ARMISelLowering.cpp revision ed4c8c633c52a40ad1a3e8687f290be4aeb1f0e8
1//===-- ARMISelLowering.cpp - ARM DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that ARM uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "arm-isel"
16#include "ARM.h"
17#include "ARMCallingConv.h"
18#include "ARMConstantPoolValue.h"
19#include "ARMISelLowering.h"
20#include "ARMMachineFunctionInfo.h"
21#include "ARMPerfectShuffle.h"
22#include "ARMRegisterInfo.h"
23#include "ARMSubtarget.h"
24#include "ARMTargetMachine.h"
25#include "ARMTargetObjectFile.h"
26#include "MCTargetDesc/ARMAddressingModes.h"
27#include "llvm/CallingConv.h"
28#include "llvm/Constants.h"
29#include "llvm/Function.h"
30#include "llvm/GlobalValue.h"
31#include "llvm/Instruction.h"
32#include "llvm/Instructions.h"
33#include "llvm/Intrinsics.h"
34#include "llvm/Type.h"
35#include "llvm/CodeGen/CallingConvLower.h"
36#include "llvm/CodeGen/IntrinsicLowering.h"
37#include "llvm/CodeGen/MachineBasicBlock.h"
38#include "llvm/CodeGen/MachineFrameInfo.h"
39#include "llvm/CodeGen/MachineFunction.h"
40#include "llvm/CodeGen/MachineInstrBuilder.h"
41#include "llvm/CodeGen/MachineModuleInfo.h"
42#include "llvm/CodeGen/MachineRegisterInfo.h"
43#include "llvm/CodeGen/SelectionDAG.h"
44#include "llvm/MC/MCSectionMachO.h"
45#include "llvm/Target/TargetOptions.h"
46#include "llvm/ADT/StringExtras.h"
47#include "llvm/ADT/Statistic.h"
48#include "llvm/Support/CommandLine.h"
49#include "llvm/Support/ErrorHandling.h"
50#include "llvm/Support/MathExtras.h"
51#include "llvm/Support/raw_ostream.h"
52#include <sstream>
53using namespace llvm;
54
55STATISTIC(NumTailCalls, "Number of tail calls");
56STATISTIC(NumMovwMovt, "Number of GAs materialized with movw + movt");
57
58// This option should go away when tail calls fully work.
59static cl::opt<bool>
60EnableARMTailCalls("arm-tail-calls", cl::Hidden,
61  cl::desc("Generate tail calls (TEMPORARY OPTION)."),
62  cl::init(false));
63
64cl::opt<bool>
65EnableARMLongCalls("arm-long-calls", cl::Hidden,
66  cl::desc("Generate calls via indirect call instructions"),
67  cl::init(false));
68
69static cl::opt<bool>
70ARMInterworking("arm-interworking", cl::Hidden,
71  cl::desc("Enable / disable ARM interworking (for debugging only)"),
72  cl::init(true));
73
74namespace {
75  class ARMCCState : public CCState {
76  public:
77    ARMCCState(CallingConv::ID CC, bool isVarArg, MachineFunction &MF,
78               const TargetMachine &TM, SmallVector<CCValAssign, 16> &locs,
79               LLVMContext &C, ParmContext PC)
80        : CCState(CC, isVarArg, MF, TM, locs, C) {
81      assert(((PC == Call) || (PC == Prologue)) &&
82             "ARMCCState users must specify whether their context is call"
83             "or prologue generation.");
84      CallOrPrologue = PC;
85    }
86  };
87}
88
89// The APCS parameter registers.
90static const unsigned GPRArgRegs[] = {
91  ARM::R0, ARM::R1, ARM::R2, ARM::R3
92};
93
94void ARMTargetLowering::addTypeForNEON(EVT VT, EVT PromotedLdStVT,
95                                       EVT PromotedBitwiseVT) {
96  if (VT != PromotedLdStVT) {
97    setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote);
98    AddPromotedToType (ISD::LOAD, VT.getSimpleVT(),
99                       PromotedLdStVT.getSimpleVT());
100
101    setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote);
102    AddPromotedToType (ISD::STORE, VT.getSimpleVT(),
103                       PromotedLdStVT.getSimpleVT());
104  }
105
106  EVT ElemTy = VT.getVectorElementType();
107  if (ElemTy != MVT::i64 && ElemTy != MVT::f64)
108    setOperationAction(ISD::SETCC, VT.getSimpleVT(), Custom);
109  setOperationAction(ISD::INSERT_VECTOR_ELT, VT.getSimpleVT(), Custom);
110  setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT.getSimpleVT(), Custom);
111  if (ElemTy == MVT::i32) {
112    setOperationAction(ISD::SINT_TO_FP, VT.getSimpleVT(), Custom);
113    setOperationAction(ISD::UINT_TO_FP, VT.getSimpleVT(), Custom);
114    setOperationAction(ISD::FP_TO_SINT, VT.getSimpleVT(), Custom);
115    setOperationAction(ISD::FP_TO_UINT, VT.getSimpleVT(), Custom);
116  } else {
117    setOperationAction(ISD::SINT_TO_FP, VT.getSimpleVT(), Expand);
118    setOperationAction(ISD::UINT_TO_FP, VT.getSimpleVT(), Expand);
119    setOperationAction(ISD::FP_TO_SINT, VT.getSimpleVT(), Expand);
120    setOperationAction(ISD::FP_TO_UINT, VT.getSimpleVT(), Expand);
121  }
122  setOperationAction(ISD::BUILD_VECTOR, VT.getSimpleVT(), Custom);
123  setOperationAction(ISD::VECTOR_SHUFFLE, VT.getSimpleVT(), Custom);
124  setOperationAction(ISD::CONCAT_VECTORS, VT.getSimpleVT(), Legal);
125  setOperationAction(ISD::EXTRACT_SUBVECTOR, VT.getSimpleVT(), Legal);
126  setOperationAction(ISD::SELECT, VT.getSimpleVT(), Expand);
127  setOperationAction(ISD::SELECT_CC, VT.getSimpleVT(), Expand);
128  setOperationAction(ISD::SIGN_EXTEND_INREG, VT.getSimpleVT(), Expand);
129  if (VT.isInteger()) {
130    setOperationAction(ISD::SHL, VT.getSimpleVT(), Custom);
131    setOperationAction(ISD::SRA, VT.getSimpleVT(), Custom);
132    setOperationAction(ISD::SRL, VT.getSimpleVT(), Custom);
133  }
134
135  // Promote all bit-wise operations.
136  if (VT.isInteger() && VT != PromotedBitwiseVT) {
137    setOperationAction(ISD::AND, VT.getSimpleVT(), Promote);
138    AddPromotedToType (ISD::AND, VT.getSimpleVT(),
139                       PromotedBitwiseVT.getSimpleVT());
140    setOperationAction(ISD::OR,  VT.getSimpleVT(), Promote);
141    AddPromotedToType (ISD::OR,  VT.getSimpleVT(),
142                       PromotedBitwiseVT.getSimpleVT());
143    setOperationAction(ISD::XOR, VT.getSimpleVT(), Promote);
144    AddPromotedToType (ISD::XOR, VT.getSimpleVT(),
145                       PromotedBitwiseVT.getSimpleVT());
146  }
147
148  // Neon does not support vector divide/remainder operations.
149  setOperationAction(ISD::SDIV, VT.getSimpleVT(), Expand);
150  setOperationAction(ISD::UDIV, VT.getSimpleVT(), Expand);
151  setOperationAction(ISD::FDIV, VT.getSimpleVT(), Expand);
152  setOperationAction(ISD::SREM, VT.getSimpleVT(), Expand);
153  setOperationAction(ISD::UREM, VT.getSimpleVT(), Expand);
154  setOperationAction(ISD::FREM, VT.getSimpleVT(), Expand);
155}
156
157void ARMTargetLowering::addDRTypeForNEON(EVT VT) {
158  addRegisterClass(VT, ARM::DPRRegisterClass);
159  addTypeForNEON(VT, MVT::f64, MVT::v2i32);
160}
161
162void ARMTargetLowering::addQRTypeForNEON(EVT VT) {
163  addRegisterClass(VT, ARM::QPRRegisterClass);
164  addTypeForNEON(VT, MVT::v2f64, MVT::v4i32);
165}
166
167static TargetLoweringObjectFile *createTLOF(TargetMachine &TM) {
168  if (TM.getSubtarget<ARMSubtarget>().isTargetDarwin())
169    return new TargetLoweringObjectFileMachO();
170
171  return new ARMElfTargetObjectFile();
172}
173
174ARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
175    : TargetLowering(TM, createTLOF(TM)) {
176  Subtarget = &TM.getSubtarget<ARMSubtarget>();
177  RegInfo = TM.getRegisterInfo();
178  Itins = TM.getInstrItineraryData();
179
180  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
181
182  if (Subtarget->isTargetDarwin()) {
183    // Uses VFP for Thumb libfuncs if available.
184    if (Subtarget->isThumb() && Subtarget->hasVFP2()) {
185      // Single-precision floating-point arithmetic.
186      setLibcallName(RTLIB::ADD_F32, "__addsf3vfp");
187      setLibcallName(RTLIB::SUB_F32, "__subsf3vfp");
188      setLibcallName(RTLIB::MUL_F32, "__mulsf3vfp");
189      setLibcallName(RTLIB::DIV_F32, "__divsf3vfp");
190
191      // Double-precision floating-point arithmetic.
192      setLibcallName(RTLIB::ADD_F64, "__adddf3vfp");
193      setLibcallName(RTLIB::SUB_F64, "__subdf3vfp");
194      setLibcallName(RTLIB::MUL_F64, "__muldf3vfp");
195      setLibcallName(RTLIB::DIV_F64, "__divdf3vfp");
196
197      // Single-precision comparisons.
198      setLibcallName(RTLIB::OEQ_F32, "__eqsf2vfp");
199      setLibcallName(RTLIB::UNE_F32, "__nesf2vfp");
200      setLibcallName(RTLIB::OLT_F32, "__ltsf2vfp");
201      setLibcallName(RTLIB::OLE_F32, "__lesf2vfp");
202      setLibcallName(RTLIB::OGE_F32, "__gesf2vfp");
203      setLibcallName(RTLIB::OGT_F32, "__gtsf2vfp");
204      setLibcallName(RTLIB::UO_F32,  "__unordsf2vfp");
205      setLibcallName(RTLIB::O_F32,   "__unordsf2vfp");
206
207      setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
208      setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETNE);
209      setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
210      setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
211      setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
212      setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
213      setCmpLibcallCC(RTLIB::UO_F32,  ISD::SETNE);
214      setCmpLibcallCC(RTLIB::O_F32,   ISD::SETEQ);
215
216      // Double-precision comparisons.
217      setLibcallName(RTLIB::OEQ_F64, "__eqdf2vfp");
218      setLibcallName(RTLIB::UNE_F64, "__nedf2vfp");
219      setLibcallName(RTLIB::OLT_F64, "__ltdf2vfp");
220      setLibcallName(RTLIB::OLE_F64, "__ledf2vfp");
221      setLibcallName(RTLIB::OGE_F64, "__gedf2vfp");
222      setLibcallName(RTLIB::OGT_F64, "__gtdf2vfp");
223      setLibcallName(RTLIB::UO_F64,  "__unorddf2vfp");
224      setLibcallName(RTLIB::O_F64,   "__unorddf2vfp");
225
226      setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
227      setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETNE);
228      setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
229      setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
230      setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
231      setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
232      setCmpLibcallCC(RTLIB::UO_F64,  ISD::SETNE);
233      setCmpLibcallCC(RTLIB::O_F64,   ISD::SETEQ);
234
235      // Floating-point to integer conversions.
236      // i64 conversions are done via library routines even when generating VFP
237      // instructions, so use the same ones.
238      setLibcallName(RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp");
239      setLibcallName(RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp");
240      setLibcallName(RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp");
241      setLibcallName(RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp");
242
243      // Conversions between floating types.
244      setLibcallName(RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp");
245      setLibcallName(RTLIB::FPEXT_F32_F64,   "__extendsfdf2vfp");
246
247      // Integer to floating-point conversions.
248      // i64 conversions are done via library routines even when generating VFP
249      // instructions, so use the same ones.
250      // FIXME: There appears to be some naming inconsistency in ARM libgcc:
251      // e.g., __floatunsidf vs. __floatunssidfvfp.
252      setLibcallName(RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp");
253      setLibcallName(RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp");
254      setLibcallName(RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp");
255      setLibcallName(RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp");
256    }
257  }
258
259  // These libcalls are not available in 32-bit.
260  setLibcallName(RTLIB::SHL_I128, 0);
261  setLibcallName(RTLIB::SRL_I128, 0);
262  setLibcallName(RTLIB::SRA_I128, 0);
263
264  if (Subtarget->isAAPCS_ABI()) {
265    // Double-precision floating-point arithmetic helper functions
266    // RTABI chapter 4.1.2, Table 2
267    setLibcallName(RTLIB::ADD_F64, "__aeabi_dadd");
268    setLibcallName(RTLIB::DIV_F64, "__aeabi_ddiv");
269    setLibcallName(RTLIB::MUL_F64, "__aeabi_dmul");
270    setLibcallName(RTLIB::SUB_F64, "__aeabi_dsub");
271    setLibcallCallingConv(RTLIB::ADD_F64, CallingConv::ARM_AAPCS);
272    setLibcallCallingConv(RTLIB::DIV_F64, CallingConv::ARM_AAPCS);
273    setLibcallCallingConv(RTLIB::MUL_F64, CallingConv::ARM_AAPCS);
274    setLibcallCallingConv(RTLIB::SUB_F64, CallingConv::ARM_AAPCS);
275
276    // Double-precision floating-point comparison helper functions
277    // RTABI chapter 4.1.2, Table 3
278    setLibcallName(RTLIB::OEQ_F64, "__aeabi_dcmpeq");
279    setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
280    setLibcallName(RTLIB::UNE_F64, "__aeabi_dcmpeq");
281    setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETEQ);
282    setLibcallName(RTLIB::OLT_F64, "__aeabi_dcmplt");
283    setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
284    setLibcallName(RTLIB::OLE_F64, "__aeabi_dcmple");
285    setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
286    setLibcallName(RTLIB::OGE_F64, "__aeabi_dcmpge");
287    setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
288    setLibcallName(RTLIB::OGT_F64, "__aeabi_dcmpgt");
289    setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
290    setLibcallName(RTLIB::UO_F64,  "__aeabi_dcmpun");
291    setCmpLibcallCC(RTLIB::UO_F64,  ISD::SETNE);
292    setLibcallName(RTLIB::O_F64,   "__aeabi_dcmpun");
293    setCmpLibcallCC(RTLIB::O_F64,   ISD::SETEQ);
294    setLibcallCallingConv(RTLIB::OEQ_F64, CallingConv::ARM_AAPCS);
295    setLibcallCallingConv(RTLIB::UNE_F64, CallingConv::ARM_AAPCS);
296    setLibcallCallingConv(RTLIB::OLT_F64, CallingConv::ARM_AAPCS);
297    setLibcallCallingConv(RTLIB::OLE_F64, CallingConv::ARM_AAPCS);
298    setLibcallCallingConv(RTLIB::OGE_F64, CallingConv::ARM_AAPCS);
299    setLibcallCallingConv(RTLIB::OGT_F64, CallingConv::ARM_AAPCS);
300    setLibcallCallingConv(RTLIB::UO_F64, CallingConv::ARM_AAPCS);
301    setLibcallCallingConv(RTLIB::O_F64, CallingConv::ARM_AAPCS);
302
303    // Single-precision floating-point arithmetic helper functions
304    // RTABI chapter 4.1.2, Table 4
305    setLibcallName(RTLIB::ADD_F32, "__aeabi_fadd");
306    setLibcallName(RTLIB::DIV_F32, "__aeabi_fdiv");
307    setLibcallName(RTLIB::MUL_F32, "__aeabi_fmul");
308    setLibcallName(RTLIB::SUB_F32, "__aeabi_fsub");
309    setLibcallCallingConv(RTLIB::ADD_F32, CallingConv::ARM_AAPCS);
310    setLibcallCallingConv(RTLIB::DIV_F32, CallingConv::ARM_AAPCS);
311    setLibcallCallingConv(RTLIB::MUL_F32, CallingConv::ARM_AAPCS);
312    setLibcallCallingConv(RTLIB::SUB_F32, CallingConv::ARM_AAPCS);
313
314    // Single-precision floating-point comparison helper functions
315    // RTABI chapter 4.1.2, Table 5
316    setLibcallName(RTLIB::OEQ_F32, "__aeabi_fcmpeq");
317    setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
318    setLibcallName(RTLIB::UNE_F32, "__aeabi_fcmpeq");
319    setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETEQ);
320    setLibcallName(RTLIB::OLT_F32, "__aeabi_fcmplt");
321    setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
322    setLibcallName(RTLIB::OLE_F32, "__aeabi_fcmple");
323    setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
324    setLibcallName(RTLIB::OGE_F32, "__aeabi_fcmpge");
325    setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
326    setLibcallName(RTLIB::OGT_F32, "__aeabi_fcmpgt");
327    setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
328    setLibcallName(RTLIB::UO_F32,  "__aeabi_fcmpun");
329    setCmpLibcallCC(RTLIB::UO_F32,  ISD::SETNE);
330    setLibcallName(RTLIB::O_F32,   "__aeabi_fcmpun");
331    setCmpLibcallCC(RTLIB::O_F32,   ISD::SETEQ);
332    setLibcallCallingConv(RTLIB::OEQ_F32, CallingConv::ARM_AAPCS);
333    setLibcallCallingConv(RTLIB::UNE_F32, CallingConv::ARM_AAPCS);
334    setLibcallCallingConv(RTLIB::OLT_F32, CallingConv::ARM_AAPCS);
335    setLibcallCallingConv(RTLIB::OLE_F32, CallingConv::ARM_AAPCS);
336    setLibcallCallingConv(RTLIB::OGE_F32, CallingConv::ARM_AAPCS);
337    setLibcallCallingConv(RTLIB::OGT_F32, CallingConv::ARM_AAPCS);
338    setLibcallCallingConv(RTLIB::UO_F32, CallingConv::ARM_AAPCS);
339    setLibcallCallingConv(RTLIB::O_F32, CallingConv::ARM_AAPCS);
340
341    // Floating-point to integer conversions.
342    // RTABI chapter 4.1.2, Table 6
343    setLibcallName(RTLIB::FPTOSINT_F64_I32, "__aeabi_d2iz");
344    setLibcallName(RTLIB::FPTOUINT_F64_I32, "__aeabi_d2uiz");
345    setLibcallName(RTLIB::FPTOSINT_F64_I64, "__aeabi_d2lz");
346    setLibcallName(RTLIB::FPTOUINT_F64_I64, "__aeabi_d2ulz");
347    setLibcallName(RTLIB::FPTOSINT_F32_I32, "__aeabi_f2iz");
348    setLibcallName(RTLIB::FPTOUINT_F32_I32, "__aeabi_f2uiz");
349    setLibcallName(RTLIB::FPTOSINT_F32_I64, "__aeabi_f2lz");
350    setLibcallName(RTLIB::FPTOUINT_F32_I64, "__aeabi_f2ulz");
351    setLibcallCallingConv(RTLIB::FPTOSINT_F64_I32, CallingConv::ARM_AAPCS);
352    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I32, CallingConv::ARM_AAPCS);
353    setLibcallCallingConv(RTLIB::FPTOSINT_F64_I64, CallingConv::ARM_AAPCS);
354    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::ARM_AAPCS);
355    setLibcallCallingConv(RTLIB::FPTOSINT_F32_I32, CallingConv::ARM_AAPCS);
356    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I32, CallingConv::ARM_AAPCS);
357    setLibcallCallingConv(RTLIB::FPTOSINT_F32_I64, CallingConv::ARM_AAPCS);
358    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::ARM_AAPCS);
359
360    // Conversions between floating types.
361    // RTABI chapter 4.1.2, Table 7
362    setLibcallName(RTLIB::FPROUND_F64_F32, "__aeabi_d2f");
363    setLibcallName(RTLIB::FPEXT_F32_F64,   "__aeabi_f2d");
364    setLibcallCallingConv(RTLIB::FPROUND_F64_F32, CallingConv::ARM_AAPCS);
365    setLibcallCallingConv(RTLIB::FPEXT_F32_F64, CallingConv::ARM_AAPCS);
366
367    // Integer to floating-point conversions.
368    // RTABI chapter 4.1.2, Table 8
369    setLibcallName(RTLIB::SINTTOFP_I32_F64, "__aeabi_i2d");
370    setLibcallName(RTLIB::UINTTOFP_I32_F64, "__aeabi_ui2d");
371    setLibcallName(RTLIB::SINTTOFP_I64_F64, "__aeabi_l2d");
372    setLibcallName(RTLIB::UINTTOFP_I64_F64, "__aeabi_ul2d");
373    setLibcallName(RTLIB::SINTTOFP_I32_F32, "__aeabi_i2f");
374    setLibcallName(RTLIB::UINTTOFP_I32_F32, "__aeabi_ui2f");
375    setLibcallName(RTLIB::SINTTOFP_I64_F32, "__aeabi_l2f");
376    setLibcallName(RTLIB::UINTTOFP_I64_F32, "__aeabi_ul2f");
377    setLibcallCallingConv(RTLIB::SINTTOFP_I32_F64, CallingConv::ARM_AAPCS);
378    setLibcallCallingConv(RTLIB::UINTTOFP_I32_F64, CallingConv::ARM_AAPCS);
379    setLibcallCallingConv(RTLIB::SINTTOFP_I64_F64, CallingConv::ARM_AAPCS);
380    setLibcallCallingConv(RTLIB::UINTTOFP_I64_F64, CallingConv::ARM_AAPCS);
381    setLibcallCallingConv(RTLIB::SINTTOFP_I32_F32, CallingConv::ARM_AAPCS);
382    setLibcallCallingConv(RTLIB::UINTTOFP_I32_F32, CallingConv::ARM_AAPCS);
383    setLibcallCallingConv(RTLIB::SINTTOFP_I64_F32, CallingConv::ARM_AAPCS);
384    setLibcallCallingConv(RTLIB::UINTTOFP_I64_F32, CallingConv::ARM_AAPCS);
385
386    // Long long helper functions
387    // RTABI chapter 4.2, Table 9
388    setLibcallName(RTLIB::MUL_I64,  "__aeabi_lmul");
389    setLibcallName(RTLIB::SDIV_I64, "__aeabi_ldivmod");
390    setLibcallName(RTLIB::UDIV_I64, "__aeabi_uldivmod");
391    setLibcallName(RTLIB::SHL_I64, "__aeabi_llsl");
392    setLibcallName(RTLIB::SRL_I64, "__aeabi_llsr");
393    setLibcallName(RTLIB::SRA_I64, "__aeabi_lasr");
394    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::ARM_AAPCS);
395    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::ARM_AAPCS);
396    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::ARM_AAPCS);
397    setLibcallCallingConv(RTLIB::SHL_I64, CallingConv::ARM_AAPCS);
398    setLibcallCallingConv(RTLIB::SRL_I64, CallingConv::ARM_AAPCS);
399    setLibcallCallingConv(RTLIB::SRA_I64, CallingConv::ARM_AAPCS);
400
401    // Integer division functions
402    // RTABI chapter 4.3.1
403    setLibcallName(RTLIB::SDIV_I8,  "__aeabi_idiv");
404    setLibcallName(RTLIB::SDIV_I16, "__aeabi_idiv");
405    setLibcallName(RTLIB::SDIV_I32, "__aeabi_idiv");
406    setLibcallName(RTLIB::UDIV_I8,  "__aeabi_uidiv");
407    setLibcallName(RTLIB::UDIV_I16, "__aeabi_uidiv");
408    setLibcallName(RTLIB::UDIV_I32, "__aeabi_uidiv");
409    setLibcallCallingConv(RTLIB::SDIV_I8, CallingConv::ARM_AAPCS);
410    setLibcallCallingConv(RTLIB::SDIV_I16, CallingConv::ARM_AAPCS);
411    setLibcallCallingConv(RTLIB::SDIV_I32, CallingConv::ARM_AAPCS);
412    setLibcallCallingConv(RTLIB::UDIV_I8, CallingConv::ARM_AAPCS);
413    setLibcallCallingConv(RTLIB::UDIV_I16, CallingConv::ARM_AAPCS);
414    setLibcallCallingConv(RTLIB::UDIV_I32, CallingConv::ARM_AAPCS);
415
416    // Memory operations
417    // RTABI chapter 4.3.4
418    setLibcallName(RTLIB::MEMCPY,  "__aeabi_memcpy");
419    setLibcallName(RTLIB::MEMMOVE, "__aeabi_memmove");
420    setLibcallName(RTLIB::MEMSET,  "__aeabi_memset");
421  }
422
423  // Use divmod compiler-rt calls for iOS 5.0 and later.
424  if (Subtarget->getTargetTriple().getOS() == Triple::IOS &&
425      !Subtarget->getTargetTriple().isOSVersionLT(5, 0)) {
426    setLibcallName(RTLIB::SDIVREM_I32, "__divmodsi4");
427    setLibcallName(RTLIB::UDIVREM_I32, "__udivmodsi4");
428  }
429
430  if (Subtarget->isThumb1Only())
431    addRegisterClass(MVT::i32, ARM::tGPRRegisterClass);
432  else
433    addRegisterClass(MVT::i32, ARM::GPRRegisterClass);
434  if (!TM.Options.UseSoftFloat && Subtarget->hasVFP2() &&
435      !Subtarget->isThumb1Only()) {
436    addRegisterClass(MVT::f32, ARM::SPRRegisterClass);
437    if (!Subtarget->isFPOnlySP())
438      addRegisterClass(MVT::f64, ARM::DPRRegisterClass);
439
440    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
441  }
442
443  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
444       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
445    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
446         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
447      setTruncStoreAction((MVT::SimpleValueType)VT,
448                          (MVT::SimpleValueType)InnerVT, Expand);
449    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
450    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
451    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
452  }
453
454  if (Subtarget->hasNEON()) {
455    addDRTypeForNEON(MVT::v2f32);
456    addDRTypeForNEON(MVT::v8i8);
457    addDRTypeForNEON(MVT::v4i16);
458    addDRTypeForNEON(MVT::v2i32);
459    addDRTypeForNEON(MVT::v1i64);
460
461    addQRTypeForNEON(MVT::v4f32);
462    addQRTypeForNEON(MVT::v2f64);
463    addQRTypeForNEON(MVT::v16i8);
464    addQRTypeForNEON(MVT::v8i16);
465    addQRTypeForNEON(MVT::v4i32);
466    addQRTypeForNEON(MVT::v2i64);
467
468    // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
469    // neither Neon nor VFP support any arithmetic operations on it.
470    // The same with v4f32. But keep in mind that vadd, vsub, vmul are natively
471    // supported for v4f32.
472    setOperationAction(ISD::FADD, MVT::v2f64, Expand);
473    setOperationAction(ISD::FSUB, MVT::v2f64, Expand);
474    setOperationAction(ISD::FMUL, MVT::v2f64, Expand);
475    // FIXME: Code duplication: FDIV and FREM are expanded always, see
476    // ARMTargetLowering::addTypeForNEON method for details.
477    setOperationAction(ISD::FDIV, MVT::v2f64, Expand);
478    setOperationAction(ISD::FREM, MVT::v2f64, Expand);
479    // FIXME: Create unittest.
480    // In another words, find a way when "copysign" appears in DAG with vector
481    // operands.
482    setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand);
483    // FIXME: Code duplication: SETCC has custom operation action, see
484    // ARMTargetLowering::addTypeForNEON method for details.
485    setOperationAction(ISD::SETCC, MVT::v2f64, Expand);
486    // FIXME: Create unittest for FNEG and for FABS.
487    setOperationAction(ISD::FNEG, MVT::v2f64, Expand);
488    setOperationAction(ISD::FABS, MVT::v2f64, Expand);
489    setOperationAction(ISD::FSQRT, MVT::v2f64, Expand);
490    setOperationAction(ISD::FSIN, MVT::v2f64, Expand);
491    setOperationAction(ISD::FCOS, MVT::v2f64, Expand);
492    setOperationAction(ISD::FPOWI, MVT::v2f64, Expand);
493    setOperationAction(ISD::FPOW, MVT::v2f64, Expand);
494    setOperationAction(ISD::FLOG, MVT::v2f64, Expand);
495    setOperationAction(ISD::FLOG2, MVT::v2f64, Expand);
496    setOperationAction(ISD::FLOG10, MVT::v2f64, Expand);
497    setOperationAction(ISD::FEXP, MVT::v2f64, Expand);
498    setOperationAction(ISD::FEXP2, MVT::v2f64, Expand);
499    // FIXME: Create unittest for FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR.
500    setOperationAction(ISD::FCEIL, MVT::v2f64, Expand);
501    setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand);
502    setOperationAction(ISD::FRINT, MVT::v2f64, Expand);
503    setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand);
504    setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand);
505
506    setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
507    setOperationAction(ISD::FSIN, MVT::v4f32, Expand);
508    setOperationAction(ISD::FCOS, MVT::v4f32, Expand);
509    setOperationAction(ISD::FPOWI, MVT::v4f32, Expand);
510    setOperationAction(ISD::FPOW, MVT::v4f32, Expand);
511    setOperationAction(ISD::FLOG, MVT::v4f32, Expand);
512    setOperationAction(ISD::FLOG2, MVT::v4f32, Expand);
513    setOperationAction(ISD::FLOG10, MVT::v4f32, Expand);
514    setOperationAction(ISD::FEXP, MVT::v4f32, Expand);
515    setOperationAction(ISD::FEXP2, MVT::v4f32, Expand);
516
517    // Neon does not support some operations on v1i64 and v2i64 types.
518    setOperationAction(ISD::MUL, MVT::v1i64, Expand);
519    // Custom handling for some quad-vector types to detect VMULL.
520    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
521    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
522    setOperationAction(ISD::MUL, MVT::v2i64, Custom);
523    // Custom handling for some vector types to avoid expensive expansions
524    setOperationAction(ISD::SDIV, MVT::v4i16, Custom);
525    setOperationAction(ISD::SDIV, MVT::v8i8, Custom);
526    setOperationAction(ISD::UDIV, MVT::v4i16, Custom);
527    setOperationAction(ISD::UDIV, MVT::v8i8, Custom);
528    setOperationAction(ISD::SETCC, MVT::v1i64, Expand);
529    setOperationAction(ISD::SETCC, MVT::v2i64, Expand);
530    // Neon does not have single instruction SINT_TO_FP and UINT_TO_FP with
531    // a destination type that is wider than the source.
532    setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
533    setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
534
535    setTargetDAGCombine(ISD::INTRINSIC_VOID);
536    setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
537    setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
538    setTargetDAGCombine(ISD::SHL);
539    setTargetDAGCombine(ISD::SRL);
540    setTargetDAGCombine(ISD::SRA);
541    setTargetDAGCombine(ISD::SIGN_EXTEND);
542    setTargetDAGCombine(ISD::ZERO_EXTEND);
543    setTargetDAGCombine(ISD::ANY_EXTEND);
544    setTargetDAGCombine(ISD::SELECT_CC);
545    setTargetDAGCombine(ISD::BUILD_VECTOR);
546    setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
547    setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
548    setTargetDAGCombine(ISD::STORE);
549    setTargetDAGCombine(ISD::FP_TO_SINT);
550    setTargetDAGCombine(ISD::FP_TO_UINT);
551    setTargetDAGCombine(ISD::FDIV);
552
553    setLoadExtAction(ISD::EXTLOAD, MVT::v4i8, Expand);
554  }
555
556  computeRegisterProperties();
557
558  // ARM does not have f32 extending load.
559  setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
560
561  // ARM does not have i1 sign extending load.
562  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
563
564  // ARM supports all 4 flavors of integer indexed load / store.
565  if (!Subtarget->isThumb1Only()) {
566    for (unsigned im = (unsigned)ISD::PRE_INC;
567         im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
568      setIndexedLoadAction(im,  MVT::i1,  Legal);
569      setIndexedLoadAction(im,  MVT::i8,  Legal);
570      setIndexedLoadAction(im,  MVT::i16, Legal);
571      setIndexedLoadAction(im,  MVT::i32, Legal);
572      setIndexedStoreAction(im, MVT::i1,  Legal);
573      setIndexedStoreAction(im, MVT::i8,  Legal);
574      setIndexedStoreAction(im, MVT::i16, Legal);
575      setIndexedStoreAction(im, MVT::i32, Legal);
576    }
577  }
578
579  // i64 operation support.
580  setOperationAction(ISD::MUL,     MVT::i64, Expand);
581  setOperationAction(ISD::MULHU,   MVT::i32, Expand);
582  if (Subtarget->isThumb1Only()) {
583    setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
584    setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
585  }
586  if (Subtarget->isThumb1Only() || !Subtarget->hasV6Ops()
587      || (Subtarget->isThumb2() && !Subtarget->hasThumb2DSP()))
588    setOperationAction(ISD::MULHS, MVT::i32, Expand);
589
590  setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
591  setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
592  setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
593  setOperationAction(ISD::SRL,       MVT::i64, Custom);
594  setOperationAction(ISD::SRA,       MVT::i64, Custom);
595
596  if (!Subtarget->isThumb1Only()) {
597    // FIXME: We should do this for Thumb1 as well.
598    setOperationAction(ISD::ADDC,    MVT::i32, Custom);
599    setOperationAction(ISD::ADDE,    MVT::i32, Custom);
600    setOperationAction(ISD::SUBC,    MVT::i32, Custom);
601    setOperationAction(ISD::SUBE,    MVT::i32, Custom);
602  }
603
604  // ARM does not have ROTL.
605  setOperationAction(ISD::ROTL,  MVT::i32, Expand);
606  setOperationAction(ISD::CTTZ,  MVT::i32, Custom);
607  setOperationAction(ISD::CTPOP, MVT::i32, Expand);
608  if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only())
609    setOperationAction(ISD::CTLZ, MVT::i32, Expand);
610
611  // These just redirect to CTTZ and CTLZ on ARM.
612  setOperationAction(ISD::CTTZ_ZERO_UNDEF  , MVT::i32  , Expand);
613  setOperationAction(ISD::CTLZ_ZERO_UNDEF  , MVT::i32  , Expand);
614
615  // Only ARMv6 has BSWAP.
616  if (!Subtarget->hasV6Ops())
617    setOperationAction(ISD::BSWAP, MVT::i32, Expand);
618
619  // These are expanded into libcalls.
620  if (!Subtarget->hasDivide() || !Subtarget->isThumb2()) {
621    // v7M has a hardware divider
622    setOperationAction(ISD::SDIV,  MVT::i32, Expand);
623    setOperationAction(ISD::UDIV,  MVT::i32, Expand);
624  }
625  setOperationAction(ISD::SREM,  MVT::i32, Expand);
626  setOperationAction(ISD::UREM,  MVT::i32, Expand);
627  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
628  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
629
630  setOperationAction(ISD::GlobalAddress, MVT::i32,   Custom);
631  setOperationAction(ISD::ConstantPool,  MVT::i32,   Custom);
632  setOperationAction(ISD::GLOBAL_OFFSET_TABLE, MVT::i32, Custom);
633  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
634  setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
635
636  setOperationAction(ISD::TRAP, MVT::Other, Legal);
637
638  // Use the default implementation.
639  setOperationAction(ISD::VASTART,            MVT::Other, Custom);
640  setOperationAction(ISD::VAARG,              MVT::Other, Expand);
641  setOperationAction(ISD::VACOPY,             MVT::Other, Expand);
642  setOperationAction(ISD::VAEND,              MVT::Other, Expand);
643  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
644  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
645  setOperationAction(ISD::EHSELECTION,        MVT::i32,   Expand);
646  setOperationAction(ISD::EXCEPTIONADDR,      MVT::i32,   Expand);
647  setExceptionPointerRegister(ARM::R0);
648  setExceptionSelectorRegister(ARM::R1);
649
650  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
651  // ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use
652  // the default expansion.
653  // FIXME: This should be checking for v6k, not just v6.
654  if (Subtarget->hasDataBarrier() ||
655      (Subtarget->hasV6Ops() && !Subtarget->isThumb())) {
656    // membarrier needs custom lowering; the rest are legal and handled
657    // normally.
658    setOperationAction(ISD::MEMBARRIER, MVT::Other, Custom);
659    setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
660    // Custom lowering for 64-bit ops
661    setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i64, Custom);
662    setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i64, Custom);
663    setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i64, Custom);
664    setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i64, Custom);
665    setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i64, Custom);
666    setOperationAction(ISD::ATOMIC_SWAP,  MVT::i64, Custom);
667    setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i64, Custom);
668    // Automatically insert fences (dmb ist) around ATOMIC_SWAP etc.
669    setInsertFencesForAtomic(true);
670  } else {
671    // Set them all for expansion, which will force libcalls.
672    setOperationAction(ISD::MEMBARRIER, MVT::Other, Expand);
673    setOperationAction(ISD::ATOMIC_FENCE,   MVT::Other, Expand);
674    setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i32, Expand);
675    setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Expand);
676    setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Expand);
677    setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Expand);
678    setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Expand);
679    setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Expand);
680    setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Expand);
681    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand);
682    setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Expand);
683    setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Expand);
684    setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Expand);
685    setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Expand);
686    // Mark ATOMIC_LOAD and ATOMIC_STORE custom so we can handle the
687    // Unordered/Monotonic case.
688    setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
689    setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
690    // Since the libcalls include locking, fold in the fences
691    setShouldFoldAtomicFences(true);
692  }
693
694  setOperationAction(ISD::PREFETCH,         MVT::Other, Custom);
695
696  // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
697  if (!Subtarget->hasV6Ops()) {
698    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
699    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
700  }
701  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
702
703  if (!TM.Options.UseSoftFloat && Subtarget->hasVFP2() &&
704      !Subtarget->isThumb1Only()) {
705    // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
706    // iff target supports vfp2.
707    setOperationAction(ISD::BITCAST, MVT::i64, Custom);
708    setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
709  }
710
711  // We want to custom lower some of our intrinsics.
712  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
713  if (Subtarget->isTargetDarwin()) {
714    setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
715    setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
716    setLibcallName(RTLIB::UNWIND_RESUME, "_Unwind_SjLj_Resume");
717  }
718
719  setOperationAction(ISD::SETCC,     MVT::i32, Expand);
720  setOperationAction(ISD::SETCC,     MVT::f32, Expand);
721  setOperationAction(ISD::SETCC,     MVT::f64, Expand);
722  setOperationAction(ISD::SELECT,    MVT::i32, Custom);
723  setOperationAction(ISD::SELECT,    MVT::f32, Custom);
724  setOperationAction(ISD::SELECT,    MVT::f64, Custom);
725  setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
726  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
727  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
728
729  setOperationAction(ISD::BRCOND,    MVT::Other, Expand);
730  setOperationAction(ISD::BR_CC,     MVT::i32,   Custom);
731  setOperationAction(ISD::BR_CC,     MVT::f32,   Custom);
732  setOperationAction(ISD::BR_CC,     MVT::f64,   Custom);
733  setOperationAction(ISD::BR_JT,     MVT::Other, Custom);
734
735  // We don't support sin/cos/fmod/copysign/pow
736  setOperationAction(ISD::FSIN,      MVT::f64, Expand);
737  setOperationAction(ISD::FSIN,      MVT::f32, Expand);
738  setOperationAction(ISD::FCOS,      MVT::f32, Expand);
739  setOperationAction(ISD::FCOS,      MVT::f64, Expand);
740  setOperationAction(ISD::FREM,      MVT::f64, Expand);
741  setOperationAction(ISD::FREM,      MVT::f32, Expand);
742  if (!TM.Options.UseSoftFloat && Subtarget->hasVFP2() &&
743      !Subtarget->isThumb1Only()) {
744    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
745    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
746  }
747  setOperationAction(ISD::FPOW,      MVT::f64, Expand);
748  setOperationAction(ISD::FPOW,      MVT::f32, Expand);
749
750  setOperationAction(ISD::FMA, MVT::f64, Expand);
751  setOperationAction(ISD::FMA, MVT::f32, Expand);
752
753  // Various VFP goodness
754  if (!TM.Options.UseSoftFloat && !Subtarget->isThumb1Only()) {
755    // int <-> fp are custom expanded into bit_convert + ARMISD ops.
756    if (Subtarget->hasVFP2()) {
757      setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
758      setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
759      setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
760      setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
761    }
762    // Special handling for half-precision FP.
763    if (!Subtarget->hasFP16()) {
764      setOperationAction(ISD::FP16_TO_FP32, MVT::f32, Expand);
765      setOperationAction(ISD::FP32_TO_FP16, MVT::i32, Expand);
766    }
767  }
768
769  // We have target-specific dag combine patterns for the following nodes:
770  // ARMISD::VMOVRRD  - No need to call setTargetDAGCombine
771  setTargetDAGCombine(ISD::ADD);
772  setTargetDAGCombine(ISD::SUB);
773  setTargetDAGCombine(ISD::MUL);
774
775  if (Subtarget->hasV6T2Ops() || Subtarget->hasNEON())
776    setTargetDAGCombine(ISD::OR);
777  if (Subtarget->hasNEON())
778    setTargetDAGCombine(ISD::AND);
779
780  setStackPointerRegisterToSaveRestore(ARM::SP);
781
782  if (TM.Options.UseSoftFloat || Subtarget->isThumb1Only() ||
783      !Subtarget->hasVFP2())
784    setSchedulingPreference(Sched::RegPressure);
785  else
786    setSchedulingPreference(Sched::Hybrid);
787
788  //// temporary - rewrite interface to use type
789  maxStoresPerMemcpy = maxStoresPerMemcpyOptSize = 1;
790  maxStoresPerMemset = 16;
791  maxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
792
793  // On ARM arguments smaller than 4 bytes are extended, so all arguments
794  // are at least 4 bytes aligned.
795  setMinStackArgumentAlignment(4);
796
797  benefitFromCodePlacementOpt = true;
798
799  setMinFunctionAlignment(Subtarget->isThumb() ? 1 : 2);
800}
801
802// FIXME: It might make sense to define the representative register class as the
803// nearest super-register that has a non-null superset. For example, DPR_VFP2 is
804// a super-register of SPR, and DPR is a superset if DPR_VFP2. Consequently,
805// SPR's representative would be DPR_VFP2. This should work well if register
806// pressure tracking were modified such that a register use would increment the
807// pressure of the register class's representative and all of it's super
808// classes' representatives transitively. We have not implemented this because
809// of the difficulty prior to coalescing of modeling operand register classes
810// due to the common occurrence of cross class copies and subregister insertions
811// and extractions.
812std::pair<const TargetRegisterClass*, uint8_t>
813ARMTargetLowering::findRepresentativeClass(EVT VT) const{
814  const TargetRegisterClass *RRC = 0;
815  uint8_t Cost = 1;
816  switch (VT.getSimpleVT().SimpleTy) {
817  default:
818    return TargetLowering::findRepresentativeClass(VT);
819  // Use DPR as representative register class for all floating point
820  // and vector types. Since there are 32 SPR registers and 32 DPR registers so
821  // the cost is 1 for both f32 and f64.
822  case MVT::f32: case MVT::f64: case MVT::v8i8: case MVT::v4i16:
823  case MVT::v2i32: case MVT::v1i64: case MVT::v2f32:
824    RRC = ARM::DPRRegisterClass;
825    // When NEON is used for SP, only half of the register file is available
826    // because operations that define both SP and DP results will be constrained
827    // to the VFP2 class (D0-D15). We currently model this constraint prior to
828    // coalescing by double-counting the SP regs. See the FIXME above.
