ARMISelLowering.cpp revision d7e473c629a5e4fb1584fb5c5c1b0c1e142fdc8f
1//===-- ARMISelLowering.cpp - ARM DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that ARM uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "arm-isel"
16#include "ARM.h"
17#include "ARMAddressingModes.h"
18#include "ARMCallingConv.h"
19#include "ARMConstantPoolValue.h"
20#include "ARMISelLowering.h"
21#include "ARMMachineFunctionInfo.h"
22#include "ARMPerfectShuffle.h"
23#include "ARMRegisterInfo.h"
24#include "ARMSubtarget.h"
25#include "ARMTargetMachine.h"
26#include "ARMTargetObjectFile.h"
27#include "llvm/CallingConv.h"
28#include "llvm/Constants.h"
29#include "llvm/Function.h"
30#include "llvm/GlobalValue.h"
31#include "llvm/Instruction.h"
32#include "llvm/Instructions.h"
33#include "llvm/Intrinsics.h"
34#include "llvm/Type.h"
35#include "llvm/CodeGen/CallingConvLower.h"
36#include "llvm/CodeGen/MachineBasicBlock.h"
37#include "llvm/CodeGen/MachineFrameInfo.h"
38#include "llvm/CodeGen/MachineFunction.h"
39#include "llvm/CodeGen/MachineInstrBuilder.h"
40#include "llvm/CodeGen/MachineRegisterInfo.h"
41#include "llvm/CodeGen/PseudoSourceValue.h"
42#include "llvm/CodeGen/SelectionDAG.h"
43#include "llvm/MC/MCSectionMachO.h"
44#include "llvm/Target/TargetOptions.h"
45#include "llvm/ADT/VectorExtras.h"
46#include "llvm/ADT/Statistic.h"
47#include "llvm/Support/CommandLine.h"
48#include "llvm/Support/ErrorHandling.h"
49#include "llvm/Support/MathExtras.h"
50#include "llvm/Support/raw_ostream.h"
51#include <sstream>
52using namespace llvm;
53
54STATISTIC(NumTailCalls, "Number of tail calls");
55
56// This option should go away when tail calls fully work.
57static cl::opt<bool>
58EnableARMTailCalls("arm-tail-calls", cl::Hidden,
59  cl::desc("Generate tail calls (TEMPORARY OPTION)."),
60  cl::init(false));
61
62static cl::opt<bool>
63EnableARMLongCalls("arm-long-calls", cl::Hidden,
64  cl::desc("Generate calls via indirect call instructions"),
65  cl::init(false));
66
67static cl::opt<bool>
68ARMInterworking("arm-interworking", cl::Hidden,
69  cl::desc("Enable / disable ARM interworking (for debugging only)"),
70  cl::init(true));
71
72void ARMTargetLowering::addTypeForNEON(EVT VT, EVT PromotedLdStVT,
73                                       EVT PromotedBitwiseVT) {
74  if (VT != PromotedLdStVT) {
75    setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote);
76    AddPromotedToType (ISD::LOAD, VT.getSimpleVT(),
77                       PromotedLdStVT.getSimpleVT());
78
79    setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote);
80    AddPromotedToType (ISD::STORE, VT.getSimpleVT(),
81                       PromotedLdStVT.getSimpleVT());
82  }
83
84  EVT ElemTy = VT.getVectorElementType();
85  if (ElemTy != MVT::i64 && ElemTy != MVT::f64)
86    setOperationAction(ISD::VSETCC, VT.getSimpleVT(), Custom);
87  if (ElemTy == MVT::i8 || ElemTy == MVT::i16)
88    setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT.getSimpleVT(), Custom);
89  if (ElemTy != MVT::i32) {
90    setOperationAction(ISD::SINT_TO_FP, VT.getSimpleVT(), Expand);
91    setOperationAction(ISD::UINT_TO_FP, VT.getSimpleVT(), Expand);
92    setOperationAction(ISD::FP_TO_SINT, VT.getSimpleVT(), Expand);
93    setOperationAction(ISD::FP_TO_UINT, VT.getSimpleVT(), Expand);
94  }
95  setOperationAction(ISD::BUILD_VECTOR, VT.getSimpleVT(), Custom);
96  setOperationAction(ISD::VECTOR_SHUFFLE, VT.getSimpleVT(), Custom);
97  setOperationAction(ISD::CONCAT_VECTORS, VT.getSimpleVT(), Legal);
98  setOperationAction(ISD::EXTRACT_SUBVECTOR, VT.getSimpleVT(), Expand);
99  setOperationAction(ISD::SELECT, VT.getSimpleVT(), Expand);
100  setOperationAction(ISD::SELECT_CC, VT.getSimpleVT(), Expand);
101  if (VT.isInteger()) {
102    setOperationAction(ISD::SHL, VT.getSimpleVT(), Custom);
103    setOperationAction(ISD::SRA, VT.getSimpleVT(), Custom);
104    setOperationAction(ISD::SRL, VT.getSimpleVT(), Custom);
105    setLoadExtAction(ISD::SEXTLOAD, VT.getSimpleVT(), Expand);
106    setLoadExtAction(ISD::ZEXTLOAD, VT.getSimpleVT(), Expand);
107  }
108  setLoadExtAction(ISD::EXTLOAD, VT.getSimpleVT(), Expand);
109
110  // Promote all bit-wise operations.
111  if (VT.isInteger() && VT != PromotedBitwiseVT) {
112    setOperationAction(ISD::AND, VT.getSimpleVT(), Promote);
113    AddPromotedToType (ISD::AND, VT.getSimpleVT(),
114                       PromotedBitwiseVT.getSimpleVT());
115    setOperationAction(ISD::OR,  VT.getSimpleVT(), Promote);
116    AddPromotedToType (ISD::OR,  VT.getSimpleVT(),
117                       PromotedBitwiseVT.getSimpleVT());
118    setOperationAction(ISD::XOR, VT.getSimpleVT(), Promote);
119    AddPromotedToType (ISD::XOR, VT.getSimpleVT(),
120                       PromotedBitwiseVT.getSimpleVT());
121  }
122
123  // Neon does not support vector divide/remainder operations.
124  setOperationAction(ISD::SDIV, VT.getSimpleVT(), Expand);
125  setOperationAction(ISD::UDIV, VT.getSimpleVT(), Expand);
126  setOperationAction(ISD::FDIV, VT.getSimpleVT(), Expand);
127  setOperationAction(ISD::SREM, VT.getSimpleVT(), Expand);
128  setOperationAction(ISD::UREM, VT.getSimpleVT(), Expand);
129  setOperationAction(ISD::FREM, VT.getSimpleVT(), Expand);
130}
131
132void ARMTargetLowering::addDRTypeForNEON(EVT VT) {
133  addRegisterClass(VT, ARM::DPRRegisterClass);
134  addTypeForNEON(VT, MVT::f64, MVT::v2i32);
135}
136
137void ARMTargetLowering::addQRTypeForNEON(EVT VT) {
138  addRegisterClass(VT, ARM::QPRRegisterClass);
139  addTypeForNEON(VT, MVT::v2f64, MVT::v4i32);
140}
141
142static TargetLoweringObjectFile *createTLOF(TargetMachine &TM) {
143  if (TM.getSubtarget<ARMSubtarget>().isTargetDarwin())
144    return new TargetLoweringObjectFileMachO();
145
146  return new ARMElfTargetObjectFile();
147}
148
149ARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
150    : TargetLowering(TM, createTLOF(TM)) {
151  Subtarget = &TM.getSubtarget<ARMSubtarget>();
152  RegInfo = TM.getRegisterInfo();
153  Itins = TM.getInstrItineraryData();
154
155  if (Subtarget->isTargetDarwin()) {
156    // Uses VFP for Thumb libfuncs if available.
157    if (Subtarget->isThumb() && Subtarget->hasVFP2()) {
158      // Single-precision floating-point arithmetic.
159      setLibcallName(RTLIB::ADD_F32, "__addsf3vfp");
160      setLibcallName(RTLIB::SUB_F32, "__subsf3vfp");
161      setLibcallName(RTLIB::MUL_F32, "__mulsf3vfp");
162      setLibcallName(RTLIB::DIV_F32, "__divsf3vfp");
163
164      // Double-precision floating-point arithmetic.
165      setLibcallName(RTLIB::ADD_F64, "__adddf3vfp");
166      setLibcallName(RTLIB::SUB_F64, "__subdf3vfp");
167      setLibcallName(RTLIB::MUL_F64, "__muldf3vfp");
168      setLibcallName(RTLIB::DIV_F64, "__divdf3vfp");
169
170      // Single-precision comparisons.
171      setLibcallName(RTLIB::OEQ_F32, "__eqsf2vfp");
172      setLibcallName(RTLIB::UNE_F32, "__nesf2vfp");
173      setLibcallName(RTLIB::OLT_F32, "__ltsf2vfp");
174      setLibcallName(RTLIB::OLE_F32, "__lesf2vfp");
175      setLibcallName(RTLIB::OGE_F32, "__gesf2vfp");
176      setLibcallName(RTLIB::OGT_F32, "__gtsf2vfp");
177      setLibcallName(RTLIB::UO_F32,  "__unordsf2vfp");
178      setLibcallName(RTLIB::O_F32,   "__unordsf2vfp");
179
180      setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
181      setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETNE);
182      setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
183      setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
184      setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
185      setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
186      setCmpLibcallCC(RTLIB::UO_F32,  ISD::SETNE);
187      setCmpLibcallCC(RTLIB::O_F32,   ISD::SETEQ);
188
189      // Double-precision comparisons.
190      setLibcallName(RTLIB::OEQ_F64, "__eqdf2vfp");
191      setLibcallName(RTLIB::UNE_F64, "__nedf2vfp");
192      setLibcallName(RTLIB::OLT_F64, "__ltdf2vfp");
193      setLibcallName(RTLIB::OLE_F64, "__ledf2vfp");
194      setLibcallName(RTLIB::OGE_F64, "__gedf2vfp");
195      setLibcallName(RTLIB::OGT_F64, "__gtdf2vfp");
196      setLibcallName(RTLIB::UO_F64,  "__unorddf2vfp");
197      setLibcallName(RTLIB::O_F64,   "__unorddf2vfp");
198
199      setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
200      setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETNE);
201      setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
202      setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
203      setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
204      setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
205      setCmpLibcallCC(RTLIB::UO_F64,  ISD::SETNE);
206      setCmpLibcallCC(RTLIB::O_F64,   ISD::SETEQ);
207
208      // Floating-point to integer conversions.
209      // i64 conversions are done via library routines even when generating VFP
210      // instructions, so use the same ones.
211      setLibcallName(RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp");
212      setLibcallName(RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp");
213      setLibcallName(RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp");
214      setLibcallName(RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp");
215
216      // Conversions between floating types.
217      setLibcallName(RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp");
218      setLibcallName(RTLIB::FPEXT_F32_F64,   "__extendsfdf2vfp");
219
220      // Integer to floating-point conversions.
221      // i64 conversions are done via library routines even when generating VFP
222      // instructions, so use the same ones.
223      // FIXME: There appears to be some naming inconsistency in ARM libgcc:
224      // e.g., __floatunsidf vs. __floatunssidfvfp.
225      setLibcallName(RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp");
226      setLibcallName(RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp");
227      setLibcallName(RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp");
228      setLibcallName(RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp");
229    }
230  }
231
232  // These libcalls are not available in 32-bit.
233  setLibcallName(RTLIB::SHL_I128, 0);
234  setLibcallName(RTLIB::SRL_I128, 0);
235  setLibcallName(RTLIB::SRA_I128, 0);
236
237  if (Subtarget->isAAPCS_ABI()) {
238    // Double-precision floating-point arithmetic helper functions
239    // RTABI chapter 4.1.2, Table 2
240    setLibcallName(RTLIB::ADD_F64, "__aeabi_dadd");
241    setLibcallName(RTLIB::DIV_F64, "__aeabi_ddiv");
242    setLibcallName(RTLIB::MUL_F64, "__aeabi_dmul");
243    setLibcallName(RTLIB::SUB_F64, "__aeabi_dsub");
244    setLibcallCallingConv(RTLIB::ADD_F64, CallingConv::ARM_AAPCS);
245    setLibcallCallingConv(RTLIB::DIV_F64, CallingConv::ARM_AAPCS);
246    setLibcallCallingConv(RTLIB::MUL_F64, CallingConv::ARM_AAPCS);
247    setLibcallCallingConv(RTLIB::SUB_F64, CallingConv::ARM_AAPCS);
248
249    // Double-precision floating-point comparison helper functions
250    // RTABI chapter 4.1.2, Table 3
251    setLibcallName(RTLIB::OEQ_F64, "__aeabi_dcmpeq");
252    setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
253    setLibcallName(RTLIB::UNE_F64, "__aeabi_dcmpeq");
254    setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETEQ);
255    setLibcallName(RTLIB::OLT_F64, "__aeabi_dcmplt");
256    setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
257    setLibcallName(RTLIB::OLE_F64, "__aeabi_dcmple");
258    setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
259    setLibcallName(RTLIB::OGE_F64, "__aeabi_dcmpge");
260    setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
261    setLibcallName(RTLIB::OGT_F64, "__aeabi_dcmpgt");
262    setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
263    setLibcallName(RTLIB::UO_F64,  "__aeabi_dcmpun");
264    setCmpLibcallCC(RTLIB::UO_F64,  ISD::SETNE);
265    setLibcallName(RTLIB::O_F64,   "__aeabi_dcmpun");
266    setCmpLibcallCC(RTLIB::O_F64,   ISD::SETEQ);
267    setLibcallCallingConv(RTLIB::OEQ_F64, CallingConv::ARM_AAPCS);
268    setLibcallCallingConv(RTLIB::UNE_F64, CallingConv::ARM_AAPCS);
269    setLibcallCallingConv(RTLIB::OLT_F64, CallingConv::ARM_AAPCS);
270    setLibcallCallingConv(RTLIB::OLE_F64, CallingConv::ARM_AAPCS);
271    setLibcallCallingConv(RTLIB::OGE_F64, CallingConv::ARM_AAPCS);
272    setLibcallCallingConv(RTLIB::OGT_F64, CallingConv::ARM_AAPCS);
273    setLibcallCallingConv(RTLIB::UO_F64, CallingConv::ARM_AAPCS);
274    setLibcallCallingConv(RTLIB::O_F64, CallingConv::ARM_AAPCS);
275
276    // Single-precision floating-point arithmetic helper functions
277    // RTABI chapter 4.1.2, Table 4
278    setLibcallName(RTLIB::ADD_F32, "__aeabi_fadd");
279    setLibcallName(RTLIB::DIV_F32, "__aeabi_fdiv");
280    setLibcallName(RTLIB::MUL_F32, "__aeabi_fmul");
281    setLibcallName(RTLIB::SUB_F32, "__aeabi_fsub");
282    setLibcallCallingConv(RTLIB::ADD_F32, CallingConv::ARM_AAPCS);
283    setLibcallCallingConv(RTLIB::DIV_F32, CallingConv::ARM_AAPCS);
284    setLibcallCallingConv(RTLIB::MUL_F32, CallingConv::ARM_AAPCS);
285    setLibcallCallingConv(RTLIB::SUB_F32, CallingConv::ARM_AAPCS);
286
287    // Single-precision floating-point comparison helper functions
288    // RTABI chapter 4.1.2, Table 5
289    setLibcallName(RTLIB::OEQ_F32, "__aeabi_fcmpeq");
290    setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
291    setLibcallName(RTLIB::UNE_F32, "__aeabi_fcmpeq");
292    setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETEQ);
293    setLibcallName(RTLIB::OLT_F32, "__aeabi_fcmplt");
294    setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
295    setLibcallName(RTLIB::OLE_F32, "__aeabi_fcmple");
296    setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
297    setLibcallName(RTLIB::OGE_F32, "__aeabi_fcmpge");
298    setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
299    setLibcallName(RTLIB::OGT_F32, "__aeabi_fcmpgt");
300    setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
301    setLibcallName(RTLIB::UO_F32,  "__aeabi_fcmpun");
302    setCmpLibcallCC(RTLIB::UO_F32,  ISD::SETNE);
303    setLibcallName(RTLIB::O_F32,   "__aeabi_fcmpun");
304    setCmpLibcallCC(RTLIB::O_F32,   ISD::SETEQ);
305    setLibcallCallingConv(RTLIB::OEQ_F32, CallingConv::ARM_AAPCS);
306    setLibcallCallingConv(RTLIB::UNE_F32, CallingConv::ARM_AAPCS);
307    setLibcallCallingConv(RTLIB::OLT_F32, CallingConv::ARM_AAPCS);
308    setLibcallCallingConv(RTLIB::OLE_F32, CallingConv::ARM_AAPCS);
309    setLibcallCallingConv(RTLIB::OGE_F32, CallingConv::ARM_AAPCS);
310    setLibcallCallingConv(RTLIB::OGT_F32, CallingConv::ARM_AAPCS);
311    setLibcallCallingConv(RTLIB::UO_F32, CallingConv::ARM_AAPCS);
312    setLibcallCallingConv(RTLIB::O_F32, CallingConv::ARM_AAPCS);
313
314    // Floating-point to integer conversions.
315    // RTABI chapter 4.1.2, Table 6
316    setLibcallName(RTLIB::FPTOSINT_F64_I32, "__aeabi_d2iz");
317    setLibcallName(RTLIB::FPTOUINT_F64_I32, "__aeabi_d2uiz");
318    setLibcallName(RTLIB::FPTOSINT_F64_I64, "__aeabi_d2lz");
319    setLibcallName(RTLIB::FPTOUINT_F64_I64, "__aeabi_d2ulz");
320    setLibcallName(RTLIB::FPTOSINT_F32_I32, "__aeabi_f2iz");
321    setLibcallName(RTLIB::FPTOUINT_F32_I32, "__aeabi_f2uiz");
322    setLibcallName(RTLIB::FPTOSINT_F32_I64, "__aeabi_f2lz");
323    setLibcallName(RTLIB::FPTOUINT_F32_I64, "__aeabi_f2ulz");
324    setLibcallCallingConv(RTLIB::FPTOSINT_F64_I32, CallingConv::ARM_AAPCS);
325    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I32, CallingConv::ARM_AAPCS);
326    setLibcallCallingConv(RTLIB::FPTOSINT_F64_I64, CallingConv::ARM_AAPCS);
327    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::ARM_AAPCS);
328    setLibcallCallingConv(RTLIB::FPTOSINT_F32_I32, CallingConv::ARM_AAPCS);
329    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I32, CallingConv::ARM_AAPCS);
330    setLibcallCallingConv(RTLIB::FPTOSINT_F32_I64, CallingConv::ARM_AAPCS);
331    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::ARM_AAPCS);
332
333    // Conversions between floating types.
334    // RTABI chapter 4.1.2, Table 7
335    setLibcallName(RTLIB::FPROUND_F64_F32, "__aeabi_d2f");
336    setLibcallName(RTLIB::FPEXT_F32_F64,   "__aeabi_f2d");
337    setLibcallCallingConv(RTLIB::FPROUND_F64_F32, CallingConv::ARM_AAPCS);
338    setLibcallCallingConv(RTLIB::FPEXT_F32_F64, CallingConv::ARM_AAPCS);
339
340    // Integer to floating-point conversions.
341    // RTABI chapter 4.1.2, Table 8
342    setLibcallName(RTLIB::SINTTOFP_I32_F64, "__aeabi_i2d");
343    setLibcallName(RTLIB::UINTTOFP_I32_F64, "__aeabi_ui2d");
344    setLibcallName(RTLIB::SINTTOFP_I64_F64, "__aeabi_l2d");
345    setLibcallName(RTLIB::UINTTOFP_I64_F64, "__aeabi_ul2d");
346    setLibcallName(RTLIB::SINTTOFP_I32_F32, "__aeabi_i2f");
347    setLibcallName(RTLIB::UINTTOFP_I32_F32, "__aeabi_ui2f");
348    setLibcallName(RTLIB::SINTTOFP_I64_F32, "__aeabi_l2f");
349    setLibcallName(RTLIB::UINTTOFP_I64_F32, "__aeabi_ul2f");
350    setLibcallCallingConv(RTLIB::SINTTOFP_I32_F64, CallingConv::ARM_AAPCS);
351    setLibcallCallingConv(RTLIB::UINTTOFP_I32_F64, CallingConv::ARM_AAPCS);
352    setLibcallCallingConv(RTLIB::SINTTOFP_I64_F64, CallingConv::ARM_AAPCS);
353    setLibcallCallingConv(RTLIB::UINTTOFP_I64_F64, CallingConv::ARM_AAPCS);
354    setLibcallCallingConv(RTLIB::SINTTOFP_I32_F32, CallingConv::ARM_AAPCS);
355    setLibcallCallingConv(RTLIB::UINTTOFP_I32_F32, CallingConv::ARM_AAPCS);
356    setLibcallCallingConv(RTLIB::SINTTOFP_I64_F32, CallingConv::ARM_AAPCS);
357    setLibcallCallingConv(RTLIB::UINTTOFP_I64_F32, CallingConv::ARM_AAPCS);
358
359    // Long long helper functions
360    // RTABI chapter 4.2, Table 9
361    setLibcallName(RTLIB::MUL_I64,  "__aeabi_lmul");
362    setLibcallName(RTLIB::SDIV_I64, "__aeabi_ldivmod");
363    setLibcallName(RTLIB::UDIV_I64, "__aeabi_uldivmod");
364    setLibcallName(RTLIB::SHL_I64, "__aeabi_llsl");
365    setLibcallName(RTLIB::SRL_I64, "__aeabi_llsr");
366    setLibcallName(RTLIB::SRA_I64, "__aeabi_lasr");
367    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::ARM_AAPCS);
368    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::ARM_AAPCS);
369    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::ARM_AAPCS);
370    setLibcallCallingConv(RTLIB::SHL_I64, CallingConv::ARM_AAPCS);
371    setLibcallCallingConv(RTLIB::SRL_I64, CallingConv::ARM_AAPCS);
372    setLibcallCallingConv(RTLIB::SRA_I64, CallingConv::ARM_AAPCS);
373
374    // Integer division functions
375    // RTABI chapter 4.3.1
376    setLibcallName(RTLIB::SDIV_I8,  "__aeabi_idiv");
377    setLibcallName(RTLIB::SDIV_I16, "__aeabi_idiv");
378    setLibcallName(RTLIB::SDIV_I32, "__aeabi_idiv");
379    setLibcallName(RTLIB::UDIV_I8,  "__aeabi_uidiv");
380    setLibcallName(RTLIB::UDIV_I16, "__aeabi_uidiv");
381    setLibcallName(RTLIB::UDIV_I32, "__aeabi_uidiv");
382    setLibcallCallingConv(RTLIB::SDIV_I8, CallingConv::ARM_AAPCS);
383    setLibcallCallingConv(RTLIB::SDIV_I16, CallingConv::ARM_AAPCS);
384    setLibcallCallingConv(RTLIB::SDIV_I32, CallingConv::ARM_AAPCS);
385    setLibcallCallingConv(RTLIB::UDIV_I8, CallingConv::ARM_AAPCS);
386    setLibcallCallingConv(RTLIB::UDIV_I16, CallingConv::ARM_AAPCS);
387    setLibcallCallingConv(RTLIB::UDIV_I32, CallingConv::ARM_AAPCS);
388  }
389
390  if (Subtarget->isThumb1Only())
391    addRegisterClass(MVT::i32, ARM::tGPRRegisterClass);
392  else
393    addRegisterClass(MVT::i32, ARM::GPRRegisterClass);
394  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
395    addRegisterClass(MVT::f32, ARM::SPRRegisterClass);
396    if (!Subtarget->isFPOnlySP())
397      addRegisterClass(MVT::f64, ARM::DPRRegisterClass);
398
399    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
400  }
401
402  if (Subtarget->hasNEON()) {
403    addDRTypeForNEON(MVT::v2f32);
404    addDRTypeForNEON(MVT::v8i8);
405    addDRTypeForNEON(MVT::v4i16);
406    addDRTypeForNEON(MVT::v2i32);
407    addDRTypeForNEON(MVT::v1i64);
408
409    addQRTypeForNEON(MVT::v4f32);
410    addQRTypeForNEON(MVT::v2f64);
411    addQRTypeForNEON(MVT::v16i8);
412    addQRTypeForNEON(MVT::v8i16);
413    addQRTypeForNEON(MVT::v4i32);
414    addQRTypeForNEON(MVT::v2i64);
415
416    // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
417    // neither Neon nor VFP support any arithmetic operations on it.
418    setOperationAction(ISD::FADD, MVT::v2f64, Expand);
419    setOperationAction(ISD::FSUB, MVT::v2f64, Expand);
420    setOperationAction(ISD::FMUL, MVT::v2f64, Expand);
421    setOperationAction(ISD::FDIV, MVT::v2f64, Expand);
422    setOperationAction(ISD::FREM, MVT::v2f64, Expand);
423    setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand);
424    setOperationAction(ISD::VSETCC, MVT::v2f64, Expand);
425    setOperationAction(ISD::FNEG, MVT::v2f64, Expand);
426    setOperationAction(ISD::FABS, MVT::v2f64, Expand);
427    setOperationAction(ISD::FSQRT, MVT::v2f64, Expand);
428    setOperationAction(ISD::FSIN, MVT::v2f64, Expand);
429    setOperationAction(ISD::FCOS, MVT::v2f64, Expand);
430    setOperationAction(ISD::FPOWI, MVT::v2f64, Expand);
431    setOperationAction(ISD::FPOW, MVT::v2f64, Expand);
432    setOperationAction(ISD::FLOG, MVT::v2f64, Expand);
433    setOperationAction(ISD::FLOG2, MVT::v2f64, Expand);
434    setOperationAction(ISD::FLOG10, MVT::v2f64, Expand);
435    setOperationAction(ISD::FEXP, MVT::v2f64, Expand);
436    setOperationAction(ISD::FEXP2, MVT::v2f64, Expand);
437    setOperationAction(ISD::FCEIL, MVT::v2f64, Expand);
438    setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand);
439    setOperationAction(ISD::FRINT, MVT::v2f64, Expand);
440    setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand);
441    setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand);
442
443    setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand);
444
445    // Neon does not support some operations on v1i64 and v2i64 types.
446    setOperationAction(ISD::MUL, MVT::v1i64, Expand);
447    // Custom handling for some quad-vector types to detect VMULL.
448    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
449    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
450    setOperationAction(ISD::MUL, MVT::v2i64, Custom);
451    setOperationAction(ISD::VSETCC, MVT::v1i64, Expand);
452    setOperationAction(ISD::VSETCC, MVT::v2i64, Expand);
453
454    setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
455    setTargetDAGCombine(ISD::SHL);
456    setTargetDAGCombine(ISD::SRL);
457    setTargetDAGCombine(ISD::SRA);
458    setTargetDAGCombine(ISD::SIGN_EXTEND);
459    setTargetDAGCombine(ISD::ZERO_EXTEND);
460    setTargetDAGCombine(ISD::ANY_EXTEND);
461    setTargetDAGCombine(ISD::SELECT_CC);
462    setTargetDAGCombine(ISD::BUILD_VECTOR);
463    setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
464  }
465
466  computeRegisterProperties();
467
468  // ARM does not have f32 extending load.
469  setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
470
471  // ARM does not have i1 sign extending load.
472  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
473
474  // ARM supports all 4 flavors of integer indexed load / store.
475  if (!Subtarget->isThumb1Only()) {
476    for (unsigned im = (unsigned)ISD::PRE_INC;
477         im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
478      setIndexedLoadAction(im,  MVT::i1,  Legal);
479      setIndexedLoadAction(im,  MVT::i8,  Legal);
480      setIndexedLoadAction(im,  MVT::i16, Legal);
481      setIndexedLoadAction(im,  MVT::i32, Legal);
482      setIndexedStoreAction(im, MVT::i1,  Legal);
483      setIndexedStoreAction(im, MVT::i8,  Legal);
484      setIndexedStoreAction(im, MVT::i16, Legal);
485      setIndexedStoreAction(im, MVT::i32, Legal);
486    }
487  }
488
489  // i64 operation support.
490  if (Subtarget->isThumb1Only()) {
491    setOperationAction(ISD::MUL,     MVT::i64, Expand);
492    setOperationAction(ISD::MULHU,   MVT::i32, Expand);
493    setOperationAction(ISD::MULHS,   MVT::i32, Expand);
494    setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
495    setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
496  } else {
497    setOperationAction(ISD::MUL,     MVT::i64, Expand);
498    setOperationAction(ISD::MULHU,   MVT::i32, Expand);
499    if (!Subtarget->hasV6Ops())
500      setOperationAction(ISD::MULHS, MVT::i32, Expand);
501  }
502  setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
503  setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
504  setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
505  setOperationAction(ISD::SRL,       MVT::i64, Custom);
506  setOperationAction(ISD::SRA,       MVT::i64, Custom);
507
508  // ARM does not have ROTL.
509  setOperationAction(ISD::ROTL,  MVT::i32, Expand);
510  setOperationAction(ISD::CTTZ,  MVT::i32, Custom);
511  setOperationAction(ISD::CTPOP, MVT::i32, Expand);
512  if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only())
513    setOperationAction(ISD::CTLZ, MVT::i32, Expand);
514
515  // Only ARMv6 has BSWAP.
516  if (!Subtarget->hasV6Ops())
517    setOperationAction(ISD::BSWAP, MVT::i32, Expand);
518
519  // These are expanded into libcalls.
520  if (!Subtarget->hasDivide()) {
521    // v7M has a hardware divider
522    setOperationAction(ISD::SDIV,  MVT::i32, Expand);
523    setOperationAction(ISD::UDIV,  MVT::i32, Expand);
524  }
525  setOperationAction(ISD::SREM,  MVT::i32, Expand);
526  setOperationAction(ISD::UREM,  MVT::i32, Expand);
527  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
528  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
529
530  setOperationAction(ISD::GlobalAddress, MVT::i32,   Custom);
531  setOperationAction(ISD::ConstantPool,  MVT::i32,   Custom);
532  setOperationAction(ISD::GLOBAL_OFFSET_TABLE, MVT::i32, Custom);
533  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
534  setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
535
536  setOperationAction(ISD::TRAP, MVT::Other, Legal);
537
538  // Use the default implementation.
