set. If the mask is 0xffff, we can do better
5741  // via a movt instruction, so don't use BFI in that case.
5742  SDValue MaskOp = N0.getOperand(1);
5743  ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(MaskOp);
5744  if (!MaskC)
5745    return SDValue();
5746  unsigned Mask = MaskC->getZExtValue();
5747  if (Mask == 0xffff)
5748    return SDValue();
5749  SDValue Res;
5750  // Case (1): or (and A, mask), val => ARMbfi A, val, mask
5751  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
5752  if (N1C) {
5753    unsigned Val = N1C->getZExtValue();
5754    if ((Val & ~Mask) != Val)
5755      return SDValue();
5756
5757    if (ARM::isBitFieldInvertedMask(Mask)) {
5758      Val >>= CountTrailingZeros_32(~Mask);
5759
5760      Res = DAG.getNode(ARMISD::BFI, DL, VT, N00,
5761                        DAG.getConstant(Val, MVT::i32),
5762                        DAG.getConstant(Mask, MVT::i32));
5763
5764      // Do not add new nodes to DAG combiner worklist.
5765      DCI.CombineTo(N, Res, false);
5766      return SDValue();
5767    }
5768  } else if (N1.getOpcode() == ISD::AND) {
5769    // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
5770    ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
5771    if (!N11C)
5772      return SDValue();
5773    unsigned Mask2 = N11C->getZExtValue();
5774
5775    // Mask and ~Mask2 (or reverse) must be equivalent for the BFI pattern
5776    // as is to match.
5777    if (ARM::isBitFieldInvertedMask(Mask) &&
5778        (Mask == ~Mask2)) {
5779      // The pack halfword instruction works better for masks that fit it,
5780      // so use that when it's available.
5781      if (Subtarget->hasT2ExtractPack() &&
5782          (Mask == 0xffff || Mask == 0xffff0000))
5783        return SDValue();
5784      // 2a
5785      unsigned amt = CountTrailingZeros_32(Mask2);
5786      Res = DAG.getNode(ISD::SRL, DL, VT, N1.getOperand(0),
5787                        DAG.getConstant(amt, MVT::i32));
5788      Res = DAG.getNode(ARMISD::BFI, DL, VT, N00, Res,
5789                        DAG.getConstant(Mask, MVT::i32));
5790      // Do not add new nodes to DAG combiner worklist.
5791      DCI.CombineTo(N, Res, false);
5792      return SDValue();
5793    } else if (ARM::isBitFieldInvertedMask(~Mask) &&
5794               (~Mask == Mask2)) {
5795      // The pack halfword instruction works better for masks that fit it,
5796      // so use that when it's available.
5797      if (Subtarget->hasT2ExtractPack() &&
5798          (Mask2 == 0xffff || Mask2 == 0xffff0000))
5799        return SDValue();
5800      // 2b
5801      unsigned lsb = CountTrailingZeros_32(Mask);
5802      Res = DAG.getNode(ISD::SRL, DL, VT, N00,
5803                        DAG.getConstant(lsb, MVT::i32));
5804      Res = DAG.getNode(ARMISD::BFI, DL, VT, N1.getOperand(0), Res,
5805                        DAG.getConstant(Mask2, MVT::i32));
5806      // Do not add new nodes to DAG combiner worklist.
5807      DCI.CombineTo(N, Res, false);
5808      return SDValue();
5809    }
5810  }
5811
5812  if (DAG.MaskedValueIsZero(N1, MaskC->getAPIntValue()) &&
5813      N00.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N00.getOperand(1)) &&
5814      ARM::isBitFieldInvertedMask(~Mask)) {
5815    // Case (3): or (and (shl A, #shamt), mask), B => ARMbfi B, A, ~mask
5816    // where lsb(mask) == #shamt and masked bits of B are known zero.
5817    SDValue ShAmt = N00.getOperand(1);
5818    unsigned ShAmtC = cast<ConstantSDNode>(ShAmt)->getZExtValue();
5819    unsigned LSB = CountTrailingZeros_32(Mask);
5820    if (ShAmtC != LSB)
5821      return SDValue();
5822
5823    Res = DAG.getNode(ARMISD::BFI, DL, VT, N1, N00.getOperand(0),
5824                      DAG.getConstant(~Mask, MVT::i32));
5825
5826    // Do not add new nodes to DAG combiner worklist.
5827    DCI.CombineTo(N, Res, false);
5828  }
5829
5830  return SDValue();
5831}
5832
5833/// PerformBFICombine - (bfi A, (and B, C1), C2) -> (bfi A, B, C2) iff
5834/// C1 & C2 == C1.
5835static SDValue PerformBFICombine(SDNode *N,
5836                                 TargetLowering::DAGCombinerInfo &DCI) {
5837  SDValue N1 = N->getOperand(1);
5838  if (N1.getOpcode() == ISD::AND) {
5839    ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
5840    if (!N11C)
5841      return SDValue();
5842    unsigned Mask = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
5843    unsigned Mask2 = N11C->getZExtValue();
5844    if ((Mask & Mask2) == Mask2)
5845      return DCI.DAG.getNode(ARMISD::BFI, N->getDebugLoc(), N->getValueType(0),
5846                             N->getOperand(0), N1.getOperand(0),
5847                             N->getOperand(2));
5848  }
5849  return SDValue();
5850}
5851
5852/// PerformVMOVRRDCombine - Target-specific dag combine xforms for
5853/// ARMISD::VMOVRRD.
5854static SDValue PerformVMOVRRDCombine(SDNode *N,
5855                                     TargetLowering::DAGCombinerInfo &DCI) {
5856  // vmovrrd(vmovdrr x, y) -> x,y
5857  SDValue InDouble = N->getOperand(0);
5858  if (InDouble.getOpcode() == ARMISD::VMOVDRR)
5859    return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
5860
5861  // vmovrrd(load f64) -> (load i32), (load i32)
5862  SDNode *InNode = InDouble.getNode();
5863  if (ISD::isNormalLoad(InNode) && InNode->hasOneUse() &&
5864      InNode->getValueType(0) == MVT::f64 &&
5865      InNode->getOperand(1).getOpcode() == ISD::FrameIndex &&
5866      !cast<LoadSDNode>(InNode)->isVolatile()) {
5867    // TODO: Should this be done for non-FrameIndex operands?
5868    LoadSDNode *LD = cast<LoadSDNode>(InNode);
5869
5870    SelectionDAG &DAG = DCI.DAG;
5871    DebugLoc DL = LD->getDebugLoc();
5872    SDValue BasePtr = LD->getBasePtr();
5873    SDValue NewLD1 = DAG.getLoad(MVT::i32, DL, LD->getChain(), BasePtr,
5874                                 LD->getPointerInfo(), LD->isVolatile(),
5875                                 LD->isNonTemporal(), LD->getAlignment());
5876
5877    SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
5878                                    DAG.getConstant(4, MVT::i32));
5879    SDValue NewLD2 = DAG.getLoad(MVT::i32, DL, NewLD1.getValue(1), OffsetPtr,
5880                                 LD->getPointerInfo(), LD->isVolatile(),
5881                                 LD->isNonTemporal(),
5882                                 std::min(4U, LD->getAlignment() / 2));
5883
5884    DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewLD2.getValue(1));
5885    SDValue Result = DCI.CombineTo(N, NewLD1, NewLD2);
5886    DCI.RemoveFromWorklist(LD);
5887    DAG.DeleteNode(LD);
5888    return Result;
5889  }
5890
5891  return SDValue();
5892}
5893
5894/// PerformVMOVDRRCombine - Target-specific dag combine xforms for
5895/// ARMISD::VMOVDRR.  This is also used for BUILD_VECTORs with 2 operands.
5896static SDValue PerformVMOVDRRCombine(SDNode *N, SelectionDAG &DAG) {
5897  // N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X)
5898  SDValue Op0 = N->getOperand(0);
5899  SDValue Op1 = N->getOperand(1);
5900  if (Op0.getOpcode() == ISD::BITCAST)
5901    Op0 = Op0.getOperand(0);
5902  if (Op1.getOpcode() == ISD::BITCAST)
5903    Op1 = Op1.getOperand(0);
5904  if (Op0.getOpcode() == ARMISD::VMOVRRD &&
5905      Op0.getNode() == Op1.getNode() &&
5906      Op0.getResNo() == 0 && Op1.getResNo() == 1)
5907    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(),
5908                       N->getValueType(0), Op0.getOperand(0));
5909  return SDValue();
5910}
5911
5912/// PerformSTORECombine - Target-specific dag combine xforms for
5913/// ISD::STORE.
5914static SDValue PerformSTORECombine(SDNode *N,
5915                                   TargetLowering::DAGCombinerInfo &DCI) {
5916  // Bitcast an i64 store extracted from a vector to f64.
5917  // Otherwise, the i64 value will be legalized to a pair of i32 values.
5918  StoreSDNode *St = cast<StoreSDNode>(N);
5919  SDValue StVal = St->getValue();
5920  if (!ISD::isNormalStore(St) || St->isVolatile())
5921    return SDValue();
5922
5923  if (StVal.getNode()->getOpcode() == ARMISD::VMOVDRR &&
5924      StVal.getNode()->hasOneUse() && !St->isVolatile()) {
5925    SelectionDAG  &DAG = DCI.DAG;
5926    DebugLoc DL = St->getDebugLoc();
5927    SDValue BasePtr = St->getBasePtr();
5928    SDValue NewST1 = DAG.getStore(St->getChain(), DL,
5929                                  StVal.getNode()->getOperand(0), BasePtr,
5930                                  St->getPointerInfo(), St->isVolatile(),
5931                                  St->isNonTemporal(), St->getAlignment());
5932
5933    SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
5934                                    DAG.getConstant(4, MVT::i32));
5935    return DAG.getStore(NewST1.getValue(0), DL, StVal.getNode()->getOperand(1),
5936                        OffsetPtr, St->getPointerInfo(), St->isVolatile(),
5937                        St->isNonTemporal(),
5938                        std::min(4U, St->getAlignment() / 2));
5939  }
5940
5941  if (StVal.getValueType() != MVT::i64 ||
5942      StVal.getNode()->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
5943    return SDValue();
5944
5945  SelectionDAG &DAG = DCI.DAG;
5946  DebugLoc dl = StVal.getDebugLoc();
5947  SDValue IntVec = StVal.getOperand(0);
5948  EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
5949                                 IntVec.getValueType().getVectorNumElements());
5950  SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, IntVec);
5951  SDValue ExtElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
5952                               Vec, StVal.getOperand(1));
5953  dl = N->getDebugLoc();
5954  SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ExtElt);
5955  // Make the DAGCombiner fold the bitcasts.