829    if (Subtarget->useNEONForSinglePrecisionFP())
830      Cost = 2;
831    break;
832  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
833  case MVT::v4f32: case MVT::v2f64:
834    RRC = ARM::DPRRegisterClass;
835    Cost = 2;
836    break;
837  case MVT::v4i64:
838    RRC = ARM::DPRRegisterClass;
839    Cost = 4;
840    break;
841  case MVT::v8i64:
842    RRC = ARM::DPRRegisterClass;
843    Cost = 8;
844    break;
845  }
846  return std::make_pair(RRC, Cost);
847}
848
849const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
850  switch (Opcode) {
851  default: return 0;
852  case ARMISD::Wrapper:       return "ARMISD::Wrapper";
853  case ARMISD::WrapperDYN:    return "ARMISD::WrapperDYN";
854  case ARMISD::WrapperPIC:    return "ARMISD::WrapperPIC";
855  case ARMISD::WrapperJT:     return "ARMISD::WrapperJT";
856  case ARMISD::CALL:          return "ARMISD::CALL";
857  case ARMISD::CALL_PRED:     return "ARMISD::CALL_PRED";
858  case ARMISD::CALL_NOLINK:   return "ARMISD::CALL_NOLINK";
859  case ARMISD::tCALL:         return "ARMISD::tCALL";
860  case ARMISD::BRCOND:        return "ARMISD::BRCOND";
861  case ARMISD::BR_JT:         return "ARMISD::BR_JT";
862  case ARMISD::BR2_JT:        return "ARMISD::BR2_JT";
863  case ARMISD::RET_FLAG:      return "ARMISD::RET_FLAG";
864  case ARMISD::PIC_ADD:       return "ARMISD::PIC_ADD";
865  case ARMISD::CMP:           return "ARMISD::CMP";
866  case ARMISD::CMPZ:          return "ARMISD::CMPZ";
867  case ARMISD::CMPFP:         return "ARMISD::CMPFP";
868  case ARMISD::CMPFPw0:       return "ARMISD::CMPFPw0";
869  case ARMISD::BCC_i64:       return "ARMISD::BCC_i64";
870  case ARMISD::FMSTAT:        return "ARMISD::FMSTAT";
871  case ARMISD::CMOV:          return "ARMISD::CMOV";
872
873  case ARMISD::RBIT:          return "ARMISD::RBIT";
874
875  case ARMISD::FTOSI:         return "ARMISD::FTOSI";
876  case ARMISD::FTOUI:         return "ARMISD::FTOUI";
877  case ARMISD::SITOF:         return "ARMISD::SITOF";
878  case ARMISD::UITOF:         return "ARMISD::UITOF";
879
880  case ARMISD::SRL_FLAG:      return "ARMISD::SRL_FLAG";
881  case ARMISD::SRA_FLAG:      return "ARMISD::SRA_FLAG";
882  case ARMISD::RRX:           return "ARMISD::RRX";
883
884  case ARMISD::ADDC:          return "ARMISD::ADDC";
885  case ARMISD::ADDE:          return "ARMISD::ADDE";
886  case ARMISD::SUBC:          return "ARMISD::SUBC";
887  case ARMISD::SUBE:          return "ARMISD::SUBE";
888
889  case ARMISD::VMOVRRD:       return "ARMISD::VMOVRRD";
890  case ARMISD::VMOVDRR:       return "ARMISD::VMOVDRR";
891
892  case ARMISD::EH_SJLJ_SETJMP: return "ARMISD::EH_SJLJ_SETJMP";
893  case ARMISD::EH_SJLJ_LONGJMP:return "ARMISD::EH_SJLJ_LONGJMP";
894
895  case ARMISD::TC_RETURN:     return "ARMISD::TC_RETURN";
896
897  case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER";
898
899  case ARMISD::DYN_ALLOC:     return "ARMISD::DYN_ALLOC";
900
901  case ARMISD::MEMBARRIER:    return "ARMISD::MEMBARRIER";
902  case ARMISD::MEMBARRIER_MCR: return "ARMISD::MEMBARRIER_MCR";
903
904  case ARMISD::PRELOAD:       return "ARMISD::PRELOAD";
905
906  case ARMISD::VCEQ:          return "ARMISD::VCEQ";
907  case ARMISD::VCEQZ:         return "ARMISD::VCEQZ";
908  case ARMISD::VCGE:          return "ARMISD::VCGE";
909  case ARMISD::VCGEZ:         return "ARMISD::VCGEZ";
910  case ARMISD::VCLEZ:         return "ARMISD::VCLEZ";
911  case ARMISD::VCGEU:         return "ARMISD::VCGEU";
912  case ARMISD::VCGT:          return "ARMISD::VCGT";
913  case ARMISD::VCGTZ:         return "ARMISD::VCGTZ";
914  case ARMISD::VCLTZ:         return "ARMISD::VCLTZ";
915  case ARMISD::VCGTU:         return "ARMISD::VCGTU";
916  case ARMISD::VTST:          return "ARMISD::VTST";
917
918  case ARMISD::VSHL:          return "ARMISD::VSHL";
919  case ARMISD::VSHRs:         return "ARMISD::VSHRs";
920  case ARMISD::VSHRu:         return "ARMISD::VSHRu";
921  case ARMISD::VSHLLs:        return "ARMISD::VSHLLs";
922  case ARMISD::VSHLLu:        return "ARMISD::VSHLLu";
923  case ARMISD::VSHLLi:        return "ARMISD::VSHLLi";
924  case ARMISD::VSHRN:         return "ARMISD::VSHRN";
925  case ARMISD::VRSHRs:        return "ARMISD::VRSHRs";
926  case ARMISD::VRSHRu:        return "ARMISD::VRSHRu";
927  case ARMISD::VRSHRN:        return "ARMISD::VRSHRN";
928  case ARMISD::VQSHLs:        return "ARMISD::VQSHLs";
929  case ARMISD::VQSHLu:        return "ARMISD::VQSHLu";
930  case ARMISD::VQSHLsu:       return "ARMISD::VQSHLsu";
931  case ARMISD::VQSHRNs:       return "ARMISD::VQSHRNs";
932  case ARMISD::VQSHRNu:       return "ARMISD::VQSHRNu";
933  case ARMISD::VQSHRNsu:      return "ARMISD::VQSHRNsu";
934  case ARMISD::VQRSHRNs:      return "ARMISD::VQRSHRNs";
935  case ARMISD::VQRSHRNu:      return "ARMISD::VQRSHRNu";
936  case ARMISD::VQRSHRNsu:     return "ARMISD::VQRSHRNsu";
937  case ARMISD::VGETLANEu:     return "ARMISD::VGETLANEu";
938  case ARMISD::VGETLANEs:     return "ARMISD::VGETLANEs";
939  case ARMISD::VMOVIMM:       return "ARMISD::VMOVIMM";
940  case ARMISD::VMVNIMM:       return "ARMISD::VMVNIMM";
941  case ARMISD::VMOVFPIMM:     return "ARMISD::VMOVFPIMM";
942  case ARMISD::VDUP:          return "ARMISD::VDUP";
943  case ARMISD::VDUPLANE:      return "ARMISD::VDUPLANE";
944  case ARMISD::VEXT:          return "ARMISD::VEXT";
945  case ARMISD::VREV64:        return "ARMISD::VREV64";
946  case ARMISD::VREV32:        return "ARMISD::VREV32";
947  case ARMISD::VREV16:        return "ARMISD::VREV16";
948  case ARMISD::VZIP:          return "ARMISD::VZIP";
949  case ARMISD::VUZP:          return "ARMISD::VUZP";
950  case ARMISD::VTRN:          return "ARMISD::VTRN";
951  case ARMISD::VTBL1:         return "ARMISD::VTBL1";
952  case ARMISD::VTBL2:         return "ARMISD::VTBL2";
953  case ARMISD::VMULLs:        return "ARMISD::VMULLs";
954  case ARMISD::VMULLu:        return "ARMISD::VMULLu";
955  case ARMISD::BUILD_VECTOR:  return "ARMISD::BUILD_VECTOR";
956  case ARMISD::FMAX:          return "ARMISD::FMAX";
957  case ARMISD::FMIN:          return "ARMISD::FMIN";
958  case ARMISD::BFI:           return "ARMISD::BFI";
959  case ARMISD::VORRIMM:       return "ARMISD::VORRIMM";
960  case ARMISD::VBICIMM:       return "ARMISD::VBICIMM";
961  case ARMISD::VBSL:          return "ARMISD::VBSL";
962  case ARMISD::VLD2DUP:       return "ARMISD::VLD2DUP";
963  case ARMISD::VLD3DUP:       return "ARMISD::VLD3DUP";
964  case ARMISD::VLD4DUP:       return "ARMISD::VLD4DUP";
965  case ARMISD::VLD1_UPD:      return "ARMISD::VLD1_UPD";
966  case ARMISD::VLD2_UPD:      return "ARMISD::VLD2_UPD";
967  case ARMISD::VLD3_UPD:      return "ARMISD::VLD3_UPD";
968  case ARMISD::VLD4_UPD:      return "ARMISD::VLD4_UPD";
969  case ARMISD::VLD2LN_UPD:    return "ARMISD::VLD2LN_UPD";
970  case ARMISD::VLD3LN_UPD:    return "ARMISD::VLD3LN_UPD";
971  case ARMISD::VLD4LN_UPD:    return "ARMISD::VLD4LN_UPD";
972  case ARMISD::VLD2DUP_UPD:   return "ARMISD::VLD2DUP_UPD";
973  case ARMISD::VLD3DUP_UPD:   return "ARMISD::VLD3DUP_UPD";
974  case ARMISD::VLD4DUP_UPD:   return "ARMISD::VLD4DUP_UPD";
975  case ARMISD::VST1_UPD:      return "ARMISD::VST1_UPD";
976  case ARMISD::VST2_UPD:      return "ARMISD::VST2_UPD";
977  case ARMISD::VST3_UPD:      return "ARMISD::VST3_UPD";
978  case ARMISD::VST4_UPD:      return "ARMISD::VST4_UPD";
979  case ARMISD::VST2LN_UPD:    return "ARMISD::VST2LN_UPD";
980  case ARMISD::VST3LN_UPD:    return "ARMISD::VST3LN_UPD";
981  case ARMISD::VST4LN_UPD:    return "ARMISD::VST4LN_UPD";
982  }
983}
984
985EVT ARMTargetLowering::getSetCCResultType(EVT VT) const {
986  if (!VT.isVector()) return getPointerTy();
987  return VT.changeVectorElementTypeToInteger();
988}
989
990/// getRegClassFor - Return the register class that should be used for the
991/// specified value type.
992TargetRegisterClass *ARMTargetLowering::getRegClassFor(EVT VT) const {
993  // Map v4i64 to QQ registers but do not make the type legal. Similarly map
994  // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
995  // load / store 4 to 8 consecutive D registers.
996  if (Subtarget->hasNEON()) {
997    if (VT == MVT::v4i64)
998      return ARM::QQPRRegisterClass;
999    else if (VT == MVT::v8i64)
1000      return ARM::QQQQPRRegisterClass;
1001  }
1002  return TargetLowering::getRegClassFor(VT);
1003}
1004
1005// Create a fast isel object.
1006FastISel *
1007ARMTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
1008  return ARM::createFastISel(funcInfo);
1009}
1010
1011/// getMaximalGlobalOffset - Returns the maximal possible offset which can
1012/// be used for loads / stores from the global.
1013unsigned ARMTargetLowering::getMaximalGlobalOffset() const {
1014  return (Subtarget->isThumb1Only() ? 127 : 4095);
1015}
1016
1017Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const {
1018  unsigned NumVals = N->getNumValues();
1019  if (!NumVals)
1020    return Sched::RegPressure;
1021
1022  for (unsigned i = 0; i != NumVals; ++i) {
1023    EVT VT = N->getValueType(i);
1024    if (VT == MVT::Glue || VT == MVT::Other)
1025      continue;
1026    if (VT.isFloatingPoint() || VT.isVector())
1027      return Sched::ILP;
1028  }
1029
1030  if (!N->isMachineOpcode())
1031    return Sched::RegPressure;
1032
1033  // Load are scheduled for latency even if there instruction itinerary
1034  // is not available.
1035  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1036  const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
1037
1038  if (MCID.getNumDefs() == 0)
1039    return Sched::RegPressure;
1040  if (!Itins->isEmpty() &&
1041      Itins->getOperandCycle(MCID.getSchedClass(), 0) > 2)
1042    return Sched::ILP;
1043
1044  return Sched::RegPressure;
1045}
1046
1047//===----------------------------------------------------------------------===//
1048// Lowering Code
1049//===----------------------------------------------------------------------===//
1050
1051/// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
1052static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
1053  switch (CC) {
1054  default: llvm_unreachable("Unknown condition code!");
1055  case ISD::SETNE:  return ARMCC::NE;
1056  case ISD::SETEQ:  return ARMCC::EQ;
1057  case ISD::SETGT:  return ARMCC::GT;
1058  case ISD::SETGE:  return ARMCC::GE;
1059  case ISD::SETLT:  return ARMCC::LT;
1060  case ISD::SETLE:  return ARMCC::LE;
1061  case ISD::SETUGT: return ARMCC::HI;
1062  case ISD::SETUGE: return ARMCC::HS;
1063  case ISD::SETULT: return ARMCC::LO;
1064  case ISD::SETULE: return ARMCC::LS;
1065  }
1066}
1067
1068/// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
1069static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
1070                        ARMCC::CondCodes &CondCode2) {
1071  CondCode2 = ARMCC::AL;
1072  switch (CC) {
1073  default: llvm_unreachable("Unknown FP condition!");
1074  case ISD::SETEQ:
1075  case ISD::SETOEQ: CondCode = ARMCC::EQ; break;
1076  case ISD::SETGT:
1077  case ISD::SETOGT: CondCode = ARMCC::GT; break;
1078  case ISD::SETGE:
1079  case ISD::SETOGE: CondCode = ARMCC::GE; break;
1080  case ISD::SETOLT: CondCode = ARMCC::MI; break;
1081  case ISD::SETOLE: CondCode = ARMCC::LS; break;
1082  case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break;
1083  case ISD::SETO:   CondCode = ARMCC::VC; break;
1084  case ISD::SETUO:  CondCode = ARMCC::VS; break;
1085  case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break;
1086  case ISD::SETUGT: CondCode = ARMCC::HI; break;
1087  case ISD::SETUGE: CondCode = ARMCC::PL; break;
1088  case ISD::SETLT:
1089  case ISD::SETULT: CondCode = ARMCC::LT; break;
1090  case ISD::SETLE:
1091  case ISD::SETULE: CondCode = ARMCC::LE; break;
1092  case ISD::SETNE:
1093  case ISD::SETUNE: CondCode = ARMCC::NE; break;
1094  }
1095}
1096
1097//===----------------------------------------------------------------------===//
1098//                      Calling Convention Implementation
1099//===----------------------------------------------------------------------===//
1100
1101#include "ARMGenCallingConv.inc"
1102
1103/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
1104/// given CallingConvention value.
1105CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC,
1106                                                 bool Return,
1107                                                 bool isVarArg) const {
1108  switch (CC) {
1109  default:
1110    llvm_unreachable("Unsupported calling convention");
1111  case CallingConv::Fast:
1112    if (Subtarget->hasVFP2() && !isVarArg) {
1113      if (!Subtarget->isAAPCS_ABI())
1114        return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
1115      // For AAPCS ABI targets, just use VFP variant of the calling convention.
1116      return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1117    }
1118    // Fallthrough
1119  case CallingConv::C: {
1120    // Use target triple & subtarget features to do actual dispatch.
1121    if (!Subtarget->isAAPCS_ABI())
1122      return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
1123    else if (Subtarget->hasVFP2() &&
1124             getTargetMachine().Options.FloatABIType == FloatABI::Hard &&
1125             !isVarArg)
1126      return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1127    return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
1128  }
1129  case CallingConv::ARM_AAPCS_VFP:
1130    return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1131  case CallingConv::ARM_AAPCS:
1132    return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
1133  case CallingConv::ARM_APCS:
1134    return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
1135  }
1136}
1137
1138/// LowerCallResult - Lower the result values of a call into the
1139/// appropriate copies out of appropriate physical registers.
1140SDValue
1141ARMTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1142                                   CallingConv::ID CallConv, bool isVarArg,
1143                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1144                                   DebugLoc dl, SelectionDAG &DAG,
1145                                   SmallVectorImpl<SDValue> &InVals) const {
1146
1147  // Assign locations to each value returned by this call.
1148  SmallVector<CCValAssign, 16> RVLocs;
1149  ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1150                    getTargetMachine(), RVLocs, *DAG.getContext(), Call);
1151  CCInfo.AnalyzeCallResult(Ins,
1152                           CCAssignFnForNode(CallConv, /* Return*/ true,
1153                                             isVarArg));
1154
1155  // Copy all of the result registers out of their specified physreg.
1156  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1157    CCValAssign VA = RVLocs[i];
1158
1159    SDValue Val;
1160    if (VA.needsCustom()) {
1161      // Handle f64 or half of a v2f64.
1162      SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1163                                      InFlag);
1164      Chain = Lo.getValue(1);
1165      InFlag = Lo.getValue(2);
1166      VA = RVLocs[++i]; // skip ahead to next loc
1167      SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1168                                      InFlag);
1169      Chain = Hi.getValue(1);
1170      InFlag = Hi.getValue(2);
1171      Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1172
1173      if (VA.getLocVT() == MVT::v2f64) {
1174        SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
1175        Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1176                          DAG.getConstant(0, MVT::i32));
1177
1178        VA = RVLocs[++i]; // skip ahead to next loc
1179        Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1180        Chain = Lo.getValue(1);
1181        InFlag = Lo.getValue(2);
1182        VA = RVLocs[++i]; // skip ahead to next loc
1183        Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1184        Chain = Hi.getValue(1);
1185        InFlag = Hi.getValue(2);
1186        Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1187        Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1188                          DAG.getConstant(1, MVT::i32));
1189      }
1190    } else {
1191      Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
1192                               InFlag);
1193      Chain = Val.getValue(1);
1194      InFlag = Val.getValue(2);
1195    }
1196
1197    switch (VA.getLocInfo()) {
1198    default: llvm_unreachable("Unknown loc info!");
1199    case CCValAssign::Full: break;
1200    case CCValAssign::BCvt:
1201      Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val);
1202      break;
1203    }
1204
1205    InVals.push_back(Val);
1206  }
1207
1208  return Chain;
1209}
1210
1211/// LowerMemOpCallTo - Store the argument to the stack.
1212SDValue
1213ARMTargetLowering::LowerMemOpCallTo(SDValue Chain,
1214                                    SDValue StackPtr, SDValue Arg,
1215                                    DebugLoc dl, SelectionDAG &DAG,
1216                                    const CCValAssign &VA,
1217                                    ISD::ArgFlagsTy Flags) const {
1218  unsigned LocMemOffset = VA.getLocMemOffset();
1219  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1220  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1221  return DAG.getStore(Chain, dl, Arg, PtrOff,
1222                      MachinePointerInfo::getStack(LocMemOffset),
1223                      false, false, 0);
1224}
1225
1226void ARMTargetLowering::PassF64ArgInRegs(DebugLoc dl, SelectionDAG &DAG,
1227                                         SDValue Chain, SDValue &Arg,
1228                                         RegsToPassVector &RegsToPass,
1229                                         CCValAssign &VA, CCValAssign &NextVA,
1230                                         SDValue &StackPtr,
1231                                         SmallVector<SDValue, 8> &MemOpChains,
1232                                         ISD::ArgFlagsTy Flags) const {
1233
1234  SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
1235                              DAG.getVTList(MVT::i32, MVT::i32), Arg);
1236  RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd));
1237
1238  if (NextVA.isRegLoc())
1239    RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1)));
1240  else {
1241    assert(NextVA.isMemLoc());
1242    if (StackPtr.getNode() == 0)
1243      StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
1244
1245    MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1),
1246                                           dl, DAG, NextVA,
1247                                           Flags));
1248  }
1249}
1250
1251/// LowerCall - Lowering a call into a callseq_start <-
1252/// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
1253/// nodes.
1254SDValue
1255ARMTargetLowering::LowerCall(SDValue Chain, SDValue Callee,
1256                             CallingConv::ID CallConv, bool isVarArg,
1257                             bool &isTailCall,
1258                             const SmallVectorImpl<ISD::OutputArg> &Outs,
1259                             const SmallVectorImpl<SDValue> &OutVals,
1260                             const SmallVectorImpl<ISD::InputArg> &Ins,
1261                             DebugLoc dl, SelectionDAG &DAG,
1262                             SmallVectorImpl<SDValue> &InVals) const {
1263  MachineFunction &MF = DAG.getMachineFunction();
1264  bool IsStructRet    = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
1265  bool IsSibCall = false;
1266  // Disable tail calls if they're not supported.
1267  if (!EnableARMTailCalls && !Subtarget->supportsTailCall())
1268    isTailCall = false;
1269  if (isTailCall) {
1270    // Check if it's really possible to do a tail call.
1271    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1272                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
1273                                                   Outs, OutVals, Ins, DAG);
1274    // We don't support GuaranteedTailCallOpt for ARM, only automatically
1275    // detected sibcalls.
1276    if (isTailCall) {
1277      ++NumTailCalls;
1278      IsSibCall = true;
1279    }
1280  }
1281
1282  // Analyze operands of the call, assigning locations to each operand.
1283  SmallVector<CCValAssign, 16> ArgLocs;
1284  ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1285                 getTargetMachine(), ArgLocs, *DAG.getContext(), Call);
1286  CCInfo.AnalyzeCallOperands(Outs,
1287                             CCAssignFnForNode(CallConv, /* Return*/ false,
1288                                               isVarArg));
1289
1290  // Get a count of how many bytes are to be pushed on the stack.
1291  unsigned NumBytes = CCInfo.getNextStackOffset();
1292
1293  // For tail calls, memory operands are available in our caller's stack.
1294  if (IsSibCall)
1295    NumBytes = 0;
1296
1297  // Adjust the stack pointer for the new arguments...
1298  // These operations are automatically eliminated by the prolog/epilog pass
1299  if (!IsSibCall)
1300    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
1301
1302  SDValue StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
1303
1304  RegsToPassVector RegsToPass;
1305  SmallVector<SDValue, 8> MemOpChains;
1306
1307  // Walk the register/memloc assignments, inserting copies/loads.  In the case
1308  // of tail call optimization, arguments are handled later.
1309  for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
1310       i != e;
1311       ++i, ++realArgIdx) {
1312    CCValAssign &VA = ArgLocs[i];
1313    SDValue Arg = OutVals[realArgIdx];
1314    ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
1315    bool isByVal = Flags.isByVal();
1316
1317    // Promote the value if needed.
1318    switch (VA.getLocInfo()) {
1319    default: llvm_unreachable("Unknown loc info!");
1320    case CCValAssign::Full: break;
1321    case CCValAssign::SExt:
1322      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
1323      break;
1324    case CCValAssign::ZExt:
1325      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
1326      break;
1327    case CCValAssign::AExt:
1328      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
1329      break;
1330    case CCValAssign::BCvt:
1331      Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
1332      break;
1333    }
1334
1335    // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
1336    if (VA.needsCustom()) {
1337      if (VA.getLocVT() == MVT::v2f64) {
1338        SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1339                                  DAG.getConstant(0, MVT::i32));
1340        SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1341                                  DAG.getConstant(1, MVT::i32));
1342
1343        PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass,
1344                         VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1345
1346        VA = ArgLocs[++i]; // skip ahead to next loc
1347        if (VA.isRegLoc()) {
1348          PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass,
1349                           VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1350        } else {
1351          assert(VA.isMemLoc());
1352
1353          MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Op1,
1354                                                 dl, DAG, VA, Flags));
1355        }
1356      } else {
1357        PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
1358                         StackPtr, MemOpChains, Flags);
1359      }
1360    } else if (VA.isRegLoc()) {
1361      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1362    } else if (isByVal) {
1363      assert(VA.isMemLoc());
1364      unsigned offset = 0;
1365
1366      // True if this byval aggregate will be split between registers
1367      // and memory.
1368      if (CCInfo.isFirstByValRegValid()) {
1369        EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1370        unsigned int i, j;
1371        for (i = 0, j = CCInfo.getFirstByValReg(); j < ARM::R4; i++, j++) {
1372          SDValue Const = DAG.getConstant(4*i, MVT::i32);
1373          SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
1374          SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
1375                                     MachinePointerInfo(),
1376                                     false, false, false, 0);
1377          MemOpChains.push_back(Load.getValue(1));
1378          RegsToPass.push_back(std::make_pair(j, Load));
1379        }
1380        offset = ARM::R4 - CCInfo.getFirstByValReg();
1381        CCInfo.clearFirstByValReg();
1382      }
1383
1384      unsigned LocMemOffset = VA.getLocMemOffset();
1385      SDValue StkPtrOff = DAG.getIntPtrConstant(LocMemOffset);
1386      SDValue Dst = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr,
1387                                StkPtrOff);
1388      SDValue SrcOffset = DAG.getIntPtrConstant(4*offset);
1389      SDValue Src = DAG.getNode(ISD::ADD, dl, getPointerTy(), Arg, SrcOffset);
1390      SDValue SizeNode = DAG.getConstant(Flags.getByValSize() - 4*offset,
1391                                         MVT::i32);
1392      MemOpChains.push_back(DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode,
1393                                          Flags.getByValAlign(),
1394                                          /*isVolatile=*/false,
1395                                          /*AlwaysInline=*/false,
1396                                          MachinePointerInfo(0),
1397                                          MachinePointerInfo(0)));
1398
1399    } else if (!IsSibCall) {
1400      assert(VA.isMemLoc());
1401
1402      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
1403                                             dl, DAG, VA, Flags));
1404    }
1405  }
1406
1407  if (!MemOpChains.empty())
1408    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1409                        &MemOpChains[0], MemOpChains.size());
1410
1411  // Build a sequence of copy-to-reg nodes chained together with token chain
1412  // and flag operands which copy the outgoing args into the appropriate regs.
1413  SDValue InFlag;
1414  // Tail call byval lowering might overwrite argument registers so in case of
1415  // tail call optimization the copies to registers are lowered later.
1416  if (!isTailCall)
1417    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1418      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1419                               RegsToPass[i].second, InFlag);
1420      InFlag = Chain.getValue(1);
1421    }
1422
1423  // For tail calls lower the arguments to the 'real' stack slot.
1424  if (isTailCall) {
1425    // Force all the incoming stack arguments to be loaded from the stack
1426    // before any new outgoing arguments are stored to the stack, because the
1427    // outgoing stack slots may alias the incoming argument stack slots, and
1428    // the alias isn't otherwise explicit. This is slightly more conservative
1429    // than necessary, because it means that each store effectively depends
1430    // on every argument instead of just those arguments it would clobber.
1431
1432    // Do not flag preceding copytoreg stuff together with the following stuff.
1433    InFlag = SDValue();
1434    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1435      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1436                               RegsToPass[i].second, InFlag);
1437      InFlag = Chain.getValue(1);
1438    }
1439    InFlag =SDValue();
1440  }
1441
1442  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
1443  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
1444  // node so that legalize doesn't hack it.
1445  bool isDirect = false;
1446  bool isARMFunc = false;
1447  bool isLocalARMFunc = false;
1448  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1449
1450  if (EnableARMLongCalls) {
1451    assert (getTargetMachine().getRelocationModel() == Reloc::Static
1452            && "long-calls with non-static relocation model!");
1453    // Handle a global address or an external symbol. If it's not one of
1454    // those, the target's already in a register, so we don't need to do
1455    // anything extra.
1456    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1457      const GlobalValue *GV = G->getGlobal();
1458      // Create a constant pool entry for the callee address
1459      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1460      ARMConstantPoolValue *CPV =
1461        ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, 0);
1462
1463      // Get the address of the callee into a register
1464      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1465      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1466      Callee = DAG.getLoad(getPointerTy(), dl,
1467                           DAG.getEntryNode(), CPAddr,
1468                           MachinePointerInfo::getConstantPool(),
1469                           false, false, false, 0);
1470    } else if (ExternalSymbolSDNode *S=dyn_cast<ExternalSymbolSDNode>(Callee)) {
1471      const char *Sym = S->getSymbol();
1472
1473      // Create a constant pool entry for the callee address
1474      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1475      ARMConstantPoolValue *CPV =
1476        ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
1477                                      ARMPCLabelIndex, 0);
1478      // Get the address of the callee into a register
1479      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1480      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1481      Callee = DAG.getLoad(getPointerTy(), dl,
1482                           DAG.getEntryNode(), CPAddr,
1483                           MachinePointerInfo::getConstantPool(),
1484                           false, false, false, 0);
1485    }
1486  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1487    const GlobalValue *GV = G->getGlobal();
1488    isDirect = true;
1489    bool isExt = GV->isDeclaration() || GV->isWeakForLinker();
1490    bool isStub = (isExt && Subtarget->isTargetDarwin()) &&
1491                   getTargetMachine().getRelocationModel() != Reloc::Static;
1492    isARMFunc = !Subtarget->isThumb() || isStub;
1493    // ARM call to a local ARM function is predicable.
1494    isLocalARMFunc = !Subtarget->isThumb() && (!isExt || !ARMInterworking);
1495    // tBX takes a register source operand.
1496    if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
1497      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1498      ARMConstantPoolValue *CPV =
1499        ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, 4);
1500      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1501      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1502      Callee = DAG.getLoad(getPointerTy(), dl,
1503                           DAG.getEntryNode(), CPAddr,
1504                           MachinePointerInfo::getConstantPool(),
1505                           false, false, false, 0);
1506      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1507      Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
1508                           getPointerTy(), Callee, PICLabel);
1509    } else {
1510      // On ELF targets for PIC code, direct calls should go through the PLT
1511      unsigned OpFlags = 0;
1512      if (Subtarget->isTargetELF() &&
1513                  getTargetMachine().getRelocationModel() == Reloc::PIC_)
1514        OpFlags = ARMII::MO_PLT;
1515      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
1516    }
1517  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1518    isDirect = true;
1519    bool isStub = Subtarget->isTargetDarwin() &&
1520                  getTargetMachine().getRelocationModel() != Reloc::Static;
1521    isARMFunc = !Subtarget->isThumb() || isStub;
1522    // tBX takes a register source operand.
1523    const char *Sym = S->getSymbol();
1524    if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
1525      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1526      ARMConstantPoolValue *CPV =
1527        ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
1528                                      ARMPCLabelIndex, 4);
1529      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1530      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1531      Callee = DAG.getLoad(getPointerTy(), dl,
1532                           DAG.getEntryNode(), CPAddr,
1533                           MachinePointerInfo::getConstantPool(),
1534                           false, false, false, 0);
1535      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1536      Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
1537                           getPointerTy(), Callee, PICLabel);
1538    } else {
1539      unsigned OpFlags = 0;
1540      // On ELF targets for PIC code, direct calls should go through the PLT
1541      if (Subtarget->isTargetELF() &&
1542                  getTargetMachine().getRelocationModel() == Reloc::PIC_)
1543        OpFlags = ARMII::MO_PLT;
1544      Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlags);
1545    }
1546  }
1547
1548  // FIXME: handle tail calls differently.
1549  unsigned CallOpc;
1550  if (Subtarget->isThumb()) {
1551    if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps())
1552      CallOpc = ARMISD::CALL_NOLINK;
1553    else
1554      CallOpc = isARMFunc ? ARMISD::CALL : ARMISD::tCALL;
1555  } else {
1556    CallOpc = (isDirect || Subtarget->hasV5TOps())
1557      ? (isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL)
1558      : ARMISD::CALL_NOLINK;
1559  }
1560
1561  std::vector<SDValue> Ops;
1562  Ops.push_back(Chain);
1563  Ops.push_back(Callee);
1564
1565  // Add argument registers to the end of the list so that they are known live
1566  // into the call.
1567  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1568    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1569                                  RegsToPass[i].second.getValueType()));
1570
1571  if (InFlag.getNode())
1572    Ops.push_back(InFlag);
1573
1574  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1575  if (isTailCall)
1576    return DAG.getNode(ARMISD::TC_RETURN, dl, NodeTys, &Ops[0], Ops.size());
1577
1578  // Returns a chain and a flag for retval copy to use.
1579  Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size());
1580  InFlag = Chain.getValue(1);
1581
1582  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
1583                             DAG.getIntPtrConstant(0, true), InFlag);
1584  if (!Ins.empty())
1585    InFlag = Chain.getValue(1);
1586
1587  // Handle result values, copying them out of physregs into vregs that we
1588  // return.
1589  return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins,
1590                         dl, DAG, InVals);
1591}
1592
1593/// HandleByVal - Every parameter *after* a byval parameter is passed
1594/// on the stack.  Remember the next parameter register to allocate,
1595/// and then confiscate the rest of the parameter registers to insure
1596/// this.
1597void
1598llvm::ARMTargetLowering::HandleByVal(CCState *State, unsigned &size) const {
1599  unsigned reg = State->AllocateReg(GPRArgRegs, 4);
1600  assert((State->getCallOrPrologue() == Prologue ||
1601          State->getCallOrPrologue() == Call) &&
1602         "unhandled ParmContext");
1603  if ((!State->isFirstByValRegValid()) &&
1604      (ARM::R0 <= reg) && (reg <= ARM::R3)) {
1605    State->setFirstByValReg(reg);
1606    // At a call site, a byval parameter that is split between
1607    // registers and memory needs its size truncated here.  In a
1608    // function prologue, such byval parameters are reassembled in
1609    // memory, and are not truncated.
1610    if (State->getCallOrPrologue() == Call) {
1611      unsigned excess = 4 * (ARM::R4 - reg);
1612      assert(size >= excess && "expected larger existing stack allocation");
1613      size -= excess;
1614    }
1615  }
1616  // Confiscate any remaining parameter registers to preclude their
1617  // assignment to subsequent parameters.
1618  while (State->AllocateReg(GPRArgRegs, 4))
1619    ;
1620}
1621
1622/// MatchingStackOffset - Return true if the given stack call argument is
1623/// already available in the same position (relatively) of the caller's
1624/// incoming argument stack.
1625static
1626bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
1627                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
1628                         const ARMInstrInfo *TII) {
1629  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
1630  int FI = INT_MAX;
1631  if (Arg.getOpcode() == ISD::CopyFromReg) {
1632    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
1633    if (!TargetRegisterInfo::isVirtualRegister(VR))
1634      return false;
1635    MachineInstr *Def = MRI->getVRegDef(VR);
1636    if (!Def)
1637      return false;
1638    if (!Flags.isByVal()) {
1639      if (!TII->isLoadFromStackSlot(Def, FI))
1640        return false;
1641    } else {
1642      return false;
1643    }
1644  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
1645    if (Flags.isByVal())
1646      // ByVal argument is passed in as a pointer but it's now being
1647      // dereferenced. e.g.
1648      // define @foo(%struct.X* %A) {
1649      //   tail call @bar(%struct.X* byval %A)
1650      // }
1651      return false;
1652    SDValue Ptr = Ld->getBasePtr();
1653    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
1654    if (!FINode)
1655      return false;
1656    FI = FINode->getIndex();
1657  } else
1658    return false;
1659
1660  assert(FI != INT_MAX);
1661  if (!MFI->isFixedObjectIndex(FI))
1662    return false;
1663  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
1664}
1665
1666/// IsEligibleForTailCallOptimization - Check whether the call is eligible
1667/// for tail call optimization. Targets which want to do tail call
1668/// optimization should implement this function.
1669bool
1670ARMTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
1671                                                     CallingConv::ID CalleeCC,
1672                                                     bool isVarArg,
1673                                                     bool isCalleeStructRet,
1674                                                     bool isCallerStructRet,
1675                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
1676                                    const SmallVectorImpl<SDValue> &OutVals,
1677                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1678                                                     SelectionDAG& DAG) const {
1679  const Function *CallerF = DAG.getMachineFunction().getFunction();
1680  CallingConv::ID CallerCC = CallerF->getCallingConv();
1681  bool CCMatch = CallerCC == CalleeCC;
1682
1683  // Look for obvious safe cases to perform tail call optimization that do not
1684  // require ABI changes. This is what gcc calls sibcall.
1685
1686  // Do not sibcall optimize vararg calls unless the call site is not passing
1687  // any arguments.
1688  if (isVarArg && !Outs.empty())
1689    return false;
1690
1691  // Also avoid sibcall optimization if either caller or callee uses struct
1692  // return semantics.
1693  if (isCalleeStructRet || isCallerStructRet)
1694    return false;
1695
1696  // FIXME: Completely disable sibcall for Thumb1 since Thumb1RegisterInfo::
1697  // emitEpilogue is not ready for them. Thumb tail calls also use t2B, as
1698  // the Thumb1 16-bit unconditional branch doesn't have sufficient relocation
1699  // support in the assembler and linker to be used. This would need to be
1700  // fixed to fully support tail calls in Thumb1.
1701  //
1702  // Doing this is tricky, since the LDM/POP instruction on Thumb doesn't take
1703  // LR.  This means if we need to reload LR, it takes an extra instructions,
1704  // which outweighs the value of the tail call; but here we don't know yet
1705  // whether LR is going to be used.  Probably the right approach is to
1706  // generate the tail call here and turn it back into CALL/RET in
1707  // emitEpilogue if LR is used.
1708
1709  // Thumb1 PIC calls to external symbols use BX, so they can be tail calls,
1710  // but we need to make sure there are enough registers; the only valid
1711  // registers are the 4 used for parameters.  We don't currently do this
1712  // case.
1713  if (Subtarget->isThumb1Only())
1714    return false;
1715
1716  // If the calling conventions do not match, then we'd better make sure the
1717  // results are returned in the same way as what the caller expects.
1718  if (!CCMatch) {
1719    SmallVector<CCValAssign, 16> RVLocs1;
1720    ARMCCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
1721                       getTargetMachine(), RVLocs1, *DAG.getContext(), Call);
1722    CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForNode(CalleeCC, true, isVarArg));
1723
1724    SmallVector<CCValAssign, 16> RVLocs2;
1725    ARMCCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
1726                       getTargetMachine(), RVLocs2, *DAG.getContext(), Call);
1727    CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForNode(CallerCC, true, isVarArg));
1728
1729    if (RVLocs1.size() != RVLocs2.size())
1730      return false;
1731    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
1732      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
1733        return false;
1734      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
1735        return false;
1736      if (RVLocs1[i].isRegLoc()) {
1737        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
1738          return false;
1739      } else {
1740        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
1741          return false;
1742      }
1743    }
1744  }
1745
1746  // If the callee takes no arguments then go on to check the results of the
1747  // call.
1748  if (!Outs.empty()) {
1749    // Check if stack adjustment is needed. For now, do not do this if any
1750    // argument is passed on the stack.
1751    SmallVector<CCValAssign, 16> ArgLocs;
1752    ARMCCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
1753                      getTargetMachine(), ArgLocs, *DAG.getContext(), Call);
1754    CCInfo.AnalyzeCallOperands(Outs,
1755                               CCAssignFnForNode(CalleeCC, false, isVarArg));
1756    if (CCInfo.getNextStackOffset()) {
1757      MachineFunction &MF = DAG.getMachineFunction();
1758
1759      // Check if the arguments are already laid out in the right way as
1760      // the caller's fixed stack objects.
1761      MachineFrameInfo *MFI = MF.getFrameInfo();
1762      const MachineRegisterInfo *MRI = &MF.getRegInfo();
1763      const ARMInstrInfo *TII =
1764        ((ARMTargetMachine&)getTargetMachine()).getInstrInfo();
1765      for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
1766           i != e;
1767           ++i, ++realArgIdx) {
1768        CCValAssign &VA = ArgLocs[i];
1769        EVT RegVT = VA.getLocVT();
1770        SDValue Arg = OutVals[realArgIdx];
1771        ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
1772        if (VA.getLocInfo() == CCValAssign::Indirect)
1773          return false;
1774        if (VA.needsCustom()) {
1775          // f64 and vector types are split into multiple registers or
1776          // register/stack-slot combinations.  The types will not match
1777          // the registers; give up on memory f64 refs until we figure
1778          // out what to do about this.
1779          if (!VA.isRegLoc())
1780            return false;
1781          if (!ArgLocs[++i].isRegLoc())
1782            return false;
1783          if (RegVT == MVT::v2f64) {
1784            if (!ArgLocs[++i].isRegLoc())
1785              return false;
1786            if (!ArgLocs[++i].isRegLoc())
1787              return false;
1788          }
1789        } else if (!VA.isRegLoc()) {
1790          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
1791                                   MFI, MRI, TII))
1792            return false;
1793        }
1794      }
1795    }
1796  }
1797
1798  return true;
1799}
1800
1801SDValue
1802ARMTargetLowering::LowerReturn(SDValue Chain,
1803                               CallingConv::ID CallConv, bool isVarArg,
1804                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1805                               const SmallVectorImpl<SDValue> &OutVals,
1806                               DebugLoc dl, SelectionDAG &DAG) const {
1807
1808  // CCValAssign - represent the assignment of the return value to a location.
1809  SmallVector<CCValAssign, 16> RVLocs;
1810
1811  // CCState - Info about the registers and stack slots.
1812  ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1813                    getTargetMachine(), RVLocs, *DAG.getContext(), Call);
1814
1815  // Analyze outgoing return values.
1816  CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv, /* Return */ true,
1817                                               isVarArg));
1818
1819  // If this is the first return lowered for this function, add
1820  // the regs to the liveout set for the function.
1821  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
1822    for (unsigned i = 0; i != RVLocs.size(); ++i)
1823      if (RVLocs[i].isRegLoc())
1824        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
1825  }
1826
1827  SDValue Flag;
1828
1829  // Copy the result values into the output registers.
1830  for (unsigned i = 0, realRVLocIdx = 0;
1831       i != RVLocs.size();
1832       ++i, ++realRVLocIdx) {
1833    CCValAssign &VA = RVLocs[i];
1834    assert(VA.isRegLoc() && "Can only return in registers!");
1835
1836    SDValue Arg = OutVals[realRVLocIdx];
1837
1838    switch (VA.getLocInfo()) {
1839    default: llvm_unreachable("Unknown loc info!");
1840    case CCValAssign::Full: break;
1841    case CCValAssign::BCvt:
1842      Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
1843      break;
1844    }
1845
1846    if (VA.needsCustom()) {
1847      if (VA.getLocVT() == MVT::v2f64) {
1848        // Extract the first half and return it in two registers.
1849        SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1850                                   DAG.getConstant(0, MVT::i32));
1851        SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl,
1852                                       DAG.getVTList(MVT::i32, MVT::i32), Half);
1853
1854        Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), HalfGPRs, Flag);
1855        Flag = Chain.getValue(1);
1856        VA = RVLocs[++i]; // skip ahead to next loc
1857        Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
1858                                 HalfGPRs.getValue(1), Flag);
1859        Flag = Chain.getValue(1);
1860        VA = RVLocs[++i]; // skip ahead to next loc
1861
1862        // Extract the 2nd half and fall through to handle it as an f64 value.
1863        Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1864                          DAG.getConstant(1, MVT::i32));
1865      }
1866      // Legalize ret f64 -> ret 2 x i32.  We always have fmrrd if f64 is
1867      // available.
1868      SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
1869                                  DAG.getVTList(MVT::i32, MVT::i32), &Arg, 1);
1870      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd, Flag);
1871      Flag = Chain.getValue(1);
1872      VA = RVLocs[++i]; // skip ahead to next loc
1873      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd.getValue(1),
1874                               Flag);
1875    } else
1876      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
1877
1878    // Guarantee that all emitted copies are
1879    // stuck together, avoiding something bad.
1880    Flag = Chain.getValue(1);
1881  }
1882
1883  SDValue result;
1884  if (Flag.getNode())
1885    result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain, Flag);
1886  else // Return Void
1887    result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain);
1888
1889  return result;
1890}
1891
1892bool ARMTargetLowering::isUsedByReturnOnly(SDNode *N) const {
1893  if (N->getNumValues() != 1)
1894    return false;
1895  if (!N->hasNUsesOfValue(1, 0))
1896    return false;
1897
1898  unsigned NumCopies = 0;
1899  SDNode* Copies[2];
1900  SDNode *Use = *N->use_begin();
1901  if (Use->getOpcode() == ISD::CopyToReg) {
1902    Copies[NumCopies++] = Use;
1903  } else if (Use->getOpcode() == ARMISD::VMOVRRD) {
1904    // f64 returned in a pair of GPRs.
1905    for (SDNode::use_iterator UI = Use->use_begin(), UE = Use->use_end();
1906         UI != UE; ++UI) {
1907      if (UI->getOpcode() != ISD::CopyToReg)
1908        return false;
1909      Copies[UI.getUse().getResNo()] = *UI;
1910      ++NumCopies;
1911    }
1912  } else if (Use->getOpcode() == ISD::BITCAST) {
1913    // f32 returned in a single GPR.
1914    if (!Use->hasNUsesOfValue(1, 0))
1915      return false;
1916    Use = *Use->use_begin();
1917    if (Use->getOpcode() != ISD::CopyToReg || !Use->hasNUsesOfValue(1, 0))
1918      return false;
1919    Copies[NumCopies++] = Use;
1920  } else {
1921    return false;
1922  }
1923
1924  if (NumCopies != 1 && NumCopies != 2)
1925    return false;
1926
1927  bool HasRet = false;
1928  for (unsigned i = 0; i < NumCopies; ++i) {
1929    SDNode *Copy = Copies[i];
1930    for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1931         UI != UE; ++UI) {
1932      if (UI->getOpcode() == ISD::CopyToReg) {
1933        SDNode *Use = *UI;
1934        if (Use == Copies[0] || Use == Copies[1])
1935          continue;
1936        return false;
1937      }
1938      if (UI->getOpcode() != ARMISD::RET_FLAG)
1939        return false;
1940      HasRet = true;
1941    }
1942  }
1943
1944  return HasRet;
1945}
1946
1947bool ARMTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
1948  if (!EnableARMTailCalls)
1949    return false;
1950
1951  if (!CI->isTailCall())
1952    return false;
1953
1954  return !Subtarget->isThumb1Only();
1955}
1956
1957// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
1958// their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
1959// one of the above mentioned nodes. It has to be wrapped because otherwise
1960// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
1961// be used to form addressing mode. These wrapped nodes will be selected
1962// into MOVi.
1963static SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
1964  EVT PtrVT = Op.getValueType();
1965  // FIXME there is no actual debug info here
1966  DebugLoc dl = Op.getDebugLoc();
1967  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1968  SDValue Res;
1969  if (CP->isMachineConstantPoolEntry())
1970    Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
1971                                    CP->getAlignment());
1972  else
1973    Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
1974                                    CP->getAlignment());
1975  return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
1976}
1977
1978unsigned ARMTargetLowering::getJumpTableEncoding() const {
1979  return MachineJumpTableInfo::EK_Inline;
1980}
1981
1982SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op,
1983                                             SelectionDAG &DAG) const {
1984  MachineFunction &MF = DAG.getMachineFunction();
1985  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1986  unsigned ARMPCLabelIndex = 0;
1987  DebugLoc DL = Op.getDebugLoc();
1988  EVT PtrVT = getPointerTy();
1989  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1990  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
1991  SDValue CPAddr;
1992  if (RelocM == Reloc::Static) {
1993    CPAddr = DAG.getTargetConstantPool(BA, PtrVT, 4);
1994  } else {
1995    unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
1996    ARMPCLabelIndex = AFI->createPICLabelUId();
1997    ARMConstantPoolValue *CPV =
1998      ARMConstantPoolConstant::Create(BA, ARMPCLabelIndex,
1999                                      ARMCP::CPBlockAddress, PCAdj);
2000    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2001  }
2002  CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr);
2003  SDValue Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), CPAddr,
2004                               MachinePointerInfo::getConstantPool(),
2005                               false, false, false, 0);
2006  if (RelocM == Reloc::Static)
2007    return Result;
2008  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2009  return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel);
2010}
2011
2012// Lower ISD::GlobalTLSAddress using the "general dynamic" model
2013SDValue
2014ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
2015                                                 SelectionDAG &DAG) const {
2016  DebugLoc dl = GA->getDebugLoc();
2017  EVT PtrVT = getPointerTy();
2018  unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
2019  MachineFunction &MF = DAG.getMachineFunction();
2020  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2021  unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2022  ARMConstantPoolValue *CPV =
2023    ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
2024                                    ARMCP::CPValue, PCAdj, ARMCP::TLSGD, true);
2025  SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2026  Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
2027  Argument = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Argument,
2028                         MachinePointerInfo::getConstantPool(),
2029                         false, false, false, 0);
2030  SDValue Chain = Argument.getValue(1);
2031
2032  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2033  Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);
2034
2035  // call __tls_get_addr.
2036  ArgListTy Args;
2037  ArgListEntry Entry;
2038  Entry.Node = Argument;
2039  Entry.Ty = (Type *) Type::getInt32Ty(*DAG.getContext());
2040  Args.push_back(Entry);
2041  // FIXME: is there useful debug info available here?
2042  std::pair<SDValue, SDValue> CallResult =
2043    LowerCallTo(Chain, (Type *) Type::getInt32Ty(*DAG.getContext()),
2044                false, false, false, false,
2045                0, CallingConv::C, false, /*isReturnValueUsed=*/true,
2046                DAG.getExternalSymbol("__tls_get_addr", PtrVT), Args, DAG, dl);
2047  return CallResult.first;
2048}
2049
2050// Lower ISD::GlobalTLSAddress using the "initial exec" or
2051// "local exec" model.
2052SDValue
2053ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
2054                                        SelectionDAG &DAG) const {
2055  const GlobalValue *GV = GA->getGlobal();
2056  DebugLoc dl = GA->getDebugLoc();
2057  SDValue Offset;
2058  SDValue Chain = DAG.getEntryNode();
2059  EVT PtrVT = getPointerTy();
2060  // Get the Thread Pointer
2061  SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
2062
2063  if (GV->isDeclaration()) {
2064    MachineFunction &MF = DAG.getMachineFunction();
2065    ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2066    unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2067    // Initial exec model.
2068    unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
2069    ARMConstantPoolValue *CPV =
2070      ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
2071                                      ARMCP::CPValue, PCAdj, ARMCP::GOTTPOFF,
2072                                      true);
2073    Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2074    Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
2075    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
2076                         MachinePointerInfo::getConstantPool(),
2077                         false, false, false, 0);
2078    Chain = Offset.getValue(1);
2079
2080    SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2081    Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
2082
2083    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
2084                         MachinePointerInfo::getConstantPool(),
2085                         false, false, false, 0);
2086  } else {
2087    // local exec model
2088    ARMConstantPoolValue *CPV =
2089      ARMConstantPoolConstant::Create(GV, ARMCP::TPOFF);
2090    Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2091    Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
2092    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
2093                         MachinePointerInfo::getConstantPool(),
2094                         false, false, false, 0);
2095  }
2096
2097  // The address of the thread local variable is the add of the thread
2098  // pointer with the offset of the variable.