539  setOperationAction(ISD::VASTART,            MVT::Other, Custom);
540  setOperationAction(ISD::VAARG,              MVT::Other, Expand);
541  setOperationAction(ISD::VACOPY,             MVT::Other, Expand);
542  setOperationAction(ISD::VAEND,              MVT::Other, Expand);
543  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
544  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
545  setOperationAction(ISD::EHSELECTION,        MVT::i32,   Expand);
546  // FIXME: Shouldn't need this, since no register is used, but the legalizer
547  // doesn't yet know how to not do that for SjLj.
548  setExceptionSelectorRegister(ARM::R0);
549  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
550  // ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use
551  // the default expansion.
552  if (Subtarget->hasDataBarrier() ||
553      (Subtarget->hasV6Ops() && !Subtarget->isThumb1Only())) {
554    // membarrier needs custom lowering; the rest are legal and handled
555    // normally.
556    setOperationAction(ISD::MEMBARRIER, MVT::Other, Custom);
557  } else {
558    // Set them all for expansion, which will force libcalls.
559    setOperationAction(ISD::MEMBARRIER, MVT::Other, Expand);
560    setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i8,  Expand);
561    setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i16, Expand);
562    setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i32, Expand);
563    setOperationAction(ISD::ATOMIC_SWAP,      MVT::i8,  Expand);
564    setOperationAction(ISD::ATOMIC_SWAP,      MVT::i16, Expand);
565    setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Expand);
566    setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i8,  Expand);
567    setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i16, Expand);
568    setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Expand);
569    setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i8,  Expand);
570    setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i16, Expand);
571    setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Expand);
572    setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i8,  Expand);
573    setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i16, Expand);
574    setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Expand);
575    setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i8,  Expand);
576    setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i16, Expand);
577    setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Expand);
578    setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i8,  Expand);
579    setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i16, Expand);
580    setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Expand);
581    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i8,  Expand);
582    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i16, Expand);
583    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand);
584    // Since the libcalls include locking, fold in the fences
585    setShouldFoldAtomicFences(true);
586  }
587  // 64-bit versions are always libcalls (for now)
588  setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i64, Expand);
589  setOperationAction(ISD::ATOMIC_SWAP,      MVT::i64, Expand);
590  setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i64, Expand);
591  setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i64, Expand);
592  setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i64, Expand);
593  setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i64, Expand);
594  setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i64, Expand);
595  setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Expand);
596
597  // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
598  if (!Subtarget->hasV6Ops()) {
599    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
600    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
601  }
602  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
603
604  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
605    // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
606    // iff target supports vfp2.
607    setOperationAction(ISD::BIT_CONVERT, MVT::i64, Custom);
608    setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
609  }
610
611  // We want to custom lower some of our intrinsics.
612  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
613  if (Subtarget->isTargetDarwin()) {
614    setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
615    setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
616    setOperationAction(ISD::EH_SJLJ_DISPATCHSETUP, MVT::Other, Custom);
617  }
618
619  setOperationAction(ISD::SETCC,     MVT::i32, Expand);
620  setOperationAction(ISD::SETCC,     MVT::f32, Expand);
621  setOperationAction(ISD::SETCC,     MVT::f64, Expand);
622  setOperationAction(ISD::SELECT,    MVT::i32, Custom);
623  setOperationAction(ISD::SELECT,    MVT::f32, Custom);
624  setOperationAction(ISD::SELECT,    MVT::f64, Custom);
625  setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
626  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
627  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
628
629  setOperationAction(ISD::BRCOND,    MVT::Other, Expand);
630  setOperationAction(ISD::BR_CC,     MVT::i32,   Custom);
631  setOperationAction(ISD::BR_CC,     MVT::f32,   Custom);
632  setOperationAction(ISD::BR_CC,     MVT::f64,   Custom);
633  setOperationAction(ISD::BR_JT,     MVT::Other, Custom);
634
635  // We don't support sin/cos/fmod/copysign/pow
636  setOperationAction(ISD::FSIN,      MVT::f64, Expand);
637  setOperationAction(ISD::FSIN,      MVT::f32, Expand);
638  setOperationAction(ISD::FCOS,      MVT::f32, Expand);
639  setOperationAction(ISD::FCOS,      MVT::f64, Expand);
640  setOperationAction(ISD::FREM,      MVT::f64, Expand);
641  setOperationAction(ISD::FREM,      MVT::f32, Expand);
642  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
643    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
644    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
645  }
646  setOperationAction(ISD::FPOW,      MVT::f64, Expand);
647  setOperationAction(ISD::FPOW,      MVT::f32, Expand);
648
649  // Various VFP goodness
650  if (!UseSoftFloat && !Subtarget->isThumb1Only()) {
651    // int <-> fp are custom expanded into bit_convert + ARMISD ops.
652    if (Subtarget->hasVFP2()) {
653      setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
654      setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
655      setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
656      setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
657    }
658    // Special handling for half-precision FP.
659    if (!Subtarget->hasFP16()) {
660      setOperationAction(ISD::FP16_TO_FP32, MVT::f32, Expand);
661      setOperationAction(ISD::FP32_TO_FP16, MVT::i32, Expand);
662    }
663  }
664
665  // We have target-specific dag combine patterns for the following nodes:
666  // ARMISD::VMOVRRD  - No need to call setTargetDAGCombine
667  setTargetDAGCombine(ISD::ADD);
668  setTargetDAGCombine(ISD::SUB);
669  setTargetDAGCombine(ISD::MUL);
670
671  if (Subtarget->hasV6T2Ops())
672    setTargetDAGCombine(ISD::OR);
673
674  setStackPointerRegisterToSaveRestore(ARM::SP);
675
676  if (UseSoftFloat || Subtarget->isThumb1Only() || !Subtarget->hasVFP2())
677    setSchedulingPreference(Sched::RegPressure);
678  else
679    setSchedulingPreference(Sched::Hybrid);
680
681  maxStoresPerMemcpy = 1;   //// temporary - rewrite interface to use type
682
683  // On ARM arguments smaller than 4 bytes are extended, so all arguments
684  // are at least 4 bytes aligned.
685  setMinStackArgumentAlignment(4);
686
687  benefitFromCodePlacementOpt = true;
688}
689
690std::pair<const TargetRegisterClass*, uint8_t>
691ARMTargetLowering::findRepresentativeClass(EVT VT) const{
692  const TargetRegisterClass *RRC = 0;
693  uint8_t Cost = 1;
694  switch (VT.getSimpleVT().SimpleTy) {
695  default:
696    return TargetLowering::findRepresentativeClass(VT);
697  // Use DPR as representative register class for all floating point
698  // and vector types. Since there are 32 SPR registers and 32 DPR registers so
699  // the cost is 1 for both f32 and f64.
700  case MVT::f32: case MVT::f64: case MVT::v8i8: case MVT::v4i16:
701  case MVT::v2i32: case MVT::v1i64: case MVT::v2f32:
702    RRC = ARM::DPRRegisterClass;
703    break;
704  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
705  case MVT::v4f32: case MVT::v2f64:
706    RRC = ARM::DPRRegisterClass;
707    Cost = 2;
708    break;
709  case MVT::v4i64:
710    RRC = ARM::DPRRegisterClass;
711    Cost = 4;
712    break;
713  case MVT::v8i64:
714    RRC = ARM::DPRRegisterClass;
715    Cost = 8;
716    break;
717  }
718  return std::make_pair(RRC, Cost);
719}
720
721const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
722  switch (Opcode) {
723  default: return 0;
724  case ARMISD::Wrapper:       return "ARMISD::Wrapper";
725  case ARMISD::WrapperJT:     return "ARMISD::WrapperJT";
726  case ARMISD::CALL:          return "ARMISD::CALL";
727  case ARMISD::CALL_PRED:     return "ARMISD::CALL_PRED";
728  case ARMISD::CALL_NOLINK:   return "ARMISD::CALL_NOLINK";
729  case ARMISD::tCALL:         return "ARMISD::tCALL";
730  case ARMISD::BRCOND:        return "ARMISD::BRCOND";
731  case ARMISD::BR_JT:         return "ARMISD::BR_JT";
732  case ARMISD::BR2_JT:        return "ARMISD::BR2_JT";
733  case ARMISD::RET_FLAG:      return "ARMISD::RET_FLAG";
734  case ARMISD::PIC_ADD:       return "ARMISD::PIC_ADD";
735  case ARMISD::CMP:           return "ARMISD::CMP";
736  case ARMISD::CMPZ:          return "ARMISD::CMPZ";
737  case ARMISD::CMPFP:         return "ARMISD::CMPFP";
738  case ARMISD::CMPFPw0:       return "ARMISD::CMPFPw0";
739  case ARMISD::BCC_i64:       return "ARMISD::BCC_i64";
740  case ARMISD::FMSTAT:        return "ARMISD::FMSTAT";
741  case ARMISD::CMOV:          return "ARMISD::CMOV";
742  case ARMISD::CNEG:          return "ARMISD::CNEG";
743
744  case ARMISD::RBIT:          return "ARMISD::RBIT";
745
746  case ARMISD::FTOSI:         return "ARMISD::FTOSI";
747  case ARMISD::FTOUI:         return "ARMISD::FTOUI";
748  case ARMISD::SITOF:         return "ARMISD::SITOF";
749  case ARMISD::UITOF:         return "ARMISD::UITOF";
750
751  case ARMISD::SRL_FLAG:      return "ARMISD::SRL_FLAG";
752  case ARMISD::SRA_FLAG:      return "ARMISD::SRA_FLAG";
753  case ARMISD::RRX:           return "ARMISD::RRX";
754
755  case ARMISD::VMOVRRD:       return "ARMISD::VMOVRRD";
756  case ARMISD::VMOVDRR:       return "ARMISD::VMOVDRR";
757
758  case ARMISD::EH_SJLJ_SETJMP: return "ARMISD::EH_SJLJ_SETJMP";
759  case ARMISD::EH_SJLJ_LONGJMP:return "ARMISD::EH_SJLJ_LONGJMP";
760  case ARMISD::EH_SJLJ_DISPATCHSETUP:return "ARMISD::EH_SJLJ_DISPATCHSETUP";
761
762  case ARMISD::TC_RETURN:     return "ARMISD::TC_RETURN";
763
764  case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER";
765
766  case ARMISD::DYN_ALLOC:     return "ARMISD::DYN_ALLOC";
767
768  case ARMISD::MEMBARRIER:    return "ARMISD::MEMBARRIER";
769  case ARMISD::SYNCBARRIER:   return "ARMISD::SYNCBARRIER";
770
771  case ARMISD::VCEQ:          return "ARMISD::VCEQ";
772  case ARMISD::VCGE:          return "ARMISD::VCGE";
773  case ARMISD::VCGEU:         return "ARMISD::VCGEU";
774  case ARMISD::VCGT:          return "ARMISD::VCGT";
775  case ARMISD::VCGTU:         return "ARMISD::VCGTU";
776  case ARMISD::VTST:          return "ARMISD::VTST";
777
778  case ARMISD::VSHL:          return "ARMISD::VSHL";
779  case ARMISD::VSHRs:         return "ARMISD::VSHRs";
780  case ARMISD::VSHRu:         return "ARMISD::VSHRu";
781  case ARMISD::VSHLLs:        return "ARMISD::VSHLLs";
782  case ARMISD::VSHLLu:        return "ARMISD::VSHLLu";
783  case ARMISD::VSHLLi:        return "ARMISD::VSHLLi";
784  case ARMISD::VSHRN:         return "ARMISD::VSHRN";
785  case ARMISD::VRSHRs:        return "ARMISD::VRSHRs";
786  case ARMISD::VRSHRu:        return "ARMISD::VRSHRu";
787  case ARMISD::VRSHRN:        return "ARMISD::VRSHRN";
788  case ARMISD::VQSHLs:        return "ARMISD::VQSHLs";
789  case ARMISD::VQSHLu:        return "ARMISD::VQSHLu";
790  case ARMISD::VQSHLsu:       return "ARMISD::VQSHLsu";
791  case ARMISD::VQSHRNs:       return "ARMISD::VQSHRNs";
792  case ARMISD::VQSHRNu:       return "ARMISD::VQSHRNu";
793  case ARMISD::VQSHRNsu:      return "ARMISD::VQSHRNsu";
794  case ARMISD::VQRSHRNs:      return "ARMISD::VQRSHRNs";
795  case ARMISD::VQRSHRNu:      return "ARMISD::VQRSHRNu";
796  case ARMISD::VQRSHRNsu:     return "ARMISD::VQRSHRNsu";
797  case ARMISD::VGETLANEu:     return "ARMISD::VGETLANEu";
798  case ARMISD::VGETLANEs:     return "ARMISD::VGETLANEs";
799  case ARMISD::VMOVIMM:       return "ARMISD::VMOVIMM";
800  case ARMISD::VMVNIMM:       return "ARMISD::VMVNIMM";
801  case ARMISD::VDUP:          return "ARMISD::VDUP";
802  case ARMISD::VDUPLANE:      return "ARMISD::VDUPLANE";
803  case ARMISD::VEXT:          return "ARMISD::VEXT";
804  case ARMISD::VREV64:        return "ARMISD::VREV64";
805  case ARMISD::VREV32:        return "ARMISD::VREV32";
806  case ARMISD::VREV16:        return "ARMISD::VREV16";
807  case ARMISD::VZIP:          return "ARMISD::VZIP";
808  case ARMISD::VUZP:          return "ARMISD::VUZP";
809  case ARMISD::VTRN:          return "ARMISD::VTRN";
810  case ARMISD::VMULLs:        return "ARMISD::VMULLs";
811  case ARMISD::VMULLu:        return "ARMISD::VMULLu";
812  case ARMISD::BUILD_VECTOR:  return "ARMISD::BUILD_VECTOR";
813  case ARMISD::FMAX:          return "ARMISD::FMAX";
814  case ARMISD::FMIN:          return "ARMISD::FMIN";
815  case ARMISD::BFI:           return "ARMISD::BFI";
816  }
817}
818
819/// getRegClassFor - Return the register class that should be used for the
820/// specified value type.
821TargetRegisterClass *ARMTargetLowering::getRegClassFor(EVT VT) const {
822  // Map v4i64 to QQ registers but do not make the type legal. Similarly map
823  // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
824  // load / store 4 to 8 consecutive D registers.
825  if (Subtarget->hasNEON()) {
826    if (VT == MVT::v4i64)
827      return ARM::QQPRRegisterClass;
828    else if (VT == MVT::v8i64)
829      return ARM::QQQQPRRegisterClass;
830  }
831  return TargetLowering::getRegClassFor(VT);
832}
833
834// Create a fast isel object.
835FastISel *
836ARMTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
837  return ARM::createFastISel(funcInfo);
838}
839
840/// getFunctionAlignment - Return the Log2 alignment of this function.
841unsigned ARMTargetLowering::getFunctionAlignment(const Function *F) const {
842  return getTargetMachine().getSubtarget<ARMSubtarget>().isThumb() ? 1 : 2;
843}
844
845/// getMaximalGlobalOffset - Returns the maximal possible offset which can
846/// be used for loads / stores from the global.
847unsigned ARMTargetLowering::getMaximalGlobalOffset() const {
848  return (Subtarget->isThumb1Only() ? 127 : 4095);
849}
850
851Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const {
852  unsigned NumVals = N->getNumValues();
853  if (!NumVals)
854    return Sched::RegPressure;
855
856  for (unsigned i = 0; i != NumVals; ++i) {
857    EVT VT = N->getValueType(i);
858    if (VT == MVT::Flag || VT == MVT::Other)
859      continue;
860    if (VT.isFloatingPoint() || VT.isVector())
861      return Sched::Latency;
862  }
863
864  if (!N->isMachineOpcode())
865    return Sched::RegPressure;
866
867  // Load are scheduled for latency even if there instruction itinerary
868  // is not available.
869  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
870  const TargetInstrDesc &TID = TII->get(N->getMachineOpcode());
871
872  if (TID.getNumDefs() == 0)
873    return Sched::RegPressure;
874  if (!Itins->isEmpty() &&
875      Itins->getOperandCycle(TID.getSchedClass(), 0) > 2)
876    return Sched::Latency;
877
878  return Sched::RegPressure;
879}
880
881unsigned
882ARMTargetLowering::getRegPressureLimit(const TargetRegisterClass *RC,
883                                       MachineFunction &MF) const {
884  switch (RC->getID()) {
885  default:
886    return 0;
887  case ARM::tGPRRegClassID:
888    return RegInfo->hasFP(MF) ? 4 : 5;
889  case ARM::GPRRegClassID: {
890    unsigned FP = RegInfo->hasFP(MF) ? 1 : 0;
891    return 10 - FP - (Subtarget->isR9Reserved() ? 1 : 0);
892  }
893  case ARM::SPRRegClassID:  // Currently not used as 'rep' register class.
894  case ARM::DPRRegClassID:
895    return 32 - 10;
896  }
897}
898
899//===----------------------------------------------------------------------===//
900// Lowering Code
901//===----------------------------------------------------------------------===//
902
903/// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
904static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
905  switch (CC) {
906  default: llvm_unreachable("Unknown condition code!");
907  case ISD::SETNE:  return ARMCC::NE;
908  case ISD::SETEQ:  return ARMCC::EQ;
909  case ISD::SETGT:  return ARMCC::GT;
910  case ISD::SETGE:  return ARMCC::GE;
911  case ISD::SETLT:  return ARMCC::LT;
912  case ISD::SETLE:  return ARMCC::LE;
913  case ISD::SETUGT: return ARMCC::HI;
914  case ISD::SETUGE: return ARMCC::HS;
915  case ISD::SETULT: return ARMCC::LO;
916  case ISD::SETULE: return ARMCC::LS;
917  }
918}
919
920/// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
921static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
922                        ARMCC::CondCodes &CondCode2) {
923  CondCode2 = ARMCC::AL;
924  switch (CC) {
925  default: llvm_unreachable("Unknown FP condition!");
926  case ISD::SETEQ:
927  case ISD::SETOEQ: CondCode = ARMCC::EQ; break;
928  case ISD::SETGT:
929  case ISD::SETOGT: CondCode = ARMCC::GT; break;
930  case ISD::SETGE:
931  case ISD::SETOGE: CondCode = ARMCC::GE; break;
932  case ISD::SETOLT: CondCode = ARMCC::MI; break;
933  case ISD::SETOLE: CondCode = ARMCC::LS; break;
934  case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break;
935  case ISD::SETO:   CondCode = ARMCC::VC; break;
936  case ISD::SETUO:  CondCode = ARMCC::VS; break;
937  case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break;
938  case ISD::SETUGT: CondCode = ARMCC::HI; break;
939  case ISD::SETUGE: CondCode = ARMCC::PL; break;
940  case ISD::SETLT:
941  case ISD::SETULT: CondCode = ARMCC::LT; break;
942  case ISD::SETLE:
943  case ISD::SETULE: CondCode = ARMCC::LE; break;
944  case ISD::SETNE:
945  case ISD::SETUNE: CondCode = ARMCC::NE; break;
946  }
947}
948
949//===----------------------------------------------------------------------===//
950//                      Calling Convention Implementation
951//===----------------------------------------------------------------------===//
952
953#include "ARMGenCallingConv.inc"
954
955/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
956/// given CallingConvention value.
957CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC,
958                                                 bool Return,
959                                                 bool isVarArg) const {
960  switch (CC) {
961  default:
962    llvm_unreachable("Unsupported calling convention");
963  case CallingConv::Fast:
964    if (Subtarget->hasVFP2() && !isVarArg) {
965      if (!Subtarget->isAAPCS_ABI())
966        return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
967      // For AAPCS ABI targets, just use VFP variant of the calling convention.
968      return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
969    }
970    // Fallthrough
971  case CallingConv::C: {
972    // Use target triple & subtarget features to do actual dispatch.
973    if (!Subtarget->isAAPCS_ABI())
974      return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
975    else if (Subtarget->hasVFP2() &&
976             FloatABIType == FloatABI::Hard && !isVarArg)
977      return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
978    return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
979  }
980  case CallingConv::ARM_AAPCS_VFP:
981    return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
982  case CallingConv::ARM_AAPCS:
983    return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
984  case CallingConv::ARM_APCS:
985    return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
986  }
987}
988
989/// LowerCallResult - Lower the result values of a call into the
990/// appropriate copies out of appropriate physical registers.
991SDValue
992ARMTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
993                                   CallingConv::ID CallConv, bool isVarArg,
994                                   const SmallVectorImpl<ISD::InputArg> &Ins,
995                                   DebugLoc dl, SelectionDAG &DAG,
996                                   SmallVectorImpl<SDValue> &InVals) const {
997
998  // Assign locations to each value returned by this call.
999  SmallVector<CCValAssign, 16> RVLocs;
1000  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1001                 RVLocs, *DAG.getContext());
1002  CCInfo.AnalyzeCallResult(Ins,
1003                           CCAssignFnForNode(CallConv, /* Return*/ true,
1004                                             isVarArg));
1005
1006  // Copy all of the result registers out of their specified physreg.
1007  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1008    CCValAssign VA = RVLocs[i];
1009
1010    SDValue Val;
1011    if (VA.needsCustom()) {
1012      // Handle f64 or half of a v2f64.
1013      SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1014                                      InFlag);
1015      Chain = Lo.getValue(1);
1016      InFlag = Lo.getValue(2);
1017      VA = RVLocs[++i]; // skip ahead to next loc
1018      SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1019                                      InFlag);
1020      Chain = Hi.getValue(1);
1021      InFlag = Hi.getValue(2);
1022      Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1023
1024      if (VA.getLocVT() == MVT::v2f64) {
1025        SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
1026        Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1027                          DAG.getConstant(0, MVT::i32));
1028
1029        VA = RVLocs[++i]; // skip ahead to next loc
1030        Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1031        Chain = Lo.getValue(1);
1032        InFlag = Lo.getValue(2);
1033        VA = RVLocs[++i]; // skip ahead to next loc
1034        Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1035        Chain = Hi.getValue(1);
1036        InFlag = Hi.getValue(2);
1037        Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1038        Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1039                          DAG.getConstant(1, MVT::i32));
1040      }
1041    } else {
1042      Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
1043                               InFlag);
1044      Chain = Val.getValue(1);
1045      InFlag = Val.getValue(2);
1046    }
1047
1048    switch (VA.getLocInfo()) {
1049    default: llvm_unreachable("Unknown loc info!");
1050    case CCValAssign::Full: break;
1051    case CCValAssign::BCvt:
1052      Val = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), Val);
1053      break;
1054    }
1055
1056    InVals.push_back(Val);
1057  }
1058
1059  return Chain;
1060}
1061
1062/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1063/// by "Src" to address "Dst" of size "Size".  Alignment information is
1064/// specified by the specific parameter attribute.  The copy will be passed as
1065/// a byval function parameter.
1066/// Sometimes what we are copying is the end of a larger object, the part that
1067/// does not fit in registers.
1068static SDValue
1069CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1070                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1071                          DebugLoc dl) {
1072  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1073  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1074                       /*isVolatile=*/false, /*AlwaysInline=*/false,
1075                       MachinePointerInfo(0), MachinePointerInfo(0));
1076}
1077
1078/// LowerMemOpCallTo - Store the argument to the stack.
1079SDValue
1080ARMTargetLowering::LowerMemOpCallTo(SDValue Chain,
1081                                    SDValue StackPtr, SDValue Arg,
1082                                    DebugLoc dl, SelectionDAG &DAG,
1083                                    const CCValAssign &VA,
1084                                    ISD::ArgFlagsTy Flags) const {
1085  unsigned LocMemOffset = VA.getLocMemOffset();
1086  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1087  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1088  if (Flags.isByVal())
1089    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
1090
1091  return DAG.getStore(Chain, dl, Arg, PtrOff,
1092                      MachinePointerInfo::getStack(LocMemOffset),
1093                      false, false, 0);
1094}
1095
1096void ARMTargetLowering::PassF64ArgInRegs(DebugLoc dl, SelectionDAG &DAG,
1097                                         SDValue Chain, SDValue &Arg,
1098                                         RegsToPassVector &RegsToPass,
1099                                         CCValAssign &VA, CCValAssign &NextVA,
1100                                         SDValue &StackPtr,
1101                                         SmallVector<SDValue, 8> &MemOpChains,
1102                                         ISD::ArgFlagsTy Flags) const {
1103
1104  SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
1105                              DAG.getVTList(MVT::i32, MVT::i32), Arg);
1106  RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd));
1107
1108  if (NextVA.isRegLoc())
1109    RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1)));
1110  else {
1111    assert(NextVA.isMemLoc());
1112    if (StackPtr.getNode() == 0)
1113      StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
1114
1115    MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1),
1116                                           dl, DAG, NextVA,
1117                                           Flags));
1118  }
1119}
1120
1121/// LowerCall - Lowering a call into a callseq_start <-
1122/// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
1123/// nodes.
1124SDValue
1125ARMTargetLowering::LowerCall(SDValue Chain, SDValue Callee,
1126                             CallingConv::ID CallConv, bool isVarArg,
1127                             bool &isTailCall,
1128                             const SmallVectorImpl<ISD::OutputArg> &Outs,
1129                             const SmallVectorImpl<SDValue> &OutVals,
1130                             const SmallVectorImpl<ISD::InputArg> &Ins,
1131                             DebugLoc dl, SelectionDAG &DAG,
1132                             SmallVectorImpl<SDValue> &InVals) const {
1133  MachineFunction &MF = DAG.getMachineFunction();
1134  bool IsStructRet    = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
1135  bool IsSibCall = false;
1136  // Temporarily disable tail calls so things don't break.
1137  if (!EnableARMTailCalls)
1138    isTailCall = false;
1139  if (isTailCall) {
1140    // Check if it's really possible to do a tail call.
1141    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1142                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
1143                                                   Outs, OutVals, Ins, DAG);
1144    // We don't support GuaranteedTailCallOpt for ARM, only automatically
1145    // detected sibcalls.
1146    if (isTailCall) {
1147      ++NumTailCalls;
1148      IsSibCall = true;
1149    }
1150  }
1151
1152  // Analyze operands of the call, assigning locations to each operand.
1153  SmallVector<CCValAssign, 16> ArgLocs;
1154  CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs,
1155                 *DAG.getContext());
1156  CCInfo.AnalyzeCallOperands(Outs,
1157                             CCAssignFnForNode(CallConv, /* Return*/ false,
1158                                               isVarArg));
1159
1160  // Get a count of how many bytes are to be pushed on the stack.
1161  unsigned NumBytes = CCInfo.getNextStackOffset();
1162
1163  // For tail calls, memory operands are available in our caller's stack.
1164  if (IsSibCall)
1165    NumBytes = 0;
1166
1167  // Adjust the stack pointer for the new arguments...
1168  // These operations are automatically eliminated by the prolog/epilog pass
1169  if (!IsSibCall)
1170    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
1171
1172  SDValue StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
1173
1174  RegsToPassVector RegsToPass;
1175  SmallVector<SDValue, 8> MemOpChains;
1176
1177  // Walk the register/memloc assignments, inserting copies/loads.  In the case
1178  // of tail call optimization, arguments are handled later.
1179  for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
1180       i != e;
1181       ++i, ++realArgIdx) {
1182    CCValAssign &VA = ArgLocs[i];
1183    SDValue Arg = OutVals[realArgIdx];
1184    ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
1185
1186    // Promote the value if needed.
1187    switch (VA.getLocInfo()) {
1188    default: llvm_unreachable("Unknown loc info!");
1189    case CCValAssign::Full: break;
1190    case CCValAssign::SExt:
1191      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
1192      break;
1193    case CCValAssign::ZExt:
1194      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
1195      break;
1196    case CCValAssign::AExt:
1197      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
1198      break;
1199    case CCValAssign::BCvt:
1200      Arg = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getLocVT(), Arg);
1201      break;
1202    }
1203
1204    // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
1205    if (VA.needsCustom()) {
1206      if (VA.getLocVT() == MVT::v2f64) {
1207        SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1208                                  DAG.getConstant(0, MVT::i32));
1209        SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1210                                  DAG.getConstant(1, MVT::i32));
1211
1212        PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass,
1213                         VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1214
1215        VA = ArgLocs[++i]; // skip ahead to next loc
1216        if (VA.isRegLoc()) {
1217          PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass,
1218                           VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1219        } else {
1220          assert(VA.isMemLoc());
1221
1222          MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Op1,
1223                                                 dl, DAG, VA, Flags));
1224        }
1225      } else {
1226        PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
1227                         StackPtr, MemOpChains, Flags);
1228      }
1229    } else if (VA.isRegLoc()) {
1230      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1231    } else if (!IsSibCall) {
1232      assert(VA.isMemLoc());
1233
1234      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
1235                                             dl, DAG, VA, Flags));
1236    }
1237  }
1238
1239  if (!MemOpChains.empty())
1240    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1241                        &MemOpChains[0], MemOpChains.size());
1242
1243  // Build a sequence of copy-to-reg nodes chained together with token chain
1244  // and flag operands which copy the outgoing args into the appropriate regs.
1245  SDValue InFlag;
1246  // Tail call byval lowering might overwrite argument registers so in case of
1247  // tail call optimization the copies to registers are lowered later.
1248  if (!isTailCall)
1249    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1250      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1251                               RegsToPass[i].second, InFlag);
1252      InFlag = Chain.getValue(1);
1253    }
1254
1255  // For tail calls lower the arguments to the 'real' stack slot.