5956  DCI.AddToWorklist(Vec.getNode());
5957  DCI.AddToWorklist(ExtElt.getNode());
5958  DCI.AddToWorklist(V.getNode());
5959  return DAG.getStore(St->getChain(), dl, V, St->getBasePtr(),
5960                      St->getPointerInfo(), St->isVolatile(),
5961                      St->isNonTemporal(), St->getAlignment(),
5962                      St->getTBAAInfo());
5963}
5964
5965/// hasNormalLoadOperand - Check if any of the operands of a BUILD_VECTOR node
5966/// are normal, non-volatile loads.  If so, it is profitable to bitcast an
5967/// i64 vector to have f64 elements, since the value can then be loaded
5968/// directly into a VFP register.
5969static bool hasNormalLoadOperand(SDNode *N) {
5970  unsigned NumElts = N->getValueType(0).getVectorNumElements();
5971  for (unsigned i = 0; i < NumElts; ++i) {
5972    SDNode *Elt = N->getOperand(i).getNode();
5973    if (ISD::isNormalLoad(Elt) && !cast<LoadSDNode>(Elt)->isVolatile())
5974      return true;
5975  }
5976  return false;
5977}
5978
5979/// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for
5980/// ISD::BUILD_VECTOR.
5981static SDValue PerformBUILD_VECTORCombine(SDNode *N,
5982                                          TargetLowering::DAGCombinerInfo &DCI){
5983  // build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X):
5984  // VMOVRRD is introduced when legalizing i64 types.  It forces the i64 value
5985  // into a pair of GPRs, which is fine when the value is used as a scalar,
5986  // but if the i64 value is converted to a vector, we need to undo the VMOVRRD.
5987  SelectionDAG &DAG = DCI.DAG;
5988  if (N->getNumOperands() == 2) {
5989    SDValue RV = PerformVMOVDRRCombine(N, DAG);
5990    if (RV.getNode())
5991      return RV;
5992  }
5993
5994  // Load i64 elements as f64 values so that type legalization does not split
5995  // them up into i32 values.
5996  EVT VT = N->getValueType(0);
5997  if (VT.getVectorElementType() != MVT::i64 || !hasNormalLoadOperand(N))
5998    return SDValue();
5999  DebugLoc dl = N->getDebugLoc();
6000  SmallVector<SDValue, 8> Ops;
6001  unsigned NumElts = VT.getVectorNumElements();
6002  for (unsigned i = 0; i < NumElts; ++i) {
6003    SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(i));
6004    Ops.push_back(V);
6005    // Make the DAGCombiner fold the bitcast.
6006    DCI.AddToWorklist(V.getNode());
6007  }
6008  EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, NumElts);
6009  SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, FloatVT, Ops.data(), NumElts);
6010  return DAG.getNode(ISD::BITCAST, dl, VT, BV);
6011}
6012
6013/// PerformInsertEltCombine - Target-specific dag combine xforms for
6014/// ISD::INSERT_VECTOR_ELT.
6015static SDValue PerformInsertEltCombine(SDNode *N,
6016                                       TargetLowering::DAGCombinerInfo &DCI) {
6017  // Bitcast an i64 load inserted into a vector to f64.
6018  // Otherwise, the i64 value will be legalized to a pair of i32 values.
6019  EVT VT = N->getValueType(0);
6020  SDNode *Elt = N->getOperand(1).getNode();
6021  if (VT.getVectorElementType() != MVT::i64 ||
6022      !ISD::isNormalLoad(Elt) || cast<LoadSDNode>(Elt)->isVolatile())
6023    return SDValue();
6024
6025  SelectionDAG &DAG = DCI.DAG;
6026  DebugLoc dl = N->getDebugLoc();
6027  EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
6028                                 VT.getVectorNumElements());
6029  SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, N->getOperand(0));
6030  SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(1));
6031  // Make the DAGCombiner fold the bitcasts.
6032  DCI.AddToWorklist(Vec.getNode());
6033  DCI.AddToWorklist(V.getNode());
6034  SDValue InsElt = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, FloatVT,
6035                               Vec, V, N->getOperand(2));
6036  return DAG.getNode(ISD::BITCAST, dl, VT, InsElt);
6037}
6038
6039/// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for
6040/// ISD::VECTOR_SHUFFLE.
6041static SDValue PerformVECTOR_SHUFFLECombine(SDNode *N, SelectionDAG &DAG) {
6042  // The LLVM shufflevector instruction does not require the shuffle mask
6043  // length to match the operand vector length, but ISD::VECTOR_SHUFFLE does
6044  // have that requirement.  When translating to ISD::VECTOR_SHUFFLE, if the
6045  // operands do not match the mask length, they are extended by concatenating
6046  // them with undef vectors.  That is probably the right thing for other
6047  // targets, but for NEON it is better to concatenate two double-register
6048  // size vector operands into a single quad-register size vector.  Do that
6049  // transformation here:
6050  //   shuffle(concat(v1, undef), concat(v2, undef)) ->
6051  //   shuffle(concat(v1, v2), undef)
6052  SDValue Op0 = N->getOperand(0);
6053  SDValue Op1 = N->getOperand(1);
6054  if (Op0.getOpcode() != ISD::CONCAT_VECTORS ||
6055      Op1.getOpcode() != ISD::CONCAT_VECTORS ||
6056      Op0.getNumOperands() != 2 ||
6057      Op1.getNumOperands() != 2)
6058    return SDValue();
6059  SDValue Concat0Op1 = Op0.getOperand(1);
6060  SDValue Concat1Op1 = Op1.getOperand(1);
6061  if (Concat0Op1.getOpcode() != ISD::UNDEF ||
6062      Concat1Op1.getOpcode() != ISD::UNDEF)
6063    return SDValue();
6064  // Skip the transformation if any of the types are illegal.
6065  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6066  EVT VT = N->getValueType(0);
6067  if (!TLI.isTypeLegal(VT) ||
6068      !TLI.isTypeLegal(Concat0Op1.getValueType()) ||
6069      !TLI.isTypeLegal(Concat1Op1.getValueType()))
6070    return SDValue();
6071
6072  SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, N->getDebugLoc(), VT,
6073                                  Op0.getOperand(0), Op1.getOperand(0));
6074  // Translate the shuffle mask.
6075  SmallVector<int, 16> NewMask;
6076  unsigned NumElts = VT.getVectorNumElements();
6077  unsigned HalfElts = NumElts/2;
6078  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
6079  for (unsigned n = 0; n < NumElts; ++n) {
6080    int MaskElt = SVN->getMaskElt(n);
6081    int NewElt = -1;
6082    if (MaskElt < (int)HalfElts)
6083      NewElt = MaskElt;
6084    else if (MaskElt >= (int)NumElts && MaskElt < (int)(NumElts + HalfElts))
6085      NewElt = HalfElts + MaskElt - NumElts;
6086    NewMask.push_back(NewElt);
6087  }
6088  return DAG.getVectorShuffle(VT, N->getDebugLoc(), NewConcat,
6089                              DAG.getUNDEF(VT), NewMask.data());
6090}
6091
6092/// CombineBaseUpdate - Target-specific DAG combine function for VLDDUP and
6093/// NEON load/store intrinsics to merge base address updates.
6094static SDValue CombineBaseUpdate(SDNode *N,
6095                                 TargetLowering::DAGCombinerInfo &DCI) {
6096  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
6097    return SDValue();
6098
6099  SelectionDAG &DAG = DCI.DAG;
6100  bool isIntrinsic = (N->getOpcode() == ISD::INTRINSIC_VOID ||
6101                      N->getOpcode() == ISD::INTRINSIC_W_CHAIN);
6102  unsigned AddrOpIdx = (isIntrinsic ? 2 : 1);
6103  SDValue Addr = N->getOperand(AddrOpIdx);
6104
6105  // Search for a use of the address operand that is an increment.
6106  for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
6107         UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
6108    SDNode *User = *UI;
6109    if (User->getOpcode() != ISD::ADD ||
6110        UI.getUse().getResNo() != Addr.getResNo())
6111      continue;
6112
6113    // Check that the add is independent of the load/store.  Otherwise, folding
6114    // it would create a cycle.
6115    if (User->isPredecessorOf(N) || N->isPredecessorOf(User))
6116      continue;
6117
6118    // Find the new opcode for the updating load/store.