2099  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
2100}
2101
2102SDValue
2103ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
2104  // TODO: implement the "local dynamic" model
2105  assert(Subtarget->isTargetELF() &&
2106         "TLS not implemented for non-ELF targets");
2107  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2108  // If the relocation model is PIC, use the "General Dynamic" TLS Model,
2109  // otherwise use the "Local Exec" TLS Model
2110  if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
2111    return LowerToTLSGeneralDynamicModel(GA, DAG);
2112  else
2113    return LowerToTLSExecModels(GA, DAG);
2114}
2115
2116SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
2117                                                 SelectionDAG &DAG) const {
2118  EVT PtrVT = getPointerTy();
2119  DebugLoc dl = Op.getDebugLoc();
2120  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
2121  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2122  if (RelocM == Reloc::PIC_) {
2123    bool UseGOTOFF = GV->hasLocalLinkage() || GV->hasHiddenVisibility();
2124    ARMConstantPoolValue *CPV =
2125      ARMConstantPoolConstant::Create(GV,
2126                                      UseGOTOFF ? ARMCP::GOTOFF : ARMCP::GOT);
2127    SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2128    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2129    SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
2130                                 CPAddr,
2131                                 MachinePointerInfo::getConstantPool(),
2132                                 false, false, false, 0);
2133    SDValue Chain = Result.getValue(1);
2134    SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
2135    Result = DAG.getNode(ISD::ADD, dl, PtrVT, Result, GOT);
2136    if (!UseGOTOFF)
2137      Result = DAG.getLoad(PtrVT, dl, Chain, Result,
2138                           MachinePointerInfo::getGOT(),
2139                           false, false, false, 0);
2140    return Result;
2141  }
2142
2143  // If we have T2 ops, we can materialize the address directly via movt/movw
2144  // pair. This is always cheaper.
2145  if (Subtarget->useMovt()) {
2146    ++NumMovwMovt;
2147    // FIXME: Once remat is capable of dealing with instructions with register
2148    // operands, expand this into two nodes.
2149    return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
2150                       DAG.getTargetGlobalAddress(GV, dl, PtrVT));
2151  } else {
2152    SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
2153    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2154    return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2155                       MachinePointerInfo::getConstantPool(),
2156                       false, false, false, 0);
2157  }
2158}
2159
2160SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
2161                                                    SelectionDAG &DAG) const {
2162  EVT PtrVT = getPointerTy();
2163  DebugLoc dl = Op.getDebugLoc();
2164  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
2165  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2166  MachineFunction &MF = DAG.getMachineFunction();
2167  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2168
2169  // FIXME: Enable this for static codegen when tool issues are fixed.  Also
2170  // update ARMFastISel::ARMMaterializeGV.
2171  if (Subtarget->useMovt() && RelocM != Reloc::Static) {
2172    ++NumMovwMovt;
2173    // FIXME: Once remat is capable of dealing with instructions with register
2174    // operands, expand this into two nodes.
2175    if (RelocM == Reloc::Static)
2176      return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
2177                                 DAG.getTargetGlobalAddress(GV, dl, PtrVT));
2178
2179    unsigned Wrapper = (RelocM == Reloc::PIC_)
2180      ? ARMISD::WrapperPIC : ARMISD::WrapperDYN;
2181    SDValue Result = DAG.getNode(Wrapper, dl, PtrVT,
2182                                 DAG.getTargetGlobalAddress(GV, dl, PtrVT));
2183    if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
2184      Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
2185                           MachinePointerInfo::getGOT(),
2186                           false, false, false, 0);
2187    return Result;
2188  }
2189
2190  unsigned ARMPCLabelIndex = 0;
2191  SDValue CPAddr;
2192  if (RelocM == Reloc::Static) {
2193    CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
2194  } else {
2195    ARMPCLabelIndex = AFI->createPICLabelUId();
2196    unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : (Subtarget->isThumb()?4:8);
2197    ARMConstantPoolValue *CPV =
2198      ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue,
2199                                      PCAdj);
2200    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2201  }
2202  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2203
2204  SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2205                               MachinePointerInfo::getConstantPool(),
2206                               false, false, false, 0);
2207  SDValue Chain = Result.getValue(1);
2208
2209  if (RelocM == Reloc::PIC_) {
2210    SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2211    Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2212  }
2213
2214  if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
2215    Result = DAG.getLoad(PtrVT, dl, Chain, Result, MachinePointerInfo::getGOT(),
2216                         false, false, false, 0);
2217
2218  return Result;
2219}
2220
2221SDValue ARMTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op,
2222                                                    SelectionDAG &DAG) const {
2223  assert(Subtarget->isTargetELF() &&
2224         "GLOBAL OFFSET TABLE not implemented for non-ELF targets");
2225  MachineFunction &MF = DAG.getMachineFunction();
2226  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2227  unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2228  EVT PtrVT = getPointerTy();
2229  DebugLoc dl = Op.getDebugLoc();
2230  unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
2231  ARMConstantPoolValue *CPV =
2232    ARMConstantPoolSymbol::Create(*DAG.getContext(), "_GLOBAL_OFFSET_TABLE_",
2233                                  ARMPCLabelIndex, PCAdj);
2234  SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2235  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2236  SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2237                               MachinePointerInfo::getConstantPool(),
2238                               false, false, false, 0);
2239  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2240  return DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2241}
2242
2243SDValue
2244ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const {
2245  DebugLoc dl = Op.getDebugLoc();
2246  SDValue Val = DAG.getConstant(0, MVT::i32);
2247  return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl,
2248                     DAG.getVTList(MVT::i32, MVT::Other), Op.getOperand(0),
2249                     Op.getOperand(1), Val);
2250}
2251
2252SDValue
2253ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const {
2254  DebugLoc dl = Op.getDebugLoc();
2255  return DAG.getNode(ARMISD::EH_SJLJ_LONGJMP, dl, MVT::Other, Op.getOperand(0),
2256                     Op.getOperand(1), DAG.getConstant(0, MVT::i32));
2257}
2258
2259SDValue
2260ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG,
2261                                          const ARMSubtarget *Subtarget) const {
2262  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2263  DebugLoc dl = Op.getDebugLoc();
2264  switch (IntNo) {
2265  default: return SDValue();    // Don't custom lower most intrinsics.
2266  case Intrinsic::arm_thread_pointer: {
2267    EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2268    return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
2269  }
2270  case Intrinsic::eh_sjlj_lsda: {
2271    MachineFunction &MF = DAG.getMachineFunction();
2272    ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2273    unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2274    EVT PtrVT = getPointerTy();
2275    DebugLoc dl = Op.getDebugLoc();
2276    Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2277    SDValue CPAddr;
2278    unsigned PCAdj = (RelocM != Reloc::PIC_)
2279      ? 0 : (Subtarget->isThumb() ? 4 : 8);
2280    ARMConstantPoolValue *CPV =
2281      ARMConstantPoolConstant::Create(MF.getFunction(), ARMPCLabelIndex,
2282                                      ARMCP::CPLSDA, PCAdj);
2283    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2284    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2285    SDValue Result =
2286      DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2287                  MachinePointerInfo::getConstantPool(),
2288                  false, false, false, 0);
2289
2290    if (RelocM == Reloc::PIC_) {
2291      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2292      Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2293    }
2294    return Result;
2295  }
2296  case Intrinsic::arm_neon_vmulls:
2297  case Intrinsic::arm_neon_vmullu: {
2298    unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmulls)
2299      ? ARMISD::VMULLs : ARMISD::VMULLu;
2300    return DAG.getNode(NewOpc, Op.getDebugLoc(), Op.getValueType(),
2301                       Op.getOperand(1), Op.getOperand(2));
2302  }
2303  }
2304}
2305
2306static SDValue LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG,
2307                               const ARMSubtarget *Subtarget) {
2308  DebugLoc dl = Op.getDebugLoc();
2309  if (!Subtarget->hasDataBarrier()) {
2310    // Some ARMv6 cpus can support data barriers with an mcr instruction.
2311    // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
2312    // here.
2313    assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&
2314           "Unexpected ISD::MEMBARRIER encountered. Should be libcall!");
2315    return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
2316                       DAG.getConstant(0, MVT::i32));
2317  }
2318
2319  SDValue Op5 = Op.getOperand(5);
2320  bool isDeviceBarrier = cast<ConstantSDNode>(Op5)->getZExtValue() != 0;
2321  unsigned isLL = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
2322  unsigned isLS = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
2323  bool isOnlyStoreBarrier = (isLL == 0 && isLS == 0);
2324
2325  ARM_MB::MemBOpt DMBOpt;
2326  if (isDeviceBarrier)
2327    DMBOpt = isOnlyStoreBarrier ? ARM_MB::ST : ARM_MB::SY;
2328  else
2329    DMBOpt = isOnlyStoreBarrier ? ARM_MB::ISHST : ARM_MB::ISH;
2330  return DAG.getNode(ARMISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0),
2331                     DAG.getConstant(DMBOpt, MVT::i32));
2332}
2333
2334
2335static SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG,
2336                                 const ARMSubtarget *Subtarget) {
2337  // FIXME: handle "fence singlethread" more efficiently.
2338  DebugLoc dl = Op.getDebugLoc();
2339  if (!Subtarget->hasDataBarrier()) {
2340    // Some ARMv6 cpus can support data barriers with an mcr instruction.
2341    // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
2342    // here.
2343    assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&
2344           "Unexpected ISD::MEMBARRIER encountered. Should be libcall!");
2345    return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
2346                       DAG.getConstant(0, MVT::i32));
2347  }
2348
2349  return DAG.getNode(ARMISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0),
2350                     DAG.getConstant(ARM_MB::ISH, MVT::i32));
2351}
2352
2353static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG,
2354                             const ARMSubtarget *Subtarget) {
2355  // ARM pre v5TE and Thumb1 does not have preload instructions.
2356  if (!(Subtarget->isThumb2() ||
2357        (!Subtarget->isThumb1Only() && Subtarget->hasV5TEOps())))
2358    // Just preserve the chain.
2359    return Op.getOperand(0);
2360
2361  DebugLoc dl = Op.getDebugLoc();
2362  unsigned isRead = ~cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() & 1;
2363  if (!isRead &&
2364      (!Subtarget->hasV7Ops() || !Subtarget->hasMPExtension()))
2365    // ARMv7 with MP extension has PLDW.
2366    return Op.getOperand(0);
2367
2368  unsigned isData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
2369  if (Subtarget->isThumb()) {
2370    // Invert the bits.
2371    isRead = ~isRead & 1;
2372    isData = ~isData & 1;
2373  }
2374
2375  return DAG.getNode(ARMISD::PRELOAD, dl, MVT::Other, Op.getOperand(0),
2376                     Op.getOperand(1), DAG.getConstant(isRead, MVT::i32),
2377                     DAG.getConstant(isData, MVT::i32));
2378}
2379
2380static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) {
2381  MachineFunction &MF = DAG.getMachineFunction();
2382  ARMFunctionInfo *FuncInfo = MF.getInfo<ARMFunctionInfo>();
2383
2384  // vastart just stores the address of the VarArgsFrameIndex slot into the
2385  // memory location argument.
2386  DebugLoc dl = Op.getDebugLoc();
2387  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2388  SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2389  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2390  return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
2391                      MachinePointerInfo(SV), false, false, 0);
2392}
2393
2394SDValue
2395ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA, CCValAssign &NextVA,
2396                                        SDValue &Root, SelectionDAG &DAG,
2397                                        DebugLoc dl) const {
2398  MachineFunction &MF = DAG.getMachineFunction();
2399  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2400
2401  TargetRegisterClass *RC;
2402  if (AFI->isThumb1OnlyFunction())
2403    RC = ARM::tGPRRegisterClass;
2404  else
2405    RC = ARM::GPRRegisterClass;
2406
2407  // Transform the arguments stored in physical registers into virtual ones.
2408  unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2409  SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
2410
2411  SDValue ArgValue2;
2412  if (NextVA.isMemLoc()) {
2413    MachineFrameInfo *MFI = MF.getFrameInfo();
2414    int FI = MFI->CreateFixedObject(4, NextVA.getLocMemOffset(), true);
2415
2416    // Create load node to retrieve arguments from the stack.
2417    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2418    ArgValue2 = DAG.getLoad(MVT::i32, dl, Root, FIN,
2419                            MachinePointerInfo::getFixedStack(FI),
2420                            false, false, false, 0);
2421  } else {
2422    Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
2423    ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
2424  }
2425
2426  return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2);
2427}
2428
2429void
2430ARMTargetLowering::computeRegArea(CCState &CCInfo, MachineFunction &MF,
2431                                  unsigned &VARegSize, unsigned &VARegSaveSize)
2432  const {
2433  unsigned NumGPRs;
2434  if (CCInfo.isFirstByValRegValid())
2435    NumGPRs = ARM::R4 - CCInfo.getFirstByValReg();
2436  else {
2437    unsigned int firstUnalloced;
2438    firstUnalloced = CCInfo.getFirstUnallocated(GPRArgRegs,
2439                                                sizeof(GPRArgRegs) /
2440                                                sizeof(GPRArgRegs[0]));
2441    NumGPRs = (firstUnalloced <= 3) ? (4 - firstUnalloced) : 0;
2442  }
2443
2444  unsigned Align = MF.getTarget().getFrameLowering()->getStackAlignment();
2445  VARegSize = NumGPRs * 4;
2446  VARegSaveSize = (VARegSize + Align - 1) & ~(Align - 1);
2447}
2448
2449// The remaining GPRs hold either the beginning of variable-argument
2450// data, or the beginning of an aggregate passed by value (usuall
2451// byval).  Either way, we allocate stack slots adjacent to the data
2452// provided by our caller, and store the unallocated registers there.
2453// If this is a variadic function, the va_list pointer will begin with
2454// these values; otherwise, this reassembles a (byval) structure that
2455// was split between registers and memory.
2456void
2457ARMTargetLowering::VarArgStyleRegisters(CCState &CCInfo, SelectionDAG &DAG,
2458                                        DebugLoc dl, SDValue &Chain,
2459                                        unsigned ArgOffset) const {
2460  MachineFunction &MF = DAG.getMachineFunction();
2461  MachineFrameInfo *MFI = MF.getFrameInfo();
2462  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2463  unsigned firstRegToSaveIndex;
2464  if (CCInfo.isFirstByValRegValid())
2465    firstRegToSaveIndex = CCInfo.getFirstByValReg() - ARM::R0;
2466  else {
2467    firstRegToSaveIndex = CCInfo.getFirstUnallocated
2468      (GPRArgRegs, sizeof(GPRArgRegs) / sizeof(GPRArgRegs[0]));
2469  }
2470
2471  unsigned VARegSize, VARegSaveSize;
2472  computeRegArea(CCInfo, MF, VARegSize, VARegSaveSize);
2473  if (VARegSaveSize) {
2474    // If this function is vararg, store any remaining integer argument regs
2475    // to their spots on the stack so that they may be loaded by deferencing
2476    // the result of va_next.
2477    AFI->setVarArgsRegSaveSize(VARegSaveSize);
2478    AFI->setVarArgsFrameIndex(MFI->CreateFixedObject(VARegSaveSize,
2479                                                     ArgOffset + VARegSaveSize
2480                                                     - VARegSize,
2481                                                     false));
2482    SDValue FIN = DAG.getFrameIndex(AFI->getVarArgsFrameIndex(),
2483                                    getPointerTy());
2484
2485    SmallVector<SDValue, 4> MemOps;
2486    for (; firstRegToSaveIndex < 4; ++firstRegToSaveIndex) {
2487      TargetRegisterClass *RC;
2488      if (AFI->isThumb1OnlyFunction())
2489        RC = ARM::tGPRRegisterClass;
2490      else
2491        RC = ARM::GPRRegisterClass;
2492
2493      unsigned VReg = MF.addLiveIn(GPRArgRegs[firstRegToSaveIndex], RC);
2494      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
2495      SDValue Store =
2496        DAG.getStore(Val.getValue(1), dl, Val, FIN,
2497                 MachinePointerInfo::getFixedStack(AFI->getVarArgsFrameIndex()),
2498                     false, false, 0);
2499      MemOps.push_back(Store);
2500      FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN,
2501                        DAG.getConstant(4, getPointerTy()));
2502    }
2503    if (!MemOps.empty())
2504      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2505                          &MemOps[0], MemOps.size());
2506  } else
2507    // This will point to the next argument passed via stack.
2508    AFI->setVarArgsFrameIndex(MFI->CreateFixedObject(4, ArgOffset, true));
2509}
2510
2511SDValue
2512ARMTargetLowering::LowerFormalArguments(SDValue Chain,
2513                                        CallingConv::ID CallConv, bool isVarArg,
2514                                        const SmallVectorImpl<ISD::InputArg>
2515                                          &Ins,
2516                                        DebugLoc dl, SelectionDAG &DAG,
2517                                        SmallVectorImpl<SDValue> &InVals)
2518                                          const {
2519  MachineFunction &MF = DAG.getMachineFunction();
2520  MachineFrameInfo *MFI = MF.getFrameInfo();
2521
2522  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2523
2524  // Assign locations to all of the incoming arguments.
2525  SmallVector<CCValAssign, 16> ArgLocs;
2526  ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2527                    getTargetMachine(), ArgLocs, *DAG.getContext(), Prologue);
2528  CCInfo.AnalyzeFormalArguments(Ins,
2529                                CCAssignFnForNode(CallConv, /* Return*/ false,
2530                                                  isVarArg));
2531
2532  SmallVector<SDValue, 16> ArgValues;
2533  int lastInsIndex = -1;
2534
2535  SDValue ArgValue;
2536  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2537    CCValAssign &VA = ArgLocs[i];
2538
2539    // Arguments stored in registers.
2540    if (VA.isRegLoc()) {
2541      EVT RegVT = VA.getLocVT();
2542
2543      if (VA.needsCustom()) {
2544        // f64 and vector types are split up into multiple registers or
2545        // combinations of registers and stack slots.
2546        if (VA.getLocVT() == MVT::v2f64) {
2547          SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i],
2548                                                   Chain, DAG, dl);
2549          VA = ArgLocs[++i]; // skip ahead to next loc
2550          SDValue ArgValue2;
2551          if (VA.isMemLoc()) {
2552            int FI = MFI->CreateFixedObject(8, VA.getLocMemOffset(), true);
2553            SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2554            ArgValue2 = DAG.getLoad(MVT::f64, dl, Chain, FIN,
2555                                    MachinePointerInfo::getFixedStack(FI),
2556                                    false, false, false, 0);
2557          } else {
2558            ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i],
2559                                             Chain, DAG, dl);
2560          }
2561          ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
2562          ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
2563                                 ArgValue, ArgValue1, DAG.getIntPtrConstant(0));
2564          ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
2565                                 ArgValue, ArgValue2, DAG.getIntPtrConstant(1));
2566        } else
2567          ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
2568
2569      } else {
2570        TargetRegisterClass *RC;
2571
2572        if (RegVT == MVT::f32)
2573          RC = ARM::SPRRegisterClass;
2574        else if (RegVT == MVT::f64)
2575          RC = ARM::DPRRegisterClass;
2576        else if (RegVT == MVT::v2f64)
2577          RC = ARM::QPRRegisterClass;
2578        else if (RegVT == MVT::i32)
2579          RC = (AFI->isThumb1OnlyFunction() ?
2580                ARM::tGPRRegisterClass : ARM::GPRRegisterClass);
2581        else
2582          llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
2583
2584        // Transform the arguments in physical registers into virtual ones.
2585        unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2586        ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
2587      }
2588
2589      // If this is an 8 or 16-bit value, it is really passed promoted
2590      // to 32 bits.  Insert an assert[sz]ext to capture this, then
2591      // truncate to the right size.
2592      switch (VA.getLocInfo()) {
2593      default: llvm_unreachable("Unknown loc info!");
2594      case CCValAssign::Full: break;
2595      case CCValAssign::BCvt:
2596        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
2597        break;
2598      case CCValAssign::SExt:
2599        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
2600                               DAG.getValueType(VA.getValVT()));
2601        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
2602        break;
2603      case CCValAssign::ZExt:
2604        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
2605                               DAG.getValueType(VA.getValVT()));
2606        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
2607        break;
2608      }
2609
2610      InVals.push_back(ArgValue);
2611
2612    } else { // VA.isRegLoc()
2613
2614      // sanity check
2615      assert(VA.isMemLoc());
2616      assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered");
2617
2618      int index = ArgLocs[i].getValNo();
2619
2620      // Some Ins[] entries become multiple ArgLoc[] entries.
2621      // Process them only once.
2622      if (index != lastInsIndex)
2623        {
2624          ISD::ArgFlagsTy Flags = Ins[index].Flags;
2625          // FIXME: For now, all byval parameter objects are marked mutable.
2626          // This can be changed with more analysis.
2627          // In case of tail call optimization mark all arguments mutable.
2628          // Since they could be overwritten by lowering of arguments in case of
2629          // a tail call.
2630          if (Flags.isByVal()) {
2631            unsigned VARegSize, VARegSaveSize;
2632            computeRegArea(CCInfo, MF, VARegSize, VARegSaveSize);
2633            VarArgStyleRegisters(CCInfo, DAG, dl, Chain, 0);
2634            unsigned Bytes = Flags.getByValSize() - VARegSize;
2635            if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
2636            int FI = MFI->CreateFixedObject(Bytes,
2637                                            VA.getLocMemOffset(), false);
2638            InVals.push_back(DAG.getFrameIndex(FI, getPointerTy()));
2639          } else {
2640            int FI = MFI->CreateFixedObject(VA.getLocVT().getSizeInBits()/8,
2641                                            VA.getLocMemOffset(), true);
2642
2643            // Create load nodes to retrieve arguments from the stack.
2644            SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2645            InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
2646                                         MachinePointerInfo::getFixedStack(FI),
2647                                         false, false, false, 0));
2648          }
2649          lastInsIndex = index;
2650        }
2651    }
2652  }
2653
2654  // varargs
2655  if (isVarArg)
2656    VarArgStyleRegisters(CCInfo, DAG, dl, Chain, CCInfo.getNextStackOffset());
2657
2658  return Chain;
2659}
2660
2661/// isFloatingPointZero - Return true if this is +0.0.
2662static bool isFloatingPointZero(SDValue Op) {
2663  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
2664    return CFP->getValueAPF().isPosZero();
2665  else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
2666    // Maybe this has already been legalized into the constant pool?
2667    if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
2668      SDValue WrapperOp = Op.getOperand(1).getOperand(0);
2669      if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
2670        if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
2671          return CFP->getValueAPF().isPosZero();
2672    }
2673  }
2674  return false;
2675}
2676
2677/// Returns appropriate ARM CMP (cmp) and corresponding condition code for
2678/// the given operands.
2679SDValue
2680ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
2681                             SDValue &ARMcc, SelectionDAG &DAG,
2682                             DebugLoc dl) const {
2683  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
2684    unsigned C = RHSC->getZExtValue();
2685    if (!isLegalICmpImmediate(C)) {
2686      // Constant does not fit, try adjusting it by one?
2687      switch (CC) {
2688      default: break;
2689      case ISD::SETLT:
2690      case ISD::SETGE:
2691        if (C != 0x80000000 && isLegalICmpImmediate(C-1)) {
2692          CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
2693          RHS = DAG.getConstant(C-1, MVT::i32);
2694        }
2695        break;
2696      case ISD::SETULT:
2697      case ISD::SETUGE:
2698        if (C != 0 && isLegalICmpImmediate(C-1)) {
2699          CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
2700          RHS = DAG.getConstant(C-1, MVT::i32);
2701        }
2702        break;
2703      case ISD::SETLE:
2704      case ISD::SETGT:
2705        if (C != 0x7fffffff && isLegalICmpImmediate(C+1)) {
2706          CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
2707          RHS = DAG.getConstant(C+1, MVT::i32);
2708        }
2709        break;
2710      case ISD::SETULE:
2711      case ISD::SETUGT:
2712        if (C != 0xffffffff && isLegalICmpImmediate(C+1)) {
2713          CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
2714          RHS = DAG.getConstant(C+1, MVT::i32);
2715        }
2716        break;
2717      }
2718    }
2719  }
2720
2721  ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
2722  ARMISD::NodeType CompareType;
2723  switch (CondCode) {
2724  default:
2725    CompareType = ARMISD::CMP;
2726    break;
2727  case ARMCC::EQ:
2728  case ARMCC::NE:
2729    // Uses only Z Flag
2730    CompareType = ARMISD::CMPZ;
2731    break;
2732  }
2733  ARMcc = DAG.getConstant(CondCode, MVT::i32);
2734  return DAG.getNode(CompareType, dl, MVT::Glue, LHS, RHS);
2735}
2736
2737/// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
2738SDValue
2739ARMTargetLowering::getVFPCmp(SDValue LHS, SDValue RHS, SelectionDAG &DAG,
2740                             DebugLoc dl) const {
2741  SDValue Cmp;
2742  if (!isFloatingPointZero(RHS))
2743    Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Glue, LHS, RHS);
2744  else
2745    Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Glue, LHS);
2746  return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Glue, Cmp);
2747}
2748
2749/// duplicateCmp - Glue values can have only one use, so this function
2750/// duplicates a comparison node.
2751SDValue
2752ARMTargetLowering::duplicateCmp(SDValue Cmp, SelectionDAG &DAG) const {
2753  unsigned Opc = Cmp.getOpcode();
2754  DebugLoc DL = Cmp.getDebugLoc();
2755  if (Opc == ARMISD::CMP || Opc == ARMISD::CMPZ)
2756    return DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
2757
2758  assert(Opc == ARMISD::FMSTAT && "unexpected comparison operation");
2759  Cmp = Cmp.getOperand(0);
2760  Opc = Cmp.getOpcode();
2761  if (Opc == ARMISD::CMPFP)
2762    Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
2763  else {
2764    assert(Opc == ARMISD::CMPFPw0 && "unexpected operand of FMSTAT");
2765    Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0));
2766  }
2767  return DAG.getNode(ARMISD::FMSTAT, DL, MVT::Glue, Cmp);
2768}
2769
2770SDValue ARMTargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
2771  SDValue Cond = Op.getOperand(0);
2772  SDValue SelectTrue = Op.getOperand(1);
2773  SDValue SelectFalse = Op.getOperand(2);
2774  DebugLoc dl = Op.getDebugLoc();
2775
2776  // Convert:
2777  //
2778  //   (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond)
2779  //   (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond)
2780  //
2781  if (Cond.getOpcode() == ARMISD::CMOV && Cond.hasOneUse()) {
2782    const ConstantSDNode *CMOVTrue =
2783      dyn_cast<ConstantSDNode>(Cond.getOperand(0));
2784    const ConstantSDNode *CMOVFalse =
2785      dyn_cast<ConstantSDNode>(Cond.getOperand(1));
2786
2787    if (CMOVTrue && CMOVFalse) {
2788      unsigned CMOVTrueVal = CMOVTrue->getZExtValue();
2789      unsigned CMOVFalseVal = CMOVFalse->getZExtValue();
2790
2791      SDValue True;
2792      SDValue False;
2793      if (CMOVTrueVal == 1 && CMOVFalseVal == 0) {
2794        True = SelectTrue;
2795        False = SelectFalse;
2796      } else if (CMOVTrueVal == 0 && CMOVFalseVal == 1) {
2797        True = SelectFalse;
2798        False = SelectTrue;
2799      }
2800
2801      if (True.getNode() && False.getNode()) {
2802        EVT VT = Op.getValueType();
2803        SDValue ARMcc = Cond.getOperand(2);
2804        SDValue CCR = Cond.getOperand(3);
2805        SDValue Cmp = duplicateCmp(Cond.getOperand(4), DAG);
2806        assert(True.getValueType() == VT);
2807        return DAG.getNode(ARMISD::CMOV, dl, VT, True, False, ARMcc, CCR, Cmp);
2808      }
2809    }
2810  }
2811
2812  return DAG.getSelectCC(dl, Cond,
2813                         DAG.getConstant(0, Cond.getValueType()),
2814                         SelectTrue, SelectFalse, ISD::SETNE);
2815}
2816
2817SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
2818  EVT VT = Op.getValueType();
2819  SDValue LHS = Op.getOperand(0);
2820  SDValue RHS = Op.getOperand(1);
2821  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2822  SDValue TrueVal = Op.getOperand(2);
2823  SDValue FalseVal = Op.getOperand(3);
2824  DebugLoc dl = Op.getDebugLoc();
2825
2826  if (LHS.getValueType() == MVT::i32) {
2827    SDValue ARMcc;
2828    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2829    SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
2830    return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, CCR,Cmp);
2831  }
2832
2833  ARMCC::CondCodes CondCode, CondCode2;
2834  FPCCToARMCC(CC, CondCode, CondCode2);
2835
2836  SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
2837  SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
2838  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2839  SDValue Result = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal,
2840                               ARMcc, CCR, Cmp);
2841  if (CondCode2 != ARMCC::AL) {
2842    SDValue ARMcc2 = DAG.getConstant(CondCode2, MVT::i32);
2843    // FIXME: Needs another CMP because flag can have but one use.
2844    SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl);
2845    Result = DAG.getNode(ARMISD::CMOV, dl, VT,
2846                         Result, TrueVal, ARMcc2, CCR, Cmp2);
2847  }
2848  return Result;
2849}
2850
2851/// canChangeToInt - Given the fp compare operand, return true if it is suitable
2852/// to morph to an integer compare sequence.
2853static bool canChangeToInt(SDValue Op, bool &SeenZero,
2854                           const ARMSubtarget *Subtarget) {
2855  SDNode *N = Op.getNode();
2856  if (!N->hasOneUse())
2857    // Otherwise it requires moving the value from fp to integer registers.
2858    return false;
2859  if (!N->getNumValues())
2860    return false;
2861  EVT VT = Op.getValueType();
2862  if (VT != MVT::f32 && !Subtarget->isFPBrccSlow())
2863    // f32 case is generally profitable. f64 case only makes sense when vcmpe +
2864    // vmrs are very slow, e.g. cortex-a8.
2865    return false;
2866
2867  if (isFloatingPointZero(Op)) {
2868    SeenZero = true;
2869    return true;
2870  }
2871  return ISD::isNormalLoad(N);
2872}
2873
2874static SDValue bitcastf32Toi32(SDValue Op, SelectionDAG &DAG) {
2875  if (isFloatingPointZero(Op))
2876    return DAG.getConstant(0, MVT::i32);
2877
2878  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op))
2879    return DAG.getLoad(MVT::i32, Op.getDebugLoc(),
2880                       Ld->getChain(), Ld->getBasePtr(), Ld->getPointerInfo(),
2881                       Ld->isVolatile(), Ld->isNonTemporal(),
2882                       Ld->isInvariant(), Ld->getAlignment());
2883
2884  llvm_unreachable("Unknown VFP cmp argument!");
2885}
2886
2887static void expandf64Toi32(SDValue Op, SelectionDAG &DAG,
2888                           SDValue &RetVal1, SDValue &RetVal2) {
2889  if (isFloatingPointZero(Op)) {
2890    RetVal1 = DAG.getConstant(0, MVT::i32);
2891    RetVal2 = DAG.getConstant(0, MVT::i32);
2892    return;
2893  }
2894
2895  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) {
2896    SDValue Ptr = Ld->getBasePtr();
2897    RetVal1 = DAG.getLoad(MVT::i32, Op.getDebugLoc(),
2898                          Ld->getChain(), Ptr,
2899                          Ld->getPointerInfo(),
2900                          Ld->isVolatile(), Ld->isNonTemporal(),
2901                          Ld->isInvariant(), Ld->getAlignment());
2902
2903    EVT PtrType = Ptr.getValueType();
2904    unsigned NewAlign = MinAlign(Ld->getAlignment(), 4);
2905    SDValue NewPtr = DAG.getNode(ISD::ADD, Op.getDebugLoc(),
2906                                 PtrType, Ptr, DAG.getConstant(4, PtrType));
2907    RetVal2 = DAG.getLoad(MVT::i32, Op.getDebugLoc(),
2908                          Ld->getChain(), NewPtr,
2909                          Ld->getPointerInfo().getWithOffset(4),
2910                          Ld->isVolatile(), Ld->isNonTemporal(),
2911                          Ld->isInvariant(), NewAlign);
2912    return;
2913  }
2914
2915  llvm_unreachable("Unknown VFP cmp argument!");
2916}
2917
2918/// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some
2919/// f32 and even f64 comparisons to integer ones.
2920SDValue
2921ARMTargetLowering::OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const {
2922  SDValue Chain = Op.getOperand(0);
2923  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
2924  SDValue LHS = Op.getOperand(2);
2925  SDValue RHS = Op.getOperand(3);
2926  SDValue Dest = Op.getOperand(4);
2927  DebugLoc dl = Op.getDebugLoc();
2928
2929  bool SeenZero = false;
2930  if (canChangeToInt(LHS, SeenZero, Subtarget) &&
2931      canChangeToInt(RHS, SeenZero, Subtarget) &&
2932      // If one of the operand is zero, it's safe to ignore the NaN case since
2933      // we only care about equality comparisons.
2934      (SeenZero || (DAG.isKnownNeverNaN(LHS) && DAG.isKnownNeverNaN(RHS)))) {
2935    // If unsafe fp math optimization is enabled and there are no other uses of
2936    // the CMP operands, and the condition code is EQ or NE, we can optimize it
2937    // to an integer comparison.
2938    if (CC == ISD::SETOEQ)
2939      CC = ISD::SETEQ;
2940    else if (CC == ISD::SETUNE)
2941      CC = ISD::SETNE;
2942
2943    SDValue ARMcc;
2944    if (LHS.getValueType() == MVT::f32) {
2945      LHS = bitcastf32Toi32(LHS, DAG);
2946      RHS = bitcastf32Toi32(RHS, DAG);
2947      SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
2948      SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2949      return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
2950                         Chain, Dest, ARMcc, CCR, Cmp);
2951    }
2952
2953    SDValue LHS1, LHS2;
2954    SDValue RHS1, RHS2;
2955    expandf64Toi32(LHS, DAG, LHS1, LHS2);
2956    expandf64Toi32(RHS, DAG, RHS1, RHS2);
2957    ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
2958    ARMcc = DAG.getConstant(CondCode, MVT::i32);
2959    SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
2960    SDValue Ops[] = { Chain, ARMcc, LHS1, LHS2, RHS1, RHS2, Dest };
2961    return DAG.getNode(ARMISD::BCC_i64, dl, VTList, Ops, 7);
2962  }
2963
2964  return SDValue();
2965}
2966
2967SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
2968  SDValue Chain = Op.getOperand(0);
2969  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
2970  SDValue LHS = Op.getOperand(2);
2971  SDValue RHS = Op.getOperand(3);
2972  SDValue Dest = Op.getOperand(4);
2973  DebugLoc dl = Op.getDebugLoc();
2974
2975  if (LHS.getValueType() == MVT::i32) {
2976    SDValue ARMcc;
2977    SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
2978    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2979    return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
2980                       Chain, Dest, ARMcc, CCR, Cmp);
2981  }
2982
2983  assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
2984
2985  if (getTargetMachine().Options.UnsafeFPMath &&
2986      (CC == ISD::SETEQ || CC == ISD::SETOEQ ||
2987       CC == ISD::SETNE || CC == ISD::SETUNE)) {
2988    SDValue Result = OptimizeVFPBrcond(Op, DAG);
2989    if (Result.getNode())
2990      return Result;
2991  }
2992
2993  ARMCC::CondCodes CondCode, CondCode2;
2994  FPCCToARMCC(CC, CondCode, CondCode2);
2995
2996  SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
2997  SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
2998  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2999  SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
3000  SDValue Ops[] = { Chain, Dest, ARMcc, CCR, Cmp };
3001  SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
3002  if (CondCode2 != ARMCC::AL) {
3003    ARMcc = DAG.getConstant(CondCode2, MVT::i32);
3004    SDValue Ops[] = { Res, Dest, ARMcc, CCR, Res.getValue(1) };
3005    Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
3006  }
3007  return Res;
3008}
3009
3010SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
3011  SDValue Chain = Op.getOperand(0);
3012  SDValue Table = Op.getOperand(1);
3013  SDValue Index = Op.getOperand(2);
3014  DebugLoc dl = Op.getDebugLoc();
3015
3016  EVT PTy = getPointerTy();
3017  JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
3018  ARMFunctionInfo *AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
3019  SDValue UId = DAG.getConstant(AFI->createJumpTableUId(), PTy);
3020  SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
3021  Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI, UId);
3022  Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, PTy));
3023  SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
3024  if (Subtarget->isThumb2()) {
3025    // Thumb2 uses a two-level jump. That is, it jumps into the jump table
3026    // which does another jump to the destination. This also makes it easier
3027    // to translate it to TBB / TBH later.
3028    // FIXME: This might not work if the function is extremely large.
3029    return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain,
3030                       Addr, Op.getOperand(2), JTI, UId);
3031  }
3032  if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
3033    Addr = DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr,
3034                       MachinePointerInfo::getJumpTable(),
3035                       false, false, false, 0);
3036    Chain = Addr.getValue(1);
3037    Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, Table);
3038    return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
3039  } else {
3040    Addr = DAG.getLoad(PTy, dl, Chain, Addr,
3041                       MachinePointerInfo::getJumpTable(),
3042                       false, false, false, 0);
3043    Chain = Addr.getValue(1);
3044    return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
3045  }
3046}
3047
3048static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
3049  EVT VT = Op.getValueType();
3050  assert(VT.getVectorElementType() == MVT::i32 && "Unexpected custom lowering");
3051
3052  if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::f32)
3053    return Op;
3054  return DAG.UnrollVectorOp(Op.getNode());
3055}
3056
3057static SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
3058  EVT VT = Op.getValueType();
3059  if (VT.isVector())
3060    return LowerVectorFP_TO_INT(Op, DAG);
3061
3062  DebugLoc dl = Op.getDebugLoc();
3063  unsigned Opc;
3064
3065  switch (Op.getOpcode()) {
3066  default:
3067    assert(0 && "Invalid opcode!");
3068  case ISD::FP_TO_SINT:
3069    Opc = ARMISD::FTOSI;
3070    break;
3071  case ISD::FP_TO_UINT:
3072    Opc = ARMISD::FTOUI;
3073    break;
3074  }
3075  Op = DAG.getNode(Opc, dl, MVT::f32, Op.getOperand(0));
3076  return DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3077}
3078
3079static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
3080  EVT VT = Op.getValueType();
3081  DebugLoc dl = Op.getDebugLoc();
3082
3083  if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i32) {
3084    if (VT.getVectorElementType() == MVT::f32)
3085      return Op;
3086    return DAG.UnrollVectorOp(Op.getNode());
3087  }
3088
3089  assert(Op.getOperand(0).getValueType() == MVT::v4i16 &&
3090         "Invalid type for custom lowering!");
3091  if (VT != MVT::v4f32)
3092    return DAG.UnrollVectorOp(Op.getNode());
3093
3094  unsigned CastOpc;
3095  unsigned Opc;
3096  switch (Op.getOpcode()) {
3097  default:
3098    assert(0 && "Invalid opcode!");
3099  case ISD::SINT_TO_FP:
3100    CastOpc = ISD::SIGN_EXTEND;
3101    Opc = ISD::SINT_TO_FP;
3102    break;
3103  case ISD::UINT_TO_FP:
3104    CastOpc = ISD::ZERO_EXTEND;
3105    Opc = ISD::UINT_TO_FP;
3106    break;
3107  }
3108
3109  Op = DAG.getNode(CastOpc, dl, MVT::v4i32, Op.getOperand(0));
3110  return DAG.getNode(Opc, dl, VT, Op);
3111}
3112
3113static SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
3114  EVT VT = Op.getValueType();
3115  if (VT.isVector())
3116    return LowerVectorINT_TO_FP(Op, DAG);
3117
3118  DebugLoc dl = Op.getDebugLoc();
3119  unsigned Opc;
3120
3121  switch (Op.getOpcode()) {
3122  default:
3123    assert(0 && "Invalid opcode!");
3124  case ISD::SINT_TO_FP:
3125    Opc = ARMISD::SITOF;
3126    break;
3127  case ISD::UINT_TO_FP:
3128    Opc = ARMISD::UITOF;
3129    break;
3130  }
3131
3132  Op = DAG.getNode(ISD::BITCAST, dl, MVT::f32, Op.getOperand(0));
3133  return DAG.getNode(Opc, dl, VT, Op);
3134}
3135
3136SDValue ARMTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
3137  // Implement fcopysign with a fabs and a conditional fneg.
3138  SDValue Tmp0 = Op.getOperand(0);
3139  SDValue Tmp1 = Op.getOperand(1);
3140  DebugLoc dl = Op.getDebugLoc();
3141  EVT VT = Op.getValueType();
3142  EVT SrcVT = Tmp1.getValueType();
3143  bool InGPR = Tmp0.getOpcode() == ISD::BITCAST ||
3144    Tmp0.getOpcode() == ARMISD::VMOVDRR;
3145  bool UseNEON = !InGPR && Subtarget->hasNEON();
3146
3147  if (UseNEON) {
3148    // Use VBSL to copy the sign bit.
3149    unsigned EncodedVal = ARM_AM::createNEONModImm(0x6, 0x80);
3150    SDValue Mask = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v2i32,
3151                               DAG.getTargetConstant(EncodedVal, MVT::i32));
3152    EVT OpVT = (VT == MVT::f32) ? MVT::v2i32 : MVT::v1i64;
3153    if (VT == MVT::f64)
3154      Mask = DAG.getNode(ARMISD::VSHL, dl, OpVT,
3155                         DAG.getNode(ISD::BITCAST, dl, OpVT, Mask),
3156                         DAG.getConstant(32, MVT::i32));
3157    else /*if (VT == MVT::f32)*/
3158      Tmp0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp0);
3159    if (SrcVT == MVT::f32) {
3160      Tmp1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp1);
3161      if (VT == MVT::f64)
3162        Tmp1 = DAG.getNode(ARMISD::VSHL, dl, OpVT,
3163                           DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1),
3164                           DAG.getConstant(32, MVT::i32));
3165    } else if (VT == MVT::f32)
3166      Tmp1 = DAG.getNode(ARMISD::VSHRu, dl, MVT::v1i64,
3167                         DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, Tmp1),
3168                         DAG.getConstant(32, MVT::i32));
3169    Tmp0 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp0);
3170    Tmp1 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1);
3171
3172    SDValue AllOnes = DAG.getTargetConstant(ARM_AM::createNEONModImm(0xe, 0xff),
3173                                            MVT::i32);
3174    AllOnes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v8i8, AllOnes);
3175    SDValue MaskNot = DAG.getNode(ISD::XOR, dl, OpVT, Mask,
3176                                  DAG.getNode(ISD::BITCAST, dl, OpVT, AllOnes));
3177
3178    SDValue Res = DAG.getNode(ISD::OR, dl, OpVT,
3179                              DAG.getNode(ISD::AND, dl, OpVT, Tmp1, Mask),
3180                              DAG.getNode(ISD::AND, dl, OpVT, Tmp0, MaskNot));
3181    if (VT == MVT::f32) {
3182      Res = DAG.getNode(ISD::BITCAST, dl, MVT::v2f32, Res);
3183      Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, Res,
3184                        DAG.getConstant(0, MVT::i32));
3185    } else {
3186      Res = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Res);
3187    }
3188
3189    return Res;
3190  }
3191
3192  // Bitcast operand 1 to i32.
3193  if (SrcVT == MVT::f64)
3194    Tmp1 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
3195                       &Tmp1, 1).getValue(1);
3196  Tmp1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp1);
3197
3198  // Or in the signbit with integer operations.
3199  SDValue Mask1 = DAG.getConstant(0x80000000, MVT::i32);
3200  SDValue Mask2 = DAG.getConstant(0x7fffffff, MVT::i32);
3201  Tmp1 = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp1, Mask1);
3202  if (VT == MVT::f32) {
3203    Tmp0 = DAG.getNode(ISD::AND, dl, MVT::i32,
3204                       DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp0), Mask2);
3205    return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
3206                       DAG.getNode(ISD::OR, dl, MVT::i32, Tmp0, Tmp1));
3207  }
3208
3209  // f64: Or the high part with signbit and then combine two parts.
3210  Tmp0 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
3211                     &Tmp0, 1);
3212  SDValue Lo = Tmp0.getValue(0);
3213  SDValue Hi = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp0.getValue(1), Mask2);
3214  Hi = DAG.getNode(ISD::OR, dl, MVT::i32, Hi, Tmp1);
3215  return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
3216}
3217
3218SDValue ARMTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{
3219  MachineFunction &MF = DAG.getMachineFunction();
3220  MachineFrameInfo *MFI = MF.getFrameInfo();
3221  MFI->setReturnAddressIsTaken(true);
3222
3223  EVT VT = Op.getValueType();
3224  DebugLoc dl = Op.getDebugLoc();
3225  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3226  if (Depth) {
3227    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
3228    SDValue Offset = DAG.getConstant(4, MVT::i32);
3229    return DAG.getLoad(VT, dl, DAG.getEntryNode(),
3230                       DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
3231                       MachinePointerInfo(), false, false, false, 0);
3232  }
3233
3234  // Return LR, which contains the return address. Mark it an implicit live-in.
3235  unsigned Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32));
3236  return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
3237}
3238
3239SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
3240  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3241  MFI->setFrameAddressIsTaken(true);
3242
3243  EVT VT = Op.getValueType();
3244  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
3245  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3246  unsigned FrameReg = (Subtarget->isThumb() || Subtarget->isTargetDarwin())
3247    ? ARM::R7 : ARM::R11;
3248  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
3249  while (Depth--)
3250    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
3251                            MachinePointerInfo(),
3252                            false, false, false, 0);
3253  return FrameAddr;
3254}
3255
3256/// ExpandBITCAST - If the target supports VFP, this function is called to
3257/// expand a bit convert where either the source or destination type is i64 to
3258/// use a VMOVDRR or VMOVRRD node.  This should not be done when the non-i64
3259/// operand type is illegal (e.g., v2f32 for a target that doesn't support
3260/// vectors), since the legalizer won't know what to do with that.
3261static SDValue ExpandBITCAST(SDNode *N, SelectionDAG &DAG) {
3262  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3263  DebugLoc dl = N->getDebugLoc();
3264  SDValue Op = N->getOperand(0);
3265
3266  // This function is only supposed to be called for i64 types, either as the
3267  // source or destination of the bit convert.
3268  EVT SrcVT = Op.getValueType();
3269  EVT DstVT = N->getValueType(0);
3270  assert((SrcVT == MVT::i64 || DstVT == MVT::i64) &&
3271         "ExpandBITCAST called for non-i64 type");
3272
3273  // Turn i64->f64 into VMOVDRR.
3274  if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) {
3275    SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
3276                             DAG.getConstant(0, MVT::i32));
3277    SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
3278                             DAG.getConstant(1, MVT::i32));
3279    return DAG.getNode(ISD::BITCAST, dl, DstVT,
3280                       DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi));
3281  }
3282
3283  // Turn f64->i64 into VMOVRRD.
3284  if (DstVT == MVT::i64 && TLI.isTypeLegal(SrcVT)) {
3285    SDValue Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
3286                              DAG.getVTList(MVT::i32, MVT::i32), &Op, 1);
3287    // Merge the pieces into a single i64 value.
3288    return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1));
3289  }
3290
3291  return SDValue();
3292}
3293
3294/// getZeroVector - Returns a vector of specified type with all zero elements.
3295/// Zero vectors are used to represent vector negation and in those cases
3296/// will be implemented with the NEON VNEG instruction.  However, VNEG does
3297/// not support i64 elements, so sometimes the zero vectors will need to be
3298/// explicitly constructed.  Regardless, use a canonical VMOV to create the
3299/// zero vector.
3300static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
3301  assert(VT.isVector() && "Expected a vector type");
3302  // The canonical modified immediate encoding of a zero vector is....0!
