ARMISelLowering.cpp revision f1083d4139720b41457528f81919d9587e442862
1//===-- ARMISelLowering.cpp - ARM DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that ARM uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "arm-isel"
16#include "ARM.h"
17#include "ARMCallingConv.h"
18#include "ARMConstantPoolValue.h"
19#include "ARMISelLowering.h"
20#include "ARMMachineFunctionInfo.h"
21#include "ARMPerfectShuffle.h"
22#include "ARMRegisterInfo.h"
23#include "ARMSubtarget.h"
24#include "ARMTargetMachine.h"
25#include "ARMTargetObjectFile.h"
26#include "MCTargetDesc/ARMAddressingModes.h"
27#include "llvm/CallingConv.h"
28#include "llvm/Constants.h"
29#include "llvm/Function.h"
30#include "llvm/GlobalValue.h"
31#include "llvm/Instruction.h"
32#include "llvm/Instructions.h"
33#include "llvm/Intrinsics.h"
34#include "llvm/Type.h"
35#include "llvm/CodeGen/CallingConvLower.h"
36#include "llvm/CodeGen/IntrinsicLowering.h"
37#include "llvm/CodeGen/MachineBasicBlock.h"
38#include "llvm/CodeGen/MachineFrameInfo.h"
39#include "llvm/CodeGen/MachineFunction.h"
40#include "llvm/CodeGen/MachineInstrBuilder.h"
41#include "llvm/CodeGen/MachineModuleInfo.h"
42#include "llvm/CodeGen/MachineRegisterInfo.h"
43#include "llvm/CodeGen/PseudoSourceValue.h"
44#include "llvm/CodeGen/SelectionDAG.h"
45#include "llvm/MC/MCSectionMachO.h"
46#include "llvm/Target/TargetOptions.h"
47#include "llvm/ADT/VectorExtras.h"
48#include "llvm/ADT/StringExtras.h"
49#include "llvm/ADT/Statistic.h"
50#include "llvm/Support/CommandLine.h"
51#include "llvm/Support/ErrorHandling.h"
52#include "llvm/Support/MathExtras.h"
53#include "llvm/Support/raw_ostream.h"
54#include <sstream>
55using namespace llvm;
56
57STATISTIC(NumTailCalls, "Number of tail calls");
58STATISTIC(NumMovwMovt, "Number of GAs materialized with movw + movt");
59
60// This option should go away when tail calls fully work.
61static cl::opt<bool>
62EnableARMTailCalls("arm-tail-calls", cl::Hidden,
63  cl::desc("Generate tail calls (TEMPORARY OPTION)."),
64  cl::init(false));
65
66cl::opt<bool>
67EnableARMLongCalls("arm-long-calls", cl::Hidden,
68  cl::desc("Generate calls via indirect call instructions"),
69  cl::init(false));
70
71static cl::opt<bool>
72ARMInterworking("arm-interworking", cl::Hidden,
73  cl::desc("Enable / disable ARM interworking (for debugging only)"),
74  cl::init(true));
75
76namespace llvm {
77  class ARMCCState : public CCState {
78  public:
79    ARMCCState(CallingConv::ID CC, bool isVarArg, MachineFunction &MF,
80               const TargetMachine &TM, SmallVector<CCValAssign, 16> &locs,
81               LLVMContext &C, ParmContext PC)
82        : CCState(CC, isVarArg, MF, TM, locs, C) {
83      assert(((PC == Call) || (PC == Prologue)) &&
84             "ARMCCState users must specify whether their context is call"
85             "or prologue generation.");
86      CallOrPrologue = PC;
87    }
88  };
89}
90
91// The APCS parameter registers.
92static const unsigned GPRArgRegs[] = {
93  ARM::R0, ARM::R1, ARM::R2, ARM::R3
94};
95
96void ARMTargetLowering::addTypeForNEON(EVT VT, EVT PromotedLdStVT,
97                                       EVT PromotedBitwiseVT) {
98  if (VT != PromotedLdStVT) {
99    setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote);
100    AddPromotedToType (ISD::LOAD, VT.getSimpleVT(),
101                       PromotedLdStVT.getSimpleVT());
102
103    setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote);
104    AddPromotedToType (ISD::STORE, VT.getSimpleVT(),
105                       PromotedLdStVT.getSimpleVT());
106  }
107
108  EVT ElemTy = VT.getVectorElementType();
109  if (ElemTy != MVT::i64 && ElemTy != MVT::f64)
110    setOperationAction(ISD::SETCC, VT.getSimpleVT(), Custom);
111  setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT.getSimpleVT(), Custom);
112  if (ElemTy != MVT::i32) {
113    setOperationAction(ISD::SINT_TO_FP, VT.getSimpleVT(), Expand);
114    setOperationAction(ISD::UINT_TO_FP, VT.getSimpleVT(), Expand);
115    setOperationAction(ISD::FP_TO_SINT, VT.getSimpleVT(), Expand);
116    setOperationAction(ISD::FP_TO_UINT, VT.getSimpleVT(), Expand);
117  }
118  setOperationAction(ISD::BUILD_VECTOR, VT.getSimpleVT(), Custom);
119  setOperationAction(ISD::VECTOR_SHUFFLE, VT.getSimpleVT(), Custom);
120  setOperationAction(ISD::CONCAT_VECTORS, VT.getSimpleVT(), Legal);
121  setOperationAction(ISD::EXTRACT_SUBVECTOR, VT.getSimpleVT(), Legal);
122  setOperationAction(ISD::SELECT, VT.getSimpleVT(), Expand);
123  setOperationAction(ISD::SELECT_CC, VT.getSimpleVT(), Expand);
124  if (VT.isInteger()) {
125    setOperationAction(ISD::SHL, VT.getSimpleVT(), Custom);
126    setOperationAction(ISD::SRA, VT.getSimpleVT(), Custom);
127    setOperationAction(ISD::SRL, VT.getSimpleVT(), Custom);
128    setLoadExtAction(ISD::SEXTLOAD, VT.getSimpleVT(), Expand);
129    setLoadExtAction(ISD::ZEXTLOAD, VT.getSimpleVT(), Expand);
130    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
131         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
132      setTruncStoreAction(VT.getSimpleVT(),
133                          (MVT::SimpleValueType)InnerVT, Expand);
134  }
135  setLoadExtAction(ISD::EXTLOAD, VT.getSimpleVT(), Expand);
136
137  // Promote all bit-wise operations.
138  if (VT.isInteger() && VT != PromotedBitwiseVT) {
139    setOperationAction(ISD::AND, VT.getSimpleVT(), Promote);
140    AddPromotedToType (ISD::AND, VT.getSimpleVT(),
141                       PromotedBitwiseVT.getSimpleVT());
142    setOperationAction(ISD::OR,  VT.getSimpleVT(), Promote);
143    AddPromotedToType (ISD::OR,  VT.getSimpleVT(),
144                       PromotedBitwiseVT.getSimpleVT());
145    setOperationAction(ISD::XOR, VT.getSimpleVT(), Promote);
146    AddPromotedToType (ISD::XOR, VT.getSimpleVT(),
147                       PromotedBitwiseVT.getSimpleVT());
148  }
149
150  // Neon does not support vector divide/remainder operations.
151  setOperationAction(ISD::SDIV, VT.getSimpleVT(), Expand);
152  setOperationAction(ISD::UDIV, VT.getSimpleVT(), Expand);
153  setOperationAction(ISD::FDIV, VT.getSimpleVT(), Expand);
154  setOperationAction(ISD::SREM, VT.getSimpleVT(), Expand);
155  setOperationAction(ISD::UREM, VT.getSimpleVT(), Expand);
156  setOperationAction(ISD::FREM, VT.getSimpleVT(), Expand);
157}
158
159void ARMTargetLowering::addDRTypeForNEON(EVT VT) {
160  addRegisterClass(VT, ARM::DPRRegisterClass);
161  addTypeForNEON(VT, MVT::f64, MVT::v2i32);
162}
163
164void ARMTargetLowering::addQRTypeForNEON(EVT VT) {
165  addRegisterClass(VT, ARM::QPRRegisterClass);
166  addTypeForNEON(VT, MVT::v2f64, MVT::v4i32);
167}
168
169static TargetLoweringObjectFile *createTLOF(TargetMachine &TM) {
170  if (TM.getSubtarget<ARMSubtarget>().isTargetDarwin())
171    return new TargetLoweringObjectFileMachO();
172
173  return new ARMElfTargetObjectFile();
174}
175
176ARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
177    : TargetLowering(TM, createTLOF(TM)) {
178  Subtarget = &TM.getSubtarget<ARMSubtarget>();
179  RegInfo = TM.getRegisterInfo();
180  Itins = TM.getInstrItineraryData();
181
182  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
183
184  if (Subtarget->isTargetDarwin()) {
185    // Uses VFP for Thumb libfuncs if available.
186    if (Subtarget->isThumb() && Subtarget->hasVFP2()) {
187      // Single-precision floating-point arithmetic.
188      setLibcallName(RTLIB::ADD_F32, "__addsf3vfp");
189      setLibcallName(RTLIB::SUB_F32, "__subsf3vfp");
190      setLibcallName(RTLIB::MUL_F32, "__mulsf3vfp");
191      setLibcallName(RTLIB::DIV_F32, "__divsf3vfp");
192
193      // Double-precision floating-point arithmetic.
194      setLibcallName(RTLIB::ADD_F64, "__adddf3vfp");
195      setLibcallName(RTLIB::SUB_F64, "__subdf3vfp");
196      setLibcallName(RTLIB::MUL_F64, "__muldf3vfp");
197      setLibcallName(RTLIB::DIV_F64, "__divdf3vfp");
198
199      // Single-precision comparisons.
200      setLibcallName(RTLIB::OEQ_F32, "__eqsf2vfp");
201      setLibcallName(RTLIB::UNE_F32, "__nesf2vfp");
202      setLibcallName(RTLIB::OLT_F32, "__ltsf2vfp");
203      setLibcallName(RTLIB::OLE_F32, "__lesf2vfp");
204      setLibcallName(RTLIB::OGE_F32, "__gesf2vfp");
205      setLibcallName(RTLIB::OGT_F32, "__gtsf2vfp");
206      setLibcallName(RTLIB::UO_F32,  "__unordsf2vfp");
207      setLibcallName(RTLIB::O_F32,   "__unordsf2vfp");
208
209      setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
210      setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETNE);
211      setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
212      setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
213      setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
214      setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
215      setCmpLibcallCC(RTLIB::UO_F32,  ISD::SETNE);
216      setCmpLibcallCC(RTLIB::O_F32,   ISD::SETEQ);
217
218      // Double-precision comparisons.
219      setLibcallName(RTLIB::OEQ_F64, "__eqdf2vfp");
220      setLibcallName(RTLIB::UNE_F64, "__nedf2vfp");
221      setLibcallName(RTLIB::OLT_F64, "__ltdf2vfp");
222      setLibcallName(RTLIB::OLE_F64, "__ledf2vfp");
223      setLibcallName(RTLIB::OGE_F64, "__gedf2vfp");
224      setLibcallName(RTLIB::OGT_F64, "__gtdf2vfp");
225      setLibcallName(RTLIB::UO_F64,  "__unorddf2vfp");
226      setLibcallName(RTLIB::O_F64,   "__unorddf2vfp");
227
228      setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
229      setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETNE);
230      setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
231      setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
232      setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
233      setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
234      setCmpLibcallCC(RTLIB::UO_F64,  ISD::SETNE);
235      setCmpLibcallCC(RTLIB::O_F64,   ISD::SETEQ);
236
237      // Floating-point to integer conversions.
238      // i64 conversions are done via library routines even when generating VFP
239      // instructions, so use the same ones.
240      setLibcallName(RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp");
241      setLibcallName(RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp");
242      setLibcallName(RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp");
243      setLibcallName(RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp");
244
245      // Conversions between floating types.
246      setLibcallName(RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp");
247      setLibcallName(RTLIB::FPEXT_F32_F64,   "__extendsfdf2vfp");
248
249      // Integer to floating-point conversions.
250      // i64 conversions are done via library routines even when generating VFP
251      // instructions, so use the same ones.
252      // FIXME: There appears to be some naming inconsistency in ARM libgcc:
253      // e.g., __floatunsidf vs. __floatunssidfvfp.
254      setLibcallName(RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp");
255      setLibcallName(RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp");
256      setLibcallName(RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp");
257      setLibcallName(RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp");
258    }
259  }
260
261  // These libcalls are not available in 32-bit.
262  setLibcallName(RTLIB::SHL_I128, 0);
263  setLibcallName(RTLIB::SRL_I128, 0);
264  setLibcallName(RTLIB::SRA_I128, 0);
265
266  if (Subtarget->isAAPCS_ABI()) {
267    // Double-precision floating-point arithmetic helper functions
268    // RTABI chapter 4.1.2, Table 2
269    setLibcallName(RTLIB::ADD_F64, "__aeabi_dadd");
270    setLibcallName(RTLIB::DIV_F64, "__aeabi_ddiv");
271    setLibcallName(RTLIB::MUL_F64, "__aeabi_dmul");
272    setLibcallName(RTLIB::SUB_F64, "__aeabi_dsub");
273    setLibcallCallingConv(RTLIB::ADD_F64, CallingConv::ARM_AAPCS);
274    setLibcallCallingConv(RTLIB::DIV_F64, CallingConv::ARM_AAPCS);
275    setLibcallCallingConv(RTLIB::MUL_F64, CallingConv::ARM_AAPCS);
276    setLibcallCallingConv(RTLIB::SUB_F64, CallingConv::ARM_AAPCS);
277
278    // Double-precision floating-point comparison helper functions
279    // RTABI chapter 4.1.2, Table 3
280    setLibcallName(RTLIB::OEQ_F64, "__aeabi_dcmpeq");
281    setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
282    setLibcallName(RTLIB::UNE_F64, "__aeabi_dcmpeq");
283    setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETEQ);
284    setLibcallName(RTLIB::OLT_F64, "__aeabi_dcmplt");
285    setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
286    setLibcallName(RTLIB::OLE_F64, "__aeabi_dcmple");
287    setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
288    setLibcallName(RTLIB::OGE_F64, "__aeabi_dcmpge");
289    setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
290    setLibcallName(RTLIB::OGT_F64, "__aeabi_dcmpgt");
291    setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
292    setLibcallName(RTLIB::UO_F64,  "__aeabi_dcmpun");
293    setCmpLibcallCC(RTLIB::UO_F64,  ISD::SETNE);
294    setLibcallName(RTLIB::O_F64,   "__aeabi_dcmpun");
295    setCmpLibcallCC(RTLIB::O_F64,   ISD::SETEQ);
296    setLibcallCallingConv(RTLIB::OEQ_F64, CallingConv::ARM_AAPCS);
297    setLibcallCallingConv(RTLIB::UNE_F64, CallingConv::ARM_AAPCS);
298    setLibcallCallingConv(RTLIB::OLT_F64, CallingConv::ARM_AAPCS);
299    setLibcallCallingConv(RTLIB::OLE_F64, CallingConv::ARM_AAPCS);
300    setLibcallCallingConv(RTLIB::OGE_F64, CallingConv::ARM_AAPCS);
301    setLibcallCallingConv(RTLIB::OGT_F64, CallingConv::ARM_AAPCS);
302    setLibcallCallingConv(RTLIB::UO_F64, CallingConv::ARM_AAPCS);
303    setLibcallCallingConv(RTLIB::O_F64, CallingConv::ARM_AAPCS);
304
305    // Single-precision floating-point arithmetic helper functions
306    // RTABI chapter 4.1.2, Table 4
307    setLibcallName(RTLIB::ADD_F32, "__aeabi_fadd");
308    setLibcallName(RTLIB::DIV_F32, "__aeabi_fdiv");
309    setLibcallName(RTLIB::MUL_F32, "__aeabi_fmul");
310    setLibcallName(RTLIB::SUB_F32, "__aeabi_fsub");
311    setLibcallCallingConv(RTLIB::ADD_F32, CallingConv::ARM_AAPCS);
312    setLibcallCallingConv(RTLIB::DIV_F32, CallingConv::ARM_AAPCS);
313    setLibcallCallingConv(RTLIB::MUL_F32, CallingConv::ARM_AAPCS);
314    setLibcallCallingConv(RTLIB::SUB_F32, CallingConv::ARM_AAPCS);
315
316    // Single-precision floating-point comparison helper functions
317    // RTABI chapter 4.1.2, Table 5
318    setLibcallName(RTLIB::OEQ_F32, "__aeabi_fcmpeq");
319    setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
320    setLibcallName(RTLIB::UNE_F32, "__aeabi_fcmpeq");
321    setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETEQ);
322    setLibcallName(RTLIB::OLT_F32, "__aeabi_fcmplt");
323    setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
324    setLibcallName(RTLIB::OLE_F32, "__aeabi_fcmple");
325    setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
326    setLibcallName(RTLIB::OGE_F32, "__aeabi_fcmpge");
327    setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
328    setLibcallName(RTLIB::OGT_F32, "__aeabi_fcmpgt");
329    setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
330    setLibcallName(RTLIB::UO_F32,  "__aeabi_fcmpun");
331    setCmpLibcallCC(RTLIB::UO_F32,  ISD::SETNE);
332    setLibcallName(RTLIB::O_F32,   "__aeabi_fcmpun");
333    setCmpLibcallCC(RTLIB::O_F32,   ISD::SETEQ);
334    setLibcallCallingConv(RTLIB::OEQ_F32, CallingConv::ARM_AAPCS);
335    setLibcallCallingConv(RTLIB::UNE_F32, CallingConv::ARM_AAPCS);
336    setLibcallCallingConv(RTLIB::OLT_F32, CallingConv::ARM_AAPCS);
337    setLibcallCallingConv(RTLIB::OLE_F32, CallingConv::ARM_AAPCS);
338    setLibcallCallingConv(RTLIB::OGE_F32, CallingConv::ARM_AAPCS);
339    setLibcallCallingConv(RTLIB::OGT_F32, CallingConv::ARM_AAPCS);
340    setLibcallCallingConv(RTLIB::UO_F32, CallingConv::ARM_AAPCS);
341    setLibcallCallingConv(RTLIB::O_F32, CallingConv::ARM_AAPCS);
342
343    // Floating-point to integer conversions.
344    // RTABI chapter 4.1.2, Table 6
345    setLibcallName(RTLIB::FPTOSINT_F64_I32, "__aeabi_d2iz");
346    setLibcallName(RTLIB::FPTOUINT_F64_I32, "__aeabi_d2uiz");
347    setLibcallName(RTLIB::FPTOSINT_F64_I64, "__aeabi_d2lz");
348    setLibcallName(RTLIB::FPTOUINT_F64_I64, "__aeabi_d2ulz");
349    setLibcallName(RTLIB::FPTOSINT_F32_I32, "__aeabi_f2iz");
350    setLibcallName(RTLIB::FPTOUINT_F32_I32, "__aeabi_f2uiz");
351    setLibcallName(RTLIB::FPTOSINT_F32_I64, "__aeabi_f2lz");
352    setLibcallName(RTLIB::FPTOUINT_F32_I64, "__aeabi_f2ulz");
353    setLibcallCallingConv(RTLIB::FPTOSINT_F64_I32, CallingConv::ARM_AAPCS);
354    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I32, CallingConv::ARM_AAPCS);
355    setLibcallCallingConv(RTLIB::FPTOSINT_F64_I64, CallingConv::ARM_AAPCS);
356    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::ARM_AAPCS);
357    setLibcallCallingConv(RTLIB::FPTOSINT_F32_I32, CallingConv::ARM_AAPCS);
358    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I32, CallingConv::ARM_AAPCS);
359    setLibcallCallingConv(RTLIB::FPTOSINT_F32_I64, CallingConv::ARM_AAPCS);
360    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::ARM_AAPCS);
361
362    // Conversions between floating types.
363    // RTABI chapter 4.1.2, Table 7
364    setLibcallName(RTLIB::FPROUND_F64_F32, "__aeabi_d2f");
365    setLibcallName(RTLIB::FPEXT_F32_F64,   "__aeabi_f2d");
366    setLibcallCallingConv(RTLIB::FPROUND_F64_F32, CallingConv::ARM_AAPCS);
367    setLibcallCallingConv(RTLIB::FPEXT_F32_F64, CallingConv::ARM_AAPCS);
368
369    // Integer to floating-point conversions.
370    // RTABI chapter 4.1.2, Table 8
371    setLibcallName(RTLIB::SINTTOFP_I32_F64, "__aeabi_i2d");
372    setLibcallName(RTLIB::UINTTOFP_I32_F64, "__aeabi_ui2d");
373    setLibcallName(RTLIB::SINTTOFP_I64_F64, "__aeabi_l2d");
374    setLibcallName(RTLIB::UINTTOFP_I64_F64, "__aeabi_ul2d");
375    setLibcallName(RTLIB::SINTTOFP_I32_F32, "__aeabi_i2f");
376    setLibcallName(RTLIB::UINTTOFP_I32_F32, "__aeabi_ui2f");
377    setLibcallName(RTLIB::SINTTOFP_I64_F32, "__aeabi_l2f");
378    setLibcallName(RTLIB::UINTTOFP_I64_F32, "__aeabi_ul2f");
379    setLibcallCallingConv(RTLIB::SINTTOFP_I32_F64, CallingConv::ARM_AAPCS);
380    setLibcallCallingConv(RTLIB::UINTTOFP_I32_F64, CallingConv::ARM_AAPCS);
381    setLibcallCallingConv(RTLIB::SINTTOFP_I64_F64, CallingConv::ARM_AAPCS);
382    setLibcallCallingConv(RTLIB::UINTTOFP_I64_F64, CallingConv::ARM_AAPCS);
383    setLibcallCallingConv(RTLIB::SINTTOFP_I32_F32, CallingConv::ARM_AAPCS);
384    setLibcallCallingConv(RTLIB::UINTTOFP_I32_F32, CallingConv::ARM_AAPCS);
385    setLibcallCallingConv(RTLIB::SINTTOFP_I64_F32, CallingConv::ARM_AAPCS);
386    setLibcallCallingConv(RTLIB::UINTTOFP_I64_F32, CallingConv::ARM_AAPCS);
387
388    // Long long helper functions
389    // RTABI chapter 4.2, Table 9
390    setLibcallName(RTLIB::MUL_I64,  "__aeabi_lmul");
391    setLibcallName(RTLIB::SDIV_I64, "__aeabi_ldivmod");
392    setLibcallName(RTLIB::UDIV_I64, "__aeabi_uldivmod");
393    setLibcallName(RTLIB::SHL_I64, "__aeabi_llsl");
394    setLibcallName(RTLIB::SRL_I64, "__aeabi_llsr");
395    setLibcallName(RTLIB::SRA_I64, "__aeabi_lasr");
396    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::ARM_AAPCS);
397    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::ARM_AAPCS);
398    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::ARM_AAPCS);
399    setLibcallCallingConv(RTLIB::SHL_I64, CallingConv::ARM_AAPCS);
400    setLibcallCallingConv(RTLIB::SRL_I64, CallingConv::ARM_AAPCS);
401    setLibcallCallingConv(RTLIB::SRA_I64, CallingConv::ARM_AAPCS);
402
403    // Integer division functions
404    // RTABI chapter 4.3.1
405    setLibcallName(RTLIB::SDIV_I8,  "__aeabi_idiv");
406    setLibcallName(RTLIB::SDIV_I16, "__aeabi_idiv");
407    setLibcallName(RTLIB::SDIV_I32, "__aeabi_idiv");
408    setLibcallName(RTLIB::UDIV_I8,  "__aeabi_uidiv");
409    setLibcallName(RTLIB::UDIV_I16, "__aeabi_uidiv");
410    setLibcallName(RTLIB::UDIV_I32, "__aeabi_uidiv");
411    setLibcallCallingConv(RTLIB::SDIV_I8, CallingConv::ARM_AAPCS);
412    setLibcallCallingConv(RTLIB::SDIV_I16, CallingConv::ARM_AAPCS);
413    setLibcallCallingConv(RTLIB::SDIV_I32, CallingConv::ARM_AAPCS);
414    setLibcallCallingConv(RTLIB::UDIV_I8, CallingConv::ARM_AAPCS);
415    setLibcallCallingConv(RTLIB::UDIV_I16, CallingConv::ARM_AAPCS);
416    setLibcallCallingConv(RTLIB::UDIV_I32, CallingConv::ARM_AAPCS);
417
418    // Memory operations
419    // RTABI chapter 4.3.4
420    setLibcallName(RTLIB::MEMCPY,  "__aeabi_memcpy");
421    setLibcallName(RTLIB::MEMMOVE, "__aeabi_memmove");
422    setLibcallName(RTLIB::MEMSET,  "__aeabi_memset");
423  }
424
425  // Use divmod compiler-rt calls for iOS 5.0 and later.
426  if (Subtarget->getTargetTriple().getOS() == Triple::IOS &&
427      !Subtarget->getTargetTriple().isOSVersionLT(5, 0)) {
428    setLibcallName(RTLIB::SDIVREM_I32, "__divmodsi4");
429    setLibcallName(RTLIB::UDIVREM_I32, "__udivmodsi4");
430  }
431
432  if (Subtarget->isThumb1Only())
433    addRegisterClass(MVT::i32, ARM::tGPRRegisterClass);
434  else
435    addRegisterClass(MVT::i32, ARM::GPRRegisterClass);
436  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
437    addRegisterClass(MVT::f32, ARM::SPRRegisterClass);
438    if (!Subtarget->isFPOnlySP())
439      addRegisterClass(MVT::f64, ARM::DPRRegisterClass);
440
441    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
442  }
443
444  if (Subtarget->hasNEON()) {
445    addDRTypeForNEON(MVT::v2f32);
446    addDRTypeForNEON(MVT::v8i8);
447    addDRTypeForNEON(MVT::v4i16);
448    addDRTypeForNEON(MVT::v2i32);
449    addDRTypeForNEON(MVT::v1i64);
450
451    addQRTypeForNEON(MVT::v4f32);
452    addQRTypeForNEON(MVT::v2f64);
453    addQRTypeForNEON(MVT::v16i8);
454    addQRTypeForNEON(MVT::v8i16);
455    addQRTypeForNEON(MVT::v4i32);
456    addQRTypeForNEON(MVT::v2i64);
457
458    // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
459    // neither Neon nor VFP support any arithmetic operations on it.
460    setOperationAction(ISD::FADD, MVT::v2f64, Expand);
461    setOperationAction(ISD::FSUB, MVT::v2f64, Expand);
462    setOperationAction(ISD::FMUL, MVT::v2f64, Expand);
463    setOperationAction(ISD::FDIV, MVT::v2f64, Expand);
464    setOperationAction(ISD::FREM, MVT::v2f64, Expand);
465    setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand);
466    setOperationAction(ISD::SETCC, MVT::v2f64, Expand);
467    setOperationAction(ISD::FNEG, MVT::v2f64, Expand);
468    setOperationAction(ISD::FABS, MVT::v2f64, Expand);
469    setOperationAction(ISD::FSQRT, MVT::v2f64, Expand);
470    setOperationAction(ISD::FSIN, MVT::v2f64, Expand);
471    setOperationAction(ISD::FCOS, MVT::v2f64, Expand);
472    setOperationAction(ISD::FPOWI, MVT::v2f64, Expand);
473    setOperationAction(ISD::FPOW, MVT::v2f64, Expand);
474    setOperationAction(ISD::FLOG, MVT::v2f64, Expand);
475    setOperationAction(ISD::FLOG2, MVT::v2f64, Expand);
476    setOperationAction(ISD::FLOG10, MVT::v2f64, Expand);
477    setOperationAction(ISD::FEXP, MVT::v2f64, Expand);
478    setOperationAction(ISD::FEXP2, MVT::v2f64, Expand);
479    setOperationAction(ISD::FCEIL, MVT::v2f64, Expand);
480    setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand);
481    setOperationAction(ISD::FRINT, MVT::v2f64, Expand);
482    setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand);
483    setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand);
484
485    setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand);
486
487    // Neon does not support some operations on v1i64 and v2i64 types.
488    setOperationAction(ISD::MUL, MVT::v1i64, Expand);
489    // Custom handling for some quad-vector types to detect VMULL.
490    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
491    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
492    setOperationAction(ISD::MUL, MVT::v2i64, Custom);
493    // Custom handling for some vector types to avoid expensive expansions
494    setOperationAction(ISD::SDIV, MVT::v4i16, Custom);
495    setOperationAction(ISD::SDIV, MVT::v8i8, Custom);
496    setOperationAction(ISD::UDIV, MVT::v4i16, Custom);
497    setOperationAction(ISD::UDIV, MVT::v8i8, Custom);
498    setOperationAction(ISD::SETCC, MVT::v1i64, Expand);
499    setOperationAction(ISD::SETCC, MVT::v2i64, Expand);
500    // Neon does not have single instruction SINT_TO_FP and UINT_TO_FP with
501    // a destination type that is wider than the source.
502    setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
503    setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
504
505    setTargetDAGCombine(ISD::INTRINSIC_VOID);
506    setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
507    setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
508    setTargetDAGCombine(ISD::SHL);
509    setTargetDAGCombine(ISD::SRL);
510    setTargetDAGCombine(ISD::SRA);
511    setTargetDAGCombine(ISD::SIGN_EXTEND);
512    setTargetDAGCombine(ISD::ZERO_EXTEND);
513    setTargetDAGCombine(ISD::ANY_EXTEND);
514    setTargetDAGCombine(ISD::SELECT_CC);
515    setTargetDAGCombine(ISD::BUILD_VECTOR);
516    setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
517    setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
518    setTargetDAGCombine(ISD::STORE);
519    setTargetDAGCombine(ISD::FP_TO_SINT);
520    setTargetDAGCombine(ISD::FP_TO_UINT);
521    setTargetDAGCombine(ISD::FDIV);
522  }
523
524  computeRegisterProperties();
525
526  // ARM does not have f32 extending load.
527  setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
528
529  // ARM does not have i1 sign extending load.
530  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
531
532  // ARM supports all 4 flavors of integer indexed load / store.
533  if (!Subtarget->isThumb1Only()) {
534    for (unsigned im = (unsigned)ISD::PRE_INC;
535         im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
536      setIndexedLoadAction(im,  MVT::i1,  Legal);
537      setIndexedLoadAction(im,  MVT::i8,  Legal);
538      setIndexedLoadAction(im,  MVT::i16, Legal);
539      setIndexedLoadAction(im,  MVT::i32, Legal);
540      setIndexedStoreAction(im, MVT::i1,  Legal);
541      setIndexedStoreAction(im, MVT::i8,  Legal);
542      setIndexedStoreAction(im, MVT::i16, Legal);
543      setIndexedStoreAction(im, MVT::i32, Legal);
544    }
545  }
546
547  // i64 operation support.
548  setOperationAction(ISD::MUL,     MVT::i64, Expand);
549  setOperationAction(ISD::MULHU,   MVT::i32, Expand);
550  if (Subtarget->isThumb1Only()) {
551    setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
552    setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
553  }
554  if (Subtarget->isThumb1Only() || !Subtarget->hasV6Ops()
555      || (Subtarget->isThumb2() && !Subtarget->hasThumb2DSP()))
556    setOperationAction(ISD::MULHS, MVT::i32, Expand);
557
558  setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
559  setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
560  setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
561  setOperationAction(ISD::SRL,       MVT::i64, Custom);
562  setOperationAction(ISD::SRA,       MVT::i64, Custom);
563
564  if (!Subtarget->isThumb1Only()) {
565    // FIXME: We should do this for Thumb1 as well.
566    setOperationAction(ISD::ADDC,    MVT::i32, Custom);
567    setOperationAction(ISD::ADDE,    MVT::i32, Custom);
568    setOperationAction(ISD::SUBC,    MVT::i32, Custom);
569    setOperationAction(ISD::SUBE,    MVT::i32, Custom);
570  }
571
572  // ARM does not have ROTL.
573  setOperationAction(ISD::ROTL,  MVT::i32, Expand);
574  setOperationAction(ISD::CTTZ,  MVT::i32, Custom);
575  setOperationAction(ISD::CTPOP, MVT::i32, Expand);
576  if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only())
577    setOperationAction(ISD::CTLZ, MVT::i32, Expand);
578
579  // Only ARMv6 has BSWAP.
580  if (!Subtarget->hasV6Ops())
581    setOperationAction(ISD::BSWAP, MVT::i32, Expand);
582
583  // These are expanded into libcalls.
584  if (!Subtarget->hasDivide() || !Subtarget->isThumb2()) {
585    // v7M has a hardware divider
586    setOperationAction(ISD::SDIV,  MVT::i32, Expand);
587    setOperationAction(ISD::UDIV,  MVT::i32, Expand);
588  }
589  setOperationAction(ISD::SREM,  MVT::i32, Expand);
590  setOperationAction(ISD::UREM,  MVT::i32, Expand);
591  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
592  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
593
594  setOperationAction(ISD::GlobalAddress, MVT::i32,   Custom);
595  setOperationAction(ISD::ConstantPool,  MVT::i32,   Custom);
596  setOperationAction(ISD::GLOBAL_OFFSET_TABLE, MVT::i32, Custom);
597  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
598  setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
599
600  setOperationAction(ISD::TRAP, MVT::Other, Legal);
601
602  // Use the default implementation.
603  setOperationAction(ISD::VASTART,            MVT::Other, Custom);
604  setOperationAction(ISD::VAARG,              MVT::Other, Expand);
605  setOperationAction(ISD::VACOPY,             MVT::Other, Expand);
606  setOperationAction(ISD::VAEND,              MVT::Other, Expand);
607  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
608  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
609  setOperationAction(ISD::EHSELECTION,        MVT::i32,   Expand);
610  setOperationAction(ISD::EXCEPTIONADDR,      MVT::i32,   Expand);
611  setExceptionPointerRegister(ARM::R0);
612  setExceptionSelectorRegister(ARM::R1);
613
614  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
615  // ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use
616  // the default expansion.
617  // FIXME: This should be checking for v6k, not just v6.
618  if (Subtarget->hasDataBarrier() ||
619      (Subtarget->hasV6Ops() && !Subtarget->isThumb())) {
620    // membarrier needs custom lowering; the rest are legal and handled
621    // normally.
622    setOperationAction(ISD::MEMBARRIER, MVT::Other, Custom);
623    setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
624    // Custom lowering for 64-bit ops
625    setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i64, Custom);
626    setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i64, Custom);
627    setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i64, Custom);
628    setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i64, Custom);
629    setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i64, Custom);
630    setOperationAction(ISD::ATOMIC_SWAP,  MVT::i64, Custom);
631    setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i64, Custom);
632    // Automatically insert fences (dmb ist) around ATOMIC_SWAP etc.
633    setInsertFencesForAtomic(true);
634  } else {
635    // Set them all for expansion, which will force libcalls.
636    setOperationAction(ISD::MEMBARRIER, MVT::Other, Expand);
637    setOperationAction(ISD::ATOMIC_FENCE,   MVT::Other, Expand);
638    setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i32, Expand);
639    setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Expand);
640    setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Expand);
641    setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Expand);
642    setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Expand);
643    setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Expand);
644    setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Expand);
645    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand);
646    setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Expand);
647    setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Expand);
648    setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Expand);
649    setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Expand);
650    // Mark ATOMIC_LOAD and ATOMIC_STORE custom so we can handle the
651    // Unordered/Monotonic case.
652    setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
653    setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
654    // Since the libcalls include locking, fold in the fences
655    setShouldFoldAtomicFences(true);
656  }
657
658  setOperationAction(ISD::PREFETCH,         MVT::Other, Custom);
659
660  // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
661  if (!Subtarget->hasV6Ops()) {
662    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
663    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
664  }
665  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
666
667  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
668    // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
669    // iff target supports vfp2.