6119    bool isLoad = true;
6120    bool isLaneOp = false;
6121    unsigned NewOpc = 0;
6122    unsigned NumVecs = 0;
6123    if (isIntrinsic) {
6124      unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
6125      switch (IntNo) {
6126      default: assert(0 && "unexpected intrinsic for Neon base update");
6127      case Intrinsic::arm_neon_vld1:     NewOpc = ARMISD::VLD1_UPD;
6128        NumVecs = 1; break;
6129      case Intrinsic::arm_neon_vld2:     NewOpc = ARMISD::VLD2_UPD;
6130        NumVecs = 2; break;
6131      case Intrinsic::arm_neon_vld3:     NewOpc = ARMISD::VLD3_UPD;
6132        NumVecs = 3; break;
6133      case Intrinsic::arm_neon_vld4:     NewOpc = ARMISD::VLD4_UPD;
6134        NumVecs = 4; break;
6135      case Intrinsic::arm_neon_vld2lane: NewOpc = ARMISD::VLD2LN_UPD;
6136        NumVecs = 2; isLaneOp = true; break;
6137      case Intrinsic::arm_neon_vld3lane: NewOpc = ARMISD::VLD3LN_UPD;
6138        NumVecs = 3; isLaneOp = true; break;
6139      case Intrinsic::arm_neon_vld4lane: NewOpc = ARMISD::VLD4LN_UPD;
6140        NumVecs = 4; isLaneOp = true; break;
6141      case Intrinsic::arm_neon_vst1:     NewOpc = ARMISD::VST1_UPD;
6142        NumVecs = 1; isLoad = false; break;
6143      case Intrinsic::arm_neon_vst2:     NewOpc = ARMISD::VST2_UPD;
6144        NumVecs = 2; isLoad = false; break;
6145      case Intrinsic::arm_neon_vst3:     NewOpc = ARMISD::VST3_UPD;
6146        NumVecs = 3; isLoad = false; break;
6147      case Intrinsic::arm_neon_vst4:     NewOpc = ARMISD::VST4_UPD;
6148        NumVecs = 4; isLoad = false; break;
6149      case Intrinsic::arm_neon_vst2lane: NewOpc = ARMISD::VST2LN_UPD;
6150        NumVecs = 2; isLoad = false; isLaneOp = true; break;
6151      case Intrinsic::arm_neon_vst3lane: NewOpc = ARMISD::VST3LN_UPD;
6152        NumVecs = 3; isLoad = false; isLaneOp = true; break;
6153      case Intrinsic::arm_neon_vst4lane: NewOpc = ARMISD::VST4LN_UPD;
6154        NumVecs = 4; isLoad = false; isLaneOp = true; break;
6155      }
6156    } else {
6157      isLaneOp = true;
6158      switch (N->getOpcode()) {
6159      default: assert(0 && "unexpected opcode for Neon base update");
6160      case ARMISD::VLD2DUP: NewOpc = ARMISD::VLD2DUP_UPD; NumVecs = 2; break;
6161      case ARMISD::VLD3DUP: NewOpc = ARMISD::VLD3DUP_UPD; NumVecs = 3; break;
6162      case ARMISD::VLD4DUP: NewOpc = ARMISD::VLD4DUP_UPD; NumVecs = 4; break;
6163      }
6164    }
6165
6166    // Find the size of memory referenced by the load/store.
6167    EVT VecTy;
6168    if (isLoad)
6169      VecTy = N->getValueType(0);
6170    else
6171      VecTy = N->getOperand(AddrOpIdx+1).getValueType();
6172    unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
6173    if (isLaneOp)
6174      NumBytes /= VecTy.getVectorNumElements();
6175
6176    // If the increment is a constant, it must match the memory ref size.
6177    SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
6178    if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
6179      uint64_t IncVal = CInc->getZExtValue();
6180      if (IncVal != NumBytes)
6181        continue;
6182    } else if (NumBytes >= 3 * 16) {
6183      // VLD3/4 and VST3/4 for 128-bit vectors are implemented with two
6184      // separate instructions that make it harder to use a non-constant update.
6185      continue;
6186    }
6187
6188    // Create the new updating load/store node.
6189    EVT Tys[6];
6190    unsigned NumResultVecs = (isLoad ? NumVecs : 0);
6191    unsigned n;
6192    for (n = 0; n < NumResultVecs; ++n)
6193      Tys[n] = VecTy;
6194    Tys[n++] = MVT::i32;
6195    Tys[n] = MVT::Other;
6196    SDVTList SDTys = DAG.getVTList(Tys, NumResultVecs+2);
6197    SmallVector<SDValue, 8> Ops;
6198    Ops.push_back(N->getOperand(0)); // incoming chain
6199    Ops.push_back(N->getOperand(AddrOpIdx));
6200    Ops.push_back(Inc);
6201    for (unsigned i = AddrOpIdx + 1; i < N->getNumOperands(); ++i) {
6202      Ops.push_back(N->getOperand(i));
6203    }
6204    MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N);
6205    SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, N->getDebugLoc(), SDTys,
6206                                           Ops.data(), Ops.size(),
6207                                           MemInt->getMemoryVT(),
6208                                           MemInt->getMemOperand());
6209
6210    // Update the uses.
6211    std::vector<SDValue> NewResults;
6212    for (unsigned i = 0; i < NumResultVecs; ++i) {
6213      NewResults.push_back(SDValue(UpdN.getNode(), i));
6214    }
6215    NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs+1)); // chain
6216    DCI.CombineTo(N, NewResults);
6217    DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
6218
6219    break;
6220  }
6221  return SDValue();
6222}
6223
6224/// CombineVLDDUP - For a VDUPLANE node N, check if its source operand is a
6225/// vldN-lane (N > 1) intrinsic, and if all the other uses of that intrinsic
6226/// are also VDUPLANEs.  If so, combine them to a vldN-dup operation and
6227/// return true.
6228static bool CombineVLDDUP(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
6229  SelectionDAG &DAG = DCI.DAG;
6230  EVT VT = N->getValueType(0);
6231  // vldN-dup instructions only support 64-bit vectors for N > 1.
6232  if (!VT.is64BitVector())
6233    return false;
6234
6235  // Check if the VDUPLANE operand is a vldN-dup intrinsic.
6236  SDNode *VLD = N->getOperand(0).getNode();
6237  if (VLD->getOpcode() != ISD::INTRINSIC_W_CHAIN)
6238    return false;
6239  unsigned NumVecs = 0;
6240  unsigned NewOpc = 0;
6241  unsigned IntNo = cast<ConstantSDNode>(VLD->getOperand(1))->getZExtValue();
6242  if (IntNo == Intrinsic::arm_neon_vld2lane) {
6243    NumVecs = 2;
6244    NewOpc = ARMISD::VLD2DUP;
6245  } else if (IntNo == Intrinsic::arm_neon_vld3lane) {
6246    NumVecs = 3;
6247    NewOpc = ARMISD::VLD3DUP;
6248  } else if (IntNo == Intrinsic::arm_neon_vld4lane) {
6249    NumVecs = 4;
6250    NewOpc = ARMISD::VLD4DUP;
6251  } else {
6252    return false;
6253  }
6254
6255  // First check that all the vldN-lane uses are VDUPLANEs and that the lane
6256  // numbers match the load.
6257  unsigned VLDLaneNo =
6258    cast<ConstantSDNode>(VLD->getOperand(NumVecs+3))->getZExtValue();
6259  for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
6260       UI != UE; ++UI) {
6261    // Ignore uses of the chain result.
6262    if (UI.getUse().getResNo() == NumVecs)
6263      continue;
6264    SDNode *User = *UI;
6265    if (User->getOpcode() != ARMISD::VDUPLANE ||
6266        VLDLaneNo != cast<ConstantSDNode>(User->getOperand(1))->getZExtValue())
6267      return false;
6268  }
6269
6270  // Create the vldN-dup node.
6271  EVT Tys[5];
6272  unsigned n;
6273  for (n = 0; n < NumVecs; ++n)
6274    Tys[n] = VT;
6275  Tys[n] = MVT::Other;
6276  SDVTList SDTys = DAG.getVTList(Tys, NumVecs+1);
6277  SDValue Ops[] = { VLD->getOperand(0), VLD->getOperand(2) };
6278  MemIntrinsicSDNode *VLDMemInt = cast<MemIntrinsicSDNode>(VLD);
6279  SDValue VLDDup = DAG.getMemIntrinsicNode(NewOpc, VLD->getDebugLoc(), SDTys,
6280                                           Ops, 2, VLDMemInt->getMemoryVT(),
6281                                           VLDMemInt->getMemOperand());
6282
6283  // Update the uses.
6284  for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
6285       UI != UE; ++UI) {
6286    unsigned ResNo = UI.getUse().getResNo();
6287    // Ignore uses of the chain result.
6288    if (ResNo == NumVecs)
6289      continue;
6290    SDNode *User = *UI;
6291    DCI.CombineTo(User, SDValue(VLDDup.getNode(), ResNo));
6292  }
6293
6294  // Now the vldN-lane intrinsic is dead except for its chain result.
6295  // Update uses of the chain.
6296  std::vector<SDValue> VLDDupResults;
6297  for (unsigned n = 0; n < NumVecs; ++n)
6298    VLDDupResults.push_back(SDValue(VLDDup.getNode(), n));
6299  VLDDupResults.push_back(SDValue(VLDDup.getNode(), NumVecs));
6300  DCI.CombineTo(VLD, VLDDupResults);
6301
6302  return true;
6303}
6304
6305/// PerformVDUPLANECombine - Target-specific dag combine xforms for
6306/// ARMISD::VDUPLANE.
6307static SDValue PerformVDUPLANECombine(SDNode *N,
6308                                      TargetLowering::DAGCombinerInfo &DCI) {
6309  SDValue Op = N->getOperand(0);
6310
6311  // If the source is a vldN-lane (N > 1) intrinsic, and all the other uses
6312  // of that intrinsic are also VDUPLANEs, combine them to a vldN-dup operation.
6313  if (CombineVLDDUP(N, DCI))
6314    return SDValue(N, 0);
6315
6316  // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is
6317  // redundant.  Ignore bit_converts for now; element sizes are checked below.
6318  while (Op.getOpcode() == ISD::BITCAST)
6319    Op = Op.getOperand(0);
6320  if (Op.getOpcode() != ARMISD::VMOVIMM && Op.getOpcode() != ARMISD::VMVNIMM)
6321    return SDValue();
6322
6323  // Make sure the VMOV element size is not bigger than the VDUPLANE elements.
6324  unsigned EltSize = Op.getValueType().getVectorElementType().getSizeInBits();
6325  // The canonical VMOV for a zero vector uses a 32-bit element size.
6326  unsigned Imm = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6327  unsigned EltBits;
6328  if (ARM_AM::decodeNEONModImm(Imm, EltBits) == 0)
6329    EltSize = 8;
6330  EVT VT = N->getValueType(0);
6331  if (EltSize > VT.getVectorElementType().getSizeInBits())
6332    return SDValue();
6333
6334  return DCI.DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
6335}
6336
6337/// getVShiftImm - Check if this is a valid build_vector for the immediate
6338/// operand of a vector shift operation, where all the elements of the
6339/// build_vector must have the same constant integer value.
6340static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
6341  // Ignore bit_converts.
6342  while (Op.getOpcode() == ISD::BITCAST)
6343    Op = Op.getOperand(0);
6344  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
6345  APInt SplatBits, SplatUndef;
6346  unsigned SplatBitSize;
6347  bool HasAnyUndefs;
6348  if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
6349                                      HasAnyUndefs, ElementBits) ||
6350      SplatBitSize > ElementBits)
6351    return false;
6352  Cnt = SplatBits.getSExtValue();
6353  return true;
6354}
6355
6356/// isVShiftLImm - Check if this is a valid build_vector for the immediate
6357/// operand of a vector shift left operation.  That value must be in the range:
6358///   0 <= Value < ElementBits for a left shift; or
6359///   0 <= Value <= ElementBits for a long left shift.