3303  SDValue EncodedVal = DAG.getTargetConstant(0, MVT::i32);
3304  EVT VmovVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
3305  SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, EncodedVal);
3306  return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
3307}
3308
3309/// LowerShiftRightParts - Lower SRA_PARTS, which returns two
3310/// i32 values and take a 2 x i32 value to shift plus a shift amount.
3311SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op,
3312                                                SelectionDAG &DAG) const {
3313  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
3314  EVT VT = Op.getValueType();
3315  unsigned VTBits = VT.getSizeInBits();
3316  DebugLoc dl = Op.getDebugLoc();
3317  SDValue ShOpLo = Op.getOperand(0);
3318  SDValue ShOpHi = Op.getOperand(1);
3319  SDValue ShAmt  = Op.getOperand(2);
3320  SDValue ARMcc;
3321  unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
3322
3323  assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
3324
3325  SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
3326                                 DAG.getConstant(VTBits, MVT::i32), ShAmt);
3327  SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
3328  SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
3329                                   DAG.getConstant(VTBits, MVT::i32));
3330  SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
3331  SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
3332  SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
3333
3334  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3335  SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
3336                          ARMcc, DAG, dl);
3337  SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
3338  SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc,
3339                           CCR, Cmp);
3340
3341  SDValue Ops[2] = { Lo, Hi };
3342  return DAG.getMergeValues(Ops, 2, dl);
3343}
3344
3345/// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
3346/// i32 values and take a 2 x i32 value to shift plus a shift amount.
3347SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op,
3348                                               SelectionDAG &DAG) const {
3349  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
3350  EVT VT = Op.getValueType();
3351  unsigned VTBits = VT.getSizeInBits();
3352  DebugLoc dl = Op.getDebugLoc();
3353  SDValue ShOpLo = Op.getOperand(0);
3354  SDValue ShOpHi = Op.getOperand(1);
3355  SDValue ShAmt  = Op.getOperand(2);
3356  SDValue ARMcc;
3357
3358  assert(Op.getOpcode() == ISD::SHL_PARTS);
3359  SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
3360                                 DAG.getConstant(VTBits, MVT::i32), ShAmt);
3361  SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
3362  SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
3363                                   DAG.getConstant(VTBits, MVT::i32));
3364  SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
3365  SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
3366
3367  SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
3368  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3369  SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
3370                          ARMcc, DAG, dl);
3371  SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
3372  SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, Tmp3, ARMcc,
3373                           CCR, Cmp);
3374
3375  SDValue Ops[2] = { Lo, Hi };
3376  return DAG.getMergeValues(Ops, 2, dl);
3377}
3378
3379SDValue ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
3380                                            SelectionDAG &DAG) const {
3381  // The rounding mode is in bits 23:22 of the FPSCR.
3382  // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
3383  // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
3384  // so that the shift + and get folded into a bitfield extract.
3385  DebugLoc dl = Op.getDebugLoc();
3386  SDValue FPSCR = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::i32,
3387                              DAG.getConstant(Intrinsic::arm_get_fpscr,
3388                                              MVT::i32));
3389  SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPSCR,
3390                                  DAG.getConstant(1U << 22, MVT::i32));
3391  SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds,
3392                              DAG.getConstant(22, MVT::i32));
3393  return DAG.getNode(ISD::AND, dl, MVT::i32, RMODE,
3394                     DAG.getConstant(3, MVT::i32));
3395}
3396
3397static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG,
3398                         const ARMSubtarget *ST) {
3399  EVT VT = N->getValueType(0);
3400  DebugLoc dl = N->getDebugLoc();
3401
3402  if (!ST->hasV6T2Ops())
3403    return SDValue();
3404
3405  SDValue rbit = DAG.getNode(ARMISD::RBIT, dl, VT, N->getOperand(0));
3406  return DAG.getNode(ISD::CTLZ, dl, VT, rbit);
3407}
3408
3409static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
3410                          const ARMSubtarget *ST) {
3411  EVT VT = N->getValueType(0);
3412  DebugLoc dl = N->getDebugLoc();
3413
3414  if (!VT.isVector())
3415    return SDValue();
3416
3417  // Lower vector shifts on NEON to use VSHL.
3418  assert(ST->hasNEON() && "unexpected vector shift");
3419
3420  // Left shifts translate directly to the vshiftu intrinsic.
3421  if (N->getOpcode() == ISD::SHL)
3422    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
3423                       DAG.getConstant(Intrinsic::arm_neon_vshiftu, MVT::i32),
3424                       N->getOperand(0), N->getOperand(1));
3425
3426  assert((N->getOpcode() == ISD::SRA ||
3427          N->getOpcode() == ISD::SRL) && "unexpected vector shift opcode");
3428
3429  // NEON uses the same intrinsics for both left and right shifts.  For
3430  // right shifts, the shift amounts are negative, so negate the vector of
3431  // shift amounts.
3432  EVT ShiftVT = N->getOperand(1).getValueType();
3433  SDValue NegatedCount = DAG.getNode(ISD::SUB, dl, ShiftVT,
3434                                     getZeroVector(ShiftVT, DAG, dl),
3435                                     N->getOperand(1));
3436  Intrinsic::ID vshiftInt = (N->getOpcode() == ISD::SRA ?
3437                             Intrinsic::arm_neon_vshifts :
3438                             Intrinsic::arm_neon_vshiftu);
3439  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
3440                     DAG.getConstant(vshiftInt, MVT::i32),
3441                     N->getOperand(0), NegatedCount);
3442}
3443
3444static SDValue Expand64BitShift(SDNode *N, SelectionDAG &DAG,
3445                                const ARMSubtarget *ST) {
3446  EVT VT = N->getValueType(0);
3447  DebugLoc dl = N->getDebugLoc();
3448
3449  // We can get here for a node like i32 = ISD::SHL i32, i64
3450  if (VT != MVT::i64)
3451    return SDValue();
3452
3453  assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) &&
3454         "Unknown shift to lower!");
3455
3456  // We only lower SRA, SRL of 1 here, all others use generic lowering.
3457  if (!isa<ConstantSDNode>(N->getOperand(1)) ||
3458      cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 1)
3459    return SDValue();
3460
3461  // If we are in thumb mode, we don't have RRX.
3462  if (ST->isThumb1Only()) return SDValue();
3463
3464  // Okay, we have a 64-bit SRA or SRL of 1.  Lower this to an RRX expr.
3465  SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
3466                           DAG.getConstant(0, MVT::i32));
3467  SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
3468                           DAG.getConstant(1, MVT::i32));
3469
3470  // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
3471  // captures the result into a carry flag.
3472  unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
3473  Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Glue), &Hi, 1);
3474
3475  // The low part is an ARMISD::RRX operand, which shifts the carry in.
3476  Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));
3477
3478  // Merge the pieces into a single i64 value.
3479 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
3480}
3481
3482static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
3483  SDValue TmpOp0, TmpOp1;
3484  bool Invert = false;
3485  bool Swap = false;
3486  unsigned Opc = 0;
3487
3488  SDValue Op0 = Op.getOperand(0);
3489  SDValue Op1 = Op.getOperand(1);
3490  SDValue CC = Op.getOperand(2);
3491  EVT VT = Op.getValueType();
3492  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
3493  DebugLoc dl = Op.getDebugLoc();
3494
3495  if (Op.getOperand(1).getValueType().isFloatingPoint()) {
3496    switch (SetCCOpcode) {
3497    default: llvm_unreachable("Illegal FP comparison"); break;
3498    case ISD::SETUNE:
3499    case ISD::SETNE:  Invert = true; // Fallthrough
3500    case ISD::SETOEQ:
3501    case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
3502    case ISD::SETOLT:
3503    case ISD::SETLT: Swap = true; // Fallthrough
3504    case ISD::SETOGT:
3505    case ISD::SETGT:  Opc = ARMISD::VCGT; break;
3506    case ISD::SETOLE:
3507    case ISD::SETLE:  Swap = true; // Fallthrough
3508    case ISD::SETOGE:
3509    case ISD::SETGE: Opc = ARMISD::VCGE; break;
3510    case ISD::SETUGE: Swap = true; // Fallthrough
3511    case ISD::SETULE: Invert = true; Opc = ARMISD::VCGT; break;
3512    case ISD::SETUGT: Swap = true; // Fallthrough
3513    case ISD::SETULT: Invert = true; Opc = ARMISD::VCGE; break;
3514    case ISD::SETUEQ: Invert = true; // Fallthrough
3515    case ISD::SETONE:
3516      // Expand this to (OLT | OGT).
3517      TmpOp0 = Op0;
3518      TmpOp1 = Op1;
3519      Opc = ISD::OR;
3520      Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
3521      Op1 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp0, TmpOp1);
3522      break;
3523    case ISD::SETUO: Invert = true; // Fallthrough
3524    case ISD::SETO:
3525      // Expand this to (OLT | OGE).
3526      TmpOp0 = Op0;
3527      TmpOp1 = Op1;
3528      Opc = ISD::OR;
3529      Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
3530      Op1 = DAG.getNode(ARMISD::VCGE, dl, VT, TmpOp0, TmpOp1);
3531      break;
3532    }
3533  } else {
3534    // Integer comparisons.
3535    switch (SetCCOpcode) {
3536    default: llvm_unreachable("Illegal integer comparison"); break;
3537    case ISD::SETNE:  Invert = true;
3538    case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
3539    case ISD::SETLT:  Swap = true;
3540    case ISD::SETGT:  Opc = ARMISD::VCGT; break;
3541    case ISD::SETLE:  Swap = true;
3542    case ISD::SETGE:  Opc = ARMISD::VCGE; break;
3543    case ISD::SETULT: Swap = true;
3544    case ISD::SETUGT: Opc = ARMISD::VCGTU; break;
3545    case ISD::SETULE: Swap = true;
3546    case ISD::SETUGE: Opc = ARMISD::VCGEU; break;
3547    }
3548
3549    // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
3550    if (Opc == ARMISD::VCEQ) {
3551
3552      SDValue AndOp;
3553      if (ISD::isBuildVectorAllZeros(Op1.getNode()))
3554        AndOp = Op0;
3555      else if (ISD::isBuildVectorAllZeros(Op0.getNode()))
3556        AndOp = Op1;
3557
3558      // Ignore bitconvert.
3559      if (AndOp.getNode() && AndOp.getOpcode() == ISD::BITCAST)
3560        AndOp = AndOp.getOperand(0);
3561
3562      if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) {
3563        Opc = ARMISD::VTST;
3564        Op0 = DAG.getNode(ISD::BITCAST, dl, VT, AndOp.getOperand(0));
3565        Op1 = DAG.getNode(ISD::BITCAST, dl, VT, AndOp.getOperand(1));
3566        Invert = !Invert;
3567      }
3568    }
3569  }
3570
3571  if (Swap)
3572    std::swap(Op0, Op1);
3573
3574  // If one of the operands is a constant vector zero, attempt to fold the
3575  // comparison to a specialized compare-against-zero form.
3576  SDValue SingleOp;
3577  if (ISD::isBuildVectorAllZeros(Op1.getNode()))
3578    SingleOp = Op0;
3579  else if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
3580    if (Opc == ARMISD::VCGE)
3581      Opc = ARMISD::VCLEZ;
3582    else if (Opc == ARMISD::VCGT)
3583      Opc = ARMISD::VCLTZ;
3584    SingleOp = Op1;
3585  }
3586
3587  SDValue Result;
3588  if (SingleOp.getNode()) {
3589    switch (Opc) {
3590    case ARMISD::VCEQ:
3591      Result = DAG.getNode(ARMISD::VCEQZ, dl, VT, SingleOp); break;
3592    case ARMISD::VCGE:
3593      Result = DAG.getNode(ARMISD::VCGEZ, dl, VT, SingleOp); break;
3594    case ARMISD::VCLEZ:
3595      Result = DAG.getNode(ARMISD::VCLEZ, dl, VT, SingleOp); break;
3596    case ARMISD::VCGT:
3597      Result = DAG.getNode(ARMISD::VCGTZ, dl, VT, SingleOp); break;
3598    case ARMISD::VCLTZ:
3599      Result = DAG.getNode(ARMISD::VCLTZ, dl, VT, SingleOp); break;
3600    default:
3601      Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
3602    }
3603  } else {
3604     Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
3605  }
3606
3607  if (Invert)
3608    Result = DAG.getNOT(dl, Result, VT);
3609
3610  return Result;
3611}
3612
3613/// isNEONModifiedImm - Check if the specified splat value corresponds to a
3614/// valid vector constant for a NEON instruction with a "modified immediate"
3615/// operand (e.g., VMOV).  If so, return the encoded value.
3616static SDValue isNEONModifiedImm(uint64_t SplatBits, uint64_t SplatUndef,
3617                                 unsigned SplatBitSize, SelectionDAG &DAG,
3618                                 EVT &VT, bool is128Bits, NEONModImmType type) {
3619  unsigned OpCmode, Imm;
3620
3621  // SplatBitSize is set to the smallest size that splats the vector, so a
3622  // zero vector will always have SplatBitSize == 8.  However, NEON modified
3623  // immediate instructions others than VMOV do not support the 8-bit encoding
3624  // of a zero vector, and the default encoding of zero is supposed to be the
3625  // 32-bit version.
3626  if (SplatBits == 0)
3627    SplatBitSize = 32;
3628
3629  switch (SplatBitSize) {
3630  case 8:
3631    if (type != VMOVModImm)
3632      return SDValue();
3633    // Any 1-byte value is OK.  Op=0, Cmode=1110.
3634    assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
3635    OpCmode = 0xe;
3636    Imm = SplatBits;
3637    VT = is128Bits ? MVT::v16i8 : MVT::v8i8;
3638    break;
3639
3640  case 16:
3641    // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
3642    VT = is128Bits ? MVT::v8i16 : MVT::v4i16;
3643    if ((SplatBits & ~0xff) == 0) {
3644      // Value = 0x00nn: Op=x, Cmode=100x.
3645      OpCmode = 0x8;
3646      Imm = SplatBits;
3647      break;
3648    }
3649    if ((SplatBits & ~0xff00) == 0) {
3650      // Value = 0xnn00: Op=x, Cmode=101x.
3651      OpCmode = 0xa;
3652      Imm = SplatBits >> 8;
3653      break;
3654    }
3655    return SDValue();
3656
3657  case 32:
3658    // NEON's 32-bit VMOV supports splat values where:
3659    // * only one byte is nonzero, or
3660    // * the least significant byte is 0xff and the second byte is nonzero, or
3661    // * the least significant 2 bytes are 0xff and the third is nonzero.
3662    VT = is128Bits ? MVT::v4i32 : MVT::v2i32;
3663    if ((SplatBits & ~0xff) == 0) {
3664      // Value = 0x000000nn: Op=x, Cmode=000x.
3665      OpCmode = 0;
3666      Imm = SplatBits;
3667      break;
3668    }
3669    if ((SplatBits & ~0xff00) == 0) {
3670      // Value = 0x0000nn00: Op=x, Cmode=001x.
3671      OpCmode = 0x2;
3672      Imm = SplatBits >> 8;
3673      break;
3674    }
3675    if ((SplatBits & ~0xff0000) == 0) {
3676      // Value = 0x00nn0000: Op=x, Cmode=010x.
3677      OpCmode = 0x4;
3678      Imm = SplatBits >> 16;
3679      break;
3680    }
3681    if ((SplatBits & ~0xff000000) == 0) {
3682      // Value = 0xnn000000: Op=x, Cmode=011x.
3683      OpCmode = 0x6;
3684      Imm = SplatBits >> 24;
3685      break;
3686    }
3687
3688    // cmode == 0b1100 and cmode == 0b1101 are not supported for VORR or VBIC
3689    if (type == OtherModImm) return SDValue();
3690
3691    if ((SplatBits & ~0xffff) == 0 &&
3692        ((SplatBits | SplatUndef) & 0xff) == 0xff) {
3693      // Value = 0x0000nnff: Op=x, Cmode=1100.
3694      OpCmode = 0xc;
3695      Imm = SplatBits >> 8;
3696      SplatBits |= 0xff;
3697      break;
3698    }
3699
3700    if ((SplatBits & ~0xffffff) == 0 &&
3701        ((SplatBits | SplatUndef) & 0xffff) == 0xffff) {
3702      // Value = 0x00nnffff: Op=x, Cmode=1101.
3703      OpCmode = 0xd;
3704      Imm = SplatBits >> 16;
3705      SplatBits |= 0xffff;
3706      break;
3707    }
3708
3709    // Note: there are a few 32-bit splat values (specifically: 00ffff00,
3710    // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
3711    // VMOV.I32.  A (very) minor optimization would be to replicate the value
3712    // and fall through here to test for a valid 64-bit splat.  But, then the
3713    // caller would also need to check and handle the change in size.
3714    return SDValue();
3715
3716  case 64: {
3717    if (type != VMOVModImm)
3718      return SDValue();
3719    // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
3720    uint64_t BitMask = 0xff;
3721    uint64_t Val = 0;
3722    unsigned ImmMask = 1;
3723    Imm = 0;
3724    for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
3725      if (((SplatBits | SplatUndef) & BitMask) == BitMask) {
3726        Val |= BitMask;
3727        Imm |= ImmMask;
3728      } else if ((SplatBits & BitMask) != 0) {
3729        return SDValue();
3730      }
3731      BitMask <<= 8;
3732      ImmMask <<= 1;
3733    }
3734    // Op=1, Cmode=1110.
3735    OpCmode = 0x1e;
3736    SplatBits = Val;
3737    VT = is128Bits ? MVT::v2i64 : MVT::v1i64;
3738    break;
3739  }
3740
3741  default:
3742    llvm_unreachable("unexpected size for isNEONModifiedImm");
3743    return SDValue();
3744  }
3745
3746  unsigned EncodedVal = ARM_AM::createNEONModImm(OpCmode, Imm);
3747  return DAG.getTargetConstant(EncodedVal, MVT::i32);
3748}
3749
3750static bool isVEXTMask(ArrayRef<int> M, EVT VT,
3751                       bool &ReverseVEXT, unsigned &Imm) {
3752  unsigned NumElts = VT.getVectorNumElements();
3753  ReverseVEXT = false;
3754
3755  // Assume that the first shuffle index is not UNDEF.  Fail if it is.
3756  if (M[0] < 0)
3757    return false;
3758
3759  Imm = M[0];
3760
3761  // If this is a VEXT shuffle, the immediate value is the index of the first
3762  // element.  The other shuffle indices must be the successive elements after
3763  // the first one.
3764  unsigned ExpectedElt = Imm;
3765  for (unsigned i = 1; i < NumElts; ++i) {
3766    // Increment the expected index.  If it wraps around, it may still be
3767    // a VEXT but the source vectors must be swapped.
3768    ExpectedElt += 1;
3769    if (ExpectedElt == NumElts * 2) {
3770      ExpectedElt = 0;
3771      ReverseVEXT = true;
3772    }
3773
3774    if (M[i] < 0) continue; // ignore UNDEF indices
3775    if (ExpectedElt != static_cast<unsigned>(M[i]))
3776      return false;
3777  }
3778
3779  // Adjust the index value if the source operands will be swapped.
3780  if (ReverseVEXT)
3781    Imm -= NumElts;
3782
3783  return true;
3784}
3785
3786/// isVREVMask - Check if a vector shuffle corresponds to a VREV
3787/// instruction with the specified blocksize.  (The order of the elements
3788/// within each block of the vector is reversed.)
3789static bool isVREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) {
3790  assert((BlockSize==16 || BlockSize==32 || BlockSize==64) &&
3791         "Only possible block sizes for VREV are: 16, 32, 64");
3792
3793  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3794  if (EltSz == 64)
3795    return false;
3796
3797  unsigned NumElts = VT.getVectorNumElements();
3798  unsigned BlockElts = M[0] + 1;
3799  // If the first shuffle index is UNDEF, be optimistic.
3800  if (M[0] < 0)
3801    BlockElts = BlockSize / EltSz;
3802
3803  if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
3804    return false;
3805
3806  for (unsigned i = 0; i < NumElts; ++i) {
3807    if (M[i] < 0) continue; // ignore UNDEF indices
3808    if ((unsigned) M[i] != (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts))
3809      return false;
3810  }
3811
3812  return true;
3813}
3814
3815static bool isVTBLMask(ArrayRef<int> M, EVT VT) {
3816  // We can handle <8 x i8> vector shuffles. If the index in the mask is out of
3817  // range, then 0 is placed into the resulting vector. So pretty much any mask
3818  // of 8 elements can work here.
3819  return VT == MVT::v8i8 && M.size() == 8;
3820}
3821
3822static bool isVTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
3823  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3824  if (EltSz == 64)
3825    return false;
3826
3827  unsigned NumElts = VT.getVectorNumElements();
3828  WhichResult = (M[0] == 0 ? 0 : 1);
3829  for (unsigned i = 0; i < NumElts; i += 2) {
3830    if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) ||
3831        (M[i+1] >= 0 && (unsigned) M[i+1] != i + NumElts + WhichResult))
3832      return false;
3833  }
3834  return true;
3835}
3836
3837/// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
3838/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
3839/// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
3840static bool isVTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
3841  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3842  if (EltSz == 64)
3843    return false;
3844
3845  unsigned NumElts = VT.getVectorNumElements();
3846  WhichResult = (M[0] == 0 ? 0 : 1);
3847  for (unsigned i = 0; i < NumElts; i += 2) {
3848    if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) ||
3849        (M[i+1] >= 0 && (unsigned) M[i+1] != i + WhichResult))
3850      return false;
3851  }
3852  return true;
3853}
3854
3855static bool isVUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
3856  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3857  if (EltSz == 64)
3858    return false;
3859
3860  unsigned NumElts = VT.getVectorNumElements();
3861  WhichResult = (M[0] == 0 ? 0 : 1);
3862  for (unsigned i = 0; i != NumElts; ++i) {
3863    if (M[i] < 0) continue; // ignore UNDEF indices
3864    if ((unsigned) M[i] != 2 * i + WhichResult)
3865      return false;
3866  }
3867
3868  // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3869  if (VT.is64BitVector() && EltSz == 32)
3870    return false;
3871
3872  return true;
3873}
3874
3875/// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
3876/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
3877/// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
3878static bool isVUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
3879  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3880  if (EltSz == 64)
3881    return false;
3882
3883  unsigned Half = VT.getVectorNumElements() / 2;
3884  WhichResult = (M[0] == 0 ? 0 : 1);
3885  for (unsigned j = 0; j != 2; ++j) {
3886    unsigned Idx = WhichResult;
3887    for (unsigned i = 0; i != Half; ++i) {
3888      int MIdx = M[i + j * Half];
3889      if (MIdx >= 0 && (unsigned) MIdx != Idx)
3890        return false;
3891      Idx += 2;
3892    }
3893  }
3894
3895  // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3896  if (VT.is64BitVector() && EltSz == 32)
3897    return false;
3898
3899  return true;
3900}
3901
3902static bool isVZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
3903  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3904  if (EltSz == 64)
3905    return false;
3906
3907  unsigned NumElts = VT.getVectorNumElements();
3908  WhichResult = (M[0] == 0 ? 0 : 1);
3909  unsigned Idx = WhichResult * NumElts / 2;
3910  for (unsigned i = 0; i != NumElts; i += 2) {
3911    if ((M[i] >= 0 && (unsigned) M[i] != Idx) ||
3912        (M[i+1] >= 0 && (unsigned) M[i+1] != Idx + NumElts))
3913      return false;
3914    Idx += 1;
3915  }
3916
3917  // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3918  if (VT.is64BitVector() && EltSz == 32)
3919    return false;
3920
3921  return true;
3922}
3923
3924/// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
3925/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
3926/// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
3927static bool isVZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
3928  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3929  if (EltSz == 64)
3930    return false;
3931
3932  unsigned NumElts = VT.getVectorNumElements();
3933  WhichResult = (M[0] == 0 ? 0 : 1);
3934  unsigned Idx = WhichResult * NumElts / 2;
3935  for (unsigned i = 0; i != NumElts; i += 2) {
3936    if ((M[i] >= 0 && (unsigned) M[i] != Idx) ||
3937        (M[i+1] >= 0 && (unsigned) M[i+1] != Idx))
3938      return false;
3939    Idx += 1;
3940  }
3941
3942  // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3943  if (VT.is64BitVector() && EltSz == 32)
3944    return false;
3945
3946  return true;
3947}
3948
3949// If N is an integer constant that can be moved into a register in one
3950// instruction, return an SDValue of such a constant (will become a MOV
3951// instruction).  Otherwise return null.
3952static SDValue IsSingleInstrConstant(SDValue N, SelectionDAG &DAG,
3953                                     const ARMSubtarget *ST, DebugLoc dl) {
3954  uint64_t Val;
3955  if (!isa<ConstantSDNode>(N))
3956    return SDValue();
3957  Val = cast<ConstantSDNode>(N)->getZExtValue();
3958
3959  if (ST->isThumb1Only()) {
3960    if (Val <= 255 || ~Val <= 255)
3961      return DAG.getConstant(Val, MVT::i32);
3962  } else {
3963    if (ARM_AM::getSOImmVal(Val) != -1 || ARM_AM::getSOImmVal(~Val) != -1)
3964      return DAG.getConstant(Val, MVT::i32);
3965  }
3966  return SDValue();
3967}
3968
3969// If this is a case we can't handle, return null and let the default
3970// expansion code take care of it.
3971SDValue ARMTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
3972                                             const ARMSubtarget *ST) const {
3973  BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
3974  DebugLoc dl = Op.getDebugLoc();
3975  EVT VT = Op.getValueType();
3976
3977  APInt SplatBits, SplatUndef;
3978  unsigned SplatBitSize;
3979  bool HasAnyUndefs;
3980  if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
3981    if (SplatBitSize <= 64) {
3982      // Check if an immediate VMOV works.
3983      EVT VmovVT;
3984      SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
3985                                      SplatUndef.getZExtValue(), SplatBitSize,
3986                                      DAG, VmovVT, VT.is128BitVector(),
3987                                      VMOVModImm);
3988      if (Val.getNode()) {
3989        SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, Val);
3990        return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
3991      }
3992
3993      // Try an immediate VMVN.
3994      uint64_t NegatedImm = (~SplatBits).getZExtValue();
3995      Val = isNEONModifiedImm(NegatedImm,
3996                                      SplatUndef.getZExtValue(), SplatBitSize,
3997                                      DAG, VmovVT, VT.is128BitVector(),
3998                                      VMVNModImm);
3999      if (Val.getNode()) {
4000        SDValue Vmov = DAG.getNode(ARMISD::VMVNIMM, dl, VmovVT, Val);
4001        return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
4002      }
4003
4004      // Use vmov.f32 to materialize other v2f32 and v4f32 splats.
4005      if ((VT == MVT::v2f32 || VT == MVT::v4f32) && SplatBitSize == 32) {
4006        int ImmVal = ARM_AM::getFP32Imm(SplatBits);
4007        if (ImmVal != -1) {
4008          SDValue Val = DAG.getTargetConstant(ImmVal, MVT::i32);
4009          return DAG.getNode(ARMISD::VMOVFPIMM, dl, VT, Val);
4010        }
4011      }
4012    }
4013  }
4014
4015  // Scan through the operands to see if only one value is used.
4016  unsigned NumElts = VT.getVectorNumElements();
4017  bool isOnlyLowElement = true;
4018  bool usesOnlyOneValue = true;
4019  bool isConstant = true;
4020  SDValue Value;
4021  for (unsigned i = 0; i < NumElts; ++i) {
4022    SDValue V = Op.getOperand(i);
4023    if (V.getOpcode() == ISD::UNDEF)
4024      continue;
4025    if (i > 0)
4026      isOnlyLowElement = false;
4027    if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
4028      isConstant = false;
4029
4030    if (!Value.getNode())
4031      Value = V;
4032    else if (V != Value)
4033      usesOnlyOneValue = false;
4034  }
4035
4036  if (!Value.getNode())
4037    return DAG.getUNDEF(VT);
4038
4039  if (isOnlyLowElement)
4040    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
4041
4042  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4043
4044  // Use VDUP for non-constant splats.  For f32 constant splats, reduce to
4045  // i32 and try again.
4046  if (usesOnlyOneValue && EltSize <= 32) {
4047    if (!isConstant)
4048      return DAG.getNode(ARMISD::VDUP, dl, VT, Value);
4049    if (VT.getVectorElementType().isFloatingPoint()) {
4050      SmallVector<SDValue, 8> Ops;
4051      for (unsigned i = 0; i < NumElts; ++i)
4052        Ops.push_back(DAG.getNode(ISD::BITCAST, dl, MVT::i32,
4053                                  Op.getOperand(i)));
4054      EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
4055      SDValue Val = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, &Ops[0], NumElts);
4056      Val = LowerBUILD_VECTOR(Val, DAG, ST);
4057      if (Val.getNode())
4058        return DAG.getNode(ISD::BITCAST, dl, VT, Val);
4059    }
4060    SDValue Val = IsSingleInstrConstant(Value, DAG, ST, dl);
4061    if (Val.getNode())
4062      return DAG.getNode(ARMISD::VDUP, dl, VT, Val);
4063  }
4064
4065  // If all elements are constants and the case above didn't get hit, fall back
4066  // to the default expansion, which will generate a load from the constant
4067  // pool.
4068  if (isConstant)
4069    return SDValue();
4070
4071  // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
4072  if (NumElts >= 4) {
4073    SDValue shuffle = ReconstructShuffle(Op, DAG);
4074    if (shuffle != SDValue())
4075      return shuffle;
4076  }
4077
4078  // Vectors with 32- or 64-bit elements can be built by directly assigning
4079  // the subregisters.  Lower it to an ARMISD::BUILD_VECTOR so the operands
4080  // will be legalized.
4081  if (EltSize >= 32) {
4082    // Do the expansion with floating-point types, since that is what the VFP
4083    // registers are defined to use, and since i64 is not legal.
4084    EVT EltVT = EVT::getFloatingPointVT(EltSize);
4085    EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
4086    SmallVector<SDValue, 8> Ops;
4087    for (unsigned i = 0; i < NumElts; ++i)
4088      Ops.push_back(DAG.getNode(ISD::BITCAST, dl, EltVT, Op.getOperand(i)));
4089    SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts);
4090    return DAG.getNode(ISD::BITCAST, dl, VT, Val);
4091  }
4092
4093  return SDValue();
4094}
4095
4096// Gather data to see if the operation can be modelled as a
4097// shuffle in combination with VEXTs.
4098SDValue ARMTargetLowering::ReconstructShuffle(SDValue Op,
4099                                              SelectionDAG &DAG) const {
4100  DebugLoc dl = Op.getDebugLoc();
4101  EVT VT = Op.getValueType();
4102  unsigned NumElts = VT.getVectorNumElements();
4103
4104  SmallVector<SDValue, 2> SourceVecs;
4105  SmallVector<unsigned, 2> MinElts;
4106  SmallVector<unsigned, 2> MaxElts;
4107
4108  for (unsigned i = 0; i < NumElts; ++i) {
4109    SDValue V = Op.getOperand(i);
4110    if (V.getOpcode() == ISD::UNDEF)
4111      continue;
4112    else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) {
4113      // A shuffle can only come from building a vector from various
4114      // elements of other vectors.
4115      return SDValue();
4116    } else if (V.getOperand(0).getValueType().getVectorElementType() !=
4117               VT.getVectorElementType()) {
4118      // This code doesn't know how to handle shuffles where the vector
4119      // element types do not match (this happens because type legalization
4120      // promotes the return type of EXTRACT_VECTOR_ELT).
4121      // FIXME: It might be appropriate to extend this code to handle
4122      // mismatched types.
4123      return SDValue();
4124    }
4125
4126    // Record this extraction against the appropriate vector if possible...
4127    SDValue SourceVec = V.getOperand(0);
4128    unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
4129    bool FoundSource = false;
4130    for (unsigned j = 0; j < SourceVecs.size(); ++j) {
4131      if (SourceVecs[j] == SourceVec) {
4132        if (MinElts[j] > EltNo)
4133          MinElts[j] = EltNo;
4134        if (MaxElts[j] < EltNo)
4135          MaxElts[j] = EltNo;
4136        FoundSource = true;
4137        break;
4138      }
4139    }
4140
4141    // Or record a new source if not...
4142    if (!FoundSource) {
4143      SourceVecs.push_back(SourceVec);
4144      MinElts.push_back(EltNo);
4145      MaxElts.push_back(EltNo);
4146    }
4147  }
4148
4149  // Currently only do something sane when at most two source vectors
4150  // involved.
4151  if (SourceVecs.size() > 2)
4152    return SDValue();
4153
4154  SDValue ShuffleSrcs[2] = {DAG.getUNDEF(VT), DAG.getUNDEF(VT) };
4155  int VEXTOffsets[2] = {0, 0};
4156
4157  // This loop extracts the usage patterns of the source vectors
4158  // and prepares appropriate SDValues for a shuffle if possible.
4159  for (unsigned i = 0; i < SourceVecs.size(); ++i) {
4160    if (SourceVecs[i].getValueType() == VT) {
4161      // No VEXT necessary
4162      ShuffleSrcs[i] = SourceVecs[i];
4163      VEXTOffsets[i] = 0;
4164      continue;
4165    } else if (SourceVecs[i].getValueType().getVectorNumElements() < NumElts) {
4166      // It probably isn't worth padding out a smaller vector just to
4167      // break it down again in a shuffle.
4168      return SDValue();
4169    }
4170
4171    // Since only 64-bit and 128-bit vectors are legal on ARM and
4172    // we've eliminated the other cases...
4173    assert(SourceVecs[i].getValueType().getVectorNumElements() == 2*NumElts &&
4174           "unexpected vector sizes in ReconstructShuffle");
4175
4176    if (MaxElts[i] - MinElts[i] >= NumElts) {
4177      // Span too large for a VEXT to cope
4178      return SDValue();
4179    }
4180
4181    if (MinElts[i] >= NumElts) {
4182      // The extraction can just take the second half
4183      VEXTOffsets[i] = NumElts;
4184      ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4185                                   SourceVecs[i],
4186                                   DAG.getIntPtrConstant(NumElts));
4187    } else if (MaxElts[i] < NumElts) {
4188      // The extraction can just take the first half
4189      VEXTOffsets[i] = 0;
4190      ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4191                                   SourceVecs[i],
4192                                   DAG.getIntPtrConstant(0));
4193    } else {
4194      // An actual VEXT is needed
4195      VEXTOffsets[i] = MinElts[i];
4196      SDValue VEXTSrc1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4197                                     SourceVecs[i],
4198                                     DAG.getIntPtrConstant(0));
4199      SDValue VEXTSrc2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4200                                     SourceVecs[i],
4201                                     DAG.getIntPtrConstant(NumElts));
4202      ShuffleSrcs[i] = DAG.getNode(ARMISD::VEXT, dl, VT, VEXTSrc1, VEXTSrc2,
4203                                   DAG.getConstant(VEXTOffsets[i], MVT::i32));
4204    }
4205  }
4206
4207  SmallVector<int, 8> Mask;
4208
4209  for (unsigned i = 0; i < NumElts; ++i) {
4210    SDValue Entry = Op.getOperand(i);
4211    if (Entry.getOpcode() == ISD::UNDEF) {
4212      Mask.push_back(-1);
4213      continue;
4214    }
4215
4216    SDValue ExtractVec = Entry.getOperand(0);
4217    int ExtractElt = cast<ConstantSDNode>(Op.getOperand(i)
4218                                          .getOperand(1))->getSExtValue();
4219    if (ExtractVec == SourceVecs[0]) {
4220      Mask.push_back(ExtractElt - VEXTOffsets[0]);
4221    } else {
4222      Mask.push_back(ExtractElt + NumElts - VEXTOffsets[1]);
4223    }
4224  }
4225
4226  // Final check before we try to produce nonsense...
4227  if (isShuffleMaskLegal(Mask, VT))
4228    return DAG.getVectorShuffle(VT, dl, ShuffleSrcs[0], ShuffleSrcs[1],
4229                                &Mask[0]);
4230
4231  return SDValue();
4232}
4233
4234/// isShuffleMaskLegal - Targets can use this to indicate that they only
4235/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
4236/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
4237/// are assumed to be legal.
4238bool
4239ARMTargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
4240                                      EVT VT) const {
4241  if (VT.getVectorNumElements() == 4 &&
4242      (VT.is128BitVector() || VT.is64BitVector())) {
4243    unsigned PFIndexes[4];
4244    for (unsigned i = 0; i != 4; ++i) {
4245      if (M[i] < 0)
4246        PFIndexes[i] = 8;
4247      else
4248        PFIndexes[i] = M[i];
4249    }
4250
4251    // Compute the index in the perfect shuffle table.
4252    unsigned PFTableIndex =
4253      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
4254    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
4255    unsigned Cost = (PFEntry >> 30);
4256
4257    if (Cost <= 4)
4258      return true;
4259  }
4260
4261  bool ReverseVEXT;
4262  unsigned Imm, WhichResult;
4263
4264  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4265  return (EltSize >= 32 ||
4266          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
4267          isVREVMask(M, VT, 64) ||
4268          isVREVMask(M, VT, 32) ||
4269          isVREVMask(M, VT, 16) ||
4270          isVEXTMask(M, VT, ReverseVEXT, Imm) ||
4271          isVTBLMask(M, VT) ||
4272          isVTRNMask(M, VT, WhichResult) ||
4273          isVUZPMask(M, VT, WhichResult) ||
4274          isVZIPMask(M, VT, WhichResult) ||
4275          isVTRN_v_undef_Mask(M, VT, WhichResult) ||
4276          isVUZP_v_undef_Mask(M, VT, WhichResult) ||
4277          isVZIP_v_undef_Mask(M, VT, WhichResult));
4278}
4279
4280/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
4281/// the specified operations to build the shuffle.
4282static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
4283                                      SDValue RHS, SelectionDAG &DAG,
4284                                      DebugLoc dl) {
4285  unsigned OpNum = (PFEntry >> 26) & 0x0F;
4286  unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
4287  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
4288
4289  enum {
4290    OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
4291    OP_VREV,
4292    OP_VDUP0,
4293    OP_VDUP1,
4294    OP_VDUP2,
4295    OP_VDUP3,
4296    OP_VEXT1,
4297    OP_VEXT2,
4298    OP_VEXT3,
4299    OP_VUZPL, // VUZP, left result
4300    OP_VUZPR, // VUZP, right result
4301    OP_VZIPL, // VZIP, left result
4302    OP_VZIPR, // VZIP, right result
4303    OP_VTRNL, // VTRN, left result
4304    OP_VTRNR  // VTRN, right result
4305  };
4306
4307  if (OpNum == OP_COPY) {
4308    if (LHSID == (1*9+2)*9+3) return LHS;
4309    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
4310    return RHS;
4311  }
4312
4313  SDValue OpLHS, OpRHS;
4314  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
4315  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
4316  EVT VT = OpLHS.getValueType();
4317
4318  switch (OpNum) {
4319  default: llvm_unreachable("Unknown shuffle opcode!");
4320  case OP_VREV:
4321    // VREV divides the vector in half and swaps within the half.
4322    if (VT.getVectorElementType() == MVT::i32 ||
4323        VT.getVectorElementType() == MVT::f32)
4324      return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS);
4325    // vrev <4 x i16> -> VREV32
4326    if (VT.getVectorElementType() == MVT::i16)
4327      return DAG.getNode(ARMISD::VREV32, dl, VT, OpLHS);
4328    // vrev <4 x i8> -> VREV16
4329    assert(VT.getVectorElementType() == MVT::i8);
4330    return DAG.getNode(ARMISD::VREV16, dl, VT, OpLHS);
4331  case OP_VDUP0:
4332  case OP_VDUP1:
4333  case OP_VDUP2:
4334  case OP_VDUP3:
4335    return DAG.getNode(ARMISD::VDUPLANE, dl, VT,
4336                       OpLHS, DAG.getConstant(OpNum-OP_VDUP0, MVT::i32));
4337  case OP_VEXT1:
4338  case OP_VEXT2:
4339  case OP_VEXT3:
4340    return DAG.getNode(ARMISD::VEXT, dl, VT,
4341                       OpLHS, OpRHS,
4342                       DAG.getConstant(OpNum-OP_VEXT1+1, MVT::i32));
4343  case OP_VUZPL:
4344  case OP_VUZPR:
4345    return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
4346                       OpLHS, OpRHS).getValue(OpNum-OP_VUZPL);
4347  case OP_VZIPL:
4348  case OP_VZIPR:
4349    return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
4350                       OpLHS, OpRHS).getValue(OpNum-OP_VZIPL);
4351  case OP_VTRNL:
4352  case OP_VTRNR:
4353    return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
4354                       OpLHS, OpRHS).getValue(OpNum-OP_VTRNL);
4355  }
4356}
4357
4358static SDValue LowerVECTOR_SHUFFLEv8i8(SDValue Op,
4359                                       ArrayRef<int> ShuffleMask,
4360                                       SelectionDAG &DAG) {
4361  // Check to see if we can use the VTBL instruction.
4362  SDValue V1 = Op.getOperand(0);
4363  SDValue V2 = Op.getOperand(1);
4364  DebugLoc DL = Op.getDebugLoc();
4365
4366  SmallVector<SDValue, 8> VTBLMask;
4367  for (ArrayRef<int>::iterator
4368         I = ShuffleMask.begin(), E = ShuffleMask.end(); I != E; ++I)
4369    VTBLMask.push_back(DAG.getConstant(*I, MVT::i32));
4370
4371  if (V2.getNode()->getOpcode() == ISD::UNDEF)
4372    return DAG.getNode(ARMISD::VTBL1, DL, MVT::v8i8, V1,
4373                       DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i8,
4374                                   &VTBLMask[0], 8));
4375
4376  return DAG.getNode(ARMISD::VTBL2, DL, MVT::v8i8, V1, V2,
4377                     DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i8,
4378                                 &VTBLMask[0], 8));
4379}
4380
4381static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
4382  SDValue V1 = Op.getOperand(0);
4383  SDValue V2 = Op.getOperand(1);
4384  DebugLoc dl = Op.getDebugLoc();
4385  EVT VT = Op.getValueType();
4386  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
4387
4388  // Convert shuffles that are directly supported on NEON to target-specific
4389  // DAG nodes, instead of keeping them as shuffles and matching them again
4390  // during code selection.  This is more efficient and avoids the possibility
4391  // of inconsistencies between legalization and selection.
4392  // FIXME: floating-point vectors should be canonicalized to integer vectors
4393  // of the same time so that they get CSEd properly.
4394  ArrayRef<int> ShuffleMask = SVN->getMask();
4395
4396  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4397  if (EltSize <= 32) {
4398    if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0], VT)) {
4399      int Lane = SVN->getSplatIndex();
4400      // If this is undef splat, generate it via "just" vdup, if possible.
4401      if (Lane == -1) Lane = 0;
4402
4403      // Test if V1 is a SCALAR_TO_VECTOR.
4404      if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
4405        return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
4406      }
4407      // Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR
4408      // (and probably will turn into a SCALAR_TO_VECTOR once legalization
4409      // reaches it).
4410      if (Lane == 0 && V1.getOpcode() == ISD::BUILD_VECTOR &&
4411          !isa<ConstantSDNode>(V1.getOperand(0))) {
4412        bool IsScalarToVector = true;
4413        for (unsigned i = 1, e = V1.getNumOperands(); i != e; ++i)
4414          if (V1.getOperand(i).getOpcode() != ISD::UNDEF) {
4415            IsScalarToVector = false;
4416            break;
4417          }
4418        if (IsScalarToVector)
4419          return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
4420      }
4421      return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1,
4422                         DAG.getConstant(Lane, MVT::i32));
4423    }
4424
4425    bool ReverseVEXT;
4426    unsigned Imm;
4427    if (isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) {
4428      if (ReverseVEXT)
4429        std::swap(V1, V2);
4430      return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2,
4431                         DAG.getConstant(Imm, MVT::i32));
4432    }
4433
4434    if (isVREVMask(ShuffleMask, VT, 64))
4435      return DAG.getNode(ARMISD::VREV64, dl, VT, V1);
4436    if (isVREVMask(ShuffleMask, VT, 32))
4437      return DAG.getNode(ARMISD::VREV32, dl, VT, V1);
4438    if (isVREVMask(ShuffleMask, VT, 16))
4439      return DAG.getNode(ARMISD::VREV16, dl, VT, V1);
4440
4441    // Check for Neon shuffles that modify both input vectors in place.
4442    // If both results are used, i.e., if there are two shuffles with the same
4443    // source operands and with masks corresponding to both results of one of
4444    // these operations, DAG memoization will ensure that a single node is
4445    // used for both shuffles.
4446    unsigned WhichResult;
4447    if (isVTRNMask(ShuffleMask, VT, WhichResult))
4448      return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
4449                         V1, V2).getValue(WhichResult);
4450    if (isVUZPMask(ShuffleMask, VT, WhichResult))
4451      return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
4452                         V1, V2).getValue(WhichResult);
4453    if (isVZIPMask(ShuffleMask, VT, WhichResult))
4454      return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
4455                         V1, V2).getValue(WhichResult);
4456
4457    if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult))
4458      return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
4459                         V1, V1).getValue(WhichResult);
4460    if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult))
4461      return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
4462                         V1, V1).getValue(WhichResult);
4463    if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult))
4464      return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
4465                         V1, V1).getValue(WhichResult);
4466  }
4467
4468  // If the shuffle is not directly supported and it has 4 elements, use
4469  // the PerfectShuffle-generated table to synthesize it from other shuffles.
4470  unsigned NumElts = VT.getVectorNumElements();
4471  if (NumElts == 4) {
4472    unsigned PFIndexes[4];
4473    for (unsigned i = 0; i != 4; ++i) {
4474      if (ShuffleMask[i] < 0)
4475        PFIndexes[i] = 8;
4476      else
4477        PFIndexes[i] = ShuffleMask[i];
4478    }
4479
4480    // Compute the index in the perfect shuffle table.
4481    unsigned PFTableIndex =
4482      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
4483    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
4484    unsigned Cost = (PFEntry >> 30);
4485
4486    if (Cost <= 4)
4487      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
4488  }
4489
4490  // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs.
4491  if (EltSize >= 32) {
4492    // Do the expansion with floating-point types, since that is what the VFP
4493    // registers are defined to use, and since i64 is not legal.
4494    EVT EltVT = EVT::getFloatingPointVT(EltSize);
4495    EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
4496    V1 = DAG.getNode(ISD::BITCAST, dl, VecVT, V1);
4497    V2 = DAG.getNode(ISD::BITCAST, dl, VecVT, V2);
4498    SmallVector<SDValue, 8> Ops;
4499    for (unsigned i = 0; i < NumElts; ++i) {
4500      if (ShuffleMask[i] < 0)
4501        Ops.push_back(DAG.getUNDEF(EltVT));
4502      else
4503        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
4504                                  ShuffleMask[i] < (int)NumElts ? V1 : V2,
4505                                  DAG.getConstant(ShuffleMask[i] & (NumElts-1),
4506                                                  MVT::i32)));
4507    }
4508    SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts);
4509    return DAG.getNode(ISD::BITCAST, dl, VT, Val);
4510  }
4511
4512  if (VT == MVT::v8i8) {
4513    SDValue NewOp = LowerVECTOR_SHUFFLEv8i8(Op, ShuffleMask, DAG);
4514    if (NewOp.getNode())
4515      return NewOp;
4516  }
4517
4518  return SDValue();
4519}
4520
4521static SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4522  // INSERT_VECTOR_ELT is legal only for immediate indexes.