1256  if (isTailCall) {
1257    // Force all the incoming stack arguments to be loaded from the stack
1258    // before any new outgoing arguments are stored to the stack, because the
1259    // outgoing stack slots may alias the incoming argument stack slots, and
1260    // the alias isn't otherwise explicit. This is slightly more conservative
1261    // than necessary, because it means that each store effectively depends
1262    // on every argument instead of just those arguments it would clobber.
1263
1264    // Do not flag preceeding copytoreg stuff together with the following stuff.
1265    InFlag = SDValue();
1266    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1267      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1268                               RegsToPass[i].second, InFlag);
1269      InFlag = Chain.getValue(1);
1270    }
1271    InFlag =SDValue();
1272  }
1273
1274  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
1275  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
1276  // node so that legalize doesn't hack it.
1277  bool isDirect = false;
1278  bool isARMFunc = false;
1279  bool isLocalARMFunc = false;
1280  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1281
1282  if (EnableARMLongCalls) {
1283    assert (getTargetMachine().getRelocationModel() == Reloc::Static
1284            && "long-calls with non-static relocation model!");
1285    // Handle a global address or an external symbol. If it's not one of
1286    // those, the target's already in a register, so we don't need to do
1287    // anything extra.
1288    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1289      const GlobalValue *GV = G->getGlobal();
1290      // Create a constant pool entry for the callee address
1291      unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1292      ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV,
1293                                                           ARMPCLabelIndex,
1294                                                           ARMCP::CPValue, 0);
1295      // Get the address of the callee into a register
1296      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1297      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1298      Callee = DAG.getLoad(getPointerTy(), dl,
1299                           DAG.getEntryNode(), CPAddr,
1300                           MachinePointerInfo::getConstantPool(),
1301                           false, false, 0);
1302    } else if (ExternalSymbolSDNode *S=dyn_cast<ExternalSymbolSDNode>(Callee)) {
1303      const char *Sym = S->getSymbol();
1304
1305      // Create a constant pool entry for the callee address
1306      unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1307      ARMConstantPoolValue *CPV = new ARMConstantPoolValue(*DAG.getContext(),
1308                                                       Sym, ARMPCLabelIndex, 0);
1309      // Get the address of the callee into a register
1310      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1311      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1312      Callee = DAG.getLoad(getPointerTy(), dl,
1313                           DAG.getEntryNode(), CPAddr,
1314                           MachinePointerInfo::getConstantPool(),
1315                           false, false, 0);
1316    }
1317  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1318    const GlobalValue *GV = G->getGlobal();
1319    isDirect = true;
1320    bool isExt = GV->isDeclaration() || GV->isWeakForLinker();
1321    bool isStub = (isExt && Subtarget->isTargetDarwin()) &&
1322                   getTargetMachine().getRelocationModel() != Reloc::Static;
1323    isARMFunc = !Subtarget->isThumb() || isStub;
1324    // ARM call to a local ARM function is predicable.
1325    isLocalARMFunc = !Subtarget->isThumb() && (!isExt || !ARMInterworking);
1326    // tBX takes a register source operand.
1327    if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
1328      unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1329      ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV,
1330                                                           ARMPCLabelIndex,
1331                                                           ARMCP::CPValue, 4);
1332      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1333      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1334      Callee = DAG.getLoad(getPointerTy(), dl,
1335                           DAG.getEntryNode(), CPAddr,
1336                           MachinePointerInfo::getConstantPool(),
1337                           false, false, 0);
1338      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1339      Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
1340                           getPointerTy(), Callee, PICLabel);
1341    } else {
1342      // On ELF targets for PIC code, direct calls should go through the PLT
1343      unsigned OpFlags = 0;
1344      if (Subtarget->isTargetELF() &&
1345                  getTargetMachine().getRelocationModel() == Reloc::PIC_)
1346        OpFlags = ARMII::MO_PLT;
1347      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
1348    }
1349  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1350    isDirect = true;
1351    bool isStub = Subtarget->isTargetDarwin() &&
1352                  getTargetMachine().getRelocationModel() != Reloc::Static;
1353    isARMFunc = !Subtarget->isThumb() || isStub;
1354    // tBX takes a register source operand.
1355    const char *Sym = S->getSymbol();
1356    if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
1357      unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1358      ARMConstantPoolValue *CPV = new ARMConstantPoolValue(*DAG.getContext(),
1359                                                       Sym, ARMPCLabelIndex, 4);
1360      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1361      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1362      Callee = DAG.getLoad(getPointerTy(), dl,
1363                           DAG.getEntryNode(), CPAddr,
1364                           MachinePointerInfo::getConstantPool(),
1365                           false, false, 0);
1366      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1367      Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
1368                           getPointerTy(), Callee, PICLabel);
1369    } else {
1370      unsigned OpFlags = 0;
1371      // On ELF targets for PIC code, direct calls should go through the PLT
1372      if (Subtarget->isTargetELF() &&
1373                  getTargetMachine().getRelocationModel() == Reloc::PIC_)
1374        OpFlags = ARMII::MO_PLT;
1375      Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlags);
1376    }
1377  }
1378
1379  // FIXME: handle tail calls differently.
1380  unsigned CallOpc;
1381  if (Subtarget->isThumb()) {
1382    if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps())
1383      CallOpc = ARMISD::CALL_NOLINK;
1384    else
1385      CallOpc = isARMFunc ? ARMISD::CALL : ARMISD::tCALL;
1386  } else {
1387    CallOpc = (isDirect || Subtarget->hasV5TOps())
1388      ? (isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL)
1389      : ARMISD::CALL_NOLINK;
1390  }
1391
1392  std::vector<SDValue> Ops;
1393  Ops.push_back(Chain);
1394  Ops.push_back(Callee);
1395
1396  // Add argument registers to the end of the list so that they are known live
1397  // into the call.
1398  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1399    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1400                                  RegsToPass[i].second.getValueType()));
1401
1402  if (InFlag.getNode())
1403    Ops.push_back(InFlag);
1404
1405  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1406  if (isTailCall)
1407    return DAG.getNode(ARMISD::TC_RETURN, dl, NodeTys, &Ops[0], Ops.size());
1408
1409  // Returns a chain and a flag for retval copy to use.
1410  Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size());
1411  InFlag = Chain.getValue(1);
1412
1413  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
1414                             DAG.getIntPtrConstant(0, true), InFlag);
1415  if (!Ins.empty())
1416    InFlag = Chain.getValue(1);
1417
1418  // Handle result values, copying them out of physregs into vregs that we
1419  // return.
1420  return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins,
1421                         dl, DAG, InVals);
1422}
1423
1424/// MatchingStackOffset - Return true if the given stack call argument is
1425/// already available in the same position (relatively) of the caller's
1426/// incoming argument stack.
1427static
1428bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
1429                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
1430                         const ARMInstrInfo *TII) {
1431  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
1432  int FI = INT_MAX;
1433  if (Arg.getOpcode() == ISD::CopyFromReg) {
1434    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
1435    if (!VR || TargetRegisterInfo::isPhysicalRegister(VR))
1436      return false;
1437    MachineInstr *Def = MRI->getVRegDef(VR);
1438    if (!Def)
1439      return false;
1440    if (!Flags.isByVal()) {
1441      if (!TII->isLoadFromStackSlot(Def, FI))
1442        return false;
1443    } else {
1444      return false;
1445    }
1446  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
1447    if (Flags.isByVal())
1448      // ByVal argument is passed in as a pointer but it's now being
1449      // dereferenced. e.g.
1450      // define @foo(%struct.X* %A) {
1451      //   tail call @bar(%struct.X* byval %A)
1452      // }
1453      return false;
1454    SDValue Ptr = Ld->getBasePtr();
1455    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
1456    if (!FINode)
1457      return false;
1458    FI = FINode->getIndex();
1459  } else
1460    return false;
1461
1462  assert(FI != INT_MAX);
1463  if (!MFI->isFixedObjectIndex(FI))
1464    return false;
1465  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
1466}
1467
1468/// IsEligibleForTailCallOptimization - Check whether the call is eligible
1469/// for tail call optimization. Targets which want to do tail call
1470/// optimization should implement this function.
1471bool
1472ARMTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
1473                                                     CallingConv::ID CalleeCC,
1474                                                     bool isVarArg,
1475                                                     bool isCalleeStructRet,
1476                                                     bool isCallerStructRet,
1477                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
1478                                    const SmallVectorImpl<SDValue> &OutVals,
1479                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1480                                                     SelectionDAG& DAG) const {
1481  const Function *CallerF = DAG.getMachineFunction().getFunction();
1482  CallingConv::ID CallerCC = CallerF->getCallingConv();
1483  bool CCMatch = CallerCC == CalleeCC;
1484
1485  // Look for obvious safe cases to perform tail call optimization that do not
1486  // require ABI changes. This is what gcc calls sibcall.
1487
1488  // Do not sibcall optimize vararg calls unless the call site is not passing
1489  // any arguments.
1490  if (isVarArg && !Outs.empty())
1491    return false;
1492
1493  // Also avoid sibcall optimization if either caller or callee uses struct
1494  // return semantics.
1495  if (isCalleeStructRet || isCallerStructRet)
1496    return false;
1497
1498  // FIXME: Completely disable sibcall for Thumb1 since Thumb1RegisterInfo::
1499  // emitEpilogue is not ready for them.
1500  // Doing this is tricky, since the LDM/POP instruction on Thumb doesn't take
1501  // LR.  This means if we need to reload LR, it takes an extra instructions,
1502  // which outweighs the value of the tail call; but here we don't know yet
1503  // whether LR is going to be used.  Probably the right approach is to
1504  // generate the tail call here and turn it back into CALL/RET in
1505  // emitEpilogue if LR is used.
1506  if (Subtarget->isThumb1Only())
1507    return false;
1508
1509  // For the moment, we can only do this to functions defined in this
1510  // compilation, or to indirect calls.  A Thumb B to an ARM function,
1511  // or vice versa, is not easily fixed up in the linker unlike BL.
1512  // (We could do this by loading the address of the callee into a register;
1513  // that is an extra instruction over the direct call and burns a register
1514  // as well, so is not likely to be a win.)
1515
1516  // It might be safe to remove this restriction on non-Darwin.
1517
1518  // Thumb1 PIC calls to external symbols use BX, so they can be tail calls,
1519  // but we need to make sure there are enough registers; the only valid
1520  // registers are the 4 used for parameters.  We don't currently do this
1521  // case.
1522  if (isa<ExternalSymbolSDNode>(Callee))
1523      return false;
1524
1525  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1526    const GlobalValue *GV = G->getGlobal();
1527    if (GV->isDeclaration() || GV->isWeakForLinker())
1528      return false;
1529  }
1530
1531  // If the calling conventions do not match, then we'd better make sure the
1532  // results are returned in the same way as what the caller expects.
1533  if (!CCMatch) {
1534    SmallVector<CCValAssign, 16> RVLocs1;
1535    CCState CCInfo1(CalleeCC, false, getTargetMachine(),
1536                    RVLocs1, *DAG.getContext());
1537    CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForNode(CalleeCC, true, isVarArg));
1538
1539    SmallVector<CCValAssign, 16> RVLocs2;
1540    CCState CCInfo2(CallerCC, false, getTargetMachine(),
1541                    RVLocs2, *DAG.getContext());
1542    CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForNode(CallerCC, true, isVarArg));
1543
1544    if (RVLocs1.size() != RVLocs2.size())
1545      return false;
1546    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
1547      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
1548        return false;
1549      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
1550        return false;
1551      if (RVLocs1[i].isRegLoc()) {
1552        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
1553          return false;
1554      } else {
1555        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
1556          return false;
1557      }
1558    }
1559  }
1560
1561  // If the callee takes no arguments then go on to check the results of the
1562  // call.
1563  if (!Outs.empty()) {
1564    // Check if stack adjustment is needed. For now, do not do this if any
1565    // argument is passed on the stack.
1566    SmallVector<CCValAssign, 16> ArgLocs;
1567    CCState CCInfo(CalleeCC, isVarArg, getTargetMachine(),
1568                   ArgLocs, *DAG.getContext());
1569    CCInfo.AnalyzeCallOperands(Outs,
1570                               CCAssignFnForNode(CalleeCC, false, isVarArg));
1571    if (CCInfo.getNextStackOffset()) {
1572      MachineFunction &MF = DAG.getMachineFunction();
1573
1574      // Check if the arguments are already laid out in the right way as
1575      // the caller's fixed stack objects.
1576      MachineFrameInfo *MFI = MF.getFrameInfo();
1577      const MachineRegisterInfo *MRI = &MF.getRegInfo();
1578      const ARMInstrInfo *TII =
1579        ((ARMTargetMachine&)getTargetMachine()).getInstrInfo();
1580      for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
1581           i != e;
1582           ++i, ++realArgIdx) {
1583        CCValAssign &VA = ArgLocs[i];
1584        EVT RegVT = VA.getLocVT();
1585        SDValue Arg = OutVals[realArgIdx];
1586        ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
1587        if (VA.getLocInfo() == CCValAssign::Indirect)
1588          return false;
1589        if (VA.needsCustom()) {
1590          // f64 and vector types are split into multiple registers or
1591          // register/stack-slot combinations.  The types will not match
1592          // the registers; give up on memory f64 refs until we figure
1593          // out what to do about this.
1594          if (!VA.isRegLoc())
1595            return false;
1596          if (!ArgLocs[++i].isRegLoc())
1597            return false;
1598          if (RegVT == MVT::v2f64) {
1599            if (!ArgLocs[++i].isRegLoc())
1600              return false;
1601            if (!ArgLocs[++i].isRegLoc())
1602              return false;
1603          }
1604        } else if (!VA.isRegLoc()) {
1605          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
1606                                   MFI, MRI, TII))
1607            return false;
1608        }
1609      }
1610    }
1611  }
1612
1613  return true;
1614}
1615
1616SDValue
1617ARMTargetLowering::LowerReturn(SDValue Chain,
1618                               CallingConv::ID CallConv, bool isVarArg,
1619                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1620                               const SmallVectorImpl<SDValue> &OutVals,
1621                               DebugLoc dl, SelectionDAG &DAG) const {
1622
1623  // CCValAssign - represent the assignment of the return value to a location.
1624  SmallVector<CCValAssign, 16> RVLocs;
1625
1626  // CCState - Info about the registers and stack slots.
1627  CCState CCInfo(CallConv, isVarArg, getTargetMachine(), RVLocs,
1628                 *DAG.getContext());
1629
1630  // Analyze outgoing return values.
1631  CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv, /* Return */ true,
1632                                               isVarArg));
1633
1634  // If this is the first return lowered for this function, add
1635  // the regs to the liveout set for the function.
1636  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
1637    for (unsigned i = 0; i != RVLocs.size(); ++i)
1638      if (RVLocs[i].isRegLoc())
1639        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
1640  }
1641
1642  SDValue Flag;
1643
1644  // Copy the result values into the output registers.
1645  for (unsigned i = 0, realRVLocIdx = 0;
1646       i != RVLocs.size();
1647       ++i, ++realRVLocIdx) {
1648    CCValAssign &VA = RVLocs[i];
1649    assert(VA.isRegLoc() && "Can only return in registers!");
1650
1651    SDValue Arg = OutVals[realRVLocIdx];
1652
1653    switch (VA.getLocInfo()) {
1654    default: llvm_unreachable("Unknown loc info!");
1655    case CCValAssign::Full: break;
1656    case CCValAssign::BCvt:
1657      Arg = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getLocVT(), Arg);
1658      break;
1659    }
1660
1661    if (VA.needsCustom()) {
1662      if (VA.getLocVT() == MVT::v2f64) {
1663        // Extract the first half and return it in two registers.
1664        SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1665                                   DAG.getConstant(0, MVT::i32));
1666        SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl,
1667                                       DAG.getVTList(MVT::i32, MVT::i32), Half);
1668
1669        Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), HalfGPRs, Flag);
1670        Flag = Chain.getValue(1);
1671        VA = RVLocs[++i]; // skip ahead to next loc
1672        Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
1673                                 HalfGPRs.getValue(1), Flag);
1674        Flag = Chain.getValue(1);
1675        VA = RVLocs[++i]; // skip ahead to next loc
1676
1677        // Extract the 2nd half and fall through to handle it as an f64 value.
1678        Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1679                          DAG.getConstant(1, MVT::i32));
1680      }
1681      // Legalize ret f64 -> ret 2 x i32.  We always have fmrrd if f64 is
1682      // available.
1683      SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
1684                                  DAG.getVTList(MVT::i32, MVT::i32), &Arg, 1);
1685      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd, Flag);
1686      Flag = Chain.getValue(1);
1687      VA = RVLocs[++i]; // skip ahead to next loc
1688      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd.getValue(1),
1689                               Flag);
1690    } else
1691      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
1692
1693    // Guarantee that all emitted copies are
1694    // stuck together, avoiding something bad.
1695    Flag = Chain.getValue(1);
1696  }
1697
1698  SDValue result;
1699  if (Flag.getNode())
1700    result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain, Flag);
1701  else // Return Void
1702    result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain);
1703
1704  return result;
1705}
1706
1707// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
1708// their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
1709// one of the above mentioned nodes. It has to be wrapped because otherwise
1710// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
1711// be used to form addressing mode. These wrapped nodes will be selected
1712// into MOVi.
1713static SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
1714  EVT PtrVT = Op.getValueType();
1715  // FIXME there is no actual debug info here
1716  DebugLoc dl = Op.getDebugLoc();
1717  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1718  SDValue Res;
1719  if (CP->isMachineConstantPoolEntry())
1720    Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
1721                                    CP->getAlignment());
1722  else
1723    Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
1724                                    CP->getAlignment());
1725  return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
1726}
1727
1728unsigned ARMTargetLowering::getJumpTableEncoding() const {
1729  return MachineJumpTableInfo::EK_Inline;
1730}
1731
1732SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op,
1733                                             SelectionDAG &DAG) const {
1734  MachineFunction &MF = DAG.getMachineFunction();
1735  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1736  unsigned ARMPCLabelIndex = 0;
1737  DebugLoc DL = Op.getDebugLoc();
1738  EVT PtrVT = getPointerTy();
1739  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1740  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
1741  SDValue CPAddr;
1742  if (RelocM == Reloc::Static) {
1743    CPAddr = DAG.getTargetConstantPool(BA, PtrVT, 4);
1744  } else {
1745    unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
1746    ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1747    ARMConstantPoolValue *CPV = new ARMConstantPoolValue(BA, ARMPCLabelIndex,
1748                                                         ARMCP::CPBlockAddress,
1749                                                         PCAdj);
1750    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1751  }
1752  CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr);
1753  SDValue Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), CPAddr,
1754                               MachinePointerInfo::getConstantPool(),
1755                               false, false, 0);
1756  if (RelocM == Reloc::Static)
1757    return Result;
1758  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1759  return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel);
1760}
1761
1762// Lower ISD::GlobalTLSAddress using the "general dynamic" model
1763SDValue
1764ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
1765                                                 SelectionDAG &DAG) const {
1766  DebugLoc dl = GA->getDebugLoc();
1767  EVT PtrVT = getPointerTy();
1768  unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
1769  MachineFunction &MF = DAG.getMachineFunction();
1770  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1771  unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1772  ARMConstantPoolValue *CPV =
1773    new ARMConstantPoolValue(GA->getGlobal(), ARMPCLabelIndex,
1774                             ARMCP::CPValue, PCAdj, "tlsgd", true);
1775  SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1776  Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
1777  Argument = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Argument,
1778                         MachinePointerInfo::getConstantPool(),
1779                         false, false, 0);
1780  SDValue Chain = Argument.getValue(1);
1781
1782  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1783  Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);
1784
1785  // call __tls_get_addr.
1786  ArgListTy Args;
1787  ArgListEntry Entry;
1788  Entry.Node = Argument;
1789  Entry.Ty = (const Type *) Type::getInt32Ty(*DAG.getContext());
1790  Args.push_back(Entry);
1791  // FIXME: is there useful debug info available here?
1792  std::pair<SDValue, SDValue> CallResult =
1793    LowerCallTo(Chain, (const Type *) Type::getInt32Ty(*DAG.getContext()),
1794                false, false, false, false,
1795                0, CallingConv::C, false, /*isReturnValueUsed=*/true,
1796                DAG.getExternalSymbol("__tls_get_addr", PtrVT), Args, DAG, dl);
1797  return CallResult.first;
1798}
1799
1800// Lower ISD::GlobalTLSAddress using the "initial exec" or
1801// "local exec" model.
1802SDValue
1803ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
1804                                        SelectionDAG &DAG) const {
1805  const GlobalValue *GV = GA->getGlobal();
1806  DebugLoc dl = GA->getDebugLoc();
1807  SDValue Offset;
1808  SDValue Chain = DAG.getEntryNode();
1809  EVT PtrVT = getPointerTy();
1810  // Get the Thread Pointer
1811  SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
1812
1813  if (GV->isDeclaration()) {
1814    MachineFunction &MF = DAG.getMachineFunction();
1815    ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1816    unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1817    // Initial exec model.
1818    unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
1819    ARMConstantPoolValue *CPV =
1820      new ARMConstantPoolValue(GA->getGlobal(), ARMPCLabelIndex,
1821                               ARMCP::CPValue, PCAdj, "gottpoff", true);
1822    Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1823    Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
1824    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
1825                         MachinePointerInfo::getConstantPool(),
1826                         false, false, 0);
1827    Chain = Offset.getValue(1);
1828
1829    SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1830    Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
1831
1832    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
1833                         MachinePointerInfo::getConstantPool(),
1834                         false, false, 0);
1835  } else {
1836    // local exec model
1837    ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV, "tpoff");
1838    Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1839    Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
1840    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
1841                         MachinePointerInfo::getConstantPool(),
1842                         false, false, 0);
1843  }
1844
1845  // The address of the thread local variable is the add of the thread
1846  // pointer with the offset of the variable.
1847  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
1848}
1849
1850SDValue
1851ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
1852  // TODO: implement the "local dynamic" model
1853  assert(Subtarget->isTargetELF() &&
1854         "TLS not implemented for non-ELF targets");
1855  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
1856  // If the relocation model is PIC, use the "General Dynamic" TLS Model,
1857  // otherwise use the "Local Exec" TLS Model
1858  if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
1859    return LowerToTLSGeneralDynamicModel(GA, DAG);
1860  else
1861    return LowerToTLSExecModels(GA, DAG);
1862}
1863
1864SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
1865                                                 SelectionDAG &DAG) const {
1866  EVT PtrVT = getPointerTy();
1867  DebugLoc dl = Op.getDebugLoc();
1868  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
1869  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
1870  if (RelocM == Reloc::PIC_) {
1871    bool UseGOTOFF = GV->hasLocalLinkage() || GV->hasHiddenVisibility();
1872    ARMConstantPoolValue *CPV =
1873      new ARMConstantPoolValue(GV, UseGOTOFF ? "GOTOFF" : "GOT");
1874    SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1875    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1876    SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
1877                                 CPAddr,
1878                                 MachinePointerInfo::getConstantPool(),
1879                                 false, false, 0);
1880    SDValue Chain = Result.getValue(1);
1881    SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
1882    Result = DAG.getNode(ISD::ADD, dl, PtrVT, Result, GOT);
1883    if (!UseGOTOFF)
1884      Result = DAG.getLoad(PtrVT, dl, Chain, Result,
1885                           MachinePointerInfo::getGOT(), false, false, 0);
1886    return Result;
1887  } else {
1888    // If we have T2 ops, we can materialize the address directly via movt/movw
1889    // pair. This is always cheaper.
1890    if (Subtarget->useMovt()) {
1891      return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
1892                         DAG.getTargetGlobalAddress(GV, dl, PtrVT));
1893    } else {
1894      SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
1895      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1896      return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
1897                         MachinePointerInfo::getConstantPool(),
1898                         false, false, 0);
1899    }
1900  }
1901}
1902
1903SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
1904                                                    SelectionDAG &DAG) const {
1905  MachineFunction &MF = DAG.getMachineFunction();
1906  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1907  unsigned ARMPCLabelIndex = 0;
1908  EVT PtrVT = getPointerTy();
1909  DebugLoc dl = Op.getDebugLoc();
1910  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
1911  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
1912  SDValue CPAddr;
1913  if (RelocM == Reloc::Static)
1914    CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
1915  else {
1916    ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1917    unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : (Subtarget->isThumb()?4:8);
1918    ARMConstantPoolValue *CPV =
1919      new ARMConstantPoolValue(GV, ARMPCLabelIndex, ARMCP::CPValue, PCAdj);
1920    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1921  }
1922  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1923
1924  SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
1925                               MachinePointerInfo::getConstantPool(),
1926                               false, false, 0);
1927  SDValue Chain = Result.getValue(1);
1928
1929  if (RelocM == Reloc::PIC_) {
1930    SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1931    Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
1932  }
1933
1934  if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
1935    Result = DAG.getLoad(PtrVT, dl, Chain, Result, MachinePointerInfo::getGOT(),
1936                         false, false, 0);
1937
1938  return Result;
1939}
1940
1941SDValue ARMTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op,
1942                                                    SelectionDAG &DAG) const {
1943  assert(Subtarget->isTargetELF() &&
1944         "GLOBAL OFFSET TABLE not implemented for non-ELF targets");
1945  MachineFunction &MF = DAG.getMachineFunction();
1946  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1947  unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1948  EVT PtrVT = getPointerTy();
1949  DebugLoc dl = Op.getDebugLoc();
1950  unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
1951  ARMConstantPoolValue *CPV = new ARMConstantPoolValue(*DAG.getContext(),
1952                                                       "_GLOBAL_OFFSET_TABLE_",
1953                                                       ARMPCLabelIndex, PCAdj);
1954  SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1955  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1956  SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
1957                               MachinePointerInfo::getConstantPool(),
1958                               false, false, 0);
1959  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1960  return DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
1961}
1962
1963SDValue
1964ARMTargetLowering::LowerEH_SJLJ_DISPATCHSETUP(SDValue Op, SelectionDAG &DAG)
1965  const {
1966  DebugLoc dl = Op.getDebugLoc();
1967  return DAG.getNode(ARMISD::EH_SJLJ_DISPATCHSETUP, dl, MVT::Other,
1968                     Op.getOperand(0), Op.getOperand(1));
1969}
1970
1971SDValue
1972ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const {
1973  DebugLoc dl = Op.getDebugLoc();
1974  SDValue Val = DAG.getConstant(0, MVT::i32);
1975  return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl, MVT::i32, Op.getOperand(0),
1976                     Op.getOperand(1), Val);
1977}
1978
1979SDValue
1980ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const {
1981  DebugLoc dl = Op.getDebugLoc();
1982  return DAG.getNode(ARMISD::EH_SJLJ_LONGJMP, dl, MVT::Other, Op.getOperand(0),
1983                     Op.getOperand(1), DAG.getConstant(0, MVT::i32));
1984}
1985
1986SDValue
1987ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG,
1988                                          const ARMSubtarget *Subtarget) const {
1989  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1990  DebugLoc dl = Op.getDebugLoc();
1991  switch (IntNo) {
1992  default: return SDValue();    // Don't custom lower most intrinsics.
1993  case Intrinsic::arm_thread_pointer: {
1994    EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1995    return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
1996  }
1997  case Intrinsic::eh_sjlj_lsda: {
1998    MachineFunction &MF = DAG.getMachineFunction();
1999    ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2000    unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
2001    EVT PtrVT = getPointerTy();
2002    DebugLoc dl = Op.getDebugLoc();
2003    Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2004    SDValue CPAddr;
2005    unsigned PCAdj = (RelocM != Reloc::PIC_)
2006      ? 0 : (Subtarget->isThumb() ? 4 : 8);
2007    ARMConstantPoolValue *CPV =
2008      new ARMConstantPoolValue(MF.getFunction(), ARMPCLabelIndex,
2009                               ARMCP::CPLSDA, PCAdj);
2010    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2011    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2012    SDValue Result =
2013      DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2014                  MachinePointerInfo::getConstantPool(),
2015                  false, false, 0);
2016
2017    if (RelocM == Reloc::PIC_) {
2018      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2019      Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2020    }
2021    return Result;
2022  }
2023  }
2024}
2025
2026static SDValue LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG,
2027                               const ARMSubtarget *Subtarget) {
2028  DebugLoc dl = Op.getDebugLoc();
2029  SDValue Op5 = Op.getOperand(5);
2030  unsigned isDeviceBarrier = cast<ConstantSDNode>(Op5)->getZExtValue();
2031  // Some subtargets which have dmb and dsb instructions can handle barriers
2032  // directly. Some ARMv6 cpus can support them with the help of mcr
2033  // instruction. Thumb1 and pre-v6 ARM mode use a libcall instead and should
2034  // never get here.
2035  unsigned Opc = isDeviceBarrier ? ARMISD::SYNCBARRIER : ARMISD::MEMBARRIER;
2036  if (Subtarget->hasDataBarrier())
2037    return DAG.getNode(Opc, dl, MVT::Other, Op.getOperand(0));
2038  else {
2039    assert(Subtarget->hasV6Ops() && !Subtarget->isThumb1Only() &&
2040           "Unexpected ISD::MEMBARRIER encountered. Should be libcall!");
2041    return DAG.getNode(Opc, dl, MVT::Other, Op.getOperand(0),
2042                       DAG.getConstant(0, MVT::i32));
2043  }
2044}
2045
2046static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) {
2047  MachineFunction &MF = DAG.getMachineFunction();
2048  ARMFunctionInfo *FuncInfo = MF.getInfo<ARMFunctionInfo>();
2049
2050  // vastart just stores the address of the VarArgsFrameIndex slot into the
2051  // memory location argument.
2052  DebugLoc dl = Op.getDebugLoc();
2053  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2054  SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2055  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2056  return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
2057                      MachinePointerInfo(SV), false, false, 0);
2058}
2059
2060SDValue
2061ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA, CCValAssign &NextVA,
2062                                        SDValue &Root, SelectionDAG &DAG,
2063                                        DebugLoc dl) const {
2064  MachineFunction &MF = DAG.getMachineFunction();
2065  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2066
2067  TargetRegisterClass *RC;
2068  if (AFI->isThumb1OnlyFunction())
2069    RC = ARM::tGPRRegisterClass;
2070  else
2071    RC = ARM::GPRRegisterClass;
2072
2073  // Transform the arguments stored in physical registers into virtual ones.