6360static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
6361  assert(VT.isVector() && "vector shift count is not a vector type");
6362  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
6363  if (! getVShiftImm(Op, ElementBits, Cnt))
6364    return false;
6365  return (Cnt >= 0 && (isLong ? Cnt-1 : Cnt) < ElementBits);
6366}
6367
6368/// isVShiftRImm - Check if this is a valid build_vector for the immediate
6369/// operand of a vector shift right operation.  For a shift opcode, the value
6370/// is positive, but for an intrinsic the value count must be negative. The
6371/// absolute value must be in the range:
6372///   1 <= |Value| <= ElementBits for a right shift; or
6373///   1 <= |Value| <= ElementBits/2 for a narrow right shift.
6374static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
6375                         int64_t &Cnt) {
6376  assert(VT.isVector() && "vector shift count is not a vector type");
6377  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
6378  if (! getVShiftImm(Op, ElementBits, Cnt))
6379    return false;
6380  if (isIntrinsic)
6381    Cnt = -Cnt;
6382  return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits/2 : ElementBits));
6383}
6384
6385/// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
6386static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
6387  unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
6388  switch (IntNo) {
6389  default:
6390    // Don't do anything for most intrinsics.
6391    break;
6392
6393  // Vector shifts: check for immediate versions and lower them.
6394  // Note: This is done during DAG combining instead of DAG legalizing because
6395  // the build_vectors for 64-bit vector element shift counts are generally
6396  // not legal, and it is hard to see their values after they get legalized to
6397  // loads from a constant pool.
6398  case Intrinsic::arm_neon_vshifts:
6399  case Intrinsic::arm_neon_vshiftu:
6400  case Intrinsic::arm_neon_vshiftls:
6401  case Intrinsic::arm_neon_vshiftlu:
6402  case Intrinsic::arm_neon_vshiftn:
6403  case Intrinsic::arm_neon_vrshifts:
6404  case Intrinsic::arm_neon_vrshiftu:
6405  case Intrinsic::arm_neon_vrshiftn:
6406  case Intrinsic::arm_neon_vqshifts:
6407  case Intrinsic::arm_neon_vqshiftu:
6408  case Intrinsic::arm_neon_vqshiftsu:
6409  case Intrinsic::arm_neon_vqshiftns:
6410  case Intrinsic::arm_neon_vqshiftnu:
6411  case Intrinsic::arm_neon_vqshiftnsu:
6412  case Intrinsic::arm_neon_vqrshiftns:
6413  case Intrinsic::arm_neon_vqrshiftnu:
6414  case Intrinsic::arm_neon_vqrshiftnsu: {
6415    EVT VT = N->getOperand(1).getValueType();
6416    int64_t Cnt;
6417    unsigned VShiftOpc = 0;
6418
6419    switch (IntNo) {
6420    case Intrinsic::arm_neon_vshifts:
6421    case Intrinsic::arm_neon_vshiftu:
6422      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) {
6423        VShiftOpc = ARMISD::VSHL;
6424        break;
6425      }
6426      if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) {
6427        VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ?
6428                     ARMISD::VSHRs : ARMISD::VSHRu);
6429        break;
6430      }
6431      return SDValue();
6432
6433    case Intrinsic::arm_neon_vshiftls:
6434    case Intrinsic::arm_neon_vshiftlu:
6435      if (isVShiftLImm(N->getOperand(2), VT, true, Cnt))
6436        break;
6437      llvm_unreachable("invalid shift count for vshll intrinsic");
6438
6439    case Intrinsic::arm_neon_vrshifts:
6440    case Intrinsic::arm_neon_vrshiftu:
6441      if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt))
6442        break;
6443      return SDValue();
6444
6445    case Intrinsic::arm_neon_vqshifts:
6446    case Intrinsic::arm_neon_vqshiftu:
6447      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
6448        break;
6449      return SDValue();
6450
6451    case Intrinsic::arm_neon_vqshiftsu:
6452      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
6453        break;
6454      llvm_unreachable("invalid shift count for vqshlu intrinsic");
6455
6456    case Intrinsic::arm_neon_vshiftn:
6457    case Intrinsic::arm_neon_vrshiftn:
6458    case Intrinsic::arm_neon_vqshiftns:
6459    case Intrinsic::arm_neon_vqshiftnu:
6460    case Intrinsic::arm_neon_vqshiftnsu:
6461    case Intrinsic::arm_neon_vqrshiftns:
6462    case Intrinsic::arm_neon_vqrshiftnu:
6463    case Intrinsic::arm_neon_vqrshiftnsu:
6464      // Narrowing shifts require an immediate right shift.
6465      if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt))
6466        break;
6467      llvm_unreachable("invalid shift count for narrowing vector shift "
6468                       "intrinsic");
6469
6470    default:
6471      llvm_unreachable("unhandled vector shift");
6472    }
6473
6474    switch (IntNo) {
6475    case Intrinsic::arm_neon_vshifts:
6476    case Intrinsic::arm_neon_vshiftu:
6477      // Opcode already set above.
6478      break;
6479    case Intrinsic::arm_neon_vshiftls:
6480    case Intrinsic::arm_neon_vshiftlu:
6481      if (Cnt == VT.getVectorElementType().getSizeInBits())
6482        VShiftOpc = ARMISD::VSHLLi;
6483      else
6484        VShiftOpc = (IntNo == Intrinsic::arm_neon_vshiftls ?
6485                     ARMISD::VSHLLs : ARMISD::VSHLLu);
6486      break;
6487    case Intrinsic::arm_neon_vshiftn:
6488      VShiftOpc = ARMISD::VSHRN; break;
6489    case Intrinsic::arm_neon_vrshifts:
6490      VShiftOpc = ARMISD::VRSHRs; break;
6491    case Intrinsic::arm_neon_vrshiftu:
6492      VShiftOpc = ARMISD::VRSHRu; break;
6493    case Intrinsic::arm_neon_vrshiftn:
6494      VShiftOpc = ARMISD::VRSHRN; break;
6495    case Intrinsic::arm_neon_vqshifts:
6496      VShiftOpc = ARMISD::VQSHLs; break;
6497    case Intrinsic::arm_neon_vqshiftu:
6498      VShiftOpc = ARMISD::VQSHLu; break;
6499    case Intrinsic::arm_neon_vqshiftsu:
6500      VShiftOpc = ARMISD::VQSHLsu; break;
6501    case Intrinsic::arm_neon_vqshiftns:
6502      VShiftOpc = ARMISD::VQSHRNs; break;
6503    case Intrinsic::arm_neon_vqshiftnu:
6504      VShiftOpc = ARMISD::VQSHRNu; break;
6505    case Intrinsic::arm_neon_vqshiftnsu:
6506      VShiftOpc = ARMISD::VQSHRNsu; break;
6507    case Intrinsic::arm_neon_vqrshiftns:
6508      VShiftOpc = ARMISD::VQRSHRNs; break;
6509    case Intrinsic::arm_neon_vqrshiftnu:
6510      VShiftOpc = ARMISD::VQRSHRNu; break;
6511    case Intrinsic::arm_neon_vqrshiftnsu:
6512      VShiftOpc = ARMISD::VQRSHRNsu; break;
6513    }
6514
6515    return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
6516                       N->getOperand(1), DAG.getConstant(Cnt, MVT::i32));
6517  }
6518
6519  case Intrinsic::arm_neon_vshiftins: {
6520    EVT VT = N->getOperand(1).getValueType();
6521    int64_t Cnt;
6522    unsigned VShiftOpc = 0;
6523
6524    if (isVShiftLImm(N->getOperand(3), VT, false, Cnt))
6525      VShiftOpc = ARMISD::VSLI;
6526    else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt))
6527      VShiftOpc = ARMISD::VSRI;
6528    else {
6529      llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
6530    }
6531
6532    return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
6533                       N->getOperand(1), N->getOperand(2),
6534                       DAG.getConstant(Cnt, MVT::i32));
6535  }
6536
6537  case Intrinsic::arm_neon_vqrshifts:
6538  case Intrinsic::arm_neon_vqrshiftu:
6539    // No immediate versions of these to check for.
6540    break;
6541  }
6542
6543  return SDValue();
6544}
6545
6546/// PerformShiftCombine - Checks for immediate versions of vector shifts and
6547/// lowers them.  As with the vector shift intrinsics, this is done during DAG
6548/// combining instead of DAG legalizing because the build_vectors for 64-bit
6549/// vector element shift counts are generally not legal, and it is hard to see
6550/// their values after they get legalized to loads from a constant pool.
6551static SDValue PerformShiftCombine(SDNode *N, SelectionDAG &DAG,
6552                                   const ARMSubtarget *ST) {
6553  EVT VT = N->getValueType(0);
6554
6555  // Nothing to be done for scalar shifts.
6556  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6557  if (!VT.isVector() || !TLI.isTypeLegal(VT))
6558    return SDValue();
6559
6560  assert(ST->hasNEON() && "unexpected vector shift");
6561  int64_t Cnt;
6562
6563  switch (N->getOpcode()) {
6564  default: llvm_unreachable("unexpected shift opcode");
6565
6566  case ISD::SHL:
6567    if (isVShiftLImm(N->getOperand(1), VT, false, Cnt))
6568      return DAG.getNode(ARMISD::VSHL, N->getDebugLoc(), VT, N->getOperand(0),
6569                         DAG.getConstant(Cnt, MVT::i32));
6570    break;
6571
6572  case ISD::SRA:
6573  case ISD::SRL:
6574    if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
6575      unsigned VShiftOpc = (N->getOpcode() == ISD::SRA ?
6576                            ARMISD::VSHRs : ARMISD::VSHRu);
6577      return DAG.getNode(VShiftOpc, N->getDebugLoc(), VT, N->getOperand(0),
6578                         DAG.getConstant(Cnt, MVT::i32));
6579    }
6580  }
6581  return SDValue();
6582}
6583
6584/// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
6585/// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
6586static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG,
6587                                    const ARMSubtarget *ST) {
6588  SDValue N0 = N->getOperand(0);
6589
6590  // Check for sign- and zero-extensions of vector extract operations of 8-
6591  // and 16-bit vector elements.  NEON supports these directly.  They are
6592  // handled during DAG combining because type legalization will promote them
6593  // to 32-bit types and it is messy to recognize the operations after that.