4523  SDValue Lane = Op.getOperand(2);
4524  if (!isa<ConstantSDNode>(Lane))
4525    return SDValue();
4526
4527  return Op;
4528}
4529
4530static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4531  // EXTRACT_VECTOR_ELT is legal only for immediate indexes.
4532  SDValue Lane = Op.getOperand(1);
4533  if (!isa<ConstantSDNode>(Lane))
4534    return SDValue();
4535
4536  SDValue Vec = Op.getOperand(0);
4537  if (Op.getValueType() == MVT::i32 &&
4538      Vec.getValueType().getVectorElementType().getSizeInBits() < 32) {
4539    DebugLoc dl = Op.getDebugLoc();
4540    return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
4541  }
4542
4543  return Op;
4544}
4545
4546static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
4547  // The only time a CONCAT_VECTORS operation can have legal types is when
4548  // two 64-bit vectors are concatenated to a 128-bit vector.
4549  assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 &&
4550         "unexpected CONCAT_VECTORS");
4551  DebugLoc dl = Op.getDebugLoc();
4552  SDValue Val = DAG.getUNDEF(MVT::v2f64);
4553  SDValue Op0 = Op.getOperand(0);
4554  SDValue Op1 = Op.getOperand(1);
4555  if (Op0.getOpcode() != ISD::UNDEF)
4556    Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
4557                      DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op0),
4558                      DAG.getIntPtrConstant(0));
4559  if (Op1.getOpcode() != ISD::UNDEF)
4560    Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
4561                      DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op1),
4562                      DAG.getIntPtrConstant(1));
4563  return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Val);
4564}
4565
4566/// isExtendedBUILD_VECTOR - Check if N is a constant BUILD_VECTOR where each
4567/// element has been zero/sign-extended, depending on the isSigned parameter,
4568/// from an integer type half its size.
4569static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
4570                                   bool isSigned) {
4571  // A v2i64 BUILD_VECTOR will have been legalized to a BITCAST from v4i32.
4572  EVT VT = N->getValueType(0);
4573  if (VT == MVT::v2i64 && N->getOpcode() == ISD::BITCAST) {
4574    SDNode *BVN = N->getOperand(0).getNode();
4575    if (BVN->getValueType(0) != MVT::v4i32 ||
4576        BVN->getOpcode() != ISD::BUILD_VECTOR)
4577      return false;
4578    unsigned LoElt = DAG.getTargetLoweringInfo().isBigEndian() ? 1 : 0;
4579    unsigned HiElt = 1 - LoElt;
4580    ConstantSDNode *Lo0 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt));
4581    ConstantSDNode *Hi0 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt));
4582    ConstantSDNode *Lo1 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt+2));
4583    ConstantSDNode *Hi1 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt+2));
4584    if (!Lo0 || !Hi0 || !Lo1 || !Hi1)
4585      return false;
4586    if (isSigned) {
4587      if (Hi0->getSExtValue() == Lo0->getSExtValue() >> 32 &&
4588          Hi1->getSExtValue() == Lo1->getSExtValue() >> 32)
4589        return true;
4590    } else {
4591      if (Hi0->isNullValue() && Hi1->isNullValue())
4592        return true;
4593    }
4594    return false;
4595  }
4596
4597  if (N->getOpcode() != ISD::BUILD_VECTOR)
4598    return false;
4599
4600  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
4601    SDNode *Elt = N->getOperand(i).getNode();
4602    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
4603      unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4604      unsigned HalfSize = EltSize / 2;
4605      if (isSigned) {
4606        if (!isIntN(HalfSize, C->getSExtValue()))
4607          return false;
4608      } else {
4609        if (!isUIntN(HalfSize, C->getZExtValue()))
4610          return false;
4611      }
4612      continue;
4613    }
4614    return false;
4615  }
4616
4617  return true;
4618}
4619
4620/// isSignExtended - Check if a node is a vector value that is sign-extended
4621/// or a constant BUILD_VECTOR with sign-extended elements.
4622static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
4623  if (N->getOpcode() == ISD::SIGN_EXTEND || ISD::isSEXTLoad(N))
4624    return true;
4625  if (isExtendedBUILD_VECTOR(N, DAG, true))
4626    return true;
4627  return false;
4628}
4629
4630/// isZeroExtended - Check if a node is a vector value that is zero-extended
4631/// or a constant BUILD_VECTOR with zero-extended elements.
4632static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
4633  if (N->getOpcode() == ISD::ZERO_EXTEND || ISD::isZEXTLoad(N))
4634    return true;
4635  if (isExtendedBUILD_VECTOR(N, DAG, false))
4636    return true;
4637  return false;
4638}
4639
4640/// SkipExtension - For a node that is a SIGN_EXTEND, ZERO_EXTEND, extending
4641/// load, or BUILD_VECTOR with extended elements, return the unextended value.
4642static SDValue SkipExtension(SDNode *N, SelectionDAG &DAG) {
4643  if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
4644    return N->getOperand(0);
4645  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N))
4646    return DAG.getLoad(LD->getMemoryVT(), N->getDebugLoc(), LD->getChain(),
4647                       LD->getBasePtr(), LD->getPointerInfo(), LD->isVolatile(),
4648                       LD->isNonTemporal(), LD->isInvariant(),
4649                       LD->getAlignment());
4650  // Otherwise, the value must be a BUILD_VECTOR.  For v2i64, it will
4651  // have been legalized as a BITCAST from v4i32.
4652  if (N->getOpcode() == ISD::BITCAST) {
4653    SDNode *BVN = N->getOperand(0).getNode();
4654    assert(BVN->getOpcode() == ISD::BUILD_VECTOR &&
4655           BVN->getValueType(0) == MVT::v4i32 && "expected v4i32 BUILD_VECTOR");
4656    unsigned LowElt = DAG.getTargetLoweringInfo().isBigEndian() ? 1 : 0;
4657    return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(), MVT::v2i32,
4658                       BVN->getOperand(LowElt), BVN->getOperand(LowElt+2));
4659  }
4660  // Construct a new BUILD_VECTOR with elements truncated to half the size.
4661  assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
4662  EVT VT = N->getValueType(0);
4663  unsigned EltSize = VT.getVectorElementType().getSizeInBits() / 2;
4664  unsigned NumElts = VT.getVectorNumElements();
4665  MVT TruncVT = MVT::getIntegerVT(EltSize);
4666  SmallVector<SDValue, 8> Ops;
4667  for (unsigned i = 0; i != NumElts; ++i) {
4668    ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
4669    const APInt &CInt = C->getAPIntValue();
4670    Ops.push_back(DAG.getConstant(CInt.trunc(EltSize), TruncVT));
4671  }
4672  return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(),
4673                     MVT::getVectorVT(TruncVT, NumElts), Ops.data(), NumElts);
4674}
4675
4676static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
4677  unsigned Opcode = N->getOpcode();
4678  if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
4679    SDNode *N0 = N->getOperand(0).getNode();
4680    SDNode *N1 = N->getOperand(1).getNode();
4681    return N0->hasOneUse() && N1->hasOneUse() &&
4682      isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
4683  }
4684  return false;
4685}
4686
4687static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
4688  unsigned Opcode = N->getOpcode();
4689  if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
4690    SDNode *N0 = N->getOperand(0).getNode();
4691    SDNode *N1 = N->getOperand(1).getNode();
4692    return N0->hasOneUse() && N1->hasOneUse() &&
4693      isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
4694  }
4695  return false;
4696}
4697
4698static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
4699  // Multiplications are only custom-lowered for 128-bit vectors so that
4700  // VMULL can be detected.  Otherwise v2i64 multiplications are not legal.
4701  EVT VT = Op.getValueType();
4702  assert(VT.is128BitVector() && "unexpected type for custom-lowering ISD::MUL");
4703  SDNode *N0 = Op.getOperand(0).getNode();
4704  SDNode *N1 = Op.getOperand(1).getNode();
4705  unsigned NewOpc = 0;
4706  bool isMLA = false;
4707  bool isN0SExt = isSignExtended(N0, DAG);
4708  bool isN1SExt = isSignExtended(N1, DAG);
4709  if (isN0SExt && isN1SExt)
4710    NewOpc = ARMISD::VMULLs;
4711  else {
4712    bool isN0ZExt = isZeroExtended(N0, DAG);
4713    bool isN1ZExt = isZeroExtended(N1, DAG);
4714    if (isN0ZExt && isN1ZExt)
4715      NewOpc = ARMISD::VMULLu;
4716    else if (isN1SExt || isN1ZExt) {
4717      // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
4718      // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
4719      if (isN1SExt && isAddSubSExt(N0, DAG)) {
4720        NewOpc = ARMISD::VMULLs;
4721        isMLA = true;
4722      } else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
4723        NewOpc = ARMISD::VMULLu;
4724        isMLA = true;
4725      } else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
4726        std::swap(N0, N1);
4727        NewOpc = ARMISD::VMULLu;
4728        isMLA = true;
4729      }
4730    }
4731
4732    if (!NewOpc) {
4733      if (VT == MVT::v2i64)
4734        // Fall through to expand this.  It is not legal.
4735        return SDValue();
4736      else
4737        // Other vector multiplications are legal.
4738        return Op;
4739    }
4740  }
4741
4742  // Legalize to a VMULL instruction.
4743  DebugLoc DL = Op.getDebugLoc();
4744  SDValue Op0;
4745  SDValue Op1 = SkipExtension(N1, DAG);
4746  if (!isMLA) {
4747    Op0 = SkipExtension(N0, DAG);
4748    assert(Op0.getValueType().is64BitVector() &&
4749           Op1.getValueType().is64BitVector() &&
4750           "unexpected types for extended operands to VMULL");
4751    return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
4752  }
4753
4754  // Optimizing (zext A + zext B) * C, to (VMULL A, C) + (VMULL B, C) during
4755  // isel lowering to take advantage of no-stall back to back vmul + vmla.
4756  //   vmull q0, d4, d6
4757  //   vmlal q0, d5, d6
4758  // is faster than
4759  //   vaddl q0, d4, d5
4760  //   vmovl q1, d6
4761  //   vmul  q0, q0, q1
4762  SDValue N00 = SkipExtension(N0->getOperand(0).getNode(), DAG);
4763  SDValue N01 = SkipExtension(N0->getOperand(1).getNode(), DAG);
4764  EVT Op1VT = Op1.getValueType();
4765  return DAG.getNode(N0->getOpcode(), DL, VT,
4766                     DAG.getNode(NewOpc, DL, VT,
4767                               DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
4768                     DAG.getNode(NewOpc, DL, VT,
4769                               DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
4770}
4771
4772static SDValue
4773LowerSDIV_v4i8(SDValue X, SDValue Y, DebugLoc dl, SelectionDAG &DAG) {
4774  // Convert to float
4775  // float4 xf = vcvt_f32_s32(vmovl_s16(a.lo));
4776  // float4 yf = vcvt_f32_s32(vmovl_s16(b.lo));
4777  X = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, X);
4778  Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, Y);
4779  X = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, X);
4780  Y = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, Y);
4781  // Get reciprocal estimate.
4782  // float4 recip = vrecpeq_f32(yf);
4783  Y = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
4784                   DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), Y);
4785  // Because char has a smaller range than uchar, we can actually get away
4786  // without any newton steps.  This requires that we use a weird bias
4787  // of 0xb000, however (again, this has been exhaustively tested).
4788  // float4 result = as_float4(as_int4(xf*recip) + 0xb000);
4789  X = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, X, Y);
4790  X = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, X);
4791  Y = DAG.getConstant(0xb000, MVT::i32);
4792  Y = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Y, Y, Y, Y);
4793  X = DAG.getNode(ISD::ADD, dl, MVT::v4i32, X, Y);
4794  X = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, X);
4795  // Convert back to short.
4796  X = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, X);
4797  X = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, X);
4798  return X;
4799}
4800
4801static SDValue
4802LowerSDIV_v4i16(SDValue N0, SDValue N1, DebugLoc dl, SelectionDAG &DAG) {
4803  SDValue N2;
4804  // Convert to float.
4805  // float4 yf = vcvt_f32_s32(vmovl_s16(y));
4806  // float4 xf = vcvt_f32_s32(vmovl_s16(x));
4807  N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N0);
4808  N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N1);
4809  N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
4810  N1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
4811
4812  // Use reciprocal estimate and one refinement step.
4813  // float4 recip = vrecpeq_f32(yf);
4814  // recip *= vrecpsq_f32(yf, recip);
4815  N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
4816                   DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), N1);
4817  N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
4818                   DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
4819                   N1, N2);
4820  N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
4821  // Because short has a smaller range than ushort, we can actually get away
4822  // with only a single newton step.  This requires that we use a weird bias
4823  // of 89, however (again, this has been exhaustively tested).
4824  // float4 result = as_float4(as_int4(xf*recip) + 0x89);
4825  N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
4826  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
4827  N1 = DAG.getConstant(0x89, MVT::i32);
4828  N1 = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, N1, N1, N1, N1);
4829  N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
4830  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
4831  // Convert back to integer and return.
4832  // return vmovn_s32(vcvt_s32_f32(result));
4833  N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
4834  N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
4835  return N0;
4836}
4837
4838static SDValue LowerSDIV(SDValue Op, SelectionDAG &DAG) {
4839  EVT VT = Op.getValueType();
4840  assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
4841         "unexpected type for custom-lowering ISD::SDIV");
4842
4843  DebugLoc dl = Op.getDebugLoc();
4844  SDValue N0 = Op.getOperand(0);
4845  SDValue N1 = Op.getOperand(1);
4846  SDValue N2, N3;
4847
4848  if (VT == MVT::v8i8) {
4849    N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N0);
4850    N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N1);
4851
4852    N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
4853                     DAG.getIntPtrConstant(4));
4854    N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
4855                     DAG.getIntPtrConstant(4));
4856    N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
4857                     DAG.getIntPtrConstant(0));
4858    N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
4859                     DAG.getIntPtrConstant(0));
4860
4861    N0 = LowerSDIV_v4i8(N0, N1, dl, DAG); // v4i16
4862    N2 = LowerSDIV_v4i8(N2, N3, dl, DAG); // v4i16
4863
4864    N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
4865    N0 = LowerCONCAT_VECTORS(N0, DAG);
4866
4867    N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v8i8, N0);
4868    return N0;
4869  }
4870  return LowerSDIV_v4i16(N0, N1, dl, DAG);
4871}
4872
4873static SDValue LowerUDIV(SDValue Op, SelectionDAG &DAG) {
4874  EVT VT = Op.getValueType();
4875  assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
4876         "unexpected type for custom-lowering ISD::UDIV");
4877
4878  DebugLoc dl = Op.getDebugLoc();
4879  SDValue N0 = Op.getOperand(0);
4880  SDValue N1 = Op.getOperand(1);
4881  SDValue N2, N3;
4882
4883  if (VT == MVT::v8i8) {
4884    N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N0);
4885    N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N1);
4886
4887    N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
4888                     DAG.getIntPtrConstant(4));
4889    N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
4890                     DAG.getIntPtrConstant(4));
4891    N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
4892                     DAG.getIntPtrConstant(0));
4893    N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
4894                     DAG.getIntPtrConstant(0));
4895
4896    N0 = LowerSDIV_v4i16(N0, N1, dl, DAG); // v4i16
4897    N2 = LowerSDIV_v4i16(N2, N3, dl, DAG); // v4i16
4898
4899    N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
4900    N0 = LowerCONCAT_VECTORS(N0, DAG);
4901
4902    N0 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v8i8,
4903                     DAG.getConstant(Intrinsic::arm_neon_vqmovnsu, MVT::i32),
4904                     N0);
4905    return N0;
4906  }
4907
4908  // v4i16 sdiv ... Convert to float.
4909  // float4 yf = vcvt_f32_s32(vmovl_u16(y));
4910  // float4 xf = vcvt_f32_s32(vmovl_u16(x));
4911  N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N0);
4912  N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N1);
4913  N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
4914  SDValue BN1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
4915
4916  // Use reciprocal estimate and two refinement steps.
4917  // float4 recip = vrecpeq_f32(yf);
4918  // recip *= vrecpsq_f32(yf, recip);
4919  // recip *= vrecpsq_f32(yf, recip);
4920  N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
4921                   DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), BN1);
4922  N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
4923                   DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
4924                   BN1, N2);
4925  N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
4926  N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
4927                   DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
4928                   BN1, N2);
4929  N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
4930  // Simply multiplying by the reciprocal estimate can leave us a few ulps
4931  // too low, so we add 2 ulps (exhaustive testing shows that this is enough,
4932  // and that it will never cause us to return an answer too large).
4933  // float4 result = as_float4(as_int4(xf*recip) + 2);
4934  N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
4935  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
4936  N1 = DAG.getConstant(2, MVT::i32);
4937  N1 = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, N1, N1, N1, N1);
4938  N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
4939  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
4940  // Convert back to integer and return.
4941  // return vmovn_u32(vcvt_s32_f32(result));
4942  N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
4943  N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
4944  return N0;
4945}
4946
4947static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
4948  EVT VT = Op.getNode()->getValueType(0);
4949  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
4950
4951  unsigned Opc;
4952  bool ExtraOp = false;
4953  switch (Op.getOpcode()) {
4954  default: assert(0 && "Invalid code");
4955  case ISD::ADDC: Opc = ARMISD::ADDC; break;
4956  case ISD::ADDE: Opc = ARMISD::ADDE; ExtraOp = true; break;
4957  case ISD::SUBC: Opc = ARMISD::SUBC; break;
4958  case ISD::SUBE: Opc = ARMISD::SUBE; ExtraOp = true; break;
4959  }
4960
4961  if (!ExtraOp)
4962    return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
4963                       Op.getOperand(1));
4964  return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
4965                     Op.getOperand(1), Op.getOperand(2));
4966}
4967
4968static SDValue LowerAtomicLoadStore(SDValue Op, SelectionDAG &DAG) {
4969  // Monotonic load/store is legal for all targets
4970  if (cast<AtomicSDNode>(Op)->getOrdering() <= Monotonic)
4971    return Op;
4972
4973  // Aquire/Release load/store is not legal for targets without a
4974  // dmb or equivalent available.
4975  return SDValue();
4976}
4977
4978
4979static void
4980ReplaceATOMIC_OP_64(SDNode *Node, SmallVectorImpl<SDValue>& Results,
4981                    SelectionDAG &DAG, unsigned NewOp) {
4982  DebugLoc dl = Node->getDebugLoc();
4983  assert (Node->getValueType(0) == MVT::i64 &&
4984          "Only know how to expand i64 atomics");
4985
4986  SmallVector<SDValue, 6> Ops;
4987  Ops.push_back(Node->getOperand(0)); // Chain
4988  Ops.push_back(Node->getOperand(1)); // Ptr
4989  // Low part of Val1
4990  Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
4991                            Node->getOperand(2), DAG.getIntPtrConstant(0)));
4992  // High part of Val1
4993  Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
4994                            Node->getOperand(2), DAG.getIntPtrConstant(1)));
4995  if (NewOp == ARMISD::ATOMCMPXCHG64_DAG) {
4996    // High part of Val1
4997    Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
4998                              Node->getOperand(3), DAG.getIntPtrConstant(0)));
4999    // High part of Val2
5000    Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5001                              Node->getOperand(3), DAG.getIntPtrConstant(1)));
5002  }
5003  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
5004  SDValue Result =
5005    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops.data(), Ops.size(), MVT::i64,
5006                            cast<MemSDNode>(Node)->getMemOperand());
5007  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1) };
5008  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
5009  Results.push_back(Result.getValue(2));
5010}
5011
5012SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
5013  switch (Op.getOpcode()) {
5014  default: llvm_unreachable("Don't know how to custom lower this!");
5015  case ISD::ConstantPool:  return LowerConstantPool(Op, DAG);
5016  case ISD::BlockAddress:  return LowerBlockAddress(Op, DAG);
5017  case ISD::GlobalAddress:
5018    return Subtarget->isTargetDarwin() ? LowerGlobalAddressDarwin(Op, DAG) :
5019      LowerGlobalAddressELF(Op, DAG);
5020  case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
5021  case ISD::SELECT:        return LowerSELECT(Op, DAG);
5022  case ISD::SELECT_CC:     return LowerSELECT_CC(Op, DAG);
5023  case ISD::BR_CC:         return LowerBR_CC(Op, DAG);
5024  case ISD::BR_JT:         return LowerBR_JT(Op, DAG);
5025  case ISD::VASTART:       return LowerVASTART(Op, DAG);
5026  case ISD::MEMBARRIER:    return LowerMEMBARRIER(Op, DAG, Subtarget);
5027  case ISD::ATOMIC_FENCE:  return LowerATOMIC_FENCE(Op, DAG, Subtarget);
5028  case ISD::PREFETCH:      return LowerPREFETCH(Op, DAG, Subtarget);
5029  case ISD::SINT_TO_FP:
5030  case ISD::UINT_TO_FP:    return LowerINT_TO_FP(Op, DAG);
5031  case ISD::FP_TO_SINT:
5032  case ISD::FP_TO_UINT:    return LowerFP_TO_INT(Op, DAG);
5033  case ISD::FCOPYSIGN:     return LowerFCOPYSIGN(Op, DAG);
5034  case ISD::RETURNADDR:    return LowerRETURNADDR(Op, DAG);
5035  case ISD::FRAMEADDR:     return LowerFRAMEADDR(Op, DAG);
5036  case ISD::GLOBAL_OFFSET_TABLE: return LowerGLOBAL_OFFSET_TABLE(Op, DAG);
5037  case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG);
5038  case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG);
5039  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG,
5040                                                               Subtarget);
5041  case ISD::BITCAST:       return ExpandBITCAST(Op.getNode(), DAG);
5042  case ISD::SHL:
5043  case ISD::SRL:
5044  case ISD::SRA:           return LowerShift(Op.getNode(), DAG, Subtarget);
5045  case ISD::SHL_PARTS:     return LowerShiftLeftParts(Op, DAG);
5046  case ISD::SRL_PARTS:
5047  case ISD::SRA_PARTS:     return LowerShiftRightParts(Op, DAG);
5048  case ISD::CTTZ:          return LowerCTTZ(Op.getNode(), DAG, Subtarget);
5049  case ISD::SETCC:         return LowerVSETCC(Op, DAG);
5050  case ISD::BUILD_VECTOR:  return LowerBUILD_VECTOR(Op, DAG, Subtarget);
5051  case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
5052  case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
5053  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
5054  case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
5055  case ISD::FLT_ROUNDS_:   return LowerFLT_ROUNDS_(Op, DAG);
5056  case ISD::MUL:           return LowerMUL(Op, DAG);
5057  case ISD::SDIV:          return LowerSDIV(Op, DAG);
5058  case ISD::UDIV:          return LowerUDIV(Op, DAG);
5059  case ISD::ADDC:
5060  case ISD::ADDE:
5061  case ISD::SUBC:
5062  case ISD::SUBE:          return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
5063  case ISD::ATOMIC_LOAD:
5064  case ISD::ATOMIC_STORE:  return LowerAtomicLoadStore(Op, DAG);
5065  }
5066  return SDValue();
5067}
5068
5069/// ReplaceNodeResults - Replace the results of node with an illegal result
5070/// type with new values built out of custom code.
5071void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
5072                                           SmallVectorImpl<SDValue>&Results,
5073                                           SelectionDAG &DAG) const {
5074  SDValue Res;
5075  switch (N->getOpcode()) {
5076  default:
5077    llvm_unreachable("Don't know how to custom expand this!");
5078    break;
5079  case ISD::BITCAST:
5080    Res = ExpandBITCAST(N, DAG);
5081    break;
5082  case ISD::SRL:
5083  case ISD::SRA:
5084    Res = Expand64BitShift(N, DAG, Subtarget);
5085    break;
5086  case ISD::ATOMIC_LOAD_ADD:
5087    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMADD64_DAG);
5088    return;
5089  case ISD::ATOMIC_LOAD_AND:
5090    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMAND64_DAG);
5091    return;
5092  case ISD::ATOMIC_LOAD_NAND:
5093    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMNAND64_DAG);
5094    return;
5095  case ISD::ATOMIC_LOAD_OR:
5096    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMOR64_DAG);
5097    return;
5098  case ISD::ATOMIC_LOAD_SUB:
5099    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMSUB64_DAG);
5100    return;
5101  case ISD::ATOMIC_LOAD_XOR:
5102    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMXOR64_DAG);
5103    return;
5104  case ISD::ATOMIC_SWAP:
5105    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMSWAP64_DAG);
5106    return;
5107  case ISD::ATOMIC_CMP_SWAP:
5108    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMCMPXCHG64_DAG);
5109    return;
5110  }
5111  if (Res.getNode())
5112    Results.push_back(Res);
5113}
5114
5115//===----------------------------------------------------------------------===//
5116//                           ARM Scheduler Hooks
5117//===----------------------------------------------------------------------===//
5118
5119MachineBasicBlock *
5120ARMTargetLowering::EmitAtomicCmpSwap(MachineInstr *MI,
5121                                     MachineBasicBlock *BB,
5122                                     unsigned Size) const {
5123  unsigned dest    = MI->getOperand(0).getReg();
5124  unsigned ptr     = MI->getOperand(1).getReg();
5125  unsigned oldval  = MI->getOperand(2).getReg();
5126  unsigned newval  = MI->getOperand(3).getReg();
5127  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5128  DebugLoc dl = MI->getDebugLoc();
5129  bool isThumb2 = Subtarget->isThumb2();
5130
5131  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
5132  unsigned scratch =
5133    MRI.createVirtualRegister(isThumb2 ? ARM::rGPRRegisterClass
5134                                       : ARM::GPRRegisterClass);
5135
5136  if (isThumb2) {
5137    MRI.constrainRegClass(dest, ARM::rGPRRegisterClass);
5138    MRI.constrainRegClass(oldval, ARM::rGPRRegisterClass);
5139    MRI.constrainRegClass(newval, ARM::rGPRRegisterClass);
5140  }
5141
5142  unsigned ldrOpc, strOpc;
5143  switch (Size) {
5144  default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
5145  case 1:
5146    ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
5147    strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
5148    break;
5149  case 2:
5150    ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
5151    strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
5152    break;
5153  case 4:
5154    ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
5155    strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
5156    break;
5157  }
5158
5159  MachineFunction *MF = BB->getParent();
5160  const BasicBlock *LLVM_BB = BB->getBasicBlock();
5161  MachineFunction::iterator It = BB;
5162  ++It; // insert the new blocks after the current block
5163
5164  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
5165  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
5166  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5167  MF->insert(It, loop1MBB);
5168  MF->insert(It, loop2MBB);
5169  MF->insert(It, exitMBB);
5170
5171  // Transfer the remainder of BB and its successor edges to exitMBB.
5172  exitMBB->splice(exitMBB->begin(), BB,
5173                  llvm::next(MachineBasicBlock::iterator(MI)),
5174                  BB->end());
5175  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5176
5177  //  thisMBB:
5178  //   ...
5179  //   fallthrough --> loop1MBB
5180  BB->addSuccessor(loop1MBB);
5181
5182  // loop1MBB:
5183  //   ldrex dest, [ptr]
5184  //   cmp dest, oldval
5185  //   bne exitMBB
5186  BB = loop1MBB;
5187  MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
5188  if (ldrOpc == ARM::t2LDREX)
5189    MIB.addImm(0);
5190  AddDefaultPred(MIB);
5191  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
5192                 .addReg(dest).addReg(oldval));
5193  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5194    .addMBB(exitMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5195  BB->addSuccessor(loop2MBB);
5196  BB->addSuccessor(exitMBB);
5197
5198  // loop2MBB:
5199  //   strex scratch, newval, [ptr]
5200  //   cmp scratch, #0
5201  //   bne loop1MBB
5202  BB = loop2MBB;
5203  MIB = BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(newval).addReg(ptr);
5204  if (strOpc == ARM::t2STREX)
5205    MIB.addImm(0);
5206  AddDefaultPred(MIB);
5207  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
5208                 .addReg(scratch).addImm(0));
5209  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5210    .addMBB(loop1MBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5211  BB->addSuccessor(loop1MBB);
5212  BB->addSuccessor(exitMBB);
5213
5214  //  exitMBB:
5215  //   ...
5216  BB = exitMBB;
5217
5218  MI->eraseFromParent();   // The instruction is gone now.
5219
5220  return BB;
5221}
5222
5223MachineBasicBlock *
5224ARMTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
5225                                    unsigned Size, unsigned BinOpcode) const {
5226  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
5227  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5228
5229  const BasicBlock *LLVM_BB = BB->getBasicBlock();
5230  MachineFunction *MF = BB->getParent();
5231  MachineFunction::iterator It = BB;
5232  ++It;
5233
5234  unsigned dest = MI->getOperand(0).getReg();
5235  unsigned ptr = MI->getOperand(1).getReg();
5236  unsigned incr = MI->getOperand(2).getReg();
5237  DebugLoc dl = MI->getDebugLoc();
5238  bool isThumb2 = Subtarget->isThumb2();
5239
5240  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
5241  if (isThumb2) {
5242    MRI.constrainRegClass(dest, ARM::rGPRRegisterClass);
5243    MRI.constrainRegClass(ptr, ARM::rGPRRegisterClass);
5244  }
5245
5246  unsigned ldrOpc, strOpc;
5247  switch (Size) {
5248  default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
5249  case 1:
5250    ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
5251    strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
5252    break;
5253  case 2:
5254    ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
5255    strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
5256    break;
5257  case 4:
5258    ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
5259    strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
5260    break;
5261  }
5262
5263  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5264  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5265  MF->insert(It, loopMBB);
5266  MF->insert(It, exitMBB);
5267
5268  // Transfer the remainder of BB and its successor edges to exitMBB.
5269  exitMBB->splice(exitMBB->begin(), BB,
5270                  llvm::next(MachineBasicBlock::iterator(MI)),
5271                  BB->end());
5272  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5273
5274  TargetRegisterClass *TRC =
5275    isThumb2 ? ARM::tGPRRegisterClass : ARM::GPRRegisterClass;
5276  unsigned scratch = MRI.createVirtualRegister(TRC);
5277  unsigned scratch2 = (!BinOpcode) ? incr : MRI.createVirtualRegister(TRC);
5278
5279  //  thisMBB:
5280  //   ...
5281  //   fallthrough --> loopMBB
5282  BB->addSuccessor(loopMBB);
5283
5284  //  loopMBB:
5285  //   ldrex dest, ptr
5286  //   <binop> scratch2, dest, incr
5287  //   strex scratch, scratch2, ptr
5288  //   cmp scratch, #0
5289  //   bne- loopMBB
5290  //   fallthrough --> exitMBB
5291  BB = loopMBB;
5292  MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
5293  if (ldrOpc == ARM::t2LDREX)
5294    MIB.addImm(0);
5295  AddDefaultPred(MIB);
5296  if (BinOpcode) {
5297    // operand order needs to go the other way for NAND
5298    if (BinOpcode == ARM::BICrr || BinOpcode == ARM::t2BICrr)
5299      AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
5300                     addReg(incr).addReg(dest)).addReg(0);
5301    else
5302      AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
5303                     addReg(dest).addReg(incr)).addReg(0);
5304  }
5305
5306  MIB = BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(scratch2).addReg(ptr);
5307  if (strOpc == ARM::t2STREX)
5308    MIB.addImm(0);
5309  AddDefaultPred(MIB);
5310  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
5311                 .addReg(scratch).addImm(0));
5312  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5313    .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5314
5315  BB->addSuccessor(loopMBB);
5316  BB->addSuccessor(exitMBB);
5317
5318  //  exitMBB:
5319  //   ...
5320  BB = exitMBB;
5321
5322  MI->eraseFromParent();   // The instruction is gone now.
5323
5324  return BB;
5325}
5326
5327MachineBasicBlock *
5328ARMTargetLowering::EmitAtomicBinaryMinMax(MachineInstr *MI,
5329                                          MachineBasicBlock *BB,
5330                                          unsigned Size,
5331                                          bool signExtend,
5332                                          ARMCC::CondCodes Cond) const {
5333  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5334
5335  const BasicBlock *LLVM_BB = BB->getBasicBlock();
5336  MachineFunction *MF = BB->getParent();
5337  MachineFunction::iterator It = BB;
5338  ++It;
5339
5340  unsigned dest = MI->getOperand(0).getReg();
5341  unsigned ptr = MI->getOperand(1).getReg();
5342  unsigned incr = MI->getOperand(2).getReg();
5343  unsigned oldval = dest;
5344  DebugLoc dl = MI->getDebugLoc();
5345  bool isThumb2 = Subtarget->isThumb2();
5346
5347  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
5348  if (isThumb2) {
5349    MRI.constrainRegClass(dest, ARM::rGPRRegisterClass);
5350    MRI.constrainRegClass(ptr, ARM::rGPRRegisterClass);
5351  }
5352
5353  unsigned ldrOpc, strOpc, extendOpc;
5354  switch (Size) {
5355  default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
5356  case 1:
5357    ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
5358    strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
5359    extendOpc = isThumb2 ? ARM::t2SXTB : ARM::SXTB;
5360    break;
5361  case 2:
5362    ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
5363    strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
5364    extendOpc = isThumb2 ? ARM::t2SXTH : ARM::SXTH;
5365    break;
5366  case 4:
5367    ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
5368    strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
5369    extendOpc = 0;
5370    break;
5371  }
5372
5373  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5374  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5375  MF->insert(It, loopMBB);
5376  MF->insert(It, exitMBB);
5377
5378  // Transfer the remainder of BB and its successor edges to exitMBB.
5379  exitMBB->splice(exitMBB->begin(), BB,
5380                  llvm::next(MachineBasicBlock::iterator(MI)),
5381                  BB->end());
5382  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5383
5384  TargetRegisterClass *TRC =
5385    isThumb2 ? ARM::tGPRRegisterClass : ARM::GPRRegisterClass;
5386  unsigned scratch = MRI.createVirtualRegister(TRC);
5387  unsigned scratch2 = MRI.createVirtualRegister(TRC);
5388
5389  //  thisMBB:
5390  //   ...
5391  //   fallthrough --> loopMBB
5392  BB->addSuccessor(loopMBB);
5393
5394  //  loopMBB:
5395  //   ldrex dest, ptr
5396  //   (sign extend dest, if required)
5397  //   cmp dest, incr
5398  //   cmov.cond scratch2, dest, incr
5399  //   strex scratch, scratch2, ptr
5400  //   cmp scratch, #0
5401  //   bne- loopMBB
5402  //   fallthrough --> exitMBB
5403  BB = loopMBB;
5404  MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
5405  if (ldrOpc == ARM::t2LDREX)
5406    MIB.addImm(0);
5407  AddDefaultPred(MIB);
5408
5409  // Sign extend the value, if necessary.
5410  if (signExtend && extendOpc) {
5411    oldval = MRI.createVirtualRegister(ARM::GPRRegisterClass);
5412    AddDefaultPred(BuildMI(BB, dl, TII->get(extendOpc), oldval)
5413                     .addReg(dest)
5414                     .addImm(0));
5415  }
5416
5417  // Build compare and cmov instructions.
5418  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
5419                 .addReg(oldval).addReg(incr));
5420  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2MOVCCr : ARM::MOVCCr), scratch2)
5421         .addReg(oldval).addReg(incr).addImm(Cond).addReg(ARM::CPSR);
5422
5423  MIB = BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(scratch2).addReg(ptr);
5424  if (strOpc == ARM::t2STREX)
5425    MIB.addImm(0);
5426  AddDefaultPred(MIB);
5427  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
5428                 .addReg(scratch).addImm(0));
5429  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5430    .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5431
5432  BB->addSuccessor(loopMBB);
5433  BB->addSuccessor(exitMBB);
5434
5435  //  exitMBB:
5436  //   ...
5437  BB = exitMBB;
5438
5439  MI->eraseFromParent();   // The instruction is gone now.
5440
5441  return BB;
5442}
5443
5444MachineBasicBlock *
5445ARMTargetLowering::EmitAtomicBinary64(MachineInstr *MI, MachineBasicBlock *BB,
5446                                      unsigned Op1, unsigned Op2,
5447                                      bool NeedsCarry, bool IsCmpxchg) const {
5448  // This also handles ATOMIC_SWAP, indicated by Op1==0.
5449  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5450
5451  const BasicBlock *LLVM_BB = BB->getBasicBlock();
5452  MachineFunction *MF = BB->getParent();
5453  MachineFunction::iterator It = BB;
5454  ++It;
5455
5456  unsigned destlo = MI->getOperand(0).getReg();
5457  unsigned desthi = MI->getOperand(1).getReg();
5458  unsigned ptr = MI->getOperand(2).getReg();
5459  unsigned vallo = MI->getOperand(3).getReg();
5460  unsigned valhi = MI->getOperand(4).getReg();
5461  DebugLoc dl = MI->getDebugLoc();
5462  bool isThumb2 = Subtarget->isThumb2();
5463
5464  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
5465  if (isThumb2) {
5466    MRI.constrainRegClass(destlo, ARM::rGPRRegisterClass);
5467    MRI.constrainRegClass(desthi, ARM::rGPRRegisterClass);
5468    MRI.constrainRegClass(ptr, ARM::rGPRRegisterClass);
5469  }
5470
5471  unsigned ldrOpc = isThumb2 ? ARM::t2LDREXD : ARM::LDREXD;
5472  unsigned strOpc = isThumb2 ? ARM::t2STREXD : ARM::STREXD;
5473
5474  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5475  MachineBasicBlock *contBB = 0, *cont2BB = 0;
5476  if (IsCmpxchg) {
5477    contBB = MF->CreateMachineBasicBlock(LLVM_BB);
5478    cont2BB = MF->CreateMachineBasicBlock(LLVM_BB);
5479  }
5480  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5481  MF->insert(It, loopMBB);
5482  if (IsCmpxchg) {
5483    MF->insert(It, contBB);
5484    MF->insert(It, cont2BB);
5485  }
5486  MF->insert(It, exitMBB);
5487
5488  // Transfer the remainder of BB and its successor edges to exitMBB.
5489  exitMBB->splice(exitMBB->begin(), BB,
5490                  llvm::next(MachineBasicBlock::iterator(MI)),
5491                  BB->end());
5492  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5493
5494  TargetRegisterClass *TRC =
5495    isThumb2 ? ARM::tGPRRegisterClass : ARM::GPRRegisterClass;
5496  unsigned storesuccess = MRI.createVirtualRegister(TRC);
5497
5498  //  thisMBB:
5499  //   ...
5500  //   fallthrough --> loopMBB
5501  BB->addSuccessor(loopMBB);
5502
5503  //  loopMBB:
5504  //   ldrexd r2, r3, ptr
5505  //   <binopa> r0, r2, incr
5506  //   <binopb> r1, r3, incr
5507  //   strexd storesuccess, r0, r1, ptr
5508  //   cmp storesuccess, #0
5509  //   bne- loopMBB
5510  //   fallthrough --> exitMBB
5511  //
5512  // Note that the registers are explicitly specified because there is not any
5513  // way to force the register allocator to allocate a register pair.
5514  //
5515  // FIXME: The hardcoded registers are not necessary for Thumb2, but we
5516  // need to properly enforce the restriction that the two output registers
5517  // for ldrexd must be different.
5518  BB = loopMBB;
5519  // Load
5520  AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc))
5521                 .addReg(ARM::R2, RegState::Define)
5522                 .addReg(ARM::R3, RegState::Define).addReg(ptr));
5523  // Copy r2/r3 into dest.  (This copy will normally be coalesced.)
5524  BuildMI(BB, dl, TII->get(TargetOpcode::COPY), destlo).addReg(ARM::R2);
5525  BuildMI(BB, dl, TII->get(TargetOpcode::COPY), desthi).addReg(ARM::R3);
5526
5527  if (IsCmpxchg) {
5528    // Add early exit
5529    for (unsigned i = 0; i < 2; i++) {
5530      AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr :
5531                                                         ARM::CMPrr))
5532                     .addReg(i == 0 ? destlo : desthi)
5533                     .addReg(i == 0 ? vallo : valhi));
5534      BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5535        .addMBB(exitMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5536      BB->addSuccessor(exitMBB);
5537      BB->addSuccessor(i == 0 ? contBB : cont2BB);
5538      BB = (i == 0 ? contBB : cont2BB);
5539    }
5540
5541    // Copy to physregs for strexd
5542    unsigned setlo = MI->getOperand(5).getReg();
5543    unsigned sethi = MI->getOperand(6).getReg();
5544    BuildMI(BB, dl, TII->get(TargetOpcode::COPY), ARM::R0).addReg(setlo);
5545    BuildMI(BB, dl, TII->get(TargetOpcode::COPY), ARM::R1).addReg(sethi);
5546  } else if (Op1) {
5547    // Perform binary operation
5548    AddDefaultPred(BuildMI(BB, dl, TII->get(Op1), ARM::R0)
5549                   .addReg(destlo).addReg(vallo))
5550        .addReg(NeedsCarry ? ARM::CPSR : 0, getDefRegState(NeedsCarry));
5551    AddDefaultPred(BuildMI(BB, dl, TII->get(Op2), ARM::R1)
5552                   .addReg(desthi).addReg(valhi)).addReg(0);
5553  } else {
5554    // Copy to physregs for strexd
5555    BuildMI(BB, dl, TII->get(TargetOpcode::COPY), ARM::R0).addReg(vallo);
5556    BuildMI(BB, dl, TII->get(TargetOpcode::COPY), ARM::R1).addReg(valhi);
5557  }
5558
5559  // Store
5560  AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), storesuccess)
5561                 .addReg(ARM::R0).addReg(ARM::R1).addReg(ptr));
5562  // Cmp+jump
5563  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
5564                 .addReg(storesuccess).addImm(0));
5565  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5566    .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5567
5568  BB->addSuccessor(loopMBB);
5569  BB->addSuccessor(exitMBB);
5570
5571  //  exitMBB:
5572  //   ...
5573  BB = exitMBB;
5574
5575  MI->eraseFromParent();   // The instruction is gone now.
5576
5577  return BB;
5578}
5579
5580/// SetupEntryBlockForSjLj - Insert code into the entry block that creates and
5581/// registers the function context.
5582void ARMTargetLowering::
5583SetupEntryBlockForSjLj(MachineInstr *MI, MachineBasicBlock *MBB,
5584                       MachineBasicBlock *DispatchBB, int FI) const {
5585  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5586  DebugLoc dl = MI->getDebugLoc();
5587  MachineFunction *MF = MBB->getParent();
5588  MachineRegisterInfo *MRI = &MF->getRegInfo();
5589  MachineConstantPool *MCP = MF->getConstantPool();
5590  ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>();
5591  const Function *F = MF->getFunction();
5592
5593  bool isThumb = Subtarget->isThumb();
5594  bool isThumb2 = Subtarget->isThumb2();
5595
5596  unsigned PCLabelId = AFI->createPICLabelUId();
5597  unsigned PCAdj = (isThumb || isThumb2) ? 4 : 8;
5598  ARMConstantPoolValue *CPV =
5599    ARMConstantPoolMBB::Create(F->getContext(), DispatchBB, PCLabelId, PCAdj);
5600  unsigned CPI = MCP->getConstantPoolIndex(CPV, 4);
5601
5602  const TargetRegisterClass *TRC =
5603    isThumb ? ARM::tGPRRegisterClass : ARM::GPRRegisterClass;
5604
5605  // Grab constant pool and fixed stack memory operands.
5606  MachineMemOperand *CPMMO =
5607    MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(),
5608                             MachineMemOperand::MOLoad, 4, 4);
5609
5610  MachineMemOperand *FIMMOSt =
5611    MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
5612                             MachineMemOperand::MOStore, 4, 4);
5613
5614  // Load the address of the dispatch MBB into the jump buffer.
5615  if (isThumb2) {
5616    // Incoming value: jbuf
5617    //   ldr.n  r5, LCPI1_1
5618    //   orr    r5, r5, #1
5619    //   add    r5, pc
5620    //   str    r5, [$jbuf, #+4] ; &jbuf[1]
5621    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
5622    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2LDRpci), NewVReg1)
5623                   .addConstantPoolIndex(CPI)
5624                   .addMemOperand(CPMMO));
5625    // Set the low bit because of thumb mode.
5626    unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
5627    AddDefaultCC(
5628      AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2ORRri), NewVReg2)
5629                     .addReg(NewVReg1, RegState::Kill)
5630                     .addImm(0x01)));
5631    unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
5632    BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg3)
5633      .addReg(NewVReg2, RegState::Kill)
5634      .addImm(PCLabelId);
5635    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2STRi12))
5636                   .addReg(NewVReg3, RegState::Kill)
5637                   .addFrameIndex(FI)
5638                   .addImm(36)  // &jbuf[1] :: pc
5639                   .addMemOperand(FIMMOSt));
5640  } else if (isThumb) {
5641    // Incoming value: jbuf
5642    //   ldr.n  r1, LCPI1_4
5643    //   add    r1, pc
5644    //   mov    r2, #1
5645    //   orrs   r1, r2
5646    //   add    r2, $jbuf, #+4 ; &jbuf[1]
5647    //   str    r1, [r2]
5648    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
5649    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tLDRpci), NewVReg1)
5650                   .addConstantPoolIndex(CPI)
5651                   .addMemOperand(CPMMO));
5652    unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
5653    BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg2)
5654      .addReg(NewVReg1, RegState::Kill)
5655      .addImm(PCLabelId);
5656    // Set the low bit because of thumb mode.
5657    unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
5658    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tMOVi8), NewVReg3)
5659                   .addReg(ARM::CPSR, RegState::Define)
5660                   .addImm(1));
5661    unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
5662    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tORR), NewVReg4)
5663                   .addReg(ARM::CPSR, RegState::Define)
5664                   .addReg(NewVReg2, RegState::Kill)
5665                   .addReg(NewVReg3, RegState::Kill));
5666    unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
5667    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tADDrSPi), NewVReg5)
5668                   .addFrameIndex(FI)
5669                   .addImm(36)); // &jbuf[1] :: pc
5670    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tSTRi))
5671                   .addReg(NewVReg4, RegState::Kill)
5672                   .addReg(NewVReg5, RegState::Kill)
5673                   .addImm(0)
5674                   .addMemOperand(FIMMOSt));
5675  } else {
5676    // Incoming value: jbuf
5677    //   ldr  r1, LCPI1_1
5678    //   add  r1, pc, r1
5679    //   str  r1, [$jbuf, #+4] ; &jbuf[1]
5680    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
5681    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::LDRi12),  NewVReg1)
5682                   .addConstantPoolIndex(CPI)
5683                   .addImm(0)
5684                   .addMemOperand(CPMMO));
5685    unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
5686    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::PICADD), NewVReg2)
5687                   .addReg(NewVReg1, RegState::Kill)
5688                   .addImm(PCLabelId));
5689    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::STRi12))
5690                   .addReg(NewVReg2, RegState::Kill)
5691                   .addFrameIndex(FI)
5692                   .addImm(36)  // &jbuf[1] :: pc
5693                   .addMemOperand(FIMMOSt));
5694  }
5695}
5696
5697MachineBasicBlock *ARMTargetLowering::
5698EmitSjLjDispatchBlock(MachineInstr *MI, MachineBasicBlock *MBB) const {
5699  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5700  DebugLoc dl = MI->getDebugLoc();
5701  MachineFunction *MF = MBB->getParent();
5702  MachineRegisterInfo *MRI = &MF->getRegInfo();
5703  ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>();
5704  MachineFrameInfo *MFI = MF->getFrameInfo();
5705  int FI = MFI->getFunctionContextIndex();
5706
5707  const TargetRegisterClass *TRC =
5708    Subtarget->isThumb() ? ARM::tGPRRegisterClass : ARM::GPRRegisterClass;
5709
5710  // Get a mapping of the call site numbers to all of the landing pads they're
5711  // associated with.