670    setOperationAction(ISD::BITCAST, MVT::i64, Custom);
671    setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
672  }
673
674  // We want to custom lower some of our intrinsics.
675  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
676  if (Subtarget->isTargetDarwin()) {
677    setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
678    setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
679    setOperationAction(ISD::EH_SJLJ_DISPATCHSETUP, MVT::Other, Custom);
680    setLibcallName(RTLIB::UNWIND_RESUME, "_Unwind_SjLj_Resume");
681  }
682
683  setOperationAction(ISD::SETCC,     MVT::i32, Expand);
684  setOperationAction(ISD::SETCC,     MVT::f32, Expand);
685  setOperationAction(ISD::SETCC,     MVT::f64, Expand);
686  setOperationAction(ISD::SELECT,    MVT::i32, Custom);
687  setOperationAction(ISD::SELECT,    MVT::f32, Custom);
688  setOperationAction(ISD::SELECT,    MVT::f64, Custom);
689  setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
690  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
691  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
692
693  setOperationAction(ISD::BRCOND,    MVT::Other, Expand);
694  setOperationAction(ISD::BR_CC,     MVT::i32,   Custom);
695  setOperationAction(ISD::BR_CC,     MVT::f32,   Custom);
696  setOperationAction(ISD::BR_CC,     MVT::f64,   Custom);
697  setOperationAction(ISD::BR_JT,     MVT::Other, Custom);
698
699  // We don't support sin/cos/fmod/copysign/pow
700  setOperationAction(ISD::FSIN,      MVT::f64, Expand);
701  setOperationAction(ISD::FSIN,      MVT::f32, Expand);
702  setOperationAction(ISD::FCOS,      MVT::f32, Expand);
703  setOperationAction(ISD::FCOS,      MVT::f64, Expand);
704  setOperationAction(ISD::FREM,      MVT::f64, Expand);
705  setOperationAction(ISD::FREM,      MVT::f32, Expand);
706  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
707    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
708    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
709  }
710  setOperationAction(ISD::FPOW,      MVT::f64, Expand);
711  setOperationAction(ISD::FPOW,      MVT::f32, Expand);
712
713  setOperationAction(ISD::FMA, MVT::f64, Expand);
714  setOperationAction(ISD::FMA, MVT::f32, Expand);
715
716  // Various VFP goodness
717  if (!UseSoftFloat && !Subtarget->isThumb1Only()) {
718    // int <-> fp are custom expanded into bit_convert + ARMISD ops.
719    if (Subtarget->hasVFP2()) {
720      setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
721      setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
722      setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
723      setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
724    }
725    // Special handling for half-precision FP.
726    if (!Subtarget->hasFP16()) {
727      setOperationAction(ISD::FP16_TO_FP32, MVT::f32, Expand);
728      setOperationAction(ISD::FP32_TO_FP16, MVT::i32, Expand);
729    }
730  }
731
732  // We have target-specific dag combine patterns for the following nodes:
733  // ARMISD::VMOVRRD  - No need to call setTargetDAGCombine
734  setTargetDAGCombine(ISD::ADD);
735  setTargetDAGCombine(ISD::SUB);
736  setTargetDAGCombine(ISD::MUL);
737
738  if (Subtarget->hasV6T2Ops() || Subtarget->hasNEON())
739    setTargetDAGCombine(ISD::OR);
740  if (Subtarget->hasNEON())
741    setTargetDAGCombine(ISD::AND);
742
743  setStackPointerRegisterToSaveRestore(ARM::SP);
744
745  if (UseSoftFloat || Subtarget->isThumb1Only() || !Subtarget->hasVFP2())
746    setSchedulingPreference(Sched::RegPressure);
747  else
748    setSchedulingPreference(Sched::Hybrid);
749
750  //// temporary - rewrite interface to use type
751  maxStoresPerMemcpy = maxStoresPerMemcpyOptSize = 1;
752
753  // On ARM arguments smaller than 4 bytes are extended, so all arguments
754  // are at least 4 bytes aligned.
755  setMinStackArgumentAlignment(4);
756
757  benefitFromCodePlacementOpt = true;
758
759  setMinFunctionAlignment(Subtarget->isThumb() ? 1 : 2);
760}
761
762// FIXME: It might make sense to define the representative register class as the
763// nearest super-register that has a non-null superset. For example, DPR_VFP2 is
764// a super-register of SPR, and DPR is a superset if DPR_VFP2. Consequently,
765// SPR's representative would be DPR_VFP2. This should work well if register
766// pressure tracking were modified such that a register use would increment the
767// pressure of the register class's representative and all of it's super
768// classes' representatives transitively. We have not implemented this because
769// of the difficulty prior to coalescing of modeling operand register classes
770// due to the common occurrence of cross class copies and subregister insertions
771// and extractions.
772std::pair<const TargetRegisterClass*, uint8_t>
773ARMTargetLowering::findRepresentativeClass(EVT VT) const{
774  const TargetRegisterClass *RRC = 0;
775  uint8_t Cost = 1;
776  switch (VT.getSimpleVT().SimpleTy) {
777  default:
778    return TargetLowering::findRepresentativeClass(VT);
779  // Use DPR as representative register class for all floating point
780  // and vector types. Since there are 32 SPR registers and 32 DPR registers so
781  // the cost is 1 for both f32 and f64.
782  case MVT::f32: case MVT::f64: case MVT::v8i8: case MVT::v4i16:
783  case MVT::v2i32: case MVT::v1i64: case MVT::v2f32:
784    RRC = ARM::DPRRegisterClass;
785    // When NEON is used for SP, only half of the register file is available
786    // because operations that define both SP and DP results will be constrained
787    // to the VFP2 class (D0-D15). We currently model this constraint prior to
788    // coalescing by double-counting the SP regs. See the FIXME above.
789    if (Subtarget->useNEONForSinglePrecisionFP())
790      Cost = 2;
791    break;
792  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
793  case MVT::v4f32: case MVT::v2f64:
794    RRC = ARM::DPRRegisterClass;
795    Cost = 2;
796    break;
797  case MVT::v4i64:
798    RRC = ARM::DPRRegisterClass;
799    Cost = 4;
800    break;
801  case MVT::v8i64:
802    RRC = ARM::DPRRegisterClass;
803    Cost = 8;
804    break;
805  }
806  return std::make_pair(RRC, Cost);
807}
808
809const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
810  switch (Opcode) {
811  default: return 0;
812  case ARMISD::Wrapper:       return "ARMISD::Wrapper";
813  case ARMISD::WrapperDYN:    return "ARMISD::WrapperDYN";
814  case ARMISD::WrapperPIC:    return "ARMISD::WrapperPIC";
815  case ARMISD::WrapperJT:     return "ARMISD::WrapperJT";
816  case ARMISD::CALL:          return "ARMISD::CALL";
817  case ARMISD::CALL_PRED:     return "ARMISD::CALL_PRED";
818  case ARMISD::CALL_NOLINK:   return "ARMISD::CALL_NOLINK";
819  case ARMISD::tCALL:         return "ARMISD::tCALL";
820  case ARMISD::BRCOND:        return "ARMISD::BRCOND";
821  case ARMISD::BR_JT:         return "ARMISD::BR_JT";
822  case ARMISD::BR2_JT:        return "ARMISD::BR2_JT";
823  case ARMISD::RET_FLAG:      return "ARMISD::RET_FLAG";
824  case ARMISD::PIC_ADD:       return "ARMISD::PIC_ADD";
825  case ARMISD::CMP:           return "ARMISD::CMP";
826  case ARMISD::CMPZ:          return "ARMISD::CMPZ";
827  case ARMISD::CMPFP:         return "ARMISD::CMPFP";
828  case ARMISD::CMPFPw0:       return "ARMISD::CMPFPw0";
829  case ARMISD::BCC_i64:       return "ARMISD::BCC_i64";
830  case ARMISD::FMSTAT:        return "ARMISD::FMSTAT";
831  case ARMISD::CMOV:          return "ARMISD::CMOV";
832
833  case ARMISD::RBIT:          return "ARMISD::RBIT";
834
835  case ARMISD::FTOSI:         return "ARMISD::FTOSI";
836  case ARMISD::FTOUI:         return "ARMISD::FTOUI";
837  case ARMISD::SITOF:         return "ARMISD::SITOF";
838  case ARMISD::UITOF:         return "ARMISD::UITOF";
839
840  case ARMISD::SRL_FLAG:      return "ARMISD::SRL_FLAG";
841  case ARMISD::SRA_FLAG:      return "ARMISD::SRA_FLAG";
842  case ARMISD::RRX:           return "ARMISD::RRX";
843
844  case ARMISD::ADDC:          return "ARMISD::ADDC";
845  case ARMISD::ADDE:          return "ARMISD::ADDE";
846  case ARMISD::SUBC:          return "ARMISD::SUBC";
847  case ARMISD::SUBE:          return "ARMISD::SUBE";
848
849  case ARMISD::VMOVRRD:       return "ARMISD::VMOVRRD";
850  case ARMISD::VMOVDRR:       return "ARMISD::VMOVDRR";
851
852  case ARMISD::EH_SJLJ_SETJMP: return "ARMISD::EH_SJLJ_SETJMP";
853  case ARMISD::EH_SJLJ_LONGJMP:return "ARMISD::EH_SJLJ_LONGJMP";
854  case ARMISD::EH_SJLJ_DISPATCHSETUP:return "ARMISD::EH_SJLJ_DISPATCHSETUP";
855
856  case ARMISD::TC_RETURN:     return "ARMISD::TC_RETURN";
857
858  case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER";
859
860  case ARMISD::DYN_ALLOC:     return "ARMISD::DYN_ALLOC";
861
862  case ARMISD::MEMBARRIER:    return "ARMISD::MEMBARRIER";
863  case ARMISD::MEMBARRIER_MCR: return "ARMISD::MEMBARRIER_MCR";
864
865  case ARMISD::PRELOAD:       return "ARMISD::PRELOAD";
866
867  case ARMISD::VCEQ:          return "ARMISD::VCEQ";
868  case ARMISD::VCEQZ:         return "ARMISD::VCEQZ";
869  case ARMISD::VCGE:          return "ARMISD::VCGE";
870  case ARMISD::VCGEZ:         return "ARMISD::VCGEZ";
871  case ARMISD::VCLEZ:         return "ARMISD::VCLEZ";
872  case ARMISD::VCGEU:         return "ARMISD::VCGEU";
873  case ARMISD::VCGT:          return "ARMISD::VCGT";
874  case ARMISD::VCGTZ:         return "ARMISD::VCGTZ";
875  case ARMISD::VCLTZ:         return "ARMISD::VCLTZ";
876  case ARMISD::VCGTU:         return "ARMISD::VCGTU";
877  case ARMISD::VTST:          return "ARMISD::VTST";
878
879  case ARMISD::VSHL:          return "ARMISD::VSHL";
880  case ARMISD::VSHRs:         return "ARMISD::VSHRs";
881  case ARMISD::VSHRu:         return "ARMISD::VSHRu";
882  case ARMISD::VSHLLs:        return "ARMISD::VSHLLs";
883  case ARMISD::VSHLLu:        return "ARMISD::VSHLLu";
884  case ARMISD::VSHLLi:        return "ARMISD::VSHLLi";
885  case ARMISD::VSHRN:         return "ARMISD::VSHRN";
886  case ARMISD::VRSHRs:        return "ARMISD::VRSHRs";
887  case ARMISD::VRSHRu:        return "ARMISD::VRSHRu";
888  case ARMISD::VRSHRN:        return "ARMISD::VRSHRN";
889  case ARMISD::VQSHLs:        return "ARMISD::VQSHLs";
890  case ARMISD::VQSHLu:        return "ARMISD::VQSHLu";
891  case ARMISD::VQSHLsu:       return "ARMISD::VQSHLsu";
892  case ARMISD::VQSHRNs:       return "ARMISD::VQSHRNs";
893  case ARMISD::VQSHRNu:       return "ARMISD::VQSHRNu";
894  case ARMISD::VQSHRNsu:      return "ARMISD::VQSHRNsu";
895  case ARMISD::VQRSHRNs:      return "ARMISD::VQRSHRNs";
896  case ARMISD::VQRSHRNu:      return "ARMISD::VQRSHRNu";
897  case ARMISD::VQRSHRNsu:     return "ARMISD::VQRSHRNsu";
898  case ARMISD::VGETLANEu:     return "ARMISD::VGETLANEu";
899  case ARMISD::VGETLANEs:     return "ARMISD::VGETLANEs";
900  case ARMISD::VMOVIMM:       return "ARMISD::VMOVIMM";
901  case ARMISD::VMVNIMM:       return "ARMISD::VMVNIMM";
902  case ARMISD::VDUP:          return "ARMISD::VDUP";
903  case ARMISD::VDUPLANE:      return "ARMISD::VDUPLANE";
904  case ARMISD::VEXT:          return "ARMISD::VEXT";
905  case ARMISD::VREV64:        return "ARMISD::VREV64";
906  case ARMISD::VREV32:        return "ARMISD::VREV32";
907  case ARMISD::VREV16:        return "ARMISD::VREV16";
908  case ARMISD::VZIP:          return "ARMISD::VZIP";
909  case ARMISD::VUZP:          return "ARMISD::VUZP";
910  case ARMISD::VTRN:          return "ARMISD::VTRN";
911  case ARMISD::VTBL1:         return "ARMISD::VTBL1";
912  case ARMISD::VTBL2:         return "ARMISD::VTBL2";
913  case ARMISD::VMULLs:        return "ARMISD::VMULLs";
914  case ARMISD::VMULLu:        return "ARMISD::VMULLu";
915  case ARMISD::BUILD_VECTOR:  return "ARMISD::BUILD_VECTOR";
916  case ARMISD::FMAX:          return "ARMISD::FMAX";
917  case ARMISD::FMIN:          return "ARMISD::FMIN";
918  case ARMISD::BFI:           return "ARMISD::BFI";
919  case ARMISD::VORRIMM:       return "ARMISD::VORRIMM";
920  case ARMISD::VBICIMM:       return "ARMISD::VBICIMM";
921  case ARMISD::VBSL:          return "ARMISD::VBSL";
922  case ARMISD::VLD2DUP:       return "ARMISD::VLD2DUP";
923  case ARMISD::VLD3DUP:       return "ARMISD::VLD3DUP";
924  case ARMISD::VLD4DUP:       return "ARMISD::VLD4DUP";
925  case ARMISD::VLD1_UPD:      return "ARMISD::VLD1_UPD";
926  case ARMISD::VLD2_UPD:      return "ARMISD::VLD2_UPD";
927  case ARMISD::VLD3_UPD:      return "ARMISD::VLD3_UPD";
928  case ARMISD::VLD4_UPD:      return "ARMISD::VLD4_UPD";
929  case ARMISD::VLD2LN_UPD:    return "ARMISD::VLD2LN_UPD";
930  case ARMISD::VLD3LN_UPD:    return "ARMISD::VLD3LN_UPD";
931  case ARMISD::VLD4LN_UPD:    return "ARMISD::VLD4LN_UPD";
932  case ARMISD::VLD2DUP_UPD:   return "ARMISD::VLD2DUP_UPD";
933  case ARMISD::VLD3DUP_UPD:   return "ARMISD::VLD3DUP_UPD";
934  case ARMISD::VLD4DUP_UPD:   return "ARMISD::VLD4DUP_UPD";
935  case ARMISD::VST1_UPD:      return "ARMISD::VST1_UPD";
936  case ARMISD::VST2_UPD:      return "ARMISD::VST2_UPD";
937  case ARMISD::VST3_UPD:      return "ARMISD::VST3_UPD";
938  case ARMISD::VST4_UPD:      return "ARMISD::VST4_UPD";
939  case ARMISD::VST2LN_UPD:    return "ARMISD::VST2LN_UPD";
940  case ARMISD::VST3LN_UPD:    return "ARMISD::VST3LN_UPD";
941  case ARMISD::VST4LN_UPD:    return "ARMISD::VST4LN_UPD";
942  }
943}
944
945EVT ARMTargetLowering::getSetCCResultType(EVT VT) const {
946  if (!VT.isVector()) return getPointerTy();
947  return VT.changeVectorElementTypeToInteger();
948}
949
950/// getRegClassFor - Return the register class that should be used for the
951/// specified value type.
952TargetRegisterClass *ARMTargetLowering::getRegClassFor(EVT VT) const {
953  // Map v4i64 to QQ registers but do not make the type legal. Similarly map
954  // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
955  // load / store 4 to 8 consecutive D registers.
956  if (Subtarget->hasNEON()) {
957    if (VT == MVT::v4i64)
958      return ARM::QQPRRegisterClass;
959    else if (VT == MVT::v8i64)
960      return ARM::QQQQPRRegisterClass;
961  }
962  return TargetLowering::getRegClassFor(VT);
963}
964
965// Create a fast isel object.
966FastISel *
967ARMTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
968  return ARM::createFastISel(funcInfo);
969}
970
971/// getMaximalGlobalOffset - Returns the maximal possible offset which can
972/// be used for loads / stores from the global.
973unsigned ARMTargetLowering::getMaximalGlobalOffset() const {
974  return (Subtarget->isThumb1Only() ? 127 : 4095);
975}
976
977Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const {
978  unsigned NumVals = N->getNumValues();
979  if (!NumVals)
980    return Sched::RegPressure;
981
982  for (unsigned i = 0; i != NumVals; ++i) {
983    EVT VT = N->getValueType(i);
984    if (VT == MVT::Glue || VT == MVT::Other)
985      continue;
986    if (VT.isFloatingPoint() || VT.isVector())
987      return Sched::Latency;
988  }
989
990  if (!N->isMachineOpcode())
991    return Sched::RegPressure;
992
993  // Load are scheduled for latency even if there instruction itinerary
994  // is not available.
995  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
996  const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
997
998  if (MCID.getNumDefs() == 0)
999    return Sched::RegPressure;
1000  if (!Itins->isEmpty() &&
1001      Itins->getOperandCycle(MCID.getSchedClass(), 0) > 2)
1002    return Sched::Latency;
1003
1004  return Sched::RegPressure;
1005}
1006
1007//===----------------------------------------------------------------------===//
1008// Lowering Code
1009//===----------------------------------------------------------------------===//
1010
1011/// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
1012static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
1013  switch (CC) {
1014  default: llvm_unreachable("Unknown condition code!");
1015  case ISD::SETNE:  return ARMCC::NE;
1016  case ISD::SETEQ:  return ARMCC::EQ;
1017  case ISD::SETGT:  return ARMCC::GT;
1018  case ISD::SETGE:  return ARMCC::GE;
1019  case ISD::SETLT:  return ARMCC::LT;
1020  case ISD::SETLE:  return ARMCC::LE;
1021  case ISD::SETUGT: return ARMCC::HI;
1022  case ISD::SETUGE: return ARMCC::HS;
1023  case ISD::SETULT: return ARMCC::LO;
1024  case ISD::SETULE: return ARMCC::LS;
1025  }
1026}
1027
1028/// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
1029static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
1030                        ARMCC::CondCodes &CondCode2) {
1031  CondCode2 = ARMCC::AL;
1032  switch (CC) {
1033  default: llvm_unreachable("Unknown FP condition!");
1034  case ISD::SETEQ:
1035  case ISD::SETOEQ: CondCode = ARMCC::EQ; break;
1036  case ISD::SETGT:
1037  case ISD::SETOGT: CondCode = ARMCC::GT; break;
1038  case ISD::SETGE:
1039  case ISD::SETOGE: CondCode = ARMCC::GE; break;
1040  case ISD::SETOLT: CondCode = ARMCC::MI; break;
1041  case ISD::SETOLE: CondCode = ARMCC::LS; break;
1042  case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break;
1043  case ISD::SETO:   CondCode = ARMCC::VC; break;
1044  case ISD::SETUO:  CondCode = ARMCC::VS; break;
1045  case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break;
1046  case ISD::SETUGT: CondCode = ARMCC::HI; break;
1047  case ISD::SETUGE: CondCode = ARMCC::PL; break;
1048  case ISD::SETLT:
1049  case ISD::SETULT: CondCode = ARMCC::LT; break;
1050  case ISD::SETLE:
1051  case ISD::SETULE: CondCode = ARMCC::LE; break;
1052  case ISD::SETNE:
1053  case ISD::SETUNE: CondCode = ARMCC::NE; break;
1054  }
1055}
1056
1057//===----------------------------------------------------------------------===//
1058//                      Calling Convention Implementation
1059//===----------------------------------------------------------------------===//
1060
1061#include "ARMGenCallingConv.inc"
1062
1063/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
1064/// given CallingConvention value.
1065CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC,
1066                                                 bool Return,
1067                                                 bool isVarArg) const {
1068  switch (CC) {
1069  default:
1070    llvm_unreachable("Unsupported calling convention");
1071  case CallingConv::Fast:
1072    if (Subtarget->hasVFP2() && !isVarArg) {
1073      if (!Subtarget->isAAPCS_ABI())
1074        return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
1075      // For AAPCS ABI targets, just use VFP variant of the calling convention.
1076      return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1077    }
1078    // Fallthrough
1079  case CallingConv::C: {
1080    // Use target triple & subtarget features to do actual dispatch.
1081    if (!Subtarget->isAAPCS_ABI())
1082      return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
1083    else if (Subtarget->hasVFP2() &&
1084             FloatABIType == FloatABI::Hard && !isVarArg)
1085      return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1086    return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
1087  }
1088  case CallingConv::ARM_AAPCS_VFP:
1089    return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1090  case CallingConv::ARM_AAPCS:
1091    return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
1092  case CallingConv::ARM_APCS:
1093    return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
1094  }
1095}
1096
1097/// LowerCallResult - Lower the result values of a call into the
1098/// appropriate copies out of appropriate physical registers.
1099SDValue
1100ARMTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1101                                   CallingConv::ID CallConv, bool isVarArg,
1102                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1103                                   DebugLoc dl, SelectionDAG &DAG,
1104                                   SmallVectorImpl<SDValue> &InVals) const {
1105
1106  // Assign locations to each value returned by this call.
1107  SmallVector<CCValAssign, 16> RVLocs;
1108  ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1109                    getTargetMachine(), RVLocs, *DAG.getContext(), Call);
1110  CCInfo.AnalyzeCallResult(Ins,
1111                           CCAssignFnForNode(CallConv, /* Return*/ true,
1112                                             isVarArg));
1113
1114  // Copy all of the result registers out of their specified physreg.
1115  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1116    CCValAssign VA = RVLocs[i];
1117
1118    SDValue Val;
1119    if (VA.needsCustom()) {
1120      // Handle f64 or half of a v2f64.
1121      SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1122                                      InFlag);
1123      Chain = Lo.getValue(1);
1124      InFlag = Lo.getValue(2);
1125      VA = RVLocs[++i]; // skip ahead to next loc
1126      SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1127                                      InFlag);
1128      Chain = Hi.getValue(1);
1129      InFlag = Hi.getValue(2);
1130      Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1131
1132      if (VA.getLocVT() == MVT::v2f64) {
1133        SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
1134        Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1135                          DAG.getConstant(0, MVT::i32));
1136
1137        VA = RVLocs[++i]; // skip ahead to next loc
1138        Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1139        Chain = Lo.getValue(1);
1140        InFlag = Lo.getValue(2);
1141        VA = RVLocs[++i]; // skip ahead to next loc
1142        Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1143        Chain = Hi.getValue(1);
1144        InFlag = Hi.getValue(2);
1145        Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1146        Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1147                          DAG.getConstant(1, MVT::i32));
1148      }
1149    } else {
1150      Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
1151                               InFlag);
1152      Chain = Val.getValue(1);
1153      InFlag = Val.getValue(2);
1154    }
1155
1156    switch (VA.getLocInfo()) {
1157    default: llvm_unreachable("Unknown loc info!");
1158    case CCValAssign::Full: break;
1159    case CCValAssign::BCvt:
1160      Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val);
1161      break;
1162    }
1163
1164    InVals.push_back(Val);
1165  }
1166
1167  return Chain;
1168}
1169
1170/// LowerMemOpCallTo - Store the argument to the stack.
1171SDValue
1172ARMTargetLowering::LowerMemOpCallTo(SDValue Chain,
1173                                    SDValue StackPtr, SDValue Arg,
1174                                    DebugLoc dl, SelectionDAG &DAG,
1175                                    const CCValAssign &VA,
1176                                    ISD::ArgFlagsTy Flags) const {
1177  unsigned LocMemOffset = VA.getLocMemOffset();
1178  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1179  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1180  return DAG.getStore(Chain, dl, Arg, PtrOff,
1181                      MachinePointerInfo::getStack(LocMemOffset),
1182                      false, false, 0);
1183}
1184
1185void ARMTargetLowering::PassF64ArgInRegs(DebugLoc dl, SelectionDAG &DAG,
1186                                         SDValue Chain, SDValue &Arg,
1187                                         RegsToPassVector &RegsToPass,
1188                                         CCValAssign &VA, CCValAssign &NextVA,
1189                                         SDValue &StackPtr,
1190                                         SmallVector<SDValue, 8> &MemOpChains,
1191                                         ISD::ArgFlagsTy Flags) const {
1192
1193  SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
1194                              DAG.getVTList(MVT::i32, MVT::i32), Arg);
1195  RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd));
1196
1197  if (NextVA.isRegLoc())
1198    RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1)));
1199  else {
1200    assert(NextVA.isMemLoc());
1201    if (StackPtr.getNode() == 0)
1202      StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
1203
1204    MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1),
1205                                           dl, DAG, NextVA,
1206                                           Flags));
1207  }
1208}
1209
1210/// LowerCall - Lowering a call into a callseq_start <-
1211/// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
1212/// nodes.
1213SDValue
1214ARMTargetLowering::LowerCall(SDValue Chain, SDValue Callee,
1215                             CallingConv::ID CallConv, bool isVarArg,
1216                             bool &isTailCall,
1217                             const SmallVectorImpl<ISD::OutputArg> &Outs,
1218                             const SmallVectorImpl<SDValue> &OutVals,
1219                             const SmallVectorImpl<ISD::InputArg> &Ins,
1220                             DebugLoc dl, SelectionDAG &DAG,
1221                             SmallVectorImpl<SDValue> &InVals) const {
1222  MachineFunction &MF = DAG.getMachineFunction();
1223  bool IsStructRet    = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
1224  bool IsSibCall = false;
1225  // Disable tail calls if they're not supported.
1226  if (!EnableARMTailCalls && !Subtarget->supportsTailCall())
1227    isTailCall = false;
1228  if (isTailCall) {
1229    // Check if it's really possible to do a tail call.
1230    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1231                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
1232                                                   Outs, OutVals, Ins, DAG);
1233    // We don't support GuaranteedTailCallOpt for ARM, only automatically
1234    // detected sibcalls.
1235    if (isTailCall) {
1236      ++NumTailCalls;
1237      IsSibCall = true;
1238    }
1239  }
1240
1241  // Analyze operands of the call, assigning locations to each operand.
1242  SmallVector<CCValAssign, 16> ArgLocs;
1243  ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1244                 getTargetMachine(), ArgLocs, *DAG.getContext(), Call);
1245  CCInfo.AnalyzeCallOperands(Outs,
1246                             CCAssignFnForNode(CallConv, /* Return*/ false,
1247                                               isVarArg));
1248
1249  // Get a count of how many bytes are to be pushed on the stack.
1250  unsigned NumBytes = CCInfo.getNextStackOffset();
1251
1252  // For tail calls, memory operands are available in our caller's stack.
1253  if (IsSibCall)
1254    NumBytes = 0;
1255
1256  // Adjust the stack pointer for the new arguments...
1257  // These operations are automatically eliminated by the prolog/epilog pass
1258  if (!IsSibCall)
1259    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
1260
1261  SDValue StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
1262
1263  RegsToPassVector RegsToPass;
1264  SmallVector<SDValue, 8> MemOpChains;
1265
1266  // Walk the register/memloc assignments, inserting copies/loads.  In the case
1267  // of tail call optimization, arguments are handled later.
1268  for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
1269       i != e;
1270       ++i, ++realArgIdx) {
1271    CCValAssign &VA = ArgLocs[i];
1272    SDValue Arg = OutVals[realArgIdx];
1273    ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
1274    bool isByVal = Flags.isByVal();
1275
1276    // Promote the value if needed.
1277    switch (VA.getLocInfo()) {
1278    default: llvm_unreachable("Unknown loc info!");
1279    case CCValAssign::Full: break;
1280    case CCValAssign::SExt:
1281      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
1282      break;
1283    case CCValAssign::ZExt:
1284      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
1285      break;
1286    case CCValAssign::AExt:
1287      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
1288      break;
1289    case CCValAssign::BCvt:
1290      Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
1291      break;
1292    }
1293
1294    // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
1295    if (VA.needsCustom()) {
1296      if (VA.getLocVT() == MVT::v2f64) {
1297        SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1298                                  DAG.getConstant(0, MVT::i32));
1299        SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1300                                  DAG.getConstant(1, MVT::i32));
1301
1302        PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass,
1303                         VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1304
1305        VA = ArgLocs[++i]; // skip ahead to next loc
1306        if (VA.isRegLoc()) {
1307          PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass,
1308                           VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1309        } else {
1310          assert(VA.isMemLoc());
1311
1312          MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Op1,
1313                                                 dl, DAG, VA, Flags));
1314        }
1315      } else {
1316        PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
1317                         StackPtr, MemOpChains, Flags);
1318      }
1319    } else if (VA.isRegLoc()) {
1320      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1321    } else if (isByVal) {
1322      assert(VA.isMemLoc());
1323      unsigned offset = 0;
1324
1325      // True if this byval aggregate will be split between registers
1326      // and memory.
1327      if (CCInfo.isFirstByValRegValid()) {
1328        EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1329        unsigned int i, j;
1330        for (i = 0, j = CCInfo.getFirstByValReg(); j < ARM::R4; i++, j++) {
1331          SDValue Const = DAG.getConstant(4*i, MVT::i32);
1332          SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
1333          SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
1334                                     MachinePointerInfo(),
1335                                     false, false, 0);
1336          MemOpChains.push_back(Load.getValue(1));
1337          RegsToPass.push_back(std::make_pair(j, Load));
1338        }
1339        offset = ARM::R4 - CCInfo.getFirstByValReg();
1340        CCInfo.clearFirstByValReg();
1341      }
1342
1343      unsigned LocMemOffset = VA.getLocMemOffset();
1344      SDValue StkPtrOff = DAG.getIntPtrConstant(LocMemOffset);
1345      SDValue Dst = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr,
1346                                StkPtrOff);
1347      SDValue SrcOffset = DAG.getIntPtrConstant(4*offset);
1348      SDValue Src = DAG.getNode(ISD::ADD, dl, getPointerTy(), Arg, SrcOffset);
1349      SDValue SizeNode = DAG.getConstant(Flags.getByValSize() - 4*offset,
1350                                         MVT::i32);
1351      // TODO: Disable AlwaysInline when it becomes possible
1352      //       to emit a nested call sequence.
1353      MemOpChains.push_back(DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode,
1354                                          Flags.getByValAlign(),
1355                                          /*isVolatile=*/false,
1356                                          /*AlwaysInline=*/true,
1357                                          MachinePointerInfo(0),
1358                                          MachinePointerInfo(0)));
1359
1360    } else if (!IsSibCall) {
1361      assert(VA.isMemLoc());
1362
1363      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
1364                                             dl, DAG, VA, Flags));
1365    }
1366  }
1367
1368  if (!MemOpChains.empty())
1369    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1370                        &MemOpChains[0], MemOpChains.size());
1371
1372  // Build a sequence of copy-to-reg nodes chained together with token chain
1373  // and flag operands which copy the outgoing args into the appropriate regs.
1374  SDValue InFlag;
1375  // Tail call byval lowering might overwrite argument registers so in case of
1376  // tail call optimization the copies to registers are lowered later.
1377  if (!isTailCall)
1378    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1379      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1380                               RegsToPass[i].second, InFlag);
1381      InFlag = Chain.getValue(1);
1382    }
1383
1384  // For tail calls lower the arguments to the 'real' stack slot.
1385  if (isTailCall) {
1386    // Force all the incoming stack arguments to be loaded from the stack
1387    // before any new outgoing arguments are stored to the stack, because the
1388    // outgoing stack slots may alias the incoming argument stack slots, and
1389    // the alias isn't otherwise explicit. This is slightly more conservative
1390    // than necessary, because it means that each store effectively depends
1391    // on every argument instead of just those arguments it would clobber.
1392
1393    // Do not flag preceding copytoreg stuff together with the following stuff.
1394    InFlag = SDValue();
1395    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1396      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1397                               RegsToPass[i].second, InFlag);
1398      InFlag = Chain.getValue(1);
1399    }
1400    InFlag =SDValue();
1401  }
1402
1403  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
1404  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
1405  // node so that legalize doesn't hack it.
1406  bool isDirect = false;
1407  bool isARMFunc = false;
1408  bool isLocalARMFunc = false;
1409  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1410
1411  if (EnableARMLongCalls) {
1412    assert (getTargetMachine().getRelocationModel() == Reloc::Static
1413            && "long-calls with non-static relocation model!");
1414    // Handle a global address or an external symbol. If it's not one of
1415    // those, the target's already in a register, so we don't need to do
1416    // anything extra.
1417    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1418      const GlobalValue *GV = G->getGlobal();
1419      // Create a constant pool entry for the callee address
1420      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1421      ARMConstantPoolValue *CPV =
1422        ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, 0);
1423
1424      // Get the address of the callee into a register
1425      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1426      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1427      Callee = DAG.getLoad(getPointerTy(), dl,
1428                           DAG.getEntryNode(), CPAddr,
1429                           MachinePointerInfo::getConstantPool(),
1430                           false, false, 0);
1431    } else if (ExternalSymbolSDNode *S=dyn_cast<ExternalSymbolSDNode>(Callee)) {
1432      const char *Sym = S->getSymbol();
1433
1434      // Create a constant pool entry for the callee address
1435      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1436      ARMConstantPoolValue *CPV =
1437        ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
1438                                      ARMPCLabelIndex, 0);
1439      // Get the address of the callee into a register
1440      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1441      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1442      Callee = DAG.getLoad(getPointerTy(), dl,
1443                           DAG.getEntryNode(), CPAddr,
1444                           MachinePointerInfo::getConstantPool(),
1445                           false, false, 0);
1446    }
1447  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1448    const GlobalValue *GV = G->getGlobal();
1449    isDirect = true;
1450    bool isExt = GV->isDeclaration() || GV->isWeakForLinker();
1451    bool isStub = (isExt && Subtarget->isTargetDarwin()) &&
1452                   getTargetMachine().getRelocationModel() != Reloc::Static;
1453    isARMFunc = !Subtarget->isThumb() || isStub;
1454    // ARM call to a local ARM function is predicable.
1455    isLocalARMFunc = !Subtarget->isThumb() && (!isExt || !ARMInterworking);
1456    // tBX takes a register source operand.
1457    if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
1458      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1459      ARMConstantPoolValue *CPV =
1460        ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, 4);
1461      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1462      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1463      Callee = DAG.getLoad(getPointerTy(), dl,
1464                           DAG.getEntryNode(), CPAddr,
1465                           MachinePointerInfo::getConstantPool(),
1466                           false, false, 0);
1467      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1468      Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
1469                           getPointerTy(), Callee, PICLabel);
1470    } else {
1471      // On ELF targets for PIC code, direct calls should go through the PLT
1472      unsigned OpFlags = 0;
1473      if (Subtarget->isTargetELF() &&
1474                  getTargetMachine().getRelocationModel() == Reloc::PIC_)
1475        OpFlags = ARMII::MO_PLT;
1476      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
1477    }
1478  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1479    isDirect = true;
1480    bool isStub = Subtarget->isTargetDarwin() &&
1481                  getTargetMachine().getRelocationModel() != Reloc::Static;
1482    isARMFunc = !Subtarget->isThumb() || isStub;
1483    // tBX takes a register source operand.