6594  if (ST->hasNEON() && N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
6595    SDValue Vec = N0.getOperand(0);
6596    SDValue Lane = N0.getOperand(1);
6597    EVT VT = N->getValueType(0);
6598    EVT EltVT = N0.getValueType();
6599    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6600
6601    if (VT == MVT::i32 &&
6602        (EltVT == MVT::i8 || EltVT == MVT::i16) &&
6603        TLI.isTypeLegal(Vec.getValueType()) &&
6604        isa<ConstantSDNode>(Lane)) {
6605
6606      unsigned Opc = 0;
6607      switch (N->getOpcode()) {
6608      default: llvm_unreachable("unexpected opcode");
6609      case ISD::SIGN_EXTEND:
6610        Opc = ARMISD::VGETLANEs;
6611        break;
6612      case ISD::ZERO_EXTEND:
6613      case ISD::ANY_EXTEND:
6614        Opc = ARMISD::VGETLANEu;
6615        break;
6616      }
6617      return DAG.getNode(Opc, N->getDebugLoc(), VT, Vec, Lane);
6618    }
6619  }
6620
6621  return SDValue();
6622}
6623
6624/// PerformSELECT_CCCombine - Target-specific DAG combining for ISD::SELECT_CC
6625/// to match f32 max/min patterns to use NEON vmax/vmin instructions.
6626static SDValue PerformSELECT_CCCombine(SDNode *N, SelectionDAG &DAG,
6627                                       const ARMSubtarget *ST) {
6628  // If the target supports NEON, try to use vmax/vmin instructions for f32
6629  // selects like "x < y ? x : y".  Unless the NoNaNsFPMath option is set,
6630  // be careful about NaNs:  NEON's vmax/vmin return NaN if either operand is
6631  // a NaN; only do the transformation when it matches that behavior.
6632
6633  // For now only do this when using NEON for FP operations; if using VFP, it
6634  // is not obvious that the benefit outweighs the cost of switching to the
6635  // NEON pipeline.
6636  if (!ST->hasNEON() || !ST->useNEONForSinglePrecisionFP() ||
6637      N->getValueType(0) != MVT::f32)
6638    return SDValue();
6639
6640  SDValue CondLHS = N->getOperand(0);
6641  SDValue CondRHS = N->getOperand(1);
6642  SDValue LHS = N->getOperand(2);
6643  SDValue RHS = N->getOperand(3);
6644  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
6645
6646  unsigned Opcode = 0;
6647  bool IsReversed;
6648  if (DAG.isEqualTo(LHS, CondLHS) && DAG.isEqualTo(RHS, CondRHS)) {
6649    IsReversed = false; // x CC y ? x : y
6650  } else if (DAG.isEqualTo(LHS, CondRHS) && DAG.isEqualTo(RHS, CondLHS)) {
6651    IsReversed = true ; // x CC y ? y : x
6652  } else {
6653    return SDValue();
6654  }
6655
6656  bool IsUnordered;
6657  switch (CC) {
6658  default: break;
6659  case ISD::SETOLT:
6660  case ISD::SETOLE:
6661  case ISD::SETLT:
6662  case ISD::SETLE:
6663  case ISD::SETULT:
6664  case ISD::SETULE:
6665    // If LHS is NaN, an ordered comparison will be false and the result will
6666    // be the RHS, but vmin(NaN, RHS) = NaN.  Avoid this by checking that LHS
6667    // != NaN.  Likewise, for unordered comparisons, check for RHS != NaN.
6668    IsUnordered = (CC == ISD::SETULT || CC == ISD::SETULE);
6669    if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
6670      break;
6671    // For less-than-or-equal comparisons, "+0 <= -0" will be true but vmin
6672    // will return -0, so vmin can only be used for unsafe math or if one of
6673    // the operands is known to be nonzero.
6674    if ((CC == ISD::SETLE || CC == ISD::SETOLE || CC == ISD::SETULE) &&
6675        !UnsafeFPMath &&
6676        !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
6677      break;
6678    Opcode = IsReversed ? ARMISD::FMAX : ARMISD::FMIN;
6679    break;
6680
6681  case ISD::SETOGT:
6682  case ISD::SETOGE:
6683  case ISD::SETGT:
6684  case ISD::SETGE:
6685  case ISD::SETUGT:
6686  case ISD::SETUGE:
6687    // If LHS is NaN, an ordered comparison will be false and the result will
6688    // be the RHS, but vmax(NaN, RHS) = NaN.  Avoid this by checking that LHS
6689    // != NaN.  Likewise, for unordered comparisons, check for RHS != NaN.
6690    IsUnordered = (CC == ISD::SETUGT || CC == ISD::SETUGE);
6691    if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
6692      break;
6693    // For greater-than-or-equal comparisons, "-0 >= +0" will be true but vmax
6694    // will return +0, so vmax can only be used for unsafe math or if one of
6695    // the operands is known to be nonzero.
6696    if ((CC == ISD::SETGE || CC == ISD::SETOGE || CC == ISD::SETUGE) &&
6697        !UnsafeFPMath &&
6698        !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
6699      break;
6700    Opcode = IsReversed ? ARMISD::FMIN : ARMISD::FMAX;
6701    break;
6702  }
6703
6704  if (!Opcode)
6705    return SDValue();
6706  return DAG.getNode(Opcode, N->getDebugLoc(), N->getValueType(0), LHS, RHS);
6707}
6708
6709SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
6710                                             DAGCombinerInfo &DCI) const {
6711  switch (N->getOpcode()) {
6712  default: break;
6713  case ISD::ADD:        return PerformADDCombine(N, DCI);
6714  case ISD::SUB:        return PerformSUBCombine(N, DCI);
6715  case ISD::MUL:        return PerformMULCombine(N, DCI, Subtarget);
6716  case ISD::OR:         return PerformORCombine(N, DCI, Subtarget);
6717  case ISD::AND:        return PerformANDCombine(N, DCI);
6718  case ARMISD::BFI:     return PerformBFICombine(N, DCI);
6719  case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI);
6720  case ARMISD::VMOVDRR: return PerformVMOVDRRCombine(N, DCI.DAG);
6721  case ISD::STORE:      return PerformSTORECombine(N, DCI);
6722  case ISD::BUILD_VECTOR: return PerformBUILD_VECTORCombine(N, DCI);
6723  case ISD::INSERT_VECTOR_ELT: return PerformInsertEltCombine(N, DCI);
6724  case ISD::VECTOR_SHUFFLE: return PerformVECTOR_SHUFFLECombine(N, DCI.DAG);
6725  case ARMISD::VDUPLANE: return PerformVDUPLANECombine(N, DCI);
6726  case ISD::INTRINSIC_WO_CHAIN: return PerformIntrinsicCombine(N, DCI.DAG);
6727  case ISD::SHL:
6728  case ISD::SRA:
6729  case ISD::SRL:        return PerformShiftCombine(N, DCI.DAG, Subtarget);
6730  case ISD::SIGN_EXTEND:
6731  case ISD::ZERO_EXTEND:
6732  case ISD::ANY_EXTEND: return PerformExtendCombine(N, DCI.DAG, Subtarget);
6733  case ISD::SELECT_CC:  return PerformSELECT_CCCombine(N, DCI.DAG, Subtarget);
6734  case ARMISD::VLD2DUP:
6735  case ARMISD::VLD3DUP:
6736  case ARMISD::VLD4DUP:
6737    return CombineBaseUpdate(N, DCI);
6738  case ISD::INTRINSIC_VOID:
6739  case ISD::INTRINSIC_W_CHAIN:
6740    switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
6741    case Intrinsic::arm_neon_vld1:
6742    case Intrinsic::arm_neon_vld2:
6743    case Intrinsic::arm_neon_vld3:
6744    case Intrinsic::arm_neon_vld4:
6745    case Intrinsic::arm_neon_vld2lane:
6746    case Intrinsic::arm_neon_vld3lane:
6747    case Intrinsic::arm_neon_vld4lane:
6748    case Intrinsic::arm_neon_vst1:
6749    case Intrinsic::arm_neon_vst2:
6750    case Intrinsic::arm_neon_vst3:
6751    case Intrinsic::arm_neon_vst4:
6752    case Intrinsic::arm_neon_vst2lane:
6753    case Intrinsic::arm_neon_vst3lane:
6754    case Intrinsic::arm_neon_vst4lane:
6755      return CombineBaseUpdate(N, DCI);
6756    default: break;
6757    }
6758    break;
6759  }
6760  return SDValue();
6761}
6762
6763bool ARMTargetLowering::isDesirableToTransformToIntegerOp(unsigned Opc,
6764                                                          EVT VT) const {
6765  return (VT == MVT::f32) && (Opc == ISD::LOAD || Opc == ISD::STORE);
6766}
6767
6768bool ARMTargetLowering::allowsUnalignedMemoryAccesses(EVT VT) const {
6769  if (!Subtarget->allowsUnalignedMem())
6770    return false;
6771
6772  switch (VT.getSimpleVT().SimpleTy) {
6773  default:
6774    return false;
6775  case MVT::i8:
6776  case MVT::i16:
6777  case MVT::i32:
6778    return true;
6779  // FIXME: VLD1 etc with standard alignment is legal.
6780  }
6781}
6782
6783static bool isLegalT1AddressImmediate(int64_t V, EVT VT) {
6784  if (V < 0)
6785    return false;
6786
6787  unsigned Scale = 1;
6788  switch (VT.getSimpleVT().SimpleTy) {
6789  default: return false;
6790  case MVT::i1:
6791  case MVT::i8:
6792    // Scale == 1;
6793    break;
6794  case MVT::i16:
6795    // Scale == 2;
6796    Scale = 2;
6797    break;
6798  case MVT::i32:
6799    // Scale == 4;
6800    Scale = 4;
6801    break;
6802  }
6803
6804  if ((V & (Scale - 1)) != 0)
6805    return false;
6806  V /= Scale;
6807  return V == (V & ((1LL << 5) - 1));
6808}
6809
6810static bool isLegalT2AddressImmediate(int64_t V, EVT VT,
6811                                      const ARMSubtarget *Subtarget) {
6812  bool isNeg = false;
6813  if (V < 0) {
6814    isNeg = true;
6815    V = - V;
6816  }
6817
6818  switch (VT.getSimpleVT().SimpleTy) {
6819  default: return false;
6820  case MVT::i1:
6821  case MVT::i8:
6822  case MVT::i16:
6823  case MVT::i32:
6824    // + imm12 or - imm8
6825    if (isNeg)
6826      return V == (V & ((1LL << 8) - 1));
6827    return V == (V & ((1LL << 12) - 1));
6828  case MVT::f32:
6829  case MVT::f64:
6830    // Same as ARM mode. FIXME: NEON?