2074  unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2075  SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
2076
2077  SDValue ArgValue2;
2078  if (NextVA.isMemLoc()) {
2079    MachineFrameInfo *MFI = MF.getFrameInfo();
2080    int FI = MFI->CreateFixedObject(4, NextVA.getLocMemOffset(), true);
2081
2082    // Create load node to retrieve arguments from the stack.
2083    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2084    ArgValue2 = DAG.getLoad(MVT::i32, dl, Root, FIN,
2085                            MachinePointerInfo::getFixedStack(FI),
2086                            false, false, 0);
2087  } else {
2088    Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
2089    ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
2090  }
2091
2092  return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2);
2093}
2094
2095SDValue
2096ARMTargetLowering::LowerFormalArguments(SDValue Chain,
2097                                        CallingConv::ID CallConv, bool isVarArg,
2098                                        const SmallVectorImpl<ISD::InputArg>
2099                                          &Ins,
2100                                        DebugLoc dl, SelectionDAG &DAG,
2101                                        SmallVectorImpl<SDValue> &InVals)
2102                                          const {
2103
2104  MachineFunction &MF = DAG.getMachineFunction();
2105  MachineFrameInfo *MFI = MF.getFrameInfo();
2106
2107  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2108
2109  // Assign locations to all of the incoming arguments.
2110  SmallVector<CCValAssign, 16> ArgLocs;
2111  CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs,
2112                 *DAG.getContext());
2113  CCInfo.AnalyzeFormalArguments(Ins,
2114                                CCAssignFnForNode(CallConv, /* Return*/ false,
2115                                                  isVarArg));
2116
2117  SmallVector<SDValue, 16> ArgValues;
2118
2119  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2120    CCValAssign &VA = ArgLocs[i];
2121
2122    // Arguments stored in registers.
2123    if (VA.isRegLoc()) {
2124      EVT RegVT = VA.getLocVT();
2125
2126      SDValue ArgValue;
2127      if (VA.needsCustom()) {
2128        // f64 and vector types are split up into multiple registers or
2129        // combinations of registers and stack slots.
2130        if (VA.getLocVT() == MVT::v2f64) {
2131          SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i],
2132                                                   Chain, DAG, dl);
2133          VA = ArgLocs[++i]; // skip ahead to next loc
2134          SDValue ArgValue2;
2135          if (VA.isMemLoc()) {
2136            int FI = MFI->CreateFixedObject(8, VA.getLocMemOffset(), true);
2137            SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2138            ArgValue2 = DAG.getLoad(MVT::f64, dl, Chain, FIN,
2139                                    MachinePointerInfo::getFixedStack(FI),
2140                                    false, false, 0);
2141          } else {
2142            ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i],
2143                                             Chain, DAG, dl);
2144          }
2145          ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
2146          ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
2147                                 ArgValue, ArgValue1, DAG.getIntPtrConstant(0));
2148          ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
2149                                 ArgValue, ArgValue2, DAG.getIntPtrConstant(1));
2150        } else
2151          ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
2152
2153      } else {
2154        TargetRegisterClass *RC;
2155
2156        if (RegVT == MVT::f32)
2157          RC = ARM::SPRRegisterClass;
2158        else if (RegVT == MVT::f64)
2159          RC = ARM::DPRRegisterClass;
2160        else if (RegVT == MVT::v2f64)
2161          RC = ARM::QPRRegisterClass;
2162        else if (RegVT == MVT::i32)
2163          RC = (AFI->isThumb1OnlyFunction() ?
2164                ARM::tGPRRegisterClass : ARM::GPRRegisterClass);
2165        else
2166          llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
2167
2168        // Transform the arguments in physical registers into virtual ones.
2169        unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2170        ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
2171      }
2172
2173      // If this is an 8 or 16-bit value, it is really passed promoted
2174      // to 32 bits.  Insert an assert[sz]ext to capture this, then
2175      // truncate to the right size.
2176      switch (VA.getLocInfo()) {
2177      default: llvm_unreachable("Unknown loc info!");
2178      case CCValAssign::Full: break;
2179      case CCValAssign::BCvt:
2180        ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
2181        break;
2182      case CCValAssign::SExt:
2183        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
2184                               DAG.getValueType(VA.getValVT()));
2185        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
2186        break;
2187      case CCValAssign::ZExt:
2188        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
2189                               DAG.getValueType(VA.getValVT()));
2190        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
2191        break;
2192      }
2193
2194      InVals.push_back(ArgValue);
2195
2196    } else { // VA.isRegLoc()
2197
2198      // sanity check
2199      assert(VA.isMemLoc());
2200      assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered");
2201
2202      unsigned ArgSize = VA.getLocVT().getSizeInBits()/8;
2203      int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(), true);
2204
2205      // Create load nodes to retrieve arguments from the stack.
2206      SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2207      InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
2208                                   MachinePointerInfo::getFixedStack(FI),
2209                                   false, false, 0));
2210    }
2211  }
2212
2213  // varargs
2214  if (isVarArg) {
2215    static const unsigned GPRArgRegs[] = {
2216      ARM::R0, ARM::R1, ARM::R2, ARM::R3
2217    };
2218
2219    unsigned NumGPRs = CCInfo.getFirstUnallocated
2220      (GPRArgRegs, sizeof(GPRArgRegs) / sizeof(GPRArgRegs[0]));
2221
2222    unsigned Align = MF.getTarget().getFrameInfo()->getStackAlignment();
2223    unsigned VARegSize = (4 - NumGPRs) * 4;
2224    unsigned VARegSaveSize = (VARegSize + Align - 1) & ~(Align - 1);
2225    unsigned ArgOffset = CCInfo.getNextStackOffset();
2226    if (VARegSaveSize) {
2227      // If this function is vararg, store any remaining integer argument regs
2228      // to their spots on the stack so that they may be loaded by deferencing
2229      // the result of va_next.
2230      AFI->setVarArgsRegSaveSize(VARegSaveSize);
2231      AFI->setVarArgsFrameIndex(
2232        MFI->CreateFixedObject(VARegSaveSize,
2233                               ArgOffset + VARegSaveSize - VARegSize,
2234                               false));
2235      SDValue FIN = DAG.getFrameIndex(AFI->getVarArgsFrameIndex(),
2236                                      getPointerTy());
2237
2238      SmallVector<SDValue, 4> MemOps;
2239      for (; NumGPRs < 4; ++NumGPRs) {
2240        TargetRegisterClass *RC;
2241        if (AFI->isThumb1OnlyFunction())
2242          RC = ARM::tGPRRegisterClass;
2243        else
2244          RC = ARM::GPRRegisterClass;
2245
2246        unsigned VReg = MF.addLiveIn(GPRArgRegs[NumGPRs], RC);
2247        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
2248        SDValue Store =
2249          DAG.getStore(Val.getValue(1), dl, Val, FIN,
2250               MachinePointerInfo::getFixedStack(AFI->getVarArgsFrameIndex()),
2251                       false, false, 0);
2252        MemOps.push_back(Store);
2253        FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN,
2254                          DAG.getConstant(4, getPointerTy()));
2255      }
2256      if (!MemOps.empty())
2257        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2258                            &MemOps[0], MemOps.size());
2259    } else
2260      // This will point to the next argument passed via stack.
2261      AFI->setVarArgsFrameIndex(MFI->CreateFixedObject(4, ArgOffset, true));
2262  }
2263
2264  return Chain;
2265}
2266
2267/// isFloatingPointZero - Return true if this is +0.0.
2268static bool isFloatingPointZero(SDValue Op) {
2269  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
2270    return CFP->getValueAPF().isPosZero();
2271  else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
2272    // Maybe this has already been legalized into the constant pool?
2273    if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
2274      SDValue WrapperOp = Op.getOperand(1).getOperand(0);
2275      if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
2276        if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
2277          return CFP->getValueAPF().isPosZero();
2278    }
2279  }
2280  return false;
2281}
2282
2283/// Returns appropriate ARM CMP (cmp) and corresponding condition code for
2284/// the given operands.
2285SDValue
2286ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
2287                             SDValue &ARMcc, SelectionDAG &DAG,
2288                             DebugLoc dl) const {
2289  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
2290    unsigned C = RHSC->getZExtValue();
2291    if (!isLegalICmpImmediate(C)) {
2292      // Constant does not fit, try adjusting it by one?
2293      switch (CC) {
2294      default: break;
2295      case ISD::SETLT:
2296      case ISD::SETGE:
2297        if (C != 0x80000000 && isLegalICmpImmediate(C-1)) {
2298          CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
2299          RHS = DAG.getConstant(C-1, MVT::i32);
2300        }
2301        break;
2302      case ISD::SETULT:
2303      case ISD::SETUGE:
2304        if (C != 0 && isLegalICmpImmediate(C-1)) {
2305          CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
2306          RHS = DAG.getConstant(C-1, MVT::i32);
2307        }
2308        break;
2309      case ISD::SETLE:
2310      case ISD::SETGT:
2311        if (C != 0x7fffffff && isLegalICmpImmediate(C+1)) {
2312          CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
2313          RHS = DAG.getConstant(C+1, MVT::i32);
2314        }
2315        break;
2316      case ISD::SETULE:
2317      case ISD::SETUGT:
2318        if (C != 0xffffffff && isLegalICmpImmediate(C+1)) {
2319          CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
2320          RHS = DAG.getConstant(C+1, MVT::i32);
2321        }
2322        break;
2323      }
2324    }
2325  }
2326
2327  ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
2328  ARMISD::NodeType CompareType;
2329  switch (CondCode) {
2330  default:
2331    CompareType = ARMISD::CMP;
2332    break;
2333  case ARMCC::EQ:
2334  case ARMCC::NE:
2335    // Uses only Z Flag
2336    CompareType = ARMISD::CMPZ;
2337    break;
2338  }
2339  ARMcc = DAG.getConstant(CondCode, MVT::i32);
2340  return DAG.getNode(CompareType, dl, MVT::Flag, LHS, RHS);
2341}
2342
2343/// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
2344SDValue
2345ARMTargetLowering::getVFPCmp(SDValue LHS, SDValue RHS, SelectionDAG &DAG,
2346                             DebugLoc dl) const {
2347  SDValue Cmp;
2348  if (!isFloatingPointZero(RHS))
2349    Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Flag, LHS, RHS);
2350  else
2351    Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Flag, LHS);
2352  return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Flag, Cmp);
2353}
2354
2355SDValue ARMTargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
2356  SDValue Cond = Op.getOperand(0);
2357  SDValue SelectTrue = Op.getOperand(1);
2358  SDValue SelectFalse = Op.getOperand(2);
2359  DebugLoc dl = Op.getDebugLoc();
2360
2361  // Convert:
2362  //
2363  //   (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond)
2364  //   (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond)
2365  //
2366  if (Cond.getOpcode() == ARMISD::CMOV && Cond.hasOneUse()) {
2367    const ConstantSDNode *CMOVTrue =
2368      dyn_cast<ConstantSDNode>(Cond.getOperand(0));
2369    const ConstantSDNode *CMOVFalse =
2370      dyn_cast<ConstantSDNode>(Cond.getOperand(1));
2371
2372    if (CMOVTrue && CMOVFalse) {
2373      unsigned CMOVTrueVal = CMOVTrue->getZExtValue();
2374      unsigned CMOVFalseVal = CMOVFalse->getZExtValue();
2375
2376      SDValue True;
2377      SDValue False;
2378      if (CMOVTrueVal == 1 && CMOVFalseVal == 0) {
2379        True = SelectTrue;
2380        False = SelectFalse;
2381      } else if (CMOVTrueVal == 0 && CMOVFalseVal == 1) {
2382        True = SelectFalse;
2383        False = SelectTrue;
2384      }
2385
2386      if (True.getNode() && False.getNode()) {
2387        EVT VT = Cond.getValueType();
2388        SDValue ARMcc = Cond.getOperand(2);
2389        SDValue CCR = Cond.getOperand(3);
2390        SDValue Cmp = Cond.getOperand(4);
2391        return DAG.getNode(ARMISD::CMOV, dl, VT, True, False, ARMcc, CCR, Cmp);
2392      }
2393    }
2394  }
2395
2396  return DAG.getSelectCC(dl, Cond,
2397                         DAG.getConstant(0, Cond.getValueType()),
2398                         SelectTrue, SelectFalse, ISD::SETNE);
2399}
2400
2401SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
2402  EVT VT = Op.getValueType();
2403  SDValue LHS = Op.getOperand(0);
2404  SDValue RHS = Op.getOperand(1);
2405  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2406  SDValue TrueVal = Op.getOperand(2);
2407  SDValue FalseVal = Op.getOperand(3);
2408  DebugLoc dl = Op.getDebugLoc();
2409
2410  if (LHS.getValueType() == MVT::i32) {
2411    SDValue ARMcc;
2412    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2413    SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
2414    return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, CCR,Cmp);
2415  }
2416
2417  ARMCC::CondCodes CondCode, CondCode2;
2418  FPCCToARMCC(CC, CondCode, CondCode2);
2419
2420  SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
2421  SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
2422  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2423  SDValue Result = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal,
2424                               ARMcc, CCR, Cmp);
2425  if (CondCode2 != ARMCC::AL) {
2426    SDValue ARMcc2 = DAG.getConstant(CondCode2, MVT::i32);
2427    // FIXME: Needs another CMP because flag can have but one use.
2428    SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl);
2429    Result = DAG.getNode(ARMISD::CMOV, dl, VT,
2430                         Result, TrueVal, ARMcc2, CCR, Cmp2);
2431  }
2432  return Result;
2433}
2434
2435/// canChangeToInt - Given the fp compare operand, return true if it is suitable
2436/// to morph to an integer compare sequence.
2437static bool canChangeToInt(SDValue Op, bool &SeenZero,
2438                           const ARMSubtarget *Subtarget) {
2439  SDNode *N = Op.getNode();
2440  if (!N->hasOneUse())
2441    // Otherwise it requires moving the value from fp to integer registers.
2442    return false;
2443  if (!N->getNumValues())
2444    return false;
2445  EVT VT = Op.getValueType();
2446  if (VT != MVT::f32 && !Subtarget->isFPBrccSlow())
2447    // f32 case is generally profitable. f64 case only makes sense when vcmpe +
2448    // vmrs are very slow, e.g. cortex-a8.
2449    return false;
2450
2451  if (isFloatingPointZero(Op)) {
2452    SeenZero = true;
2453    return true;
2454  }
2455  return ISD::isNormalLoad(N);
2456}
2457
2458static SDValue bitcastf32Toi32(SDValue Op, SelectionDAG &DAG) {
2459  if (isFloatingPointZero(Op))
2460    return DAG.getConstant(0, MVT::i32);
2461
2462  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op))
2463    return DAG.getLoad(MVT::i32, Op.getDebugLoc(),
2464                       Ld->getChain(), Ld->getBasePtr(), Ld->getPointerInfo(),
2465                       Ld->isVolatile(), Ld->isNonTemporal(),
2466                       Ld->getAlignment());
2467
2468  llvm_unreachable("Unknown VFP cmp argument!");
2469}
2470
2471static void expandf64Toi32(SDValue Op, SelectionDAG &DAG,
2472                           SDValue &RetVal1, SDValue &RetVal2) {
2473  if (isFloatingPointZero(Op)) {
2474    RetVal1 = DAG.getConstant(0, MVT::i32);
2475    RetVal2 = DAG.getConstant(0, MVT::i32);
2476    return;
2477  }
2478
2479  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) {
2480    SDValue Ptr = Ld->getBasePtr();
2481    RetVal1 = DAG.getLoad(MVT::i32, Op.getDebugLoc(),
2482                          Ld->getChain(), Ptr,
2483                          Ld->getPointerInfo(),
2484                          Ld->isVolatile(), Ld->isNonTemporal(),
2485                          Ld->getAlignment());
2486
2487    EVT PtrType = Ptr.getValueType();
2488    unsigned NewAlign = MinAlign(Ld->getAlignment(), 4);
2489    SDValue NewPtr = DAG.getNode(ISD::ADD, Op.getDebugLoc(),
2490                                 PtrType, Ptr, DAG.getConstant(4, PtrType));
2491    RetVal2 = DAG.getLoad(MVT::i32, Op.getDebugLoc(),
2492                          Ld->getChain(), NewPtr,
2493                          Ld->getPointerInfo().getWithOffset(4),
2494                          Ld->isVolatile(), Ld->isNonTemporal(),
2495                          NewAlign);
2496    return;
2497  }
2498
2499  llvm_unreachable("Unknown VFP cmp argument!");
2500}
2501
2502/// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some
2503/// f32 and even f64 comparisons to integer ones.
2504SDValue
2505ARMTargetLowering::OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const {
2506  SDValue Chain = Op.getOperand(0);
2507  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
2508  SDValue LHS = Op.getOperand(2);
2509  SDValue RHS = Op.getOperand(3);
2510  SDValue Dest = Op.getOperand(4);
2511  DebugLoc dl = Op.getDebugLoc();
2512
2513  bool SeenZero = false;
2514  if (canChangeToInt(LHS, SeenZero, Subtarget) &&
2515      canChangeToInt(RHS, SeenZero, Subtarget) &&
2516      // If one of the operand is zero, it's safe to ignore the NaN case since
2517      // we only care about equality comparisons.
2518      (SeenZero || (DAG.isKnownNeverNaN(LHS) && DAG.isKnownNeverNaN(RHS)))) {
2519    // If unsafe fp math optimization is enabled and there are no othter uses of
2520    // the CMP operands, and the condition code is EQ oe NE, we can optimize it
2521    // to an integer comparison.
2522    if (CC == ISD::SETOEQ)
2523      CC = ISD::SETEQ;
2524    else if (CC == ISD::SETUNE)
2525      CC = ISD::SETNE;
2526
2527    SDValue ARMcc;
2528    if (LHS.getValueType() == MVT::f32) {
2529      LHS = bitcastf32Toi32(LHS, DAG);
2530      RHS = bitcastf32Toi32(RHS, DAG);
2531      SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
2532      SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2533      return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
2534                         Chain, Dest, ARMcc, CCR, Cmp);
2535    }
2536
2537    SDValue LHS1, LHS2;
2538    SDValue RHS1, RHS2;
2539    expandf64Toi32(LHS, DAG, LHS1, LHS2);
2540    expandf64Toi32(RHS, DAG, RHS1, RHS2);
2541    ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
2542    ARMcc = DAG.getConstant(CondCode, MVT::i32);
2543    SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Flag);
2544    SDValue Ops[] = { Chain, ARMcc, LHS1, LHS2, RHS1, RHS2, Dest };
2545    return DAG.getNode(ARMISD::BCC_i64, dl, VTList, Ops, 7);
2546  }
2547
2548  return SDValue();
2549}
2550
2551SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
2552  SDValue Chain = Op.getOperand(0);
2553  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
2554  SDValue LHS = Op.getOperand(2);
2555  SDValue RHS = Op.getOperand(3);
2556  SDValue Dest = Op.getOperand(4);
2557  DebugLoc dl = Op.getDebugLoc();
2558
2559  if (LHS.getValueType() == MVT::i32) {
2560    SDValue ARMcc;
2561    SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
2562    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2563    return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
2564                       Chain, Dest, ARMcc, CCR, Cmp);
2565  }
2566
2567  assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
2568
2569  if (UnsafeFPMath &&
2570      (CC == ISD::SETEQ || CC == ISD::SETOEQ ||
2571       CC == ISD::SETNE || CC == ISD::SETUNE)) {
2572    SDValue Result = OptimizeVFPBrcond(Op, DAG);
2573    if (Result.getNode())
2574      return Result;
2575  }
2576
2577  ARMCC::CondCodes CondCode, CondCode2;
2578  FPCCToARMCC(CC, CondCode, CondCode2);
2579
2580  SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
2581  SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
2582  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2583  SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Flag);
2584  SDValue Ops[] = { Chain, Dest, ARMcc, CCR, Cmp };
2585  SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
2586  if (CondCode2 != ARMCC::AL) {
2587    ARMcc = DAG.getConstant(CondCode2, MVT::i32);
2588    SDValue Ops[] = { Res, Dest, ARMcc, CCR, Res.getValue(1) };
2589    Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
2590  }
2591  return Res;
2592}
2593
2594SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
2595  SDValue Chain = Op.getOperand(0);
2596  SDValue Table = Op.getOperand(1);
2597  SDValue Index = Op.getOperand(2);
2598  DebugLoc dl = Op.getDebugLoc();
2599
2600  EVT PTy = getPointerTy();
2601  JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
2602  ARMFunctionInfo *AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
2603  SDValue UId = DAG.getConstant(AFI->createJumpTableUId(), PTy);
2604  SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
2605  Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI, UId);
2606  Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, PTy));
2607  SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
2608  if (Subtarget->isThumb2()) {
2609    // Thumb2 uses a two-level jump. That is, it jumps into the jump table
2610    // which does another jump to the destination. This also makes it easier
2611    // to translate it to TBB / TBH later.
2612    // FIXME: This might not work if the function is extremely large.
2613    return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain,
2614                       Addr, Op.getOperand(2), JTI, UId);
2615  }
2616  if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2617    Addr = DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr,
2618                       MachinePointerInfo::getJumpTable(),
2619                       false, false, 0);
2620    Chain = Addr.getValue(1);
2621    Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, Table);
2622    return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
2623  } else {
2624    Addr = DAG.getLoad(PTy, dl, Chain, Addr,
2625                       MachinePointerInfo::getJumpTable(), false, false, 0);
2626    Chain = Addr.getValue(1);
2627    return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
2628  }
2629}
2630
2631static SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
2632  DebugLoc dl = Op.getDebugLoc();
2633  unsigned Opc;
2634
2635  switch (Op.getOpcode()) {
2636  default:
2637    assert(0 && "Invalid opcode!");
2638  case ISD::FP_TO_SINT:
2639    Opc = ARMISD::FTOSI;
2640    break;
2641  case ISD::FP_TO_UINT:
2642    Opc = ARMISD::FTOUI;
2643    break;
2644  }
2645  Op = DAG.getNode(Opc, dl, MVT::f32, Op.getOperand(0));
2646  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
2647}
2648
2649static SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
2650  EVT VT = Op.getValueType();
2651  DebugLoc dl = Op.getDebugLoc();
2652  unsigned Opc;
2653
2654  switch (Op.getOpcode()) {
2655  default:
2656    assert(0 && "Invalid opcode!");
2657  case ISD::SINT_TO_FP:
2658    Opc = ARMISD::SITOF;
2659    break;
2660  case ISD::UINT_TO_FP:
2661    Opc = ARMISD::UITOF;
2662    break;
2663  }
2664
2665  Op = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, Op.getOperand(0));
2666  return DAG.getNode(Opc, dl, VT, Op);
2667}
2668
2669SDValue ARMTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
2670  // Implement fcopysign with a fabs and a conditional fneg.
2671  SDValue Tmp0 = Op.getOperand(0);
2672  SDValue Tmp1 = Op.getOperand(1);
2673  DebugLoc dl = Op.getDebugLoc();
2674  EVT VT = Op.getValueType();
2675  EVT SrcVT = Tmp1.getValueType();
2676  SDValue AbsVal = DAG.getNode(ISD::FABS, dl, VT, Tmp0);
2677  SDValue ARMcc = DAG.getConstant(ARMCC::LT, MVT::i32);
2678  SDValue FP0 = DAG.getConstantFP(0.0, SrcVT);
2679  SDValue Cmp = getVFPCmp(Tmp1, FP0, DAG, dl);
2680  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2681  return DAG.getNode(ARMISD::CNEG, dl, VT, AbsVal, AbsVal, ARMcc, CCR, Cmp);
2682}
2683
2684SDValue ARMTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{
2685  MachineFunction &MF = DAG.getMachineFunction();
2686  MachineFrameInfo *MFI = MF.getFrameInfo();
2687  MFI->setReturnAddressIsTaken(true);
2688
2689  EVT VT = Op.getValueType();
2690  DebugLoc dl = Op.getDebugLoc();
2691  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2692  if (Depth) {
2693    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
2694    SDValue Offset = DAG.getConstant(4, MVT::i32);
2695    return DAG.getLoad(VT, dl, DAG.getEntryNode(),
2696                       DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
2697                       MachinePointerInfo(), false, false, 0);
2698  }
2699
2700  // Return LR, which contains the return address. Mark it an implicit live-in.
2701  unsigned Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32));
2702  return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
2703}
2704
2705SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
2706  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2707  MFI->setFrameAddressIsTaken(true);
2708
2709  EVT VT = Op.getValueType();
2710  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
2711  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2712  unsigned FrameReg = (Subtarget->isThumb() || Subtarget->isTargetDarwin())
2713    ? ARM::R7 : ARM::R11;
2714  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
2715  while (Depth--)
2716    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
2717                            MachinePointerInfo(),
2718                            false, false, 0);
2719  return FrameAddr;
2720}
2721
2722/// ExpandBIT_CONVERT - If the target supports VFP, this function is called to
2723/// expand a bit convert where either the source or destination type is i64 to
2724/// use a VMOVDRR or VMOVRRD node.  This should not be done when the non-i64
2725/// operand type is illegal (e.g., v2f32 for a target that doesn't support
2726/// vectors), since the legalizer won't know what to do with that.
2727static SDValue ExpandBIT_CONVERT(SDNode *N, SelectionDAG &DAG) {
2728  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2729  DebugLoc dl = N->getDebugLoc();
2730  SDValue Op = N->getOperand(0);
2731
2732  // This function is only supposed to be called for i64 types, either as the
2733  // source or destination of the bit convert.
2734  EVT SrcVT = Op.getValueType();
2735  EVT DstVT = N->getValueType(0);
2736  assert((SrcVT == MVT::i64 || DstVT == MVT::i64) &&
2737         "ExpandBIT_CONVERT called for non-i64 type");
2738
2739  // Turn i64->f64 into VMOVDRR.
2740  if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) {
2741    SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
2742                             DAG.getConstant(0, MVT::i32));
2743    SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
2744                             DAG.getConstant(1, MVT::i32));
2745    return DAG.getNode(ISD::BIT_CONVERT, dl, DstVT,
2746                       DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi));
2747  }
2748
2749  // Turn f64->i64 into VMOVRRD.
2750  if (DstVT == MVT::i64 && TLI.isTypeLegal(SrcVT)) {
2751    SDValue Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
2752                              DAG.getVTList(MVT::i32, MVT::i32), &Op, 1);
2753    // Merge the pieces into a single i64 value.
2754    return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1));
2755  }
2756
2757  return SDValue();
2758}
2759
2760/// getZeroVector - Returns a vector of specified type with all zero elements.
2761/// Zero vectors are used to represent vector negation and in those cases
2762/// will be implemented with the NEON VNEG instruction.  However, VNEG does
2763/// not support i64 elements, so sometimes the zero vectors will need to be
2764/// explicitly constructed.  Regardless, use a canonical VMOV to create the
2765/// zero vector.
2766static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
2767  assert(VT.isVector() && "Expected a vector type");
2768  // The canonical modified immediate encoding of a zero vector is....0!
2769  SDValue EncodedVal = DAG.getTargetConstant(0, MVT::i32);
2770  EVT VmovVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
2771  SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, EncodedVal);
2772  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vmov);
2773}
2774
2775/// LowerShiftRightParts - Lower SRA_PARTS, which returns two
2776/// i32 values and take a 2 x i32 value to shift plus a shift amount.
2777SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op,
2778                                                SelectionDAG &DAG) const {
2779  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
2780  EVT VT = Op.getValueType();
2781  unsigned VTBits = VT.getSizeInBits();
2782  DebugLoc dl = Op.getDebugLoc();
2783  SDValue ShOpLo = Op.getOperand(0);
2784  SDValue ShOpHi = Op.getOperand(1);
2785  SDValue ShAmt  = Op.getOperand(2);
2786  SDValue ARMcc;
2787  unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
2788
2789  assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
2790
2791  SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
2792                                 DAG.getConstant(VTBits, MVT::i32), ShAmt);
2793  SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
2794  SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
2795                                   DAG.getConstant(VTBits, MVT::i32));
2796  SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
2797  SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2798  SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
2799
2800  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2801  SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
2802                          ARMcc, DAG, dl);
2803  SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
2804  SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc,
2805                           CCR, Cmp);
2806
2807  SDValue Ops[2] = { Lo, Hi };
2808  return DAG.getMergeValues(Ops, 2, dl);
2809}
2810
2811/// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
2812/// i32 values and take a 2 x i32 value to shift plus a shift amount.
2813SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op,
2814                                               SelectionDAG &DAG) const {
2815  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
2816  EVT VT = Op.getValueType();
2817  unsigned VTBits = VT.getSizeInBits();
2818  DebugLoc dl = Op.getDebugLoc();
2819  SDValue ShOpLo = Op.getOperand(0);
2820  SDValue ShOpHi = Op.getOperand(1);
2821  SDValue ShAmt  = Op.getOperand(2);
2822  SDValue ARMcc;
2823
2824  assert(Op.getOpcode() == ISD::SHL_PARTS);
2825  SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
2826                                 DAG.getConstant(VTBits, MVT::i32), ShAmt);
2827  SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
2828  SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
2829                                   DAG.getConstant(VTBits, MVT::i32));
2830  SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
2831  SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
2832
2833  SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2834  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2835  SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
2836                          ARMcc, DAG, dl);
2837  SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
2838  SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, Tmp3, ARMcc,
2839                           CCR, Cmp);
2840
2841  SDValue Ops[2] = { Lo, Hi };
2842  return DAG.getMergeValues(Ops, 2, dl);
2843}
2844
2845SDValue ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
2846                                            SelectionDAG &DAG) const {
2847  // The rounding mode is in bits 23:22 of the FPSCR.
2848  // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
2849  // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
2850  // so that the shift + and get folded into a bitfield extract.