5712  DenseMap<unsigned, SmallVector<MachineBasicBlock*, 2> > CallSiteNumToLPad;
5713  unsigned MaxCSNum = 0;
5714  MachineModuleInfo &MMI = MF->getMMI();
5715  for (MachineFunction::iterator BB = MF->begin(), E = MF->end(); BB != E; ++BB) {
5716    if (!BB->isLandingPad()) continue;
5717
5718    // FIXME: We should assert that the EH_LABEL is the first MI in the landing
5719    // pad.
5720    for (MachineBasicBlock::iterator
5721           II = BB->begin(), IE = BB->end(); II != IE; ++II) {
5722      if (!II->isEHLabel()) continue;
5723
5724      MCSymbol *Sym = II->getOperand(0).getMCSymbol();
5725      if (!MMI.hasCallSiteLandingPad(Sym)) continue;
5726
5727      SmallVectorImpl<unsigned> &CallSiteIdxs = MMI.getCallSiteLandingPad(Sym);
5728      for (SmallVectorImpl<unsigned>::iterator
5729             CSI = CallSiteIdxs.begin(), CSE = CallSiteIdxs.end();
5730           CSI != CSE; ++CSI) {
5731        CallSiteNumToLPad[*CSI].push_back(BB);
5732        MaxCSNum = std::max(MaxCSNum, *CSI);
5733      }
5734      break;
5735    }
5736  }
5737
5738  // Get an ordered list of the machine basic blocks for the jump table.
5739  std::vector<MachineBasicBlock*> LPadList;
5740  SmallPtrSet<MachineBasicBlock*, 64> InvokeBBs;
5741  LPadList.reserve(CallSiteNumToLPad.size());
5742  for (unsigned I = 1; I <= MaxCSNum; ++I) {
5743    SmallVectorImpl<MachineBasicBlock*> &MBBList = CallSiteNumToLPad[I];
5744    for (SmallVectorImpl<MachineBasicBlock*>::iterator
5745           II = MBBList.begin(), IE = MBBList.end(); II != IE; ++II) {
5746      LPadList.push_back(*II);
5747      InvokeBBs.insert((*II)->pred_begin(), (*II)->pred_end());
5748    }
5749  }
5750
5751  assert(!LPadList.empty() &&
5752         "No landing pad destinations for the dispatch jump table!");
5753
5754  // Create the jump table and associated information.
5755  MachineJumpTableInfo *JTI =
5756    MF->getOrCreateJumpTableInfo(MachineJumpTableInfo::EK_Inline);
5757  unsigned MJTI = JTI->createJumpTableIndex(LPadList);
5758  unsigned UId = AFI->createJumpTableUId();
5759
5760  // Create the MBBs for the dispatch code.
5761
5762  // Shove the dispatch's address into the return slot in the function context.
5763  MachineBasicBlock *DispatchBB = MF->CreateMachineBasicBlock();
5764  DispatchBB->setIsLandingPad();
5765
5766  MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
5767  BuildMI(TrapBB, dl, TII->get(Subtarget->isThumb() ? ARM::tTRAP : ARM::TRAP));
5768  DispatchBB->addSuccessor(TrapBB);
5769
5770  MachineBasicBlock *DispContBB = MF->CreateMachineBasicBlock();
5771  DispatchBB->addSuccessor(DispContBB);
5772
5773  // Insert and MBBs.
5774  MF->insert(MF->end(), DispatchBB);
5775  MF->insert(MF->end(), DispContBB);
5776  MF->insert(MF->end(), TrapBB);
5777
5778  // Insert code into the entry block that creates and registers the function
5779  // context.
5780  SetupEntryBlockForSjLj(MI, MBB, DispatchBB, FI);
5781
5782  MachineMemOperand *FIMMOLd =
5783    MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
5784                             MachineMemOperand::MOLoad |
5785                             MachineMemOperand::MOVolatile, 4, 4);
5786
5787  if (AFI->isThumb1OnlyFunction())
5788    BuildMI(DispatchBB, dl, TII->get(ARM::tInt_eh_sjlj_dispatchsetup));
5789  else if (!Subtarget->hasVFP2())
5790    BuildMI(DispatchBB, dl, TII->get(ARM::Int_eh_sjlj_dispatchsetup_nofp));
5791  else
5792    BuildMI(DispatchBB, dl, TII->get(ARM::Int_eh_sjlj_dispatchsetup));
5793
5794  unsigned NumLPads = LPadList.size();
5795  if (Subtarget->isThumb2()) {
5796    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
5797    AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2LDRi12), NewVReg1)
5798                   .addFrameIndex(FI)
5799                   .addImm(4)
5800                   .addMemOperand(FIMMOLd));
5801
5802    if (NumLPads < 256) {
5803      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPri))
5804                     .addReg(NewVReg1)
5805                     .addImm(LPadList.size()));
5806    } else {
5807      unsigned VReg1 = MRI->createVirtualRegister(TRC);
5808      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVi16), VReg1)
5809                     .addImm(NumLPads & 0xFFFF));
5810
5811      unsigned VReg2 = VReg1;
5812      if ((NumLPads & 0xFFFF0000) != 0) {
5813        VReg2 = MRI->createVirtualRegister(TRC);
5814        AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVTi16), VReg2)
5815                       .addReg(VReg1)
5816                       .addImm(NumLPads >> 16));
5817      }
5818
5819      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPrr))
5820                     .addReg(NewVReg1)
5821                     .addReg(VReg2));
5822    }
5823
5824    BuildMI(DispatchBB, dl, TII->get(ARM::t2Bcc))
5825      .addMBB(TrapBB)
5826      .addImm(ARMCC::HI)
5827      .addReg(ARM::CPSR);
5828
5829    unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
5830    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::t2LEApcrelJT),NewVReg3)
5831                   .addJumpTableIndex(MJTI)
5832                   .addImm(UId));
5833
5834    unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
5835    AddDefaultCC(
5836      AddDefaultPred(
5837        BuildMI(DispContBB, dl, TII->get(ARM::t2ADDrs), NewVReg4)
5838        .addReg(NewVReg3, RegState::Kill)
5839        .addReg(NewVReg1)
5840        .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))));
5841
5842    BuildMI(DispContBB, dl, TII->get(ARM::t2BR_JT))
5843      .addReg(NewVReg4, RegState::Kill)
5844      .addReg(NewVReg1)
5845      .addJumpTableIndex(MJTI)
5846      .addImm(UId);
5847  } else if (Subtarget->isThumb()) {
5848    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
5849    AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tLDRspi), NewVReg1)
5850                   .addFrameIndex(FI)
5851                   .addImm(1)
5852                   .addMemOperand(FIMMOLd));
5853
5854    if (NumLPads < 256) {
5855      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tCMPi8))
5856                     .addReg(NewVReg1)
5857                     .addImm(NumLPads));
5858    } else {
5859      MachineConstantPool *ConstantPool = MF->getConstantPool();
5860      Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
5861      const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
5862
5863      // MachineConstantPool wants an explicit alignment.
5864      unsigned Align = getTargetData()->getPrefTypeAlignment(Int32Ty);
5865      if (Align == 0)
5866        Align = getTargetData()->getTypeAllocSize(C->getType());
5867      unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
5868
5869      unsigned VReg1 = MRI->createVirtualRegister(TRC);
5870      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tLDRpci))
5871                     .addReg(VReg1, RegState::Define)
5872                     .addConstantPoolIndex(Idx));
5873      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tCMPr))
5874                     .addReg(NewVReg1)
5875                     .addReg(VReg1));
5876    }
5877
5878    BuildMI(DispatchBB, dl, TII->get(ARM::tBcc))
5879      .addMBB(TrapBB)
5880      .addImm(ARMCC::HI)
5881      .addReg(ARM::CPSR);
5882
5883    unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
5884    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLSLri), NewVReg2)
5885                   .addReg(ARM::CPSR, RegState::Define)
5886                   .addReg(NewVReg1)
5887                   .addImm(2));
5888
5889    unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
5890    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLEApcrelJT), NewVReg3)
5891                   .addJumpTableIndex(MJTI)
5892                   .addImm(UId));
5893
5894    unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
5895    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg4)
5896                   .addReg(ARM::CPSR, RegState::Define)
5897                   .addReg(NewVReg2, RegState::Kill)
5898                   .addReg(NewVReg3));
5899
5900    MachineMemOperand *JTMMOLd =
5901      MF->getMachineMemOperand(MachinePointerInfo::getJumpTable(),
5902                               MachineMemOperand::MOLoad, 4, 4);
5903
5904    unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
5905    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLDRi), NewVReg5)
5906                   .addReg(NewVReg4, RegState::Kill)
5907                   .addImm(0)
5908                   .addMemOperand(JTMMOLd));
5909
5910    unsigned NewVReg6 = MRI->createVirtualRegister(TRC);
5911    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg6)
5912                   .addReg(ARM::CPSR, RegState::Define)
5913                   .addReg(NewVReg5, RegState::Kill)
5914                   .addReg(NewVReg3));
5915
5916    BuildMI(DispContBB, dl, TII->get(ARM::tBR_JTr))
5917      .addReg(NewVReg6, RegState::Kill)
5918      .addJumpTableIndex(MJTI)
5919      .addImm(UId);
5920  } else {
5921    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
5922    AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::LDRi12), NewVReg1)
5923                   .addFrameIndex(FI)
5924                   .addImm(4)
5925                   .addMemOperand(FIMMOLd));
5926
5927    if (NumLPads < 256) {
5928      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPri))
5929                     .addReg(NewVReg1)
5930                     .addImm(NumLPads));
5931    } else if (Subtarget->hasV6T2Ops() && isUInt<16>(NumLPads)) {
5932      unsigned VReg1 = MRI->createVirtualRegister(TRC);
5933      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::MOVi16), VReg1)
5934                     .addImm(NumLPads & 0xFFFF));
5935
5936      unsigned VReg2 = VReg1;
5937      if ((NumLPads & 0xFFFF0000) != 0) {
5938        VReg2 = MRI->createVirtualRegister(TRC);
5939        AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::MOVTi16), VReg2)
5940                       .addReg(VReg1)
5941                       .addImm(NumLPads >> 16));
5942      }
5943
5944      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
5945                     .addReg(NewVReg1)
5946                     .addReg(VReg2));
5947    } else {
5948      MachineConstantPool *ConstantPool = MF->getConstantPool();
5949      Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
5950      const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
5951
5952      // MachineConstantPool wants an explicit alignment.
5953      unsigned Align = getTargetData()->getPrefTypeAlignment(Int32Ty);
5954      if (Align == 0)
5955        Align = getTargetData()->getTypeAllocSize(C->getType());
5956      unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
5957
5958      unsigned VReg1 = MRI->createVirtualRegister(TRC);
5959      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::LDRcp))
5960                     .addReg(VReg1, RegState::Define)
5961                     .addConstantPoolIndex(Idx)
5962                     .addImm(0));
5963      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
5964                     .addReg(NewVReg1)
5965                     .addReg(VReg1, RegState::Kill));
5966    }
5967
5968    BuildMI(DispatchBB, dl, TII->get(ARM::Bcc))
5969      .addMBB(TrapBB)
5970      .addImm(ARMCC::HI)
5971      .addReg(ARM::CPSR);
5972
5973    unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
5974    AddDefaultCC(
5975      AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::MOVsi), NewVReg3)
5976                     .addReg(NewVReg1)
5977                     .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))));
5978    unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
5979    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::LEApcrelJT), NewVReg4)
5980                   .addJumpTableIndex(MJTI)
5981                   .addImm(UId));
5982
5983    MachineMemOperand *JTMMOLd =
5984      MF->getMachineMemOperand(MachinePointerInfo::getJumpTable(),
5985                               MachineMemOperand::MOLoad, 4, 4);
5986    unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
5987    AddDefaultPred(
5988      BuildMI(DispContBB, dl, TII->get(ARM::LDRrs), NewVReg5)
5989      .addReg(NewVReg3, RegState::Kill)
5990      .addReg(NewVReg4)
5991      .addImm(0)
5992      .addMemOperand(JTMMOLd));
5993
5994    BuildMI(DispContBB, dl, TII->get(ARM::BR_JTadd))
5995      .addReg(NewVReg5, RegState::Kill)
5996      .addReg(NewVReg4)
5997      .addJumpTableIndex(MJTI)
5998      .addImm(UId);
5999  }
6000
6001  // Add the jump table entries as successors to the MBB.
6002  MachineBasicBlock *PrevMBB = 0;
6003  for (std::vector<MachineBasicBlock*>::iterator
6004         I = LPadList.begin(), E = LPadList.end(); I != E; ++I) {
6005    MachineBasicBlock *CurMBB = *I;
6006    if (PrevMBB != CurMBB)
6007      DispContBB->addSuccessor(CurMBB);
6008    PrevMBB = CurMBB;
6009  }
6010
6011  // N.B. the order the invoke BBs are processed in doesn't matter here.
6012  const ARMBaseInstrInfo *AII = static_cast<const ARMBaseInstrInfo*>(TII);
6013  const ARMBaseRegisterInfo &RI = AII->getRegisterInfo();
6014  const unsigned *SavedRegs = RI.getCalleeSavedRegs(MF);
6015  SmallVector<MachineBasicBlock*, 64> MBBLPads;
6016  for (SmallPtrSet<MachineBasicBlock*, 64>::iterator
6017         I = InvokeBBs.begin(), E = InvokeBBs.end(); I != E; ++I) {
6018    MachineBasicBlock *BB = *I;
6019
6020    // Remove the landing pad successor from the invoke block and replace it
6021    // with the new dispatch block.
6022    SmallVector<MachineBasicBlock*, 4> Successors(BB->succ_begin(),
6023                                                  BB->succ_end());
6024    while (!Successors.empty()) {
6025      MachineBasicBlock *SMBB = Successors.pop_back_val();
6026      if (SMBB->isLandingPad()) {
6027        BB->removeSuccessor(SMBB);
6028        MBBLPads.push_back(SMBB);
6029      }
6030    }
6031
6032    BB->addSuccessor(DispatchBB);
6033
6034    // Find the invoke call and mark all of the callee-saved registers as
6035    // 'implicit defined' so that they're spilled. This prevents code from
6036    // moving instructions to before the EH block, where they will never be
6037    // executed.
6038    for (MachineBasicBlock::reverse_iterator
6039           II = BB->rbegin(), IE = BB->rend(); II != IE; ++II) {
6040      if (!II->isCall()) continue;
6041
6042      DenseMap<unsigned, bool> DefRegs;
6043      for (MachineInstr::mop_iterator
6044             OI = II->operands_begin(), OE = II->operands_end();
6045           OI != OE; ++OI) {
6046        if (!OI->isReg()) continue;
6047        DefRegs[OI->getReg()] = true;
6048      }
6049
6050      MachineInstrBuilder MIB(&*II);
6051
6052      for (unsigned i = 0; SavedRegs[i] != 0; ++i) {
6053        unsigned Reg = SavedRegs[i];
6054        if (Subtarget->isThumb2() &&
6055            !ARM::tGPRRegisterClass->contains(Reg) &&
6056            !ARM::hGPRRegisterClass->contains(Reg))
6057          continue;
6058        else if (Subtarget->isThumb1Only() &&
6059                 !ARM::tGPRRegisterClass->contains(Reg))
6060          continue;
6061        else if (!Subtarget->isThumb() &&
6062                 !ARM::GPRRegisterClass->contains(Reg))
6063          continue;
6064        if (!DefRegs[Reg])
6065          MIB.addReg(Reg, RegState::ImplicitDefine | RegState::Dead);
6066      }
6067
6068      break;
6069    }
6070  }
6071
6072  // Mark all former landing pads as non-landing pads. The dispatch is the only
6073  // landing pad now.
6074  for (SmallVectorImpl<MachineBasicBlock*>::iterator
6075         I = MBBLPads.begin(), E = MBBLPads.end(); I != E; ++I)
6076    (*I)->setIsLandingPad(false);
6077
6078  // The instruction is gone now.
6079  MI->eraseFromParent();
6080
6081  return MBB;
6082}
6083
6084static
6085MachineBasicBlock *OtherSucc(MachineBasicBlock *MBB, MachineBasicBlock *Succ) {
6086  for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
6087       E = MBB->succ_end(); I != E; ++I)
6088    if (*I != Succ)
6089      return *I;
6090  llvm_unreachable("Expecting a BB with two successors!");
6091}
6092
6093MachineBasicBlock *
6094ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
6095                                               MachineBasicBlock *BB) const {
6096  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6097  DebugLoc dl = MI->getDebugLoc();
6098  bool isThumb2 = Subtarget->isThumb2();
6099  switch (MI->getOpcode()) {
6100  default: {
6101    MI->dump();
6102    llvm_unreachable("Unexpected instr type to insert");
6103  }
6104  // The Thumb2 pre-indexed stores have the same MI operands, they just
6105  // define them differently in the .td files from the isel patterns, so
6106  // they need pseudos.
6107  case ARM::t2STR_preidx:
6108    MI->setDesc(TII->get(ARM::t2STR_PRE));
6109    return BB;
6110  case ARM::t2STRB_preidx:
6111    MI->setDesc(TII->get(ARM::t2STRB_PRE));
6112    return BB;
6113  case ARM::t2STRH_preidx:
6114    MI->setDesc(TII->get(ARM::t2STRH_PRE));
6115    return BB;
6116
6117  case ARM::STRi_preidx:
6118  case ARM::STRBi_preidx: {
6119    unsigned NewOpc = MI->getOpcode() == ARM::STRi_preidx ?
6120      ARM::STR_PRE_IMM : ARM::STRB_PRE_IMM;
6121    // Decode the offset.
6122    unsigned Offset = MI->getOperand(4).getImm();
6123    bool isSub = ARM_AM::getAM2Op(Offset) == ARM_AM::sub;
6124    Offset = ARM_AM::getAM2Offset(Offset);
6125    if (isSub)
6126      Offset = -Offset;
6127
6128    MachineMemOperand *MMO = *MI->memoperands_begin();
6129    BuildMI(*BB, MI, dl, TII->get(NewOpc))
6130      .addOperand(MI->getOperand(0))  // Rn_wb
6131      .addOperand(MI->getOperand(1))  // Rt
6132      .addOperand(MI->getOperand(2))  // Rn
6133      .addImm(Offset)                 // offset (skip GPR==zero_reg)
6134      .addOperand(MI->getOperand(5))  // pred
6135      .addOperand(MI->getOperand(6))
6136      .addMemOperand(MMO);
6137    MI->eraseFromParent();
6138    return BB;
6139  }
6140  case ARM::STRr_preidx:
6141  case ARM::STRBr_preidx:
6142  case ARM::STRH_preidx: {
6143    unsigned NewOpc;
6144    switch (MI->getOpcode()) {
6145    default: llvm_unreachable("unexpected opcode!");
6146    case ARM::STRr_preidx: NewOpc = ARM::STR_PRE_REG; break;
6147    case ARM::STRBr_preidx: NewOpc = ARM::STRB_PRE_REG; break;
6148    case ARM::STRH_preidx: NewOpc = ARM::STRH_PRE; break;
6149    }
6150    MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(NewOpc));
6151    for (unsigned i = 0; i < MI->getNumOperands(); ++i)
6152      MIB.addOperand(MI->getOperand(i));
6153    MI->eraseFromParent();
6154    return BB;
6155  }
6156  case ARM::ATOMIC_LOAD_ADD_I8:
6157     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
6158  case ARM::ATOMIC_LOAD_ADD_I16:
6159     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
6160  case ARM::ATOMIC_LOAD_ADD_I32:
6161     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
6162
6163  case ARM::ATOMIC_LOAD_AND_I8:
6164     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
6165  case ARM::ATOMIC_LOAD_AND_I16:
6166     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
6167  case ARM::ATOMIC_LOAD_AND_I32:
6168     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
6169
6170  case ARM::ATOMIC_LOAD_OR_I8:
6171     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
6172  case ARM::ATOMIC_LOAD_OR_I16:
6173     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
6174  case ARM::ATOMIC_LOAD_OR_I32:
6175     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
6176
6177  case ARM::ATOMIC_LOAD_XOR_I8:
6178     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
6179  case ARM::ATOMIC_LOAD_XOR_I16:
6180     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
6181  case ARM::ATOMIC_LOAD_XOR_I32:
6182     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
6183
6184  case ARM::ATOMIC_LOAD_NAND_I8:
6185     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
6186  case ARM::ATOMIC_LOAD_NAND_I16:
6187     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
6188  case ARM::ATOMIC_LOAD_NAND_I32:
6189     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
6190
6191  case ARM::ATOMIC_LOAD_SUB_I8:
6192     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
6193  case ARM::ATOMIC_LOAD_SUB_I16:
6194     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
6195  case ARM::ATOMIC_LOAD_SUB_I32:
6196     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
6197
6198  case ARM::ATOMIC_LOAD_MIN_I8:
6199     return EmitAtomicBinaryMinMax(MI, BB, 1, true, ARMCC::LT);
6200  case ARM::ATOMIC_LOAD_MIN_I16:
6201     return EmitAtomicBinaryMinMax(MI, BB, 2, true, ARMCC::LT);
6202  case ARM::ATOMIC_LOAD_MIN_I32:
6203     return EmitAtomicBinaryMinMax(MI, BB, 4, true, ARMCC::LT);
6204
6205  case ARM::ATOMIC_LOAD_MAX_I8:
6206     return EmitAtomicBinaryMinMax(MI, BB, 1, true, ARMCC::GT);
6207  case ARM::ATOMIC_LOAD_MAX_I16:
6208     return EmitAtomicBinaryMinMax(MI, BB, 2, true, ARMCC::GT);
6209  case ARM::ATOMIC_LOAD_MAX_I32:
6210     return EmitAtomicBinaryMinMax(MI, BB, 4, true, ARMCC::GT);
6211
6212  case ARM::ATOMIC_LOAD_UMIN_I8:
6213     return EmitAtomicBinaryMinMax(MI, BB, 1, false, ARMCC::LO);
6214  case ARM::ATOMIC_LOAD_UMIN_I16:
6215     return EmitAtomicBinaryMinMax(MI, BB, 2, false, ARMCC::LO);
6216  case ARM::ATOMIC_LOAD_UMIN_I32:
6217     return EmitAtomicBinaryMinMax(MI, BB, 4, false, ARMCC::LO);
6218
6219  case ARM::ATOMIC_LOAD_UMAX_I8:
6220     return EmitAtomicBinaryMinMax(MI, BB, 1, false, ARMCC::HI);
6221  case ARM::ATOMIC_LOAD_UMAX_I16:
6222     return EmitAtomicBinaryMinMax(MI, BB, 2, false, ARMCC::HI);
6223  case ARM::ATOMIC_LOAD_UMAX_I32:
6224     return EmitAtomicBinaryMinMax(MI, BB, 4, false, ARMCC::HI);
6225
6226  case ARM::ATOMIC_SWAP_I8:  return EmitAtomicBinary(MI, BB, 1, 0);
6227  case ARM::ATOMIC_SWAP_I16: return EmitAtomicBinary(MI, BB, 2, 0);
6228  case ARM::ATOMIC_SWAP_I32: return EmitAtomicBinary(MI, BB, 4, 0);
6229
6230  case ARM::ATOMIC_CMP_SWAP_I8:  return EmitAtomicCmpSwap(MI, BB, 1);
6231  case ARM::ATOMIC_CMP_SWAP_I16: return EmitAtomicCmpSwap(MI, BB, 2);
6232  case ARM::ATOMIC_CMP_SWAP_I32: return EmitAtomicCmpSwap(MI, BB, 4);
6233
6234
6235  case ARM::ATOMADD6432:
6236    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr,
6237                              isThumb2 ? ARM::t2ADCrr : ARM::ADCrr,
6238                              /*NeedsCarry*/ true);
6239  case ARM::ATOMSUB6432:
6240    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr,
6241                              isThumb2 ? ARM::t2SBCrr : ARM::SBCrr,
6242                              /*NeedsCarry*/ true);
6243  case ARM::ATOMOR6432:
6244    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr,
6245                              isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
6246  case ARM::ATOMXOR6432:
6247    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2EORrr : ARM::EORrr,
6248                              isThumb2 ? ARM::t2EORrr : ARM::EORrr);
6249  case ARM::ATOMAND6432:
6250    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr,
6251                              isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
6252  case ARM::ATOMSWAP6432:
6253    return EmitAtomicBinary64(MI, BB, 0, 0, false);
6254  case ARM::ATOMCMPXCHG6432:
6255    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr,
6256                              isThumb2 ? ARM::t2SBCrr : ARM::SBCrr,
6257                              /*NeedsCarry*/ false, /*IsCmpxchg*/true);
6258
6259  case ARM::tMOVCCr_pseudo: {
6260    // To "insert" a SELECT_CC instruction, we actually have to insert the
6261    // diamond control-flow pattern.  The incoming instruction knows the
6262    // destination vreg to set, the condition code register to branch on, the
6263    // true/false values to select between, and a branch opcode to use.
6264    const BasicBlock *LLVM_BB = BB->getBasicBlock();
6265    MachineFunction::iterator It = BB;
6266    ++It;
6267
6268    //  thisMBB:
6269    //  ...
6270    //   TrueVal = ...
6271    //   cmpTY ccX, r1, r2
6272    //   bCC copy1MBB
6273    //   fallthrough --> copy0MBB
6274    MachineBasicBlock *thisMBB  = BB;
6275    MachineFunction *F = BB->getParent();
6276    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
6277    MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
6278    F->insert(It, copy0MBB);
6279    F->insert(It, sinkMBB);
6280
6281    // Transfer the remainder of BB and its successor edges to sinkMBB.
6282    sinkMBB->splice(sinkMBB->begin(), BB,
6283                    llvm::next(MachineBasicBlock::iterator(MI)),
6284                    BB->end());
6285    sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
6286
6287    BB->addSuccessor(copy0MBB);
6288    BB->addSuccessor(sinkMBB);
6289
6290    BuildMI(BB, dl, TII->get(ARM::tBcc)).addMBB(sinkMBB)
6291      .addImm(MI->getOperand(3).getImm()).addReg(MI->getOperand(4).getReg());
6292
6293    //  copy0MBB:
6294    //   %FalseValue = ...
6295    //   # fallthrough to sinkMBB
6296    BB = copy0MBB;
6297
6298    // Update machine-CFG edges
6299    BB->addSuccessor(sinkMBB);
6300
6301    //  sinkMBB:
6302    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
6303    //  ...
6304    BB = sinkMBB;
6305    BuildMI(*BB, BB->begin(), dl,
6306            TII->get(ARM::PHI), MI->getOperand(0).getReg())
6307      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
6308      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
6309
6310    MI->eraseFromParent();   // The pseudo instruction is gone now.
6311    return BB;
6312  }
6313
6314  case ARM::BCCi64:
6315  case ARM::BCCZi64: {
6316    // If there is an unconditional branch to the other successor, remove it.
6317    BB->erase(llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
6318
6319    // Compare both parts that make up the double comparison separately for
6320    // equality.
6321    bool RHSisZero = MI->getOpcode() == ARM::BCCZi64;
6322
6323    unsigned LHS1 = MI->getOperand(1).getReg();
6324    unsigned LHS2 = MI->getOperand(2).getReg();
6325    if (RHSisZero) {
6326      AddDefaultPred(BuildMI(BB, dl,
6327                             TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
6328                     .addReg(LHS1).addImm(0));
6329      BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
6330        .addReg(LHS2).addImm(0)
6331        .addImm(ARMCC::EQ).addReg(ARM::CPSR);
6332    } else {
6333      unsigned RHS1 = MI->getOperand(3).getReg();
6334      unsigned RHS2 = MI->getOperand(4).getReg();
6335      AddDefaultPred(BuildMI(BB, dl,
6336                             TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
6337                     .addReg(LHS1).addReg(RHS1));
6338      BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
6339        .addReg(LHS2).addReg(RHS2)
6340        .addImm(ARMCC::EQ).addReg(ARM::CPSR);
6341    }
6342
6343    MachineBasicBlock *destMBB = MI->getOperand(RHSisZero ? 3 : 5).getMBB();
6344    MachineBasicBlock *exitMBB = OtherSucc(BB, destMBB);
6345    if (MI->getOperand(0).getImm() == ARMCC::NE)
6346      std::swap(destMBB, exitMBB);
6347
6348    BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
6349      .addMBB(destMBB).addImm(ARMCC::EQ).addReg(ARM::CPSR);
6350    if (isThumb2)
6351      AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2B)).addMBB(exitMBB));
6352    else
6353      BuildMI(BB, dl, TII->get(ARM::B)) .addMBB(exitMBB);
6354
6355    MI->eraseFromParent();   // The pseudo instruction is gone now.
6356    return BB;
6357  }
6358
6359  case ARM::Int_eh_sjlj_setjmp:
6360  case ARM::Int_eh_sjlj_setjmp_nofp:
6361  case ARM::tInt_eh_sjlj_setjmp:
6362  case ARM::t2Int_eh_sjlj_setjmp:
6363  case ARM::t2Int_eh_sjlj_setjmp_nofp:
6364    EmitSjLjDispatchBlock(MI, BB);
6365    return BB;
6366
6367  case ARM::ABS:
6368  case ARM::t2ABS: {
6369    // To insert an ABS instruction, we have to insert the
6370    // diamond control-flow pattern.  The incoming instruction knows the
6371    // source vreg to test against 0, the destination vreg to set,
6372    // the condition code register to branch on, the
6373    // true/false values to select between, and a branch opcode to use.
6374    // It transforms
6375    //     V1 = ABS V0
6376    // into
6377    //     V2 = MOVS V0
6378    //     BCC                      (branch to SinkBB if V0 >= 0)
6379    //     RSBBB: V3 = RSBri V2, 0  (compute ABS if V2 < 0)
6380    //     SinkBB: V1 = PHI(V2, V3)
6381    const BasicBlock *LLVM_BB = BB->getBasicBlock();
6382    MachineFunction::iterator BBI = BB;
6383    ++BBI;
6384    MachineFunction *Fn = BB->getParent();
6385    MachineBasicBlock *RSBBB = Fn->CreateMachineBasicBlock(LLVM_BB);
6386    MachineBasicBlock *SinkBB  = Fn->CreateMachineBasicBlock(LLVM_BB);
6387    Fn->insert(BBI, RSBBB);
6388    Fn->insert(BBI, SinkBB);
6389
6390    unsigned int ABSSrcReg = MI->getOperand(1).getReg();
6391    unsigned int ABSDstReg = MI->getOperand(0).getReg();
6392    bool isThumb2 = Subtarget->isThumb2();
6393    MachineRegisterInfo &MRI = Fn->getRegInfo();
6394    // In Thumb mode S must not be specified if source register is the SP or
6395    // PC and if destination register is the SP, so restrict register class
6396    unsigned NewMovDstReg = MRI.createVirtualRegister(
6397      isThumb2 ? ARM::rGPRRegisterClass : ARM::GPRRegisterClass);
6398    unsigned NewRsbDstReg = MRI.createVirtualRegister(
6399      isThumb2 ? ARM::rGPRRegisterClass : ARM::GPRRegisterClass);
6400
6401    // Transfer the remainder of BB and its successor edges to sinkMBB.
6402    SinkBB->splice(SinkBB->begin(), BB,
6403      llvm::next(MachineBasicBlock::iterator(MI)),
6404      BB->end());
6405    SinkBB->transferSuccessorsAndUpdatePHIs(BB);
6406
6407    BB->addSuccessor(RSBBB);
6408    BB->addSuccessor(SinkBB);
6409
6410    // fall through to SinkMBB
6411    RSBBB->addSuccessor(SinkBB);
6412
6413    // insert a movs at the end of BB
6414    BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2MOVr : ARM::MOVr),
6415      NewMovDstReg)
6416      .addReg(ABSSrcReg, RegState::Kill)
6417      .addImm((unsigned)ARMCC::AL).addReg(0)
6418      .addReg(ARM::CPSR, RegState::Define);
6419
6420    // insert a bcc with opposite CC to ARMCC::MI at the end of BB
6421    BuildMI(BB, dl,
6422      TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)).addMBB(SinkBB)
6423      .addImm(ARMCC::getOppositeCondition(ARMCC::MI)).addReg(ARM::CPSR);
6424
6425    // insert rsbri in RSBBB
6426    // Note: BCC and rsbri will be converted into predicated rsbmi
6427    // by if-conversion pass
6428    BuildMI(*RSBBB, RSBBB->begin(), dl,
6429      TII->get(isThumb2 ? ARM::t2RSBri : ARM::RSBri), NewRsbDstReg)
6430      .addReg(NewMovDstReg, RegState::Kill)
6431      .addImm(0).addImm((unsigned)ARMCC::AL).addReg(0).addReg(0);
6432
6433    // insert PHI in SinkBB,
6434    // reuse ABSDstReg to not change uses of ABS instruction
6435    BuildMI(*SinkBB, SinkBB->begin(), dl,
6436      TII->get(ARM::PHI), ABSDstReg)
6437      .addReg(NewRsbDstReg).addMBB(RSBBB)
6438      .addReg(NewMovDstReg).addMBB(BB);
6439
6440    // remove ABS instruction
6441    MI->eraseFromParent();
6442
6443    // return last added BB
6444    return SinkBB;
6445  }
6446  }
6447}
6448
6449void ARMTargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI,
6450                                                      SDNode *Node) const {
6451  if (!MI->hasPostISelHook()) {
6452    assert(!convertAddSubFlagsOpcode(MI->getOpcode()) &&
6453           "Pseudo flag-setting opcodes must be marked with 'hasPostISelHook'");
6454    return;
6455  }
6456
6457  const MCInstrDesc *MCID = &MI->getDesc();
6458  // Adjust potentially 's' setting instructions after isel, i.e. ADC, SBC, RSB,
6459  // RSC. Coming out of isel, they have an implicit CPSR def, but the optional
6460  // operand is still set to noreg. If needed, set the optional operand's
6461  // register to CPSR, and remove the redundant implicit def.
6462  //
6463  // e.g. ADCS (..., CPSR<imp-def>) -> ADC (... opt:CPSR<def>).
6464
6465  // Rename pseudo opcodes.
6466  unsigned NewOpc = convertAddSubFlagsOpcode(MI->getOpcode());
6467  if (NewOpc) {
6468    const ARMBaseInstrInfo *TII =
6469      static_cast<const ARMBaseInstrInfo*>(getTargetMachine().getInstrInfo());
6470    MCID = &TII->get(NewOpc);
6471
6472    assert(MCID->getNumOperands() == MI->getDesc().getNumOperands() + 1 &&
6473           "converted opcode should be the same except for cc_out");
6474
6475    MI->setDesc(*MCID);
6476
6477    // Add the optional cc_out operand
6478    MI->addOperand(MachineOperand::CreateReg(0, /*isDef=*/true));
6479  }
6480  unsigned ccOutIdx = MCID->getNumOperands() - 1;
6481
6482  // Any ARM instruction that sets the 's' bit should specify an optional
6483  // "cc_out" operand in the last operand position.
6484  if (!MI->hasOptionalDef() || !MCID->OpInfo[ccOutIdx].isOptionalDef()) {
6485    assert(!NewOpc && "Optional cc_out operand required");
6486    return;
6487  }
6488  // Look for an implicit def of CPSR added by MachineInstr ctor. Remove it
6489  // since we already have an optional CPSR def.
6490  bool definesCPSR = false;
6491  bool deadCPSR = false;
6492  for (unsigned i = MCID->getNumOperands(), e = MI->getNumOperands();
6493       i != e; ++i) {
6494    const MachineOperand &MO = MI->getOperand(i);
6495    if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR) {
6496      definesCPSR = true;
6497      if (MO.isDead())
6498        deadCPSR = true;
6499      MI->RemoveOperand(i);
6500      break;
6501    }
6502  }
6503  if (!definesCPSR) {
6504    assert(!NewOpc && "Optional cc_out operand required");
6505    return;
6506  }
6507  assert(deadCPSR == !Node->hasAnyUseOfValue(1) && "inconsistent dead flag");
6508  if (deadCPSR) {
6509    assert(!MI->getOperand(ccOutIdx).getReg() &&
6510           "expect uninitialized optional cc_out operand");
6511    return;
6512  }
6513
6514  // If this instruction was defined with an optional CPSR def and its dag node
6515  // had a live implicit CPSR def, then activate the optional CPSR def.
6516  MachineOperand &MO = MI->getOperand(ccOutIdx);
6517  MO.setReg(ARM::CPSR);
6518  MO.setIsDef(true);
6519}
6520
6521//===----------------------------------------------------------------------===//
6522//                           ARM Optimization Hooks
6523//===----------------------------------------------------------------------===//
6524
6525static
6526SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
6527                            TargetLowering::DAGCombinerInfo &DCI) {
6528  SelectionDAG &DAG = DCI.DAG;
6529  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6530  EVT VT = N->getValueType(0);
6531  unsigned Opc = N->getOpcode();
6532  bool isSlctCC = Slct.getOpcode() == ISD::SELECT_CC;
6533  SDValue LHS = isSlctCC ? Slct.getOperand(2) : Slct.getOperand(1);
6534  SDValue RHS = isSlctCC ? Slct.getOperand(3) : Slct.getOperand(2);
6535  ISD::CondCode CC = ISD::SETCC_INVALID;
6536
6537  if (isSlctCC) {
6538    CC = cast<CondCodeSDNode>(Slct.getOperand(4))->get();
6539  } else {
6540    SDValue CCOp = Slct.getOperand(0);
6541    if (CCOp.getOpcode() == ISD::SETCC)
6542      CC = cast<CondCodeSDNode>(CCOp.getOperand(2))->get();
6543  }
6544
6545  bool DoXform = false;
6546  bool InvCC = false;
6547  assert ((Opc == ISD::ADD || (Opc == ISD::SUB && Slct == N->getOperand(1))) &&
6548          "Bad input!");
6549
6550  if (LHS.getOpcode() == ISD::Constant &&
6551      cast<ConstantSDNode>(LHS)->isNullValue()) {
6552    DoXform = true;
6553  } else if (CC != ISD::SETCC_INVALID &&
6554             RHS.getOpcode() == ISD::Constant &&
6555             cast<ConstantSDNode>(RHS)->isNullValue()) {
6556    std::swap(LHS, RHS);
6557    SDValue Op0 = Slct.getOperand(0);
6558    EVT OpVT = isSlctCC ? Op0.getValueType() :
6559                          Op0.getOperand(0).getValueType();
6560    bool isInt = OpVT.isInteger();
6561    CC = ISD::getSetCCInverse(CC, isInt);
6562
6563    if (!TLI.isCondCodeLegal(CC, OpVT))
6564      return SDValue();         // Inverse operator isn't legal.
6565
6566    DoXform = true;
6567    InvCC = true;
6568  }
6569
6570  if (DoXform) {
6571    SDValue Result = DAG.getNode(Opc, RHS.getDebugLoc(), VT, OtherOp, RHS);
6572    if (isSlctCC)
6573      return DAG.getSelectCC(N->getDebugLoc(), OtherOp, Result,
6574                             Slct.getOperand(0), Slct.getOperand(1), CC);
6575    SDValue CCOp = Slct.getOperand(0);
6576    if (InvCC)
6577      CCOp = DAG.getSetCC(Slct.getDebugLoc(), CCOp.getValueType(),
6578                          CCOp.getOperand(0), CCOp.getOperand(1), CC);
6579    return DAG.getNode(ISD::SELECT, N->getDebugLoc(), VT,
6580                       CCOp, OtherOp, Result);
6581  }
6582  return SDValue();
6583}
6584
6585// AddCombineToVPADDL- For pair-wise add on neon, use the vpaddl instruction
6586// (only after legalization).
6587static SDValue AddCombineToVPADDL(SDNode *N, SDValue N0, SDValue N1,
6588                                 TargetLowering::DAGCombinerInfo &DCI,
6589                                 const ARMSubtarget *Subtarget) {
6590
6591  // Only perform optimization if after legalize, and if NEON is available. We
6592  // also expected both operands to be BUILD_VECTORs.
6593  if (DCI.isBeforeLegalize() || !Subtarget->hasNEON()
6594      || N0.getOpcode() != ISD::BUILD_VECTOR
6595      || N1.getOpcode() != ISD::BUILD_VECTOR)
6596    return SDValue();
6597
6598  // Check output type since VPADDL operand elements can only be 8, 16, or 32.
6599  EVT VT = N->getValueType(0);
6600  if (!VT.isInteger() || VT.getVectorElementType() == MVT::i64)
6601    return SDValue();
6602
6603  // Check that the vector operands are of the right form.
6604  // N0 and N1 are BUILD_VECTOR nodes with N number of EXTRACT_VECTOR
6605  // operands, where N is the size of the formed vector.
6606  // Each EXTRACT_VECTOR should have the same input vector and odd or even
6607  // index such that we have a pair wise add pattern.
6608
6609  // Grab the vector that all EXTRACT_VECTOR nodes should be referencing.
6610  if (N0->getOperand(0)->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
6611    return SDValue();
6612  SDValue Vec = N0->getOperand(0)->getOperand(0);
6613  SDNode *V = Vec.getNode();
6614  unsigned nextIndex = 0;
6615
6616  // For each operands to the ADD which are BUILD_VECTORs,
6617  // check to see if each of their operands are an EXTRACT_VECTOR with
6618  // the same vector and appropriate index.
6619  for (unsigned i = 0, e = N0->getNumOperands(); i != e; ++i) {
6620    if (N0->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT
6621        && N1->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
6622
6623      SDValue ExtVec0 = N0->getOperand(i);
6624      SDValue ExtVec1 = N1->getOperand(i);
6625
6626      // First operand is the vector, verify its the same.
6627      if (V != ExtVec0->getOperand(0).getNode() ||
6628          V != ExtVec1->getOperand(0).getNode())
6629        return SDValue();
6630
6631      // Second is the constant, verify its correct.
6632      ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(ExtVec0->getOperand(1));
6633      ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(ExtVec1->getOperand(1));
6634
6635      // For the constant, we want to see all the even or all the odd.
6636      if (!C0 || !C1 || C0->getZExtValue() != nextIndex
6637          || C1->getZExtValue() != nextIndex+1)
6638        return SDValue();
6639
6640      // Increment index.
6641      nextIndex+=2;
6642    } else
6643      return SDValue();
6644  }
6645
6646  // Create VPADDL node.
6647  SelectionDAG &DAG = DCI.DAG;
6648  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6649
6650  // Build operand list.
6651  SmallVector<SDValue, 8> Ops;
6652  Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpaddls,
6653                                TLI.getPointerTy()));
6654
6655  // Input is the vector.
6656  Ops.push_back(Vec);
6657
6658  // Get widened type and narrowed type.
6659  MVT widenType;
6660  unsigned numElem = VT.getVectorNumElements();
6661  switch (VT.getVectorElementType().getSimpleVT().SimpleTy) {
6662    case MVT::i8: widenType = MVT::getVectorVT(MVT::i16, numElem); break;
6663    case MVT::i16: widenType = MVT::getVectorVT(MVT::i32, numElem); break;
6664    case MVT::i32: widenType = MVT::getVectorVT(MVT::i64, numElem); break;
6665    default:
6666      assert(0 && "Invalid vector element type for padd optimization.");
6667  }
6668
6669  SDValue tmp = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, N->getDebugLoc(),
6670                            widenType, &Ops[0], Ops.size());
6671  return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, tmp);
6672}
6673
6674/// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
6675/// operands N0 and N1.  This is a helper for PerformADDCombine that is
6676/// called with the default operands, and if that fails, with commuted
6677/// operands.
6678static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
6679                                          TargetLowering::DAGCombinerInfo &DCI,
6680                                          const ARMSubtarget *Subtarget){
6681
6682  // Attempt to create vpaddl for this add.
6683  SDValue Result = AddCombineToVPADDL(N, N0, N1, DCI, Subtarget);
6684  if (Result.getNode())
6685    return Result;
6686
6687  // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
6688  if (N0.getOpcode() == ISD::SELECT && N0.getNode()->hasOneUse()) {
6689    SDValue Result = combineSelectAndUse(N, N0, N1, DCI);
6690    if (Result.getNode()) return Result;
6691  }
6692  return SDValue();
6693}
6694
6695/// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
6696///
6697static SDValue PerformADDCombine(SDNode *N,
6698                                 TargetLowering::DAGCombinerInfo &DCI,
6699                                 const ARMSubtarget *Subtarget) {
6700  SDValue N0 = N->getOperand(0);
6701  SDValue N1 = N->getOperand(1);
6702
6703  // First try with the default operand order.
6704  SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI, Subtarget);
6705  if (Result.getNode())
6706    return Result;
6707
6708  // If that didn't work, try again with the operands commuted.
6709  return PerformADDCombineWithOperands(N, N1, N0, DCI, Subtarget);
6710}
6711
6712/// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
6713///
6714static SDValue PerformSUBCombine(SDNode *N,
6715                                 TargetLowering::DAGCombinerInfo &DCI) {
6716  SDValue N0 = N->getOperand(0);
6717  SDValue N1 = N->getOperand(1);
6718
6719  // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
6720  if (N1.getOpcode() == ISD::SELECT && N1.getNode()->hasOneUse()) {
6721    SDValue Result = combineSelectAndUse(N, N1, N0, DCI);
6722    if (Result.getNode()) return Result;
6723  }
6724
6725  return SDValue();
6726}
6727
6728/// PerformVMULCombine
6729/// Distribute (A + B) * C to (A * C) + (B * C) to take advantage of the
6730/// special multiplier accumulator forwarding.