6831    if (!Subtarget->hasVFP2())
6832      return false;
6833    if ((V & 3) != 0)
6834      return false;
6835    V >>= 2;
6836    return V == (V & ((1LL << 8) - 1));
6837  }
6838}
6839
6840/// isLegalAddressImmediate - Return true if the integer value can be used
6841/// as the offset of the target addressing mode for load / store of the
6842/// given type.
6843static bool isLegalAddressImmediate(int64_t V, EVT VT,
6844                                    const ARMSubtarget *Subtarget) {
6845  if (V == 0)
6846    return true;
6847
6848  if (!VT.isSimple())
6849    return false;
6850
6851  if (Subtarget->isThumb1Only())
6852    return isLegalT1AddressImmediate(V, VT);
6853  else if (Subtarget->isThumb2())
6854    return isLegalT2AddressImmediate(V, VT, Subtarget);
6855
6856  // ARM mode.
6857  if (V < 0)
6858    V = - V;
6859  switch (VT.getSimpleVT().SimpleTy) {
6860  default: return false;
6861  case MVT::i1:
6862  case MVT::i8:
6863  case MVT::i32:
6864    // +- imm12
6865    return V == (V & ((1LL << 12) - 1));
6866  case MVT::i16:
6867    // +- imm8
6868    return V == (V & ((1LL << 8) - 1));
6869  case MVT::f32:
6870  case MVT::f64:
6871    if (!Subtarget->hasVFP2()) // FIXME: NEON?
6872      return false;
6873    if ((V & 3) != 0)
6874      return false;
6875    V >>= 2;
6876    return V == (V & ((1LL << 8) - 1));
6877  }
6878}
6879
6880bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM,
6881                                                      EVT VT) const {
6882  int Scale = AM.Scale;
6883  if (Scale < 0)
6884    return false;
6885
6886  switch (VT.getSimpleVT().SimpleTy) {
6887  default: return false;
6888  case MVT::i1:
6889  case MVT::i8:
6890  case MVT::i16:
6891  case MVT::i32:
6892    if (Scale == 1)
6893      return true;
6894    // r + r << imm
6895    Scale = Scale & ~1;
6896    return Scale == 2 || Scale == 4 || Scale == 8;
6897  case MVT::i64:
6898    // r + r
6899    if (((unsigned)AM.HasBaseReg + Scale) <= 2)
6900      return true;
6901    return false;
6902  case MVT::isVoid:
6903    // Note, we allow "void" uses (basically, uses that aren't loads or
6904    // stores), because arm allows folding a scale into many arithmetic
6905    // operations.  This should be made more precise and revisited later.
6906
6907    // Allow r << imm, but the imm has to be a multiple of two.
6908    if (Scale & 1) return false;
6909    return isPowerOf2_32(Scale);
6910  }
6911}
6912
6913/// isLegalAddressingMode - Return true if the addressing mode represented
6914/// by AM is legal for this target, for a load/store of the specified type.
6915bool ARMTargetLowering::isLegalAddressingMode(const AddrMode &AM,
6916                                              const Type *Ty) const {
6917  EVT VT = getValueType(Ty, true);
6918  if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget))
6919    return false;
6920
6921  // Can never fold addr of global into load/store.
6922  if (AM.BaseGV)
6923    return false;
6924
6925  switch (AM.Scale) {
6926  case 0:  // no scale reg, must be "r+i" or "r", or "i".
6927    break;
6928  case 1:
6929    if (Subtarget->isThumb1Only())
6930      return false;
6931    // FALL THROUGH.
6932  default:
6933    // ARM doesn't support any R+R*scale+imm addr modes.
6934    if (AM.BaseOffs)
6935      return false;
6936
6937    if (!VT.isSimple())
6938      return false;
6939
6940    if (Subtarget->isThumb2())
6941      return isLegalT2ScaledAddressingMode(AM, VT);
6942
6943    int Scale = AM.Scale;
6944    switch (VT.getSimpleVT().SimpleTy) {
6945    default: return false;
6946    case MVT::i1:
6947    case MVT::i8:
6948    case MVT::i32:
6949      if (Scale < 0) Scale = -Scale;
6950      if (Scale == 1)
6951        return true;
6952      // r + r << imm
6953      return isPowerOf2_32(Scale & ~1);
6954    case MVT::i16:
6955    case MVT::i64:
6956      // r + r
6957      if (((unsigned)AM.HasBaseReg + Scale) <= 2)
6958        return true;
6959      return false;
6960
6961    case MVT::isVoid:
6962      // Note, we allow "void" uses (basically, uses that aren't loads or
6963      // stores), because arm allows folding a scale into many arithmetic
6964      // operations.  This should be made more precise and revisited later.
6965
6966      // Allow r << imm, but the imm has to be a multiple of two.
6967      if (Scale & 1) return false;
6968      return isPowerOf2_32(Scale);
6969    }
6970    break;
6971  }
6972  return true;
6973}
6974
6975/// isLegalICmpImmediate - Return true if the specified immediate is legal
6976/// icmp immediate, that is the target has icmp instructions which can compare
6977/// a register against the immediate without having to materialize the
6978/// immediate into a register.
6979bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
6980  if (!Subtarget->isThumb())
6981    return ARM_AM::getSOImmVal(Imm) != -1;
6982  if (Subtarget->isThumb2())
6983    return ARM_AM::getT2SOImmVal(Imm) != -1;
6984  return Imm >= 0 && Imm <= 255;
6985}
6986
6987/// isLegalAddImmediate - Return true if the specified immediate is legal
6988/// add immediate, that is the target has add instructions which can add
6989/// a register with the immediate without having to materialize the
6990/// immediate into a register.
6991bool ARMTargetLowering::isLegalAddImmediate(int64_t Imm) const {
6992  return ARM_AM::getSOImmVal(Imm) != -1;
6993}
6994
6995static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT,
6996                                      bool isSEXTLoad, SDValue &Base,
6997                                      SDValue &Offset, bool &isInc,
6998                                      SelectionDAG &DAG) {
6999  if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
7000    return false;
7001
7002  if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
7003    // AddressingMode 3
7004    Base = Ptr->getOperand(0);
7005    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
7006      int RHSC = (int)RHS->getZExtValue();
7007      if (RHSC < 0 && RHSC > -256) {
7008        assert(Ptr->getOpcode() == ISD::ADD);
7009        isInc = false;
7010        Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
7011        return true;
7012      }
7013    }
7014    isInc = (Ptr->getOpcode() == ISD::ADD);
7015    Offset = Ptr->getOperand(1);
7016    return true;
7017  } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
7018    // AddressingMode 2
7019    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
7020      int RHSC = (int)RHS->getZExtValue();
7021      if (RHSC < 0 && RHSC > -0x1000) {
7022        assert(Ptr->getOpcode() == ISD::ADD);
7023        isInc = false;
7024        Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
7025        Base = Ptr->getOperand(0);
7026        return true;
7027      }
7028    }
7029
7030    if (Ptr->getOpcode() == ISD::ADD) {
7031      isInc = true;
7032      ARM_AM::ShiftOpc ShOpcVal= ARM_AM::getShiftOpcForNode(Ptr->getOperand(0));
7033      if (ShOpcVal != ARM_AM::no_shift) {
7034        Base = Ptr->getOperand(1);
7035        Offset = Ptr->getOperand(0);
7036      } else {
7037        Base = Ptr->getOperand(0);
7038        Offset = Ptr->getOperand(1);
7039      }
7040      return true;
7041    }
7042
7043    isInc = (Ptr->getOpcode() == ISD::ADD);
7044    Base = Ptr->getOperand(0);
7045    Offset = Ptr->getOperand(1);
7046    return true;
7047  }
7048
7049  // FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
7050  return false;
7051}
7052
7053static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT,
7054                                     bool isSEXTLoad, SDValue &Base,
7055                                     SDValue &Offset, bool &isInc,
7056                                     SelectionDAG &DAG) {
7057  if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
7058    return false;
7059
7060  Base = Ptr->getOperand(0);
7061  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
7062    int RHSC = (int)RHS->getZExtValue();
7063    if (RHSC < 0 && RHSC > -0x100) { // 8 bits.
7064      assert(Ptr->getOpcode() == ISD::ADD);
7065      isInc = false;
7066      Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
7067      return true;
7068    } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero.
7069      isInc = Ptr->getOpcode() == ISD::ADD;
7070      Offset = DAG.getConstant(RHSC, RHS->getValueType(0));
7071      return true;
7072    }
7073  }
7074
7075  return false;
7076}
7077
7078/// getPreIndexedAddressParts - returns true by value, base pointer and
7079/// offset pointer and addressing mode by reference if the node's address
7080/// can be legally represented as pre-indexed load / store address.
7081bool
7082ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
7083                                             SDValue &Offset,
7084                                             ISD::MemIndexedMode &AM,
7085                                             SelectionDAG &DAG) const {
7086  if (Subtarget->isThumb1Only())
7087    return false;
7088
7089  EVT VT;
7090  SDValue Ptr;
7091  bool isSEXTLoad = false;
7092  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
7093    Ptr = LD->getBasePtr();
7094    VT  = LD->getMemoryVT();
7095    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
7096  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
7097    Ptr = ST->getBasePtr();
7098    VT  = ST->getMemoryVT();
7099  } else
7100    return false;
7101
7102  bool isInc;
7103  bool isLegal = false;
7104  if (Subtarget->isThumb2())
7105    isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
7106                                       Offset, isInc, DAG);
7107  else
7108    isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
7109                                        Offset, isInc, DAG);
7110  if (!isLegal)
7111    return false;
7112
7113  AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
7114  return true;
7115}
7116
7117/// getPostIndexedAddressParts - returns true by value, base pointer and
7118/// offset pointer and addressing mode by reference if this node can be
7119/// combined with a load / store to form a post-indexed load / store.