1484    const char *Sym = S->getSymbol();
1485    if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
1486      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1487      ARMConstantPoolValue *CPV =
1488        ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
1489                                      ARMPCLabelIndex, 4);
1490      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1491      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1492      Callee = DAG.getLoad(getPointerTy(), dl,
1493                           DAG.getEntryNode(), CPAddr,
1494                           MachinePointerInfo::getConstantPool(),
1495                           false, false, 0);
1496      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1497      Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
1498                           getPointerTy(), Callee, PICLabel);
1499    } else {
1500      unsigned OpFlags = 0;
1501      // On ELF targets for PIC code, direct calls should go through the PLT
1502      if (Subtarget->isTargetELF() &&
1503                  getTargetMachine().getRelocationModel() == Reloc::PIC_)
1504        OpFlags = ARMII::MO_PLT;
1505      Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlags);
1506    }
1507  }
1508
1509  // FIXME: handle tail calls differently.
1510  unsigned CallOpc;
1511  if (Subtarget->isThumb()) {
1512    if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps())
1513      CallOpc = ARMISD::CALL_NOLINK;
1514    else
1515      CallOpc = isARMFunc ? ARMISD::CALL : ARMISD::tCALL;
1516  } else {
1517    CallOpc = (isDirect || Subtarget->hasV5TOps())
1518      ? (isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL)
1519      : ARMISD::CALL_NOLINK;
1520  }
1521
1522  std::vector<SDValue> Ops;
1523  Ops.push_back(Chain);
1524  Ops.push_back(Callee);
1525
1526  // Add argument registers to the end of the list so that they are known live
1527  // into the call.
1528  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1529    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1530                                  RegsToPass[i].second.getValueType()));
1531
1532  if (InFlag.getNode())
1533    Ops.push_back(InFlag);
1534
1535  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1536  if (isTailCall)
1537    return DAG.getNode(ARMISD::TC_RETURN, dl, NodeTys, &Ops[0], Ops.size());
1538
1539  // Returns a chain and a flag for retval copy to use.
1540  Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size());
1541  InFlag = Chain.getValue(1);
1542
1543  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
1544                             DAG.getIntPtrConstant(0, true), InFlag);
1545  if (!Ins.empty())
1546    InFlag = Chain.getValue(1);
1547
1548  // Handle result values, copying them out of physregs into vregs that we
1549  // return.
1550  return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins,
1551                         dl, DAG, InVals);
1552}
1553
1554/// HandleByVal - Every parameter *after* a byval parameter is passed
1555/// on the stack.  Remember the next parameter register to allocate,
1556/// and then confiscate the rest of the parameter registers to insure
1557/// this.
1558void
1559llvm::ARMTargetLowering::HandleByVal(CCState *State, unsigned &size) const {
1560  unsigned reg = State->AllocateReg(GPRArgRegs, 4);
1561  assert((State->getCallOrPrologue() == Prologue ||
1562          State->getCallOrPrologue() == Call) &&
1563         "unhandled ParmContext");
1564  if ((!State->isFirstByValRegValid()) &&
1565      (ARM::R0 <= reg) && (reg <= ARM::R3)) {
1566    State->setFirstByValReg(reg);
1567    // At a call site, a byval parameter that is split between
1568    // registers and memory needs its size truncated here.  In a
1569    // function prologue, such byval parameters are reassembled in
1570    // memory, and are not truncated.
1571    if (State->getCallOrPrologue() == Call) {
1572      unsigned excess = 4 * (ARM::R4 - reg);
1573      assert(size >= excess && "expected larger existing stack allocation");
1574      size -= excess;
1575    }
1576  }
1577  // Confiscate any remaining parameter registers to preclude their
1578  // assignment to subsequent parameters.
1579  while (State->AllocateReg(GPRArgRegs, 4))
1580    ;
1581}
1582
1583/// MatchingStackOffset - Return true if the given stack call argument is
1584/// already available in the same position (relatively) of the caller's
1585/// incoming argument stack.
1586static
1587bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
1588                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
1589                         const ARMInstrInfo *TII) {
1590  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
1591  int FI = INT_MAX;
1592  if (Arg.getOpcode() == ISD::CopyFromReg) {
1593    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
1594    if (!TargetRegisterInfo::isVirtualRegister(VR))
1595      return false;
1596    MachineInstr *Def = MRI->getVRegDef(VR);
1597    if (!Def)
1598      return false;
1599    if (!Flags.isByVal()) {
1600      if (!TII->isLoadFromStackSlot(Def, FI))
1601        return false;
1602    } else {
1603      return false;
1604    }
1605  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
1606    if (Flags.isByVal())
1607      // ByVal argument is passed in as a pointer but it's now being
1608      // dereferenced. e.g.
1609      // define @foo(%struct.X* %A) {
1610      //   tail call @bar(%struct.X* byval %A)
1611      // }
1612      return false;
1613    SDValue Ptr = Ld->getBasePtr();
1614    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
1615    if (!FINode)
1616      return false;
1617    FI = FINode->getIndex();
1618  } else
1619    return false;
1620
1621  assert(FI != INT_MAX);
1622  if (!MFI->isFixedObjectIndex(FI))
1623    return false;
1624  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
1625}
1626
1627/// IsEligibleForTailCallOptimization - Check whether the call is eligible
1628/// for tail call optimization. Targets which want to do tail call
1629/// optimization should implement this function.
1630bool
1631ARMTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
1632                                                     CallingConv::ID CalleeCC,
1633                                                     bool isVarArg,
1634                                                     bool isCalleeStructRet,
1635                                                     bool isCallerStructRet,
1636                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
1637                                    const SmallVectorImpl<SDValue> &OutVals,
1638                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1639                                                     SelectionDAG& DAG) const {
1640  const Function *CallerF = DAG.getMachineFunction().getFunction();
1641  CallingConv::ID CallerCC = CallerF->getCallingConv();
1642  bool CCMatch = CallerCC == CalleeCC;
1643
1644  // Look for obvious safe cases to perform tail call optimization that do not
1645  // require ABI changes. This is what gcc calls sibcall.
1646
1647  // Do not sibcall optimize vararg calls unless the call site is not passing
1648  // any arguments.
1649  if (isVarArg && !Outs.empty())
1650    return false;
1651
1652  // Also avoid sibcall optimization if either caller or callee uses struct
1653  // return semantics.
1654  if (isCalleeStructRet || isCallerStructRet)
1655    return false;
1656
1657  // FIXME: Completely disable sibcall for Thumb1 since Thumb1RegisterInfo::
1658  // emitEpilogue is not ready for them. Thumb tail calls also use t2B, as
1659  // the Thumb1 16-bit unconditional branch doesn't have sufficient relocation
1660  // support in the assembler and linker to be used. This would need to be
1661  // fixed to fully support tail calls in Thumb1.
1662  //
1663  // Doing this is tricky, since the LDM/POP instruction on Thumb doesn't take
1664  // LR.  This means if we need to reload LR, it takes an extra instructions,
1665  // which outweighs the value of the tail call; but here we don't know yet
1666  // whether LR is going to be used.  Probably the right approach is to
1667  // generate the tail call here and turn it back into CALL/RET in
1668  // emitEpilogue if LR is used.
1669
1670  // Thumb1 PIC calls to external symbols use BX, so they can be tail calls,
1671  // but we need to make sure there are enough registers; the only valid
1672  // registers are the 4 used for parameters.  We don't currently do this
1673  // case.
1674  if (Subtarget->isThumb1Only())
1675    return false;
1676
1677  // If the calling conventions do not match, then we'd better make sure the
1678  // results are returned in the same way as what the caller expects.
1679  if (!CCMatch) {
1680    SmallVector<CCValAssign, 16> RVLocs1;
1681    ARMCCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
1682                       getTargetMachine(), RVLocs1, *DAG.getContext(), Call);
1683    CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForNode(CalleeCC, true, isVarArg));
1684
1685    SmallVector<CCValAssign, 16> RVLocs2;
1686    ARMCCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
1687                       getTargetMachine(), RVLocs2, *DAG.getContext(), Call);
1688    CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForNode(CallerCC, true, isVarArg));
1689
1690    if (RVLocs1.size() != RVLocs2.size())
1691      return false;
1692    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
1693      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
1694        return false;
1695      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
1696        return false;
1697      if (RVLocs1[i].isRegLoc()) {
1698        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
1699          return false;
1700      } else {
1701        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
1702          return false;
1703      }
1704    }
1705  }
1706
1707  // If the callee takes no arguments then go on to check the results of the
1708  // call.
1709  if (!Outs.empty()) {
1710    // Check if stack adjustment is needed. For now, do not do this if any
1711    // argument is passed on the stack.
1712    SmallVector<CCValAssign, 16> ArgLocs;
1713    ARMCCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
1714                      getTargetMachine(), ArgLocs, *DAG.getContext(), Call);
1715    CCInfo.AnalyzeCallOperands(Outs,
1716                               CCAssignFnForNode(CalleeCC, false, isVarArg));
1717    if (CCInfo.getNextStackOffset()) {
1718      MachineFunction &MF = DAG.getMachineFunction();
1719
1720      // Check if the arguments are already laid out in the right way as
1721      // the caller's fixed stack objects.
1722      MachineFrameInfo *MFI = MF.getFrameInfo();
1723      const MachineRegisterInfo *MRI = &MF.getRegInfo();
1724      const ARMInstrInfo *TII =
1725        ((ARMTargetMachine&)getTargetMachine()).getInstrInfo();
1726      for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
1727           i != e;
1728           ++i, ++realArgIdx) {
1729        CCValAssign &VA = ArgLocs[i];
1730        EVT RegVT = VA.getLocVT();
1731        SDValue Arg = OutVals[realArgIdx];
1732        ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
1733        if (VA.getLocInfo() == CCValAssign::Indirect)
1734          return false;
1735        if (VA.needsCustom()) {
1736          // f64 and vector types are split into multiple registers or
1737          // register/stack-slot combinations.  The types will not match
1738          // the registers; give up on memory f64 refs until we figure
1739          // out what to do about this.
1740          if (!VA.isRegLoc())
1741            return false;
1742          if (!ArgLocs[++i].isRegLoc())
1743            return false;
1744          if (RegVT == MVT::v2f64) {
1745            if (!ArgLocs[++i].isRegLoc())
1746              return false;
1747            if (!ArgLocs[++i].isRegLoc())
1748              return false;
1749          }
1750        } else if (!VA.isRegLoc()) {
1751          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
1752                                   MFI, MRI, TII))
1753            return false;
1754        }
1755      }
1756    }
1757  }
1758
1759  return true;
1760}
1761
1762SDValue
1763ARMTargetLowering::LowerReturn(SDValue Chain,
1764                               CallingConv::ID CallConv, bool isVarArg,
1765                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1766                               const SmallVectorImpl<SDValue> &OutVals,
1767                               DebugLoc dl, SelectionDAG &DAG) const {
1768
1769  // CCValAssign - represent the assignment of the return value to a location.
1770  SmallVector<CCValAssign, 16> RVLocs;
1771
1772  // CCState - Info about the registers and stack slots.
1773  ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1774                    getTargetMachine(), RVLocs, *DAG.getContext(), Call);
1775
1776  // Analyze outgoing return values.
1777  CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv, /* Return */ true,
1778                                               isVarArg));
1779
1780  // If this is the first return lowered for this function, add
1781  // the regs to the liveout set for the function.
1782  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
1783    for (unsigned i = 0; i != RVLocs.size(); ++i)
1784      if (RVLocs[i].isRegLoc())
1785        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
1786  }
1787
1788  SDValue Flag;
1789
1790  // Copy the result values into the output registers.
1791  for (unsigned i = 0, realRVLocIdx = 0;
1792       i != RVLocs.size();
1793       ++i, ++realRVLocIdx) {
1794    CCValAssign &VA = RVLocs[i];
1795    assert(VA.isRegLoc() && "Can only return in registers!");
1796
1797    SDValue Arg = OutVals[realRVLocIdx];
1798
1799    switch (VA.getLocInfo()) {
1800    default: llvm_unreachable("Unknown loc info!");
1801    case CCValAssign::Full: break;
1802    case CCValAssign::BCvt:
1803      Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
1804      break;
1805    }
1806
1807    if (VA.needsCustom()) {
1808      if (VA.getLocVT() == MVT::v2f64) {
1809        // Extract the first half and return it in two registers.
1810        SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1811                                   DAG.getConstant(0, MVT::i32));
1812        SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl,
1813                                       DAG.getVTList(MVT::i32, MVT::i32), Half);
1814
1815        Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), HalfGPRs, Flag);
1816        Flag = Chain.getValue(1);
1817        VA = RVLocs[++i]; // skip ahead to next loc
1818        Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
1819                                 HalfGPRs.getValue(1), Flag);
1820        Flag = Chain.getValue(1);
1821        VA = RVLocs[++i]; // skip ahead to next loc
1822
1823        // Extract the 2nd half and fall through to handle it as an f64 value.
1824        Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1825                          DAG.getConstant(1, MVT::i32));
1826      }
1827      // Legalize ret f64 -> ret 2 x i32.  We always have fmrrd if f64 is
1828      // available.
1829      SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
1830                                  DAG.getVTList(MVT::i32, MVT::i32), &Arg, 1);
1831      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd, Flag);
1832      Flag = Chain.getValue(1);
1833      VA = RVLocs[++i]; // skip ahead to next loc
1834      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd.getValue(1),
1835                               Flag);
1836    } else
1837      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
1838
1839    // Guarantee that all emitted copies are
1840    // stuck together, avoiding something bad.
1841    Flag = Chain.getValue(1);
1842  }
1843
1844  SDValue result;
1845  if (Flag.getNode())
1846    result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain, Flag);
1847  else // Return Void
1848    result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain);
1849
1850  return result;
1851}
1852
1853bool ARMTargetLowering::isUsedByReturnOnly(SDNode *N) const {
1854  if (N->getNumValues() != 1)
1855    return false;
1856  if (!N->hasNUsesOfValue(1, 0))
1857    return false;
1858
1859  unsigned NumCopies = 0;
1860  SDNode* Copies[2];
1861  SDNode *Use = *N->use_begin();
1862  if (Use->getOpcode() == ISD::CopyToReg) {
1863    Copies[NumCopies++] = Use;
1864  } else if (Use->getOpcode() == ARMISD::VMOVRRD) {
1865    // f64 returned in a pair of GPRs.
1866    for (SDNode::use_iterator UI = Use->use_begin(), UE = Use->use_end();
1867         UI != UE; ++UI) {
1868      if (UI->getOpcode() != ISD::CopyToReg)
1869        return false;
1870      Copies[UI.getUse().getResNo()] = *UI;
1871      ++NumCopies;
1872    }
1873  } else if (Use->getOpcode() == ISD::BITCAST) {
1874    // f32 returned in a single GPR.
1875    if (!Use->hasNUsesOfValue(1, 0))
1876      return false;
1877    Use = *Use->use_begin();
1878    if (Use->getOpcode() != ISD::CopyToReg || !Use->hasNUsesOfValue(1, 0))
1879      return false;
1880    Copies[NumCopies++] = Use;
1881  } else {
1882    return false;
1883  }
1884
1885  if (NumCopies != 1 && NumCopies != 2)
1886    return false;
1887
1888  bool HasRet = false;
1889  for (unsigned i = 0; i < NumCopies; ++i) {
1890    SDNode *Copy = Copies[i];
1891    for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1892         UI != UE; ++UI) {
1893      if (UI->getOpcode() == ISD::CopyToReg) {
1894        SDNode *Use = *UI;
1895        if (Use == Copies[0] || Use == Copies[1])
1896          continue;
1897        return false;
1898      }
1899      if (UI->getOpcode() != ARMISD::RET_FLAG)
1900        return false;
1901      HasRet = true;
1902    }
1903  }
1904
1905  return HasRet;
1906}
1907
1908bool ARMTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
1909  if (!EnableARMTailCalls)
1910    return false;
1911
1912  if (!CI->isTailCall())
1913    return false;
1914
1915  return !Subtarget->isThumb1Only();
1916}
1917
1918// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
1919// their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
1920// one of the above mentioned nodes. It has to be wrapped because otherwise
1921// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
1922// be used to form addressing mode. These wrapped nodes will be selected
1923// into MOVi.
1924static SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
1925  EVT PtrVT = Op.getValueType();
1926  // FIXME there is no actual debug info here
1927  DebugLoc dl = Op.getDebugLoc();
1928  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1929  SDValue Res;
1930  if (CP->isMachineConstantPoolEntry())
1931    Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
1932                                    CP->getAlignment());
1933  else
1934    Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
1935                                    CP->getAlignment());
1936  return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
1937}
1938
1939unsigned ARMTargetLowering::getJumpTableEncoding() const {
1940  return MachineJumpTableInfo::EK_Inline;
1941}
1942
1943SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op,
1944                                             SelectionDAG &DAG) const {
1945  MachineFunction &MF = DAG.getMachineFunction();
1946  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1947  unsigned ARMPCLabelIndex = 0;
1948  DebugLoc DL = Op.getDebugLoc();
1949  EVT PtrVT = getPointerTy();
1950  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1951  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
1952  SDValue CPAddr;
1953  if (RelocM == Reloc::Static) {
1954    CPAddr = DAG.getTargetConstantPool(BA, PtrVT, 4);
1955  } else {
1956    unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
1957    ARMPCLabelIndex = AFI->createPICLabelUId();
1958    ARMConstantPoolValue *CPV =
1959      ARMConstantPoolConstant::Create(BA, ARMPCLabelIndex,
1960                                      ARMCP::CPBlockAddress, PCAdj);
1961    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1962  }
1963  CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr);
1964  SDValue Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), CPAddr,
1965                               MachinePointerInfo::getConstantPool(),
1966                               false, false, 0);
1967  if (RelocM == Reloc::Static)
1968    return Result;
1969  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1970  return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel);
1971}
1972
1973// Lower ISD::GlobalTLSAddress using the "general dynamic" model
1974SDValue
1975ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
1976                                                 SelectionDAG &DAG) const {
1977  DebugLoc dl = GA->getDebugLoc();
1978  EVT PtrVT = getPointerTy();
1979  unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
1980  MachineFunction &MF = DAG.getMachineFunction();
1981  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1982  unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1983  ARMConstantPoolValue *CPV =
1984    ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
1985                                    ARMCP::CPValue, PCAdj, ARMCP::TLSGD, true);
1986  SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1987  Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
1988  Argument = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Argument,
1989                         MachinePointerInfo::getConstantPool(),
1990                         false, false, 0);
1991  SDValue Chain = Argument.getValue(1);
1992
1993  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1994  Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);
1995
1996  // call __tls_get_addr.
1997  ArgListTy Args;
1998  ArgListEntry Entry;
1999  Entry.Node = Argument;
2000  Entry.Ty = (Type *) Type::getInt32Ty(*DAG.getContext());
2001  Args.push_back(Entry);
2002  // FIXME: is there useful debug info available here?
2003  std::pair<SDValue, SDValue> CallResult =
2004    LowerCallTo(Chain, (Type *) Type::getInt32Ty(*DAG.getContext()),
2005                false, false, false, false,
2006                0, CallingConv::C, false, /*isReturnValueUsed=*/true,
2007                DAG.getExternalSymbol("__tls_get_addr", PtrVT), Args, DAG, dl);
2008  return CallResult.first;
2009}
2010
2011// Lower ISD::GlobalTLSAddress using the "initial exec" or
2012// "local exec" model.
2013SDValue
2014ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
2015                                        SelectionDAG &DAG) const {
2016  const GlobalValue *GV = GA->getGlobal();
2017  DebugLoc dl = GA->getDebugLoc();
2018  SDValue Offset;
2019  SDValue Chain = DAG.getEntryNode();
2020  EVT PtrVT = getPointerTy();
2021  // Get the Thread Pointer
2022  SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
2023
2024  if (GV->isDeclaration()) {
2025    MachineFunction &MF = DAG.getMachineFunction();
2026    ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2027    unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2028    // Initial exec model.
2029    unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
2030    ARMConstantPoolValue *CPV =
2031      ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
2032                                      ARMCP::CPValue, PCAdj, ARMCP::GOTTPOFF,
2033                                      true);
2034    Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2035    Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
2036    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
2037                         MachinePointerInfo::getConstantPool(),
2038                         false, false, 0);
2039    Chain = Offset.getValue(1);
2040
2041    SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2042    Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
2043
2044    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
2045                         MachinePointerInfo::getConstantPool(),
2046                         false, false, 0);
2047  } else {
2048    // local exec model
2049    ARMConstantPoolValue *CPV =
2050      ARMConstantPoolConstant::Create(GV, ARMCP::TPOFF);
2051    Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2052    Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
2053    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
2054                         MachinePointerInfo::getConstantPool(),
2055                         false, false, 0);
2056  }
2057
2058  // The address of the thread local variable is the add of the thread
2059  // pointer with the offset of the variable.
2060  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
2061}
2062
2063SDValue
2064ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
2065  // TODO: implement the "local dynamic" model
2066  assert(Subtarget->isTargetELF() &&
2067         "TLS not implemented for non-ELF targets");
2068  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2069  // If the relocation model is PIC, use the "General Dynamic" TLS Model,
2070  // otherwise use the "Local Exec" TLS Model
2071  if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
2072    return LowerToTLSGeneralDynamicModel(GA, DAG);
2073  else
2074    return LowerToTLSExecModels(GA, DAG);
2075}
2076
2077SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
2078                                                 SelectionDAG &DAG) const {
2079  EVT PtrVT = getPointerTy();
2080  DebugLoc dl = Op.getDebugLoc();
2081  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
2082  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2083  if (RelocM == Reloc::PIC_) {
2084    bool UseGOTOFF = GV->hasLocalLinkage() || GV->hasHiddenVisibility();
2085    ARMConstantPoolValue *CPV =
2086      ARMConstantPoolConstant::Create(GV,
2087                                      UseGOTOFF ? ARMCP::GOTOFF : ARMCP::GOT);
2088    SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2089    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2090    SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
2091                                 CPAddr,
2092                                 MachinePointerInfo::getConstantPool(),
2093                                 false, false, 0);
2094    SDValue Chain = Result.getValue(1);
2095    SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
2096    Result = DAG.getNode(ISD::ADD, dl, PtrVT, Result, GOT);
2097    if (!UseGOTOFF)
2098      Result = DAG.getLoad(PtrVT, dl, Chain, Result,
2099                           MachinePointerInfo::getGOT(), false, false, 0);
2100    return Result;
2101  }
2102
2103  // If we have T2 ops, we can materialize the address directly via movt/movw
2104  // pair. This is always cheaper.
2105  if (Subtarget->useMovt()) {
2106    ++NumMovwMovt;
2107    // FIXME: Once remat is capable of dealing with instructions with register
2108    // operands, expand this into two nodes.
2109    return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
2110                       DAG.getTargetGlobalAddress(GV, dl, PtrVT));
2111  } else {
2112    SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
2113    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2114    return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2115                       MachinePointerInfo::getConstantPool(),
2116                       false, false, 0);
2117  }
2118}
2119
2120SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
2121                                                    SelectionDAG &DAG) const {
2122  EVT PtrVT = getPointerTy();
2123  DebugLoc dl = Op.getDebugLoc();
2124  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
2125  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2126  MachineFunction &MF = DAG.getMachineFunction();
2127  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2128
2129  // FIXME: Enable this for static codegen when tool issues are fixed.
2130  if (Subtarget->useMovt() && RelocM != Reloc::Static) {
2131    ++NumMovwMovt;
2132    // FIXME: Once remat is capable of dealing with instructions with register
2133    // operands, expand this into two nodes.
2134    if (RelocM == Reloc::Static)
2135      return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
2136                                 DAG.getTargetGlobalAddress(GV, dl, PtrVT));
2137
2138    unsigned Wrapper = (RelocM == Reloc::PIC_)
2139      ? ARMISD::WrapperPIC : ARMISD::WrapperDYN;
2140    SDValue Result = DAG.getNode(Wrapper, dl, PtrVT,
2141                                 DAG.getTargetGlobalAddress(GV, dl, PtrVT));
2142    if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
2143      Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
2144                           MachinePointerInfo::getGOT(), false, false, 0);
2145    return Result;
2146  }
2147
2148  unsigned ARMPCLabelIndex = 0;
2149  SDValue CPAddr;
2150  if (RelocM == Reloc::Static) {
2151    CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
2152  } else {
2153    ARMPCLabelIndex = AFI->createPICLabelUId();
2154    unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : (Subtarget->isThumb()?4:8);
2155    ARMConstantPoolValue *CPV =
2156      ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue,
2157                                      PCAdj);
2158    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2159  }
2160  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2161
2162  SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2163                               MachinePointerInfo::getConstantPool(),
2164                               false, false, 0);
2165  SDValue Chain = Result.getValue(1);
2166
2167  if (RelocM == Reloc::PIC_) {
2168    SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2169    Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2170  }
2171
2172  if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
2173    Result = DAG.getLoad(PtrVT, dl, Chain, Result, MachinePointerInfo::getGOT(),
2174                         false, false, 0);
2175
2176  return Result;
2177}
2178
2179SDValue ARMTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op,
2180                                                    SelectionDAG &DAG) const {
2181  assert(Subtarget->isTargetELF() &&
2182         "GLOBAL OFFSET TABLE not implemented for non-ELF targets");
2183  MachineFunction &MF = DAG.getMachineFunction();
2184  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2185  unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2186  EVT PtrVT = getPointerTy();
2187  DebugLoc dl = Op.getDebugLoc();
2188  unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
2189  ARMConstantPoolValue *CPV =
2190    ARMConstantPoolSymbol::Create(*DAG.getContext(), "_GLOBAL_OFFSET_TABLE_",
2191                                  ARMPCLabelIndex, PCAdj);
2192  SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2193  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2194  SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2195                               MachinePointerInfo::getConstantPool(),
2196                               false, false, 0);
2197  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2198  return DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2199}
2200
2201SDValue
2202ARMTargetLowering::LowerEH_SJLJ_DISPATCHSETUP(SDValue Op, SelectionDAG &DAG)
2203  const {
2204  DebugLoc dl = Op.getDebugLoc();
2205  return DAG.getNode(ARMISD::EH_SJLJ_DISPATCHSETUP, dl, MVT::Other,
2206                     Op.getOperand(0), Op.getOperand(1));
2207}
2208
2209SDValue
2210ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const {
2211  DebugLoc dl = Op.getDebugLoc();
2212  SDValue Val = DAG.getConstant(0, MVT::i32);
2213  return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl,
2214                     DAG.getVTList(MVT::i32, MVT::Other), Op.getOperand(0),
2215                     Op.getOperand(1), Val);
2216}
2217
2218SDValue
2219ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const {
2220  DebugLoc dl = Op.getDebugLoc();
2221  return DAG.getNode(ARMISD::EH_SJLJ_LONGJMP, dl, MVT::Other, Op.getOperand(0),
2222                     Op.getOperand(1), DAG.getConstant(0, MVT::i32));
2223}
2224
2225SDValue
2226ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG,
2227                                          const ARMSubtarget *Subtarget) const {
2228  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2229  DebugLoc dl = Op.getDebugLoc();
2230  switch (IntNo) {
2231  default: return SDValue();    // Don't custom lower most intrinsics.
2232  case Intrinsic::arm_thread_pointer: {
2233    EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2234    return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
2235  }
2236  case Intrinsic::eh_sjlj_lsda: {
2237    MachineFunction &MF = DAG.getMachineFunction();
2238    ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2239    unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2240    EVT PtrVT = getPointerTy();
2241    DebugLoc dl = Op.getDebugLoc();
2242    Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2243    SDValue CPAddr;
2244    unsigned PCAdj = (RelocM != Reloc::PIC_)
2245      ? 0 : (Subtarget->isThumb() ? 4 : 8);
2246    ARMConstantPoolValue *CPV =
2247      ARMConstantPoolConstant::Create(MF.getFunction(), ARMPCLabelIndex,
2248                                      ARMCP::CPLSDA, PCAdj);
2249    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2250    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2251    SDValue Result =
2252      DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2253                  MachinePointerInfo::getConstantPool(),
2254                  false, false, 0);
2255
2256    if (RelocM == Reloc::PIC_) {
2257      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2258      Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2259    }
2260    return Result;
2261  }
2262  case Intrinsic::arm_neon_vmulls:
2263  case Intrinsic::arm_neon_vmullu: {
2264    unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmulls)
2265      ? ARMISD::VMULLs : ARMISD::VMULLu;
2266    return DAG.getNode(NewOpc, Op.getDebugLoc(), Op.getValueType(),
2267                       Op.getOperand(1), Op.getOperand(2));
2268  }
2269  }
2270}
2271
2272static SDValue LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG,
2273                               const ARMSubtarget *Subtarget) {
2274  DebugLoc dl = Op.getDebugLoc();
2275  if (!Subtarget->hasDataBarrier()) {
2276    // Some ARMv6 cpus can support data barriers with an mcr instruction.
2277    // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
2278    // here.
2279    assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&
2280           "Unexpected ISD::MEMBARRIER encountered. Should be libcall!");
2281    return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
2282                       DAG.getConstant(0, MVT::i32));
2283  }
2284
2285  SDValue Op5 = Op.getOperand(5);
2286  bool isDeviceBarrier = cast<ConstantSDNode>(Op5)->getZExtValue() != 0;
2287  unsigned isLL = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
2288  unsigned isLS = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
2289  bool isOnlyStoreBarrier = (isLL == 0 && isLS == 0);
2290
2291  ARM_MB::MemBOpt DMBOpt;
2292  if (isDeviceBarrier)
2293    DMBOpt = isOnlyStoreBarrier ? ARM_MB::ST : ARM_MB::SY;
2294  else
2295    DMBOpt = isOnlyStoreBarrier ? ARM_MB::ISHST : ARM_MB::ISH;
2296  return DAG.getNode(ARMISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0),
2297                     DAG.getConstant(DMBOpt, MVT::i32));
2298}
2299
2300
2301static SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG,
2302                                 const ARMSubtarget *Subtarget) {
2303  // FIXME: handle "fence singlethread" more efficiently.
2304  DebugLoc dl = Op.getDebugLoc();
2305  if (!Subtarget->hasDataBarrier()) {
2306    // Some ARMv6 cpus can support data barriers with an mcr instruction.
2307    // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
2308    // here.
2309    assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&
2310           "Unexpected ISD::MEMBARRIER encountered. Should be libcall!");
2311    return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
2312                       DAG.getConstant(0, MVT::i32));
2313  }
2314
2315  return DAG.getNode(ARMISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0),
2316                     DAG.getConstant(ARM_MB::ISH, MVT::i32));
2317}
2318
2319static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG,
2320                             const ARMSubtarget *Subtarget) {
2321  // ARM pre v5TE and Thumb1 does not have preload instructions.
2322  if (!(Subtarget->isThumb2() ||
2323        (!Subtarget->isThumb1Only() && Subtarget->hasV5TEOps())))
2324    // Just preserve the chain.
2325    return Op.getOperand(0);
2326
2327  DebugLoc dl = Op.getDebugLoc();
2328  unsigned isRead = ~cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() & 1;
2329  if (!isRead &&
2330      (!Subtarget->hasV7Ops() || !Subtarget->hasMPExtension()))
2331    // ARMv7 with MP extension has PLDW.
2332    return Op.getOperand(0);
2333
2334  unsigned isData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
2335  if (Subtarget->isThumb()) {
2336    // Invert the bits.
2337    isRead = ~isRead & 1;
2338    isData = ~isData & 1;
2339  }
2340
2341  return DAG.getNode(ARMISD::PRELOAD, dl, MVT::Other, Op.getOperand(0),
2342                     Op.getOperand(1), DAG.getConstant(isRead, MVT::i32),
2343                     DAG.getConstant(isData, MVT::i32));
2344}
2345
2346static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) {
2347  MachineFunction &MF = DAG.getMachineFunction();
2348  ARMFunctionInfo *FuncInfo = MF.getInfo<ARMFunctionInfo>();
2349
2350  // vastart just stores the address of the VarArgsFrameIndex slot into the
2351  // memory location argument.
2352  DebugLoc dl = Op.getDebugLoc();
2353  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2354  SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2355  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2356  return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
2357                      MachinePointerInfo(SV), false, false, 0);
2358}
2359
2360SDValue
2361ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA, CCValAssign &NextVA,
2362                                        SDValue &Root, SelectionDAG &DAG,
2363                                        DebugLoc dl) const {
2364  MachineFunction &MF = DAG.getMachineFunction();
2365  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2366
2367  TargetRegisterClass *RC;
2368  if (AFI->isThumb1OnlyFunction())
2369    RC = ARM::tGPRRegisterClass;
2370  else
2371    RC = ARM::GPRRegisterClass;
2372
2373  // Transform the arguments stored in physical registers into virtual ones.
2374  unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2375  SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
2376
2377  SDValue ArgValue2;
2378  if (NextVA.isMemLoc()) {
2379    MachineFrameInfo *MFI = MF.getFrameInfo();
2380    int FI = MFI->CreateFixedObject(4, NextVA.getLocMemOffset(), true);
2381
2382    // Create load node to retrieve arguments from the stack.
2383    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2384    ArgValue2 = DAG.getLoad(MVT::i32, dl, Root, FIN,
2385                            MachinePointerInfo::getFixedStack(FI),
2386                            false, false, 0);
2387  } else {
2388    Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
2389    ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
2390  }
2391
2392  return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2);
2393}
2394
2395void
2396ARMTargetLowering::computeRegArea(CCState &CCInfo, MachineFunction &MF,
2397                                  unsigned &VARegSize, unsigned &VARegSaveSize)
2398  const {
2399  unsigned NumGPRs;
2400  if (CCInfo.isFirstByValRegValid())
2401    NumGPRs = ARM::R4 - CCInfo.getFirstByValReg();
2402  else {
2403    unsigned int firstUnalloced;
2404    firstUnalloced = CCInfo.getFirstUnallocated(GPRArgRegs,
2405                                                sizeof(GPRArgRegs) /
2406                                                sizeof(GPRArgRegs[0]));
2407    NumGPRs = (firstUnalloced <= 3) ? (4 - firstUnalloced) : 0;
2408  }
2409
2410  unsigned Align = MF.getTarget().getFrameLowering()->getStackAlignment();
2411  VARegSize = NumGPRs * 4;
2412  VARegSaveSize = (VARegSize + Align - 1) & ~(Align - 1);
2413}
2414
2415// The remaining GPRs hold either the beginning of variable-argument
2416// data, or the beginning of an aggregate passed by value (usuall
2417// byval).  Either way, we allocate stack slots adjacent to the data
2418// provided by our caller, and store the unallocated registers there.
2419// If this is a variadic function, the va_list pointer will begin with
2420// these values; otherwise, this reassembles a (byval) structure that
2421// was split between registers and memory.