6731///   vmul d3, d0, d2
6732///   vmla d3, d1, d2
6733/// is faster than
6734///   vadd d3, d0, d1
6735///   vmul d3, d3, d2
6736static SDValue PerformVMULCombine(SDNode *N,
6737                                  TargetLowering::DAGCombinerInfo &DCI,
6738                                  const ARMSubtarget *Subtarget) {
6739  if (!Subtarget->hasVMLxForwarding())
6740    return SDValue();
6741
6742  SelectionDAG &DAG = DCI.DAG;
6743  SDValue N0 = N->getOperand(0);
6744  SDValue N1 = N->getOperand(1);
6745  unsigned Opcode = N0.getOpcode();
6746  if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
6747      Opcode != ISD::FADD && Opcode != ISD::FSUB) {
6748    Opcode = N1.getOpcode();
6749    if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
6750        Opcode != ISD::FADD && Opcode != ISD::FSUB)
6751      return SDValue();
6752    std::swap(N0, N1);
6753  }
6754
6755  EVT VT = N->getValueType(0);
6756  DebugLoc DL = N->getDebugLoc();
6757  SDValue N00 = N0->getOperand(0);
6758  SDValue N01 = N0->getOperand(1);
6759  return DAG.getNode(Opcode, DL, VT,
6760                     DAG.getNode(ISD::MUL, DL, VT, N00, N1),
6761                     DAG.getNode(ISD::MUL, DL, VT, N01, N1));
6762}
6763
6764static SDValue PerformMULCombine(SDNode *N,
6765                                 TargetLowering::DAGCombinerInfo &DCI,
6766                                 const ARMSubtarget *Subtarget) {
6767  SelectionDAG &DAG = DCI.DAG;
6768
6769  if (Subtarget->isThumb1Only())
6770    return SDValue();
6771
6772  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
6773    return SDValue();
6774
6775  EVT VT = N->getValueType(0);
6776  if (VT.is64BitVector() || VT.is128BitVector())
6777    return PerformVMULCombine(N, DCI, Subtarget);
6778  if (VT != MVT::i32)
6779    return SDValue();
6780
6781  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
6782  if (!C)
6783    return SDValue();
6784
6785  uint64_t MulAmt = C->getZExtValue();
6786  unsigned ShiftAmt = CountTrailingZeros_64(MulAmt);
6787  ShiftAmt = ShiftAmt & (32 - 1);
6788  SDValue V = N->getOperand(0);
6789  DebugLoc DL = N->getDebugLoc();
6790
6791  SDValue Res;
6792  MulAmt >>= ShiftAmt;
6793  if (isPowerOf2_32(MulAmt - 1)) {
6794    // (mul x, 2^N + 1) => (add (shl x, N), x)
6795    Res = DAG.getNode(ISD::ADD, DL, VT,
6796                      V, DAG.getNode(ISD::SHL, DL, VT,
6797                                     V, DAG.getConstant(Log2_32(MulAmt-1),
6798                                                        MVT::i32)));
6799  } else if (isPowerOf2_32(MulAmt + 1)) {
6800    // (mul x, 2^N - 1) => (sub (shl x, N), x)
6801    Res = DAG.getNode(ISD::SUB, DL, VT,
6802                      DAG.getNode(ISD::SHL, DL, VT,
6803                                  V, DAG.getConstant(Log2_32(MulAmt+1),
6804                                                     MVT::i32)),
6805                                                     V);
6806  } else
6807    return SDValue();
6808
6809  if (ShiftAmt != 0)
6810    Res = DAG.getNode(ISD::SHL, DL, VT, Res,
6811                      DAG.getConstant(ShiftAmt, MVT::i32));
6812
6813  // Do not add new nodes to DAG combiner worklist.
6814  DCI.CombineTo(N, Res, false);
6815  return SDValue();
6816}
6817
6818static SDValue PerformANDCombine(SDNode *N,
6819                                TargetLowering::DAGCombinerInfo &DCI) {
6820
6821  // Attempt to use immediate-form VBIC
6822  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
6823  DebugLoc dl = N->getDebugLoc();
6824  EVT VT = N->getValueType(0);
6825  SelectionDAG &DAG = DCI.DAG;
6826
6827  if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
6828    return SDValue();
6829
6830  APInt SplatBits, SplatUndef;
6831  unsigned SplatBitSize;
6832  bool HasAnyUndefs;
6833  if (BVN &&
6834      BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
6835    if (SplatBitSize <= 64) {
6836      EVT VbicVT;
6837      SDValue Val = isNEONModifiedImm((~SplatBits).getZExtValue(),
6838                                      SplatUndef.getZExtValue(), SplatBitSize,
6839                                      DAG, VbicVT, VT.is128BitVector(),
6840                                      OtherModImm);
6841      if (Val.getNode()) {
6842        SDValue Input =
6843          DAG.getNode(ISD::BITCAST, dl, VbicVT, N->getOperand(0));
6844        SDValue Vbic = DAG.getNode(ARMISD::VBICIMM, dl, VbicVT, Input, Val);
6845        return DAG.getNode(ISD::BITCAST, dl, VT, Vbic);
6846      }
6847    }
6848  }
6849
6850  return SDValue();
6851}
6852
6853/// PerformORCombine - Target-specific dag combine xforms for ISD::OR
6854static SDValue PerformORCombine(SDNode *N,
6855                                TargetLowering::DAGCombinerInfo &DCI,
6856                                const ARMSubtarget *Subtarget) {
6857  // Attempt to use immediate-form VORR
6858  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
6859  DebugLoc dl = N->getDebugLoc();
6860  EVT VT = N->getValueType(0);
6861  SelectionDAG &DAG = DCI.DAG;
6862
6863  if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
6864    return SDValue();
6865
6866  APInt SplatBits, SplatUndef;
6867  unsigned SplatBitSize;
6868  bool HasAnyUndefs;
6869  if (BVN && Subtarget->hasNEON() &&
6870      BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
6871    if (SplatBitSize <= 64) {
6872      EVT VorrVT;
6873      SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
6874                                      SplatUndef.getZExtValue(), SplatBitSize,
6875                                      DAG, VorrVT, VT.is128BitVector(),
6876                                      OtherModImm);
6877      if (Val.getNode()) {
6878        SDValue Input =
6879          DAG.getNode(ISD::BITCAST, dl, VorrVT, N->getOperand(0));
6880        SDValue Vorr = DAG.getNode(ARMISD::VORRIMM, dl, VorrVT, Input, Val);
6881        return DAG.getNode(ISD::BITCAST, dl, VT, Vorr);
6882      }
6883    }
6884  }
6885
6886  SDValue N0 = N->getOperand(0);
6887  if (N0.getOpcode() != ISD::AND)
6888    return SDValue();
6889  SDValue N1 = N->getOperand(1);
6890
6891  // (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant.
6892  if (Subtarget->hasNEON() && N1.getOpcode() == ISD::AND && VT.isVector() &&
6893      DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
6894    APInt SplatUndef;
6895    unsigned SplatBitSize;
6896    bool HasAnyUndefs;
6897
6898    BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(1));
6899    APInt SplatBits0;
6900    if (BVN0 && BVN0->isConstantSplat(SplatBits0, SplatUndef, SplatBitSize,
6901                                  HasAnyUndefs) && !HasAnyUndefs) {
6902      BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(1));
6903      APInt SplatBits1;
6904      if (BVN1 && BVN1->isConstantSplat(SplatBits1, SplatUndef, SplatBitSize,
6905                                    HasAnyUndefs) && !HasAnyUndefs &&
6906          SplatBits0 == ~SplatBits1) {
6907        // Canonicalize the vector type to make instruction selection simpler.
6908        EVT CanonicalVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
6909        SDValue Result = DAG.getNode(ARMISD::VBSL, dl, CanonicalVT,
6910                                     N0->getOperand(1), N0->getOperand(0),
6911                                     N1->getOperand(0));
6912        return DAG.getNode(ISD::BITCAST, dl, VT, Result);
6913      }
6914    }
6915  }
6916
6917  // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when
6918  // reasonable.
6919
6920  // BFI is only available on V6T2+
6921  if (Subtarget->isThumb1Only() || !Subtarget->hasV6T2Ops())
6922    return SDValue();
6923
6924  DebugLoc DL = N->getDebugLoc();
6925  // 1) or (and A, mask), val => ARMbfi A, val, mask
6926  //      iff (val & mask) == val
6927  //
6928  // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
6929  //  2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2)
6930  //          && mask == ~mask2
6931  //  2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2)
6932  //          && ~mask == mask2
6933  //  (i.e., copy a bitfield value into another bitfield of the same width)
6934
6935  if (VT != MVT::i32)
6936    return SDValue();
6937
6938  SDValue N00 = N0.getOperand(0);
6939
6940  // The value and the mask need to be constants so we can verify this is
6941  // actually a bitfield set. If the mask is 0xffff, we can do better
6942  // via a movt instruction, so don't use BFI in that case.
6943  SDValue MaskOp = N0.getOperand(1);
6944  ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(MaskOp);
6945  if (!MaskC)
6946    return SDValue();
6947  unsigned Mask = MaskC->getZExtValue();
6948  if (Mask == 0xffff)
6949    return SDValue();
6950  SDValue Res;
6951  // Case (1): or (and A, mask), val => ARMbfi A, val, mask
6952  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
6953  if (N1C) {
6954    unsigned Val = N1C->getZExtValue();
6955    if ((Val & ~Mask) != Val)
6956      return SDValue();
6957
6958    if (ARM::isBitFieldInvertedMask(Mask)) {
6959      Val >>= CountTrailingZeros_32(~Mask);
6960
6961      Res = DAG.getNode(ARMISD::BFI, DL, VT, N00,
6962                        DAG.getConstant(Val, MVT::i32),
6963                        DAG.getConstant(Mask, MVT::i32));
6964
6965      // Do not add new nodes to DAG combiner worklist.
6966      DCI.CombineTo(N, Res, false);
6967      return SDValue();
6968    }
6969  } else if (N1.getOpcode() == ISD::AND) {
6970    // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
6971    ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
6972    if (!N11C)
6973      return SDValue();
6974    unsigned Mask2 = N11C->getZExtValue();
6975
6976    // Mask and ~Mask2 (or reverse) must be equivalent for the BFI pattern
6977    // as is to match.
6978    if (ARM::isBitFieldInvertedMask(Mask) &&
6979        (Mask == ~Mask2)) {
6980      // The pack halfword instruction works better for masks that fit it,
6981      // so use that when it's available.
6982      if (Subtarget->hasT2ExtractPack() &&
6983          (Mask == 0xffff || Mask == 0xffff0000))
6984        return SDValue();
6985      // 2a
6986      unsigned amt = CountTrailingZeros_32(Mask2);
6987      Res = DAG.getNode(ISD::SRL, DL, VT, N1.getOperand(0),
6988                        DAG.getConstant(amt, MVT::i32));
6989      Res = DAG.getNode(ARMISD::BFI, DL, VT, N00, Res,
6990                        DAG.getConstant(Mask, MVT::i32));
6991      // Do not add new nodes to DAG combiner worklist.
6992      DCI.CombineTo(N, Res, false);
6993      return SDValue();
6994    } else if (ARM::isBitFieldInvertedMask(~Mask) &&
6995               (~Mask == Mask2)) {
6996      // The pack halfword instruction works better for masks that fit it,
6997      // so use that when it's available.
6998      if (Subtarget->hasT2ExtractPack() &&
6999          (Mask2 == 0xffff || Mask2 == 0xffff0000))
7000        return SDValue();
7001      // 2b
7002      unsigned lsb = CountTrailingZeros_32(Mask);
7003      Res = DAG.getNode(ISD::SRL, DL, VT, N00,
7004                        DAG.getConstant(lsb, MVT::i32));
7005      Res = DAG.getNode(ARMISD::BFI, DL, VT, N1.getOperand(0), Res,
7006                        DAG.getConstant(Mask2, MVT::i32));
7007      // Do not add new nodes to DAG combiner worklist.
7008      DCI.CombineTo(N, Res, false);
7009      return SDValue();
7010    }
7011  }
7012
7013  if (DAG.MaskedValueIsZero(N1, MaskC->getAPIntValue()) &&
7014      N00.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N00.getOperand(1)) &&
7015      ARM::isBitFieldInvertedMask(~Mask)) {
7016    // Case (3): or (and (shl A, #shamt), mask), B => ARMbfi B, A, ~mask
7017    // where lsb(mask) == #shamt and masked bits of B are known zero.
7018    SDValue ShAmt = N00.getOperand(1);
7019    unsigned ShAmtC = cast<ConstantSDNode>(ShAmt)->getZExtValue();
7020    unsigned LSB = CountTrailingZeros_32(Mask);
7021    if (ShAmtC != LSB)
7022      return SDValue();
7023
7024    Res = DAG.getNode(ARMISD::BFI, DL, VT, N1, N00.getOperand(0),
7025                      DAG.getConstant(~Mask, MVT::i32));
7026
7027    // Do not add new nodes to DAG combiner worklist.
7028    DCI.CombineTo(N, Res, false);
7029  }
7030
7031  return SDValue();
7032}
7033
7034/// PerformBFICombine - (bfi A, (and B, Mask1), Mask2) -> (bfi A, B, Mask2) iff
7035/// the bits being cleared by the AND are not demanded by the BFI.
7036static SDValue PerformBFICombine(SDNode *N,
7037                                 TargetLowering::DAGCombinerInfo &DCI) {
7038  SDValue N1 = N->getOperand(1);
7039  if (N1.getOpcode() == ISD::AND) {
7040    ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
7041    if (!N11C)
7042      return SDValue();
7043    unsigned InvMask = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
7044    unsigned LSB = CountTrailingZeros_32(~InvMask);
7045    unsigned Width = (32 - CountLeadingZeros_32(~InvMask)) - LSB;
7046    unsigned Mask = (1 << Width)-1;
7047    unsigned Mask2 = N11C->getZExtValue();
7048    if ((Mask & (~Mask2)) == 0)
7049      return DCI.DAG.getNode(ARMISD::BFI, N->getDebugLoc(), N->getValueType(0),
7050                             N->getOperand(0), N1.getOperand(0),
7051                             N->getOperand(2));
7052  }
7053  return SDValue();
7054}
7055
7056/// PerformVMOVRRDCombine - Target-specific dag combine xforms for
7057/// ARMISD::VMOVRRD.
7058static SDValue PerformVMOVRRDCombine(SDNode *N,
7059                                     TargetLowering::DAGCombinerInfo &DCI) {
7060  // vmovrrd(vmovdrr x, y) -> x,y
7061  SDValue InDouble = N->getOperand(0);
7062  if (InDouble.getOpcode() == ARMISD::VMOVDRR)
7063    return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
7064
7065  // vmovrrd(load f64) -> (load i32), (load i32)
7066  SDNode *InNode = InDouble.getNode();
7067  if (ISD::isNormalLoad(InNode) && InNode->hasOneUse() &&
7068      InNode->getValueType(0) == MVT::f64 &&
7069      InNode->getOperand(1).getOpcode() == ISD::FrameIndex &&
7070      !cast<LoadSDNode>(InNode)->isVolatile()) {
7071    // TODO: Should this be done for non-FrameIndex operands?
7072    LoadSDNode *LD = cast<LoadSDNode>(InNode);
7073
7074    SelectionDAG &DAG = DCI.DAG;
7075    DebugLoc DL = LD->getDebugLoc();
7076    SDValue BasePtr = LD->getBasePtr();
7077    SDValue NewLD1 = DAG.getLoad(MVT::i32, DL, LD->getChain(), BasePtr,
7078                                 LD->getPointerInfo(), LD->isVolatile(),
7079                                 LD->isNonTemporal(), LD->isInvariant(),
7080                                 LD->getAlignment());
7081
7082    SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
7083                                    DAG.getConstant(4, MVT::i32));
7084    SDValue NewLD2 = DAG.getLoad(MVT::i32, DL, NewLD1.getValue(1), OffsetPtr,
7085                                 LD->getPointerInfo(), LD->isVolatile(),
7086                                 LD->isNonTemporal(), LD->isInvariant(),
7087                                 std::min(4U, LD->getAlignment() / 2));
7088
7089    DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewLD2.getValue(1));
7090    SDValue Result = DCI.CombineTo(N, NewLD1, NewLD2);
7091    DCI.RemoveFromWorklist(LD);
7092    DAG.DeleteNode(LD);
7093    return Result;
7094  }
7095
7096  return SDValue();
7097}
7098
7099/// PerformVMOVDRRCombine - Target-specific dag combine xforms for
7100/// ARMISD::VMOVDRR.  This is also used for BUILD_VECTORs with 2 operands.
7101static SDValue PerformVMOVDRRCombine(SDNode *N, SelectionDAG &DAG) {
7102  // N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X)
7103  SDValue Op0 = N->getOperand(0);
7104  SDValue Op1 = N->getOperand(1);
7105  if (Op0.getOpcode() == ISD::BITCAST)
7106    Op0 = Op0.getOperand(0);
7107  if (Op1.getOpcode() == ISD::BITCAST)
7108    Op1 = Op1.getOperand(0);
7109  if (Op0.getOpcode() == ARMISD::VMOVRRD &&
7110      Op0.getNode() == Op1.getNode() &&
7111      Op0.getResNo() == 0 && Op1.getResNo() == 1)
7112    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(),
7113                       N->getValueType(0), Op0.getOperand(0));
7114  return SDValue();
7115}
7116
7117/// PerformSTORECombine - Target-specific dag combine xforms for
7118/// ISD::STORE.
7119static SDValue PerformSTORECombine(SDNode *N,
7120                                   TargetLowering::DAGCombinerInfo &DCI) {
7121  // Bitcast an i64 store extracted from a vector to f64.
7122  // Otherwise, the i64 value will be legalized to a pair of i32 values.
7123  StoreSDNode *St = cast<StoreSDNode>(N);
7124  SDValue StVal = St->getValue();
7125  if (!ISD::isNormalStore(St) || St->isVolatile())
7126    return SDValue();
7127
7128  if (StVal.getNode()->getOpcode() == ARMISD::VMOVDRR &&
7129      StVal.getNode()->hasOneUse() && !St->isVolatile()) {
7130    SelectionDAG  &DAG = DCI.DAG;
7131    DebugLoc DL = St->getDebugLoc();
7132    SDValue BasePtr = St->getBasePtr();
7133    SDValue NewST1 = DAG.getStore(St->getChain(), DL,
7134                                  StVal.getNode()->getOperand(0), BasePtr,
7135                                  St->getPointerInfo(), St->isVolatile(),
7136                                  St->isNonTemporal(), St->getAlignment());
7137
7138    SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
7139                                    DAG.getConstant(4, MVT::i32));
7140    return DAG.getStore(NewST1.getValue(0), DL, StVal.getNode()->getOperand(1),
7141                        OffsetPtr, St->getPointerInfo(), St->isVolatile(),
7142                        St->isNonTemporal(),
7143                        std::min(4U, St->getAlignment() / 2));
7144  }
7145
7146  if (StVal.getValueType() != MVT::i64 ||
7147      StVal.getNode()->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
7148    return SDValue();
7149
7150  SelectionDAG &DAG = DCI.DAG;
7151  DebugLoc dl = StVal.getDebugLoc();
7152  SDValue IntVec = StVal.getOperand(0);
7153  EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
7154                                 IntVec.getValueType().getVectorNumElements());
7155  SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, IntVec);
7156  SDValue ExtElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7157                               Vec, StVal.getOperand(1));
7158  dl = N->getDebugLoc();
7159  SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ExtElt);
7160  // Make the DAGCombiner fold the bitcasts.
7161  DCI.AddToWorklist(Vec.getNode());
7162  DCI.AddToWorklist(ExtElt.getNode());
7163  DCI.AddToWorklist(V.getNode());
7164  return DAG.getStore(St->getChain(), dl, V, St->getBasePtr(),
7165                      St->getPointerInfo(), St->isVolatile(),
7166                      St->isNonTemporal(), St->getAlignment(),
7167                      St->getTBAAInfo());
7168}
7169
7170/// hasNormalLoadOperand - Check if any of the operands of a BUILD_VECTOR node
7171/// are normal, non-volatile loads.  If so, it is profitable to bitcast an
7172/// i64 vector to have f64 elements, since the value can then be loaded
7173/// directly into a VFP register.
7174static bool hasNormalLoadOperand(SDNode *N) {
7175  unsigned NumElts = N->getValueType(0).getVectorNumElements();
7176  for (unsigned i = 0; i < NumElts; ++i) {
7177    SDNode *Elt = N->getOperand(i).getNode();
7178    if (ISD::isNormalLoad(Elt) && !cast<LoadSDNode>(Elt)->isVolatile())
7179      return true;
7180  }
7181  return false;
7182}
7183
7184/// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for
7185/// ISD::BUILD_VECTOR.
7186static SDValue PerformBUILD_VECTORCombine(SDNode *N,
7187                                          TargetLowering::DAGCombinerInfo &DCI){
7188  // build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X):
7189  // VMOVRRD is introduced when legalizing i64 types.  It forces the i64 value
7190  // into a pair of GPRs, which is fine when the value is used as a scalar,
7191  // but if the i64 value is converted to a vector, we need to undo the VMOVRRD.
7192  SelectionDAG &DAG = DCI.DAG;
7193  if (N->getNumOperands() == 2) {
7194    SDValue RV = PerformVMOVDRRCombine(N, DAG);
7195    if (RV.getNode())
7196      return RV;
7197  }
7198
7199  // Load i64 elements as f64 values so that type legalization does not split
7200  // them up into i32 values.
7201  EVT VT = N->getValueType(0);
7202  if (VT.getVectorElementType() != MVT::i64 || !hasNormalLoadOperand(N))
7203    return SDValue();
7204  DebugLoc dl = N->getDebugLoc();
7205  SmallVector<SDValue, 8> Ops;
7206  unsigned NumElts = VT.getVectorNumElements();
7207  for (unsigned i = 0; i < NumElts; ++i) {
7208    SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(i));
7209    Ops.push_back(V);
7210    // Make the DAGCombiner fold the bitcast.
7211    DCI.AddToWorklist(V.getNode());
7212  }
7213  EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, NumElts);
7214  SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, FloatVT, Ops.data(), NumElts);
7215  return DAG.getNode(ISD::BITCAST, dl, VT, BV);
7216}
7217
7218/// PerformInsertEltCombine - Target-specific dag combine xforms for
7219/// ISD::INSERT_VECTOR_ELT.
7220static SDValue PerformInsertEltCombine(SDNode *N,
7221                                       TargetLowering::DAGCombinerInfo &DCI) {
7222  // Bitcast an i64 load inserted into a vector to f64.
7223  // Otherwise, the i64 value will be legalized to a pair of i32 values.
7224  EVT VT = N->getValueType(0);
7225  SDNode *Elt = N->getOperand(1).getNode();
7226  if (VT.getVectorElementType() != MVT::i64 ||
7227      !ISD::isNormalLoad(Elt) || cast<LoadSDNode>(Elt)->isVolatile())
7228    return SDValue();
7229
7230  SelectionDAG &DAG = DCI.DAG;
7231  DebugLoc dl = N->getDebugLoc();
7232  EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
7233                                 VT.getVectorNumElements());
7234  SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, N->getOperand(0));
7235  SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(1));
7236  // Make the DAGCombiner fold the bitcasts.
7237  DCI.AddToWorklist(Vec.getNode());
7238  DCI.AddToWorklist(V.getNode());
7239  SDValue InsElt = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, FloatVT,
7240                               Vec, V, N->getOperand(2));
7241  return DAG.getNode(ISD::BITCAST, dl, VT, InsElt);
7242}
7243
7244/// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for
7245/// ISD::VECTOR_SHUFFLE.
7246static SDValue PerformVECTOR_SHUFFLECombine(SDNode *N, SelectionDAG &DAG) {
7247  // The LLVM shufflevector instruction does not require the shuffle mask
7248  // length to match the operand vector length, but ISD::VECTOR_SHUFFLE does
7249  // have that requirement.  When translating to ISD::VECTOR_SHUFFLE, if the
7250  // operands do not match the mask length, they are extended by concatenating
7251  // them with undef vectors.  That is probably the right thing for other
7252  // targets, but for NEON it is better to concatenate two double-register
7253  // size vector operands into a single quad-register size vector.  Do that
7254  // transformation here:
7255  //   shuffle(concat(v1, undef), concat(v2, undef)) ->
7256  //   shuffle(concat(v1, v2), undef)
7257  SDValue Op0 = N->getOperand(0);
7258  SDValue Op1 = N->getOperand(1);
7259  if (Op0.getOpcode() != ISD::CONCAT_VECTORS ||
7260      Op1.getOpcode() != ISD::CONCAT_VECTORS ||
7261      Op0.getNumOperands() != 2 ||
7262      Op1.getNumOperands() != 2)
7263    return SDValue();
7264  SDValue Concat0Op1 = Op0.getOperand(1);
7265  SDValue Concat1Op1 = Op1.getOperand(1);
7266  if (Concat0Op1.getOpcode() != ISD::UNDEF ||
7267      Concat1Op1.getOpcode() != ISD::UNDEF)
7268    return SDValue();
7269  // Skip the transformation if any of the types are illegal.
7270  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7271  EVT VT = N->getValueType(0);
7272  if (!TLI.isTypeLegal(VT) ||
7273      !TLI.isTypeLegal(Concat0Op1.getValueType()) ||
7274      !TLI.isTypeLegal(Concat1Op1.getValueType()))
7275    return SDValue();
7276
7277  SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, N->getDebugLoc(), VT,
7278                                  Op0.getOperand(0), Op1.getOperand(0));
7279  // Translate the shuffle mask.
7280  SmallVector<int, 16> NewMask;
7281  unsigned NumElts = VT.getVectorNumElements();
7282  unsigned HalfElts = NumElts/2;
7283  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
7284  for (unsigned n = 0; n < NumElts; ++n) {
7285    int MaskElt = SVN->getMaskElt(n);
7286    int NewElt = -1;
7287    if (MaskElt < (int)HalfElts)
7288      NewElt = MaskElt;
7289    else if (MaskElt >= (int)NumElts && MaskElt < (int)(NumElts + HalfElts))
7290      NewElt = HalfElts + MaskElt - NumElts;
7291    NewMask.push_back(NewElt);
7292  }
7293  return DAG.getVectorShuffle(VT, N->getDebugLoc(), NewConcat,
7294                              DAG.getUNDEF(VT), NewMask.data());
7295}
7296
7297/// CombineBaseUpdate - Target-specific DAG combine function for VLDDUP and
7298/// NEON load/store intrinsics to merge base address updates.
7299static SDValue CombineBaseUpdate(SDNode *N,
7300                                 TargetLowering::DAGCombinerInfo &DCI) {
7301  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
7302    return SDValue();
7303
7304  SelectionDAG &DAG = DCI.DAG;
7305  bool isIntrinsic = (N->getOpcode() == ISD::INTRINSIC_VOID ||
7306                      N->getOpcode() == ISD::INTRINSIC_W_CHAIN);
7307  unsigned AddrOpIdx = (isIntrinsic ? 2 : 1);
7308  SDValue Addr = N->getOperand(AddrOpIdx);
7309
7310  // Search for a use of the address operand that is an increment.
7311  for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
7312         UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
7313    SDNode *User = *UI;
7314    if (User->getOpcode() != ISD::ADD ||
7315        UI.getUse().getResNo() != Addr.getResNo())
7316      continue;
7317
7318    // Check that the add is independent of the load/store.  Otherwise, folding
7319    // it would create a cycle.
7320    if (User->isPredecessorOf(N) || N->isPredecessorOf(User))
7321      continue;
7322
7323    // Find the new opcode for the updating load/store.
7324    bool isLoad = true;
7325    bool isLaneOp = false;
7326    unsigned NewOpc = 0;
7327    unsigned NumVecs = 0;
7328    if (isIntrinsic) {
7329      unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
7330      switch (IntNo) {
7331      default: assert(0 && "unexpected intrinsic for Neon base update");
7332      case Intrinsic::arm_neon_vld1:     NewOpc = ARMISD::VLD1_UPD;
7333        NumVecs = 1; break;
7334      case Intrinsic::arm_neon_vld2:     NewOpc = ARMISD::VLD2_UPD;
7335        NumVecs = 2; break;
7336      case Intrinsic::arm_neon_vld3:     NewOpc = ARMISD::VLD3_UPD;
7337        NumVecs = 3; break;
7338      case Intrinsic::arm_neon_vld4:     NewOpc = ARMISD::VLD4_UPD;
7339        NumVecs = 4; break;
7340      case Intrinsic::arm_neon_vld2lane: NewOpc = ARMISD::VLD2LN_UPD;
7341        NumVecs = 2; isLaneOp = true; break;
7342      case Intrinsic::arm_neon_vld3lane: NewOpc = ARMISD::VLD3LN_UPD;
7343        NumVecs = 3; isLaneOp = true; break;
7344      case Intrinsic::arm_neon_vld4lane: NewOpc = ARMISD::VLD4LN_UPD;
7345        NumVecs = 4; isLaneOp = true; break;
7346      case Intrinsic::arm_neon_vst1:     NewOpc = ARMISD::VST1_UPD;
7347        NumVecs = 1; isLoad = false; break;
7348      case Intrinsic::arm_neon_vst2:     NewOpc = ARMISD::VST2_UPD;
7349        NumVecs = 2; isLoad = false; break;
7350      case Intrinsic::arm_neon_vst3:     NewOpc = ARMISD::VST3_UPD;
7351        NumVecs = 3; isLoad = false; break;
7352      case Intrinsic::arm_neon_vst4:     NewOpc = ARMISD::VST4_UPD;
7353        NumVecs = 4; isLoad = false; break;
7354      case Intrinsic::arm_neon_vst2lane: NewOpc = ARMISD::VST2LN_UPD;
7355        NumVecs = 2; isLoad = false; isLaneOp = true; break;
7356      case Intrinsic::arm_neon_vst3lane: NewOpc = ARMISD::VST3LN_UPD;
7357        NumVecs = 3; isLoad = false; isLaneOp = true; break;
7358      case Intrinsic::arm_neon_vst4lane: NewOpc = ARMISD::VST4LN_UPD;
7359        NumVecs = 4; isLoad = false; isLaneOp = true; break;
7360      }
7361    } else {
7362      isLaneOp = true;
7363      switch (N->getOpcode()) {
7364      default: assert(0 && "unexpected opcode for Neon base update");
7365      case ARMISD::VLD2DUP: NewOpc = ARMISD::VLD2DUP_UPD; NumVecs = 2; break;
7366      case ARMISD::VLD3DUP: NewOpc = ARMISD::VLD3DUP_UPD; NumVecs = 3; break;
7367      case ARMISD::VLD4DUP: NewOpc = ARMISD::VLD4DUP_UPD; NumVecs = 4; break;
7368      }
7369    }
7370
7371    // Find the size of memory referenced by the load/store.
7372    EVT VecTy;
7373    if (isLoad)
7374      VecTy = N->getValueType(0);
7375    else
7376      VecTy = N->getOperand(AddrOpIdx+1).getValueType();
7377    unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
7378    if (isLaneOp)
7379      NumBytes /= VecTy.getVectorNumElements();
7380
7381    // If the increment is a constant, it must match the memory ref size.
7382    SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
7383    if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
7384      uint64_t IncVal = CInc->getZExtValue();
7385      if (IncVal != NumBytes)
7386        continue;
7387    } else if (NumBytes >= 3 * 16) {
7388      // VLD3/4 and VST3/4 for 128-bit vectors are implemented with two
7389      // separate instructions that make it harder to use a non-constant update.
7390      continue;
7391    }
7392
7393    // Create the new updating load/store node.
7394    EVT Tys[6];
7395    unsigned NumResultVecs = (isLoad ? NumVecs : 0);
7396    unsigned n;
7397    for (n = 0; n < NumResultVecs; ++n)
7398      Tys[n] = VecTy;
7399    Tys[n++] = MVT::i32;
7400    Tys[n] = MVT::Other;
7401    SDVTList SDTys = DAG.getVTList(Tys, NumResultVecs+2);
7402    SmallVector<SDValue, 8> Ops;
7403    Ops.push_back(N->getOperand(0)); // incoming chain
7404    Ops.push_back(N->getOperand(AddrOpIdx));
7405    Ops.push_back(Inc);
7406    for (unsigned i = AddrOpIdx + 1; i < N->getNumOperands(); ++i) {
7407      Ops.push_back(N->getOperand(i));
7408    }
7409    MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N);
7410    SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, N->getDebugLoc(), SDTys,
7411                                           Ops.data(), Ops.size(),
7412                                           MemInt->getMemoryVT(),
7413                                           MemInt->getMemOperand());
7414
7415    // Update the uses.
7416    std::vector<SDValue> NewResults;
7417    for (unsigned i = 0; i < NumResultVecs; ++i) {
7418      NewResults.push_back(SDValue(UpdN.getNode(), i));
7419    }
7420    NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs+1)); // chain
7421    DCI.CombineTo(N, NewResults);
7422    DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
7423
7424    break;
7425  }
7426  return SDValue();
7427}
7428
7429/// CombineVLDDUP - For a VDUPLANE node N, check if its source operand is a
7430/// vldN-lane (N > 1) intrinsic, and if all the other uses of that intrinsic
7431/// are also VDUPLANEs.  If so, combine them to a vldN-dup operation and
7432/// return true.
7433static bool CombineVLDDUP(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
7434  SelectionDAG &DAG = DCI.DAG;
7435  EVT VT = N->getValueType(0);
7436  // vldN-dup instructions only support 64-bit vectors for N > 1.
7437  if (!VT.is64BitVector())
7438    return false;
7439
7440  // Check if the VDUPLANE operand is a vldN-dup intrinsic.
7441  SDNode *VLD = N->getOperand(0).getNode();
7442  if (VLD->getOpcode() != ISD::INTRINSIC_W_CHAIN)
7443    return false;
7444  unsigned NumVecs = 0;
7445  unsigned NewOpc = 0;
7446  unsigned IntNo = cast<ConstantSDNode>(VLD->getOperand(1))->getZExtValue();
7447  if (IntNo == Intrinsic::arm_neon_vld2lane) {
7448    NumVecs = 2;
7449    NewOpc = ARMISD::VLD2DUP;
7450  } else if (IntNo == Intrinsic::arm_neon_vld3lane) {
7451    NumVecs = 3;
7452    NewOpc = ARMISD::VLD3DUP;
7453  } else if (IntNo == Intrinsic::arm_neon_vld4lane) {
7454    NumVecs = 4;
7455    NewOpc = ARMISD::VLD4DUP;
7456  } else {
7457    return false;
7458  }
7459
7460  // First check that all the vldN-lane uses are VDUPLANEs and that the lane
7461  // numbers match the load.
7462  unsigned VLDLaneNo =
7463    cast<ConstantSDNode>(VLD->getOperand(NumVecs+3))->getZExtValue();
7464  for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
7465       UI != UE; ++UI) {
7466    // Ignore uses of the chain result.
7467    if (UI.getUse().getResNo() == NumVecs)
7468      continue;
7469    SDNode *User = *UI;
7470    if (User->getOpcode() != ARMISD::VDUPLANE ||
7471        VLDLaneNo != cast<ConstantSDNode>(User->getOperand(1))->getZExtValue())
7472      return false;
7473  }
7474
7475  // Create the vldN-dup node.
7476  EVT Tys[5];
7477  unsigned n;
7478  for (n = 0; n < NumVecs; ++n)
7479    Tys[n] = VT;
7480  Tys[n] = MVT::Other;
7481  SDVTList SDTys = DAG.getVTList(Tys, NumVecs+1);
7482  SDValue Ops[] = { VLD->getOperand(0), VLD->getOperand(2) };
7483  MemIntrinsicSDNode *VLDMemInt = cast<MemIntrinsicSDNode>(VLD);
7484  SDValue VLDDup = DAG.getMemIntrinsicNode(NewOpc, VLD->getDebugLoc(), SDTys,
7485                                           Ops, 2, VLDMemInt->getMemoryVT(),
7486                                           VLDMemInt->getMemOperand());
7487
7488  // Update the uses.
7489  for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
7490       UI != UE; ++UI) {
7491    unsigned ResNo = UI.getUse().getResNo();
7492    // Ignore uses of the chain result.
7493    if (ResNo == NumVecs)
7494      continue;
7495    SDNode *User = *UI;
7496    DCI.CombineTo(User, SDValue(VLDDup.getNode(), ResNo));
7497  }
7498
7499  // Now the vldN-lane intrinsic is dead except for its chain result.
7500  // Update uses of the chain.
7501  std::vector<SDValue> VLDDupResults;
7502  for (unsigned n = 0; n < NumVecs; ++n)
7503    VLDDupResults.push_back(SDValue(VLDDup.getNode(), n));
7504  VLDDupResults.push_back(SDValue(VLDDup.getNode(), NumVecs));
7505  DCI.CombineTo(VLD, VLDDupResults);
7506
7507  return true;
7508}
7509
7510/// PerformVDUPLANECombine - Target-specific dag combine xforms for
7511/// ARMISD::VDUPLANE.
7512static SDValue PerformVDUPLANECombine(SDNode *N,
7513                                      TargetLowering::DAGCombinerInfo &DCI) {
7514  SDValue Op = N->getOperand(0);
7515
7516  // If the source is a vldN-lane (N > 1) intrinsic, and all the other uses
7517  // of that intrinsic are also VDUPLANEs, combine them to a vldN-dup operation.
7518  if (CombineVLDDUP(N, DCI))
7519    return SDValue(N, 0);
7520
7521  // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is
7522  // redundant.  Ignore bit_converts for now; element sizes are checked below.
7523  while (Op.getOpcode() == ISD::BITCAST)
7524    Op = Op.getOperand(0);
7525  if (Op.getOpcode() != ARMISD::VMOVIMM && Op.getOpcode() != ARMISD::VMVNIMM)
7526    return SDValue();
7527
7528  // Make sure the VMOV element size is not bigger than the VDUPLANE elements.
7529  unsigned EltSize = Op.getValueType().getVectorElementType().getSizeInBits();
7530  // The canonical VMOV for a zero vector uses a 32-bit element size.
7531  unsigned Imm = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7532  unsigned EltBits;
7533  if (ARM_AM::decodeNEONModImm(Imm, EltBits) == 0)
7534    EltSize = 8;
7535  EVT VT = N->getValueType(0);
7536  if (EltSize > VT.getVectorElementType().getSizeInBits())
7537    return SDValue();
7538
7539  return DCI.DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
7540}
7541
7542// isConstVecPow2 - Return true if each vector element is a power of 2, all
7543// elements are the same constant, C, and Log2(C) ranges from 1 to 32.
7544static bool isConstVecPow2(SDValue ConstVec, bool isSigned, uint64_t &C)
7545{
7546  integerPart cN;
7547  integerPart c0 = 0;
7548  for (unsigned I = 0, E = ConstVec.getValueType().getVectorNumElements();
7549       I != E; I++) {
7550    ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(ConstVec.getOperand(I));
7551    if (!C)
7552      return false;
7553
7554    bool isExact;
7555    APFloat APF = C->getValueAPF();
7556    if (APF.convertToInteger(&cN, 64, isSigned, APFloat::rmTowardZero, &isExact)
7557        != APFloat::opOK || !isExact)
7558      return false;
7559
7560    c0 = (I == 0) ? cN : c0;
7561    if (!isPowerOf2_64(cN) || c0 != cN || Log2_64(c0) < 1 || Log2_64(c0) > 32)
7562      return false;
7563  }
7564  C = c0;
7565  return true;
7566}
7567
7568/// PerformVCVTCombine - VCVT (floating-point to fixed-point, Advanced SIMD)
7569/// can replace combinations of VMUL and VCVT (floating-point to integer)
7570/// when the VMUL has a constant operand that is a power of 2.
7571///
7572/// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
7573///  vmul.f32        d16, d17, d16
7574///  vcvt.s32.f32    d16, d16
7575/// becomes:
7576///  vcvt.s32.f32    d16, d16, #3
7577static SDValue PerformVCVTCombine(SDNode *N,
7578                                  TargetLowering::DAGCombinerInfo &DCI,
7579                                  const ARMSubtarget *Subtarget) {
7580  SelectionDAG &DAG = DCI.DAG;
7581  SDValue Op = N->getOperand(0);
7582
7583  if (!Subtarget->hasNEON() || !Op.getValueType().isVector() ||
7584      Op.getOpcode() != ISD::FMUL)
7585    return SDValue();
7586
7587  uint64_t C;
7588  SDValue N0 = Op->getOperand(0);
7589  SDValue ConstVec = Op->getOperand(1);
7590  bool isSigned = N->getOpcode() == ISD::FP_TO_SINT;
7591
7592  if (ConstVec.getOpcode() != ISD::BUILD_VECTOR ||
7593      !isConstVecPow2(ConstVec, isSigned, C))
7594    return SDValue();
7595
7596  unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfp2fxs :
7597    Intrinsic::arm_neon_vcvtfp2fxu;
7598  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, N->getDebugLoc(),
7599                     N->getValueType(0),
7600                     DAG.getConstant(IntrinsicOpcode, MVT::i32), N0,
7601                     DAG.getConstant(Log2_64(C), MVT::i32));
7602}
7603
7604/// PerformVDIVCombine - VCVT (fixed-point to floating-point, Advanced SIMD)
7605/// can replace combinations of VCVT (integer to floating-point) and VDIV
7606/// when the VDIV has a constant operand that is a power of 2.
7607///
7608/// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
7609///  vcvt.f32.s32    d16, d16
7610///  vdiv.f32        d16, d17, d16
7611/// becomes:
7612///  vcvt.f32.s32    d16, d16, #3
7613static SDValue PerformVDIVCombine(SDNode *N,
7614                                  TargetLowering::DAGCombinerInfo &DCI,
7615                                  const ARMSubtarget *Subtarget) {
7616  SelectionDAG &DAG = DCI.DAG;
7617  SDValue Op = N->getOperand(0);
7618  unsigned OpOpcode = Op.getNode()->getOpcode();
7619
7620  if (!Subtarget->hasNEON() || !N->getValueType(0).isVector() ||
7621      (OpOpcode != ISD::SINT_TO_FP && OpOpcode != ISD::UINT_TO_FP))
7622    return SDValue();
7623
7624  uint64_t C;
7625  SDValue ConstVec = N->getOperand(1);
7626  bool isSigned = OpOpcode == ISD::SINT_TO_FP;
7627
7628  if (ConstVec.getOpcode() != ISD::BUILD_VECTOR ||
7629      !isConstVecPow2(ConstVec, isSigned, C))
7630    return SDValue();
7631
7632  unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfxs2fp :
7633    Intrinsic::arm_neon_vcvtfxu2fp;
7634  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, N->getDebugLoc(),
7635                     Op.getValueType(),
7636                     DAG.getConstant(IntrinsicOpcode, MVT::i32),
7637                     Op.getOperand(0), DAG.getConstant(Log2_64(C), MVT::i32));
7638}
7639
7640/// Getvshiftimm - Check if this is a valid build_vector for the immediate
7641/// operand of a vector shift operation, where all the elements of the
7642/// build_vector must have the same constant integer value.
7643static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
7644  // Ignore bit_converts.
7645  while (Op.getOpcode() == ISD::BITCAST)
7646    Op = Op.getOperand(0);
7647  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
7648  APInt SplatBits, SplatUndef;
7649  unsigned SplatBitSize;
7650  bool HasAnyUndefs;
7651  if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
7652                                      HasAnyUndefs, ElementBits) ||
7653      SplatBitSize > ElementBits)
7654    return false;
7655  Cnt = SplatBits.getSExtValue();
7656  return true;
7657}
7658
7659/// isVShiftLImm - Check if this is a valid build_vector for the immediate
7660/// operand of a vector shift left operation.  That value must be in the range:
7661///   0 <= Value < ElementBits for a left shift; or
7662///   0 <= Value <= ElementBits for a long left shift.
7663static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
7664  assert(VT.isVector() && "vector shift count is not a vector type");
7665  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
7666  if (! getVShiftImm(Op, ElementBits, Cnt))
7667    return false;
7668  return (Cnt >= 0 && (isLong ? Cnt-1 : Cnt) < ElementBits);
7669}
7670
7671/// isVShiftRImm - Check if this is a valid build_vector for the immediate
7672/// operand of a vector shift right operation.  For a shift opcode, the value
7673/// is positive, but for an intrinsic the value count must be negative. The
7674/// absolute value must be in the range:
7675///   1 <= |Value| <= ElementBits for a right shift; or
7676///   1 <= |Value| <= ElementBits/2 for a narrow right shift.
7677static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
7678                         int64_t &Cnt) {
7679  assert(VT.isVector() && "vector shift count is not a vector type");
7680  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
7681  if (! getVShiftImm(Op, ElementBits, Cnt))
7682    return false;
7683  if (isIntrinsic)
7684    Cnt = -Cnt;
7685  return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits/2 : ElementBits));
7686}
7687
7688/// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
7689static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
7690  unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
7691  switch (IntNo) {
7692  default:
7693    // Don't do anything for most intrinsics.
7694    break;
7695
7696  // Vector shifts: check for immediate versions and lower them.
7697  // Note: This is done during DAG combining instead of DAG legalizing because
7698  // the build_vectors for 64-bit vector element shift counts are generally
7699  // not legal, and it is hard to see their values after they get legalized to
7700  // loads from a constant pool.
7701  case Intrinsic::arm_neon_vshifts:
7702  case Intrinsic::arm_neon_vshiftu:
7703  case Intrinsic::arm_neon_vshiftls:
7704  case Intrinsic::arm_neon_vshiftlu:
7705  case Intrinsic::arm_neon_vshiftn:
7706  case Intrinsic::arm_neon_vrshifts:
7707  case Intrinsic::arm_neon_vrshiftu:
7708  case Intrinsic::arm_neon_vrshiftn:
7709  case Intrinsic::arm_neon_vqshifts:
7710  case Intrinsic::arm_neon_vqshiftu:
7711  case Intrinsic::arm_neon_vqshiftsu:
7712  case Intrinsic::arm_neon_vqshiftns:
7713  case Intrinsic::arm_neon_vqshiftnu:
7714  case Intrinsic::arm_neon_vqshiftnsu:
7715  case Intrinsic::arm_neon_vqrshiftns:
7716  case Intrinsic::arm_neon_vqrshiftnu:
7717  case Intrinsic::arm_neon_vqrshiftnsu: {
7718    EVT VT = N->getOperand(1).getValueType();
7719    int64_t Cnt;
7720    unsigned VShiftOpc = 0;
7721
7722    switch (IntNo) {
7723    case Intrinsic::arm_neon_vshifts:
7724    case Intrinsic::arm_neon_vshiftu:
7725      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) {
7726        VShiftOpc = ARMISD::VSHL;
7727        break;
7728      }
7729      if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) {
7730        VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ?
7731                     ARMISD::VSHRs : ARMISD::VSHRu);
7732        break;
7733      }
7734      return SDValue();
7735
7736    case Intrinsic::arm_neon_vshiftls:
7737    case Intrinsic::arm_neon_vshiftlu:
7738      if (isVShiftLImm(N->getOperand(2), VT, true, Cnt))
7739        break;
7740      llvm_unreachable("invalid shift count for vshll intrinsic");
7741
7742    case Intrinsic::arm_neon_vrshifts:
7743    case Intrinsic::arm_neon_vrshiftu:
7744      if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt))
7745        break;
7746      return SDValue();
7747
7748    case Intrinsic::arm_neon_vqshifts:
7749    case Intrinsic::arm_neon_vqshiftu:
7750      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
7751        break;
7752      return SDValue();
7753
7754    case Intrinsic::arm_neon_vqshiftsu:
7755      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
7756        break;
7757      llvm_unreachable("invalid shift count for vqshlu intrinsic");
7758
7759    case Intrinsic::arm_neon_vshiftn:
7760    case Intrinsic::arm_neon_vrshiftn:
7761    case Intrinsic::arm_neon_vqshiftns:
7762    case Intrinsic::arm_neon_vqshiftnu:
7763    case Intrinsic::arm_neon_vqshiftnsu:
7764    case Intrinsic::arm_neon_vqrshiftns:
7765    case Intrinsic::arm_neon_vqrshiftnu:
7766    case Intrinsic::arm_neon_vqrshiftnsu:
7767      // Narrowing shifts require an immediate right shift.
7768      if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt))
7769        break;
7770      llvm_unreachable("invalid shift count for narrowing vector shift "
7771                       "intrinsic");
7772
7773    default:
7774      llvm_unreachable("unhandled vector shift");
7775    }
7776
7777    switch (IntNo) {
7778    case Intrinsic::arm_neon_vshifts:
7779    case Intrinsic::arm_neon_vshiftu:
7780      // Opcode already set above.