7120bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
7121                                                   SDValue &Base,
7122                                                   SDValue &Offset,
7123                                                   ISD::MemIndexedMode &AM,
7124                                                   SelectionDAG &DAG) const {
7125  if (Subtarget->isThumb1Only())
7126    return false;
7127
7128  EVT VT;
7129  SDValue Ptr;
7130  bool isSEXTLoad = false;
7131  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
7132    VT  = LD->getMemoryVT();
7133    Ptr = LD->getBasePtr();
7134    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
7135  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
7136    VT  = ST->getMemoryVT();
7137    Ptr = ST->getBasePtr();
7138  } else
7139    return false;
7140
7141  bool isInc;
7142  bool isLegal = false;
7143  if (Subtarget->isThumb2())
7144    isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
7145                                       isInc, DAG);
7146  else
7147    isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
7148                                        isInc, DAG);
7149  if (!isLegal)
7150    return false;
7151
7152  if (Ptr != Base) {
7153    // Swap base ptr and offset to catch more post-index load / store when
7154    // it's legal. In Thumb2 mode, offset must be an immediate.
7155    if (Ptr == Offset && Op->getOpcode() == ISD::ADD &&
7156        !Subtarget->isThumb2())
7157      std::swap(Base, Offset);
7158
7159    // Post-indexed load / store update the base pointer.
7160    if (Ptr != Base)
7161      return false;
7162  }
7163
7164  AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
7165  return true;
7166}
7167
7168void ARMTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
7169                                                       const APInt &Mask,
7170                                                       APInt &KnownZero,
7171                                                       APInt &KnownOne,
7172                                                       const SelectionDAG &DAG,
7173                                                       unsigned Depth) const {
7174  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
7175  switch (Op.getOpcode()) {
7176  default: break;
7177  case ARMISD::CMOV: {
7178    // Bits are known zero/one if known on the LHS and RHS.
7179    DAG.ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
7180    if (KnownZero == 0 && KnownOne == 0) return;
7181
7182    APInt KnownZeroRHS, KnownOneRHS;
7183    DAG.ComputeMaskedBits(Op.getOperand(1), Mask,
7184                          KnownZeroRHS, KnownOneRHS, Depth+1);
7185    KnownZero &= KnownZeroRHS;
7186    KnownOne  &= KnownOneRHS;
7187    return;
7188  }
7189  }
7190}
7191
7192//===----------------------------------------------------------------------===//
7193//                           ARM Inline Assembly Support
7194//===----------------------------------------------------------------------===//
7195
7196bool ARMTargetLowering::ExpandInlineAsm(CallInst *CI) const {
7197  // Looking for "rev" which is V6+.
7198  if (!Subtarget->hasV6Ops())
7199    return false;
7200
7201  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
7202  std::string AsmStr = IA->getAsmString();
7203  SmallVector<StringRef, 4> AsmPieces;
7204  SplitString(AsmStr, AsmPieces, ";\n");
7205
7206  switch (AsmPieces.size()) {
7207  default: return false;
7208  case 1:
7209    AsmStr = AsmPieces[0];
7210    AsmPieces.clear();
7211    SplitString(AsmStr, AsmPieces, " \t,");
7212
7213    // rev $0, $1
7214    if (AsmPieces.size() == 3 &&
7215        AsmPieces[0] == "rev" && AsmPieces[1] == "$0" && AsmPieces[2] == "$1" &&
7216        IA->getConstraintString().compare(0, 4, "=l,l") == 0) {
7217      const IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
7218      if (Ty && Ty->getBitWidth() == 32)
7219        return IntrinsicLowering::LowerToByteSwap(CI);
7220    }
7221    break;
7222  }
7223
7224  return false;
7225}
7226
7227/// getConstraintType - Given a constraint letter, return the type of
7228/// constraint it is for this target.
7229ARMTargetLowering::ConstraintType
7230ARMTargetLowering::getConstraintType(const std::string &Constraint) const {
7231  if (Constraint.size() == 1) {
7232    switch (Constraint[0]) {
7233    default:  break;
7234    case 'l': return C_RegisterClass;
7235    case 'w': return C_RegisterClass;
7236    }
7237  }
7238  return TargetLowering::getConstraintType(Constraint);
7239}
7240
7241/// Examine constraint type and operand type and determine a weight value.
7242/// This object must already have been set up with the operand type
7243/// and the current alternative constraint selected.
7244TargetLowering::ConstraintWeight
7245ARMTargetLowering::getSingleConstraintMatchWeight(
7246    AsmOperandInfo &info, const char *constraint) const {
7247  ConstraintWeight weight = CW_Invalid;
7248  Value *CallOperandVal = info.CallOperandVal;
7249    // If we don't have a value, we can't do a match,
7250    // but allow it at the lowest weight.
7251  if (CallOperandVal == NULL)
7252    return CW_Default;
7253  const Type *type = CallOperandVal->getType();
7254  // Look at the constraint type.
7255  switch (*constraint) {
7256  default:
7257    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
7258    break;
7259  case 'l':
7260    if (type->isIntegerTy()) {
7261      if (Subtarget->isThumb())
7262        weight = CW_SpecificReg;
7263      else
7264        weight = CW_Register;
7265    }
7266    break;
7267  case 'w':
7268    if (type->isFloatingPointTy())
7269      weight = CW_Register;
7270    break;
7271  }
7272  return weight;
7273}
7274
7275std::pair<unsigned, const TargetRegisterClass*>
7276ARMTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
7277                                                EVT VT) const {
7278  if (Constraint.size() == 1) {
7279    // GCC ARM Constraint Letters
7280    switch (Constraint[0]) {
7281    case 'l':
7282      if (Subtarget->isThumb())
7283        return std::make_pair(0U, ARM::tGPRRegisterClass);
7284      else
7285        return std::make_pair(0U, ARM::GPRRegisterClass);
7286    case 'r':
7287      return std::make_pair(0U, ARM::GPRRegisterClass);
7288    case 'w':
7289      if (VT == MVT::f32)
7290        return std::make_pair(0U, ARM::SPRRegisterClass);
7291      if (VT.getSizeInBits() == 64)
7292        return std::make_pair(0U, ARM::DPRRegisterClass);
7293      if (VT.getSizeInBits() == 128)
7294        return std::make_pair(0U, ARM::QPRRegisterClass);
7295      break;
7296    }
7297  }
7298  if (StringRef("{cc}").equals_lower(Constraint))
7299    return std::make_pair(unsigned(ARM::CPSR), ARM::CCRRegisterClass);
7300
7301  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
7302}
7303
7304std::vector<unsigned> ARMTargetLowering::
7305getRegClassForInlineAsmConstraint(const std::string &Constraint,
7306                                  EVT VT) const {
7307  if (Constraint.size() != 1)
7308    return std::vector<unsigned>();
7309
7310  switch (Constraint[0]) {      // GCC ARM Constraint Letters
7311  default: break;
7312  case 'l':
7313    return make_vector<unsigned>(ARM::R0, ARM::R1, ARM::R2, ARM::R3,
7314                                 ARM::R4, ARM::R5, ARM::R6, ARM::R7,
7315                                 0);
7316  case 'r':
7317    return make_vector<unsigned>(ARM::R0, ARM::R1, ARM::R2, ARM::R3,
7318                                 ARM::R4, ARM::R5, ARM::R6, ARM::R7,
7319                                 ARM::R8, ARM::R9, ARM::R10, ARM::R11,
7320                                 ARM::R12, ARM::LR, 0);
7321  case 'w':
7322    if (VT == MVT::f32)
7323      return make_vector<unsigned>(ARM::S0, ARM::S1, ARM::S2, ARM::S3,
7324                                   ARM::S4, ARM::S5, ARM::S6, ARM::S7,
7325                                   ARM::S8, ARM::S9, ARM::S10, ARM::S11,
7326                                   ARM::S12,ARM::S13,ARM::S14,ARM::S15,
7327                                   ARM::S16,ARM::S17,ARM::S18,ARM::S19,
7328                                   ARM::S20,ARM::S21,ARM::S22,ARM::S23,
7329                                   ARM::S24,ARM::S25,ARM::S26,ARM::S27,
7330                                   ARM::S28,ARM::S29,ARM::S30,ARM::S31, 0);
7331    if (VT.getSizeInBits() == 64)
7332      return make_vector<unsigned>(ARM::D0, ARM::D1, ARM::D2, ARM::D3,
7333                                   ARM::D4, ARM::D5, ARM::D6, ARM::D7,
7334                                   ARM::D8, ARM::D9, ARM::D10,ARM::D11,
7335                                   ARM::D12,ARM::D13,ARM::D14,ARM::D15, 0);
7336    if (VT.getSizeInBits() == 128)
7337      return make_vector<unsigned>(ARM::Q0, ARM::Q1, ARM::Q2, ARM::Q3,
7338                                   ARM::Q4, ARM::Q5, ARM::Q6, ARM::Q7, 0);
7339      break;
7340  }
7341
7342  return std::vector<unsigned>();
7343}
7344
7345/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
7346/// vector.  If it is invalid, don't add anything to Ops.
7347void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
7348                                                     char Constraint,
7349                                                     std::vector<SDValue>&Ops,
7350                                                     SelectionDAG &DAG) const {
7351  SDValue Result(0, 0);
7352
7353  switch (Constraint) {
7354  default: break;
7355  case 'I': case 'J': case 'K': case 'L':
7356  case 'M': case 'N': case 'O':
7357    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
7358    if (!C)
7359      return;
7360
7361    int64_t CVal64 = C->getSExtValue();
7362    int CVal = (int) CVal64;
7363    // None of these constraints allow values larger than 32 bits.  Check
7364    // that the value fits in an int.
7365    if (CVal != CVal64)
7366      return;
7367
7368    switch (Constraint) {
7369      case 'I':
7370        if (Subtarget->isThumb1Only()) {
7371          // This must be a constant between 0 and 255, for ADD
7372          // immediates.
7373          if (CVal >= 0 && CVal <= 255)
7374            break;
7375        } else if (Subtarget->isThumb2()) {
7376          // A constant that can be used as an immediate value in a
7377          // data-processing instruction.