2851  DebugLoc dl = Op.getDebugLoc();
2852  SDValue FPSCR = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::i32,
2853                              DAG.getConstant(Intrinsic::arm_get_fpscr,
2854                                              MVT::i32));
2855  SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPSCR,
2856                                  DAG.getConstant(1U << 22, MVT::i32));
2857  SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds,
2858                              DAG.getConstant(22, MVT::i32));
2859  return DAG.getNode(ISD::AND, dl, MVT::i32, RMODE,
2860                     DAG.getConstant(3, MVT::i32));
2861}
2862
2863static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG,
2864                         const ARMSubtarget *ST) {
2865  EVT VT = N->getValueType(0);
2866  DebugLoc dl = N->getDebugLoc();
2867
2868  if (!ST->hasV6T2Ops())
2869    return SDValue();
2870
2871  SDValue rbit = DAG.getNode(ARMISD::RBIT, dl, VT, N->getOperand(0));
2872  return DAG.getNode(ISD::CTLZ, dl, VT, rbit);
2873}
2874
2875static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
2876                          const ARMSubtarget *ST) {
2877  EVT VT = N->getValueType(0);
2878  DebugLoc dl = N->getDebugLoc();
2879
2880  // Lower vector shifts on NEON to use VSHL.
2881  if (VT.isVector()) {
2882    assert(ST->hasNEON() && "unexpected vector shift");
2883
2884    // Left shifts translate directly to the vshiftu intrinsic.
2885    if (N->getOpcode() == ISD::SHL)
2886      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
2887                         DAG.getConstant(Intrinsic::arm_neon_vshiftu, MVT::i32),
2888                         N->getOperand(0), N->getOperand(1));
2889
2890    assert((N->getOpcode() == ISD::SRA ||
2891            N->getOpcode() == ISD::SRL) && "unexpected vector shift opcode");
2892
2893    // NEON uses the same intrinsics for both left and right shifts.  For
2894    // right shifts, the shift amounts are negative, so negate the vector of
2895    // shift amounts.
2896    EVT ShiftVT = N->getOperand(1).getValueType();
2897    SDValue NegatedCount = DAG.getNode(ISD::SUB, dl, ShiftVT,
2898                                       getZeroVector(ShiftVT, DAG, dl),
2899                                       N->getOperand(1));
2900    Intrinsic::ID vshiftInt = (N->getOpcode() == ISD::SRA ?
2901                               Intrinsic::arm_neon_vshifts :
2902                               Intrinsic::arm_neon_vshiftu);
2903    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
2904                       DAG.getConstant(vshiftInt, MVT::i32),
2905                       N->getOperand(0), NegatedCount);
2906  }
2907
2908  // We can get here for a node like i32 = ISD::SHL i32, i64
2909  if (VT != MVT::i64)
2910    return SDValue();
2911
2912  assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) &&
2913         "Unknown shift to lower!");
2914
2915  // We only lower SRA, SRL of 1 here, all others use generic lowering.
2916  if (!isa<ConstantSDNode>(N->getOperand(1)) ||
2917      cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 1)
2918    return SDValue();
2919
2920  // If we are in thumb mode, we don't have RRX.
2921  if (ST->isThumb1Only()) return SDValue();
2922
2923  // Okay, we have a 64-bit SRA or SRL of 1.  Lower this to an RRX expr.
2924  SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
2925                           DAG.getConstant(0, MVT::i32));
2926  SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
2927                           DAG.getConstant(1, MVT::i32));
2928
2929  // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
2930  // captures the result into a carry flag.
2931  unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
2932  Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Flag), &Hi, 1);
2933
2934  // The low part is an ARMISD::RRX operand, which shifts the carry in.
2935  Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));
2936
2937  // Merge the pieces into a single i64 value.
2938 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
2939}
2940
2941static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
2942  SDValue TmpOp0, TmpOp1;
2943  bool Invert = false;
2944  bool Swap = false;
2945  unsigned Opc = 0;
2946
2947  SDValue Op0 = Op.getOperand(0);
2948  SDValue Op1 = Op.getOperand(1);
2949  SDValue CC = Op.getOperand(2);
2950  EVT VT = Op.getValueType();
2951  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
2952  DebugLoc dl = Op.getDebugLoc();
2953
2954  if (Op.getOperand(1).getValueType().isFloatingPoint()) {
2955    switch (SetCCOpcode) {
2956    default: llvm_unreachable("Illegal FP comparison"); break;
2957    case ISD::SETUNE:
2958    case ISD::SETNE:  Invert = true; // Fallthrough
2959    case ISD::SETOEQ:
2960    case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
2961    case ISD::SETOLT:
2962    case ISD::SETLT: Swap = true; // Fallthrough
2963    case ISD::SETOGT:
2964    case ISD::SETGT:  Opc = ARMISD::VCGT; break;
2965    case ISD::SETOLE:
2966    case ISD::SETLE:  Swap = true; // Fallthrough
2967    case ISD::SETOGE:
2968    case ISD::SETGE: Opc = ARMISD::VCGE; break;
2969    case ISD::SETUGE: Swap = true; // Fallthrough
2970    case ISD::SETULE: Invert = true; Opc = ARMISD::VCGT; break;
2971    case ISD::SETUGT: Swap = true; // Fallthrough
2972    case ISD::SETULT: Invert = true; Opc = ARMISD::VCGE; break;
2973    case ISD::SETUEQ: Invert = true; // Fallthrough
2974    case ISD::SETONE:
2975      // Expand this to (OLT | OGT).
2976      TmpOp0 = Op0;
2977      TmpOp1 = Op1;
2978      Opc = ISD::OR;
2979      Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
2980      Op1 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp0, TmpOp1);
2981      break;
2982    case ISD::SETUO: Invert = true; // Fallthrough
2983    case ISD::SETO:
2984      // Expand this to (OLT | OGE).
2985      TmpOp0 = Op0;
2986      TmpOp1 = Op1;
2987      Opc = ISD::OR;
2988      Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
2989      Op1 = DAG.getNode(ARMISD::VCGE, dl, VT, TmpOp0, TmpOp1);
2990      break;
2991    }
2992  } else {
2993    // Integer comparisons.
2994    switch (SetCCOpcode) {
2995    default: llvm_unreachable("Illegal integer comparison"); break;
2996    case ISD::SETNE:  Invert = true;
2997    case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
2998    case ISD::SETLT:  Swap = true;
2999    case ISD::SETGT:  Opc = ARMISD::VCGT; break;
3000    case ISD::SETLE:  Swap = true;
3001    case ISD::SETGE:  Opc = ARMISD::VCGE; break;
3002    case ISD::SETULT: Swap = true;
3003    case ISD::SETUGT: Opc = ARMISD::VCGTU; break;
3004    case ISD::SETULE: Swap = true;
3005    case ISD::SETUGE: Opc = ARMISD::VCGEU; break;
3006    }
3007
3008    // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
3009    if (Opc == ARMISD::VCEQ) {
3010
3011      SDValue AndOp;
3012      if (ISD::isBuildVectorAllZeros(Op1.getNode()))
3013        AndOp = Op0;
3014      else if (ISD::isBuildVectorAllZeros(Op0.getNode()))
3015        AndOp = Op1;
3016
3017      // Ignore bitconvert.
3018      if (AndOp.getNode() && AndOp.getOpcode() == ISD::BIT_CONVERT)
3019        AndOp = AndOp.getOperand(0);
3020
3021      if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) {
3022        Opc = ARMISD::VTST;
3023        Op0 = DAG.getNode(ISD::BIT_CONVERT, dl, VT, AndOp.getOperand(0));
3024        Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, VT, AndOp.getOperand(1));
3025        Invert = !Invert;
3026      }
3027    }
3028  }
3029
3030  if (Swap)
3031    std::swap(Op0, Op1);
3032
3033  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
3034
3035  if (Invert)
3036    Result = DAG.getNOT(dl, Result, VT);
3037
3038  return Result;
3039}
3040
3041/// isNEONModifiedImm - Check if the specified splat value corresponds to a
3042/// valid vector constant for a NEON instruction with a "modified immediate"
3043/// operand (e.g., VMOV).  If so, return the encoded value.
3044static SDValue isNEONModifiedImm(uint64_t SplatBits, uint64_t SplatUndef,
3045                                 unsigned SplatBitSize, SelectionDAG &DAG,
3046                                 EVT &VT, bool is128Bits, bool isVMOV) {
3047  unsigned OpCmode, Imm;
3048
3049  // SplatBitSize is set to the smallest size that splats the vector, so a
3050  // zero vector will always have SplatBitSize == 8.  However, NEON modified
3051  // immediate instructions others than VMOV do not support the 8-bit encoding
3052  // of a zero vector, and the default encoding of zero is supposed to be the
3053  // 32-bit version.
3054  if (SplatBits == 0)
3055    SplatBitSize = 32;
3056
3057  switch (SplatBitSize) {
3058  case 8:
3059    if (!isVMOV)
3060      return SDValue();
3061    // Any 1-byte value is OK.  Op=0, Cmode=1110.
3062    assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
3063    OpCmode = 0xe;
3064    Imm = SplatBits;
3065    VT = is128Bits ? MVT::v16i8 : MVT::v8i8;
3066    break;
3067
3068  case 16:
3069    // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
3070    VT = is128Bits ? MVT::v8i16 : MVT::v4i16;
3071    if ((SplatBits & ~0xff) == 0) {
3072      // Value = 0x00nn: Op=x, Cmode=100x.
3073      OpCmode = 0x8;
3074      Imm = SplatBits;
3075      break;
3076    }
3077    if ((SplatBits & ~0xff00) == 0) {
3078      // Value = 0xnn00: Op=x, Cmode=101x.
3079      OpCmode = 0xa;
3080      Imm = SplatBits >> 8;
3081      break;
3082    }
3083    return SDValue();
3084
3085  case 32:
3086    // NEON's 32-bit VMOV supports splat values where:
3087    // * only one byte is nonzero, or
3088    // * the least significant byte is 0xff and the second byte is nonzero, or
3089    // * the least significant 2 bytes are 0xff and the third is nonzero.
3090    VT = is128Bits ? MVT::v4i32 : MVT::v2i32;
3091    if ((SplatBits & ~0xff) == 0) {
3092      // Value = 0x000000nn: Op=x, Cmode=000x.
3093      OpCmode = 0;
3094      Imm = SplatBits;
3095      break;
3096    }
3097    if ((SplatBits & ~0xff00) == 0) {
3098      // Value = 0x0000nn00: Op=x, Cmode=001x.
3099      OpCmode = 0x2;
3100      Imm = SplatBits >> 8;
3101      break;
3102    }
3103    if ((SplatBits & ~0xff0000) == 0) {
3104      // Value = 0x00nn0000: Op=x, Cmode=010x.
3105      OpCmode = 0x4;
3106      Imm = SplatBits >> 16;
3107      break;
3108    }
3109    if ((SplatBits & ~0xff000000) == 0) {
3110      // Value = 0xnn000000: Op=x, Cmode=011x.
3111      OpCmode = 0x6;
3112      Imm = SplatBits >> 24;
3113      break;
3114    }
3115
3116    if ((SplatBits & ~0xffff) == 0 &&
3117        ((SplatBits | SplatUndef) & 0xff) == 0xff) {
3118      // Value = 0x0000nnff: Op=x, Cmode=1100.
3119      OpCmode = 0xc;
3120      Imm = SplatBits >> 8;
3121      SplatBits |= 0xff;
3122      break;
3123    }
3124
3125    if ((SplatBits & ~0xffffff) == 0 &&
3126        ((SplatBits | SplatUndef) & 0xffff) == 0xffff) {
3127      // Value = 0x00nnffff: Op=x, Cmode=1101.
3128      OpCmode = 0xd;
3129      Imm = SplatBits >> 16;
3130      SplatBits |= 0xffff;
3131      break;
3132    }
3133
3134    // Note: there are a few 32-bit splat values (specifically: 00ffff00,
3135    // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
3136    // VMOV.I32.  A (very) minor optimization would be to replicate the value
3137    // and fall through here to test for a valid 64-bit splat.  But, then the
3138    // caller would also need to check and handle the change in size.
3139    return SDValue();
3140
3141  case 64: {
3142    if (!isVMOV)
3143      return SDValue();
3144    // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
3145    uint64_t BitMask = 0xff;
3146    uint64_t Val = 0;
3147    unsigned ImmMask = 1;
3148    Imm = 0;
3149    for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
3150      if (((SplatBits | SplatUndef) & BitMask) == BitMask) {
3151        Val |= BitMask;
3152        Imm |= ImmMask;
3153      } else if ((SplatBits & BitMask) != 0) {
3154        return SDValue();
3155      }
3156      BitMask <<= 8;
3157      ImmMask <<= 1;
3158    }
3159    // Op=1, Cmode=1110.
3160    OpCmode = 0x1e;
3161    SplatBits = Val;
3162    VT = is128Bits ? MVT::v2i64 : MVT::v1i64;
3163    break;
3164  }
3165
3166  default:
3167    llvm_unreachable("unexpected size for isNEONModifiedImm");
3168    return SDValue();
3169  }
3170
3171  unsigned EncodedVal = ARM_AM::createNEONModImm(OpCmode, Imm);
3172  return DAG.getTargetConstant(EncodedVal, MVT::i32);
3173}
3174
3175static bool isVEXTMask(const SmallVectorImpl<int> &M, EVT VT,
3176                       bool &ReverseVEXT, unsigned &Imm) {
3177  unsigned NumElts = VT.getVectorNumElements();
3178  ReverseVEXT = false;
3179
3180  // Assume that the first shuffle index is not UNDEF.  Fail if it is.
3181  if (M[0] < 0)
3182    return false;
3183
3184  Imm = M[0];
3185
3186  // If this is a VEXT shuffle, the immediate value is the index of the first
3187  // element.  The other shuffle indices must be the successive elements after
3188  // the first one.
3189  unsigned ExpectedElt = Imm;
3190  for (unsigned i = 1; i < NumElts; ++i) {
3191    // Increment the expected index.  If it wraps around, it may still be
3192    // a VEXT but the source vectors must be swapped.
3193    ExpectedElt += 1;
3194    if (ExpectedElt == NumElts * 2) {
3195      ExpectedElt = 0;
3196      ReverseVEXT = true;
3197    }
3198
3199    if (M[i] < 0) continue; // ignore UNDEF indices
3200    if (ExpectedElt != static_cast<unsigned>(M[i]))
3201      return false;
3202  }
3203
3204  // Adjust the index value if the source operands will be swapped.
3205  if (ReverseVEXT)
3206    Imm -= NumElts;
3207
3208  return true;
3209}
3210
3211/// isVREVMask - Check if a vector shuffle corresponds to a VREV
3212/// instruction with the specified blocksize.  (The order of the elements
3213/// within each block of the vector is reversed.)
3214static bool isVREVMask(const SmallVectorImpl<int> &M, EVT VT,
3215                       unsigned BlockSize) {
3216  assert((BlockSize==16 || BlockSize==32 || BlockSize==64) &&
3217         "Only possible block sizes for VREV are: 16, 32, 64");
3218
3219  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3220  if (EltSz == 64)
3221    return false;
3222
3223  unsigned NumElts = VT.getVectorNumElements();
3224  unsigned BlockElts = M[0] + 1;
3225  // If the first shuffle index is UNDEF, be optimistic.
3226  if (M[0] < 0)
3227    BlockElts = BlockSize / EltSz;
3228
3229  if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
3230    return false;
3231
3232  for (unsigned i = 0; i < NumElts; ++i) {
3233    if (M[i] < 0) continue; // ignore UNDEF indices
3234    if ((unsigned) M[i] != (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts))
3235      return false;
3236  }
3237
3238  return true;
3239}
3240
3241static bool isVTRNMask(const SmallVectorImpl<int> &M, EVT VT,
3242                       unsigned &WhichResult) {
3243  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3244  if (EltSz == 64)
3245    return false;
3246
3247  unsigned NumElts = VT.getVectorNumElements();
3248  WhichResult = (M[0] == 0 ? 0 : 1);
3249  for (unsigned i = 0; i < NumElts; i += 2) {
3250    if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) ||
3251        (M[i+1] >= 0 && (unsigned) M[i+1] != i + NumElts + WhichResult))
3252      return false;
3253  }
3254  return true;
3255}
3256
3257/// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
3258/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
3259/// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
3260static bool isVTRN_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
3261                                unsigned &WhichResult) {
3262  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3263  if (EltSz == 64)
3264    return false;
3265
3266  unsigned NumElts = VT.getVectorNumElements();
3267  WhichResult = (M[0] == 0 ? 0 : 1);
3268  for (unsigned i = 0; i < NumElts; i += 2) {
3269    if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) ||
3270        (M[i+1] >= 0 && (unsigned) M[i+1] != i + WhichResult))
3271      return false;
3272  }
3273  return true;
3274}
3275
3276static bool isVUZPMask(const SmallVectorImpl<int> &M, EVT VT,
3277                       unsigned &WhichResult) {
3278  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3279  if (EltSz == 64)
3280    return false;
3281
3282  unsigned NumElts = VT.getVectorNumElements();
3283  WhichResult = (M[0] == 0 ? 0 : 1);
3284  for (unsigned i = 0; i != NumElts; ++i) {
3285    if (M[i] < 0) continue; // ignore UNDEF indices
3286    if ((unsigned) M[i] != 2 * i + WhichResult)
3287      return false;
3288  }
3289
3290  // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3291  if (VT.is64BitVector() && EltSz == 32)
3292    return false;
3293
3294  return true;
3295}
3296
3297/// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
3298/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
3299/// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
3300static bool isVUZP_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
3301                                unsigned &WhichResult) {
3302  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3303  if (EltSz == 64)
3304    return false;
3305
3306  unsigned Half = VT.getVectorNumElements() / 2;
3307  WhichResult = (M[0] == 0 ? 0 : 1);
3308  for (unsigned j = 0; j != 2; ++j) {
3309    unsigned Idx = WhichResult;
3310    for (unsigned i = 0; i != Half; ++i) {
3311      int MIdx = M[i + j * Half];
3312      if (MIdx >= 0 && (unsigned) MIdx != Idx)
3313        return false;
3314      Idx += 2;
3315    }
3316  }
3317
3318  // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3319  if (VT.is64BitVector() && EltSz == 32)
3320    return false;
3321
3322  return true;
3323}
3324
3325static bool isVZIPMask(const SmallVectorImpl<int> &M, EVT VT,
3326                       unsigned &WhichResult) {
3327  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3328  if (EltSz == 64)
3329    return false;
3330
3331  unsigned NumElts = VT.getVectorNumElements();
3332  WhichResult = (M[0] == 0 ? 0 : 1);
3333  unsigned Idx = WhichResult * NumElts / 2;
3334  for (unsigned i = 0; i != NumElts; i += 2) {
3335    if ((M[i] >= 0 && (unsigned) M[i] != Idx) ||
3336        (M[i+1] >= 0 && (unsigned) M[i+1] != Idx + NumElts))
3337      return false;
3338    Idx += 1;
3339  }
3340
3341  // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3342  if (VT.is64BitVector() && EltSz == 32)
3343    return false;
3344
3345  return true;
3346}
3347
3348/// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
3349/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
3350/// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
3351static bool isVZIP_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
3352                                unsigned &WhichResult) {
3353  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3354  if (EltSz == 64)
3355    return false;
3356
3357  unsigned NumElts = VT.getVectorNumElements();
3358  WhichResult = (M[0] == 0 ? 0 : 1);
3359  unsigned Idx = WhichResult * NumElts / 2;
3360  for (unsigned i = 0; i != NumElts; i += 2) {
3361    if ((M[i] >= 0 && (unsigned) M[i] != Idx) ||
3362        (M[i+1] >= 0 && (unsigned) M[i+1] != Idx))
3363      return false;
3364    Idx += 1;
3365  }
3366
3367  // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3368  if (VT.is64BitVector() && EltSz == 32)
3369    return false;
3370
3371  return true;
3372}
3373
3374// If N is an integer constant that can be moved into a register in one
3375// instruction, return an SDValue of such a constant (will become a MOV
3376// instruction).  Otherwise return null.
3377static SDValue IsSingleInstrConstant(SDValue N, SelectionDAG &DAG,
3378                                     const ARMSubtarget *ST, DebugLoc dl) {
3379  uint64_t Val;
3380  if (!isa<ConstantSDNode>(N))
3381    return SDValue();
3382  Val = cast<ConstantSDNode>(N)->getZExtValue();
3383
3384  if (ST->isThumb1Only()) {
3385    if (Val <= 255 || ~Val <= 255)
3386      return DAG.getConstant(Val, MVT::i32);
3387  } else {
3388    if (ARM_AM::getSOImmVal(Val) != -1 || ARM_AM::getSOImmVal(~Val) != -1)
3389      return DAG.getConstant(Val, MVT::i32);
3390  }
3391  return SDValue();
3392}
3393
3394// If this is a case we can't handle, return null and let the default
3395// expansion code take care of it.
3396static SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
3397                                 const ARMSubtarget *ST) {
3398  BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
3399  DebugLoc dl = Op.getDebugLoc();
3400  EVT VT = Op.getValueType();
3401
3402  APInt SplatBits, SplatUndef;
3403  unsigned SplatBitSize;
3404  bool HasAnyUndefs;
3405  if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
3406    if (SplatBitSize <= 64) {
3407      // Check if an immediate VMOV works.
3408      EVT VmovVT;
3409      SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
3410                                      SplatUndef.getZExtValue(), SplatBitSize,
3411                                      DAG, VmovVT, VT.is128BitVector(), true);
3412      if (Val.getNode()) {
3413        SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, Val);
3414        return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vmov);
3415      }
3416
3417      // Try an immediate VMVN.
3418      uint64_t NegatedImm = (SplatBits.getZExtValue() ^
3419                             ((1LL << SplatBitSize) - 1));
3420      Val = isNEONModifiedImm(NegatedImm,
3421                                      SplatUndef.getZExtValue(), SplatBitSize,
3422                                      DAG, VmovVT, VT.is128BitVector(), false);
3423      if (Val.getNode()) {
3424        SDValue Vmov = DAG.getNode(ARMISD::VMVNIMM, dl, VmovVT, Val);
3425        return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vmov);
3426      }
3427    }
3428  }
3429
3430  // Scan through the operands to see if only one value is used.
3431  unsigned NumElts = VT.getVectorNumElements();
3432  bool isOnlyLowElement = true;
3433  bool usesOnlyOneValue = true;
3434  bool isConstant = true;
3435  SDValue Value;
3436  for (unsigned i = 0; i < NumElts; ++i) {
3437    SDValue V = Op.getOperand(i);
3438    if (V.getOpcode() == ISD::UNDEF)
3439      continue;
3440    if (i > 0)
3441      isOnlyLowElement = false;
3442    if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
3443      isConstant = false;
3444
3445    if (!Value.getNode())
3446      Value = V;
3447    else if (V != Value)
3448      usesOnlyOneValue = false;
3449  }
3450
3451  if (!Value.getNode())
3452    return DAG.getUNDEF(VT);
3453
3454  if (isOnlyLowElement)
3455    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
3456
3457  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
3458
3459  // Use VDUP for non-constant splats.  For f32 constant splats, reduce to
3460  // i32 and try again.
3461  if (usesOnlyOneValue && EltSize <= 32) {
3462    if (!isConstant)
3463      return DAG.getNode(ARMISD::VDUP, dl, VT, Value);
3464    if (VT.getVectorElementType().isFloatingPoint()) {
3465      SmallVector<SDValue, 8> Ops;
3466      for (unsigned i = 0; i < NumElts; ++i)
3467        Ops.push_back(DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32,
3468                                  Op.getOperand(i)));
3469      SDValue Val = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, &Ops[0],
3470                                NumElts);
3471      Val = LowerBUILD_VECTOR(Val, DAG, ST);
3472      if (Val.getNode())
3473        return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Val);
3474    }
3475    SDValue Val = IsSingleInstrConstant(Value, DAG, ST, dl);
3476    if (Val.getNode())
3477      return DAG.getNode(ARMISD::VDUP, dl, VT, Val);
3478  }
3479
3480  // If all elements are constants and the case above didn't get hit, fall back
3481  // to the default expansion, which will generate a load from the constant
3482  // pool.
3483  if (isConstant)
3484    return SDValue();
3485
3486  // Vectors with 32- or 64-bit elements can be built by directly assigning
3487  // the subregisters.  Lower it to an ARMISD::BUILD_VECTOR so the operands
3488  // will be legalized.
3489  if (EltSize >= 32) {
3490    // Do the expansion with floating-point types, since that is what the VFP
3491    // registers are defined to use, and since i64 is not legal.
3492    EVT EltVT = EVT::getFloatingPointVT(EltSize);
3493    EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
3494    SmallVector<SDValue, 8> Ops;
3495    for (unsigned i = 0; i < NumElts; ++i)
3496      Ops.push_back(DAG.getNode(ISD::BIT_CONVERT, dl, EltVT, Op.getOperand(i)));
3497    SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts);
3498    return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Val);
3499  }
3500
3501  return SDValue();
3502}
3503
3504/// isShuffleMaskLegal - Targets can use this to indicate that they only
3505/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
3506/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
3507/// are assumed to be legal.
3508bool
3509ARMTargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
3510                                      EVT VT) const {
3511  if (VT.getVectorNumElements() == 4 &&
3512      (VT.is128BitVector() || VT.is64BitVector())) {
3513    unsigned PFIndexes[4];
3514    for (unsigned i = 0; i != 4; ++i) {
3515      if (M[i] < 0)
3516        PFIndexes[i] = 8;
3517      else
3518        PFIndexes[i] = M[i];
3519    }
3520
3521    // Compute the index in the perfect shuffle table.
3522    unsigned PFTableIndex =
3523      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
3524    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
3525    unsigned Cost = (PFEntry >> 30);
3526
3527    if (Cost <= 4)
3528      return true;
3529  }
3530
3531  bool ReverseVEXT;
3532  unsigned Imm, WhichResult;
3533
3534  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
3535  return (EltSize >= 32 ||
3536          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
3537          isVREVMask(M, VT, 64) ||
3538          isVREVMask(M, VT, 32) ||
3539          isVREVMask(M, VT, 16) ||
3540          isVEXTMask(M, VT, ReverseVEXT, Imm) ||
3541          isVTRNMask(M, VT, WhichResult) ||
3542          isVUZPMask(M, VT, WhichResult) ||
3543          isVZIPMask(M, VT, WhichResult) ||
3544          isVTRN_v_undef_Mask(M, VT, WhichResult) ||
3545          isVUZP_v_undef_Mask(M, VT, WhichResult) ||
3546          isVZIP_v_undef_Mask(M, VT, WhichResult));
3547}
3548
3549/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
3550/// the specified operations to build the shuffle.
3551static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
3552                                      SDValue RHS, SelectionDAG &DAG,
3553                                      DebugLoc dl) {
3554  unsigned OpNum = (PFEntry >> 26) & 0x0F;
3555  unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
3556  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
3557
3558  enum {
3559    OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
3560    OP_VREV,
3561    OP_VDUP0,
3562    OP_VDUP1,
3563    OP_VDUP2,
3564    OP_VDUP3,
3565    OP_VEXT1,
3566    OP_VEXT2,
3567    OP_VEXT3,
3568    OP_VUZPL, // VUZP, left result
3569    OP_VUZPR, // VUZP, right result
3570    OP_VZIPL, // VZIP, left result
3571    OP_VZIPR, // VZIP, right result
3572    OP_VTRNL, // VTRN, left result
3573    OP_VTRNR  // VTRN, right result
3574  };
3575
3576  if (OpNum == OP_COPY) {
3577    if (LHSID == (1*9+2)*9+3) return LHS;
3578    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
3579    return RHS;
3580  }
3581
3582  SDValue OpLHS, OpRHS;
3583  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
3584  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
3585  EVT VT = OpLHS.getValueType();
3586
3587  switch (OpNum) {
3588  default: llvm_unreachable("Unknown shuffle opcode!");
3589  case OP_VREV:
3590    return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS);
3591  case OP_VDUP0:
3592  case OP_VDUP1:
3593  case OP_VDUP2:
3594  case OP_VDUP3:
3595    return DAG.getNode(ARMISD::VDUPLANE, dl, VT,
3596                       OpLHS, DAG.getConstant(OpNum-OP_VDUP0, MVT::i32));
3597  case OP_VEXT1:
3598  case OP_VEXT2:
3599  case OP_VEXT3:
3600    return DAG.getNode(ARMISD::VEXT, dl, VT,
3601                       OpLHS, OpRHS,
3602                       DAG.getConstant(OpNum-OP_VEXT1+1, MVT::i32));
3603  case OP_VUZPL:
3604  case OP_VUZPR:
3605    return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
3606                       OpLHS, OpRHS).getValue(OpNum-OP_VUZPL);
3607  case OP_VZIPL:
3608  case OP_VZIPR:
3609    return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
3610                       OpLHS, OpRHS).getValue(OpNum-OP_VZIPL);
3611  case OP_VTRNL:
3612  case OP_VTRNR:
3613    return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
3614                       OpLHS, OpRHS).getValue(OpNum-OP_VTRNL);
3615  }
3616}
3617
3618static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
3619  SDValue V1 = Op.getOperand(0);
3620  SDValue V2 = Op.getOperand(1);
3621  DebugLoc dl = Op.getDebugLoc();
3622  EVT VT = Op.getValueType();
3623  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
3624  SmallVector<int, 8> ShuffleMask;
3625
3626  // Convert shuffles that are directly supported on NEON to target-specific
3627  // DAG nodes, instead of keeping them as shuffles and matching them again
3628  // during code selection.  This is more efficient and avoids the possibility
3629  // of inconsistencies between legalization and selection.
3630  // FIXME: floating-point vectors should be canonicalized to integer vectors
3631  // of the same time so that they get CSEd properly.