2422void
2423ARMTargetLowering::VarArgStyleRegisters(CCState &CCInfo, SelectionDAG &DAG,
2424                                        DebugLoc dl, SDValue &Chain,
2425                                        unsigned ArgOffset) const {
2426  MachineFunction &MF = DAG.getMachineFunction();
2427  MachineFrameInfo *MFI = MF.getFrameInfo();
2428  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2429  unsigned firstRegToSaveIndex;
2430  if (CCInfo.isFirstByValRegValid())
2431    firstRegToSaveIndex = CCInfo.getFirstByValReg() - ARM::R0;
2432  else {
2433    firstRegToSaveIndex = CCInfo.getFirstUnallocated
2434      (GPRArgRegs, sizeof(GPRArgRegs) / sizeof(GPRArgRegs[0]));
2435  }
2436
2437  unsigned VARegSize, VARegSaveSize;
2438  computeRegArea(CCInfo, MF, VARegSize, VARegSaveSize);
2439  if (VARegSaveSize) {
2440    // If this function is vararg, store any remaining integer argument regs
2441    // to their spots on the stack so that they may be loaded by deferencing
2442    // the result of va_next.
2443    AFI->setVarArgsRegSaveSize(VARegSaveSize);
2444    AFI->setVarArgsFrameIndex(MFI->CreateFixedObject(VARegSaveSize,
2445                                                     ArgOffset + VARegSaveSize
2446                                                     - VARegSize,
2447                                                     false));
2448    SDValue FIN = DAG.getFrameIndex(AFI->getVarArgsFrameIndex(),
2449                                    getPointerTy());
2450
2451    SmallVector<SDValue, 4> MemOps;
2452    for (; firstRegToSaveIndex < 4; ++firstRegToSaveIndex) {
2453      TargetRegisterClass *RC;
2454      if (AFI->isThumb1OnlyFunction())
2455        RC = ARM::tGPRRegisterClass;
2456      else
2457        RC = ARM::GPRRegisterClass;
2458
2459      unsigned VReg = MF.addLiveIn(GPRArgRegs[firstRegToSaveIndex], RC);
2460      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
2461      SDValue Store =
2462        DAG.getStore(Val.getValue(1), dl, Val, FIN,
2463                 MachinePointerInfo::getFixedStack(AFI->getVarArgsFrameIndex()),
2464                     false, false, 0);
2465      MemOps.push_back(Store);
2466      FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN,
2467                        DAG.getConstant(4, getPointerTy()));
2468    }
2469    if (!MemOps.empty())
2470      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2471                          &MemOps[0], MemOps.size());
2472  } else
2473    // This will point to the next argument passed via stack.
2474    AFI->setVarArgsFrameIndex(MFI->CreateFixedObject(4, ArgOffset, true));
2475}
2476
2477SDValue
2478ARMTargetLowering::LowerFormalArguments(SDValue Chain,
2479                                        CallingConv::ID CallConv, bool isVarArg,
2480                                        const SmallVectorImpl<ISD::InputArg>
2481                                          &Ins,
2482                                        DebugLoc dl, SelectionDAG &DAG,
2483                                        SmallVectorImpl<SDValue> &InVals)
2484                                          const {
2485  MachineFunction &MF = DAG.getMachineFunction();
2486  MachineFrameInfo *MFI = MF.getFrameInfo();
2487
2488  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2489
2490  // Assign locations to all of the incoming arguments.
2491  SmallVector<CCValAssign, 16> ArgLocs;
2492  ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2493                    getTargetMachine(), ArgLocs, *DAG.getContext(), Prologue);
2494  CCInfo.AnalyzeFormalArguments(Ins,
2495                                CCAssignFnForNode(CallConv, /* Return*/ false,
2496                                                  isVarArg));
2497
2498  SmallVector<SDValue, 16> ArgValues;
2499  int lastInsIndex = -1;
2500
2501  SDValue ArgValue;
2502  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2503    CCValAssign &VA = ArgLocs[i];
2504
2505    // Arguments stored in registers.
2506    if (VA.isRegLoc()) {
2507      EVT RegVT = VA.getLocVT();
2508
2509      if (VA.needsCustom()) {
2510        // f64 and vector types are split up into multiple registers or
2511        // combinations of registers and stack slots.
2512        if (VA.getLocVT() == MVT::v2f64) {
2513          SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i],
2514                                                   Chain, DAG, dl);
2515          VA = ArgLocs[++i]; // skip ahead to next loc
2516          SDValue ArgValue2;
2517          if (VA.isMemLoc()) {
2518            int FI = MFI->CreateFixedObject(8, VA.getLocMemOffset(), true);
2519            SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2520            ArgValue2 = DAG.getLoad(MVT::f64, dl, Chain, FIN,
2521                                    MachinePointerInfo::getFixedStack(FI),
2522                                    false, false, 0);
2523          } else {
2524            ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i],
2525                                             Chain, DAG, dl);
2526          }
2527          ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
2528          ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
2529                                 ArgValue, ArgValue1, DAG.getIntPtrConstant(0));
2530          ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
2531                                 ArgValue, ArgValue2, DAG.getIntPtrConstant(1));
2532        } else
2533          ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
2534
2535      } else {
2536        TargetRegisterClass *RC;
2537
2538        if (RegVT == MVT::f32)
2539          RC = ARM::SPRRegisterClass;
2540        else if (RegVT == MVT::f64)
2541          RC = ARM::DPRRegisterClass;
2542        else if (RegVT == MVT::v2f64)
2543          RC = ARM::QPRRegisterClass;
2544        else if (RegVT == MVT::i32)
2545          RC = (AFI->isThumb1OnlyFunction() ?
2546                ARM::tGPRRegisterClass : ARM::GPRRegisterClass);
2547        else
2548          llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
2549
2550        // Transform the arguments in physical registers into virtual ones.
2551        unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2552        ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
2553      }
2554
2555      // If this is an 8 or 16-bit value, it is really passed promoted
2556      // to 32 bits.  Insert an assert[sz]ext to capture this, then
2557      // truncate to the right size.
2558      switch (VA.getLocInfo()) {
2559      default: llvm_unreachable("Unknown loc info!");
2560      case CCValAssign::Full: break;
2561      case CCValAssign::BCvt:
2562        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
2563        break;
2564      case CCValAssign::SExt:
2565        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
2566                               DAG.getValueType(VA.getValVT()));
2567        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
2568        break;
2569      case CCValAssign::ZExt:
2570        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
2571                               DAG.getValueType(VA.getValVT()));
2572        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
2573        break;
2574      }
2575
2576      InVals.push_back(ArgValue);
2577
2578    } else { // VA.isRegLoc()
2579
2580      // sanity check
2581      assert(VA.isMemLoc());
2582      assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered");
2583
2584      int index = ArgLocs[i].getValNo();
2585
2586      // Some Ins[] entries become multiple ArgLoc[] entries.
2587      // Process them only once.
2588      if (index != lastInsIndex)
2589        {
2590          ISD::ArgFlagsTy Flags = Ins[index].Flags;
2591          // FIXME: For now, all byval parameter objects are marked mutable.
2592          // This can be changed with more analysis.
2593          // In case of tail call optimization mark all arguments mutable.
2594          // Since they could be overwritten by lowering of arguments in case of
2595          // a tail call.
2596          if (Flags.isByVal()) {
2597            unsigned VARegSize, VARegSaveSize;
2598            computeRegArea(CCInfo, MF, VARegSize, VARegSaveSize);
2599            VarArgStyleRegisters(CCInfo, DAG, dl, Chain, 0);
2600            unsigned Bytes = Flags.getByValSize() - VARegSize;
2601            if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
2602            int FI = MFI->CreateFixedObject(Bytes,
2603                                            VA.getLocMemOffset(), false);
2604            InVals.push_back(DAG.getFrameIndex(FI, getPointerTy()));
2605          } else {
2606            int FI = MFI->CreateFixedObject(VA.getLocVT().getSizeInBits()/8,
2607                                            VA.getLocMemOffset(), true);
2608
2609            // Create load nodes to retrieve arguments from the stack.
2610            SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2611            InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
2612                                         MachinePointerInfo::getFixedStack(FI),
2613                                         false, false, 0));
2614          }
2615          lastInsIndex = index;
2616        }
2617    }
2618  }
2619
2620  // varargs
2621  if (isVarArg)
2622    VarArgStyleRegisters(CCInfo, DAG, dl, Chain, CCInfo.getNextStackOffset());
2623
2624  return Chain;
2625}
2626
2627/// isFloatingPointZero - Return true if this is +0.0.
2628static bool isFloatingPointZero(SDValue Op) {
2629  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
2630    return CFP->getValueAPF().isPosZero();
2631  else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
2632    // Maybe this has already been legalized into the constant pool?
2633    if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
2634      SDValue WrapperOp = Op.getOperand(1).getOperand(0);
2635      if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
2636        if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
2637          return CFP->getValueAPF().isPosZero();
2638    }
2639  }
2640  return false;
2641}
2642
2643/// Returns appropriate ARM CMP (cmp) and corresponding condition code for
2644/// the given operands.
2645SDValue
2646ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
2647                             SDValue &ARMcc, SelectionDAG &DAG,
2648                             DebugLoc dl) const {
2649  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
2650    unsigned C = RHSC->getZExtValue();
2651    if (!isLegalICmpImmediate(C)) {
2652      // Constant does not fit, try adjusting it by one?
2653      switch (CC) {
2654      default: break;
2655      case ISD::SETLT:
2656      case ISD::SETGE:
2657        if (C != 0x80000000 && isLegalICmpImmediate(C-1)) {
2658          CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
2659          RHS = DAG.getConstant(C-1, MVT::i32);
2660        }
2661        break;
2662      case ISD::SETULT:
2663      case ISD::SETUGE:
2664        if (C != 0 && isLegalICmpImmediate(C-1)) {
2665          CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
2666          RHS = DAG.getConstant(C-1, MVT::i32);
2667        }
2668        break;
2669      case ISD::SETLE:
2670      case ISD::SETGT:
2671        if (C != 0x7fffffff && isLegalICmpImmediate(C+1)) {
2672          CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
2673          RHS = DAG.getConstant(C+1, MVT::i32);
2674        }
2675        break;
2676      case ISD::SETULE:
2677      case ISD::SETUGT:
2678        if (C != 0xffffffff && isLegalICmpImmediate(C+1)) {
2679          CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
2680          RHS = DAG.getConstant(C+1, MVT::i32);
2681        }
2682        break;
2683      }
2684    }
2685  }
2686
2687  ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
2688  ARMISD::NodeType CompareType;
2689  switch (CondCode) {
2690  default:
2691    CompareType = ARMISD::CMP;
2692    break;
2693  case ARMCC::EQ:
2694  case ARMCC::NE:
2695    // Uses only Z Flag
2696    CompareType = ARMISD::CMPZ;
2697    break;
2698  }
2699  ARMcc = DAG.getConstant(CondCode, MVT::i32);
2700  return DAG.getNode(CompareType, dl, MVT::Glue, LHS, RHS);
2701}
2702
2703/// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
2704SDValue
2705ARMTargetLowering::getVFPCmp(SDValue LHS, SDValue RHS, SelectionDAG &DAG,
2706                             DebugLoc dl) const {
2707  SDValue Cmp;
2708  if (!isFloatingPointZero(RHS))
2709    Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Glue, LHS, RHS);
2710  else
2711    Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Glue, LHS);
2712  return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Glue, Cmp);
2713}
2714
2715/// duplicateCmp - Glue values can have only one use, so this function
2716/// duplicates a comparison node.
2717SDValue
2718ARMTargetLowering::duplicateCmp(SDValue Cmp, SelectionDAG &DAG) const {
2719  unsigned Opc = Cmp.getOpcode();
2720  DebugLoc DL = Cmp.getDebugLoc();
2721  if (Opc == ARMISD::CMP || Opc == ARMISD::CMPZ)
2722    return DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
2723
2724  assert(Opc == ARMISD::FMSTAT && "unexpected comparison operation");
2725  Cmp = Cmp.getOperand(0);
2726  Opc = Cmp.getOpcode();
2727  if (Opc == ARMISD::CMPFP)
2728    Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
2729  else {
2730    assert(Opc == ARMISD::CMPFPw0 && "unexpected operand of FMSTAT");
2731    Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0));
2732  }
2733  return DAG.getNode(ARMISD::FMSTAT, DL, MVT::Glue, Cmp);
2734}
2735
2736SDValue ARMTargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
2737  SDValue Cond = Op.getOperand(0);
2738  SDValue SelectTrue = Op.getOperand(1);
2739  SDValue SelectFalse = Op.getOperand(2);
2740  DebugLoc dl = Op.getDebugLoc();
2741
2742  // Convert:
2743  //
2744  //   (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond)
2745  //   (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond)
2746  //
2747  if (Cond.getOpcode() == ARMISD::CMOV && Cond.hasOneUse()) {
2748    const ConstantSDNode *CMOVTrue =
2749      dyn_cast<ConstantSDNode>(Cond.getOperand(0));
2750    const ConstantSDNode *CMOVFalse =
2751      dyn_cast<ConstantSDNode>(Cond.getOperand(1));
2752
2753    if (CMOVTrue && CMOVFalse) {
2754      unsigned CMOVTrueVal = CMOVTrue->getZExtValue();
2755      unsigned CMOVFalseVal = CMOVFalse->getZExtValue();
2756
2757      SDValue True;
2758      SDValue False;
2759      if (CMOVTrueVal == 1 && CMOVFalseVal == 0) {
2760        True = SelectTrue;
2761        False = SelectFalse;
2762      } else if (CMOVTrueVal == 0 && CMOVFalseVal == 1) {
2763        True = SelectFalse;
2764        False = SelectTrue;
2765      }
2766
2767      if (True.getNode() && False.getNode()) {
2768        EVT VT = Op.getValueType();
2769        SDValue ARMcc = Cond.getOperand(2);
2770        SDValue CCR = Cond.getOperand(3);
2771        SDValue Cmp = duplicateCmp(Cond.getOperand(4), DAG);
2772        assert(True.getValueType() == VT);
2773        return DAG.getNode(ARMISD::CMOV, dl, VT, True, False, ARMcc, CCR, Cmp);
2774      }
2775    }
2776  }
2777
2778  return DAG.getSelectCC(dl, Cond,
2779                         DAG.getConstant(0, Cond.getValueType()),
2780                         SelectTrue, SelectFalse, ISD::SETNE);
2781}
2782
2783SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
2784  EVT VT = Op.getValueType();
2785  SDValue LHS = Op.getOperand(0);
2786  SDValue RHS = Op.getOperand(1);
2787  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2788  SDValue TrueVal = Op.getOperand(2);
2789  SDValue FalseVal = Op.getOperand(3);
2790  DebugLoc dl = Op.getDebugLoc();
2791
2792  if (LHS.getValueType() == MVT::i32) {
2793    SDValue ARMcc;
2794    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2795    SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
2796    return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, CCR,Cmp);
2797  }
2798
2799  ARMCC::CondCodes CondCode, CondCode2;
2800  FPCCToARMCC(CC, CondCode, CondCode2);
2801
2802  SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
2803  SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
2804  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2805  SDValue Result = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal,
2806                               ARMcc, CCR, Cmp);
2807  if (CondCode2 != ARMCC::AL) {
2808    SDValue ARMcc2 = DAG.getConstant(CondCode2, MVT::i32);
2809    // FIXME: Needs another CMP because flag can have but one use.
2810    SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl);
2811    Result = DAG.getNode(ARMISD::CMOV, dl, VT,
2812                         Result, TrueVal, ARMcc2, CCR, Cmp2);
2813  }
2814  return Result;
2815}
2816
2817/// canChangeToInt - Given the fp compare operand, return true if it is suitable
2818/// to morph to an integer compare sequence.
2819static bool canChangeToInt(SDValue Op, bool &SeenZero,
2820                           const ARMSubtarget *Subtarget) {
2821  SDNode *N = Op.getNode();
2822  if (!N->hasOneUse())
2823    // Otherwise it requires moving the value from fp to integer registers.
2824    return false;
2825  if (!N->getNumValues())
2826    return false;
2827  EVT VT = Op.getValueType();
2828  if (VT != MVT::f32 && !Subtarget->isFPBrccSlow())
2829    // f32 case is generally profitable. f64 case only makes sense when vcmpe +
2830    // vmrs are very slow, e.g. cortex-a8.
2831    return false;
2832
2833  if (isFloatingPointZero(Op)) {
2834    SeenZero = true;
2835    return true;
2836  }
2837  return ISD::isNormalLoad(N);
2838}
2839
2840static SDValue bitcastf32Toi32(SDValue Op, SelectionDAG &DAG) {
2841  if (isFloatingPointZero(Op))
2842    return DAG.getConstant(0, MVT::i32);
2843
2844  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op))
2845    return DAG.getLoad(MVT::i32, Op.getDebugLoc(),
2846                       Ld->getChain(), Ld->getBasePtr(), Ld->getPointerInfo(),
2847                       Ld->isVolatile(), Ld->isNonTemporal(),
2848                       Ld->getAlignment());
2849
2850  llvm_unreachable("Unknown VFP cmp argument!");
2851}
2852
2853static void expandf64Toi32(SDValue Op, SelectionDAG &DAG,
2854                           SDValue &RetVal1, SDValue &RetVal2) {
2855  if (isFloatingPointZero(Op)) {
2856    RetVal1 = DAG.getConstant(0, MVT::i32);
2857    RetVal2 = DAG.getConstant(0, MVT::i32);
2858    return;
2859  }
2860
2861  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) {
2862    SDValue Ptr = Ld->getBasePtr();
2863    RetVal1 = DAG.getLoad(MVT::i32, Op.getDebugLoc(),
2864                          Ld->getChain(), Ptr,
2865                          Ld->getPointerInfo(),
2866                          Ld->isVolatile(), Ld->isNonTemporal(),
2867                          Ld->getAlignment());
2868
2869    EVT PtrType = Ptr.getValueType();
2870    unsigned NewAlign = MinAlign(Ld->getAlignment(), 4);
2871    SDValue NewPtr = DAG.getNode(ISD::ADD, Op.getDebugLoc(),
2872                                 PtrType, Ptr, DAG.getConstant(4, PtrType));
2873    RetVal2 = DAG.getLoad(MVT::i32, Op.getDebugLoc(),
2874                          Ld->getChain(), NewPtr,
2875                          Ld->getPointerInfo().getWithOffset(4),
2876                          Ld->isVolatile(), Ld->isNonTemporal(),
2877                          NewAlign);
2878    return;
2879  }
2880
2881  llvm_unreachable("Unknown VFP cmp argument!");
2882}
2883
2884/// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some
2885/// f32 and even f64 comparisons to integer ones.
2886SDValue
2887ARMTargetLowering::OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const {
2888  SDValue Chain = Op.getOperand(0);
2889  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
2890  SDValue LHS = Op.getOperand(2);
2891  SDValue RHS = Op.getOperand(3);
2892  SDValue Dest = Op.getOperand(4);
2893  DebugLoc dl = Op.getDebugLoc();
2894
2895  bool SeenZero = false;
2896  if (canChangeToInt(LHS, SeenZero, Subtarget) &&
2897      canChangeToInt(RHS, SeenZero, Subtarget) &&
2898      // If one of the operand is zero, it's safe to ignore the NaN case since
2899      // we only care about equality comparisons.
2900      (SeenZero || (DAG.isKnownNeverNaN(LHS) && DAG.isKnownNeverNaN(RHS)))) {
2901    // If unsafe fp math optimization is enabled and there are no other uses of
2902    // the CMP operands, and the condition code is EQ or NE, we can optimize it
2903    // to an integer comparison.
2904    if (CC == ISD::SETOEQ)
2905      CC = ISD::SETEQ;
2906    else if (CC == ISD::SETUNE)
2907      CC = ISD::SETNE;
2908
2909    SDValue ARMcc;
2910    if (LHS.getValueType() == MVT::f32) {
2911      LHS = bitcastf32Toi32(LHS, DAG);
2912      RHS = bitcastf32Toi32(RHS, DAG);
2913      SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
2914      SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2915      return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
2916                         Chain, Dest, ARMcc, CCR, Cmp);
2917    }
2918
2919    SDValue LHS1, LHS2;
2920    SDValue RHS1, RHS2;
2921    expandf64Toi32(LHS, DAG, LHS1, LHS2);
2922    expandf64Toi32(RHS, DAG, RHS1, RHS2);
2923    ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
2924    ARMcc = DAG.getConstant(CondCode, MVT::i32);
2925    SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
2926    SDValue Ops[] = { Chain, ARMcc, LHS1, LHS2, RHS1, RHS2, Dest };
2927    return DAG.getNode(ARMISD::BCC_i64, dl, VTList, Ops, 7);
2928  }
2929
2930  return SDValue();
2931}
2932
2933SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
2934  SDValue Chain = Op.getOperand(0);
2935  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
2936  SDValue LHS = Op.getOperand(2);
2937  SDValue RHS = Op.getOperand(3);
2938  SDValue Dest = Op.getOperand(4);
2939  DebugLoc dl = Op.getDebugLoc();
2940
2941  if (LHS.getValueType() == MVT::i32) {
2942    SDValue ARMcc;
2943    SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
2944    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2945    return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
2946                       Chain, Dest, ARMcc, CCR, Cmp);
2947  }
2948
2949  assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
2950
2951  if (UnsafeFPMath &&
2952      (CC == ISD::SETEQ || CC == ISD::SETOEQ ||
2953       CC == ISD::SETNE || CC == ISD::SETUNE)) {
2954    SDValue Result = OptimizeVFPBrcond(Op, DAG);
2955    if (Result.getNode())
2956      return Result;
2957  }
2958
2959  ARMCC::CondCodes CondCode, CondCode2;
2960  FPCCToARMCC(CC, CondCode, CondCode2);
2961
2962  SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
2963  SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
2964  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2965  SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
2966  SDValue Ops[] = { Chain, Dest, ARMcc, CCR, Cmp };
2967  SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
2968  if (CondCode2 != ARMCC::AL) {
2969    ARMcc = DAG.getConstant(CondCode2, MVT::i32);
2970    SDValue Ops[] = { Res, Dest, ARMcc, CCR, Res.getValue(1) };
2971    Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
2972  }
2973  return Res;
2974}
2975
2976SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
2977  SDValue Chain = Op.getOperand(0);
2978  SDValue Table = Op.getOperand(1);
2979  SDValue Index = Op.getOperand(2);
2980  DebugLoc dl = Op.getDebugLoc();
2981
2982  EVT PTy = getPointerTy();
2983  JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
2984  ARMFunctionInfo *AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
2985  SDValue UId = DAG.getConstant(AFI->createJumpTableUId(), PTy);
2986  SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
2987  Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI, UId);
2988  Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, PTy));
2989  SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
2990  if (Subtarget->isThumb2()) {
2991    // Thumb2 uses a two-level jump. That is, it jumps into the jump table
2992    // which does another jump to the destination. This also makes it easier
2993    // to translate it to TBB / TBH later.
2994    // FIXME: This might not work if the function is extremely large.
2995    return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain,
2996                       Addr, Op.getOperand(2), JTI, UId);
2997  }
2998  if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2999    Addr = DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr,
3000                       MachinePointerInfo::getJumpTable(),
3001                       false, false, 0);
3002    Chain = Addr.getValue(1);
3003    Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, Table);
3004    return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
3005  } else {
3006    Addr = DAG.getLoad(PTy, dl, Chain, Addr,
3007                       MachinePointerInfo::getJumpTable(), false, false, 0);
3008    Chain = Addr.getValue(1);
3009    return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
3010  }
3011}
3012
3013static SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
3014  DebugLoc dl = Op.getDebugLoc();
3015  unsigned Opc;
3016
3017  switch (Op.getOpcode()) {
3018  default:
3019    assert(0 && "Invalid opcode!");
3020  case ISD::FP_TO_SINT:
3021    Opc = ARMISD::FTOSI;
3022    break;
3023  case ISD::FP_TO_UINT:
3024    Opc = ARMISD::FTOUI;
3025    break;
3026  }
3027  Op = DAG.getNode(Opc, dl, MVT::f32, Op.getOperand(0));
3028  return DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3029}
3030
3031static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
3032  EVT VT = Op.getValueType();
3033  DebugLoc dl = Op.getDebugLoc();
3034
3035  assert(Op.getOperand(0).getValueType() == MVT::v4i16 &&
3036         "Invalid type for custom lowering!");
3037  if (VT != MVT::v4f32)
3038    return DAG.UnrollVectorOp(Op.getNode());
3039
3040  unsigned CastOpc;
3041  unsigned Opc;
3042  switch (Op.getOpcode()) {
3043  default:
3044    assert(0 && "Invalid opcode!");
3045  case ISD::SINT_TO_FP:
3046    CastOpc = ISD::SIGN_EXTEND;
3047    Opc = ISD::SINT_TO_FP;
3048    break;
3049  case ISD::UINT_TO_FP:
3050    CastOpc = ISD::ZERO_EXTEND;
3051    Opc = ISD::UINT_TO_FP;
3052    break;
3053  }
3054
3055  Op = DAG.getNode(CastOpc, dl, MVT::v4i32, Op.getOperand(0));
3056  return DAG.getNode(Opc, dl, VT, Op);
3057}
3058
3059static SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
3060  EVT VT = Op.getValueType();
3061  if (VT.isVector())
3062    return LowerVectorINT_TO_FP(Op, DAG);
3063
3064  DebugLoc dl = Op.getDebugLoc();
3065  unsigned Opc;
3066
3067  switch (Op.getOpcode()) {
3068  default:
3069    assert(0 && "Invalid opcode!");
3070  case ISD::SINT_TO_FP:
3071    Opc = ARMISD::SITOF;
3072    break;
3073  case ISD::UINT_TO_FP:
3074    Opc = ARMISD::UITOF;
3075    break;
3076  }
3077
3078  Op = DAG.getNode(ISD::BITCAST, dl, MVT::f32, Op.getOperand(0));
3079  return DAG.getNode(Opc, dl, VT, Op);
3080}
3081
3082SDValue ARMTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
3083  // Implement fcopysign with a fabs and a conditional fneg.
3084  SDValue Tmp0 = Op.getOperand(0);
3085  SDValue Tmp1 = Op.getOperand(1);
3086  DebugLoc dl = Op.getDebugLoc();
3087  EVT VT = Op.getValueType();
3088  EVT SrcVT = Tmp1.getValueType();
3089  bool InGPR = Tmp0.getOpcode() == ISD::BITCAST ||
3090    Tmp0.getOpcode() == ARMISD::VMOVDRR;
3091  bool UseNEON = !InGPR && Subtarget->hasNEON();
3092
3093  if (UseNEON) {
3094    // Use VBSL to copy the sign bit.
3095    unsigned EncodedVal = ARM_AM::createNEONModImm(0x6, 0x80);
3096    SDValue Mask = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v2i32,
3097                               DAG.getTargetConstant(EncodedVal, MVT::i32));
3098    EVT OpVT = (VT == MVT::f32) ? MVT::v2i32 : MVT::v1i64;
3099    if (VT == MVT::f64)
3100      Mask = DAG.getNode(ARMISD::VSHL, dl, OpVT,
3101                         DAG.getNode(ISD::BITCAST, dl, OpVT, Mask),
3102                         DAG.getConstant(32, MVT::i32));
3103    else /*if (VT == MVT::f32)*/
3104      Tmp0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp0);
3105    if (SrcVT == MVT::f32) {
3106      Tmp1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp1);
3107      if (VT == MVT::f64)
3108        Tmp1 = DAG.getNode(ARMISD::VSHL, dl, OpVT,
3109                           DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1),
3110                           DAG.getConstant(32, MVT::i32));
3111    } else if (VT == MVT::f32)
3112      Tmp1 = DAG.getNode(ARMISD::VSHRu, dl, MVT::v1i64,
3113                         DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, Tmp1),
3114                         DAG.getConstant(32, MVT::i32));
3115    Tmp0 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp0);
3116    Tmp1 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1);
3117
3118    SDValue AllOnes = DAG.getTargetConstant(ARM_AM::createNEONModImm(0xe, 0xff),
3119                                            MVT::i32);
3120    AllOnes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v8i8, AllOnes);
3121    SDValue MaskNot = DAG.getNode(ISD::XOR, dl, OpVT, Mask,
3122                                  DAG.getNode(ISD::BITCAST, dl, OpVT, AllOnes));
3123
3124    SDValue Res = DAG.getNode(ISD::OR, dl, OpVT,
3125                              DAG.getNode(ISD::AND, dl, OpVT, Tmp1, Mask),
3126                              DAG.getNode(ISD::AND, dl, OpVT, Tmp0, MaskNot));
3127    if (VT == MVT::f32) {
3128      Res = DAG.getNode(ISD::BITCAST, dl, MVT::v2f32, Res);
3129      Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, Res,
3130                        DAG.getConstant(0, MVT::i32));
3131    } else {
3132      Res = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Res);
3133    }
3134
3135    return Res;
3136  }
3137
3138  // Bitcast operand 1 to i32.
3139  if (SrcVT == MVT::f64)
3140    Tmp1 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
3141                       &Tmp1, 1).getValue(1);
3142  Tmp1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp1);
3143
3144  // Or in the signbit with integer operations.
3145  SDValue Mask1 = DAG.getConstant(0x80000000, MVT::i32);
3146  SDValue Mask2 = DAG.getConstant(0x7fffffff, MVT::i32);
3147  Tmp1 = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp1, Mask1);
3148  if (VT == MVT::f32) {
3149    Tmp0 = DAG.getNode(ISD::AND, dl, MVT::i32,
3150                       DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp0), Mask2);
3151    return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
3152                       DAG.getNode(ISD::OR, dl, MVT::i32, Tmp0, Tmp1));
3153  }
3154
3155  // f64: Or the high part with signbit and then combine two parts.
3156  Tmp0 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
3157                     &Tmp0, 1);
3158  SDValue Lo = Tmp0.getValue(0);
3159  SDValue Hi = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp0.getValue(1), Mask2);
3160  Hi = DAG.getNode(ISD::OR, dl, MVT::i32, Hi, Tmp1);
3161  return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
3162}
3163
3164SDValue ARMTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{
3165  MachineFunction &MF = DAG.getMachineFunction();
3166  MachineFrameInfo *MFI = MF.getFrameInfo();
3167  MFI->setReturnAddressIsTaken(true);
3168
3169  EVT VT = Op.getValueType();
3170  DebugLoc dl = Op.getDebugLoc();
3171  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3172  if (Depth) {
3173    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
3174    SDValue Offset = DAG.getConstant(4, MVT::i32);
3175    return DAG.getLoad(VT, dl, DAG.getEntryNode(),
3176                       DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
3177                       MachinePointerInfo(), false, false, 0);
3178  }
3179
3180  // Return LR, which contains the return address. Mark it an implicit live-in.
3181  unsigned Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32));
3182  return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
3183}
3184
3185SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
3186  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3187  MFI->setFrameAddressIsTaken(true);
3188
3189  EVT VT = Op.getValueType();
3190  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
3191  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3192  unsigned FrameReg = (Subtarget->isThumb() || Subtarget->isTargetDarwin())
3193    ? ARM::R7 : ARM::R11;
3194  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
3195  while (Depth--)
3196    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
3197                            MachinePointerInfo(),
3198                            false, false, 0);
3199  return FrameAddr;
3200}
3201
3202/// ExpandBITCAST - If the target supports VFP, this function is called to
3203/// expand a bit convert where either the source or destination type is i64 to
3204/// use a VMOVDRR or VMOVRRD node.  This should not be done when the non-i64
3205/// operand type is illegal (e.g., v2f32 for a target that doesn't support
3206/// vectors), since the legalizer won't know what to do with that.
3207static SDValue ExpandBITCAST(SDNode *N, SelectionDAG &DAG) {
3208  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3209  DebugLoc dl = N->getDebugLoc();
3210  SDValue Op = N->getOperand(0);
3211
3212  // This function is only supposed to be called for i64 types, either as the
3213  // source or destination of the bit convert.
3214  EVT SrcVT = Op.getValueType();
3215  EVT DstVT = N->getValueType(0);
3216  assert((SrcVT == MVT::i64 || DstVT == MVT::i64) &&
3217         "ExpandBITCAST called for non-i64 type");
3218
3219  // Turn i64->f64 into VMOVDRR.
3220  if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) {
3221    SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
3222                             DAG.getConstant(0, MVT::i32));
3223    SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
3224                             DAG.getConstant(1, MVT::i32));
3225    return DAG.getNode(ISD::BITCAST, dl, DstVT,
3226                       DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi));
3227  }
3228
3229  // Turn f64->i64 into VMOVRRD.
3230  if (DstVT == MVT::i64 && TLI.isTypeLegal(SrcVT)) {
3231    SDValue Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
3232                              DAG.getVTList(MVT::i32, MVT::i32), &Op, 1);
3233    // Merge the pieces into a single i64 value.
3234    return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1));
3235  }
3236
3237  return SDValue();
3238}
3239
3240/// getZeroVector - Returns a vector of specified type with all zero elements.
3241/// Zero vectors are used to represent vector negation and in those cases
3242/// will be implemented with the NEON VNEG instruction.  However, VNEG does
3243/// not support i64 elements, so sometimes the zero vectors will need to be
3244/// explicitly constructed.  Regardless, use a canonical VMOV to create the
3245/// zero vector.
3246static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
3247  assert(VT.isVector() && "Expected a vector type");
3248  // The canonical modified immediate encoding of a zero vector is....0!
3249  SDValue EncodedVal = DAG.getTargetConstant(0, MVT::i32);
3250  EVT VmovVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
3251  SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, EncodedVal);
3252  return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
3253}
3254
3255/// LowerShiftRightParts - Lower SRA_PARTS, which returns two
3256/// i32 values and take a 2 x i32 value to shift plus a shift amount.
3257SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op,
3258                                                SelectionDAG &DAG) const {
3259  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
3260  EVT VT = Op.getValueType();
3261  unsigned VTBits = VT.getSizeInBits();
3262  DebugLoc dl = Op.getDebugLoc();
3263  SDValue ShOpLo = Op.getOperand(0);
3264  SDValue ShOpHi = Op.getOperand(1);
3265  SDValue ShAmt  = Op.getOperand(2);
3266  SDValue ARMcc;
3267  unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
3268
3269  assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
3270
3271  SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
3272                                 DAG.getConstant(VTBits, MVT::i32), ShAmt);
3273  SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
3274  SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
3275                                   DAG.getConstant(VTBits, MVT::i32));
3276  SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
3277  SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
3278  SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
3279
3280  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3281  SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
3282                          ARMcc, DAG, dl);
3283  SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
3284  SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc,
3285                           CCR, Cmp);
3286
3287  SDValue Ops[2] = { Lo, Hi };
3288  return DAG.getMergeValues(Ops, 2, dl);
3289}
3290
3291/// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
3292/// i32 values and take a 2 x i32 value to shift plus a shift amount.
3293SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op,
3294                                               SelectionDAG &DAG) const {
3295  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
3296  EVT VT = Op.getValueType();
3297  unsigned VTBits = VT.getSizeInBits();
3298  DebugLoc dl = Op.getDebugLoc();
3299  SDValue ShOpLo = Op.getOperand(0);
3300  SDValue ShOpHi = Op.getOperand(1);
3301  SDValue ShAmt  = Op.getOperand(2);
3302  SDValue ARMcc;
3303
3304  assert(Op.getOpcode() == ISD::SHL_PARTS);
3305  SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
3306                                 DAG.getConstant(VTBits, MVT::i32), ShAmt);
3307  SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
3308  SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
3309                                   DAG.getConstant(VTBits, MVT::i32));
3310  SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
3311  SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
3312
3313  SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
3314  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3315  SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
3316                          ARMcc, DAG, dl);
3317  SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
3318  SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, Tmp3, ARMcc,
3319                           CCR, Cmp);
3320
3321  SDValue Ops[2] = { Lo, Hi };
3322  return DAG.getMergeValues(Ops, 2, dl);
3323}
3324
3325SDValue ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
3326                                            SelectionDAG &DAG) const {
3327  // The rounding mode is in bits 23:22 of the FPSCR.