7781      break;
7782    case Intrinsic::arm_neon_vshiftls:
7783    case Intrinsic::arm_neon_vshiftlu:
7784      if (Cnt == VT.getVectorElementType().getSizeInBits())
7785        VShiftOpc = ARMISD::VSHLLi;
7786      else
7787        VShiftOpc = (IntNo == Intrinsic::arm_neon_vshiftls ?
7788                     ARMISD::VSHLLs : ARMISD::VSHLLu);
7789      break;
7790    case Intrinsic::arm_neon_vshiftn:
7791      VShiftOpc = ARMISD::VSHRN; break;
7792    case Intrinsic::arm_neon_vrshifts:
7793      VShiftOpc = ARMISD::VRSHRs; break;
7794    case Intrinsic::arm_neon_vrshiftu:
7795      VShiftOpc = ARMISD::VRSHRu; break;
7796    case Intrinsic::arm_neon_vrshiftn:
7797      VShiftOpc = ARMISD::VRSHRN; break;
7798    case Intrinsic::arm_neon_vqshifts:
7799      VShiftOpc = ARMISD::VQSHLs; break;
7800    case Intrinsic::arm_neon_vqshiftu:
7801      VShiftOpc = ARMISD::VQSHLu; break;
7802    case Intrinsic::arm_neon_vqshiftsu:
7803      VShiftOpc = ARMISD::VQSHLsu; break;
7804    case Intrinsic::arm_neon_vqshiftns:
7805      VShiftOpc = ARMISD::VQSHRNs; break;
7806    case Intrinsic::arm_neon_vqshiftnu:
7807      VShiftOpc = ARMISD::VQSHRNu; break;
7808    case Intrinsic::arm_neon_vqshiftnsu:
7809      VShiftOpc = ARMISD::VQSHRNsu; break;
7810    case Intrinsic::arm_neon_vqrshiftns:
7811      VShiftOpc = ARMISD::VQRSHRNs; break;
7812    case Intrinsic::arm_neon_vqrshiftnu:
7813      VShiftOpc = ARMISD::VQRSHRNu; break;
7814    case Intrinsic::arm_neon_vqrshiftnsu:
7815      VShiftOpc = ARMISD::VQRSHRNsu; break;
7816    }
7817
7818    return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
7819                       N->getOperand(1), DAG.getConstant(Cnt, MVT::i32));
7820  }
7821
7822  case Intrinsic::arm_neon_vshiftins: {
7823    EVT VT = N->getOperand(1).getValueType();
7824    int64_t Cnt;
7825    unsigned VShiftOpc = 0;
7826
7827    if (isVShiftLImm(N->getOperand(3), VT, false, Cnt))
7828      VShiftOpc = ARMISD::VSLI;
7829    else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt))
7830      VShiftOpc = ARMISD::VSRI;
7831    else {
7832      llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
7833    }
7834
7835    return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
7836                       N->getOperand(1), N->getOperand(2),
7837                       DAG.getConstant(Cnt, MVT::i32));
7838  }
7839
7840  case Intrinsic::arm_neon_vqrshifts:
7841  case Intrinsic::arm_neon_vqrshiftu:
7842    // No immediate versions of these to check for.
7843    break;
7844  }
7845
7846  return SDValue();
7847}
7848
7849/// PerformShiftCombine - Checks for immediate versions of vector shifts and
7850/// lowers them.  As with the vector shift intrinsics, this is done during DAG
7851/// combining instead of DAG legalizing because the build_vectors for 64-bit
7852/// vector element shift counts are generally not legal, and it is hard to see
7853/// their values after they get legalized to loads from a constant pool.
7854static SDValue PerformShiftCombine(SDNode *N, SelectionDAG &DAG,
7855                                   const ARMSubtarget *ST) {
7856  EVT VT = N->getValueType(0);
7857
7858  // Nothing to be done for scalar shifts.
7859  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7860  if (!VT.isVector() || !TLI.isTypeLegal(VT))
7861    return SDValue();
7862
7863  assert(ST->hasNEON() && "unexpected vector shift");
7864  int64_t Cnt;
7865
7866  switch (N->getOpcode()) {
7867  default: llvm_unreachable("unexpected shift opcode");
7868
7869  case ISD::SHL:
7870    if (isVShiftLImm(N->getOperand(1), VT, false, Cnt))
7871      return DAG.getNode(ARMISD::VSHL, N->getDebugLoc(), VT, N->getOperand(0),
7872                         DAG.getConstant(Cnt, MVT::i32));
7873    break;
7874
7875  case ISD::SRA:
7876  case ISD::SRL:
7877    if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
7878      unsigned VShiftOpc = (N->getOpcode() == ISD::SRA ?
7879                            ARMISD::VSHRs : ARMISD::VSHRu);
7880      return DAG.getNode(VShiftOpc, N->getDebugLoc(), VT, N->getOperand(0),
7881                         DAG.getConstant(Cnt, MVT::i32));
7882    }
7883  }
7884  return SDValue();
7885}
7886
7887/// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
7888/// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
7889static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG,
7890                                    const ARMSubtarget *ST) {
7891  SDValue N0 = N->getOperand(0);
7892
7893  // Check for sign- and zero-extensions of vector extract operations of 8-
7894  // and 16-bit vector elements.  NEON supports these directly.  They are
7895  // handled during DAG combining because type legalization will promote them
7896  // to 32-bit types and it is messy to recognize the operations after that.
7897  if (ST->hasNEON() && N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
7898    SDValue Vec = N0.getOperand(0);
7899    SDValue Lane = N0.getOperand(1);
7900    EVT VT = N->getValueType(0);
7901    EVT EltVT = N0.getValueType();
7902    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7903
7904    if (VT == MVT::i32 &&
7905        (EltVT == MVT::i8 || EltVT == MVT::i16) &&
7906        TLI.isTypeLegal(Vec.getValueType()) &&
7907        isa<ConstantSDNode>(Lane)) {
7908
7909      unsigned Opc = 0;
7910      switch (N->getOpcode()) {
7911      default: llvm_unreachable("unexpected opcode");
7912      case ISD::SIGN_EXTEND:
7913        Opc = ARMISD::VGETLANEs;
7914        break;
7915      case ISD::ZERO_EXTEND:
7916      case ISD::ANY_EXTEND:
7917        Opc = ARMISD::VGETLANEu;
7918        break;
7919      }
7920      return DAG.getNode(Opc, N->getDebugLoc(), VT, Vec, Lane);
7921    }
7922  }
7923
7924  return SDValue();
7925}
7926
7927/// PerformSELECT_CCCombine - Target-specific DAG combining for ISD::SELECT_CC
7928/// to match f32 max/min patterns to use NEON vmax/vmin instructions.
7929static SDValue PerformSELECT_CCCombine(SDNode *N, SelectionDAG &DAG,
7930                                       const ARMSubtarget *ST) {
7931  // If the target supports NEON, try to use vmax/vmin instructions for f32
7932  // selects like "x < y ? x : y".  Unless the NoNaNsFPMath option is set,
7933  // be careful about NaNs:  NEON's vmax/vmin return NaN if either operand is
7934  // a NaN; only do the transformation when it matches that behavior.
7935
7936  // For now only do this when using NEON for FP operations; if using VFP, it
7937  // is not obvious that the benefit outweighs the cost of switching to the
7938  // NEON pipeline.
7939  if (!ST->hasNEON() || !ST->useNEONForSinglePrecisionFP() ||
7940      N->getValueType(0) != MVT::f32)
7941    return SDValue();
7942
7943  SDValue CondLHS = N->getOperand(0);
7944  SDValue CondRHS = N->getOperand(1);
7945  SDValue LHS = N->getOperand(2);
7946  SDValue RHS = N->getOperand(3);
7947  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
7948
7949  unsigned Opcode = 0;
7950  bool IsReversed;
7951  if (DAG.isEqualTo(LHS, CondLHS) && DAG.isEqualTo(RHS, CondRHS)) {
7952    IsReversed = false; // x CC y ? x : y
7953  } else if (DAG.isEqualTo(LHS, CondRHS) && DAG.isEqualTo(RHS, CondLHS)) {
7954    IsReversed = true ; // x CC y ? y : x
7955  } else {
7956    return SDValue();
7957  }
7958
7959  bool IsUnordered;
7960  switch (CC) {
7961  default: break;
7962  case ISD::SETOLT:
7963  case ISD::SETOLE:
7964  case ISD::SETLT:
7965  case ISD::SETLE:
7966  case ISD::SETULT:
7967  case ISD::SETULE:
7968    // If LHS is NaN, an ordered comparison will be false and the result will
7969    // be the RHS, but vmin(NaN, RHS) = NaN.  Avoid this by checking that LHS
7970    // != NaN.  Likewise, for unordered comparisons, check for RHS != NaN.
7971    IsUnordered = (CC == ISD::SETULT || CC == ISD::SETULE);
7972    if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
7973      break;
7974    // For less-than-or-equal comparisons, "+0 <= -0" will be true but vmin
7975    // will return -0, so vmin can only be used for unsafe math or if one of
7976    // the operands is known to be nonzero.
7977    if ((CC == ISD::SETLE || CC == ISD::SETOLE || CC == ISD::SETULE) &&
7978        !DAG.getTarget().Options.UnsafeFPMath &&
7979        !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
7980      break;
7981    Opcode = IsReversed ? ARMISD::FMAX : ARMISD::FMIN;
7982    break;
7983
7984  case ISD::SETOGT:
7985  case ISD::SETOGE:
7986  case ISD::SETGT:
7987  case ISD::SETGE:
7988  case ISD::SETUGT:
7989  case ISD::SETUGE:
7990    // If LHS is NaN, an ordered comparison will be false and the result will
7991    // be the RHS, but vmax(NaN, RHS) = NaN.  Avoid this by checking that LHS
7992    // != NaN.  Likewise, for unordered comparisons, check for RHS != NaN.
7993    IsUnordered = (CC == ISD::SETUGT || CC == ISD::SETUGE);
7994    if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
7995      break;
7996    // For greater-than-or-equal comparisons, "-0 >= +0" will be true but vmax
7997    // will return +0, so vmax can only be used for unsafe math or if one of
7998    // the operands is known to be nonzero.
7999    if ((CC == ISD::SETGE || CC == ISD::SETOGE || CC == ISD::SETUGE) &&
8000        !DAG.getTarget().Options.UnsafeFPMath &&
8001        !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
8002      break;
8003    Opcode = IsReversed ? ARMISD::FMIN : ARMISD::FMAX;
8004    break;
8005  }
8006
8007  if (!Opcode)
8008    return SDValue();
8009  return DAG.getNode(Opcode, N->getDebugLoc(), N->getValueType(0), LHS, RHS);
8010}
8011
8012/// PerformCMOVCombine - Target-specific DAG combining for ARMISD::CMOV.
8013SDValue
8014ARMTargetLowering::PerformCMOVCombine(SDNode *N, SelectionDAG &DAG) const {
8015  SDValue Cmp = N->getOperand(4);
8016  if (Cmp.getOpcode() != ARMISD::CMPZ)
8017    // Only looking at EQ and NE cases.
8018    return SDValue();
8019
8020  EVT VT = N->getValueType(0);
8021  DebugLoc dl = N->getDebugLoc();
8022  SDValue LHS = Cmp.getOperand(0);
8023  SDValue RHS = Cmp.getOperand(1);
8024  SDValue FalseVal = N->getOperand(0);
8025  SDValue TrueVal = N->getOperand(1);
8026  SDValue ARMcc = N->getOperand(2);
8027  ARMCC::CondCodes CC =
8028    (ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue();
8029
8030  // Simplify
8031  //   mov     r1, r0
8032  //   cmp     r1, x
8033  //   mov     r0, y
8034  //   moveq   r0, x
8035  // to
8036  //   cmp     r0, x
8037  //   movne   r0, y
8038  //
8039  //   mov     r1, r0
8040  //   cmp     r1, x
8041  //   mov     r0, x
8042  //   movne   r0, y
8043  // to
8044  //   cmp     r0, x
8045  //   movne   r0, y
8046  /// FIXME: Turn this into a target neutral optimization?
8047  SDValue Res;
8048  if (CC == ARMCC::NE && FalseVal == RHS && FalseVal != LHS) {
8049    Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, TrueVal, ARMcc,
8050                      N->getOperand(3), Cmp);
8051  } else if (CC == ARMCC::EQ && TrueVal == RHS) {
8052    SDValue ARMcc;
8053    SDValue NewCmp = getARMCmp(LHS, RHS, ISD::SETNE, ARMcc, DAG, dl);
8054    Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, FalseVal, ARMcc,
8055                      N->getOperand(3), NewCmp);
8056  }
8057
8058  if (Res.getNode()) {
8059    APInt KnownZero, KnownOne;
8060    APInt Mask = APInt::getAllOnesValue(VT.getScalarType().getSizeInBits());
8061    DAG.ComputeMaskedBits(SDValue(N,0), Mask, KnownZero, KnownOne);
8062    // Capture demanded bits information that would be otherwise lost.
8063    if (KnownZero == 0xfffffffe)
8064      Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
8065                        DAG.getValueType(MVT::i1));
8066    else if (KnownZero == 0xffffff00)
8067      Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
8068                        DAG.getValueType(MVT::i8));
8069    else if (KnownZero == 0xffff0000)
8070      Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
8071                        DAG.getValueType(MVT::i16));
8072  }
8073
8074  return Res;
8075}
8076
8077SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
8078                                             DAGCombinerInfo &DCI) const {
8079  switch (N->getOpcode()) {
8080  default: break;
8081  case ISD::ADD:        return PerformADDCombine(N, DCI, Subtarget);
8082  case ISD::SUB:        return PerformSUBCombine(N, DCI);
8083  case ISD::MUL:        return PerformMULCombine(N, DCI, Subtarget);
8084  case ISD::OR:         return PerformORCombine(N, DCI, Subtarget);
8085  case ISD::AND:        return PerformANDCombine(N, DCI);
8086  case ARMISD::BFI:     return PerformBFICombine(N, DCI);
8087  case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI);
8088  case ARMISD::VMOVDRR: return PerformVMOVDRRCombine(N, DCI.DAG);
8089  case ISD::STORE:      return PerformSTORECombine(N, DCI);
8090  case ISD::BUILD_VECTOR: return PerformBUILD_VECTORCombine(N, DCI);
8091  case ISD::INSERT_VECTOR_ELT: return PerformInsertEltCombine(N, DCI);
8092  case ISD::VECTOR_SHUFFLE: return PerformVECTOR_SHUFFLECombine(N, DCI.DAG);
8093  case ARMISD::VDUPLANE: return PerformVDUPLANECombine(N, DCI);
8094  case ISD::FP_TO_SINT:
8095  case ISD::FP_TO_UINT: return PerformVCVTCombine(N, DCI, Subtarget);
8096  case ISD::FDIV:       return PerformVDIVCombine(N, DCI, Subtarget);
8097  case ISD::INTRINSIC_WO_CHAIN: return PerformIntrinsicCombine(N, DCI.DAG);
8098  case ISD::SHL:
8099  case ISD::SRA:
8100  case ISD::SRL:        return PerformShiftCombine(N, DCI.DAG, Subtarget);
8101  case ISD::SIGN_EXTEND:
8102  case ISD::ZERO_EXTEND:
8103  case ISD::ANY_EXTEND: return PerformExtendCombine(N, DCI.DAG, Subtarget);
8104  case ISD::SELECT_CC:  return PerformSELECT_CCCombine(N, DCI.DAG, Subtarget);
8105  case ARMISD::CMOV: return PerformCMOVCombine(N, DCI.DAG);
8106  case ARMISD::VLD2DUP:
8107  case ARMISD::VLD3DUP:
8108  case ARMISD::VLD4DUP:
8109    return CombineBaseUpdate(N, DCI);
8110  case ISD::INTRINSIC_VOID:
8111  case ISD::INTRINSIC_W_CHAIN:
8112    switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
8113    case Intrinsic::arm_neon_vld1:
8114    case Intrinsic::arm_neon_vld2:
8115    case Intrinsic::arm_neon_vld3:
8116    case Intrinsic::arm_neon_vld4:
8117    case Intrinsic::arm_neon_vld2lane:
8118    case Intrinsic::arm_neon_vld3lane:
8119    case Intrinsic::arm_neon_vld4lane:
8120    case Intrinsic::arm_neon_vst1:
8121    case Intrinsic::arm_neon_vst2:
8122    case Intrinsic::arm_neon_vst3:
8123    case Intrinsic::arm_neon_vst4:
8124    case Intrinsic::arm_neon_vst2lane:
8125    case Intrinsic::arm_neon_vst3lane:
8126    case Intrinsic::arm_neon_vst4lane:
8127      return CombineBaseUpdate(N, DCI);
8128    default: break;
8129    }
8130    break;
8131  }
8132  return SDValue();
8133}
8134
8135bool ARMTargetLowering::isDesirableToTransformToIntegerOp(unsigned Opc,
8136                                                          EVT VT) const {
8137  return (VT == MVT::f32) && (Opc == ISD::LOAD || Opc == ISD::STORE);
8138}
8139
8140bool ARMTargetLowering::allowsUnalignedMemoryAccesses(EVT VT) const {
8141  if (!Subtarget->allowsUnalignedMem())
8142    return false;
8143
8144  switch (VT.getSimpleVT().SimpleTy) {
8145  default:
8146    return false;
8147  case MVT::i8:
8148  case MVT::i16:
8149  case MVT::i32:
8150    return true;
8151  // FIXME: VLD1 etc with standard alignment is legal.
8152  }
8153}
8154
8155static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign,
8156                       unsigned AlignCheck) {
8157  return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) &&
8158          (DstAlign == 0 || DstAlign % AlignCheck == 0));
8159}
8160
8161EVT ARMTargetLowering::getOptimalMemOpType(uint64_t Size,
8162                                           unsigned DstAlign, unsigned SrcAlign,
8163                                           bool IsZeroVal,
8164                                           bool MemcpyStrSrc,
8165                                           MachineFunction &MF) const {
8166  const Function *F = MF.getFunction();
8167
8168  // See if we can use NEON instructions for this...
8169  if (IsZeroVal &&
8170      !F->hasFnAttr(Attribute::NoImplicitFloat) &&
8171      Subtarget->hasNEON()) {
8172    if (memOpAlign(SrcAlign, DstAlign, 16) && Size >= 16) {
8173      return MVT::v4i32;
8174    } else if (memOpAlign(SrcAlign, DstAlign, 8) && Size >= 8) {
8175      return MVT::v2i32;
8176    }
8177  }
8178
8179  // Lowering to i32/i16 if the size permits.
8180  if (Size >= 4) {
8181    return MVT::i32;
8182  } else if (Size >= 2) {
8183    return MVT::i16;
8184  }
8185
8186  // Let the target-independent logic figure it out.
8187  return MVT::Other;
8188}
8189
8190static bool isLegalT1AddressImmediate(int64_t V, EVT VT) {
8191  if (V < 0)
8192    return false;
8193
8194  unsigned Scale = 1;
8195  switch (VT.getSimpleVT().SimpleTy) {
8196  default: return false;
8197  case MVT::i1:
8198  case MVT::i8:
8199    // Scale == 1;
8200    break;
8201  case MVT::i16:
8202    // Scale == 2;
8203    Scale = 2;
8204    break;
8205  case MVT::i32:
8206    // Scale == 4;
8207    Scale = 4;
8208    break;
8209  }
8210
8211  if ((V & (Scale - 1)) != 0)
8212    return false;
8213  V /= Scale;
8214  return V == (V & ((1LL << 5) - 1));
8215}
8216
8217static bool isLegalT2AddressImmediate(int64_t V, EVT VT,
8218                                      const ARMSubtarget *Subtarget) {
8219  bool isNeg = false;
8220  if (V < 0) {
8221    isNeg = true;
8222    V = - V;
8223  }
8224
8225  switch (VT.getSimpleVT().SimpleTy) {
8226  default: return false;
8227  case MVT::i1:
8228  case MVT::i8:
8229  case MVT::i16:
8230  case MVT::i32:
8231    // + imm12 or - imm8
8232    if (isNeg)
8233      return V == (V & ((1LL << 8) - 1));
8234    return V == (V & ((1LL << 12) - 1));
8235  case MVT::f32:
8236  case MVT::f64:
8237    // Same as ARM mode. FIXME: NEON?
8238    if (!Subtarget->hasVFP2())
8239      return false;
8240    if ((V & 3) != 0)
8241      return false;
8242    V >>= 2;
8243    return V == (V & ((1LL << 8) - 1));
8244  }
8245}
8246
8247/// isLegalAddressImmediate - Return true if the integer value can be used
8248/// as the offset of the target addressing mode for load / store of the
8249/// given type.
8250static bool isLegalAddressImmediate(int64_t V, EVT VT,
8251                                    const ARMSubtarget *Subtarget) {
8252  if (V == 0)
8253    return true;
8254
8255  if (!VT.isSimple())
8256    return false;
8257
8258  if (Subtarget->isThumb1Only())
8259    return isLegalT1AddressImmediate(V, VT);
8260  else if (Subtarget->isThumb2())
8261    return isLegalT2AddressImmediate(V, VT, Subtarget);
8262
8263  // ARM mode.
8264  if (V < 0)
8265    V = - V;
8266  switch (VT.getSimpleVT().SimpleTy) {
8267  default: return false;
8268  case MVT::i1:
8269  case MVT::i8:
8270  case MVT::i32:
8271    // +- imm12
8272    return V == (V & ((1LL << 12) - 1));
8273  case MVT::i16:
8274    // +- imm8
8275    return V == (V & ((1LL << 8) - 1));
8276  case MVT::f32:
8277  case MVT::f64:
8278    if (!Subtarget->hasVFP2()) // FIXME: NEON?
8279      return false;
8280    if ((V & 3) != 0)
8281      return false;
8282    V >>= 2;
8283    return V == (V & ((1LL << 8) - 1));
8284  }
8285}
8286
8287bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM,
8288                                                      EVT VT) const {
8289  int Scale = AM.Scale;
8290  if (Scale < 0)
8291    return false;
8292
8293  switch (VT.getSimpleVT().SimpleTy) {
8294  default: return false;
8295  case MVT::i1:
8296  case MVT::i8:
8297  case MVT::i16:
8298  case MVT::i32:
8299    if (Scale == 1)
8300      return true;
8301    // r + r << imm
8302    Scale = Scale & ~1;
8303    return Scale == 2 || Scale == 4 || Scale == 8;
8304  case MVT::i64:
8305    // r + r
8306    if (((unsigned)AM.HasBaseReg + Scale) <= 2)
8307      return true;
8308    return false;
8309  case MVT::isVoid:
8310    // Note, we allow "void" uses (basically, uses that aren't loads or
8311    // stores), because arm allows folding a scale into many arithmetic
8312    // operations.  This should be made more precise and revisited later.
8313
8314    // Allow r << imm, but the imm has to be a multiple of two.
8315    if (Scale & 1) return false;
8316    return isPowerOf2_32(Scale);
8317  }
8318}
8319
8320/// isLegalAddressingMode - Return true if the addressing mode represented
8321/// by AM is legal for this target, for a load/store of the specified type.
8322bool ARMTargetLowering::isLegalAddressingMode(const AddrMode &AM,
8323                                              Type *Ty) const {
8324  EVT VT = getValueType(Ty, true);
8325  if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget))
8326    return false;
8327
8328  // Can never fold addr of global into load/store.
8329  if (AM.BaseGV)
8330    return false;
8331
8332  switch (AM.Scale) {
8333  case 0:  // no scale reg, must be "r+i" or "r", or "i".
8334    break;
8335  case 1:
8336    if (Subtarget->isThumb1Only())
8337      return false;
8338    // FALL THROUGH.
8339  default:
8340    // ARM doesn't support any R+R*scale+imm addr modes.
8341    if (AM.BaseOffs)
8342      return false;
8343
8344    if (!VT.isSimple())
8345      return false;
8346
8347    if (Subtarget->isThumb2())
8348      return isLegalT2ScaledAddressingMode(AM, VT);
8349
8350    int Scale = AM.Scale;
8351    switch (VT.getSimpleVT().SimpleTy) {
8352    default: return false;
8353    case MVT::i1:
8354    case MVT::i8:
8355    case MVT::i32:
8356      if (Scale < 0) Scale = -Scale;
8357      if (Scale == 1)
8358        return true;
8359      // r + r << imm
8360      return isPowerOf2_32(Scale & ~1);
8361    case MVT::i16:
8362    case MVT::i64:
8363      // r + r
8364      if (((unsigned)AM.HasBaseReg + Scale) <= 2)
8365        return true;
8366      return false;
8367
8368    case MVT::isVoid:
8369      // Note, we allow "void" uses (basically, uses that aren't loads or
8370      // stores), because arm allows folding a scale into many arithmetic
8371      // operations.  This should be made more precise and revisited later.
8372
8373      // Allow r << imm, but the imm has to be a multiple of two.
8374      if (Scale & 1) return false;
8375      return isPowerOf2_32(Scale);
8376    }
8377    break;
8378  }
8379  return true;
8380}
8381
8382/// isLegalICmpImmediate - Return true if the specified immediate is legal
8383/// icmp immediate, that is the target has icmp instructions which can compare
8384/// a register against the immediate without having to materialize the
8385/// immediate into a register.
8386bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
8387  if (!Subtarget->isThumb())
8388    return ARM_AM::getSOImmVal(Imm) != -1;
8389  if (Subtarget->isThumb2())
8390    return ARM_AM::getT2SOImmVal(Imm) != -1;
8391  return Imm >= 0 && Imm <= 255;
8392}
8393
8394/// isLegalAddImmediate - Return true if the specified immediate is legal
8395/// add immediate, that is the target has add instructions which can add
8396/// a register with the immediate without having to materialize the
8397/// immediate into a register.
8398bool ARMTargetLowering::isLegalAddImmediate(int64_t Imm) const {
8399  return ARM_AM::getSOImmVal(Imm) != -1;
8400}
8401
8402static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT,
8403                                      bool isSEXTLoad, SDValue &Base,
8404                                      SDValue &Offset, bool &isInc,
8405                                      SelectionDAG &DAG) {
8406  if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
8407    return false;
8408
8409  if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
8410    // AddressingMode 3
8411    Base = Ptr->getOperand(0);
8412    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
8413      int RHSC = (int)RHS->getZExtValue();
8414      if (RHSC < 0 && RHSC > -256) {
8415        assert(Ptr->getOpcode() == ISD::ADD);
8416        isInc = false;
8417        Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
8418        return true;
8419      }
8420    }
8421    isInc = (Ptr->getOpcode() == ISD::ADD);
8422    Offset = Ptr->getOperand(1);
8423    return true;
8424  } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
8425    // AddressingMode 2
8426    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
8427      int RHSC = (int)RHS->getZExtValue();
8428      if (RHSC < 0 && RHSC > -0x1000) {
8429        assert(Ptr->getOpcode() == ISD::ADD);
8430        isInc = false;
8431        Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
8432        Base = Ptr->getOperand(0);
8433        return true;
8434      }
8435    }
8436
8437    if (Ptr->getOpcode() == ISD::ADD) {
8438      isInc = true;
8439      ARM_AM::ShiftOpc ShOpcVal=
8440        ARM_AM::getShiftOpcForNode(Ptr->getOperand(0).getOpcode());
8441      if (ShOpcVal != ARM_AM::no_shift) {
8442        Base = Ptr->getOperand(1);
8443        Offset = Ptr->getOperand(0);
8444      } else {
8445        Base = Ptr->getOperand(0);
8446        Offset = Ptr->getOperand(1);
8447      }
8448      return true;
8449    }
8450
8451    isInc = (Ptr->getOpcode() == ISD::ADD);
8452    Base = Ptr->getOperand(0);
8453    Offset = Ptr->getOperand(1);
8454    return true;
8455  }
8456
8457  // FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
8458  return false;
8459}
8460
8461static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT,
8462                                     bool isSEXTLoad, SDValue &Base,
8463                                     SDValue &Offset, bool &isInc,
8464                                     SelectionDAG &DAG) {
8465  if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
8466    return false;
8467
8468  Base = Ptr->getOperand(0);
8469  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
8470    int RHSC = (int)RHS->getZExtValue();
8471    if (RHSC < 0 && RHSC > -0x100) { // 8 bits.
8472      assert(Ptr->getOpcode() == ISD::ADD);
8473      isInc = false;
8474      Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
8475      return true;
8476    } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero.
8477      isInc = Ptr->getOpcode() == ISD::ADD;
8478      Offset = DAG.getConstant(RHSC, RHS->getValueType(0));
8479      return true;
8480    }
8481  }
8482
8483  return false;
8484}
8485
8486/// getPreIndexedAddressParts - returns true by value, base pointer and
8487/// offset pointer and addressing mode by reference if the node's address
8488/// can be legally represented as pre-indexed load / store address.
8489bool
8490ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
8491                                             SDValue &Offset,
8492                                             ISD::MemIndexedMode &AM,
8493                                             SelectionDAG &DAG) const {
8494  if (Subtarget->isThumb1Only())
8495    return false;
8496
8497  EVT VT;
8498  SDValue Ptr;
8499  bool isSEXTLoad = false;
8500  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
8501    Ptr = LD->getBasePtr();
8502    VT  = LD->getMemoryVT();
8503    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
8504  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
8505    Ptr = ST->getBasePtr();
8506    VT  = ST->getMemoryVT();
8507  } else
8508    return false;
8509
8510  bool isInc;
8511  bool isLegal = false;
8512  if (Subtarget->isThumb2())
8513    isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
8514                                       Offset, isInc, DAG);
8515  else
8516    isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
8517                                        Offset, isInc, DAG);
8518  if (!isLegal)
8519    return false;
8520
8521  AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
8522  return true;
8523}
8524
8525/// getPostIndexedAddressParts - returns true by value, base pointer and
8526/// offset pointer and addressing mode by reference if this node can be
8527/// combined with a load / store to form a post-indexed load / store.
8528bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
8529                                                   SDValue &Base,
8530                                                   SDValue &Offset,
8531                                                   ISD::MemIndexedMode &AM,
8532                                                   SelectionDAG &DAG) const {
8533  if (Subtarget->isThumb1Only())
8534    return false;
8535
8536  EVT VT;
8537  SDValue Ptr;
8538  bool isSEXTLoad = false;
8539  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
8540    VT  = LD->getMemoryVT();
8541    Ptr = LD->getBasePtr();
8542    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
8543  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
8544    VT  = ST->getMemoryVT();
8545    Ptr = ST->getBasePtr();
8546  } else
8547    return false;
8548
8549  bool isInc;
8550  bool isLegal = false;
8551  if (Subtarget->isThumb2())
8552    isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
8553                                       isInc, DAG);
8554  else
8555    isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
8556                                        isInc, DAG);
8557  if (!isLegal)
8558    return false;
8559
8560  if (Ptr != Base) {
8561    // Swap base ptr and offset to catch more post-index load / store when
8562    // it's legal. In Thumb2 mode, offset must be an immediate.
8563    if (Ptr == Offset && Op->getOpcode() == ISD::ADD &&
8564        !Subtarget->isThumb2())
8565      std::swap(Base, Offset);
8566
8567    // Post-indexed load / store update the base pointer.
8568    if (Ptr != Base)
8569      return false;
8570  }
8571
8572  AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
8573  return true;
8574}
8575
8576void ARMTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
8577                                                       const APInt &Mask,
8578                                                       APInt &KnownZero,
8579                                                       APInt &KnownOne,
8580                                                       const SelectionDAG &DAG,
8581                                                       unsigned Depth) const {
8582  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
8583  switch (Op.getOpcode()) {
8584  default: break;
8585  case ARMISD::CMOV: {
8586    // Bits are known zero/one if known on the LHS and RHS.
8587    DAG.ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
8588    if (KnownZero == 0 && KnownOne == 0) return;
8589
8590    APInt KnownZeroRHS, KnownOneRHS;
8591    DAG.ComputeMaskedBits(Op.getOperand(1), Mask,
8592                          KnownZeroRHS, KnownOneRHS, Depth+1);
8593    KnownZero &= KnownZeroRHS;
8594    KnownOne  &= KnownOneRHS;
8595    return;
8596  }
8597  }
8598}
8599
8600//===----------------------------------------------------------------------===//
8601//                           ARM Inline Assembly Support
8602//===----------------------------------------------------------------------===//
8603
8604bool ARMTargetLowering::ExpandInlineAsm(CallInst *CI) const {
8605  // Looking for "rev" which is V6+.
8606  if (!Subtarget->hasV6Ops())
8607    return false;
8608
8609  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
8610  std::string AsmStr = IA->getAsmString();
8611  SmallVector<StringRef, 4> AsmPieces;
8612  SplitString(AsmStr, AsmPieces, ";\n");
8613
8614  switch (AsmPieces.size()) {
8615  default: return false;
8616  case 1:
8617    AsmStr = AsmPieces[0];
8618    AsmPieces.clear();
8619    SplitString(AsmStr, AsmPieces, " \t,");
8620
8621    // rev $0, $1
8622    if (AsmPieces.size() == 3 &&
8623        AsmPieces[0] == "rev" && AsmPieces[1] == "$0" && AsmPieces[2] == "$1" &&
8624        IA->getConstraintString().compare(0, 4, "=l,l") == 0) {
8625      IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
8626      if (Ty && Ty->getBitWidth() == 32)
8627        return IntrinsicLowering::LowerToByteSwap(CI);
8628    }
8629    break;
8630  }
8631
8632  return false;
8633}
8634
8635/// getConstraintType - Given a constraint letter, return the type of
8636/// constraint it is for this target.
8637ARMTargetLowering::ConstraintType
8638ARMTargetLowering::getConstraintType(const std::string &Constraint) const {
8639  if (Constraint.size() == 1) {
8640    switch (Constraint[0]) {
8641    default:  break;
8642    case 'l': return C_RegisterClass;
8643    case 'w': return C_RegisterClass;
8644    case 'h': return C_RegisterClass;
8645    case 'x': return C_RegisterClass;
8646    case 't': return C_RegisterClass;
8647    case 'j': return C_Other; // Constant for movw.
8648      // An address with a single base register. Due to the way we
8649      // currently handle addresses it is the same as an 'r' memory constraint.
8650    case 'Q': return C_Memory;
8651    }
8652  } else if (Constraint.size() == 2) {
8653    switch (Constraint[0]) {
8654    default: break;
8655    // All 'U+' constraints are addresses.
8656    case 'U': return C_Memory;
8657    }
8658  }
8659  return TargetLowering::getConstraintType(Constraint);
8660}
8661
8662/// Examine constraint type and operand type and determine a weight value.
8663/// This object must already have been set up with the operand type
8664/// and the current alternative constraint selected.
8665TargetLowering::ConstraintWeight
8666ARMTargetLowering::getSingleConstraintMatchWeight(
8667    AsmOperandInfo &info, const char *constraint) const {
8668  ConstraintWeight weight = CW_Invalid;
8669  Value *CallOperandVal = info.CallOperandVal;
8670    // If we don't have a value, we can't do a match,
8671    // but allow it at the lowest weight.
8672  if (CallOperandVal == NULL)
8673    return CW_Default;
8674  Type *type = CallOperandVal->getType();
8675  // Look at the constraint type.
8676  switch (*constraint) {
8677  default:
8678    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
8679    break;
8680  case 'l':
8681    if (type->isIntegerTy()) {
8682      if (Subtarget->isThumb())
8683        weight = CW_SpecificReg;
8684      else
8685        weight = CW_Register;
8686    }
8687    break;
8688  case 'w':
8689    if (type->isFloatingPointTy())
8690      weight = CW_Register;
8691    break;
8692  }
8693  return weight;
8694}
8695
8696typedef std::pair<unsigned, const TargetRegisterClass*> RCPair;
8697RCPair
8698ARMTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
8699                                                EVT VT) const {
8700  if (Constraint.size() == 1) {
8701    // GCC ARM Constraint Letters
8702    switch (Constraint[0]) {
8703    case 'l': // Low regs or general regs.
8704      if (Subtarget->isThumb())
8705        return RCPair(0U, ARM::tGPRRegisterClass);
8706      else
8707        return RCPair(0U, ARM::GPRRegisterClass);
8708    case 'h': // High regs or no regs.
8709      if (Subtarget->isThumb())
8710        return RCPair(0U, ARM::hGPRRegisterClass);
8711      break;
8712    case 'r':
8713      return RCPair(0U, ARM::GPRRegisterClass);
8714    case 'w':
8715      if (VT == MVT::f32)
8716        return RCPair(0U, ARM::SPRRegisterClass);
8717      if (VT.getSizeInBits() == 64)
8718        return RCPair(0U, ARM::DPRRegisterClass);
8719      if (VT.getSizeInBits() == 128)
8720        return RCPair(0U, ARM::QPRRegisterClass);
8721      break;
8722    case 'x':
8723      if (VT == MVT::f32)
8724        return RCPair(0U, ARM::SPR_8RegisterClass);
8725      if (VT.getSizeInBits() == 64)
8726        return RCPair(0U, ARM::DPR_8RegisterClass);
8727      if (VT.getSizeInBits() == 128)
8728        return RCPair(0U, ARM::QPR_8RegisterClass);
8729      break;
8730    case 't':
8731      if (VT == MVT::f32)
8732        return RCPair(0U, ARM::SPRRegisterClass);
8733      break;
8734    }
8735  }
8736  if (StringRef("{cc}").equals_lower(Constraint))
8737    return std::make_pair(unsigned(ARM::CPSR), ARM::CCRRegisterClass);
8738
8739  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
8740}
8741
8742/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
8743/// vector.  If it is invalid, don't add anything to Ops.
8744void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
8745                                                     std::string &Constraint,
8746                                                     std::vector<SDValue>&Ops,
8747                                                     SelectionDAG &DAG) const {
8748  SDValue Result(0, 0);
8749
8750  // Currently only support length 1 constraints.
8751  if (Constraint.length() != 1) return;
8752
8753  char ConstraintLetter = Constraint[0];
8754  switch (ConstraintLetter) {
8755  default: break;
8756  case 'j':
8757  case 'I': case 'J': case 'K': case 'L':
8758  case 'M': case 'N': case 'O':
8759    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
8760    if (!C)
8761      return;
8762
8763    int64_t CVal64 = C->getSExtValue();
8764    int CVal = (int) CVal64;
8765    // None of these constraints allow values larger than 32 bits.  Check
8766    // that the value fits in an int.
8767    if (CVal != CVal64)
8768      return;
8769
8770    switch (ConstraintLetter) {
8771      case 'j':
8772        // Constant suitable for movw, must be between 0 and
8773        // 65535.
8774        if (Subtarget->hasV6T2Ops())
8775          if (CVal >= 0 && CVal <= 65535)
8776            break;
8777        return;
8778      case 'I':
8779        if (Subtarget->isThumb1Only()) {
8780          // This must be a constant between 0 and 255, for ADD
8781          // immediates.
8782          if (CVal >= 0 && CVal <= 255)
8783            break;
8784        } else if (Subtarget->isThumb2()) {
8785          // A constant that can be used as an immediate value in a
8786          // data-processing instruction.
8787          if (ARM_AM::getT2SOImmVal(CVal) != -1)
8788            break;
8789        } else {
8790          // A constant that can be used as an immediate value in a
8791          // data-processing instruction.
8792          if (ARM_AM::getSOImmVal(CVal) != -1)
8793            break;
8794        }
8795        return;
8796
8797      case 'J':
8798        if (Subtarget->isThumb()) {  // FIXME thumb2
8799          // This must be a constant between -255 and -1, for negated ADD
8800          // immediates. This can be used in GCC with an "n" modifier that
8801          // prints the negated value, for use with SUB instructions. It is
8802          // not useful otherwise but is implemented for compatibility.
8803          if (CVal >= -255 && CVal <= -1)
8804            break;
8805        } else {
8806          // This must be a constant between -4095 and 4095. It is not clear
8807          // what this constraint is intended for. Implemented for
8808          // compatibility with GCC.
8809          if (CVal >= -4095 && CVal <= 4095)
8810            break;
8811        }
8812        return;
8813
8814      case 'K':
8815        if (Subtarget->isThumb1Only()) {
8816          // A 32-bit value where only one byte has a nonzero value. Exclude
8817          // zero to match GCC. This constraint is used by GCC internally for
8818          // constants that can be loaded with a move/shift combination.
8819          // It is not useful otherwise but is implemented for compatibility.
8820          if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal))
8821            break;
8822        } else if (Subtarget->isThumb2()) {
8823          // A constant whose bitwise inverse can be used as an immediate
8824          // value in a data-processing instruction. This can be used in GCC
8825          // with a "B" modifier that prints the inverted value, for use with
8826          // BIC and MVN instructions. It is not useful otherwise but is
8827          // implemented for compatibility.
8828          if (ARM_AM::getT2SOImmVal(~CVal) != -1)
8829            break;
8830        } else {
8831          // A constant whose bitwise inverse can be used as an immediate
8832          // value in a data-processing instruction. This can be used in GCC
8833          // with a "B" modifier that prints the inverted value, for use with
8834          // BIC and MVN instructions. It is not useful otherwise but is
8835          // implemented for compatibility.
8836          if (ARM_AM::getSOImmVal(~CVal) != -1)
8837            break;
8838        }
8839        return;
8840
8841      case 'L':
8842        if (Subtarget->isThumb1Only()) {
8843          // This must be a constant between -7 and 7,
8844          // for 3-operand ADD/SUB immediate instructions.
8845          if (CVal >= -7 && CVal < 7)
8846            break;
8847        } else if (Subtarget->isThumb2()) {
8848          // A constant whose negation can be used as an immediate value in a
8849          // data-processing instruction. This can be used in GCC with an "n"
8850          // modifier that prints the negated value, for use with SUB
8851          // instructions. It is not useful otherwise but is implemented for
8852          // compatibility.
8853          if (ARM_AM::getT2SOImmVal(-CVal) != -1)
8854            break;
8855        } else {
8856          // A constant whose negation can be used as an immediate value in a
8857          // data-processing instruction. This can be used in GCC with an "n"
8858          // modifier that prints the negated value, for use with SUB
8859          // instructions. It is not useful otherwise but is implemented for
8860          // compatibility.
8861          if (ARM_AM::getSOImmVal(-CVal) != -1)
8862            break;
8863        }
8864        return;
8865
8866      case 'M':
8867        if (Subtarget->isThumb()) { // FIXME thumb2
8868          // This must be a multiple of 4 between 0 and 1020, for
8869          // ADD sp + immediate.
8870          if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
8871            break;
8872        } else {
8873          // A power of two or a constant between 0 and 32.  This is used in
8874          // GCC for the shift amount on shifted register operands, but it is
8875          // useful in general for any shift amounts.
8876          if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0))
8877            break;
8878        }
8879        return;
8880
8881      case 'N':
8882        if (Subtarget->isThumb()) {  // FIXME thumb2
8883          // This must be a constant between 0 and 31, for shift amounts.
8884          if (CVal >= 0 && CVal <= 31)
8885            break;
8886        }
8887        return;
8888
8889      case 'O':
8890        if (Subtarget->isThumb()) {  // FIXME thumb2
8891          // This must be a multiple of 4 between -508 and 508, for
8892          // ADD/SUB sp = sp + immediate.
8893          if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
8894            break;
8895        }
8896        return;
8897    }
8898    Result = DAG.getTargetConstant(CVal, Op.getValueType());
8899    break;
8900  }
8901
8902  if (Result.getNode()) {
8903    Ops.push_back(Result);
8904    return;
8905  }
8906  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
8907}
8908
8909bool
8910ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
8911  // The ARM target isn't yet aware of offsets.
8912  return false;
8913}
8914
8915bool ARM::isBitFieldInvertedMask(unsigned v) {
8916  if (v == 0xffffffff)
8917    return 0;
8918  // there can be 1's on either or both "outsides", all the "inside"
8919  // bits must be 0's
8920  unsigned int lsb = 0, msb = 31;
8921  while (v & (1 << msb)) --msb;
8922  while (v & (1 << lsb)) ++lsb;
8923  for (unsigned int i = lsb; i <= msb; ++i) {
8924    if (v & (1 << i))
8925      return 0;
8926  }
8927  return 1;
8928}
8929
8930/// isFPImmLegal - Returns true if the target can instruction select the
8931/// specified FP immediate natively. If false, the legalizer will
8932/// materialize the FP immediate as a load from a constant pool.
8933bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
8934  if (!Subtarget->hasVFP3())
8935    return false;
8936  if (VT == MVT::f32)
8937    return ARM_AM::getFP32Imm(Imm) != -1;
8938  if (VT == MVT::f64)
8939    return ARM_AM::getFP64Imm(Imm) != -1;
8940  return false;
8941}
8942
8943/// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
8944/// MemIntrinsicNodes.  The associated MachineMemOperands record the alignment
8945/// specified in the intrinsic calls.
8946bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
8947                                           const CallInst &I,
8948                                           unsigned Intrinsic) const {
8949  switch (Intrinsic) {
8950  case Intrinsic::arm_neon_vld1:
8951  case Intrinsic::arm_neon_vld2:
8952  case Intrinsic::arm_neon_vld3:
8953  case Intrinsic::arm_neon_vld4:
8954  case Intrinsic::arm_neon_vld2lane:
8955  case Intrinsic::arm_neon_vld3lane:
8956  case Intrinsic::arm_neon_vld4lane: {
8957    Info.opc = ISD::INTRINSIC_W_CHAIN;
8958    // Conservatively set memVT to the entire set of vectors loaded.
8959    uint64_t NumElts = getTargetData()->getTypeAllocSize(I.getType()) / 8;
8960    Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
8961    Info.ptrVal = I.getArgOperand(0);
8962    Info.offset = 0;
8963    Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
8964    Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
8965    Info.vol = false; // volatile loads with NEON intrinsics not supported
8966    Info.readMem = true;
8967    Info.writeMem = false;
8968    return true;
8969  }
8970  case Intrinsic::arm_neon_vst1:
8971  case Intrinsic::arm_neon_vst2:
8972  case Intrinsic::arm_neon_vst3:
8973  case Intrinsic::arm_neon_vst4:
8974  case Intrinsic::arm_neon_vst2lane:
8975  case Intrinsic::arm_neon_vst3lane:
8976  case Intrinsic::arm_neon_vst4lane: {
8977    Info.opc = ISD::INTRINSIC_VOID;
8978    // Conservatively set memVT to the entire set of vectors stored.
8979    unsigned NumElts = 0;
8980    for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
8981      Type *ArgTy = I.getArgOperand(ArgI)->getType();
8982      if (!ArgTy->isVectorTy())
8983        break;
8984      NumElts += getTargetData()->getTypeAllocSize(ArgTy) / 8;
8985    }
8986    Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
8987    Info.ptrVal = I.getArgOperand(0);
8988    Info.offset = 0;
8989    Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
8990    Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
8991    Info.vol = false; // volatile stores with NEON intrinsics not supported
8992    Info.readMem = false;
8993    Info.writeMem = true;
8994    return true;
8995  }
8996  case Intrinsic::arm_strexd: {
8997    Info.opc = ISD::INTRINSIC_W_CHAIN;
8998    Info.memVT = MVT::i64;
8999    Info.ptrVal = I.getArgOperand(2);
9000    Info.offset = 0;
9001    Info.align = 8;
9002    Info.vol = true;
9003    Info.readMem = false;
9004    Info.writeMem = true;
9005    return true;
9006  }
9007  case Intrinsic::arm_ldrexd: {
9008    Info.opc = ISD::INTRINSIC_W_CHAIN;
9009    Info.memVT = MVT::i64;
9010    Info.ptrVal = I.getArgOperand(0);
9011    Info.offset = 0;
9012    Info.align = 8;
9013    Info.vol = true;
9014    Info.readMem = true;
9015    Info.writeMem = false;
9016    return true;
9017  }
9018  default:
9019    break;
9020  }
9021
9022  return false;
9023}
9024