3632  SVN->getMask(ShuffleMask);
3633
3634  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
3635  if (EltSize <= 32) {
3636    if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0], VT)) {
3637      int Lane = SVN->getSplatIndex();
3638      // If this is undef splat, generate it via "just" vdup, if possible.
3639      if (Lane == -1) Lane = 0;
3640
3641      if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
3642        return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
3643      }
3644      return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1,
3645                         DAG.getConstant(Lane, MVT::i32));
3646    }
3647
3648    bool ReverseVEXT;
3649    unsigned Imm;
3650    if (isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) {
3651      if (ReverseVEXT)
3652        std::swap(V1, V2);
3653      return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2,
3654                         DAG.getConstant(Imm, MVT::i32));
3655    }
3656
3657    if (isVREVMask(ShuffleMask, VT, 64))
3658      return DAG.getNode(ARMISD::VREV64, dl, VT, V1);
3659    if (isVREVMask(ShuffleMask, VT, 32))
3660      return DAG.getNode(ARMISD::VREV32, dl, VT, V1);
3661    if (isVREVMask(ShuffleMask, VT, 16))
3662      return DAG.getNode(ARMISD::VREV16, dl, VT, V1);
3663
3664    // Check for Neon shuffles that modify both input vectors in place.
3665    // If both results are used, i.e., if there are two shuffles with the same
3666    // source operands and with masks corresponding to both results of one of
3667    // these operations, DAG memoization will ensure that a single node is
3668    // used for both shuffles.
3669    unsigned WhichResult;
3670    if (isVTRNMask(ShuffleMask, VT, WhichResult))
3671      return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
3672                         V1, V2).getValue(WhichResult);
3673    if (isVUZPMask(ShuffleMask, VT, WhichResult))
3674      return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
3675                         V1, V2).getValue(WhichResult);
3676    if (isVZIPMask(ShuffleMask, VT, WhichResult))
3677      return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
3678                         V1, V2).getValue(WhichResult);
3679
3680    if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult))
3681      return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
3682                         V1, V1).getValue(WhichResult);
3683    if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult))
3684      return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
3685                         V1, V1).getValue(WhichResult);
3686    if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult))
3687      return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
3688                         V1, V1).getValue(WhichResult);
3689  }
3690
3691  // If the shuffle is not directly supported and it has 4 elements, use
3692  // the PerfectShuffle-generated table to synthesize it from other shuffles.
3693  unsigned NumElts = VT.getVectorNumElements();
3694  if (NumElts == 4) {
3695    unsigned PFIndexes[4];
3696    for (unsigned i = 0; i != 4; ++i) {
3697      if (ShuffleMask[i] < 0)
3698        PFIndexes[i] = 8;
3699      else
3700        PFIndexes[i] = ShuffleMask[i];
3701    }
3702
3703    // Compute the index in the perfect shuffle table.
3704    unsigned PFTableIndex =
3705      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
3706    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
3707    unsigned Cost = (PFEntry >> 30);
3708
3709    if (Cost <= 4)
3710      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
3711  }
3712
3713  // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs.
3714  if (EltSize >= 32) {
3715    // Do the expansion with floating-point types, since that is what the VFP
3716    // registers are defined to use, and since i64 is not legal.
3717    EVT EltVT = EVT::getFloatingPointVT(EltSize);
3718    EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
3719    V1 = DAG.getNode(ISD::BIT_CONVERT, dl, VecVT, V1);
3720    V2 = DAG.getNode(ISD::BIT_CONVERT, dl, VecVT, V2);
3721    SmallVector<SDValue, 8> Ops;
3722    for (unsigned i = 0; i < NumElts; ++i) {
3723      if (ShuffleMask[i] < 0)
3724        Ops.push_back(DAG.getUNDEF(EltVT));
3725      else
3726        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
3727                                  ShuffleMask[i] < (int)NumElts ? V1 : V2,
3728                                  DAG.getConstant(ShuffleMask[i] & (NumElts-1),
3729                                                  MVT::i32)));
3730    }
3731    SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts);
3732    return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Val);
3733  }
3734
3735  return SDValue();
3736}
3737
3738static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
3739  EVT VT = Op.getValueType();
3740  DebugLoc dl = Op.getDebugLoc();
3741  SDValue Vec = Op.getOperand(0);
3742  SDValue Lane = Op.getOperand(1);
3743  assert(VT == MVT::i32 &&
3744         Vec.getValueType().getVectorElementType().getSizeInBits() < 32 &&
3745         "unexpected type for custom-lowering vector extract");
3746  return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
3747}
3748
3749static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
3750  // The only time a CONCAT_VECTORS operation can have legal types is when
3751  // two 64-bit vectors are concatenated to a 128-bit vector.
3752  assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 &&
3753         "unexpected CONCAT_VECTORS");
3754  DebugLoc dl = Op.getDebugLoc();
3755  SDValue Val = DAG.getUNDEF(MVT::v2f64);
3756  SDValue Op0 = Op.getOperand(0);
3757  SDValue Op1 = Op.getOperand(1);
3758  if (Op0.getOpcode() != ISD::UNDEF)
3759    Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
3760                      DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f64, Op0),
3761                      DAG.getIntPtrConstant(0));
3762  if (Op1.getOpcode() != ISD::UNDEF)
3763    Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
3764                      DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f64, Op1),
3765                      DAG.getIntPtrConstant(1));
3766  return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Val);
3767}
3768
3769/// SkipExtension - For a node that is either a SIGN_EXTEND, ZERO_EXTEND, or
3770/// an extending load, return the unextended value.
3771static SDValue SkipExtension(SDNode *N, SelectionDAG &DAG) {
3772  if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
3773    return N->getOperand(0);
3774  LoadSDNode *LD = cast<LoadSDNode>(N);
3775  return DAG.getLoad(LD->getMemoryVT(), N->getDebugLoc(), LD->getChain(),
3776                     LD->getBasePtr(), LD->getPointerInfo(), LD->isVolatile(),
3777                     LD->isNonTemporal(), LD->getAlignment());
3778}
3779
3780static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
3781  // Multiplications are only custom-lowered for 128-bit vectors so that
3782  // VMULL can be detected.  Otherwise v2i64 multiplications are not legal.
3783  EVT VT = Op.getValueType();
3784  assert(VT.is128BitVector() && "unexpected type for custom-lowering ISD::MUL");
3785  SDNode *N0 = Op.getOperand(0).getNode();
3786  SDNode *N1 = Op.getOperand(1).getNode();
3787  unsigned NewOpc = 0;
3788  if ((N0->getOpcode() == ISD::SIGN_EXTEND || ISD::isSEXTLoad(N0)) &&
3789      (N1->getOpcode() == ISD::SIGN_EXTEND || ISD::isSEXTLoad(N1))) {
3790    NewOpc = ARMISD::VMULLs;
3791  } else if ((N0->getOpcode() == ISD::ZERO_EXTEND || ISD::isZEXTLoad(N0)) &&
3792             (N1->getOpcode() == ISD::ZERO_EXTEND || ISD::isZEXTLoad(N1))) {
3793    NewOpc = ARMISD::VMULLu;
3794  } else if (VT.getSimpleVT().SimpleTy == MVT::v2i64) {
3795    // Fall through to expand this.  It is not legal.
3796    return SDValue();
3797  } else {
3798    // Other vector multiplications are legal.
3799    return Op;
3800  }
3801
3802  // Legalize to a VMULL instruction.
3803  DebugLoc DL = Op.getDebugLoc();
3804  SDValue Op0 = SkipExtension(N0, DAG);
3805  SDValue Op1 = SkipExtension(N1, DAG);
3806
3807  assert(Op0.getValueType().is64BitVector() &&
3808         Op1.getValueType().is64BitVector() &&
3809         "unexpected types for extended operands to VMULL");
3810  return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
3811}
3812
3813SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
3814  switch (Op.getOpcode()) {
3815  default: llvm_unreachable("Don't know how to custom lower this!");
3816  case ISD::ConstantPool:  return LowerConstantPool(Op, DAG);
3817  case ISD::BlockAddress:  return LowerBlockAddress(Op, DAG);
3818  case ISD::GlobalAddress:
3819    return Subtarget->isTargetDarwin() ? LowerGlobalAddressDarwin(Op, DAG) :
3820      LowerGlobalAddressELF(Op, DAG);
3821  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
3822  case ISD::SELECT:        return LowerSELECT(Op, DAG);
3823  case ISD::SELECT_CC:     return LowerSELECT_CC(Op, DAG);
3824  case ISD::BR_CC:         return LowerBR_CC(Op, DAG);
3825  case ISD::BR_JT:         return LowerBR_JT(Op, DAG);
3826  case ISD::VASTART:       return LowerVASTART(Op, DAG);
3827  case ISD::MEMBARRIER:    return LowerMEMBARRIER(Op, DAG, Subtarget);
3828  case ISD::SINT_TO_FP:
3829  case ISD::UINT_TO_FP:    return LowerINT_TO_FP(Op, DAG);
3830  case ISD::FP_TO_SINT:
3831  case ISD::FP_TO_UINT:    return LowerFP_TO_INT(Op, DAG);
3832  case ISD::FCOPYSIGN:     return LowerFCOPYSIGN(Op, DAG);
3833  case ISD::RETURNADDR:    return LowerRETURNADDR(Op, DAG);
3834  case ISD::FRAMEADDR:     return LowerFRAMEADDR(Op, DAG);
3835  case ISD::GLOBAL_OFFSET_TABLE: return LowerGLOBAL_OFFSET_TABLE(Op, DAG);
3836  case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG);
3837  case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG);
3838  case ISD::EH_SJLJ_DISPATCHSETUP: return LowerEH_SJLJ_DISPATCHSETUP(Op, DAG);
3839  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG,
3840                                                               Subtarget);
3841  case ISD::BIT_CONVERT:   return ExpandBIT_CONVERT(Op.getNode(), DAG);
3842  case ISD::SHL:
3843  case ISD::SRL:
3844  case ISD::SRA:           return LowerShift(Op.getNode(), DAG, Subtarget);
3845  case ISD::SHL_PARTS:     return LowerShiftLeftParts(Op, DAG);
3846  case ISD::SRL_PARTS:
3847  case ISD::SRA_PARTS:     return LowerShiftRightParts(Op, DAG);
3848  case ISD::CTTZ:          return LowerCTTZ(Op.getNode(), DAG, Subtarget);
3849  case ISD::VSETCC:        return LowerVSETCC(Op, DAG);
3850  case ISD::BUILD_VECTOR:  return LowerBUILD_VECTOR(Op, DAG, Subtarget);
3851  case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
3852  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
3853  case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
3854  case ISD::FLT_ROUNDS_:   return LowerFLT_ROUNDS_(Op, DAG);
3855  case ISD::MUL:           return LowerMUL(Op, DAG);
3856  }
3857  return SDValue();
3858}
3859
3860/// ReplaceNodeResults - Replace the results of node with an illegal result
3861/// type with new values built out of custom code.
3862void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
3863                                           SmallVectorImpl<SDValue>&Results,
3864                                           SelectionDAG &DAG) const {
3865  SDValue Res;
3866  switch (N->getOpcode()) {
3867  default:
3868    llvm_unreachable("Don't know how to custom expand this!");
3869    break;
3870  case ISD::BIT_CONVERT:
3871    Res = ExpandBIT_CONVERT(N, DAG);
3872    break;
3873  case ISD::SRL:
3874  case ISD::SRA:
3875    Res = LowerShift(N, DAG, Subtarget);
3876    break;
3877  }
3878  if (Res.getNode())
3879    Results.push_back(Res);
3880}
3881
3882//===----------------------------------------------------------------------===//
3883//                           ARM Scheduler Hooks
3884//===----------------------------------------------------------------------===//
3885
3886MachineBasicBlock *
3887ARMTargetLowering::EmitAtomicCmpSwap(MachineInstr *MI,
3888                                     MachineBasicBlock *BB,
3889                                     unsigned Size) const {
3890  unsigned dest    = MI->getOperand(0).getReg();
3891  unsigned ptr     = MI->getOperand(1).getReg();
3892  unsigned oldval  = MI->getOperand(2).getReg();
3893  unsigned newval  = MI->getOperand(3).getReg();
3894  unsigned scratch = BB->getParent()->getRegInfo()
3895    .createVirtualRegister(ARM::GPRRegisterClass);
3896  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
3897  DebugLoc dl = MI->getDebugLoc();
3898  bool isThumb2 = Subtarget->isThumb2();
3899
3900  unsigned ldrOpc, strOpc;
3901  switch (Size) {
3902  default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
3903  case 1:
3904    ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
3905    strOpc = isThumb2 ? ARM::t2LDREXB : ARM::STREXB;
3906    break;
3907  case 2:
3908    ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
3909    strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
3910    break;
3911  case 4:
3912    ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
3913    strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
3914    break;
3915  }
3916
3917  MachineFunction *MF = BB->getParent();
3918  const BasicBlock *LLVM_BB = BB->getBasicBlock();
3919  MachineFunction::iterator It = BB;
3920  ++It; // insert the new blocks after the current block
3921
3922  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
3923  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
3924  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
3925  MF->insert(It, loop1MBB);
3926  MF->insert(It, loop2MBB);
3927  MF->insert(It, exitMBB);
3928
3929  // Transfer the remainder of BB and its successor edges to exitMBB.
3930  exitMBB->splice(exitMBB->begin(), BB,
3931                  llvm::next(MachineBasicBlock::iterator(MI)),
3932                  BB->end());
3933  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
3934
3935  //  thisMBB:
3936  //   ...
3937  //   fallthrough --> loop1MBB
3938  BB->addSuccessor(loop1MBB);
3939
3940  // loop1MBB:
3941  //   ldrex dest, [ptr]
3942  //   cmp dest, oldval
3943  //   bne exitMBB
3944  BB = loop1MBB;
3945  AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr));
3946  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
3947                 .addReg(dest).addReg(oldval));
3948  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
3949    .addMBB(exitMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
3950  BB->addSuccessor(loop2MBB);
3951  BB->addSuccessor(exitMBB);
3952
3953  // loop2MBB:
3954  //   strex scratch, newval, [ptr]
3955  //   cmp scratch, #0
3956  //   bne loop1MBB
3957  BB = loop2MBB;
3958  AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(newval)
3959                 .addReg(ptr));
3960  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
3961                 .addReg(scratch).addImm(0));
3962  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
3963    .addMBB(loop1MBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
3964  BB->addSuccessor(loop1MBB);
3965  BB->addSuccessor(exitMBB);
3966
3967  //  exitMBB:
3968  //   ...
3969  BB = exitMBB;
3970
3971  MI->eraseFromParent();   // The instruction is gone now.
3972
3973  return BB;
3974}
3975
3976MachineBasicBlock *
3977ARMTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
3978                                    unsigned Size, unsigned BinOpcode) const {
3979  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
3980  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
3981
3982  const BasicBlock *LLVM_BB = BB->getBasicBlock();
3983  MachineFunction *MF = BB->getParent();
3984  MachineFunction::iterator It = BB;
3985  ++It;
3986
3987  unsigned dest = MI->getOperand(0).getReg();
3988  unsigned ptr = MI->getOperand(1).getReg();
3989  unsigned incr = MI->getOperand(2).getReg();
3990  DebugLoc dl = MI->getDebugLoc();
3991
3992  bool isThumb2 = Subtarget->isThumb2();
3993  unsigned ldrOpc, strOpc;
3994  switch (Size) {
3995  default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
3996  case 1:
3997    ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
3998    strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
3999    break;
4000  case 2:
4001    ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
4002    strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
4003    break;
4004  case 4:
4005    ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
4006    strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
4007    break;
4008  }
4009
4010  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
4011  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
4012  MF->insert(It, loopMBB);
4013  MF->insert(It, exitMBB);
4014
4015  // Transfer the remainder of BB and its successor edges to exitMBB.
4016  exitMBB->splice(exitMBB->begin(), BB,
4017                  llvm::next(MachineBasicBlock::iterator(MI)),
4018                  BB->end());
4019  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
4020
4021  MachineRegisterInfo &RegInfo = MF->getRegInfo();
4022  unsigned scratch = RegInfo.createVirtualRegister(ARM::GPRRegisterClass);
4023  unsigned scratch2 = (!BinOpcode) ? incr :
4024    RegInfo.createVirtualRegister(ARM::GPRRegisterClass);
4025
4026  //  thisMBB:
4027  //   ...
4028  //   fallthrough --> loopMBB
4029  BB->addSuccessor(loopMBB);
4030
4031  //  loopMBB:
4032  //   ldrex dest, ptr
4033  //   <binop> scratch2, dest, incr
4034  //   strex scratch, scratch2, ptr
4035  //   cmp scratch, #0
4036  //   bne- loopMBB
4037  //   fallthrough --> exitMBB
4038  BB = loopMBB;
4039  AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr));
4040  if (BinOpcode) {
4041    // operand order needs to go the other way for NAND
4042    if (BinOpcode == ARM::BICrr || BinOpcode == ARM::t2BICrr)
4043      AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
4044                     addReg(incr).addReg(dest)).addReg(0);
4045    else
4046      AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
4047                     addReg(dest).addReg(incr)).addReg(0);
4048  }
4049
4050  AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(scratch2)
4051                 .addReg(ptr));
4052  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
4053                 .addReg(scratch).addImm(0));
4054  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
4055    .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
4056
4057  BB->addSuccessor(loopMBB);
4058  BB->addSuccessor(exitMBB);
4059
4060  //  exitMBB:
4061  //   ...
4062  BB = exitMBB;
4063
4064  MI->eraseFromParent();   // The instruction is gone now.
4065
4066  return BB;
4067}
4068
4069static
4070MachineBasicBlock *OtherSucc(MachineBasicBlock *MBB, MachineBasicBlock *Succ) {
4071  for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
4072       E = MBB->succ_end(); I != E; ++I)
4073    if (*I != Succ)
4074      return *I;
4075  llvm_unreachable("Expecting a BB with two successors!");
4076}
4077
4078MachineBasicBlock *
4079ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
4080                                               MachineBasicBlock *BB) const {
4081  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4082  DebugLoc dl = MI->getDebugLoc();
4083  bool isThumb2 = Subtarget->isThumb2();
4084  switch (MI->getOpcode()) {
4085  default:
4086    MI->dump();
4087    llvm_unreachable("Unexpected instr type to insert");
4088
4089  case ARM::ATOMIC_LOAD_ADD_I8:
4090     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
4091  case ARM::ATOMIC_LOAD_ADD_I16:
4092     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
4093  case ARM::ATOMIC_LOAD_ADD_I32:
4094     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
4095
4096  case ARM::ATOMIC_LOAD_AND_I8:
4097     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
4098  case ARM::ATOMIC_LOAD_AND_I16:
4099     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
4100  case ARM::ATOMIC_LOAD_AND_I32:
4101     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
4102
4103  case ARM::ATOMIC_LOAD_OR_I8:
4104     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
4105  case ARM::ATOMIC_LOAD_OR_I16:
4106     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
4107  case ARM::ATOMIC_LOAD_OR_I32:
4108     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
4109
4110  case ARM::ATOMIC_LOAD_XOR_I8:
4111     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
4112  case ARM::ATOMIC_LOAD_XOR_I16:
4113     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
4114  case ARM::ATOMIC_LOAD_XOR_I32:
4115     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
4116
4117  case ARM::ATOMIC_LOAD_NAND_I8:
4118     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
4119  case ARM::ATOMIC_LOAD_NAND_I16:
4120     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
4121  case ARM::ATOMIC_LOAD_NAND_I32:
4122     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
4123
4124  case ARM::ATOMIC_LOAD_SUB_I8:
4125     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
4126  case ARM::ATOMIC_LOAD_SUB_I16:
4127     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
4128  case ARM::ATOMIC_LOAD_SUB_I32:
4129     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
4130
4131  case ARM::ATOMIC_SWAP_I8:  return EmitAtomicBinary(MI, BB, 1, 0);
4132  case ARM::ATOMIC_SWAP_I16: return EmitAtomicBinary(MI, BB, 2, 0);
4133  case ARM::ATOMIC_SWAP_I32: return EmitAtomicBinary(MI, BB, 4, 0);
4134
4135  case ARM::ATOMIC_CMP_SWAP_I8:  return EmitAtomicCmpSwap(MI, BB, 1);
4136  case ARM::ATOMIC_CMP_SWAP_I16: return EmitAtomicCmpSwap(MI, BB, 2);
4137  case ARM::ATOMIC_CMP_SWAP_I32: return EmitAtomicCmpSwap(MI, BB, 4);
4138
4139  case ARM::tMOVCCr_pseudo: {
4140    // To "insert" a SELECT_CC instruction, we actually have to insert the
4141    // diamond control-flow pattern.  The incoming instruction knows the
4142    // destination vreg to set, the condition code register to branch on, the
4143    // true/false values to select between, and a branch opcode to use.
4144    const BasicBlock *LLVM_BB = BB->getBasicBlock();
4145    MachineFunction::iterator It = BB;
4146    ++It;
4147
4148    //  thisMBB:
4149    //  ...
4150    //   TrueVal = ...
4151    //   cmpTY ccX, r1, r2
4152    //   bCC copy1MBB
4153    //   fallthrough --> copy0MBB
4154    MachineBasicBlock *thisMBB  = BB;
4155    MachineFunction *F = BB->getParent();
4156    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
4157    MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
4158    F->insert(It, copy0MBB);
4159    F->insert(It, sinkMBB);
4160
4161    // Transfer the remainder of BB and its successor edges to sinkMBB.
4162    sinkMBB->splice(sinkMBB->begin(), BB,
4163                    llvm::next(MachineBasicBlock::iterator(MI)),
4164                    BB->end());
4165    sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
4166
4167    BB->addSuccessor(copy0MBB);
4168    BB->addSuccessor(sinkMBB);
4169
4170    BuildMI(BB, dl, TII->get(ARM::tBcc)).addMBB(sinkMBB)
4171      .addImm(MI->getOperand(3).getImm()).addReg(MI->getOperand(4).getReg());
4172
4173    //  copy0MBB:
4174    //   %FalseValue = ...
4175    //   # fallthrough to sinkMBB
4176    BB = copy0MBB;
4177
4178    // Update machine-CFG edges
4179    BB->addSuccessor(sinkMBB);
4180
4181    //  sinkMBB:
4182    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
4183    //  ...
4184    BB = sinkMBB;
4185    BuildMI(*BB, BB->begin(), dl,
4186            TII->get(ARM::PHI), MI->getOperand(0).getReg())
4187      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
4188      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
4189
4190    MI->eraseFromParent();   // The pseudo instruction is gone now.
4191    return BB;
4192  }
4193
4194  case ARM::BCCi64:
4195  case ARM::BCCZi64: {
4196    // Compare both parts that make up the double comparison separately for
4197    // equality.
4198    bool RHSisZero = MI->getOpcode() == ARM::BCCZi64;
4199
4200    unsigned LHS1 = MI->getOperand(1).getReg();
4201    unsigned LHS2 = MI->getOperand(2).getReg();
4202    if (RHSisZero) {
4203      AddDefaultPred(BuildMI(BB, dl,
4204                             TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
4205                     .addReg(LHS1).addImm(0));
4206      BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
4207        .addReg(LHS2).addImm(0)
4208        .addImm(ARMCC::EQ).addReg(ARM::CPSR);
4209    } else {
4210      unsigned RHS1 = MI->getOperand(3).getReg();
4211      unsigned RHS2 = MI->getOperand(4).getReg();
4212      AddDefaultPred(BuildMI(BB, dl,
4213                             TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
4214                     .addReg(LHS1).addReg(RHS1));
4215      BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
4216        .addReg(LHS2).addReg(RHS2)
4217        .addImm(ARMCC::EQ).addReg(ARM::CPSR);
4218    }
4219
4220    MachineBasicBlock *destMBB = MI->getOperand(RHSisZero ? 3 : 5).getMBB();
4221    MachineBasicBlock *exitMBB = OtherSucc(BB, destMBB);
4222    if (MI->getOperand(0).getImm() == ARMCC::NE)
4223      std::swap(destMBB, exitMBB);
4224
4225    BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
4226      .addMBB(destMBB).addImm(ARMCC::EQ).addReg(ARM::CPSR);
4227    BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2B : ARM::B))
4228      .addMBB(exitMBB);
4229
4230    MI->eraseFromParent();   // The pseudo instruction is gone now.
4231    return BB;
4232  }
4233  }
4234}
4235
4236//===----------------------------------------------------------------------===//
4237//                           ARM Optimization Hooks
4238//===----------------------------------------------------------------------===//
4239
4240static
4241SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
4242                            TargetLowering::DAGCombinerInfo &DCI) {
4243  SelectionDAG &DAG = DCI.DAG;
4244  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4245  EVT VT = N->getValueType(0);
4246  unsigned Opc = N->getOpcode();
4247  bool isSlctCC = Slct.getOpcode() == ISD::SELECT_CC;
4248  SDValue LHS = isSlctCC ? Slct.getOperand(2) : Slct.getOperand(1);
4249  SDValue RHS = isSlctCC ? Slct.getOperand(3) : Slct.getOperand(2);
4250  ISD::CondCode CC = ISD::SETCC_INVALID;
4251
4252  if (isSlctCC) {
4253    CC = cast<CondCodeSDNode>(Slct.getOperand(4))->get();
4254  } else {
4255    SDValue CCOp = Slct.getOperand(0);
4256    if (CCOp.getOpcode() == ISD::SETCC)
4257      CC = cast<CondCodeSDNode>(CCOp.getOperand(2))->get();
4258  }
4259
4260  bool DoXform = false;
4261  bool InvCC = false;
4262  assert ((Opc == ISD::ADD || (Opc == ISD::SUB && Slct == N->getOperand(1))) &&
4263          "Bad input!");
4264
4265  if (LHS.getOpcode() == ISD::Constant &&
4266      cast<ConstantSDNode>(LHS)->isNullValue()) {
4267    DoXform = true;
4268  } else if (CC != ISD::SETCC_INVALID &&
4269             RHS.getOpcode() == ISD::Constant &&
4270             cast<ConstantSDNode>(RHS)->isNullValue()) {
4271    std::swap(LHS, RHS);
4272    SDValue Op0 = Slct.getOperand(0);
4273    EVT OpVT = isSlctCC ? Op0.getValueType() :
4274                          Op0.getOperand(0).getValueType();
4275    bool isInt = OpVT.isInteger();
4276    CC = ISD::getSetCCInverse(CC, isInt);
4277
4278    if (!TLI.isCondCodeLegal(CC, OpVT))
4279      return SDValue();         // Inverse operator isn't legal.
4280
4281    DoXform = true;
4282    InvCC = true;
4283  }
4284
4285  if (DoXform) {
4286    SDValue Result = DAG.getNode(Opc, RHS.getDebugLoc(), VT, OtherOp, RHS);
4287    if (isSlctCC)
4288      return DAG.getSelectCC(N->getDebugLoc(), OtherOp, Result,
4289                             Slct.getOperand(0), Slct.getOperand(1), CC);
4290    SDValue CCOp = Slct.getOperand(0);
4291    if (InvCC)
4292      CCOp = DAG.getSetCC(Slct.getDebugLoc(), CCOp.getValueType(),
4293                          CCOp.getOperand(0), CCOp.getOperand(1), CC);
4294    return DAG.getNode(ISD::SELECT, N->getDebugLoc(), VT,
4295                       CCOp, OtherOp, Result);
4296  }
4297  return SDValue();
4298}
4299
4300/// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
4301/// operands N0 and N1.  This is a helper for PerformADDCombine that is
4302/// called with the default operands, and if that fails, with commuted
4303/// operands.
4304static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
4305                                         TargetLowering::DAGCombinerInfo &DCI) {
4306  // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
4307  if (N0.getOpcode() == ISD::SELECT && N0.getNode()->hasOneUse()) {
4308    SDValue Result = combineSelectAndUse(N, N0, N1, DCI);
4309    if (Result.getNode()) return Result;
4310  }
4311  return SDValue();
4312}
4313
4314/// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
4315///
4316static SDValue PerformADDCombine(SDNode *N,
4317                                 TargetLowering::DAGCombinerInfo &DCI) {
4318  SDValue N0 = N->getOperand(0);
4319  SDValue N1 = N->getOperand(1);
4320
4321  // First try with the default operand order.
4322  SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI);
4323  if (Result.getNode())
4324    return Result;
4325
4326  // If that didn't work, try again with the operands commuted.
4327  return PerformADDCombineWithOperands(N, N1, N0, DCI);
4328}
4329
4330/// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
4331///
4332static SDValue PerformSUBCombine(SDNode *N,
4333                                 TargetLowering::DAGCombinerInfo &DCI) {
4334  SDValue N0 = N->getOperand(0);
4335  SDValue N1 = N->getOperand(1);
4336
4337  // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
4338  if (N1.getOpcode() == ISD::SELECT && N1.getNode()->hasOneUse()) {
4339    SDValue Result = combineSelectAndUse(N, N1, N0, DCI);
4340    if (Result.getNode()) return Result;
4341  }
4342
4343  return SDValue();
4344}
4345
4346static SDValue PerformMULCombine(SDNode *N,
4347                                 TargetLowering::DAGCombinerInfo &DCI,
4348                                 const ARMSubtarget *Subtarget) {
4349  SelectionDAG &DAG = DCI.DAG;
4350
4351  if (Subtarget->isThumb1Only())
4352    return SDValue();
4353
4354  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
4355    return SDValue();
4356
4357  EVT VT = N->getValueType(0);
4358  if (VT != MVT::i32)
4359    return SDValue();
4360
4361  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
4362  if (!C)
4363    return SDValue();
4364
4365  uint64_t MulAmt = C->getZExtValue();
4366  unsigned ShiftAmt = CountTrailingZeros_64(MulAmt);
4367  ShiftAmt = ShiftAmt & (32 - 1);
4368  SDValue V = N->getOperand(0);
4369  DebugLoc DL = N->getDebugLoc();
4370
4371  SDValue Res;
4372  MulAmt >>= ShiftAmt;
4373  if (isPowerOf2_32(MulAmt - 1)) {
4374    // (mul x, 2^N + 1) => (add (shl x, N), x)
4375    Res = DAG.getNode(ISD::ADD, DL, VT,
4376                      V, DAG.getNode(ISD::SHL, DL, VT,
4377                                     V, DAG.getConstant(Log2_32(MulAmt-1),
4378                                                        MVT::i32)));
4379  } else if (isPowerOf2_32(MulAmt + 1)) {
4380    // (mul x, 2^N - 1) => (sub (shl x, N), x)
4381    Res = DAG.getNode(ISD::SUB, DL, VT,
4382                      DAG.getNode(ISD::SHL, DL, VT,
4383                                  V, DAG.getConstant(Log2_32(MulAmt+1),
4384                                                     MVT::i32)),
4385                                                     V);
4386  } else
4387    return SDValue();
4388
4389  if (ShiftAmt != 0)
4390    Res = DAG.getNode(ISD::SHL, DL, VT, Res,
4391                      DAG.getConstant(ShiftAmt, MVT::i32));
4392
4393  // Do not add new nodes to DAG combiner worklist.