3328  // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
3329  // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
3330  // so that the shift + and get folded into a bitfield extract.
3331  DebugLoc dl = Op.getDebugLoc();
3332  SDValue FPSCR = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::i32,
3333                              DAG.getConstant(Intrinsic::arm_get_fpscr,
3334                                              MVT::i32));
3335  SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPSCR,
3336                                  DAG.getConstant(1U << 22, MVT::i32));
3337  SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds,
3338                              DAG.getConstant(22, MVT::i32));
3339  return DAG.getNode(ISD::AND, dl, MVT::i32, RMODE,
3340                     DAG.getConstant(3, MVT::i32));
3341}
3342
3343static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG,
3344                         const ARMSubtarget *ST) {
3345  EVT VT = N->getValueType(0);
3346  DebugLoc dl = N->getDebugLoc();
3347
3348  if (!ST->hasV6T2Ops())
3349    return SDValue();
3350
3351  SDValue rbit = DAG.getNode(ARMISD::RBIT, dl, VT, N->getOperand(0));
3352  return DAG.getNode(ISD::CTLZ, dl, VT, rbit);
3353}
3354
3355static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
3356                          const ARMSubtarget *ST) {
3357  EVT VT = N->getValueType(0);
3358  DebugLoc dl = N->getDebugLoc();
3359
3360  if (!VT.isVector())
3361    return SDValue();
3362
3363  // Lower vector shifts on NEON to use VSHL.
3364  assert(ST->hasNEON() && "unexpected vector shift");
3365
3366  // Left shifts translate directly to the vshiftu intrinsic.
3367  if (N->getOpcode() == ISD::SHL)
3368    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
3369                       DAG.getConstant(Intrinsic::arm_neon_vshiftu, MVT::i32),
3370                       N->getOperand(0), N->getOperand(1));
3371
3372  assert((N->getOpcode() == ISD::SRA ||
3373          N->getOpcode() == ISD::SRL) && "unexpected vector shift opcode");
3374
3375  // NEON uses the same intrinsics for both left and right shifts.  For
3376  // right shifts, the shift amounts are negative, so negate the vector of
3377  // shift amounts.
3378  EVT ShiftVT = N->getOperand(1).getValueType();
3379  SDValue NegatedCount = DAG.getNode(ISD::SUB, dl, ShiftVT,
3380                                     getZeroVector(ShiftVT, DAG, dl),
3381                                     N->getOperand(1));
3382  Intrinsic::ID vshiftInt = (N->getOpcode() == ISD::SRA ?
3383                             Intrinsic::arm_neon_vshifts :
3384                             Intrinsic::arm_neon_vshiftu);
3385  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
3386                     DAG.getConstant(vshiftInt, MVT::i32),
3387                     N->getOperand(0), NegatedCount);
3388}
3389
3390static SDValue Expand64BitShift(SDNode *N, SelectionDAG &DAG,
3391                                const ARMSubtarget *ST) {
3392  EVT VT = N->getValueType(0);
3393  DebugLoc dl = N->getDebugLoc();
3394
3395  // We can get here for a node like i32 = ISD::SHL i32, i64
3396  if (VT != MVT::i64)
3397    return SDValue();
3398
3399  assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) &&
3400         "Unknown shift to lower!");
3401
3402  // We only lower SRA, SRL of 1 here, all others use generic lowering.
3403  if (!isa<ConstantSDNode>(N->getOperand(1)) ||
3404      cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 1)
3405    return SDValue();
3406
3407  // If we are in thumb mode, we don't have RRX.
3408  if (ST->isThumb1Only()) return SDValue();
3409
3410  // Okay, we have a 64-bit SRA or SRL of 1.  Lower this to an RRX expr.
3411  SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
3412                           DAG.getConstant(0, MVT::i32));
3413  SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
3414                           DAG.getConstant(1, MVT::i32));
3415
3416  // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
3417  // captures the result into a carry flag.
3418  unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
3419  Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Glue), &Hi, 1);
3420
3421  // The low part is an ARMISD::RRX operand, which shifts the carry in.
3422  Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));
3423
3424  // Merge the pieces into a single i64 value.
3425 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
3426}
3427
3428static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
3429  SDValue TmpOp0, TmpOp1;
3430  bool Invert = false;
3431  bool Swap = false;
3432  unsigned Opc = 0;
3433
3434  SDValue Op0 = Op.getOperand(0);
3435  SDValue Op1 = Op.getOperand(1);
3436  SDValue CC = Op.getOperand(2);
3437  EVT VT = Op.getValueType();
3438  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
3439  DebugLoc dl = Op.getDebugLoc();
3440
3441  if (Op.getOperand(1).getValueType().isFloatingPoint()) {
3442    switch (SetCCOpcode) {
3443    default: llvm_unreachable("Illegal FP comparison"); break;
3444    case ISD::SETUNE:
3445    case ISD::SETNE:  Invert = true; // Fallthrough
3446    case ISD::SETOEQ:
3447    case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
3448    case ISD::SETOLT:
3449    case ISD::SETLT: Swap = true; // Fallthrough
3450    case ISD::SETOGT:
3451    case ISD::SETGT:  Opc = ARMISD::VCGT; break;
3452    case ISD::SETOLE:
3453    case ISD::SETLE:  Swap = true; // Fallthrough
3454    case ISD::SETOGE:
3455    case ISD::SETGE: Opc = ARMISD::VCGE; break;
3456    case ISD::SETUGE: Swap = true; // Fallthrough
3457    case ISD::SETULE: Invert = true; Opc = ARMISD::VCGT; break;
3458    case ISD::SETUGT: Swap = true; // Fallthrough
3459    case ISD::SETULT: Invert = true; Opc = ARMISD::VCGE; break;
3460    case ISD::SETUEQ: Invert = true; // Fallthrough
3461    case ISD::SETONE:
3462      // Expand this to (OLT | OGT).
3463      TmpOp0 = Op0;
3464      TmpOp1 = Op1;
3465      Opc = ISD::OR;
3466      Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
3467      Op1 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp0, TmpOp1);
3468      break;
3469    case ISD::SETUO: Invert = true; // Fallthrough
3470    case ISD::SETO:
3471      // Expand this to (OLT | OGE).
3472      TmpOp0 = Op0;
3473      TmpOp1 = Op1;
3474      Opc = ISD::OR;
3475      Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
3476      Op1 = DAG.getNode(ARMISD::VCGE, dl, VT, TmpOp0, TmpOp1);
3477      break;
3478    }
3479  } else {
3480    // Integer comparisons.
3481    switch (SetCCOpcode) {
3482    default: llvm_unreachable("Illegal integer comparison"); break;
3483    case ISD::SETNE:  Invert = true;
3484    case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
3485    case ISD::SETLT:  Swap = true;
3486    case ISD::SETGT:  Opc = ARMISD::VCGT; break;
3487    case ISD::SETLE:  Swap = true;
3488    case ISD::SETGE:  Opc = ARMISD::VCGE; break;
3489    case ISD::SETULT: Swap = true;
3490    case ISD::SETUGT: Opc = ARMISD::VCGTU; break;
3491    case ISD::SETULE: Swap = true;
3492    case ISD::SETUGE: Opc = ARMISD::VCGEU; break;
3493    }
3494
3495    // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
3496    if (Opc == ARMISD::VCEQ) {
3497
3498      SDValue AndOp;
3499      if (ISD::isBuildVectorAllZeros(Op1.getNode()))
3500        AndOp = Op0;
3501      else if (ISD::isBuildVectorAllZeros(Op0.getNode()))
3502        AndOp = Op1;
3503
3504      // Ignore bitconvert.
3505      if (AndOp.getNode() && AndOp.getOpcode() == ISD::BITCAST)
3506        AndOp = AndOp.getOperand(0);
3507
3508      if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) {
3509        Opc = ARMISD::VTST;
3510        Op0 = DAG.getNode(ISD::BITCAST, dl, VT, AndOp.getOperand(0));
3511        Op1 = DAG.getNode(ISD::BITCAST, dl, VT, AndOp.getOperand(1));
3512        Invert = !Invert;
3513      }
3514    }
3515  }
3516
3517  if (Swap)
3518    std::swap(Op0, Op1);
3519
3520  // If one of the operands is a constant vector zero, attempt to fold the
3521  // comparison to a specialized compare-against-zero form.
3522  SDValue SingleOp;
3523  if (ISD::isBuildVectorAllZeros(Op1.getNode()))
3524    SingleOp = Op0;
3525  else if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
3526    if (Opc == ARMISD::VCGE)
3527      Opc = ARMISD::VCLEZ;
3528    else if (Opc == ARMISD::VCGT)
3529      Opc = ARMISD::VCLTZ;
3530    SingleOp = Op1;
3531  }
3532
3533  SDValue Result;
3534  if (SingleOp.getNode()) {
3535    switch (Opc) {
3536    case ARMISD::VCEQ:
3537      Result = DAG.getNode(ARMISD::VCEQZ, dl, VT, SingleOp); break;
3538    case ARMISD::VCGE:
3539      Result = DAG.getNode(ARMISD::VCGEZ, dl, VT, SingleOp); break;
3540    case ARMISD::VCLEZ:
3541      Result = DAG.getNode(ARMISD::VCLEZ, dl, VT, SingleOp); break;
3542    case ARMISD::VCGT:
3543      Result = DAG.getNode(ARMISD::VCGTZ, dl, VT, SingleOp); break;
3544    case ARMISD::VCLTZ:
3545      Result = DAG.getNode(ARMISD::VCLTZ, dl, VT, SingleOp); break;
3546    default:
3547      Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
3548    }
3549  } else {
3550     Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
3551  }
3552
3553  if (Invert)
3554    Result = DAG.getNOT(dl, Result, VT);
3555
3556  return Result;
3557}
3558
3559/// isNEONModifiedImm - Check if the specified splat value corresponds to a
3560/// valid vector constant for a NEON instruction with a "modified immediate"
3561/// operand (e.g., VMOV).  If so, return the encoded value.
3562static SDValue isNEONModifiedImm(uint64_t SplatBits, uint64_t SplatUndef,
3563                                 unsigned SplatBitSize, SelectionDAG &DAG,
3564                                 EVT &VT, bool is128Bits, NEONModImmType type) {
3565  unsigned OpCmode, Imm;
3566
3567  // SplatBitSize is set to the smallest size that splats the vector, so a
3568  // zero vector will always have SplatBitSize == 8.  However, NEON modified
3569  // immediate instructions others than VMOV do not support the 8-bit encoding
3570  // of a zero vector, and the default encoding of zero is supposed to be the
3571  // 32-bit version.
3572  if (SplatBits == 0)
3573    SplatBitSize = 32;
3574
3575  switch (SplatBitSize) {
3576  case 8:
3577    if (type != VMOVModImm)
3578      return SDValue();
3579    // Any 1-byte value is OK.  Op=0, Cmode=1110.
3580    assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
3581    OpCmode = 0xe;
3582    Imm = SplatBits;
3583    VT = is128Bits ? MVT::v16i8 : MVT::v8i8;
3584    break;
3585
3586  case 16:
3587    // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
3588    VT = is128Bits ? MVT::v8i16 : MVT::v4i16;
3589    if ((SplatBits & ~0xff) == 0) {
3590      // Value = 0x00nn: Op=x, Cmode=100x.
3591      OpCmode = 0x8;
3592      Imm = SplatBits;
3593      break;
3594    }
3595    if ((SplatBits & ~0xff00) == 0) {
3596      // Value = 0xnn00: Op=x, Cmode=101x.
3597      OpCmode = 0xa;
3598      Imm = SplatBits >> 8;
3599      break;
3600    }
3601    return SDValue();
3602
3603  case 32:
3604    // NEON's 32-bit VMOV supports splat values where:
3605    // * only one byte is nonzero, or
3606    // * the least significant byte is 0xff and the second byte is nonzero, or
3607    // * the least significant 2 bytes are 0xff and the third is nonzero.
3608    VT = is128Bits ? MVT::v4i32 : MVT::v2i32;
3609    if ((SplatBits & ~0xff) == 0) {
3610      // Value = 0x000000nn: Op=x, Cmode=000x.
3611      OpCmode = 0;
3612      Imm = SplatBits;
3613      break;
3614    }
3615    if ((SplatBits & ~0xff00) == 0) {
3616      // Value = 0x0000nn00: Op=x, Cmode=001x.
3617      OpCmode = 0x2;
3618      Imm = SplatBits >> 8;
3619      break;
3620    }
3621    if ((SplatBits & ~0xff0000) == 0) {
3622      // Value = 0x00nn0000: Op=x, Cmode=010x.
3623      OpCmode = 0x4;
3624      Imm = SplatBits >> 16;
3625      break;
3626    }
3627    if ((SplatBits & ~0xff000000) == 0) {
3628      // Value = 0xnn000000: Op=x, Cmode=011x.
3629      OpCmode = 0x6;
3630      Imm = SplatBits >> 24;
3631      break;
3632    }
3633
3634    // cmode == 0b1100 and cmode == 0b1101 are not supported for VORR or VBIC
3635    if (type == OtherModImm) return SDValue();
3636
3637    if ((SplatBits & ~0xffff) == 0 &&
3638        ((SplatBits | SplatUndef) & 0xff) == 0xff) {
3639      // Value = 0x0000nnff: Op=x, Cmode=1100.
3640      OpCmode = 0xc;
3641      Imm = SplatBits >> 8;
3642      SplatBits |= 0xff;
3643      break;
3644    }
3645
3646    if ((SplatBits & ~0xffffff) == 0 &&
3647        ((SplatBits | SplatUndef) & 0xffff) == 0xffff) {
3648      // Value = 0x00nnffff: Op=x, Cmode=1101.
3649      OpCmode = 0xd;
3650      Imm = SplatBits >> 16;
3651      SplatBits |= 0xffff;
3652      break;
3653    }
3654
3655    // Note: there are a few 32-bit splat values (specifically: 00ffff00,
3656    // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
3657    // VMOV.I32.  A (very) minor optimization would be to replicate the value
3658    // and fall through here to test for a valid 64-bit splat.  But, then the
3659    // caller would also need to check and handle the change in size.
3660    return SDValue();
3661
3662  case 64: {
3663    if (type != VMOVModImm)
3664      return SDValue();
3665    // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
3666    uint64_t BitMask = 0xff;
3667    uint64_t Val = 0;
3668    unsigned ImmMask = 1;
3669    Imm = 0;
3670    for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
3671      if (((SplatBits | SplatUndef) & BitMask) == BitMask) {
3672        Val |= BitMask;
3673        Imm |= ImmMask;
3674      } else if ((SplatBits & BitMask) != 0) {
3675        return SDValue();
3676      }
3677      BitMask <<= 8;
3678      ImmMask <<= 1;
3679    }
3680    // Op=1, Cmode=1110.
3681    OpCmode = 0x1e;
3682    SplatBits = Val;
3683    VT = is128Bits ? MVT::v2i64 : MVT::v1i64;
3684    break;
3685  }
3686
3687  default:
3688    llvm_unreachable("unexpected size for isNEONModifiedImm");
3689    return SDValue();
3690  }
3691
3692  unsigned EncodedVal = ARM_AM::createNEONModImm(OpCmode, Imm);
3693  return DAG.getTargetConstant(EncodedVal, MVT::i32);
3694}
3695
3696static bool isVEXTMask(const SmallVectorImpl<int> &M, EVT VT,
3697                       bool &ReverseVEXT, unsigned &Imm) {
3698  unsigned NumElts = VT.getVectorNumElements();
3699  ReverseVEXT = false;
3700
3701  // Assume that the first shuffle index is not UNDEF.  Fail if it is.
3702  if (M[0] < 0)
3703    return false;
3704
3705  Imm = M[0];
3706
3707  // If this is a VEXT shuffle, the immediate value is the index of the first
3708  // element.  The other shuffle indices must be the successive elements after
3709  // the first one.
3710  unsigned ExpectedElt = Imm;
3711  for (unsigned i = 1; i < NumElts; ++i) {
3712    // Increment the expected index.  If it wraps around, it may still be
3713    // a VEXT but the source vectors must be swapped.
3714    ExpectedElt += 1;
3715    if (ExpectedElt == NumElts * 2) {
3716      ExpectedElt = 0;
3717      ReverseVEXT = true;
3718    }
3719
3720    if (M[i] < 0) continue; // ignore UNDEF indices
3721    if (ExpectedElt != static_cast<unsigned>(M[i]))
3722      return false;
3723  }
3724
3725  // Adjust the index value if the source operands will be swapped.
3726  if (ReverseVEXT)
3727    Imm -= NumElts;
3728
3729  return true;
3730}
3731
3732/// isVREVMask - Check if a vector shuffle corresponds to a VREV
3733/// instruction with the specified blocksize.  (The order of the elements
3734/// within each block of the vector is reversed.)
3735static bool isVREVMask(const SmallVectorImpl<int> &M, EVT VT,
3736                       unsigned BlockSize) {
3737  assert((BlockSize==16 || BlockSize==32 || BlockSize==64) &&
3738         "Only possible block sizes for VREV are: 16, 32, 64");
3739
3740  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3741  if (EltSz == 64)
3742    return false;
3743
3744  unsigned NumElts = VT.getVectorNumElements();
3745  unsigned BlockElts = M[0] + 1;
3746  // If the first shuffle index is UNDEF, be optimistic.
3747  if (M[0] < 0)
3748    BlockElts = BlockSize / EltSz;
3749
3750  if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
3751    return false;
3752
3753  for (unsigned i = 0; i < NumElts; ++i) {
3754    if (M[i] < 0) continue; // ignore UNDEF indices
3755    if ((unsigned) M[i] != (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts))
3756      return false;
3757  }
3758
3759  return true;
3760}
3761
3762static bool isVTBLMask(const SmallVectorImpl<int> &M, EVT VT) {
3763  // We can handle <8 x i8> vector shuffles. If the index in the mask is out of
3764  // range, then 0 is placed into the resulting vector. So pretty much any mask
3765  // of 8 elements can work here.
3766  return VT == MVT::v8i8 && M.size() == 8;
3767}
3768
3769static bool isVTRNMask(const SmallVectorImpl<int> &M, EVT VT,
3770                       unsigned &WhichResult) {
3771  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3772  if (EltSz == 64)
3773    return false;
3774
3775  unsigned NumElts = VT.getVectorNumElements();
3776  WhichResult = (M[0] == 0 ? 0 : 1);
3777  for (unsigned i = 0; i < NumElts; i += 2) {
3778    if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) ||
3779        (M[i+1] >= 0 && (unsigned) M[i+1] != i + NumElts + WhichResult))
3780      return false;
3781  }
3782  return true;
3783}
3784
3785/// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
3786/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
3787/// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
3788static bool isVTRN_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
3789                                unsigned &WhichResult) {
3790  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3791  if (EltSz == 64)
3792    return false;
3793
3794  unsigned NumElts = VT.getVectorNumElements();
3795  WhichResult = (M[0] == 0 ? 0 : 1);
3796  for (unsigned i = 0; i < NumElts; i += 2) {
3797    if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) ||
3798        (M[i+1] >= 0 && (unsigned) M[i+1] != i + WhichResult))
3799      return false;
3800  }
3801  return true;
3802}
3803
3804static bool isVUZPMask(const SmallVectorImpl<int> &M, EVT VT,
3805                       unsigned &WhichResult) {
3806  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3807  if (EltSz == 64)
3808    return false;
3809
3810  unsigned NumElts = VT.getVectorNumElements();
3811  WhichResult = (M[0] == 0 ? 0 : 1);
3812  for (unsigned i = 0; i != NumElts; ++i) {
3813    if (M[i] < 0) continue; // ignore UNDEF indices
3814    if ((unsigned) M[i] != 2 * i + WhichResult)
3815      return false;
3816  }
3817
3818  // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3819  if (VT.is64BitVector() && EltSz == 32)
3820    return false;
3821
3822  return true;
3823}
3824
3825/// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
3826/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
3827/// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
3828static bool isVUZP_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
3829                                unsigned &WhichResult) {
3830  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3831  if (EltSz == 64)
3832    return false;
3833
3834  unsigned Half = VT.getVectorNumElements() / 2;
3835  WhichResult = (M[0] == 0 ? 0 : 1);
3836  for (unsigned j = 0; j != 2; ++j) {
3837    unsigned Idx = WhichResult;
3838    for (unsigned i = 0; i != Half; ++i) {
3839      int MIdx = M[i + j * Half];
3840      if (MIdx >= 0 && (unsigned) MIdx != Idx)
3841        return false;
3842      Idx += 2;
3843    }
3844  }
3845
3846  // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3847  if (VT.is64BitVector() && EltSz == 32)
3848    return false;
3849
3850  return true;
3851}
3852
3853static bool isVZIPMask(const SmallVectorImpl<int> &M, EVT VT,
3854                       unsigned &WhichResult) {
3855  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3856  if (EltSz == 64)
3857    return false;
3858
3859  unsigned NumElts = VT.getVectorNumElements();
3860  WhichResult = (M[0] == 0 ? 0 : 1);
3861  unsigned Idx = WhichResult * NumElts / 2;
3862  for (unsigned i = 0; i != NumElts; i += 2) {
3863    if ((M[i] >= 0 && (unsigned) M[i] != Idx) ||
3864        (M[i+1] >= 0 && (unsigned) M[i+1] != Idx + NumElts))
3865      return false;
3866    Idx += 1;
3867  }
3868
3869  // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3870  if (VT.is64BitVector() && EltSz == 32)
3871    return false;
3872
3873  return true;
3874}
3875
3876/// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
3877/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
3878/// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
3879static bool isVZIP_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
3880                                unsigned &WhichResult) {
3881  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3882  if (EltSz == 64)
3883    return false;
3884
3885  unsigned NumElts = VT.getVectorNumElements();
3886  WhichResult = (M[0] == 0 ? 0 : 1);
3887  unsigned Idx = WhichResult * NumElts / 2;
3888  for (unsigned i = 0; i != NumElts; i += 2) {
3889    if ((M[i] >= 0 && (unsigned) M[i] != Idx) ||
3890        (M[i+1] >= 0 && (unsigned) M[i+1] != Idx))
3891      return false;
3892    Idx += 1;
3893  }
3894
3895  // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3896  if (VT.is64BitVector() && EltSz == 32)
3897    return false;
3898
3899  return true;
3900}
3901
3902// If N is an integer constant that can be moved into a register in one
3903// instruction, return an SDValue of such a constant (will become a MOV
3904// instruction).  Otherwise return null.
3905static SDValue IsSingleInstrConstant(SDValue N, SelectionDAG &DAG,
3906                                     const ARMSubtarget *ST, DebugLoc dl) {
3907  uint64_t Val;
3908  if (!isa<ConstantSDNode>(N))
3909    return SDValue();
3910  Val = cast<ConstantSDNode>(N)->getZExtValue();
3911
3912  if (ST->isThumb1Only()) {
3913    if (Val <= 255 || ~Val <= 255)
3914      return DAG.getConstant(Val, MVT::i32);
3915  } else {
3916    if (ARM_AM::getSOImmVal(Val) != -1 || ARM_AM::getSOImmVal(~Val) != -1)
3917      return DAG.getConstant(Val, MVT::i32);
3918  }
3919  return SDValue();
3920}
3921
3922// If this is a case we can't handle, return null and let the default
3923// expansion code take care of it.
3924SDValue ARMTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
3925                                             const ARMSubtarget *ST) const {
3926  BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
3927  DebugLoc dl = Op.getDebugLoc();
3928  EVT VT = Op.getValueType();
3929
3930  APInt SplatBits, SplatUndef;
3931  unsigned SplatBitSize;
3932  bool HasAnyUndefs;
3933  if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
3934    if (SplatBitSize <= 64) {
3935      // Check if an immediate VMOV works.
3936      EVT VmovVT;
3937      SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
3938                                      SplatUndef.getZExtValue(), SplatBitSize,
3939                                      DAG, VmovVT, VT.is128BitVector(),
3940                                      VMOVModImm);
3941      if (Val.getNode()) {
3942        SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, Val);
3943        return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
3944      }
3945
3946      // Try an immediate VMVN.
3947      uint64_t NegatedImm = (SplatBits.getZExtValue() ^
3948                             ((1LL << SplatBitSize) - 1));
3949      Val = isNEONModifiedImm(NegatedImm,
3950                                      SplatUndef.getZExtValue(), SplatBitSize,
3951                                      DAG, VmovVT, VT.is128BitVector(),
3952                                      VMVNModImm);
3953      if (Val.getNode()) {
3954        SDValue Vmov = DAG.getNode(ARMISD::VMVNIMM, dl, VmovVT, Val);
3955        return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
3956      }
3957    }
3958  }
3959
3960  // Scan through the operands to see if only one value is used.
3961  unsigned NumElts = VT.getVectorNumElements();
3962  bool isOnlyLowElement = true;
3963  bool usesOnlyOneValue = true;
3964  bool isConstant = true;
3965  SDValue Value;
3966  for (unsigned i = 0; i < NumElts; ++i) {
3967    SDValue V = Op.getOperand(i);
3968    if (V.getOpcode() == ISD::UNDEF)
3969      continue;
3970    if (i > 0)
3971      isOnlyLowElement = false;
3972    if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
3973      isConstant = false;
3974
3975    if (!Value.getNode())
3976      Value = V;
3977    else if (V != Value)
3978      usesOnlyOneValue = false;
3979  }
3980
3981  if (!Value.getNode())
3982    return DAG.getUNDEF(VT);
3983
3984  if (isOnlyLowElement)
3985    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
3986
3987  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
3988
3989  // Use VDUP for non-constant splats.  For f32 constant splats, reduce to
3990  // i32 and try again.
3991  if (usesOnlyOneValue && EltSize <= 32) {
3992    if (!isConstant)
3993      return DAG.getNode(ARMISD::VDUP, dl, VT, Value);
3994    if (VT.getVectorElementType().isFloatingPoint()) {
3995      SmallVector<SDValue, 8> Ops;
3996      for (unsigned i = 0; i < NumElts; ++i)
3997        Ops.push_back(DAG.getNode(ISD::BITCAST, dl, MVT::i32,
3998                                  Op.getOperand(i)));
3999      EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
4000      SDValue Val = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, &Ops[0], NumElts);
4001      Val = LowerBUILD_VECTOR(Val, DAG, ST);
4002      if (Val.getNode())
4003        return DAG.getNode(ISD::BITCAST, dl, VT, Val);
4004    }
4005    SDValue Val = IsSingleInstrConstant(Value, DAG, ST, dl);
4006    if (Val.getNode())
4007      return DAG.getNode(ARMISD::VDUP, dl, VT, Val);
4008  }
4009
4010  // If all elements are constants and the case above didn't get hit, fall back
4011  // to the default expansion, which will generate a load from the constant
4012  // pool.
4013  if (isConstant)
4014    return SDValue();
4015
4016  // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
4017  if (NumElts >= 4) {
4018    SDValue shuffle = ReconstructShuffle(Op, DAG);
4019    if (shuffle != SDValue())
4020      return shuffle;
4021  }
4022
4023  // Vectors with 32- or 64-bit elements can be built by directly assigning
4024  // the subregisters.  Lower it to an ARMISD::BUILD_VECTOR so the operands
4025  // will be legalized.
4026  if (EltSize >= 32) {
4027    // Do the expansion with floating-point types, since that is what the VFP
4028    // registers are defined to use, and since i64 is not legal.
4029    EVT EltVT = EVT::getFloatingPointVT(EltSize);
4030    EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
4031    SmallVector<SDValue, 8> Ops;
4032    for (unsigned i = 0; i < NumElts; ++i)
4033      Ops.push_back(DAG.getNode(ISD::BITCAST, dl, EltVT, Op.getOperand(i)));
4034    SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts);
4035    return DAG.getNode(ISD::BITCAST, dl, VT, Val);
4036  }
4037
4038  return SDValue();
4039}
4040
4041// Gather data to see if the operation can be modelled as a
4042// shuffle in combination with VEXTs.
4043SDValue ARMTargetLowering::ReconstructShuffle(SDValue Op,
4044                                              SelectionDAG &DAG) const {
4045  DebugLoc dl = Op.getDebugLoc();
4046  EVT VT = Op.getValueType();
4047  unsigned NumElts = VT.getVectorNumElements();
4048
4049  SmallVector<SDValue, 2> SourceVecs;
4050  SmallVector<unsigned, 2> MinElts;
4051  SmallVector<unsigned, 2> MaxElts;
4052
4053  for (unsigned i = 0; i < NumElts; ++i) {
4054    SDValue V = Op.getOperand(i);
4055    if (V.getOpcode() == ISD::UNDEF)
4056      continue;
4057    else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) {
4058      // A shuffle can only come from building a vector from various
4059      // elements of other vectors.
4060      return SDValue();
4061    }
4062
4063    // Record this extraction against the appropriate vector if possible...
4064    SDValue SourceVec = V.getOperand(0);
4065    unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
4066    bool FoundSource = false;
4067    for (unsigned j = 0; j < SourceVecs.size(); ++j) {
4068      if (SourceVecs[j] == SourceVec) {
4069        if (MinElts[j] > EltNo)
4070          MinElts[j] = EltNo;
4071        if (MaxElts[j] < EltNo)
4072          MaxElts[j] = EltNo;
4073        FoundSource = true;
4074        break;
4075      }
4076    }
4077
4078    // Or record a new source if not...
4079    if (!FoundSource) {
4080      SourceVecs.push_back(SourceVec);
4081      MinElts.push_back(EltNo);
4082      MaxElts.push_back(EltNo);
4083    }
4084  }
4085
4086  // Currently only do something sane when at most two source vectors
4087  // involved.
4088  if (SourceVecs.size() > 2)
4089    return SDValue();
4090
4091  SDValue ShuffleSrcs[2] = {DAG.getUNDEF(VT), DAG.getUNDEF(VT) };
4092  int VEXTOffsets[2] = {0, 0};
4093
4094  // This loop extracts the usage patterns of the source vectors
4095  // and prepares appropriate SDValues for a shuffle if possible.
4096  for (unsigned i = 0; i < SourceVecs.size(); ++i) {
4097    if (SourceVecs[i].getValueType() == VT) {
4098      // No VEXT necessary
4099      ShuffleSrcs[i] = SourceVecs[i];
4100      VEXTOffsets[i] = 0;
4101      continue;
4102    } else if (SourceVecs[i].getValueType().getVectorNumElements() < NumElts) {
4103      // It probably isn't worth padding out a smaller vector just to
4104      // break it down again in a shuffle.
4105      return SDValue();
4106    }
4107
4108    // Since only 64-bit and 128-bit vectors are legal on ARM and
4109    // we've eliminated the other cases...
4110    assert(SourceVecs[i].getValueType().getVectorNumElements() == 2*NumElts &&
4111           "unexpected vector sizes in ReconstructShuffle");
4112
4113    if (MaxElts[i] - MinElts[i] >= NumElts) {
4114      // Span too large for a VEXT to cope
4115      return SDValue();
4116    }
4117
4118    if (MinElts[i] >= NumElts) {
4119      // The extraction can just take the second half
4120      VEXTOffsets[i] = NumElts;
4121      ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4122                                   SourceVecs[i],
4123                                   DAG.getIntPtrConstant(NumElts));
4124    } else if (MaxElts[i] < NumElts) {
4125      // The extraction can just take the first half
4126      VEXTOffsets[i] = 0;
4127      ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4128                                   SourceVecs[i],
4129                                   DAG.getIntPtrConstant(0));
4130    } else {
4131      // An actual VEXT is needed
4132      VEXTOffsets[i] = MinElts[i];
4133      SDValue VEXTSrc1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4134                                     SourceVecs[i],
4135                                     DAG.getIntPtrConstant(0));
4136      SDValue VEXTSrc2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4137                                     SourceVecs[i],
4138                                     DAG.getIntPtrConstant(NumElts));
4139      ShuffleSrcs[i] = DAG.getNode(ARMISD::VEXT, dl, VT, VEXTSrc1, VEXTSrc2,
4140                                   DAG.getConstant(VEXTOffsets[i], MVT::i32));
4141    }
4142  }
4143
4144  SmallVector<int, 8> Mask;
4145
4146  for (unsigned i = 0; i < NumElts; ++i) {
4147    SDValue Entry = Op.getOperand(i);
4148    if (Entry.getOpcode() == ISD::UNDEF) {
4149      Mask.push_back(-1);
4150      continue;
4151    }
4152
4153    SDValue ExtractVec = Entry.getOperand(0);
4154    int ExtractElt = cast<ConstantSDNode>(Op.getOperand(i)
4155                                          .getOperand(1))->getSExtValue();
4156    if (ExtractVec == SourceVecs[0]) {
4157      Mask.push_back(ExtractElt - VEXTOffsets[0]);
4158    } else {
4159      Mask.push_back(ExtractElt + NumElts - VEXTOffsets[1]);
4160    }
4161  }
4162
4163  // Final check before we try to produce nonsense...
4164  if (isShuffleMaskLegal(Mask, VT))
4165    return DAG.getVectorShuffle(VT, dl, ShuffleSrcs[0], ShuffleSrcs[1],
4166                                &Mask[0]);
4167
4168  return SDValue();
4169}
4170
4171/// isShuffleMaskLegal - Targets can use this to indicate that they only
4172/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
4173/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
4174/// are assumed to be legal.
4175bool
4176ARMTargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
4177                                      EVT VT) const {
4178  if (VT.getVectorNumElements() == 4 &&
4179      (VT.is128BitVector() || VT.is64BitVector())) {
4180    unsigned PFIndexes[4];
4181    for (unsigned i = 0; i != 4; ++i) {
4182      if (M[i] < 0)
4183        PFIndexes[i] = 8;
4184      else
4185        PFIndexes[i] = M[i];
4186    }
4187
4188    // Compute the index in the perfect shuffle table.
4189    unsigned PFTableIndex =
4190      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
4191    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
4192    unsigned Cost = (PFEntry >> 30);
4193
4194    if (Cost <= 4)
4195      return true;
4196  }
4197
4198  bool ReverseVEXT;
4199  unsigned Imm, WhichResult;
4200
4201  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4202  return (EltSize >= 32 ||
4203          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
4204          isVREVMask(M, VT, 64) ||
4205          isVREVMask(M, VT, 32) ||
4206          isVREVMask(M, VT, 16) ||
4207          isVEXTMask(M, VT, ReverseVEXT, Imm) ||
4208          isVTBLMask(M, VT) ||
4209          isVTRNMask(M, VT, WhichResult) ||
4210          isVUZPMask(M, VT, WhichResult) ||
4211          isVZIPMask(M, VT, WhichResult) ||
4212          isVTRN_v_undef_Mask(M, VT, WhichResult) ||
4213          isVUZP_v_undef_Mask(M, VT, WhichResult) ||
4214          isVZIP_v_undef_Mask(M, VT, WhichResult));
4215}
4216
4217/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
4218/// the specified operations to build the shuffle.