7378          if (ARM_AM::getT2SOImmVal(CVal) != -1)
7379            break;
7380        } else {
7381          // A constant that can be used as an immediate value in a
7382          // data-processing instruction.
7383          if (ARM_AM::getSOImmVal(CVal) != -1)
7384            break;
7385        }
7386        return;
7387
7388      case 'J':
7389        if (Subtarget->isThumb()) {  // FIXME thumb2
7390          // This must be a constant between -255 and -1, for negated ADD
7391          // immediates. This can be used in GCC with an "n" modifier that
7392          // prints the negated value, for use with SUB instructions. It is
7393          // not useful otherwise but is implemented for compatibility.
7394          if (CVal >= -255 && CVal <= -1)
7395            break;
7396        } else {
7397          // This must be a constant between -4095 and 4095. It is not clear
7398          // what this constraint is intended for. Implemented for
7399          // compatibility with GCC.
7400          if (CVal >= -4095 && CVal <= 4095)
7401            break;
7402        }
7403        return;
7404
7405      case 'K':
7406        if (Subtarget->isThumb1Only()) {
7407          // A 32-bit value where only one byte has a nonzero value. Exclude
7408          // zero to match GCC. This constraint is used by GCC internally for
7409          // constants that can be loaded with a move/shift combination.
7410          // It is not useful otherwise but is implemented for compatibility.
7411          if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal))
7412            break;
7413        } else if (Subtarget->isThumb2()) {
7414          // A constant whose bitwise inverse can be used as an immediate
7415          // value in a data-processing instruction. This can be used in GCC
7416          // with a "B" modifier that prints the inverted value, for use with
7417          // BIC and MVN instructions. It is not useful otherwise but is
7418          // implemented for compatibility.
7419          if (ARM_AM::getT2SOImmVal(~CVal) != -1)
7420            break;
7421        } else {
7422          // A constant whose bitwise inverse can be used as an immediate
7423          // value in a data-processing instruction. This can be used in GCC
7424          // with a "B" modifier that prints the inverted value, for use with
7425          // BIC and MVN instructions. It is not useful otherwise but is
7426          // implemented for compatibility.
7427          if (ARM_AM::getSOImmVal(~CVal) != -1)
7428            break;
7429        }
7430        return;
7431
7432      case 'L':
7433        if (Subtarget->isThumb1Only()) {
7434          // This must be a constant between -7 and 7,
7435          // for 3-operand ADD/SUB immediate instructions.
7436          if (CVal >= -7 && CVal < 7)
7437            break;
7438        } else if (Subtarget->isThumb2()) {
7439          // A constant whose negation can be used as an immediate value in a
7440          // data-processing instruction. This can be used in GCC with an "n"
7441          // modifier that prints the negated value, for use with SUB
7442          // instructions. It is not useful otherwise but is implemented for
7443          // compatibility.
7444          if (ARM_AM::getT2SOImmVal(-CVal) != -1)
7445            break;
7446        } else {
7447          // A constant whose negation can be used as an immediate value in a
7448          // data-processing instruction. This can be used in GCC with an "n"
7449          // modifier that prints the negated value, for use with SUB
7450          // instructions. It is not useful otherwise but is implemented for
7451          // compatibility.
7452          if (ARM_AM::getSOImmVal(-CVal) != -1)
7453            break;
7454        }
7455        return;
7456
7457      case 'M':
7458        if (Subtarget->isThumb()) { // FIXME thumb2
7459          // This must be a multiple of 4 between 0 and 1020, for
7460          // ADD sp + immediate.
7461          if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
7462            break;
7463        } else {
7464          // A power of two or a constant between 0 and 32.  This is used in
7465          // GCC for the shift amount on shifted register operands, but it is
7466          // useful in general for any shift amounts.
7467          if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0))
7468            break;
7469        }
7470        return;
7471
7472      case 'N':
7473        if (Subtarget->isThumb()) {  // FIXME thumb2
7474          // This must be a constant between 0 and 31, for shift amounts.
7475          if (CVal >= 0 && CVal <= 31)
7476            break;
7477        }
7478        return;
7479
7480      case 'O':
7481        if (Subtarget->isThumb()) {  // FIXME thumb2
7482          // This must be a multiple of 4 between -508 and 508, for
7483          // ADD/SUB sp = sp + immediate.
7484          if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
7485            break;
7486        }
7487        return;
7488    }
7489    Result = DAG.getTargetConstant(CVal, Op.getValueType());
7490    break;
7491  }
7492
7493  if (Result.getNode()) {
7494    Ops.push_back(Result);
7495    return;
7496  }
7497  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
7498}
7499
7500bool
7501ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
7502  // The ARM target isn't yet aware of offsets.
7503  return false;
7504}
7505
7506int ARM::getVFPf32Imm(const APFloat &FPImm) {
7507  APInt Imm = FPImm.bitcastToAPInt();
7508  uint32_t Sign = Imm.lshr(31).getZExtValue() & 1;
7509  int32_t Exp = (Imm.lshr(23).getSExtValue() & 0xff) - 127;  // -126 to 127
7510  int64_t Mantissa = Imm.getZExtValue() & 0x7fffff;  // 23 bits
7511
7512  // We can handle 4 bits of mantissa.
7513  // mantissa = (16+UInt(e:f:g:h))/16.
7514  if (Mantissa & 0x7ffff)
7515    return -1;
7516  Mantissa >>= 19;
7517  if ((Mantissa & 0xf) != Mantissa)
7518    return -1;
7519
7520  // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
7521  if (Exp < -3 || Exp > 4)
7522    return -1;
7523  Exp = ((Exp+3) & 0x7) ^ 4;
7524
7525  return ((int)Sign << 7) | (Exp << 4) | Mantissa;
7526}
7527
7528int ARM::getVFPf64Imm(const APFloat &FPImm) {
7529  APInt Imm = FPImm.bitcastToAPInt();
7530  uint64_t Sign = Imm.lshr(63).getZExtValue() & 1;
7531  int64_t Exp = (Imm.lshr(52).getSExtValue() & 0x7ff) - 1023;   // -1022 to 1023
7532  uint64_t Mantissa = Imm.getZExtValue() & 0xfffffffffffffLL;
7533
7534  // We can handle 4 bits of mantissa.
7535  // mantissa = (16+UInt(e:f:g:h))/16.
7536  if (Mantissa & 0xffffffffffffLL)
7537    return -1;
7538  Mantissa >>= 48;
7539  if ((Mantissa & 0xf) != Mantissa)
7540    return -1;
7541
7542  // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
7543  if (Exp < -3 || Exp > 4)
7544    return -1;
7545  Exp = ((Exp+3) & 0x7) ^ 4;
7546
7547  return ((int)Sign << 7) | (Exp << 4) | Mantissa;
7548}
7549
7550bool ARM::isBitFieldInvertedMask(unsigned v) {
7551  if (v == 0xffffffff)
7552    return 0;
7553  // there can be 1's on either or both "outsides", all the "inside"
7554  // bits must be 0's
7555  unsigned int lsb = 0, msb = 31;
7556  while (v & (1 << msb)) --msb;
7557  while (v & (1 << lsb)) ++lsb;
7558  for (unsigned int i = lsb; i <= msb; ++i) {
7559    if (v & (1 << i))
7560      return 0;
7561  }
7562  return 1;
7563}
7564
7565/// isFPImmLegal - Returns true if the target can instruction select the
7566/// specified FP immediate natively. If false, the legalizer will
7567/// materialize the FP immediate as a load from a constant pool.
7568bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
7569  if (!Subtarget->hasVFP3())
7570    return false;
7571  if (VT == MVT::f32)
7572    return ARM::getVFPf32Imm(Imm) != -1;
7573  if (VT == MVT::f64)
7574    return ARM::getVFPf64Imm(Imm) != -1;
7575  return false;
7576}
7577
7578/// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
7579/// MemIntrinsicNodes.  The associated MachineMemOperands record the alignment
7580/// specified in the intrinsic calls.
7581bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
7582                                           const CallInst &I,
7583                                           unsigned Intrinsic) const {
7584  switch (Intrinsic) {
7585  case Intrinsic::arm_neon_vld1:
7586  case Intrinsic::arm_neon_vld2:
7587  case Intrinsic::arm_neon_vld3:
7588  case Intrinsic::arm_neon_vld4:
7589  case Intrinsic::arm_neon_vld2lane:
7590  case Intrinsic::arm_neon_vld3lane:
7591  case Intrinsic::arm_neon_vld4lane: {
7592    Info.opc = ISD::INTRINSIC_W_CHAIN;
7593    // Conservatively set memVT to the entire set of vectors loaded.
7594    uint64_t NumElts = getTargetData()->getTypeAllocSize(I.getType()) / 8;
7595    Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
7596    Info.ptrVal = I.getArgOperand(0);
7597    Info.offset = 0;
7598    Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
7599    Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
7600    Info.vol = false; // volatile loads with NEON intrinsics not supported
7601    Info.readMem = true;
7602    Info.writeMem = false;
7603    return true;
7604  }
7605  case Intrinsic::arm_neon_vst1:
7606  case Intrinsic::arm_neon_vst2:
7607  case Intrinsic::arm_neon_vst3:
7608  case Intrinsic::arm_neon_vst4:
7609  case Intrinsic::arm_neon_vst2lane:
7610  case Intrinsic::arm_neon_vst3lane:
7611  case Intrinsic::arm_neon_vst4lane: {
7612    Info.opc = ISD::INTRINSIC_VOID;
7613    // Conservatively set memVT to the entire set of vectors stored.
7614    unsigned NumElts = 0;
7615    for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
7616      const Type *ArgTy = I.getArgOperand(ArgI)->getType();
7617      if (!ArgTy->isVectorTy())
7618        break;
7619      NumElts += getTargetData()->getTypeAllocSize(ArgTy) / 8;
7620    }
7621    Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
7622    Info.ptrVal = I.getArgOperand(0);
7623    Info.offset = 0;
7624    Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
7625    Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
7626    Info.vol = false; // volatile stores with NEON intrinsics not supported
7627    Info.readMem = false;
7628    Info.writeMem = true;
7629    return true;
7630  }
7631  default:
7632    break;
7633  }
7634
7635  return false;
7636}
7637