4394  DCI.CombineTo(N, Res, false);
4395  return SDValue();
4396}
4397
4398/// PerformORCombine - Target-specific dag combine xforms for ISD::OR
4399static SDValue PerformORCombine(SDNode *N,
4400                                TargetLowering::DAGCombinerInfo &DCI,
4401                                const ARMSubtarget *Subtarget) {
4402  // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when
4403  // reasonable.
4404
4405  // BFI is only available on V6T2+
4406  if (Subtarget->isThumb1Only() || !Subtarget->hasV6T2Ops())
4407    return SDValue();
4408
4409  SelectionDAG &DAG = DCI.DAG;
4410  SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
4411  DebugLoc DL = N->getDebugLoc();
4412  // 1) or (and A, mask), val => ARMbfi A, val, mask
4413  //      iff (val & mask) == val
4414  //
4415  // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
4416  //  2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2)
4417  //          && CountPopulation_32(mask) == CountPopulation_32(~mask2)
4418  //  2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2)
4419  //          && CountPopulation_32(mask) == CountPopulation_32(~mask2)
4420  //  (i.e., copy a bitfield value into another bitfield of the same width)
4421  if (N0.getOpcode() != ISD::AND)
4422    return SDValue();
4423
4424  EVT VT = N->getValueType(0);
4425  if (VT != MVT::i32)
4426    return SDValue();
4427
4428
4429  // The value and the mask need to be constants so we can verify this is
4430  // actually a bitfield set. If the mask is 0xffff, we can do better
4431  // via a movt instruction, so don't use BFI in that case.
4432  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
4433  if (!C)
4434    return SDValue();
4435  unsigned Mask = C->getZExtValue();
4436  if (Mask == 0xffff)
4437    return SDValue();
4438  SDValue Res;
4439  // Case (1): or (and A, mask), val => ARMbfi A, val, mask
4440  if ((C = dyn_cast<ConstantSDNode>(N1))) {
4441    unsigned Val = C->getZExtValue();
4442    if (!ARM::isBitFieldInvertedMask(Mask) || (Val & ~Mask) != Val)
4443      return SDValue();
4444    Val >>= CountTrailingZeros_32(~Mask);
4445
4446    Res = DAG.getNode(ARMISD::BFI, DL, VT, N0.getOperand(0),
4447                      DAG.getConstant(Val, MVT::i32),
4448                      DAG.getConstant(Mask, MVT::i32));
4449
4450    // Do not add new nodes to DAG combiner worklist.
4451    DCI.CombineTo(N, Res, false);
4452  } else if (N1.getOpcode() == ISD::AND) {
4453    // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
4454    C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
4455    if (!C)
4456      return SDValue();
4457    unsigned Mask2 = C->getZExtValue();
4458
4459    if (ARM::isBitFieldInvertedMask(Mask) &&
4460        ARM::isBitFieldInvertedMask(~Mask2) &&
4461        (CountPopulation_32(Mask) == CountPopulation_32(~Mask2))) {
4462      // The pack halfword instruction works better for masks that fit it,
4463      // so use that when it's available.
4464      if (Subtarget->hasT2ExtractPack() &&
4465          (Mask == 0xffff || Mask == 0xffff0000))
4466        return SDValue();
4467      // 2a
4468      unsigned lsb = CountTrailingZeros_32(Mask2);
4469      Res = DAG.getNode(ISD::SRL, DL, VT, N1.getOperand(0),
4470                        DAG.getConstant(lsb, MVT::i32));
4471      Res = DAG.getNode(ARMISD::BFI, DL, VT, N0.getOperand(0), Res,
4472                        DAG.getConstant(Mask, MVT::i32));
4473      // Do not add new nodes to DAG combiner worklist.
4474      DCI.CombineTo(N, Res, false);
4475    } else if (ARM::isBitFieldInvertedMask(~Mask) &&
4476               ARM::isBitFieldInvertedMask(Mask2) &&
4477               (CountPopulation_32(~Mask) == CountPopulation_32(Mask2))) {
4478      // The pack halfword instruction works better for masks that fit it,
4479      // so use that when it's available.
4480      if (Subtarget->hasT2ExtractPack() &&
4481          (Mask2 == 0xffff || Mask2 == 0xffff0000))
4482        return SDValue();
4483      // 2b
4484      unsigned lsb = CountTrailingZeros_32(Mask);
4485      Res = DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0),
4486                        DAG.getConstant(lsb, MVT::i32));
4487      Res = DAG.getNode(ARMISD::BFI, DL, VT, N1.getOperand(0), Res,
4488                                DAG.getConstant(Mask2, MVT::i32));
4489      // Do not add new nodes to DAG combiner worklist.
4490      DCI.CombineTo(N, Res, false);
4491    }
4492  }
4493
4494  return SDValue();
4495}
4496
4497/// PerformVMOVRRDCombine - Target-specific dag combine xforms for
4498/// ARMISD::VMOVRRD.
4499static SDValue PerformVMOVRRDCombine(SDNode *N,
4500                                     TargetLowering::DAGCombinerInfo &DCI) {
4501  // vmovrrd(vmovdrr x, y) -> x,y
4502  SDValue InDouble = N->getOperand(0);
4503  if (InDouble.getOpcode() == ARMISD::VMOVDRR)
4504    return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
4505  return SDValue();
4506}
4507
4508/// PerformVMOVDRRCombine - Target-specific dag combine xforms for
4509/// ARMISD::VMOVDRR.  This is also used for BUILD_VECTORs with 2 operands.
4510static SDValue PerformVMOVDRRCombine(SDNode *N, SelectionDAG &DAG) {
4511  // N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X)
4512  SDValue Op0 = N->getOperand(0);
4513  SDValue Op1 = N->getOperand(1);
4514  if (Op0.getOpcode() == ISD::BIT_CONVERT)
4515    Op0 = Op0.getOperand(0);
4516  if (Op1.getOpcode() == ISD::BIT_CONVERT)
4517    Op1 = Op1.getOperand(0);
4518  if (Op0.getOpcode() == ARMISD::VMOVRRD &&
4519      Op0.getNode() == Op1.getNode() &&
4520      Op0.getResNo() == 0 && Op1.getResNo() == 1)
4521    return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(),
4522                       N->getValueType(0), Op0.getOperand(0));
4523  return SDValue();
4524}
4525
4526/// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for
4527/// ISD::BUILD_VECTOR.
4528static SDValue PerformBUILD_VECTORCombine(SDNode *N, SelectionDAG &DAG) {
4529  // build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X):
4530  // VMOVRRD is introduced when legalizing i64 types.  It forces the i64 value
4531  // into a pair of GPRs, which is fine when the value is used as a scalar,
4532  // but if the i64 value is converted to a vector, we need to undo the VMOVRRD.
4533  if (N->getNumOperands() == 2)
4534    return PerformVMOVDRRCombine(N, DAG);
4535
4536  return SDValue();
4537}
4538
4539/// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for
4540/// ISD::VECTOR_SHUFFLE.
4541static SDValue PerformVECTOR_SHUFFLECombine(SDNode *N, SelectionDAG &DAG) {
4542  // The LLVM shufflevector instruction does not require the shuffle mask
4543  // length to match the operand vector length, but ISD::VECTOR_SHUFFLE does
4544  // have that requirement.  When translating to ISD::VECTOR_SHUFFLE, if the
4545  // operands do not match the mask length, they are extended by concatenating
4546  // them with undef vectors.  That is probably the right thing for other
4547  // targets, but for NEON it is better to concatenate two double-register
4548  // size vector operands into a single quad-register size vector.  Do that
4549  // transformation here:
4550  //   shuffle(concat(v1, undef), concat(v2, undef)) ->
4551  //   shuffle(concat(v1, v2), undef)
4552  SDValue Op0 = N->getOperand(0);
4553  SDValue Op1 = N->getOperand(1);
4554  if (Op0.getOpcode() != ISD::CONCAT_VECTORS ||
4555      Op1.getOpcode() != ISD::CONCAT_VECTORS ||
4556      Op0.getNumOperands() != 2 ||
4557      Op1.getNumOperands() != 2)
4558    return SDValue();
4559  SDValue Concat0Op1 = Op0.getOperand(1);
4560  SDValue Concat1Op1 = Op1.getOperand(1);
4561  if (Concat0Op1.getOpcode() != ISD::UNDEF ||
4562      Concat1Op1.getOpcode() != ISD::UNDEF)
4563    return SDValue();
4564  // Skip the transformation if any of the types are illegal.
4565  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4566  EVT VT = N->getValueType(0);
4567  if (!TLI.isTypeLegal(VT) ||
4568      !TLI.isTypeLegal(Concat0Op1.getValueType()) ||
4569      !TLI.isTypeLegal(Concat1Op1.getValueType()))
4570    return SDValue();
4571
4572  SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, N->getDebugLoc(), VT,
4573                                  Op0.getOperand(0), Op1.getOperand(0));
4574  // Translate the shuffle mask.
4575  SmallVector<int, 16> NewMask;
4576  unsigned NumElts = VT.getVectorNumElements();
4577  unsigned HalfElts = NumElts/2;
4578  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
4579  for (unsigned n = 0; n < NumElts; ++n) {
4580    int MaskElt = SVN->getMaskElt(n);
4581    int NewElt = -1;
4582    if (MaskElt < (int)HalfElts)
4583      NewElt = MaskElt;
4584    else if (MaskElt >= (int)NumElts && MaskElt < (int)(NumElts + HalfElts))
4585      NewElt = HalfElts + MaskElt - NumElts;
4586    NewMask.push_back(NewElt);
4587  }
4588  return DAG.getVectorShuffle(VT, N->getDebugLoc(), NewConcat,
4589                              DAG.getUNDEF(VT), NewMask.data());
4590}
4591
4592/// PerformVDUPLANECombine - Target-specific dag combine xforms for
4593/// ARMISD::VDUPLANE.
4594static SDValue PerformVDUPLANECombine(SDNode *N, SelectionDAG &DAG) {
4595  // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is
4596  // redundant.
4597  SDValue Op = N->getOperand(0);
4598  EVT VT = N->getValueType(0);
4599
4600  // Ignore bit_converts.
4601  while (Op.getOpcode() == ISD::BIT_CONVERT)
4602    Op = Op.getOperand(0);
4603  if (Op.getOpcode() != ARMISD::VMOVIMM && Op.getOpcode() != ARMISD::VMVNIMM)
4604    return SDValue();
4605
4606  // Make sure the VMOV element size is not bigger than the VDUPLANE elements.
4607  unsigned EltSize = Op.getValueType().getVectorElementType().getSizeInBits();
4608  // The canonical VMOV for a zero vector uses a 32-bit element size.
4609  unsigned Imm = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4610  unsigned EltBits;
4611  if (ARM_AM::decodeNEONModImm(Imm, EltBits) == 0)
4612    EltSize = 8;
4613  if (EltSize > VT.getVectorElementType().getSizeInBits())
4614    return SDValue();
4615
4616  return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(), VT, Op);
4617}
4618
4619/// getVShiftImm - Check if this is a valid build_vector for the immediate
4620/// operand of a vector shift operation, where all the elements of the
4621/// build_vector must have the same constant integer value.
4622static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
4623  // Ignore bit_converts.
4624  while (Op.getOpcode() == ISD::BIT_CONVERT)
4625    Op = Op.getOperand(0);
4626  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
4627  APInt SplatBits, SplatUndef;
4628  unsigned SplatBitSize;
4629  bool HasAnyUndefs;
4630  if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
4631                                      HasAnyUndefs, ElementBits) ||
4632      SplatBitSize > ElementBits)
4633    return false;
4634  Cnt = SplatBits.getSExtValue();
4635  return true;
4636}
4637
4638/// isVShiftLImm - Check if this is a valid build_vector for the immediate
4639/// operand of a vector shift left operation.  That value must be in the range:
4640///   0 <= Value < ElementBits for a left shift; or
4641///   0 <= Value <= ElementBits for a long left shift.
4642static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
4643  assert(VT.isVector() && "vector shift count is not a vector type");
4644  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
4645  if (! getVShiftImm(Op, ElementBits, Cnt))
4646    return false;
4647  return (Cnt >= 0 && (isLong ? Cnt-1 : Cnt) < ElementBits);
4648}
4649
4650/// isVShiftRImm - Check if this is a valid build_vector for the immediate
4651/// operand of a vector shift right operation.  For a shift opcode, the value
4652/// is positive, but for an intrinsic the value count must be negative. The
4653/// absolute value must be in the range:
4654///   1 <= |Value| <= ElementBits for a right shift; or
4655///   1 <= |Value| <= ElementBits/2 for a narrow right shift.
4656static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
4657                         int64_t &Cnt) {
4658  assert(VT.isVector() && "vector shift count is not a vector type");
4659  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
4660  if (! getVShiftImm(Op, ElementBits, Cnt))
4661    return false;
4662  if (isIntrinsic)
4663    Cnt = -Cnt;
4664  return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits/2 : ElementBits));
4665}
4666
4667/// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
4668static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
4669  unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
4670  switch (IntNo) {
4671  default:
4672    // Don't do anything for most intrinsics.
4673    break;
4674
4675  // Vector shifts: check for immediate versions and lower them.
4676  // Note: This is done during DAG combining instead of DAG legalizing because
4677  // the build_vectors for 64-bit vector element shift counts are generally
4678  // not legal, and it is hard to see their values after they get legalized to
4679  // loads from a constant pool.
4680  case Intrinsic::arm_neon_vshifts:
4681  case Intrinsic::arm_neon_vshiftu:
4682  case Intrinsic::arm_neon_vshiftls:
4683  case Intrinsic::arm_neon_vshiftlu:
4684  case Intrinsic::arm_neon_vshiftn:
4685  case Intrinsic::arm_neon_vrshifts:
4686  case Intrinsic::arm_neon_vrshiftu:
4687  case Intrinsic::arm_neon_vrshiftn:
4688  case Intrinsic::arm_neon_vqshifts:
4689  case Intrinsic::arm_neon_vqshiftu:
4690  case Intrinsic::arm_neon_vqshiftsu:
4691  case Intrinsic::arm_neon_vqshiftns:
4692  case Intrinsic::arm_neon_vqshiftnu:
4693  case Intrinsic::arm_neon_vqshiftnsu:
4694  case Intrinsic::arm_neon_vqrshiftns:
4695  case Intrinsic::arm_neon_vqrshiftnu:
4696  case Intrinsic::arm_neon_vqrshiftnsu: {
4697    EVT VT = N->getOperand(1).getValueType();
4698    int64_t Cnt;
4699    unsigned VShiftOpc = 0;
4700
4701    switch (IntNo) {
4702    case Intrinsic::arm_neon_vshifts:
4703    case Intrinsic::arm_neon_vshiftu:
4704      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) {
4705        VShiftOpc = ARMISD::VSHL;
4706        break;
4707      }
4708      if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) {
4709        VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ?
4710                     ARMISD::VSHRs : ARMISD::VSHRu);
4711        break;
4712      }
4713      return SDValue();
4714
4715    case Intrinsic::arm_neon_vshiftls:
4716    case Intrinsic::arm_neon_vshiftlu:
4717      if (isVShiftLImm(N->getOperand(2), VT, true, Cnt))
4718        break;
4719      llvm_unreachable("invalid shift count for vshll intrinsic");
4720
4721    case Intrinsic::arm_neon_vrshifts:
4722    case Intrinsic::arm_neon_vrshiftu:
4723      if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt))
4724        break;
4725      return SDValue();
4726
4727    case Intrinsic::arm_neon_vqshifts:
4728    case Intrinsic::arm_neon_vqshiftu:
4729      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
4730        break;
4731      return SDValue();
4732
4733    case Intrinsic::arm_neon_vqshiftsu:
4734      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
4735        break;
4736      llvm_unreachable("invalid shift count for vqshlu intrinsic");
4737
4738    case Intrinsic::arm_neon_vshiftn:
4739    case Intrinsic::arm_neon_vrshiftn:
4740    case Intrinsic::arm_neon_vqshiftns:
4741    case Intrinsic::arm_neon_vqshiftnu:
4742    case Intrinsic::arm_neon_vqshiftnsu:
4743    case Intrinsic::arm_neon_vqrshiftns:
4744    case Intrinsic::arm_neon_vqrshiftnu:
4745    case Intrinsic::arm_neon_vqrshiftnsu:
4746      // Narrowing shifts require an immediate right shift.
4747      if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt))
4748        break;
4749      llvm_unreachable("invalid shift count for narrowing vector shift "
4750                       "intrinsic");
4751
4752    default:
4753      llvm_unreachable("unhandled vector shift");
4754    }
4755
4756    switch (IntNo) {
4757    case Intrinsic::arm_neon_vshifts:
4758    case Intrinsic::arm_neon_vshiftu:
4759      // Opcode already set above.
4760      break;
4761    case Intrinsic::arm_neon_vshiftls:
4762    case Intrinsic::arm_neon_vshiftlu:
4763      if (Cnt == VT.getVectorElementType().getSizeInBits())
4764        VShiftOpc = ARMISD::VSHLLi;
4765      else
4766        VShiftOpc = (IntNo == Intrinsic::arm_neon_vshiftls ?
4767                     ARMISD::VSHLLs : ARMISD::VSHLLu);
4768      break;
4769    case Intrinsic::arm_neon_vshiftn:
4770      VShiftOpc = ARMISD::VSHRN; break;
4771    case Intrinsic::arm_neon_vrshifts:
4772      VShiftOpc = ARMISD::VRSHRs; break;
4773    case Intrinsic::arm_neon_vrshiftu:
4774      VShiftOpc = ARMISD::VRSHRu; break;
4775    case Intrinsic::arm_neon_vrshiftn:
4776      VShiftOpc = ARMISD::VRSHRN; break;
4777    case Intrinsic::arm_neon_vqshifts:
4778      VShiftOpc = ARMISD::VQSHLs; break;
4779    case Intrinsic::arm_neon_vqshiftu:
4780      VShiftOpc = ARMISD::VQSHLu; break;
4781    case Intrinsic::arm_neon_vqshiftsu:
4782      VShiftOpc = ARMISD::VQSHLsu; break;
4783    case Intrinsic::arm_neon_vqshiftns:
4784      VShiftOpc = ARMISD::VQSHRNs; break;
4785    case Intrinsic::arm_neon_vqshiftnu:
4786      VShiftOpc = ARMISD::VQSHRNu; break;
4787    case Intrinsic::arm_neon_vqshiftnsu:
4788      VShiftOpc = ARMISD::VQSHRNsu; break;
4789    case Intrinsic::arm_neon_vqrshiftns:
4790      VShiftOpc = ARMISD::VQRSHRNs; break;
4791    case Intrinsic::arm_neon_vqrshiftnu:
4792      VShiftOpc = ARMISD::VQRSHRNu; break;
4793    case Intrinsic::arm_neon_vqrshiftnsu:
4794      VShiftOpc = ARMISD::VQRSHRNsu; break;
4795    }
4796
4797    return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
4798                       N->getOperand(1), DAG.getConstant(Cnt, MVT::i32));
4799  }
4800
4801  case Intrinsic::arm_neon_vshiftins: {
4802    EVT VT = N->getOperand(1).getValueType();
4803    int64_t Cnt;
4804    unsigned VShiftOpc = 0;
4805
4806    if (isVShiftLImm(N->getOperand(3), VT, false, Cnt))
4807      VShiftOpc = ARMISD::VSLI;
4808    else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt))
4809      VShiftOpc = ARMISD::VSRI;
4810    else {
4811      llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
4812    }
4813
4814    return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
4815                       N->getOperand(1), N->getOperand(2),
4816                       DAG.getConstant(Cnt, MVT::i32));
4817  }
4818
4819  case Intrinsic::arm_neon_vqrshifts:
4820  case Intrinsic::arm_neon_vqrshiftu:
4821    // No immediate versions of these to check for.
4822    break;
4823  }
4824
4825  return SDValue();
4826}
4827
4828/// PerformShiftCombine - Checks for immediate versions of vector shifts and
4829/// lowers them.  As with the vector shift intrinsics, this is done during DAG
4830/// combining instead of DAG legalizing because the build_vectors for 64-bit
4831/// vector element shift counts are generally not legal, and it is hard to see
4832/// their values after they get legalized to loads from a constant pool.
4833static SDValue PerformShiftCombine(SDNode *N, SelectionDAG &DAG,
4834                                   const ARMSubtarget *ST) {
4835  EVT VT = N->getValueType(0);
4836
4837  // Nothing to be done for scalar shifts.
4838  if (! VT.isVector())
4839    return SDValue();
4840
4841  assert(ST->hasNEON() && "unexpected vector shift");
4842  int64_t Cnt;
4843
4844  switch (N->getOpcode()) {
4845  default: llvm_unreachable("unexpected shift opcode");
4846
4847  case ISD::SHL:
4848    if (isVShiftLImm(N->getOperand(1), VT, false, Cnt))
4849      return DAG.getNode(ARMISD::VSHL, N->getDebugLoc(), VT, N->getOperand(0),
4850                         DAG.getConstant(Cnt, MVT::i32));
4851    break;
4852
4853  case ISD::SRA:
4854  case ISD::SRL:
4855    if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
4856      unsigned VShiftOpc = (N->getOpcode() == ISD::SRA ?
4857                            ARMISD::VSHRs : ARMISD::VSHRu);
4858      return DAG.getNode(VShiftOpc, N->getDebugLoc(), VT, N->getOperand(0),
4859                         DAG.getConstant(Cnt, MVT::i32));
4860    }
4861  }
4862  return SDValue();
4863}
4864
4865/// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
4866/// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
4867static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG,
4868                                    const ARMSubtarget *ST) {
4869  SDValue N0 = N->getOperand(0);
4870
4871  // Check for sign- and zero-extensions of vector extract operations of 8-
4872  // and 16-bit vector elements.  NEON supports these directly.  They are
4873  // handled during DAG combining because type legalization will promote them
4874  // to 32-bit types and it is messy to recognize the operations after that.
4875  if (ST->hasNEON() && N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
4876    SDValue Vec = N0.getOperand(0);
4877    SDValue Lane = N0.getOperand(1);
4878    EVT VT = N->getValueType(0);
4879    EVT EltVT = N0.getValueType();
4880    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4881
4882    if (VT == MVT::i32 &&
4883        (EltVT == MVT::i8 || EltVT == MVT::i16) &&
4884        TLI.isTypeLegal(Vec.getValueType())) {
4885
4886      unsigned Opc = 0;
4887      switch (N->getOpcode()) {
4888      default: llvm_unreachable("unexpected opcode");
4889      case ISD::SIGN_EXTEND:
4890        Opc = ARMISD::VGETLANEs;
4891        break;
4892      case ISD::ZERO_EXTEND:
4893      case ISD::ANY_EXTEND:
4894        Opc = ARMISD::VGETLANEu;
4895        break;
4896      }
4897      return DAG.getNode(Opc, N->getDebugLoc(), VT, Vec, Lane);
4898    }
4899  }
4900
4901  return SDValue();
4902}
4903
4904/// PerformSELECT_CCCombine - Target-specific DAG combining for ISD::SELECT_CC
4905/// to match f32 max/min patterns to use NEON vmax/vmin instructions.
4906static SDValue PerformSELECT_CCCombine(SDNode *N, SelectionDAG &DAG,
4907                                       const ARMSubtarget *ST) {
4908  // If the target supports NEON, try to use vmax/vmin instructions for f32
4909  // selects like "x < y ? x : y".  Unless the NoNaNsFPMath option is set,
4910  // be careful about NaNs:  NEON's vmax/vmin return NaN if either operand is
4911  // a NaN; only do the transformation when it matches that behavior.
4912
4913  // For now only do this when using NEON for FP operations; if using VFP, it
4914  // is not obvious that the benefit outweighs the cost of switching to the
4915  // NEON pipeline.
4916  if (!ST->hasNEON() || !ST->useNEONForSinglePrecisionFP() ||
4917      N->getValueType(0) != MVT::f32)
4918    return SDValue();
4919
4920  SDValue CondLHS = N->getOperand(0);
4921  SDValue CondRHS = N->getOperand(1);
4922  SDValue LHS = N->getOperand(2);
4923  SDValue RHS = N->getOperand(3);
4924  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
4925
4926  unsigned Opcode = 0;
4927  bool IsReversed;
4928  if (DAG.isEqualTo(LHS, CondLHS) && DAG.isEqualTo(RHS, CondRHS)) {
4929    IsReversed = false; // x CC y ? x : y
4930  } else if (DAG.isEqualTo(LHS, CondRHS) && DAG.isEqualTo(RHS, CondLHS)) {
4931    IsReversed = true ; // x CC y ? y : x
4932  } else {
4933    return SDValue();
4934  }
4935
4936  bool IsUnordered;
4937  switch (CC) {
4938  default: break;
4939  case ISD::SETOLT:
4940  case ISD::SETOLE:
4941  case ISD::SETLT:
4942  case ISD::SETLE:
4943  case ISD::SETULT:
4944  case ISD::SETULE:
4945    // If LHS is NaN, an ordered comparison will be false and the result will
4946    // be the RHS, but vmin(NaN, RHS) = NaN.  Avoid this by checking that LHS
4947    // != NaN.  Likewise, for unordered comparisons, check for RHS != NaN.
4948    IsUnordered = (CC == ISD::SETULT || CC == ISD::SETULE);
4949    if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
4950      break;
4951    // For less-than-or-equal comparisons, "+0 <= -0" will be true but vmin
4952    // will return -0, so vmin can only be used for unsafe math or if one of
4953    // the operands is known to be nonzero.
4954    if ((CC == ISD::SETLE || CC == ISD::SETOLE || CC == ISD::SETULE) &&
4955        !UnsafeFPMath &&
4956        !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
4957      break;
4958    Opcode = IsReversed ? ARMISD::FMAX : ARMISD::FMIN;
4959    break;
4960
4961  case ISD::SETOGT:
4962  case ISD::SETOGE:
4963  case ISD::SETGT:
4964  case ISD::SETGE:
4965  case ISD::SETUGT:
4966  case ISD::SETUGE:
4967    // If LHS is NaN, an ordered comparison will be false and the result will
4968    // be the RHS, but vmax(NaN, RHS) = NaN.  Avoid this by checking that LHS
4969    // != NaN.  Likewise, for unordered comparisons, check for RHS != NaN.
4970    IsUnordered = (CC == ISD::SETUGT || CC == ISD::SETUGE);
4971    if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
4972      break;
4973    // For greater-than-or-equal comparisons, "-0 >= +0" will be true but vmax
4974    // will return +0, so vmax can only be used for unsafe math or if one of
4975    // the operands is known to be nonzero.
4976    if ((CC == ISD::SETGE || CC == ISD::SETOGE || CC == ISD::SETUGE) &&
4977        !UnsafeFPMath &&
4978        !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
4979      break;
4980    Opcode = IsReversed ? ARMISD::FMIN : ARMISD::FMAX;
4981    break;
4982  }
4983
4984  if (!Opcode)
4985    return SDValue();
4986  return DAG.getNode(Opcode, N->getDebugLoc(), N->getValueType(0), LHS, RHS);
4987}
4988
4989SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
4990                                             DAGCombinerInfo &DCI) const {
4991  switch (N->getOpcode()) {
4992  default: break;
4993  case ISD::ADD:        return PerformADDCombine(N, DCI);
4994  case ISD::SUB:        return PerformSUBCombine(N, DCI);
4995  case ISD::MUL:        return PerformMULCombine(N, DCI, Subtarget);
4996  case ISD::OR:         return PerformORCombine(N, DCI, Subtarget);
4997  case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI);
4998  case ARMISD::VMOVDRR: return PerformVMOVDRRCombine(N, DCI.DAG);
4999  case ISD::BUILD_VECTOR: return PerformBUILD_VECTORCombine(N, DCI.DAG);
5000  case ISD::VECTOR_SHUFFLE: return PerformVECTOR_SHUFFLECombine(N, DCI.DAG);
5001  case ARMISD::VDUPLANE: return PerformVDUPLANECombine(N, DCI.DAG);
5002  case ISD::INTRINSIC_WO_CHAIN: return PerformIntrinsicCombine(N, DCI.DAG);
5003  case ISD::SHL:
5004  case ISD::SRA:
5005  case ISD::SRL:        return PerformShiftCombine(N, DCI.DAG, Subtarget);
5006  case ISD::SIGN_EXTEND:
5007  case ISD::ZERO_EXTEND:
5008  case ISD::ANY_EXTEND: return PerformExtendCombine(N, DCI.DAG, Subtarget);
5009  case ISD::SELECT_CC:  return PerformSELECT_CCCombine(N, DCI.DAG, Subtarget);
5010  }
5011  return SDValue();
5012}
5013
5014bool ARMTargetLowering::allowsUnalignedMemoryAccesses(EVT VT) const {
5015  if (!Subtarget->allowsUnalignedMem())
5016    return false;
5017
5018  switch (VT.getSimpleVT().SimpleTy) {
5019  default:
5020    return false;
5021  case MVT::i8:
5022  case MVT::i16:
5023  case MVT::i32:
5024    return true;
5025  // FIXME: VLD1 etc with standard alignment is legal.