4219static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
4220                                      SDValue RHS, SelectionDAG &DAG,
4221                                      DebugLoc dl) {
4222  unsigned OpNum = (PFEntry >> 26) & 0x0F;
4223  unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
4224  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
4225
4226  enum {
4227    OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
4228    OP_VREV,
4229    OP_VDUP0,
4230    OP_VDUP1,
4231    OP_VDUP2,
4232    OP_VDUP3,
4233    OP_VEXT1,
4234    OP_VEXT2,
4235    OP_VEXT3,
4236    OP_VUZPL, // VUZP, left result
4237    OP_VUZPR, // VUZP, right result
4238    OP_VZIPL, // VZIP, left result
4239    OP_VZIPR, // VZIP, right result
4240    OP_VTRNL, // VTRN, left result
4241    OP_VTRNR  // VTRN, right result
4242  };
4243
4244  if (OpNum == OP_COPY) {
4245    if (LHSID == (1*9+2)*9+3) return LHS;
4246    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
4247    return RHS;
4248  }
4249
4250  SDValue OpLHS, OpRHS;
4251  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
4252  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
4253  EVT VT = OpLHS.getValueType();
4254
4255  switch (OpNum) {
4256  default: llvm_unreachable("Unknown shuffle opcode!");
4257  case OP_VREV:
4258    // VREV divides the vector in half and swaps within the half.
4259    if (VT.getVectorElementType() == MVT::i32 ||
4260        VT.getVectorElementType() == MVT::f32)
4261      return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS);
4262    // vrev <4 x i16> -> VREV32
4263    if (VT.getVectorElementType() == MVT::i16)
4264      return DAG.getNode(ARMISD::VREV32, dl, VT, OpLHS);
4265    // vrev <4 x i8> -> VREV16
4266    assert(VT.getVectorElementType() == MVT::i8);
4267    return DAG.getNode(ARMISD::VREV16, dl, VT, OpLHS);
4268  case OP_VDUP0:
4269  case OP_VDUP1:
4270  case OP_VDUP2:
4271  case OP_VDUP3:
4272    return DAG.getNode(ARMISD::VDUPLANE, dl, VT,
4273                       OpLHS, DAG.getConstant(OpNum-OP_VDUP0, MVT::i32));
4274  case OP_VEXT1:
4275  case OP_VEXT2:
4276  case OP_VEXT3:
4277    return DAG.getNode(ARMISD::VEXT, dl, VT,
4278                       OpLHS, OpRHS,
4279                       DAG.getConstant(OpNum-OP_VEXT1+1, MVT::i32));
4280  case OP_VUZPL:
4281  case OP_VUZPR:
4282    return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
4283                       OpLHS, OpRHS).getValue(OpNum-OP_VUZPL);
4284  case OP_VZIPL:
4285  case OP_VZIPR:
4286    return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
4287                       OpLHS, OpRHS).getValue(OpNum-OP_VZIPL);
4288  case OP_VTRNL:
4289  case OP_VTRNR:
4290    return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
4291                       OpLHS, OpRHS).getValue(OpNum-OP_VTRNL);
4292  }
4293}
4294
4295static SDValue LowerVECTOR_SHUFFLEv8i8(SDValue Op,
4296                                       SmallVectorImpl<int> &ShuffleMask,
4297                                       SelectionDAG &DAG) {
4298  // Check to see if we can use the VTBL instruction.
4299  SDValue V1 = Op.getOperand(0);
4300  SDValue V2 = Op.getOperand(1);
4301  DebugLoc DL = Op.getDebugLoc();
4302
4303  SmallVector<SDValue, 8> VTBLMask;
4304  for (SmallVectorImpl<int>::iterator
4305         I = ShuffleMask.begin(), E = ShuffleMask.end(); I != E; ++I)
4306    VTBLMask.push_back(DAG.getConstant(*I, MVT::i32));
4307
4308  if (V2.getNode()->getOpcode() == ISD::UNDEF)
4309    return DAG.getNode(ARMISD::VTBL1, DL, MVT::v8i8, V1,
4310                       DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i8,
4311                                   &VTBLMask[0], 8));
4312
4313  return DAG.getNode(ARMISD::VTBL2, DL, MVT::v8i8, V1, V2,
4314                     DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i8,
4315                                 &VTBLMask[0], 8));
4316}
4317
4318static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
4319  SDValue V1 = Op.getOperand(0);
4320  SDValue V2 = Op.getOperand(1);
4321  DebugLoc dl = Op.getDebugLoc();
4322  EVT VT = Op.getValueType();
4323  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
4324  SmallVector<int, 8> ShuffleMask;
4325
4326  // Convert shuffles that are directly supported on NEON to target-specific
4327  // DAG nodes, instead of keeping them as shuffles and matching them again
4328  // during code selection.  This is more efficient and avoids the possibility
4329  // of inconsistencies between legalization and selection.
4330  // FIXME: floating-point vectors should be canonicalized to integer vectors
4331  // of the same time so that they get CSEd properly.
4332  SVN->getMask(ShuffleMask);
4333
4334  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4335  if (EltSize <= 32) {
4336    if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0], VT)) {
4337      int Lane = SVN->getSplatIndex();
4338      // If this is undef splat, generate it via "just" vdup, if possible.
4339      if (Lane == -1) Lane = 0;
4340
4341      if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
4342        return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
4343      }
4344      return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1,
4345                         DAG.getConstant(Lane, MVT::i32));
4346    }
4347
4348    bool ReverseVEXT;
4349    unsigned Imm;
4350    if (isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) {
4351      if (ReverseVEXT)
4352        std::swap(V1, V2);
4353      return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2,
4354                         DAG.getConstant(Imm, MVT::i32));
4355    }
4356
4357    if (isVREVMask(ShuffleMask, VT, 64))
4358      return DAG.getNode(ARMISD::VREV64, dl, VT, V1);
4359    if (isVREVMask(ShuffleMask, VT, 32))
4360      return DAG.getNode(ARMISD::VREV32, dl, VT, V1);
4361    if (isVREVMask(ShuffleMask, VT, 16))
4362      return DAG.getNode(ARMISD::VREV16, dl, VT, V1);
4363
4364    // Check for Neon shuffles that modify both input vectors in place.
4365    // If both results are used, i.e., if there are two shuffles with the same
4366    // source operands and with masks corresponding to both results of one of
4367    // these operations, DAG memoization will ensure that a single node is
4368    // used for both shuffles.
4369    unsigned WhichResult;
4370    if (isVTRNMask(ShuffleMask, VT, WhichResult))
4371      return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
4372                         V1, V2).getValue(WhichResult);
4373    if (isVUZPMask(ShuffleMask, VT, WhichResult))
4374      return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
4375                         V1, V2).getValue(WhichResult);
4376    if (isVZIPMask(ShuffleMask, VT, WhichResult))
4377      return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
4378                         V1, V2).getValue(WhichResult);
4379
4380    if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult))
4381      return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
4382                         V1, V1).getValue(WhichResult);
4383    if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult))
4384      return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
4385                         V1, V1).getValue(WhichResult);
4386    if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult))
4387      return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
4388                         V1, V1).getValue(WhichResult);
4389  }
4390
4391  // If the shuffle is not directly supported and it has 4 elements, use
4392  // the PerfectShuffle-generated table to synthesize it from other shuffles.
4393  unsigned NumElts = VT.getVectorNumElements();
4394  if (NumElts == 4) {
4395    unsigned PFIndexes[4];
4396    for (unsigned i = 0; i != 4; ++i) {
4397      if (ShuffleMask[i] < 0)
4398        PFIndexes[i] = 8;
4399      else
4400        PFIndexes[i] = ShuffleMask[i];
4401    }
4402
4403    // Compute the index in the perfect shuffle table.
4404    unsigned PFTableIndex =
4405      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
4406    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
4407    unsigned Cost = (PFEntry >> 30);
4408
4409    if (Cost <= 4)
4410      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
4411  }
4412
4413  // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs.
4414  if (EltSize >= 32) {
4415    // Do the expansion with floating-point types, since that is what the VFP
4416    // registers are defined to use, and since i64 is not legal.
4417    EVT EltVT = EVT::getFloatingPointVT(EltSize);
4418    EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
4419    V1 = DAG.getNode(ISD::BITCAST, dl, VecVT, V1);
4420    V2 = DAG.getNode(ISD::BITCAST, dl, VecVT, V2);
4421    SmallVector<SDValue, 8> Ops;
4422    for (unsigned i = 0; i < NumElts; ++i) {
4423      if (ShuffleMask[i] < 0)
4424        Ops.push_back(DAG.getUNDEF(EltVT));
4425      else
4426        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
4427                                  ShuffleMask[i] < (int)NumElts ? V1 : V2,
4428                                  DAG.getConstant(ShuffleMask[i] & (NumElts-1),
4429                                                  MVT::i32)));
4430    }
4431    SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts);
4432    return DAG.getNode(ISD::BITCAST, dl, VT, Val);
4433  }
4434
4435  if (VT == MVT::v8i8) {
4436    SDValue NewOp = LowerVECTOR_SHUFFLEv8i8(Op, ShuffleMask, DAG);
4437    if (NewOp.getNode())
4438      return NewOp;
4439  }
4440
4441  return SDValue();
4442}
4443
4444static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4445  // EXTRACT_VECTOR_ELT is legal only for immediate indexes.
4446  SDValue Lane = Op.getOperand(1);
4447  if (!isa<ConstantSDNode>(Lane))
4448    return SDValue();
4449
4450  SDValue Vec = Op.getOperand(0);
4451  if (Op.getValueType() == MVT::i32 &&
4452      Vec.getValueType().getVectorElementType().getSizeInBits() < 32) {
4453    DebugLoc dl = Op.getDebugLoc();
4454    return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
4455  }
4456
4457  return Op;
4458}
4459
4460static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
4461  // The only time a CONCAT_VECTORS operation can have legal types is when
4462  // two 64-bit vectors are concatenated to a 128-bit vector.
4463  assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 &&
4464         "unexpected CONCAT_VECTORS");
4465  DebugLoc dl = Op.getDebugLoc();
4466  SDValue Val = DAG.getUNDEF(MVT::v2f64);
4467  SDValue Op0 = Op.getOperand(0);
4468  SDValue Op1 = Op.getOperand(1);
4469  if (Op0.getOpcode() != ISD::UNDEF)
4470    Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
4471                      DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op0),
4472                      DAG.getIntPtrConstant(0));
4473  if (Op1.getOpcode() != ISD::UNDEF)
4474    Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
4475                      DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op1),
4476                      DAG.getIntPtrConstant(1));
4477  return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Val);
4478}
4479
4480/// isExtendedBUILD_VECTOR - Check if N is a constant BUILD_VECTOR where each
4481/// element has been zero/sign-extended, depending on the isSigned parameter,
4482/// from an integer type half its size.
4483static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
4484                                   bool isSigned) {
4485  // A v2i64 BUILD_VECTOR will have been legalized to a BITCAST from v4i32.
4486  EVT VT = N->getValueType(0);
4487  if (VT == MVT::v2i64 && N->getOpcode() == ISD::BITCAST) {
4488    SDNode *BVN = N->getOperand(0).getNode();
4489    if (BVN->getValueType(0) != MVT::v4i32 ||
4490        BVN->getOpcode() != ISD::BUILD_VECTOR)
4491      return false;
4492    unsigned LoElt = DAG.getTargetLoweringInfo().isBigEndian() ? 1 : 0;
4493    unsigned HiElt = 1 - LoElt;
4494    ConstantSDNode *Lo0 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt));
4495    ConstantSDNode *Hi0 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt));
4496    ConstantSDNode *Lo1 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt+2));
4497    ConstantSDNode *Hi1 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt+2));
4498    if (!Lo0 || !Hi0 || !Lo1 || !Hi1)
4499      return false;
4500    if (isSigned) {
4501      if (Hi0->getSExtValue() == Lo0->getSExtValue() >> 32 &&
4502          Hi1->getSExtValue() == Lo1->getSExtValue() >> 32)
4503        return true;
4504    } else {
4505      if (Hi0->isNullValue() && Hi1->isNullValue())
4506        return true;
4507    }
4508    return false;
4509  }
4510
4511  if (N->getOpcode() != ISD::BUILD_VECTOR)
4512    return false;
4513
4514  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
4515    SDNode *Elt = N->getOperand(i).getNode();
4516    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
4517      unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4518      unsigned HalfSize = EltSize / 2;
4519      if (isSigned) {
4520        int64_t SExtVal = C->getSExtValue();
4521        if ((SExtVal >> HalfSize) != (SExtVal >> EltSize))
4522          return false;
4523      } else {
4524        if ((C->getZExtValue() >> HalfSize) != 0)
4525          return false;
4526      }
4527      continue;
4528    }
4529    return false;
4530  }
4531
4532  return true;
4533}
4534
4535/// isSignExtended - Check if a node is a vector value that is sign-extended
4536/// or a constant BUILD_VECTOR with sign-extended elements.
4537static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
4538  if (N->getOpcode() == ISD::SIGN_EXTEND || ISD::isSEXTLoad(N))
4539    return true;
4540  if (isExtendedBUILD_VECTOR(N, DAG, true))
4541    return true;
4542  return false;
4543}
4544
4545/// isZeroExtended - Check if a node is a vector value that is zero-extended
4546/// or a constant BUILD_VECTOR with zero-extended elements.
4547static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
4548  if (N->getOpcode() == ISD::ZERO_EXTEND || ISD::isZEXTLoad(N))
4549    return true;
4550  if (isExtendedBUILD_VECTOR(N, DAG, false))
4551    return true;
4552  return false;
4553}
4554
4555/// SkipExtension - For a node that is a SIGN_EXTEND, ZERO_EXTEND, extending
4556/// load, or BUILD_VECTOR with extended elements, return the unextended value.
4557static SDValue SkipExtension(SDNode *N, SelectionDAG &DAG) {
4558  if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
4559    return N->getOperand(0);
4560  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N))
4561    return DAG.getLoad(LD->getMemoryVT(), N->getDebugLoc(), LD->getChain(),
4562                       LD->getBasePtr(), LD->getPointerInfo(), LD->isVolatile(),
4563                       LD->isNonTemporal(), LD->getAlignment());
4564  // Otherwise, the value must be a BUILD_VECTOR.  For v2i64, it will
4565  // have been legalized as a BITCAST from v4i32.
4566  if (N->getOpcode() == ISD::BITCAST) {
4567    SDNode *BVN = N->getOperand(0).getNode();
4568    assert(BVN->getOpcode() == ISD::BUILD_VECTOR &&
4569           BVN->getValueType(0) == MVT::v4i32 && "expected v4i32 BUILD_VECTOR");
4570    unsigned LowElt = DAG.getTargetLoweringInfo().isBigEndian() ? 1 : 0;
4571    return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(), MVT::v2i32,
4572                       BVN->getOperand(LowElt), BVN->getOperand(LowElt+2));
4573  }
4574  // Construct a new BUILD_VECTOR with elements truncated to half the size.
4575  assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
4576  EVT VT = N->getValueType(0);
4577  unsigned EltSize = VT.getVectorElementType().getSizeInBits() / 2;
4578  unsigned NumElts = VT.getVectorNumElements();
4579  MVT TruncVT = MVT::getIntegerVT(EltSize);
4580  SmallVector<SDValue, 8> Ops;
4581  for (unsigned i = 0; i != NumElts; ++i) {
4582    ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
4583    const APInt &CInt = C->getAPIntValue();
4584    Ops.push_back(DAG.getConstant(CInt.trunc(EltSize), TruncVT));
4585  }
4586  return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(),
4587                     MVT::getVectorVT(TruncVT, NumElts), Ops.data(), NumElts);
4588}
4589
4590static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
4591  unsigned Opcode = N->getOpcode();
4592  if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
4593    SDNode *N0 = N->getOperand(0).getNode();
4594    SDNode *N1 = N->getOperand(1).getNode();
4595    return N0->hasOneUse() && N1->hasOneUse() &&
4596      isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
4597  }
4598  return false;
4599}
4600
4601static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
4602  unsigned Opcode = N->getOpcode();
4603  if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
4604    SDNode *N0 = N->getOperand(0).getNode();
4605    SDNode *N1 = N->getOperand(1).getNode();
4606    return N0->hasOneUse() && N1->hasOneUse() &&
4607      isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
4608  }
4609  return false;
4610}
4611
4612static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
4613  // Multiplications are only custom-lowered for 128-bit vectors so that
4614  // VMULL can be detected.  Otherwise v2i64 multiplications are not legal.
4615  EVT VT = Op.getValueType();
4616  assert(VT.is128BitVector() && "unexpected type for custom-lowering ISD::MUL");
4617  SDNode *N0 = Op.getOperand(0).getNode();
4618  SDNode *N1 = Op.getOperand(1).getNode();
4619  unsigned NewOpc = 0;
4620  bool isMLA = false;
4621  bool isN0SExt = isSignExtended(N0, DAG);
4622  bool isN1SExt = isSignExtended(N1, DAG);
4623  if (isN0SExt && isN1SExt)
4624    NewOpc = ARMISD::VMULLs;
4625  else {
4626    bool isN0ZExt = isZeroExtended(N0, DAG);
4627    bool isN1ZExt = isZeroExtended(N1, DAG);
4628    if (isN0ZExt && isN1ZExt)
4629      NewOpc = ARMISD::VMULLu;
4630    else if (isN1SExt || isN1ZExt) {
4631      // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
4632      // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
4633      if (isN1SExt && isAddSubSExt(N0, DAG)) {
4634        NewOpc = ARMISD::VMULLs;
4635        isMLA = true;
4636      } else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
4637        NewOpc = ARMISD::VMULLu;
4638        isMLA = true;
4639      } else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
4640        std::swap(N0, N1);
4641        NewOpc = ARMISD::VMULLu;
4642        isMLA = true;
4643      }
4644    }
4645
4646    if (!NewOpc) {
4647      if (VT == MVT::v2i64)
4648        // Fall through to expand this.  It is not legal.
4649        return SDValue();
4650      else
4651        // Other vector multiplications are legal.
4652        return Op;
4653    }
4654  }
4655
4656  // Legalize to a VMULL instruction.
4657  DebugLoc DL = Op.getDebugLoc();
4658  SDValue Op0;
4659  SDValue Op1 = SkipExtension(N1, DAG);
4660  if (!isMLA) {
4661    Op0 = SkipExtension(N0, DAG);
4662    assert(Op0.getValueType().is64BitVector() &&
4663           Op1.getValueType().is64BitVector() &&
4664           "unexpected types for extended operands to VMULL");
4665    return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
4666  }
4667
4668  // Optimizing (zext A + zext B) * C, to (VMULL A, C) + (VMULL B, C) during
4669  // isel lowering to take advantage of no-stall back to back vmul + vmla.
4670  //   vmull q0, d4, d6
4671  //   vmlal q0, d5, d6
4672  // is faster than
4673  //   vaddl q0, d4, d5
4674  //   vmovl q1, d6
4675  //   vmul  q0, q0, q1
4676  SDValue N00 = SkipExtension(N0->getOperand(0).getNode(), DAG);
4677  SDValue N01 = SkipExtension(N0->getOperand(1).getNode(), DAG);
4678  EVT Op1VT = Op1.getValueType();
4679  return DAG.getNode(N0->getOpcode(), DL, VT,
4680                     DAG.getNode(NewOpc, DL, VT,
4681                               DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
4682                     DAG.getNode(NewOpc, DL, VT,
4683                               DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
4684}
4685
4686static SDValue
4687LowerSDIV_v4i8(SDValue X, SDValue Y, DebugLoc dl, SelectionDAG &DAG) {
4688  // Convert to float
4689  // float4 xf = vcvt_f32_s32(vmovl_s16(a.lo));
4690  // float4 yf = vcvt_f32_s32(vmovl_s16(b.lo));
4691  X = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, X);
4692  Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, Y);
4693  X = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, X);
4694  Y = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, Y);
4695  // Get reciprocal estimate.
4696  // float4 recip = vrecpeq_f32(yf);
4697  Y = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
4698                   DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), Y);
4699  // Because char has a smaller range than uchar, we can actually get away
4700  // without any newton steps.  This requires that we use a weird bias
4701  // of 0xb000, however (again, this has been exhaustively tested).
4702  // float4 result = as_float4(as_int4(xf*recip) + 0xb000);
4703  X = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, X, Y);
4704  X = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, X);
4705  Y = DAG.getConstant(0xb000, MVT::i32);
4706  Y = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Y, Y, Y, Y);
4707  X = DAG.getNode(ISD::ADD, dl, MVT::v4i32, X, Y);
4708  X = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, X);
4709  // Convert back to short.
4710  X = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, X);
4711  X = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, X);
4712  return X;
4713}
4714
4715static SDValue
4716LowerSDIV_v4i16(SDValue N0, SDValue N1, DebugLoc dl, SelectionDAG &DAG) {
4717  SDValue N2;
4718  // Convert to float.
4719  // float4 yf = vcvt_f32_s32(vmovl_s16(y));
4720  // float4 xf = vcvt_f32_s32(vmovl_s16(x));
4721  N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N0);
4722  N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N1);
4723  N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
4724  N1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
4725
4726  // Use reciprocal estimate and one refinement step.
4727  // float4 recip = vrecpeq_f32(yf);
4728  // recip *= vrecpsq_f32(yf, recip);
4729  N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
4730                   DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), N1);
4731  N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
4732                   DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
4733                   N1, N2);
4734  N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
4735  // Because short has a smaller range than ushort, we can actually get away
4736  // with only a single newton step.  This requires that we use a weird bias
4737  // of 89, however (again, this has been exhaustively tested).
4738  // float4 result = as_float4(as_int4(xf*recip) + 0x89);
4739  N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
4740  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
4741  N1 = DAG.getConstant(0x89, MVT::i32);
4742  N1 = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, N1, N1, N1, N1);
4743  N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
4744  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
4745  // Convert back to integer and return.
4746  // return vmovn_s32(vcvt_s32_f32(result));
4747  N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
4748  N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
4749  return N0;
4750}
4751
4752static SDValue LowerSDIV(SDValue Op, SelectionDAG &DAG) {
4753  EVT VT = Op.getValueType();
4754  assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
4755         "unexpected type for custom-lowering ISD::SDIV");
4756
4757  DebugLoc dl = Op.getDebugLoc();
4758  SDValue N0 = Op.getOperand(0);
4759  SDValue N1 = Op.getOperand(1);
4760  SDValue N2, N3;
4761
4762  if (VT == MVT::v8i8) {
4763    N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N0);
4764    N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N1);
4765
4766    N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
4767                     DAG.getIntPtrConstant(4));
4768    N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
4769                     DAG.getIntPtrConstant(4));
4770    N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
4771                     DAG.getIntPtrConstant(0));
4772    N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
4773                     DAG.getIntPtrConstant(0));
4774
4775    N0 = LowerSDIV_v4i8(N0, N1, dl, DAG); // v4i16
4776    N2 = LowerSDIV_v4i8(N2, N3, dl, DAG); // v4i16
4777
4778    N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
4779    N0 = LowerCONCAT_VECTORS(N0, DAG);
4780
4781    N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v8i8, N0);
4782    return N0;
4783  }
4784  return LowerSDIV_v4i16(N0, N1, dl, DAG);
4785}
4786
4787static SDValue LowerUDIV(SDValue Op, SelectionDAG &DAG) {
4788  EVT VT = Op.getValueType();
4789  assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
4790         "unexpected type for custom-lowering ISD::UDIV");
4791
4792  DebugLoc dl = Op.getDebugLoc();
4793  SDValue N0 = Op.getOperand(0);
4794  SDValue N1 = Op.getOperand(1);
4795  SDValue N2, N3;
4796
4797  if (VT == MVT::v8i8) {
4798    N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N0);
4799    N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N1);
4800
4801    N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
4802                     DAG.getIntPtrConstant(4));
4803    N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
4804                     DAG.getIntPtrConstant(4));
4805    N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
4806                     DAG.getIntPtrConstant(0));
4807    N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
4808                     DAG.getIntPtrConstant(0));
4809
4810    N0 = LowerSDIV_v4i16(N0, N1, dl, DAG); // v4i16
4811    N2 = LowerSDIV_v4i16(N2, N3, dl, DAG); // v4i16
4812
4813    N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
4814    N0 = LowerCONCAT_VECTORS(N0, DAG);
4815
4816    N0 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v8i8,
4817                     DAG.getConstant(Intrinsic::arm_neon_vqmovnsu, MVT::i32),
4818                     N0);
4819    return N0;
4820  }
4821
4822  // v4i16 sdiv ... Convert to float.
4823  // float4 yf = vcvt_f32_s32(vmovl_u16(y));
4824  // float4 xf = vcvt_f32_s32(vmovl_u16(x));
4825  N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N0);
4826  N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N1);
4827  N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
4828  SDValue BN1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
4829
4830  // Use reciprocal estimate and two refinement steps.
4831  // float4 recip = vrecpeq_f32(yf);
4832  // recip *= vrecpsq_f32(yf, recip);
4833  // recip *= vrecpsq_f32(yf, recip);
4834  N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
4835                   DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), BN1);
4836  N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
4837                   DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
4838                   BN1, N2);
4839  N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
4840  N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
4841                   DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
4842                   BN1, N2);
4843  N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
4844  // Simply multiplying by the reciprocal estimate can leave us a few ulps
4845  // too low, so we add 2 ulps (exhaustive testing shows that this is enough,
4846  // and that it will never cause us to return an answer too large).
4847  // float4 result = as_float4(as_int4(xf*recip) + 2);
4848  N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
4849  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
4850  N1 = DAG.getConstant(2, MVT::i32);
4851  N1 = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, N1, N1, N1, N1);
4852  N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
4853  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
4854  // Convert back to integer and return.
4855  // return vmovn_u32(vcvt_s32_f32(result));
4856  N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
4857  N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
4858  return N0;
4859}
4860
4861static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
4862  EVT VT = Op.getNode()->getValueType(0);
4863  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
4864
4865  unsigned Opc;
4866  bool ExtraOp = false;
4867  switch (Op.getOpcode()) {
4868  default: assert(0 && "Invalid code");
4869  case ISD::ADDC: Opc = ARMISD::ADDC; break;
4870  case ISD::ADDE: Opc = ARMISD::ADDE; ExtraOp = true; break;
4871  case ISD::SUBC: Opc = ARMISD::SUBC; break;
4872  case ISD::SUBE: Opc = ARMISD::SUBE; ExtraOp = true; break;
4873  }
4874
4875  if (!ExtraOp)
4876    return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
4877                       Op.getOperand(1));
4878  return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
4879                     Op.getOperand(1), Op.getOperand(2));
4880}
4881
4882static SDValue LowerAtomicLoadStore(SDValue Op, SelectionDAG &DAG) {
4883  // Monotonic load/store is legal for all targets
4884  if (cast<AtomicSDNode>(Op)->getOrdering() <= Monotonic)
4885    return Op;
4886
4887  // Aquire/Release load/store is not legal for targets without a
4888  // dmb or equivalent available.
4889  return SDValue();
4890}
4891
4892
4893static void
4894ReplaceATOMIC_OP_64(SDNode *Node, SmallVectorImpl<SDValue>& Results,
4895                    SelectionDAG &DAG, unsigned NewOp) {
4896  EVT T = Node->getValueType(0);
4897  DebugLoc dl = Node->getDebugLoc();
4898  assert (T == MVT::i64 && "Only know how to expand i64 atomics");
4899
4900  SmallVector<SDValue, 6> Ops;
4901  Ops.push_back(Node->getOperand(0)); // Chain
4902  Ops.push_back(Node->getOperand(1)); // Ptr
4903  // Low part of Val1
4904  Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
4905                            Node->getOperand(2), DAG.getIntPtrConstant(0)));
4906  // High part of Val1
4907  Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
4908                            Node->getOperand(2), DAG.getIntPtrConstant(1)));
4909  if (NewOp == ARMISD::ATOMCMPXCHG64_DAG) {
4910    // High part of Val1
4911    Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
4912                              Node->getOperand(3), DAG.getIntPtrConstant(0)));
4913    // High part of Val2
4914    Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
4915                              Node->getOperand(3), DAG.getIntPtrConstant(1)));
4916  }
4917  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
4918  SDValue Result =
4919    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops.data(), Ops.size(), MVT::i64,
4920                            cast<MemSDNode>(Node)->getMemOperand());
4921  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1) };
4922  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
4923  Results.push_back(Result.getValue(2));
4924}
4925
4926SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
4927  switch (Op.getOpcode()) {
4928  default: llvm_unreachable("Don't know how to custom lower this!");
4929  case ISD::ConstantPool:  return LowerConstantPool(Op, DAG);
4930  case ISD::BlockAddress:  return LowerBlockAddress(Op, DAG);
4931  case ISD::GlobalAddress:
4932    return Subtarget->isTargetDarwin() ? LowerGlobalAddressDarwin(Op, DAG) :
4933      LowerGlobalAddressELF(Op, DAG);
4934  case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
4935  case ISD::SELECT:        return LowerSELECT(Op, DAG);
4936  case ISD::SELECT_CC:     return LowerSELECT_CC(Op, DAG);
4937  case ISD::BR_CC:         return LowerBR_CC(Op, DAG);
4938  case ISD::BR_JT:         return LowerBR_JT(Op, DAG);
4939  case ISD::VASTART:       return LowerVASTART(Op, DAG);
4940  case ISD::MEMBARRIER:    return LowerMEMBARRIER(Op, DAG, Subtarget);
4941  case ISD::ATOMIC_FENCE:  return LowerATOMIC_FENCE(Op, DAG, Subtarget);
4942  case ISD::PREFETCH:      return LowerPREFETCH(Op, DAG, Subtarget);
4943  case ISD::SINT_TO_FP:
4944  case ISD::UINT_TO_FP:    return LowerINT_TO_FP(Op, DAG);
4945  case ISD::FP_TO_SINT:
4946  case ISD::FP_TO_UINT:    return LowerFP_TO_INT(Op, DAG);
4947  case ISD::FCOPYSIGN:     return LowerFCOPYSIGN(Op, DAG);
4948  case ISD::RETURNADDR:    return LowerRETURNADDR(Op, DAG);
4949  case ISD::FRAMEADDR:     return LowerFRAMEADDR(Op, DAG);
4950  case ISD::GLOBAL_OFFSET_TABLE: return LowerGLOBAL_OFFSET_TABLE(Op, DAG);
4951  case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG);
4952  case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG);
4953  case ISD::EH_SJLJ_DISPATCHSETUP: return LowerEH_SJLJ_DISPATCHSETUP(Op, DAG);
4954  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG,
4955                                                               Subtarget);
4956  case ISD::BITCAST:       return ExpandBITCAST(Op.getNode(), DAG);
4957  case ISD::SHL:
4958  case ISD::SRL:
4959  case ISD::SRA:           return LowerShift(Op.getNode(), DAG, Subtarget);
4960  case ISD::SHL_PARTS:     return LowerShiftLeftParts(Op, DAG);
4961  case ISD::SRL_PARTS:
4962  case ISD::SRA_PARTS:     return LowerShiftRightParts(Op, DAG);
4963  case ISD::CTTZ:          return LowerCTTZ(Op.getNode(), DAG, Subtarget);
4964  case ISD::SETCC:         return LowerVSETCC(Op, DAG);
4965  case ISD::BUILD_VECTOR:  return LowerBUILD_VECTOR(Op, DAG, Subtarget);
4966  case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
4967  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
4968  case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
4969  case ISD::FLT_ROUNDS_:   return LowerFLT_ROUNDS_(Op, DAG);
4970  case ISD::MUL:           return LowerMUL(Op, DAG);
4971  case ISD::SDIV:          return LowerSDIV(Op, DAG);
4972  case ISD::UDIV:          return LowerUDIV(Op, DAG);
4973  case ISD::ADDC:
4974  case ISD::ADDE:
4975  case ISD::SUBC:
4976  case ISD::SUBE:          return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
4977  case ISD::ATOMIC_LOAD:
4978  case ISD::ATOMIC_STORE:  return LowerAtomicLoadStore(Op, DAG);
4979  }
4980  return SDValue();
4981}
4982
4983/// ReplaceNodeResults - Replace the results of node with an illegal result
4984/// type with new values built out of custom code.
4985void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
4986                                           SmallVectorImpl<SDValue>&Results,
4987                                           SelectionDAG &DAG) const {
4988  SDValue Res;
4989  switch (N->getOpcode()) {
4990  default:
4991    llvm_unreachable("Don't know how to custom expand this!");
4992    break;
4993  case ISD::BITCAST:
4994    Res = ExpandBITCAST(N, DAG);
4995    break;
4996  case ISD::SRL:
4997  case ISD::SRA:
4998    Res = Expand64BitShift(N, DAG, Subtarget);
4999    break;
5000  case ISD::ATOMIC_LOAD_ADD:
5001    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMADD64_DAG);
5002    return;
5003  case ISD::ATOMIC_LOAD_AND:
5004    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMAND64_DAG);
5005    return;
5006  case ISD::ATOMIC_LOAD_NAND:
5007    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMNAND64_DAG);
5008    return;
5009  case ISD::ATOMIC_LOAD_OR:
5010    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMOR64_DAG);
5011    return;
5012  case ISD::ATOMIC_LOAD_SUB:
5013    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMSUB64_DAG);
5014    return;
5015  case ISD::ATOMIC_LOAD_XOR:
5016    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMXOR64_DAG);
5017    return;
5018  case ISD::ATOMIC_SWAP:
5019    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMSWAP64_DAG);
5020    return;
5021  case ISD::ATOMIC_CMP_SWAP:
5022    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMCMPXCHG64_DAG);
5023    return;
5024  }
5025  if (Res.getNode())
5026    Results.push_back(Res);
5027}
5028
5029//===----------------------------------------------------------------------===//
5030//                           ARM Scheduler Hooks
5031//===----------------------------------------------------------------------===//
5032
5033MachineBasicBlock *
5034ARMTargetLowering::EmitAtomicCmpSwap(MachineInstr *MI,
5035                                     MachineBasicBlock *BB,
5036                                     unsigned Size) const {
5037  unsigned dest    = MI->getOperand(0).getReg();
5038  unsigned ptr     = MI->getOperand(1).getReg();
5039  unsigned oldval  = MI->getOperand(2).getReg();
5040  unsigned newval  = MI->getOperand(3).getReg();
5041  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5042  DebugLoc dl = MI->getDebugLoc();
5043  bool isThumb2 = Subtarget->isThumb2();
5044
5045  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
5046  unsigned scratch =
5047    MRI.createVirtualRegister(isThumb2 ? ARM::rGPRRegisterClass
5048                                       : ARM::GPRRegisterClass);
5049
5050  if (isThumb2) {
5051    MRI.constrainRegClass(dest, ARM::rGPRRegisterClass);
5052    MRI.constrainRegClass(oldval, ARM::rGPRRegisterClass);
5053    MRI.constrainRegClass(newval, ARM::rGPRRegisterClass);
5054  }
5055
5056  unsigned ldrOpc, strOpc;
5057  switch (Size) {
5058  default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
5059  case 1:
5060    ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
5061    strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
5062    break;
5063  case 2:
5064    ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
5065    strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
5066    break;
5067  case 4:
5068    ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
5069    strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
5070    break;
5071  }
5072
5073  MachineFunction *MF = BB->getParent();
5074  const BasicBlock *LLVM_BB = BB->getBasicBlock();
5075  MachineFunction::iterator It = BB;
5076  ++It; // insert the new blocks after the current block
5077
5078  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
5079  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
5080  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5081  MF->insert(It, loop1MBB);
5082  MF->insert(It, loop2MBB);
5083  MF->insert(It, exitMBB);
5084
5085  // Transfer the remainder of BB and its successor edges to exitMBB.
5086  exitMBB->splice(exitMBB->begin(), BB,
5087                  llvm::next(MachineBasicBlock::iterator(MI)),
5088                  BB->end());
5089  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5090
5091  //  thisMBB:
5092  //   ...
5093  //   fallthrough --> loop1MBB
5094  BB->addSuccessor(loop1MBB);
5095
5096  // loop1MBB:
5097  //   ldrex dest, [ptr]
5098  //   cmp dest, oldval
5099  //   bne exitMBB
5100  BB = loop1MBB;
5101  MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
5102  if (ldrOpc == ARM::t2LDREX)
5103    MIB.addImm(0);
5104  AddDefaultPred(MIB);
5105  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
5106                 .addReg(dest).addReg(oldval));
5107  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5108    .addMBB(exitMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5109  BB->addSuccessor(loop2MBB);
5110  BB->addSuccessor(exitMBB);
5111
5112  // loop2MBB:
5113  //   strex scratch, newval, [ptr]
5114  //   cmp scratch, #0
5115  //   bne loop1MBB
5116  BB = loop2MBB;
5117  MIB = BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(newval).addReg(ptr);
5118  if (strOpc == ARM::t2STREX)
5119    MIB.addImm(0);
5120  AddDefaultPred(MIB);
5121  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
5122                 .addReg(scratch).addImm(0));
5123  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5124    .addMBB(loop1MBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5125  BB->addSuccessor(loop1MBB);
5126  BB->addSuccessor(exitMBB);
5127
5128  //  exitMBB:
5129  //   ...
5130  BB = exitMBB;
5131
5132  MI->eraseFromParent();   // The instruction is gone now.
5133
5134  return BB;
5135}
5136
5137MachineBasicBlock *
5138ARMTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
5139                                    unsigned Size, unsigned BinOpcode) const {
5140  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
5141  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5142
5143  const BasicBlock *LLVM_BB = BB->getBasicBlock();
5144  MachineFunction *MF = BB->getParent();
5145  MachineFunction::iterator It = BB;
5146  ++It;
5147
5148  unsigned dest = MI->getOperand(0).getReg();
5149  unsigned ptr = MI->getOperand(1).getReg();
5150  unsigned incr = MI->getOperand(2).getReg();
5151  DebugLoc dl = MI->getDebugLoc();
5152  bool isThumb2 = Subtarget->isThumb2();
5153
5154  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
5155  if (isThumb2) {
5156    MRI.constrainRegClass(dest, ARM::rGPRRegisterClass);
5157    MRI.constrainRegClass(ptr, ARM::rGPRRegisterClass);
5158  }
5159
5160  unsigned ldrOpc, strOpc;
5161  switch (Size) {
5162  default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
5163  case 1:
5164    ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
5165    strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
5166    break;
5167  case 2:
5168    ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
5169    strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
5170    break;
5171  case 4:
5172    ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
5173    strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
5174    break;
5175  }
5176
5177  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5178  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5179  MF->insert(It, loopMBB);
5180  MF->insert(It, exitMBB);
5181
5182  // Transfer the remainder of BB and its successor edges to exitMBB.
5183  exitMBB->splice(exitMBB->begin(), BB,
5184                  llvm::next(MachineBasicBlock::iterator(MI)),
5185                  BB->end());
5186  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5187
5188  TargetRegisterClass *TRC =
5189    isThumb2 ? ARM::tGPRRegisterClass : ARM::GPRRegisterClass;
5190  unsigned scratch = MRI.createVirtualRegister(TRC);
5191  unsigned scratch2 = (!BinOpcode) ? incr : MRI.createVirtualRegister(TRC);
5192
5193  //  thisMBB:
5194  //   ...
5195  //   fallthrough --> loopMBB
5196  BB->addSuccessor(loopMBB);
5197
5198  //  loopMBB:
5199  //   ldrex dest, ptr
5200  //   <binop> scratch2, dest, incr
5201  //   strex scratch, scratch2, ptr
5202  //   cmp scratch, #0
5203  //   bne- loopMBB
5204  //   fallthrough --> exitMBB
5205  BB = loopMBB;
5206  MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
5207  if (ldrOpc == ARM::t2LDREX)
5208    MIB.addImm(0);
5209  AddDefaultPred(MIB);
5210  if (BinOpcode) {
5211    // operand order needs to go the other way for NAND
5212    if (BinOpcode == ARM::BICrr || BinOpcode == ARM::t2BICrr)
5213      AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
5214                     addReg(incr).addReg(dest)).addReg(0);
5215    else
5216      AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
5217                     addReg(dest).addReg(incr)).addReg(0);
5218  }
5219
5220  MIB = BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(scratch2).addReg(ptr);
5221  if (strOpc == ARM::t2STREX)
5222    MIB.addImm(0);
5223  AddDefaultPred(MIB);
5224  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
5225                 .addReg(scratch).addImm(0));
5226  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5227    .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5228
5229  BB->addSuccessor(loopMBB);
5230  BB->addSuccessor(exitMBB);
5231
5232  //  exitMBB:
5233  //   ...
5234  BB = exitMBB;
5235
5236  MI->eraseFromParent();   // The instruction is gone now.
5237
5238  return BB;
5239}
5240
5241MachineBasicBlock *
5242ARMTargetLowering::EmitAtomicBinaryMinMax(MachineInstr *MI,
5243                                          MachineBasicBlock *BB,
5244                                          unsigned Size,
5245                                          bool signExtend,
5246                                          ARMCC::CondCodes Cond) const {
5247  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5248
5249  const BasicBlock *LLVM_BB = BB->getBasicBlock();
5250  MachineFunction *MF = BB->getParent();
5251  MachineFunction::iterator It = BB;
5252  ++It;
5253
5254  unsigned dest = MI->getOperand(0).getReg();
5255  unsigned ptr = MI->getOperand(1).getReg();
5256  unsigned incr = MI->getOperand(2).getReg();
5257  unsigned oldval = dest;
5258  DebugLoc dl = MI->getDebugLoc();
5259  bool isThumb2 = Subtarget->isThumb2();
5260
5261  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
5262  if (isThumb2) {
5263    MRI.constrainRegClass(dest, ARM::rGPRRegisterClass);
5264    MRI.constrainRegClass(ptr, ARM::rGPRRegisterClass);
5265  }
5266
5267  unsigned ldrOpc, strOpc, extendOpc;
5268  switch (Size) {
5269  default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
5270  case 1:
5271    ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
5272    strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
5273    extendOpc = isThumb2 ? ARM::t2SXTB : ARM::SXTB;
5274    break;
5275  case 2:
5276    ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
5277    strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
5278    extendOpc = isThumb2 ? ARM::t2SXTH : ARM::SXTH;
5279    break;
5280  case 4:
5281    ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
5282    strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
5283    extendOpc = 0;
5284    break;
5285  }
5286
5287  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5288  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5289  MF->insert(It, loopMBB);
5290  MF->insert(It, exitMBB);
5291
5292  // Transfer the remainder of BB and its successor edges to exitMBB.
5293  exitMBB->splice(exitMBB->begin(), BB,
5294                  llvm::next(MachineBasicBlock::iterator(MI)),
5295                  BB->end());
5296  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5297
5298  TargetRegisterClass *TRC =
5299    isThumb2 ? ARM::tGPRRegisterClass : ARM::GPRRegisterClass;
5300  unsigned scratch = MRI.createVirtualRegister(TRC);
5301  unsigned scratch2 = MRI.createVirtualRegister(TRC);
5302
5303  //  thisMBB:
5304  //   ...
5305  //   fallthrough --> loopMBB
5306  BB->addSuccessor(loopMBB);
5307
5308  //  loopMBB:
5309  //   ldrex dest, ptr
5310  //   (sign extend dest, if required)
5311  //   cmp dest, incr
5312  //   cmov.cond scratch2, dest, incr
5313  //   strex scratch, scratch2, ptr
5314  //   cmp scratch, #0
5315  //   bne- loopMBB
5316  //   fallthrough --> exitMBB
5317  BB = loopMBB;
5318  MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
5319  if (ldrOpc == ARM::t2LDREX)
5320    MIB.addImm(0);
5321  AddDefaultPred(MIB);
5322
5323  // Sign extend the value, if necessary.
5324  if (signExtend && extendOpc) {
5325    oldval = MRI.createVirtualRegister(ARM::GPRRegisterClass);
5326    AddDefaultPred(BuildMI(BB, dl, TII->get(extendOpc), oldval)
5327                     .addReg(dest)
5328                     .addImm(0));
5329  }
5330
5331  // Build compare and cmov instructions.
5332  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
5333                 .addReg(oldval).addReg(incr));
5334  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2MOVCCr : ARM::MOVCCr), scratch2)
5335         .addReg(oldval).addReg(incr).addImm(Cond).addReg(ARM::CPSR);
5336
5337  MIB = BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(scratch2).addReg(ptr);
5338  if (strOpc == ARM::t2STREX)
5339    MIB.addImm(0);
5340  AddDefaultPred(MIB);
5341  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
5342                 .addReg(scratch).addImm(0));
5343  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5344    .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5345
5346  BB->addSuccessor(loopMBB);
5347  BB->addSuccessor(exitMBB);
5348
5349  //  exitMBB:
5350  //   ...
5351  BB = exitMBB;
5352
5353  MI->eraseFromParent();   // The instruction is gone now.
5354
5355  return BB;
5356}
5357
5358MachineBasicBlock *
5359ARMTargetLowering::EmitAtomicBinary64(MachineInstr *MI, MachineBasicBlock *BB,
5360                                      unsigned Op1, unsigned Op2,
5361                                      bool NeedsCarry, bool IsCmpxchg) const {
5362  // This also handles ATOMIC_SWAP, indicated by Op1==0.
5363  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5364
5365  const BasicBlock *LLVM_BB = BB->getBasicBlock();
5366  MachineFunction *MF = BB->getParent();
5367  MachineFunction::iterator It = BB;
5368  ++It;
5369
5370  unsigned destlo = MI->getOperand(0).getReg();
5371  unsigned desthi = MI->getOperand(1).getReg();
5372  unsigned ptr = MI->getOperand(2).getReg();
5373  unsigned vallo = MI->getOperand(3).getReg();
5374  unsigned valhi = MI->getOperand(4).getReg();
5375  DebugLoc dl = MI->getDebugLoc();
5376  bool isThumb2 = Subtarget->isThumb2();
5377
5378  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
5379  if (isThumb2) {
5380    MRI.constrainRegClass(destlo, ARM::rGPRRegisterClass);
5381    MRI.constrainRegClass(desthi, ARM::rGPRRegisterClass);
5382    MRI.constrainRegClass(ptr, ARM::rGPRRegisterClass);
5383  }
5384
5385  unsigned ldrOpc = isThumb2 ? ARM::t2LDREXD : ARM::LDREXD;
5386  unsigned strOpc = isThumb2 ? ARM::t2STREXD : ARM::STREXD;
5387
5388  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5389  MachineBasicBlock *contBB = 0, *cont2BB = 0;
5390  if (IsCmpxchg) {
5391    contBB = MF->CreateMachineBasicBlock(LLVM_BB);
5392    cont2BB = MF->CreateMachineBasicBlock(LLVM_BB);
5393  }
5394  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5395  MF->insert(It, loopMBB);
5396  if (IsCmpxchg) {
5397    MF->insert(It, contBB);
5398    MF->insert(It, cont2BB);
5399  }
5400  MF->insert(It, exitMBB);
5401
5402  // Transfer the remainder of BB and its successor edges to exitMBB.
5403  exitMBB->splice(exitMBB->begin(), BB,
5404                  llvm::next(MachineBasicBlock::iterator(MI)),
5405                  BB->end());
5406  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5407
5408  TargetRegisterClass *TRC =
5409    isThumb2 ? ARM::tGPRRegisterClass : ARM::GPRRegisterClass;
5410  unsigned storesuccess = MRI.createVirtualRegister(TRC);
5411
5412  //  thisMBB:
5413  //   ...
5414  //   fallthrough --> loopMBB
5415  BB->addSuccessor(loopMBB);
5416
5417  //  loopMBB:
5418  //   ldrexd r2, r3, ptr
5419  //   <binopa> r0, r2, incr
5420  //   <binopb> r1, r3, incr
5421  //   strexd storesuccess, r0, r1, ptr
5422  //   cmp storesuccess, #0
5423  //   bne- loopMBB
5424  //   fallthrough --> exitMBB
5425  //
5426  // Note that the registers are explicitly specified because there is not any
5427  // way to force the register allocator to allocate a register pair.
5428  //
5429  // FIXME: The hardcoded registers are not necessary for Thumb2, but we
5430  // need to properly enforce the restriction that the two output registers
5431  // for ldrexd must be different.
5432  BB = loopMBB;
5433  // Load
5434  AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc))
5435                 .addReg(ARM::R2, RegState::Define)
5436                 .addReg(ARM::R3, RegState::Define).addReg(ptr));
5437  // Copy r2/r3 into dest.  (This copy will normally be coalesced.)
5438  BuildMI(BB, dl, TII->get(TargetOpcode::COPY), destlo).addReg(ARM::R2);
5439  BuildMI(BB, dl, TII->get(TargetOpcode::COPY), desthi).addReg(ARM::R3);
5440
5441  if (IsCmpxchg) {
5442    // Add early exit
5443    for (unsigned i = 0; i < 2; i++) {
5444      AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr :
5445                                                         ARM::CMPrr))
5446                     .addReg(i == 0 ? destlo : desthi)
5447                     .addReg(i == 0 ? vallo : valhi));
5448      BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5449        .addMBB(exitMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5450      BB->addSuccessor(exitMBB);
5451      BB->addSuccessor(i == 0 ? contBB : cont2BB);
5452      BB = (i == 0 ? contBB : cont2BB);
5453    }
5454
5455    // Copy to physregs for strexd
5456    unsigned setlo = MI->getOperand(5).getReg();
5457    unsigned sethi = MI->getOperand(6).getReg();
5458    BuildMI(BB, dl, TII->get(TargetOpcode::COPY), ARM::R0).addReg(setlo);
5459    BuildMI(BB, dl, TII->get(TargetOpcode::COPY), ARM::R1).addReg(sethi);
5460  } else if (Op1) {
5461    // Perform binary operation
5462    AddDefaultPred(BuildMI(BB, dl, TII->get(Op1), ARM::R0)
5463                   .addReg(destlo).addReg(vallo))
5464        .addReg(NeedsCarry ? ARM::CPSR : 0, getDefRegState(NeedsCarry));
5465    AddDefaultPred(BuildMI(BB, dl, TII->get(Op2), ARM::R1)
5466                   .addReg(desthi).addReg(valhi)).addReg(0);
5467  } else {
5468    // Copy to physregs for strexd
5469    BuildMI(BB, dl, TII->get(TargetOpcode::COPY), ARM::R0).addReg(vallo);
5470    BuildMI(BB, dl, TII->get(TargetOpcode::COPY), ARM::R1).addReg(valhi);
5471  }
5472
5473  // Store
5474  AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), storesuccess)
5475                 .addReg(ARM::R0).addReg(ARM::R1).addReg(ptr));
5476  // Cmp+jump
5477  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
5478                 .addReg(storesuccess).addImm(0));
5479  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5480    .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5481
5482  BB->addSuccessor(loopMBB);
5483  BB->addSuccessor(exitMBB);
5484
5485  //  exitMBB:
5486  //   ...
5487  BB = exitMBB;
5488
5489  MI->eraseFromParent();   // The instruction is gone now.
5490
5491  return BB;
5492}
5493
5494/// EmitBasePointerRecalculation - For functions using a base pointer, we
5495/// rematerialize it (via the frame pointer).
5496void ARMTargetLowering::
5497EmitBasePointerRecalculation(MachineInstr *MI, MachineBasicBlock *MBB,
5498                             MachineBasicBlock *DispatchBB) const {
5499  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5500  const ARMBaseInstrInfo *AII = static_cast<const ARMBaseInstrInfo*>(TII);
5501  MachineFunction &MF = *MI->getParent()->getParent();
5502  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
5503  const ARMBaseRegisterInfo &RI = AII->getRegisterInfo();
5504
5505  if (!RI.hasBasePointer(MF)) return;
5506
5507  MachineBasicBlock::iterator MBBI = MI;
5508
5509  int32_t NumBytes = AFI->getFramePtrSpillOffset();
5510  unsigned FramePtr = RI.getFrameRegister(MF);
5511  assert(MF.getTarget().getFrameLowering()->hasFP(MF) &&
5512         "Base pointer without frame pointer?");
5513
5514  if (AFI->isThumb2Function())
5515    llvm::emitT2RegPlusImmediate(*MBB, MBBI, MI->getDebugLoc(), ARM::R6,
5516                                 FramePtr, -NumBytes, ARMCC::AL, 0, *AII);
5517  else if (AFI->isThumbFunction())
5518    llvm::emitThumbRegPlusImmediate(*MBB, MBBI, MI->getDebugLoc(), ARM::R6,
5519                                    FramePtr, -NumBytes, *AII, RI);
5520  else
5521    llvm::emitARMRegPlusImmediate(*MBB, MBBI, MI->getDebugLoc(), ARM::R6,
5522                                  FramePtr, -NumBytes, ARMCC::AL, 0, *AII);
5523
5524  if (!RI.needsStackRealignment(MF)) return;
5525
5526  // If there's dynamic realignment, adjust for it.
5527  MachineFrameInfo *MFI = MF.getFrameInfo();
5528  unsigned MaxAlign = MFI->getMaxAlignment();
5529  assert(!AFI->isThumb1OnlyFunction());
5530
5531  // Emit bic r6, r6, MaxAlign
5532  unsigned bicOpc = AFI->isThumbFunction() ? ARM::t2BICri : ARM::BICri;
5533  AddDefaultCC(
5534    AddDefaultPred(
5535      BuildMI(*MBB, MBBI, MI->getDebugLoc(), TII->get(bicOpc), ARM::R6)
5536      .addReg(ARM::R6, RegState::Kill)
5537      .addImm(MaxAlign - 1)));
5538}
5539
5540/// SetupEntryBlockForSjLj - Insert code into the entry block that creates and
5541/// registers the function context.
5542void ARMTargetLowering::
5543SetupEntryBlockForSjLj(MachineInstr *MI, MachineBasicBlock *MBB,
5544                       MachineBasicBlock *DispatchBB, int FI) const {
5545  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5546  DebugLoc dl = MI->getDebugLoc();
5547  MachineFunction *MF = MBB->getParent();
5548  MachineRegisterInfo *MRI = &MF->getRegInfo();
5549  MachineConstantPool *MCP = MF->getConstantPool();
5550  ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>();
5551  const Function *F = MF->getFunction();
5552
5553  bool isThumb = Subtarget->isThumb();
5554  bool isThumb2 = Subtarget->isThumb2();
5555
5556  unsigned PCLabelId = AFI->createPICLabelUId();
5557  unsigned PCAdj = (isThumb || isThumb2) ? 4 : 8;
5558  ARMConstantPoolValue *CPV =
5559    ARMConstantPoolMBB::Create(F->getContext(), DispatchBB, PCLabelId, PCAdj);
5560  unsigned CPI = MCP->getConstantPoolIndex(CPV, 4);
5561
5562  const TargetRegisterClass *TRC =
5563    isThumb ? ARM::tGPRRegisterClass : ARM::GPRRegisterClass;
5564
5565  // Grab constant pool and fixed stack memory operands.
5566  MachineMemOperand *CPMMO =
5567    MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(),
5568                             MachineMemOperand::MOLoad, 4, 4);
5569
5570  MachineMemOperand *FIMMOSt =
5571    MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
5572                             MachineMemOperand::MOStore, 4, 4);
5573
5574  EmitBasePointerRecalculation(MI, MBB, DispatchBB);
5575
5576  // Load the address of the dispatch MBB into the jump buffer.
5577  if (isThumb2) {
5578    // Incoming value: jbuf
5579    //   ldr.n  r5, LCPI1_1
5580    //   orr    r5, r5, #1
5581    //   add    r5, pc
5582    //   str    r5, [$jbuf, #+4] ; &jbuf[1]
5583    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
5584    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2LDRpci), NewVReg1)
5585                   .addConstantPoolIndex(CPI)
5586                   .addMemOperand(CPMMO));
5587    // Set the low bit because of thumb mode.
5588    unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
5589    AddDefaultCC(
5590      AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2ORRri), NewVReg2)
5591                     .addReg(NewVReg1, RegState::Kill)
5592                     .addImm(0x01)));
5593    unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
5594    BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg3)
5595      .addReg(NewVReg2, RegState::Kill)
5596      .addImm(PCLabelId);
5597    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2STRi12))
5598                   .addReg(NewVReg3, RegState::Kill)
5599                   .addFrameIndex(FI)
5600                   .addImm(36)  // &jbuf[1] :: pc
5601                   .addMemOperand(FIMMOSt));
5602  } else if (isThumb) {
5603    // Incoming value: jbuf
5604    //   ldr.n  r1, LCPI1_4
5605    //   add    r1, pc
5606    //   mov    r2, #1
5607    //   orrs   r1, r2
5608    //   add    r2, $jbuf, #+4 ; &jbuf[1]
5609    //   str    r1, [r2]
5610    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
5611    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tLDRpci), NewVReg1)
5612                   .addConstantPoolIndex(CPI)
5613                   .addMemOperand(CPMMO));
5614    unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
5615    BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg2)
5616      .addReg(NewVReg1, RegState::Kill)
5617      .addImm(PCLabelId);
5618    // Set the low bit because of thumb mode.
5619    unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
5620    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tMOVi8), NewVReg3)
5621                   .addReg(ARM::CPSR, RegState::Define)
5622                   .addImm(1));
5623    unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
5624    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tORR), NewVReg4)
5625                   .addReg(ARM::CPSR, RegState::Define)
5626                   .addReg(NewVReg2, RegState::Kill)
5627                   .addReg(NewVReg3, RegState::Kill));
5628    unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
5629    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tADDrSPi), NewVReg5)
5630                   .addFrameIndex(FI)
5631                   .addImm(36)); // &jbuf[1] :: pc
5632    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tSTRi))
5633                   .addReg(NewVReg4, RegState::Kill)
5634                   .addReg(NewVReg5, RegState::Kill)
5635                   .addImm(0)
5636                   .addMemOperand(FIMMOSt));
5637  } else {
5638    // Incoming value: jbuf
5639    //   ldr  r1, LCPI1_1
5640    //   add  r1, pc, r1
5641    //   str  r1, [$jbuf, #+4] ; &jbuf[1]
5642    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
5643    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::LDRi12),  NewVReg1)
5644                   .addConstantPoolIndex(CPI)
5645                   .addImm(0)
5646                   .addMemOperand(CPMMO));
5647    unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
5648    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::PICADD), NewVReg2)
5649                   .addReg(NewVReg1, RegState::Kill)
5650                   .addImm(PCLabelId));
5651    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::STRi12))
5652                   .addReg(NewVReg2, RegState::Kill)
5653                   .addFrameIndex(FI)
5654                   .addImm(36)  // &jbuf[1] :: pc
5655                   .addMemOperand(FIMMOSt));
5656  }
5657}
5658
5659MachineBasicBlock *ARMTargetLowering::
5660EmitSjLjDispatchBlock(MachineInstr *MI, MachineBasicBlock *MBB) const {
5661  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5662  DebugLoc dl = MI->getDebugLoc();
5663  MachineFunction *MF = MBB->getParent();
5664  MachineRegisterInfo *MRI = &MF->getRegInfo();
5665  ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>();
5666  MachineFrameInfo *MFI = MF->getFrameInfo();
5667  int FI = MFI->getFunctionContextIndex();
5668
5669  const TargetRegisterClass *TRC =
5670    Subtarget->isThumb() ? ARM::tGPRRegisterClass : ARM::GPRRegisterClass;
5671
5672  // Get a mapping of the call site numbers to all of the landing pads they're
5673  // associated with.
5674  DenseMap<unsigned, SmallVector<MachineBasicBlock*, 2> > CallSiteNumToLPad;
5675  unsigned MaxCSNum = 0;
5676  MachineModuleInfo &MMI = MF->getMMI();
5677  for (MachineFunction::iterator BB = MF->begin(), E = MF->end(); BB != E; ++BB) {
5678    if (!BB->isLandingPad()) continue;
5679
5680    // FIXME: We should assert that the EH_LABEL is the first MI in the landing
5681    // pad.
5682    for (MachineBasicBlock::iterator
5683           II = BB->begin(), IE = BB->end(); II != IE; ++II) {
5684      if (!II->isEHLabel()) continue;
5685
5686      MCSymbol *Sym = II->getOperand(0).getMCSymbol();
5687      if (!MMI.hasCallSiteLandingPad(Sym)) continue;
5688
5689      SmallVectorImpl<unsigned> &CallSiteIdxs = MMI.getCallSiteLandingPad(Sym);
5690      for (SmallVectorImpl<unsigned>::iterator
5691             CSI = CallSiteIdxs.begin(), CSE = CallSiteIdxs.end();
5692           CSI != CSE; ++CSI) {
5693        CallSiteNumToLPad[*CSI].push_back(BB);
5694        MaxCSNum = std::max(MaxCSNum, *CSI);
5695      }
5696      break;
5697    }
5698  }
5699
5700  // Get an ordered list of the machine basic blocks for the jump table.
5701  std::vector<MachineBasicBlock*> LPadList;
5702  LPadList.reserve(CallSiteNumToLPad.size());
5703  for (unsigned I = 1; I <= MaxCSNum; ++I) {
5704    SmallVectorImpl<MachineBasicBlock*> &MBBList = CallSiteNumToLPad[I];
5705    for (SmallVectorImpl<MachineBasicBlock*>::iterator
5706           II = MBBList.begin(), IE = MBBList.end(); II != IE; ++II)
5707      LPadList.push_back(*II);
5708  }
5709
5710  assert(!LPadList.empty() &&
5711         "No landing pad destinations for the dispatch jump table!");
5712
5713  // Create the jump table and associated information.
5714  MachineJumpTableInfo *JTI =
5715    MF->getOrCreateJumpTableInfo(MachineJumpTableInfo::EK_Inline);
5716  unsigned MJTI = JTI->createJumpTableIndex(LPadList);
5717  unsigned UId = AFI->createJumpTableUId();
5718
5719  // Create the MBBs for the dispatch code.
5720
5721  // Shove the dispatch's address into the return slot in the function context.
5722  MachineBasicBlock *DispatchBB = MF->CreateMachineBasicBlock();
5723  DispatchBB->setIsLandingPad();
5724  MBB->addSuccessor(DispatchBB);
5725
5726  MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
5727  BuildMI(TrapBB, dl, TII->get(Subtarget->isThumb() ? ARM::tTRAP : ARM::TRAP));
5728  DispatchBB->addSuccessor(TrapBB);
5729
5730  MachineBasicBlock *DispContBB = MF->CreateMachineBasicBlock();
5731  DispatchBB->addSuccessor(DispContBB);
5732
5733  // Insert and renumber MBBs.
5734  MachineBasicBlock *Last = &MF->back();
5735  MF->insert(MF->end(), DispatchBB);
5736  MF->insert(MF->end(), DispContBB);
5737  MF->insert(MF->end(), TrapBB);
5738  MF->RenumberBlocks(Last);
5739
5740  // Insert code into the entry block that creates and registers the function
5741  // context.
5742  SetupEntryBlockForSjLj(MI, MBB, DispatchBB, FI);
5743
5744  MachineMemOperand *FIMMOLd =
5745    MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
5746                             MachineMemOperand::MOLoad |
5747                             MachineMemOperand::MOVolatile, 4, 4);
5748
5749  if (Subtarget->isThumb2()) {
5750    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
5751    AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2LDRi12), NewVReg1)
5752                   .addFrameIndex(FI)
5753                   .addImm(4)
5754                   .addMemOperand(FIMMOLd));
5755    AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPri))
5756                   .addReg(NewVReg1)
5757                   .addImm(LPadList.size()));
5758    BuildMI(DispatchBB, dl, TII->get(ARM::t2Bcc))
5759      .addMBB(TrapBB)
5760      .addImm(ARMCC::HI)
5761      .addReg(ARM::CPSR);
5762
5763    unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
5764    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::t2LEApcrelJT),NewVReg2)
5765                   .addJumpTableIndex(MJTI)
5766                   .addImm(UId));
5767
5768    unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
5769    AddDefaultCC(
5770      AddDefaultPred(
5771        BuildMI(DispContBB, dl, TII->get(ARM::t2ADDrs), NewVReg3)
5772        .addReg(NewVReg2, RegState::Kill)
5773        .addReg(NewVReg1)
5774        .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))));
5775
5776    BuildMI(DispContBB, dl, TII->get(ARM::t2BR_JT))
5777      .addReg(NewVReg3, RegState::Kill)
5778      .addReg(NewVReg1)
5779      .addJumpTableIndex(MJTI)
5780      .addImm(UId);
5781  } else if (Subtarget->isThumb()) {
5782    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
5783    AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tLDRspi), NewVReg1)
5784                   .addFrameIndex(FI)
5785                   .addImm(1)
5786                   .addMemOperand(FIMMOLd));
5787
5788    AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tCMPi8))
5789                   .addReg(NewVReg1)
5790                   .addImm(LPadList.size()));
5791    BuildMI(DispatchBB, dl, TII->get(ARM::tBcc))
5792      .addMBB(TrapBB)
5793      .addImm(ARMCC::HI)
5794      .addReg(ARM::CPSR);
5795
5796    unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
5797    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLSLri), NewVReg2)
5798                   .addReg(ARM::CPSR, RegState::Define)
5799                   .addReg(NewVReg1)
5800                   .addImm(2));
5801
5802    unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
5803    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLEApcrelJT), NewVReg3)
5804                   .addJumpTableIndex(MJTI)
5805                   .addImm(UId));
5806
5807    unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
5808    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg4)
5809                   .addReg(ARM::CPSR, RegState::Define)
5810                   .addReg(NewVReg2, RegState::Kill)
5811                   .addReg(NewVReg3));
5812
5813    MachineMemOperand *JTMMOLd =
5814      MF->getMachineMemOperand(MachinePointerInfo::getJumpTable(),
5815                               MachineMemOperand::MOLoad, 4, 4);
5816
5817    unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
5818    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLDRi), NewVReg5)
5819                   .addReg(NewVReg4, RegState::Kill)
5820                   .addImm(0)
5821                   .addMemOperand(JTMMOLd));
5822
5823    unsigned NewVReg6 = MRI->createVirtualRegister(TRC);
5824    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg6)
5825                   .addReg(ARM::CPSR, RegState::Define)
5826                   .addReg(NewVReg5, RegState::Kill)
5827                   .addReg(NewVReg3));
5828
5829    BuildMI(DispContBB, dl, TII->get(ARM::tBR_JTr))
5830      .addReg(NewVReg6, RegState::Kill)
5831      .addJumpTableIndex(MJTI)
5832      .addImm(UId);
5833  } else {
5834    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
5835    AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::LDRi12), NewVReg1)
5836                   .addFrameIndex(FI)
5837                   .addImm(4)
5838                   .addMemOperand(FIMMOLd));
5839    AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPri))
5840                   .addReg(NewVReg1)
5841                   .addImm(LPadList.size()));
5842    BuildMI(DispatchBB, dl, TII->get(ARM::Bcc))
5843      .addMBB(TrapBB)
5844      .addImm(ARMCC::HI)
5845      .addReg(ARM::CPSR);
5846
5847    unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
5848    AddDefaultCC(
5849      AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::MOVsi), NewVReg2)
5850                     .addReg(NewVReg1)
5851                     .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))));
5852    unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
5853    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::LEApcrelJT), NewVReg3)
5854                   .addJumpTableIndex(MJTI)
5855                   .addImm(UId));
5856
5857    MachineMemOperand *JTMMOLd =
5858      MF->getMachineMemOperand(MachinePointerInfo::getJumpTable(),
5859                               MachineMemOperand::MOLoad, 4, 4);
5860    unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
5861    AddDefaultPred(
5862      BuildMI(DispContBB, dl, TII->get(ARM::LDRrs), NewVReg4)
5863      .addReg(NewVReg2, RegState::Kill)
5864      .addReg(NewVReg3)
5865      .addImm(0)
5866      .addMemOperand(JTMMOLd));
5867
5868    BuildMI(DispContBB, dl, TII->get(ARM::BR_JTadd))
5869      .addReg(NewVReg4, RegState::Kill)
5870      .addReg(NewVReg3)
5871      .addJumpTableIndex(MJTI)
5872      .addImm(UId);
5873  }
5874
5875  // Add the jump table entries as successors to the MBB.
5876  for (std::vector<MachineBasicBlock*>::iterator
5877         I = LPadList.begin(), E = LPadList.end(); I != E; ++I)
5878    DispContBB->addSuccessor(*I);
5879
5880  // The instruction is gone now.
5881  MI->eraseFromParent();
5882
5883  return MBB;
5884}
5885
5886static
5887MachineBasicBlock *OtherSucc(MachineBasicBlock *MBB, MachineBasicBlock *Succ) {
5888  for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
5889       E = MBB->succ_end(); I != E; ++I)
5890    if (*I != Succ)
5891      return *I;
5892  llvm_unreachable("Expecting a BB with two successors!");
5893}
5894
5895MachineBasicBlock *
5896ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
5897                                               MachineBasicBlock *BB) const {
5898  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5899  DebugLoc dl = MI->getDebugLoc();
5900  bool isThumb2 = Subtarget->isThumb2();
5901  switch (MI->getOpcode()) {
5902  default: {
5903    MI->dump();
5904    llvm_unreachable("Unexpected instr type to insert");
5905  }
5906  // The Thumb2 pre-indexed stores have the same MI operands, they just
5907  // define them differently in the .td files from the isel patterns, so
5908  // they need pseudos.
5909  case ARM::t2STR_preidx:
5910    MI->setDesc(TII->get(ARM::t2STR_PRE));
5911    return BB;
5912  case ARM::t2STRB_preidx:
5913    MI->setDesc(TII->get(ARM::t2STRB_PRE));
5914    return BB;
5915  case ARM::t2STRH_preidx:
5916    MI->setDesc(TII->get(ARM::t2STRH_PRE));
5917    return BB;
5918
5919  case ARM::STRi_preidx:
5920  case ARM::STRBi_preidx: {
5921    unsigned NewOpc = MI->getOpcode() == ARM::STRi_preidx ?
5922      ARM::STR_PRE_IMM : ARM::STRB_PRE_IMM;
5923    // Decode the offset.