5026  }
5027}
5028
5029static bool isLegalT1AddressImmediate(int64_t V, EVT VT) {
5030  if (V < 0)
5031    return false;
5032
5033  unsigned Scale = 1;
5034  switch (VT.getSimpleVT().SimpleTy) {
5035  default: return false;
5036  case MVT::i1:
5037  case MVT::i8:
5038    // Scale == 1;
5039    break;
5040  case MVT::i16:
5041    // Scale == 2;
5042    Scale = 2;
5043    break;
5044  case MVT::i32:
5045    // Scale == 4;
5046    Scale = 4;
5047    break;
5048  }
5049
5050  if ((V & (Scale - 1)) != 0)
5051    return false;
5052  V /= Scale;
5053  return V == (V & ((1LL << 5) - 1));
5054}
5055
5056static bool isLegalT2AddressImmediate(int64_t V, EVT VT,
5057                                      const ARMSubtarget *Subtarget) {
5058  bool isNeg = false;
5059  if (V < 0) {
5060    isNeg = true;
5061    V = - V;
5062  }
5063
5064  switch (VT.getSimpleVT().SimpleTy) {
5065  default: return false;
5066  case MVT::i1:
5067  case MVT::i8:
5068  case MVT::i16:
5069  case MVT::i32:
5070    // + imm12 or - imm8
5071    if (isNeg)
5072      return V == (V & ((1LL << 8) - 1));
5073    return V == (V & ((1LL << 12) - 1));
5074  case MVT::f32:
5075  case MVT::f64:
5076    // Same as ARM mode. FIXME: NEON?
5077    if (!Subtarget->hasVFP2())
5078      return false;
5079    if ((V & 3) != 0)
5080      return false;
5081    V >>= 2;
5082    return V == (V & ((1LL << 8) - 1));
5083  }
5084}
5085
5086/// isLegalAddressImmediate - Return true if the integer value can be used
5087/// as the offset of the target addressing mode for load / store of the
5088/// given type.
5089static bool isLegalAddressImmediate(int64_t V, EVT VT,
5090                                    const ARMSubtarget *Subtarget) {
5091  if (V == 0)
5092    return true;
5093
5094  if (!VT.isSimple())
5095    return false;
5096
5097  if (Subtarget->isThumb1Only())
5098    return isLegalT1AddressImmediate(V, VT);
5099  else if (Subtarget->isThumb2())
5100    return isLegalT2AddressImmediate(V, VT, Subtarget);
5101
5102  // ARM mode.
5103  if (V < 0)
5104    V = - V;
5105  switch (VT.getSimpleVT().SimpleTy) {
5106  default: return false;
5107  case MVT::i1:
5108  case MVT::i8:
5109  case MVT::i32:
5110    // +- imm12
5111    return V == (V & ((1LL << 12) - 1));
5112  case MVT::i16:
5113    // +- imm8
5114    return V == (V & ((1LL << 8) - 1));
5115  case MVT::f32:
5116  case MVT::f64:
5117    if (!Subtarget->hasVFP2()) // FIXME: NEON?
5118      return false;
5119    if ((V & 3) != 0)
5120      return false;
5121    V >>= 2;
5122    return V == (V & ((1LL << 8) - 1));
5123  }
5124}
5125
5126bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM,
5127                                                      EVT VT) const {
5128  int Scale = AM.Scale;
5129  if (Scale < 0)
5130    return false;
5131
5132  switch (VT.getSimpleVT().SimpleTy) {
5133  default: return false;
5134  case MVT::i1:
5135  case MVT::i8:
5136  case MVT::i16:
5137  case MVT::i32:
5138    if (Scale == 1)
5139      return true;
5140    // r + r << imm
5141    Scale = Scale & ~1;
5142    return Scale == 2 || Scale == 4 || Scale == 8;
5143  case MVT::i64:
5144    // r + r
5145    if (((unsigned)AM.HasBaseReg + Scale) <= 2)
5146      return true;
5147    return false;
5148  case MVT::isVoid:
5149    // Note, we allow "void" uses (basically, uses that aren't loads or
5150    // stores), because arm allows folding a scale into many arithmetic
5151    // operations.  This should be made more precise and revisited later.
5152
5153    // Allow r << imm, but the imm has to be a multiple of two.
5154    if (Scale & 1) return false;
5155    return isPowerOf2_32(Scale);
5156  }
5157}
5158
5159/// isLegalAddressingMode - Return true if the addressing mode represented
5160/// by AM is legal for this target, for a load/store of the specified type.
5161bool ARMTargetLowering::isLegalAddressingMode(const AddrMode &AM,
5162                                              const Type *Ty) const {
5163  EVT VT = getValueType(Ty, true);
5164  if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget))
5165    return false;
5166
5167  // Can never fold addr of global into load/store.
5168  if (AM.BaseGV)
5169    return false;
5170
5171  switch (AM.Scale) {
5172  case 0:  // no scale reg, must be "r+i" or "r", or "i".
5173    break;
5174  case 1:
5175    if (Subtarget->isThumb1Only())
5176      return false;
5177    // FALL THROUGH.
5178  default:
5179    // ARM doesn't support any R+R*scale+imm addr modes.
5180    if (AM.BaseOffs)
5181      return false;
5182
5183    if (!VT.isSimple())
5184      return false;
5185
5186    if (Subtarget->isThumb2())
5187      return isLegalT2ScaledAddressingMode(AM, VT);
5188
5189    int Scale = AM.Scale;
5190    switch (VT.getSimpleVT().SimpleTy) {
5191    default: return false;
5192    case MVT::i1:
5193    case MVT::i8:
5194    case MVT::i32:
5195      if (Scale < 0) Scale = -Scale;
5196      if (Scale == 1)
5197        return true;
5198      // r + r << imm
5199      return isPowerOf2_32(Scale & ~1);
5200    case MVT::i16:
5201    case MVT::i64:
5202      // r + r
5203      if (((unsigned)AM.HasBaseReg + Scale) <= 2)
5204        return true;
5205      return false;
5206
5207    case MVT::isVoid:
5208      // Note, we allow "void" uses (basically, uses that aren't loads or
5209      // stores), because arm allows folding a scale into many arithmetic
5210      // operations.  This should be made more precise and revisited later.
5211
5212      // Allow r << imm, but the imm has to be a multiple of two.
5213      if (Scale & 1) return false;
5214      return isPowerOf2_32(Scale);
5215    }
5216    break;
5217  }
5218  return true;
5219}
5220
5221/// isLegalICmpImmediate - Return true if the specified immediate is legal
5222/// icmp immediate, that is the target has icmp instructions which can compare
5223/// a register against the immediate without having to materialize the
5224/// immediate into a register.
5225bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
5226  if (!Subtarget->isThumb())
5227    return ARM_AM::getSOImmVal(Imm) != -1;
5228  if (Subtarget->isThumb2())
5229    return ARM_AM::getT2SOImmVal(Imm) != -1;
5230  return Imm >= 0 && Imm <= 255;
5231}
5232
5233static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT,
5234                                      bool isSEXTLoad, SDValue &Base,
5235                                      SDValue &Offset, bool &isInc,
5236                                      SelectionDAG &DAG) {
5237  if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
5238    return false;
5239
5240  if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
5241    // AddressingMode 3
5242    Base = Ptr->getOperand(0);
5243    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
5244      int RHSC = (int)RHS->getZExtValue();
5245      if (RHSC < 0 && RHSC > -256) {
5246        assert(Ptr->getOpcode() == ISD::ADD);
5247        isInc = false;
5248        Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
5249        return true;
5250      }
5251    }
5252    isInc = (Ptr->getOpcode() == ISD::ADD);
5253    Offset = Ptr->getOperand(1);
5254    return true;
5255  } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
5256    // AddressingMode 2
5257    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
5258      int RHSC = (int)RHS->getZExtValue();
5259      if (RHSC < 0 && RHSC > -0x1000) {
5260        assert(Ptr->getOpcode() == ISD::ADD);
5261        isInc = false;
5262        Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
5263        Base = Ptr->getOperand(0);
5264        return true;
5265      }
5266    }
5267
5268    if (Ptr->getOpcode() == ISD::ADD) {
5269      isInc = true;
5270      ARM_AM::ShiftOpc ShOpcVal= ARM_AM::getShiftOpcForNode(Ptr->getOperand(0));
5271      if (ShOpcVal != ARM_AM::no_shift) {
5272        Base = Ptr->getOperand(1);
5273        Offset = Ptr->getOperand(0);
5274      } else {
5275        Base = Ptr->getOperand(0);
5276        Offset = Ptr->getOperand(1);
5277      }
5278      return true;
5279    }
5280
5281    isInc = (Ptr->getOpcode() == ISD::ADD);
5282    Base = Ptr->getOperand(0);
5283    Offset = Ptr->getOperand(1);
5284    return true;
5285  }
5286
5287  // FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
5288  return false;
5289}
5290
5291static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT,
5292                                     bool isSEXTLoad, SDValue &Base,
5293                                     SDValue &Offset, bool &isInc,
5294                                     SelectionDAG &DAG) {
5295  if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
5296    return false;
5297
5298  Base = Ptr->getOperand(0);
5299  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
5300    int RHSC = (int)RHS->getZExtValue();
5301    if (RHSC < 0 && RHSC > -0x100) { // 8 bits.
5302      assert(Ptr->getOpcode() == ISD::ADD);
5303      isInc = false;
5304      Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
5305      return true;
5306    } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero.
5307      isInc = Ptr->getOpcode() == ISD::ADD;
5308      Offset = DAG.getConstant(RHSC, RHS->getValueType(0));
5309      return true;
5310    }
5311  }
5312
5313  return false;
5314}
5315
5316/// getPreIndexedAddressParts - returns true by value, base pointer and
5317/// offset pointer and addressing mode by reference if the node's address
5318/// can be legally represented as pre-indexed load / store address.
5319bool
5320ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
5321                                             SDValue &Offset,
5322                                             ISD::MemIndexedMode &AM,
5323                                             SelectionDAG &DAG) const {
5324  if (Subtarget->isThumb1Only())
5325    return false;
5326
5327  EVT VT;
5328  SDValue Ptr;
5329  bool isSEXTLoad = false;
5330  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
5331    Ptr = LD->getBasePtr();
5332    VT  = LD->getMemoryVT();
5333    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
5334  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
5335    Ptr = ST->getBasePtr();
5336    VT  = ST->getMemoryVT();
5337  } else
5338    return false;
5339
5340  bool isInc;
5341  bool isLegal = false;
5342  if (Subtarget->isThumb2())
5343    isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
5344                                       Offset, isInc, DAG);
5345  else
5346    isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
5347                                        Offset, isInc, DAG);
5348  if (!isLegal)
5349    return false;
5350
5351  AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
5352  return true;
5353}
5354
5355/// getPostIndexedAddressParts - returns true by value, base pointer and
5356/// offset pointer and addressing mode by reference if this node can be
5357/// combined with a load / store to form a post-indexed load / store.
5358bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
5359                                                   SDValue &Base,
5360                                                   SDValue &Offset,
5361                                                   ISD::MemIndexedMode &AM,
5362                                                   SelectionDAG &DAG) const {
5363  if (Subtarget->isThumb1Only())
5364    return false;
5365
5366  EVT VT;
5367  SDValue Ptr;
5368  bool isSEXTLoad = false;
5369  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
5370    VT  = LD->getMemoryVT();
5371    Ptr = LD->getBasePtr();
5372    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
5373  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
5374    VT  = ST->getMemoryVT();
5375    Ptr = ST->getBasePtr();
5376  } else
5377    return false;
5378
5379  bool isInc;
5380  bool isLegal = false;
5381  if (Subtarget->isThumb2())
5382    isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
5383                                       isInc, DAG);
5384  else
5385    isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
5386                                        isInc, DAG);
5387  if (!isLegal)
5388    return false;
5389
5390  if (Ptr != Base) {
5391    // Swap base ptr and offset to catch more post-index load / store when
5392    // it's legal. In Thumb2 mode, offset must be an immediate.
5393    if (Ptr == Offset && Op->getOpcode() == ISD::ADD &&
5394        !Subtarget->isThumb2())
5395      std::swap(Base, Offset);
5396
5397    // Post-indexed load / store update the base pointer.
5398    if (Ptr != Base)
5399      return false;
5400  }
5401
5402  AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
5403  return true;
5404}
5405
5406void ARMTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
5407                                                       const APInt &Mask,
5408                                                       APInt &KnownZero,
5409                                                       APInt &KnownOne,
5410                                                       const SelectionDAG &DAG,
5411                                                       unsigned Depth) const {
5412  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
5413  switch (Op.getOpcode()) {
5414  default: break;
5415  case ARMISD::CMOV: {
5416    // Bits are known zero/one if known on the LHS and RHS.
5417    DAG.ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
5418    if (KnownZero == 0 && KnownOne == 0) return;
5419
5420    APInt KnownZeroRHS, KnownOneRHS;
5421    DAG.ComputeMaskedBits(Op.getOperand(1), Mask,
5422                          KnownZeroRHS, KnownOneRHS, Depth+1);
5423    KnownZero &= KnownZeroRHS;
5424    KnownOne  &= KnownOneRHS;
5425    return;
5426  }
5427  }
5428}
5429
5430//===----------------------------------------------------------------------===//
5431//                           ARM Inline Assembly Support
5432//===----------------------------------------------------------------------===//
5433
5434/// getConstraintType - Given a constraint letter, return the type of
5435/// constraint it is for this target.
5436ARMTargetLowering::ConstraintType
5437ARMTargetLowering::getConstraintType(const std::string &Constraint) const {
5438  if (Constraint.size() == 1) {
5439    switch (Constraint[0]) {
5440    default:  break;
5441    case 'l': return C_RegisterClass;
5442    case 'w': return C_RegisterClass;
5443    }
5444  }
5445  return TargetLowering::getConstraintType(Constraint);
5446}
5447
5448/// Examine constraint type and operand type and determine a weight value.
5449/// This object must already have been set up with the operand type
5450/// and the current alternative constraint selected.
5451TargetLowering::ConstraintWeight
5452ARMTargetLowering::getSingleConstraintMatchWeight(
5453    AsmOperandInfo &info, const char *constraint) const {
5454  ConstraintWeight weight = CW_Invalid;
5455  Value *CallOperandVal = info.CallOperandVal;
5456    // If we don't have a value, we can't do a match,
5457    // but allow it at the lowest weight.
5458  if (CallOperandVal == NULL)
5459    return CW_Default;
5460  const Type *type = CallOperandVal->getType();
5461  // Look at the constraint type.
5462  switch (*constraint) {
5463  default:
5464    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
5465    break;
5466  case 'l':
5467    if (type->isIntegerTy()) {
5468      if (Subtarget->isThumb())
5469        weight = CW_SpecificReg;
5470      else
5471        weight = CW_Register;
5472    }
5473    break;
5474  case 'w':
5475    if (type->isFloatingPointTy())
5476      weight = CW_Register;
5477    break;
5478  }
5479  return weight;
5480}
5481
5482std::pair<unsigned, const TargetRegisterClass*>
5483ARMTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
5484                                                EVT VT) const {
5485  if (Constraint.size() == 1) {
5486    // GCC ARM Constraint Letters
5487    switch (Constraint[0]) {
5488    case 'l':
5489      if (Subtarget->isThumb())
5490        return std::make_pair(0U, ARM::tGPRRegisterClass);
5491      else
5492        return std::make_pair(0U, ARM::GPRRegisterClass);
5493    case 'r':
5494      return std::make_pair(0U, ARM::GPRRegisterClass);
5495    case 'w':
5496      if (VT == MVT::f32)
5497        return std::make_pair(0U, ARM::SPRRegisterClass);
5498      if (VT.getSizeInBits() == 64)
5499        return std::make_pair(0U, ARM::DPRRegisterClass);
5500      if (VT.getSizeInBits() == 128)
5501        return std::make_pair(0U, ARM::QPRRegisterClass);
5502      break;
5503    }
5504  }
5505  if (StringRef("{cc}").equals_lower(Constraint))
5506    return std::make_pair(unsigned(ARM::CPSR), ARM::CCRRegisterClass);
5507
5508  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
5509}
5510
5511std::vector<unsigned> ARMTargetLowering::
5512getRegClassForInlineAsmConstraint(const std::string &Constraint,
5513                                  EVT VT) const {
5514  if (Constraint.size() != 1)
5515    return std::vector<unsigned>();
5516
5517  switch (Constraint[0]) {      // GCC ARM Constraint Letters
5518  default: break;
5519  case 'l':
5520    return make_vector<unsigned>(ARM::R0, ARM::R1, ARM::R2, ARM::R3,
5521                                 ARM::R4, ARM::R5, ARM::R6, ARM::R7,
5522                                 0);
5523  case 'r':
5524    return make_vector<unsigned>(ARM::R0, ARM::R1, ARM::R2, ARM::R3,
5525                                 ARM::R4, ARM::R5, ARM::R6, ARM::R7,
5526                                 ARM::R8, ARM::R9, ARM::R10, ARM::R11,
5527                                 ARM::R12, ARM::LR, 0);
5528  case 'w':
5529    if (VT == MVT::f32)
5530      return make_vector<unsigned>(ARM::S0, ARM::S1, ARM::S2, ARM::S3,
5531                                   ARM::S4, ARM::S5, ARM::S6, ARM::S7,
5532                                   ARM::S8, ARM::S9, ARM::S10, ARM::S11,
5533                                   ARM::S12,ARM::S13,ARM::S14,ARM::S15,
5534                                   ARM::S16,ARM::S17,ARM::S18,ARM::S19,
5535                                   ARM::S20,ARM::S21,ARM::S22,ARM::S23,
5536                                   ARM::S24,ARM::S25,ARM::S26,ARM::S27,
5537                                   ARM::S28,ARM::S29,ARM::S30,ARM::S31, 0);
5538    if (VT.getSizeInBits() == 64)
5539      return make_vector<unsigned>(ARM::D0, ARM::D1, ARM::D2, ARM::D3,
5540                                   ARM::D4, ARM::D5, ARM::D6, ARM::D7,
5541                                   ARM::D8, ARM::D9, ARM::D10,ARM::D11,
5542                                   ARM::D12,ARM::D13,ARM::D14,ARM::D15, 0);
5543    if (VT.getSizeInBits() == 128)
5544      return make_vector<unsigned>(ARM::Q0, ARM::Q1, ARM::Q2, ARM::Q3,
5545                                   ARM::Q4, ARM::Q5, ARM::Q6, ARM::Q7, 0);
5546      break;
5547  }
5548
5549  return std::vector<unsigned>();
5550}
5551
5552/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
5553/// vector.  If it is invalid, don't add anything to Ops.
5554void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
5555                                                     char Constraint,
5556                                                     std::vector<SDValue>&Ops,
5557                                                     SelectionDAG &DAG) const {
5558  SDValue Result(0, 0);
5559
5560  switch (Constraint) {
5561  default: break;
5562  case 'I': case 'J': case 'K': case 'L':
5563  case 'M': case 'N': case 'O':
5564    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
5565    if (!C)
5566      return;
5567
5568    int64_t CVal64 = C->getSExtValue();
5569    int CVal = (int) CVal64;
5570    // None of these constraints allow values larger than 32 bits.  Check
5571    // that the value fits in an int.
5572    if (CVal != CVal64)
5573      return;
5574
5575    switch (Constraint) {
5576      case 'I':
5577        if (Subtarget->isThumb1Only()) {
5578          // This must be a constant between 0 and 255, for ADD
5579          // immediates.
5580          if (CVal >= 0 && CVal <= 255)
5581            break;
5582        } else if (Subtarget->isThumb2()) {
5583          // A constant that can be used as an immediate value in a
5584          // data-processing instruction.
5585          if (ARM_AM::getT2SOImmVal(CVal) != -1)
5586            break;
5587        } else {
5588          // A constant that can be used as an immediate value in a
5589          // data-processing instruction.
5590          if (ARM_AM::getSOImmVal(CVal) != -1)
5591            break;
5592        }
5593        return;
5594
5595      case 'J':
5596        if (Subtarget->isThumb()) {  // FIXME thumb2
5597          // This must be a constant between -255 and -1, for negated ADD
5598          // immediates. This can be used in GCC with an "n" modifier that
5599          // prints the negated value, for use with SUB instructions. It is
5600          // not useful otherwise but is implemented for compatibility.
5601          if (CVal >= -255 && CVal <= -1)
5602            break;
5603        } else {
5604          // This must be a constant between -4095 and 4095. It is not clear
5605          // what this constraint is intended for. Implemented for
5606          // compatibility with GCC.
5607          if (CVal >= -4095 && CVal <= 4095)
5608            break;
5609        }
5610        return;
5611
5612      case 'K':
5613        if (Subtarget->isThumb1Only()) {
5614          // A 32-bit value where only one byte has a nonzero value. Exclude
5615          // zero to match GCC. This constraint is used by GCC internally for
5616          // constants that can be loaded with a move/shift combination.
5617          // It is not useful otherwise but is implemented for compatibility.
5618          if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal))
5619            break;
5620        } else if (Subtarget->isThumb2()) {
5621          // A constant whose bitwise inverse can be used as an immediate
5622          // value in a data-processing instruction. This can be used in GCC
5623          // with a "B" modifier that prints the inverted value, for use with
5624          // BIC and MVN instructions. It is not useful otherwise but is
5625          // implemented for compatibility.
5626          if (ARM_AM::getT2SOImmVal(~CVal) != -1)
5627            break;
5628        } else {
5629          // A constant whose bitwise inverse can be used as an immediate
5630          // value in a data-processing instruction. This can be used in GCC
5631          // with a "B" modifier that prints the inverted value, for use with
5632          // BIC and MVN instructions. It is not useful otherwise but is
5633          // implemented for compatibility.
5634          if (ARM_AM::getSOImmVal(~CVal) != -1)
5635            break;
5636        }
5637        return;
5638
5639      case 'L':
5640        if (Subtarget->isThumb1Only()) {
5641          // This must be a constant between -7 and 7,
5642          // for 3-operand ADD/SUB immediate instructions.
5643          if (CVal >= -7 && CVal < 7)
5644            break;
5645        } else if (Subtarget->isThumb2()) {
5646          // A constant whose negation can be used as an immediate value in a
5647          // data-processing instruction. This can be used in GCC with an "n"
5648          // modifier that prints the negated value, for use with SUB
5649          // instructions. It is not useful otherwise but is implemented for
5650          // compatibility.
5651          if (ARM_AM::getT2SOImmVal(-CVal) != -1)
5652            break;
5653        } else {
5654          // A constant whose negation can be used as an immediate value in a
5655          // data-processing instruction. This can be used in GCC with an "n"
5656          // modifier that prints the negated value, for use with SUB
5657          // instructions. It is not useful otherwise but is implemented for
5658          // compatibility.
5659          if (ARM_AM::getSOImmVal(-CVal) != -1)
5660            break;
5661        }
5662        return;
5663
5664      case 'M':
5665        if (Subtarget->isThumb()) { // FIXME thumb2
5666          // This must be a multiple of 4 between 0 and 1020, for
5667          // ADD sp + immediate.
5668          if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
5669            break;
5670        } else {
5671          // A power of two or a constant between 0 and 32.  This is used in
5672          // GCC for the shift amount on shifted register operands, but it is
5673          // useful in general for any shift amounts.
5674          if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0))
5675            break;
5676        }
5677        return;
5678
5679      case 'N':
5680        if (Subtarget->isThumb()) {  // FIXME thumb2
5681          // This must be a constant between 0 and 31, for shift amounts.
5682          if (CVal >= 0 && CVal <= 31)
5683            break;
5684        }
5685        return;
5686
5687      case 'O':
5688        if (Subtarget->isThumb()) {  // FIXME thumb2
5689          // This must be a multiple of 4 between -508 and 508, for
5690          // ADD/SUB sp = sp + immediate.
5691          if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
5692            break;
5693        }
5694        return;
5695    }
5696    Result = DAG.getTargetConstant(CVal, Op.getValueType());
5697    break;
5698  }
5699
5700  if (Result.getNode()) {
5701    Ops.push_back(Result);
5702    return;
5703  }
5704  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
5705}
5706
5707bool
5708ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
5709  // The ARM target isn't yet aware of offsets.
5710  return false;
5711}
5712
5713int ARM::getVFPf32Imm(const APFloat &FPImm) {
5714  APInt Imm = FPImm.bitcastToAPInt();
5715  uint32_t Sign = Imm.lshr(31).getZExtValue() & 1;
5716  int32_t Exp = (Imm.lshr(23).getSExtValue() & 0xff) - 127;  // -126 to 127
5717  int64_t Mantissa = Imm.getZExtValue() & 0x7fffff;  // 23 bits
5718
5719  // We can handle 4 bits of mantissa.
5720  // mantissa = (16+UInt(e:f:g:h))/16.
5721  if (Mantissa & 0x7ffff)
5722    return -1;
5723  Mantissa >>= 19;
5724  if ((Mantissa & 0xf) != Mantissa)
5725    return -1;
5726
5727  // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
5728  if (Exp < -3 || Exp > 4)
5729    return -1;
5730  Exp = ((Exp+3) & 0x7) ^ 4;
5731
5732  return ((int)Sign << 7) | (Exp << 4) | Mantissa;
5733}
5734
5735int ARM::getVFPf64Imm(const APFloat &FPImm) {
5736  APInt Imm = FPImm.bitcastToAPInt();
5737  uint64_t Sign = Imm.lshr(63).getZExtValue() & 1;
5738  int64_t Exp = (Imm.lshr(52).getSExtValue() & 0x7ff) - 1023;   // -1022 to 1023
5739  uint64_t Mantissa = Imm.getZExtValue() & 0xfffffffffffffLL;
5740
5741  // We can handle 4 bits of mantissa.
5742  // mantissa = (16+UInt(e:f:g:h))/16.
5743  if (Mantissa & 0xffffffffffffLL)
5744    return -1;
5745  Mantissa >>= 48;
5746  if ((Mantissa & 0xf) != Mantissa)
5747    return -1;
5748
5749  // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
5750  if (Exp < -3 || Exp > 4)
5751    return -1;
5752  Exp = ((Exp+3) & 0x7) ^ 4;
5753
5754  return ((int)Sign << 7) | (Exp << 4) | Mantissa;
5755}
5756
5757bool ARM::isBitFieldInvertedMask(unsigned v) {
5758  if (v == 0xffffffff)
5759    return 0;
5760  // there can be 1's on either or both "outsides", all the "inside"
5761  // bits must be 0's
5762  unsigned int lsb = 0, msb = 31;
5763  while (v & (1 << msb)) --msb;
5764  while (v & (1 << lsb)) ++lsb;
5765  for (unsigned int i = lsb; i <= msb; ++i) {
5766    if (v & (1 << i))
5767      return 0;
5768  }
5769  return 1;
5770}
5771
5772/// isFPImmLegal - Returns true if the target can instruction select the
5773/// specified FP immediate natively. If false, the legalizer will
5774/// materialize the FP immediate as a load from a constant pool.
5775bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
5776  if (!Subtarget->hasVFP3())
5777    return false;
5778  if (VT == MVT::f32)
5779    return ARM::getVFPf32Imm(Imm) != -1;
5780  if (VT == MVT::f64)
5781    return ARM::getVFPf64Imm(Imm) != -1;
5782  return false;
5783}
5784
5785/// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
5786/// MemIntrinsicNodes.  The associated MachineMemOperands record the alignment
5787/// specified in the intrinsic calls.
5788bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
5789                                           const CallInst &I,
5790                                           unsigned Intrinsic) const {
5791  switch (Intrinsic) {
5792  case Intrinsic::arm_neon_vld1:
5793  case Intrinsic::arm_neon_vld2:
5794  case Intrinsic::arm_neon_vld3:
5795  case Intrinsic::arm_neon_vld4:
5796  case Intrinsic::arm_neon_vld2lane:
5797  case Intrinsic::arm_neon_vld3lane:
5798  case Intrinsic::arm_neon_vld4lane: {
5799    Info.opc = ISD::INTRINSIC_W_CHAIN;
5800    // Conservatively set memVT to the entire set of vectors loaded.
5801    uint64_t NumElts = getTargetData()->getTypeAllocSize(I.getType()) / 8;
5802    Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
5803    Info.ptrVal = I.getArgOperand(0);
5804    Info.offset = 0;
5805    Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
5806    Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
5807    Info.vol = false; // volatile loads with NEON intrinsics not supported
5808    Info.readMem = true;
5809    Info.writeMem = false;
5810    return true;
5811  }
5812  case Intrinsic::arm_neon_vst1:
5813  case Intrinsic::arm_neon_vst2:
5814  case Intrinsic::arm_neon_vst3:
5815  case Intrinsic::arm_neon_vst4:
5816  case Intrinsic::arm_neon_vst2lane:
5817  case Intrinsic::arm_neon_vst3lane:
5818  case Intrinsic::arm_neon_vst4lane: {
5819    Info.opc = ISD::INTRINSIC_VOID;
5820    // Conservatively set memVT to the entire set of vectors stored.
5821    unsigned NumElts = 0;
5822    for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
5823      const Type *ArgTy = I.getArgOperand(ArgI)->getType();
5824      if (!ArgTy->isVectorTy())
5825        break;
5826      NumElts += getTargetData()->getTypeAllocSize(ArgTy) / 8;
5827    }
5828    Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
5829    Info.ptrVal = I.getArgOperand(0);
5830    Info.offset = 0;
5831    Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
5832    Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
5833    Info.vol = false; // volatile stores with NEON intrinsics not supported
5834    Info.readMem = false;
5835    Info.writeMem = true;
5836    return true;
5837  }
5838  default:
5839    break;
5840  }
5841
5842  return false;
5843}
5844