5924    unsigned Offset = MI->getOperand(4).getImm();
5925    bool isSub = ARM_AM::getAM2Op(Offset) == ARM_AM::sub;
5926    Offset = ARM_AM::getAM2Offset(Offset);
5927    if (isSub)
5928      Offset = -Offset;
5929
5930    MachineMemOperand *MMO = *MI->memoperands_begin();
5931    BuildMI(*BB, MI, dl, TII->get(NewOpc))
5932      .addOperand(MI->getOperand(0))  // Rn_wb
5933      .addOperand(MI->getOperand(1))  // Rt
5934      .addOperand(MI->getOperand(2))  // Rn
5935      .addImm(Offset)                 // offset (skip GPR==zero_reg)
5936      .addOperand(MI->getOperand(5))  // pred
5937      .addOperand(MI->getOperand(6))
5938      .addMemOperand(MMO);
5939    MI->eraseFromParent();
5940    return BB;
5941  }
5942  case ARM::STRr_preidx:
5943  case ARM::STRBr_preidx:
5944  case ARM::STRH_preidx: {
5945    unsigned NewOpc;
5946    switch (MI->getOpcode()) {
5947    default: llvm_unreachable("unexpected opcode!");
5948    case ARM::STRr_preidx: NewOpc = ARM::STR_PRE_REG; break;
5949    case ARM::STRBr_preidx: NewOpc = ARM::STRB_PRE_REG; break;
5950    case ARM::STRH_preidx: NewOpc = ARM::STRH_PRE; break;
5951    }
5952    MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(NewOpc));
5953    for (unsigned i = 0; i < MI->getNumOperands(); ++i)
5954      MIB.addOperand(MI->getOperand(i));
5955    MI->eraseFromParent();
5956    return BB;
5957  }
5958  case ARM::ATOMIC_LOAD_ADD_I8:
5959     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
5960  case ARM::ATOMIC_LOAD_ADD_I16:
5961     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
5962  case ARM::ATOMIC_LOAD_ADD_I32:
5963     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
5964
5965  case ARM::ATOMIC_LOAD_AND_I8:
5966     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
5967  case ARM::ATOMIC_LOAD_AND_I16:
5968     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
5969  case ARM::ATOMIC_LOAD_AND_I32:
5970     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
5971
5972  case ARM::ATOMIC_LOAD_OR_I8:
5973     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
5974  case ARM::ATOMIC_LOAD_OR_I16:
5975     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
5976  case ARM::ATOMIC_LOAD_OR_I32:
5977     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
5978
5979  case ARM::ATOMIC_LOAD_XOR_I8:
5980     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
5981  case ARM::ATOMIC_LOAD_XOR_I16:
5982     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
5983  case ARM::ATOMIC_LOAD_XOR_I32:
5984     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
5985
5986  case ARM::ATOMIC_LOAD_NAND_I8:
5987     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
5988  case ARM::ATOMIC_LOAD_NAND_I16:
5989     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
5990  case ARM::ATOMIC_LOAD_NAND_I32:
5991     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
5992
5993  case ARM::ATOMIC_LOAD_SUB_I8:
5994     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
5995  case ARM::ATOMIC_LOAD_SUB_I16:
5996     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
5997  case ARM::ATOMIC_LOAD_SUB_I32:
5998     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
5999
6000  case ARM::ATOMIC_LOAD_MIN_I8:
6001     return EmitAtomicBinaryMinMax(MI, BB, 1, true, ARMCC::LT);
6002  case ARM::ATOMIC_LOAD_MIN_I16:
6003     return EmitAtomicBinaryMinMax(MI, BB, 2, true, ARMCC::LT);
6004  case ARM::ATOMIC_LOAD_MIN_I32:
6005     return EmitAtomicBinaryMinMax(MI, BB, 4, true, ARMCC::LT);
6006
6007  case ARM::ATOMIC_LOAD_MAX_I8:
6008     return EmitAtomicBinaryMinMax(MI, BB, 1, true, ARMCC::GT);
6009  case ARM::ATOMIC_LOAD_MAX_I16:
6010     return EmitAtomicBinaryMinMax(MI, BB, 2, true, ARMCC::GT);
6011  case ARM::ATOMIC_LOAD_MAX_I32:
6012     return EmitAtomicBinaryMinMax(MI, BB, 4, true, ARMCC::GT);
6013
6014  case ARM::ATOMIC_LOAD_UMIN_I8:
6015     return EmitAtomicBinaryMinMax(MI, BB, 1, false, ARMCC::LO);
6016  case ARM::ATOMIC_LOAD_UMIN_I16:
6017     return EmitAtomicBinaryMinMax(MI, BB, 2, false, ARMCC::LO);
6018  case ARM::ATOMIC_LOAD_UMIN_I32:
6019     return EmitAtomicBinaryMinMax(MI, BB, 4, false, ARMCC::LO);
6020
6021  case ARM::ATOMIC_LOAD_UMAX_I8:
6022     return EmitAtomicBinaryMinMax(MI, BB, 1, false, ARMCC::HI);
6023  case ARM::ATOMIC_LOAD_UMAX_I16:
6024     return EmitAtomicBinaryMinMax(MI, BB, 2, false, ARMCC::HI);
6025  case ARM::ATOMIC_LOAD_UMAX_I32:
6026     return EmitAtomicBinaryMinMax(MI, BB, 4, false, ARMCC::HI);
6027
6028  case ARM::ATOMIC_SWAP_I8:  return EmitAtomicBinary(MI, BB, 1, 0);
6029  case ARM::ATOMIC_SWAP_I16: return EmitAtomicBinary(MI, BB, 2, 0);
6030  case ARM::ATOMIC_SWAP_I32: return EmitAtomicBinary(MI, BB, 4, 0);
6031
6032  case ARM::ATOMIC_CMP_SWAP_I8:  return EmitAtomicCmpSwap(MI, BB, 1);
6033  case ARM::ATOMIC_CMP_SWAP_I16: return EmitAtomicCmpSwap(MI, BB, 2);
6034  case ARM::ATOMIC_CMP_SWAP_I32: return EmitAtomicCmpSwap(MI, BB, 4);
6035
6036
6037  case ARM::ATOMADD6432:
6038    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr,
6039                              isThumb2 ? ARM::t2ADCrr : ARM::ADCrr,
6040                              /*NeedsCarry*/ true);
6041  case ARM::ATOMSUB6432:
6042    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr,
6043                              isThumb2 ? ARM::t2SBCrr : ARM::SBCrr,
6044                              /*NeedsCarry*/ true);
6045  case ARM::ATOMOR6432:
6046    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr,
6047                              isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
6048  case ARM::ATOMXOR6432:
6049    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2EORrr : ARM::EORrr,
6050                              isThumb2 ? ARM::t2EORrr : ARM::EORrr);
6051  case ARM::ATOMAND6432:
6052    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr,
6053                              isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
6054  case ARM::ATOMSWAP6432:
6055    return EmitAtomicBinary64(MI, BB, 0, 0, false);
6056  case ARM::ATOMCMPXCHG6432:
6057    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr,
6058                              isThumb2 ? ARM::t2SBCrr : ARM::SBCrr,
6059                              /*NeedsCarry*/ false, /*IsCmpxchg*/true);
6060
6061  case ARM::tMOVCCr_pseudo: {
6062    // To "insert" a SELECT_CC instruction, we actually have to insert the
6063    // diamond control-flow pattern.  The incoming instruction knows the
6064    // destination vreg to set, the condition code register to branch on, the
6065    // true/false values to select between, and a branch opcode to use.
6066    const BasicBlock *LLVM_BB = BB->getBasicBlock();
6067    MachineFunction::iterator It = BB;
6068    ++It;
6069
6070    //  thisMBB:
6071    //  ...
6072    //   TrueVal = ...
6073    //   cmpTY ccX, r1, r2
6074    //   bCC copy1MBB
6075    //   fallthrough --> copy0MBB
6076    MachineBasicBlock *thisMBB  = BB;
6077    MachineFunction *F = BB->getParent();
6078    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
6079    MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
6080    F->insert(It, copy0MBB);
6081    F->insert(It, sinkMBB);
6082
6083    // Transfer the remainder of BB and its successor edges to sinkMBB.
6084    sinkMBB->splice(sinkMBB->begin(), BB,
6085                    llvm::next(MachineBasicBlock::iterator(MI)),
6086                    BB->end());
6087    sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
6088
6089    BB->addSuccessor(copy0MBB);
6090    BB->addSuccessor(sinkMBB);
6091
6092    BuildMI(BB, dl, TII->get(ARM::tBcc)).addMBB(sinkMBB)
6093      .addImm(MI->getOperand(3).getImm()).addReg(MI->getOperand(4).getReg());
6094
6095    //  copy0MBB:
6096    //   %FalseValue = ...
6097    //   # fallthrough to sinkMBB
6098    BB = copy0MBB;
6099
6100    // Update machine-CFG edges
6101    BB->addSuccessor(sinkMBB);
6102
6103    //  sinkMBB:
6104    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
6105    //  ...
6106    BB = sinkMBB;
6107    BuildMI(*BB, BB->begin(), dl,
6108            TII->get(ARM::PHI), MI->getOperand(0).getReg())
6109      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
6110      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
6111
6112    MI->eraseFromParent();   // The pseudo instruction is gone now.
6113    return BB;
6114  }
6115
6116  case ARM::BCCi64:
6117  case ARM::BCCZi64: {
6118    // If there is an unconditional branch to the other successor, remove it.
6119    BB->erase(llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
6120
6121    // Compare both parts that make up the double comparison separately for
6122    // equality.
6123    bool RHSisZero = MI->getOpcode() == ARM::BCCZi64;
6124
6125    unsigned LHS1 = MI->getOperand(1).getReg();
6126    unsigned LHS2 = MI->getOperand(2).getReg();
6127    if (RHSisZero) {
6128      AddDefaultPred(BuildMI(BB, dl,
6129                             TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
6130                     .addReg(LHS1).addImm(0));
6131      BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
6132        .addReg(LHS2).addImm(0)
6133        .addImm(ARMCC::EQ).addReg(ARM::CPSR);
6134    } else {
6135      unsigned RHS1 = MI->getOperand(3).getReg();
6136      unsigned RHS2 = MI->getOperand(4).getReg();
6137      AddDefaultPred(BuildMI(BB, dl,
6138                             TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
6139                     .addReg(LHS1).addReg(RHS1));
6140      BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
6141        .addReg(LHS2).addReg(RHS2)
6142        .addImm(ARMCC::EQ).addReg(ARM::CPSR);
6143    }
6144
6145    MachineBasicBlock *destMBB = MI->getOperand(RHSisZero ? 3 : 5).getMBB();
6146    MachineBasicBlock *exitMBB = OtherSucc(BB, destMBB);
6147    if (MI->getOperand(0).getImm() == ARMCC::NE)
6148      std::swap(destMBB, exitMBB);
6149
6150    BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
6151      .addMBB(destMBB).addImm(ARMCC::EQ).addReg(ARM::CPSR);
6152    if (isThumb2)
6153      AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2B)).addMBB(exitMBB));
6154    else
6155      BuildMI(BB, dl, TII->get(ARM::B)) .addMBB(exitMBB);
6156
6157    MI->eraseFromParent();   // The pseudo instruction is gone now.
6158    return BB;
6159  }
6160
6161  case ARM::ABS:
6162  case ARM::t2ABS: {
6163    // To insert an ABS instruction, we have to insert the
6164    // diamond control-flow pattern.  The incoming instruction knows the
6165    // source vreg to test against 0, the destination vreg to set,
6166    // the condition code register to branch on, the
6167    // true/false values to select between, and a branch opcode to use.
6168    // It transforms
6169    //     V1 = ABS V0
6170    // into
6171    //     V2 = MOVS V0
6172    //     BCC                      (branch to SinkBB if V0 >= 0)
6173    //     RSBBB: V3 = RSBri V2, 0  (compute ABS if V2 < 0)
6174    //     SinkBB: V1 = PHI(V2, V3)
6175    const BasicBlock *LLVM_BB = BB->getBasicBlock();
6176    MachineFunction::iterator BBI = BB;
6177    ++BBI;
6178    MachineFunction *Fn = BB->getParent();
6179    MachineBasicBlock *RSBBB = Fn->CreateMachineBasicBlock(LLVM_BB);
6180    MachineBasicBlock *SinkBB  = Fn->CreateMachineBasicBlock(LLVM_BB);
6181    Fn->insert(BBI, RSBBB);
6182    Fn->insert(BBI, SinkBB);
6183
6184    unsigned int ABSSrcReg = MI->getOperand(1).getReg();
6185    unsigned int ABSDstReg = MI->getOperand(0).getReg();
6186    bool isThumb2 = Subtarget->isThumb2();
6187    MachineRegisterInfo &MRI = Fn->getRegInfo();
6188    // In Thumb mode S must not be specified if source register is the SP or
6189    // PC and if destination register is the SP, so restrict register class
6190    unsigned NewMovDstReg = MRI.createVirtualRegister(
6191      isThumb2 ? ARM::rGPRRegisterClass : ARM::GPRRegisterClass);
6192    unsigned NewRsbDstReg = MRI.createVirtualRegister(
6193      isThumb2 ? ARM::rGPRRegisterClass : ARM::GPRRegisterClass);
6194
6195    // Transfer the remainder of BB and its successor edges to sinkMBB.
6196    SinkBB->splice(SinkBB->begin(), BB,
6197      llvm::next(MachineBasicBlock::iterator(MI)),
6198      BB->end());
6199    SinkBB->transferSuccessorsAndUpdatePHIs(BB);
6200
6201    BB->addSuccessor(RSBBB);
6202    BB->addSuccessor(SinkBB);
6203
6204    // fall through to SinkMBB
6205    RSBBB->addSuccessor(SinkBB);
6206
6207    // insert a movs at the end of BB
6208    BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2MOVr : ARM::MOVr),
6209      NewMovDstReg)
6210      .addReg(ABSSrcReg, RegState::Kill)
6211      .addImm((unsigned)ARMCC::AL).addReg(0)
6212      .addReg(ARM::CPSR, RegState::Define);
6213
6214    // insert a bcc with opposite CC to ARMCC::MI at the end of BB
6215    BuildMI(BB, dl,
6216      TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)).addMBB(SinkBB)
6217      .addImm(ARMCC::getOppositeCondition(ARMCC::MI)).addReg(ARM::CPSR);
6218
6219    // insert rsbri in RSBBB
6220    // Note: BCC and rsbri will be converted into predicated rsbmi
6221    // by if-conversion pass
6222    BuildMI(*RSBBB, RSBBB->begin(), dl,
6223      TII->get(isThumb2 ? ARM::t2RSBri : ARM::RSBri), NewRsbDstReg)
6224      .addReg(NewMovDstReg, RegState::Kill)
6225      .addImm(0).addImm((unsigned)ARMCC::AL).addReg(0).addReg(0);
6226
6227    // insert PHI in SinkBB,
6228    // reuse ABSDstReg to not change uses of ABS instruction
6229    BuildMI(*SinkBB, SinkBB->begin(), dl,
6230      TII->get(ARM::PHI), ABSDstReg)
6231      .addReg(NewRsbDstReg).addMBB(RSBBB)
6232      .addReg(NewMovDstReg).addMBB(BB);
6233
6234    // remove ABS instruction
6235    MI->eraseFromParent();
6236
6237    // return last added BB
6238    return SinkBB;
6239  }
6240  }
6241}
6242
6243void ARMTargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI,
6244                                                      SDNode *Node) const {
6245  const MCInstrDesc &MCID = MI->getDesc();
6246  if (!MCID.hasPostISelHook()) {
6247    assert(!convertAddSubFlagsOpcode(MI->getOpcode()) &&
6248           "Pseudo flag-setting opcodes must be marked with 'hasPostISelHook'");
6249    return;
6250  }
6251
6252  // Adjust potentially 's' setting instructions after isel, i.e. ADC, SBC, RSB,
6253  // RSC. Coming out of isel, they have an implicit CPSR def, but the optional
6254  // operand is still set to noreg. If needed, set the optional operand's
6255  // register to CPSR, and remove the redundant implicit def.
6256  //
6257  // e.g. ADCS (...opt:%noreg, CPSR<imp-def>) -> ADC (... opt:CPSR<def>).
6258
6259  // Rename pseudo opcodes.
6260  unsigned NewOpc = convertAddSubFlagsOpcode(MI->getOpcode());
6261  if (NewOpc) {
6262    const ARMBaseInstrInfo *TII =
6263      static_cast<const ARMBaseInstrInfo*>(getTargetMachine().getInstrInfo());
6264    MI->setDesc(TII->get(NewOpc));
6265  }
6266  unsigned ccOutIdx = MCID.getNumOperands() - 1;
6267
6268  // Any ARM instruction that sets the 's' bit should specify an optional
6269  // "cc_out" operand in the last operand position.
6270  if (!MCID.hasOptionalDef() || !MCID.OpInfo[ccOutIdx].isOptionalDef()) {
6271    assert(!NewOpc && "Optional cc_out operand required");
6272    return;
6273  }
6274  // Look for an implicit def of CPSR added by MachineInstr ctor. Remove it
6275  // since we already have an optional CPSR def.
6276  bool definesCPSR = false;
6277  bool deadCPSR = false;
6278  for (unsigned i = MCID.getNumOperands(), e = MI->getNumOperands();
6279       i != e; ++i) {
6280    const MachineOperand &MO = MI->getOperand(i);
6281    if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR) {
6282      definesCPSR = true;
6283      if (MO.isDead())
6284        deadCPSR = true;
6285      MI->RemoveOperand(i);
6286      break;
6287    }
6288  }
6289  if (!definesCPSR) {
6290    assert(!NewOpc && "Optional cc_out operand required");
6291    return;
6292  }
6293  assert(deadCPSR == !Node->hasAnyUseOfValue(1) && "inconsistent dead flag");
6294  if (deadCPSR) {
6295    assert(!MI->getOperand(ccOutIdx).getReg() &&
6296           "expect uninitialized optional cc_out operand");
6297    return;
6298  }
6299
6300  // If this instruction was defined with an optional CPSR def and its dag node
6301  // had a live implicit CPSR def, then activate the optional CPSR def.
6302  MachineOperand &MO = MI->getOperand(ccOutIdx);
6303  MO.setReg(ARM::CPSR);
6304  MO.setIsDef(true);
6305}
6306
6307//===----------------------------------------------------------------------===//
6308//                           ARM Optimization Hooks
6309//===----------------------------------------------------------------------===//
6310
6311static
6312SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
6313                            TargetLowering::DAGCombinerInfo &DCI) {
6314  SelectionDAG &DAG = DCI.DAG;
6315  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6316  EVT VT = N->getValueType(0);
6317  unsigned Opc = N->getOpcode();
6318  bool isSlctCC = Slct.getOpcode() == ISD::SELECT_CC;
6319  SDValue LHS = isSlctCC ? Slct.getOperand(2) : Slct.getOperand(1);
6320  SDValue RHS = isSlctCC ? Slct.getOperand(3) : Slct.getOperand(2);
6321  ISD::CondCode CC = ISD::SETCC_INVALID;
6322
6323  if (isSlctCC) {
6324    CC = cast<CondCodeSDNode>(Slct.getOperand(4))->get();
6325  } else {
6326    SDValue CCOp = Slct.getOperand(0);
6327    if (CCOp.getOpcode() == ISD::SETCC)
6328      CC = cast<CondCodeSDNode>(CCOp.getOperand(2))->get();
6329  }
6330
6331  bool DoXform = false;
6332  bool InvCC = false;
6333  assert ((Opc == ISD::ADD || (Opc == ISD::SUB && Slct == N->getOperand(1))) &&
6334          "Bad input!");
6335
6336  if (LHS.getOpcode() == ISD::Constant &&
6337      cast<ConstantSDNode>(LHS)->isNullValue()) {
6338    DoXform = true;
6339  } else if (CC != ISD::SETCC_INVALID &&
6340             RHS.getOpcode() == ISD::Constant &&
6341             cast<ConstantSDNode>(RHS)->isNullValue()) {
6342    std::swap(LHS, RHS);
6343    SDValue Op0 = Slct.getOperand(0);
6344    EVT OpVT = isSlctCC ? Op0.getValueType() :
6345                          Op0.getOperand(0).getValueType();
6346    bool isInt = OpVT.isInteger();
6347    CC = ISD::getSetCCInverse(CC, isInt);
6348
6349    if (!TLI.isCondCodeLegal(CC, OpVT))
6350      return SDValue();         // Inverse operator isn't legal.
6351
6352    DoXform = true;
6353    InvCC = true;
6354  }
6355
6356  if (DoXform) {
6357    SDValue Result = DAG.getNode(Opc, RHS.getDebugLoc(), VT, OtherOp, RHS);
6358    if (isSlctCC)
6359      return DAG.getSelectCC(N->getDebugLoc(), OtherOp, Result,
6360                             Slct.getOperand(0), Slct.getOperand(1), CC);
6361    SDValue CCOp = Slct.getOperand(0);
6362    if (InvCC)
6363      CCOp = DAG.getSetCC(Slct.getDebugLoc(), CCOp.getValueType(),
6364                          CCOp.getOperand(0), CCOp.getOperand(1), CC);
6365    return DAG.getNode(ISD::SELECT, N->getDebugLoc(), VT,
6366                       CCOp, OtherOp, Result);
6367  }
6368  return SDValue();
6369}
6370
6371// AddCombineToVPADDL- For pair-wise add on neon, use the vpaddl instruction
6372// (only after legalization).
6373static SDValue AddCombineToVPADDL(SDNode *N, SDValue N0, SDValue N1,
6374                                 TargetLowering::DAGCombinerInfo &DCI,
6375                                 const ARMSubtarget *Subtarget) {
6376
6377  // Only perform optimization if after legalize, and if NEON is available. We
6378  // also expected both operands to be BUILD_VECTORs.
6379  if (DCI.isBeforeLegalize() || !Subtarget->hasNEON()
6380      || N0.getOpcode() != ISD::BUILD_VECTOR
6381      || N1.getOpcode() != ISD::BUILD_VECTOR)
6382    return SDValue();
6383
6384  // Check output type since VPADDL operand elements can only be 8, 16, or 32.
6385  EVT VT = N->getValueType(0);
6386  if (!VT.isInteger() || VT.getVectorElementType() == MVT::i64)
6387    return SDValue();
6388
6389  // Check that the vector operands are of the right form.
6390  // N0 and N1 are BUILD_VECTOR nodes with N number of EXTRACT_VECTOR
6391  // operands, where N is the size of the formed vector.
6392  // Each EXTRACT_VECTOR should have the same input vector and odd or even
6393  // index such that we have a pair wise add pattern.
6394
6395  // Grab the vector that all EXTRACT_VECTOR nodes should be referencing.
6396  if (N0->getOperand(0)->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
6397    return SDValue();
6398  SDValue Vec = N0->getOperand(0)->getOperand(0);
6399  SDNode *V = Vec.getNode();
6400  unsigned nextIndex = 0;
6401
6402  // For each operands to the ADD which are BUILD_VECTORs,
6403  // check to see if each of their operands are an EXTRACT_VECTOR with
6404  // the same vector and appropriate index.
6405  for (unsigned i = 0, e = N0->getNumOperands(); i != e; ++i) {
6406    if (N0->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT
6407        && N1->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
6408
6409      SDValue ExtVec0 = N0->getOperand(i);
6410      SDValue ExtVec1 = N1->getOperand(i);
6411
6412      // First operand is the vector, verify its the same.
6413      if (V != ExtVec0->getOperand(0).getNode() ||
6414          V != ExtVec1->getOperand(0).getNode())
6415        return SDValue();
6416
6417      // Second is the constant, verify its correct.
6418      ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(ExtVec0->getOperand(1));
6419      ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(ExtVec1->getOperand(1));
6420
6421      // For the constant, we want to see all the even or all the odd.
6422      if (!C0 || !C1 || C0->getZExtValue() != nextIndex
6423          || C1->getZExtValue() != nextIndex+1)
6424        return SDValue();
6425
6426      // Increment index.
6427      nextIndex+=2;
6428    } else
6429      return SDValue();
6430  }
6431
6432  // Create VPADDL node.
6433  SelectionDAG &DAG = DCI.DAG;
6434  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6435
6436  // Build operand list.
6437  SmallVector<SDValue, 8> Ops;
6438  Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpaddls,
6439                                TLI.getPointerTy()));
6440
6441  // Input is the vector.
6442  Ops.push_back(Vec);
6443
6444  // Get widened type and narrowed type.
6445  MVT widenType;
6446  unsigned numElem = VT.getVectorNumElements();
6447  switch (VT.getVectorElementType().getSimpleVT().SimpleTy) {
6448    case MVT::i8: widenType = MVT::getVectorVT(MVT::i16, numElem); break;
6449    case MVT::i16: widenType = MVT::getVectorVT(MVT::i32, numElem); break;
6450    case MVT::i32: widenType = MVT::getVectorVT(MVT::i64, numElem); break;
6451    default:
6452      assert(0 && "Invalid vector element type for padd optimization.");
6453  }
6454
6455  SDValue tmp = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, N->getDebugLoc(),
6456                            widenType, &Ops[0], Ops.size());
6457  return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, tmp);
6458}
6459
6460/// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
6461/// operands N0 and N1.  This is a helper for PerformADDCombine that is
6462/// called with the default operands, and if that fails, with commuted
6463/// operands.
6464static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
6465                                          TargetLowering::DAGCombinerInfo &DCI,
6466                                          const ARMSubtarget *Subtarget){
6467
6468  // Attempt to create vpaddl for this add.
6469  SDValue Result = AddCombineToVPADDL(N, N0, N1, DCI, Subtarget);
6470  if (Result.getNode())
6471    return Result;
6472
6473  // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
6474  if (N0.getOpcode() == ISD::SELECT && N0.getNode()->hasOneUse()) {
6475    SDValue Result = combineSelectAndUse(N, N0, N1, DCI);
6476    if (Result.getNode()) return Result;
6477  }
6478  return SDValue();
6479}
6480
6481/// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
6482///
6483static SDValue PerformADDCombine(SDNode *N,
6484                                 TargetLowering::DAGCombinerInfo &DCI,
6485                                 const ARMSubtarget *Subtarget) {
6486  SDValue N0 = N->getOperand(0);
6487  SDValue N1 = N->getOperand(1);
6488
6489  // First try with the default operand order.
6490  SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI, Subtarget);
6491  if (Result.getNode())
6492    return Result;
6493
6494  // If that didn't work, try again with the operands commuted.
6495  return PerformADDCombineWithOperands(N, N1, N0, DCI, Subtarget);
6496}
6497
6498/// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
6499///
6500static SDValue PerformSUBCombine(SDNode *N,
6501                                 TargetLowering::DAGCombinerInfo &DCI) {
6502  SDValue N0 = N->getOperand(0);
6503  SDValue N1 = N->getOperand(1);
6504
6505  // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
6506  if (N1.getOpcode() == ISD::SELECT && N1.getNode()->hasOneUse()) {
6507    SDValue Result = combineSelectAndUse(N, N1, N0, DCI);
6508    if (Result.getNode()) return Result;
6509  }
6510
6511  return SDValue();
6512}
6513
6514/// PerformVMULCombine
6515/// Distribute (A + B) * C to (A * C) + (B * C) to take advantage of the
6516/// special multiplier accumulator forwarding.
6517///   vmul d3, d0, d2
6518///   vmla d3, d1, d2
6519/// is faster than
6520///   vadd d3, d0, d1
6521///   vmul d3, d3, d2
6522static SDValue PerformVMULCombine(SDNode *N,
6523                                  TargetLowering::DAGCombinerInfo &DCI,
6524                                  const ARMSubtarget *Subtarget) {
6525  if (!Subtarget->hasVMLxForwarding())
6526    return SDValue();
6527
6528  SelectionDAG &DAG = DCI.DAG;
6529  SDValue N0 = N->getOperand(0);
6530  SDValue N1 = N->getOperand(1);
6531  unsigned Opcode = N0.getOpcode();
6532  if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
6533      Opcode != ISD::FADD && Opcode != ISD::FSUB) {
6534    Opcode = N1.getOpcode();
6535    if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
6536        Opcode != ISD::FADD && Opcode != ISD::FSUB)
6537      return SDValue();
6538    std::swap(N0, N1);
6539  }
6540
6541  EVT VT = N->getValueType(0);
6542  DebugLoc DL = N->getDebugLoc();
6543  SDValue N00 = N0->getOperand(0);
6544  SDValue N01 = N0->getOperand(1);
6545  return DAG.getNode(Opcode, DL, VT,
6546                     DAG.getNode(ISD::MUL, DL, VT, N00, N1),
6547                     DAG.getNode(ISD::MUL, DL, VT, N01, N1));
6548}
6549
6550static SDValue PerformMULCombine(SDNode *N,
6551                                 TargetLowering::DAGCombinerInfo &DCI,
6552                                 const ARMSubtarget *Subtarget) {
6553  SelectionDAG &DAG = DCI.DAG;
6554
6555  if (Subtarget->isThumb1Only())
6556    return SDValue();
6557
6558  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
6559    return SDValue();
6560
6561  EVT VT = N->getValueType(0);
6562  if (VT.is64BitVector() || VT.is128BitVector())
6563    return PerformVMULCombine(N, DCI, Subtarget);
6564  if (VT != MVT::i32)
6565    return SDValue();
6566
6567  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
6568  if (!C)
6569    return SDValue();
6570
6571  uint64_t MulAmt = C->getZExtValue();
6572  unsigned ShiftAmt = CountTrailingZeros_64(MulAmt);
6573  ShiftAmt = ShiftAmt & (32 - 1);
6574  SDValue V = N->getOperand(0);
6575  DebugLoc DL = N->getDebugLoc();
6576
6577  SDValue Res;
6578  MulAmt >>= ShiftAmt;
6579  if (isPowerOf2_32(MulAmt - 1)) {
6580    // (mul x, 2^N + 1) => (add (shl x, N), x)
6581    Res = DAG.getNode(ISD::ADD, DL, VT,
6582                      V, DAG.getNode(ISD::SHL, DL, VT,
6583                                     V, DAG.getConstant(Log2_32(MulAmt-1),
6584                                                        MVT::i32)));
6585  } else if (isPowerOf2_32(MulAmt + 1)) {
6586    // (mul x, 2^N - 1) => (sub (shl x, N), x)
6587    Res = DAG.getNode(ISD::SUB, DL, VT,
6588                      DAG.getNode(ISD::SHL, DL, VT,
6589                                  V, DAG.getConstant(Log2_32(MulAmt+1),
6590                                                     MVT::i32)),
6591                                                     V);
6592  } else
6593    return SDValue();
6594
6595  if (ShiftAmt != 0)
6596    Res = DAG.getNode(ISD::SHL, DL, VT, Res,
6597                      DAG.getConstant(ShiftAmt, MVT::i32));
6598
6599  // Do not add new nodes to DAG combiner worklist.
6600  DCI.CombineTo(N, Res, false);
6601  return SDValue();
6602}
6603
6604static SDValue PerformANDCombine(SDNode *N,
6605                                TargetLowering::DAGCombinerInfo &DCI) {
6606
6607  // Attempt to use immediate-form VBIC
6608  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
6609  DebugLoc dl = N->getDebugLoc();
6610  EVT VT = N->getValueType(0);
6611  SelectionDAG &DAG = DCI.DAG;
6612
6613  if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
6614    return SDValue();
6615
6616  APInt SplatBits, SplatUndef;
6617  unsigned SplatBitSize;
6618  bool HasAnyUndefs;
6619  if (BVN &&
6620      BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
6621    if (SplatBitSize <= 64) {
6622      EVT VbicVT;
6623      SDValue Val = isNEONModifiedImm((~SplatBits).getZExtValue(),
6624                                      SplatUndef.getZExtValue(), SplatBitSize,
6625                                      DAG, VbicVT, VT.is128BitVector(),
6626                                      OtherModImm);
6627      if (Val.getNode()) {
6628        SDValue Input =
6629          DAG.getNode(ISD::BITCAST, dl, VbicVT, N->getOperand(0));
6630        SDValue Vbic = DAG.getNode(ARMISD::VBICIMM, dl, VbicVT, Input, Val);
6631        return DAG.getNode(ISD::BITCAST, dl, VT, Vbic);
6632      }
6633    }
6634  }
6635
6636  return SDValue();
6637}
6638
6639/// PerformORCombine - Target-specific dag combine xforms for ISD::OR
6640static SDValue PerformORCombine(SDNode *N,
6641                                TargetLowering::DAGCombinerInfo &DCI,
6642                                const ARMSubtarget *Subtarget) {
6643  // Attempt to use immediate-form VORR
6644  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
6645  DebugLoc dl = N->getDebugLoc();
6646  EVT VT = N->getValueType(0);
6647  SelectionDAG &DAG = DCI.DAG;
6648
6649  if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
6650    return SDValue();
6651
6652  APInt SplatBits, SplatUndef;
6653  unsigned SplatBitSize;
6654  bool HasAnyUndefs;
6655  if (BVN && Subtarget->hasNEON() &&
6656      BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
6657    if (SplatBitSize <= 64) {
6658      EVT VorrVT;
6659      SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
6660                                      SplatUndef.getZExtValue(), SplatBitSize,
6661                                      DAG, VorrVT, VT.is128BitVector(),
6662                                      OtherModImm);
6663      if (Val.getNode()) {
6664        SDValue Input =
6665          DAG.getNode(ISD::BITCAST, dl, VorrVT, N->getOperand(0));
6666        SDValue Vorr = DAG.getNode(ARMISD::VORRIMM, dl, VorrVT, Input, Val);
6667        return DAG.getNode(ISD::BITCAST, dl, VT, Vorr);
6668      }
6669    }
6670  }
6671
6672  SDValue N0 = N->getOperand(0);
6673  if (N0.getOpcode() != ISD::AND)
6674    return SDValue();
6675  SDValue N1 = N->getOperand(1);
6676
6677  // (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant.
6678  if (Subtarget->hasNEON() && N1.getOpcode() == ISD::AND && VT.isVector() &&
6679      DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
6680    APInt SplatUndef;
6681    unsigned SplatBitSize;
6682    bool HasAnyUndefs;
6683
6684    BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(1));
6685    APInt SplatBits0;
6686    if (BVN0 && BVN0->isConstantSplat(SplatBits0, SplatUndef, SplatBitSize,
6687                                  HasAnyUndefs) && !HasAnyUndefs) {
6688      BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(1));
6689      APInt SplatBits1;
6690      if (BVN1 && BVN1->isConstantSplat(SplatBits1, SplatUndef, SplatBitSize,
6691                                    HasAnyUndefs) && !HasAnyUndefs &&
6692          SplatBits0 == ~SplatBits1) {
6693        // Canonicalize the vector type to make instruction selection simpler.
6694        EVT CanonicalVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
6695        SDValue Result = DAG.getNode(ARMISD::VBSL, dl, CanonicalVT,
6696                                     N0->getOperand(1), N0->getOperand(0),
6697                                     N1->getOperand(0));
6698        return DAG.getNode(ISD::BITCAST, dl, VT, Result);
6699      }
6700    }
6701  }
6702
6703  // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when
6704  // reasonable.
6705
6706  // BFI is only available on V6T2+
6707  if (Subtarget->isThumb1Only() || !Subtarget->hasV6T2Ops())
6708    return SDValue();
6709
6710  DebugLoc DL = N->getDebugLoc();
6711  // 1) or (and A, mask), val => ARMbfi A, val, mask
6712  //      iff (val & mask) == val
6713  //
6714  // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
6715  //  2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2)
6716  //          && mask == ~mask2
6717  //  2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2)
6718  //          && ~mask == mask2
6719  //  (i.e., copy a bitfield value into another bitfield of the same width)
6720
6721  if (VT != MVT::i32)
6722    return SDValue();
6723
6724  SDValue N00 = N0.getOperand(0);
6725
6726  // The value and the mask need to be constants so we can verify this is
6727  // actually a bitfield set. If the mask is 0xffff, we can do better
6728  // via a movt instruction, so don't use BFI in that case.
6729  SDValue MaskOp = N0.getOperand(1);
6730  ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(MaskOp);
6731  if (!MaskC)
6732    return SDValue();
6733  unsigned Mask = MaskC->getZExtValue();
6734  if (Mask == 0xffff)
6735    return SDValue();
6736  SDValue Res;
6737  // Case (1): or (and A, mask), val => ARMbfi A, val, mask
6738  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
6739  if (N1C) {
6740    unsigned Val = N1C->getZExtValue();
6741    if ((Val & ~Mask) != Val)
6742      return SDValue();
6743
6744    if (ARM::isBitFieldInvertedMask(Mask)) {
6745      Val >>= CountTrailingZeros_32(~Mask);
6746
6747      Res = DAG.getNode(ARMISD::BFI, DL, VT, N00,
6748                        DAG.getConstant(Val, MVT::i32),
6749                        DAG.getConstant(Mask, MVT::i32));
6750
6751      // Do not add new nodes to DAG combiner worklist.
6752      DCI.CombineTo(N, Res, false);
6753      return SDValue();
6754    }
6755  } else if (N1.getOpcode() == ISD::AND) {
6756    // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
6757    ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
6758    if (!N11C)
6759      return SDValue();
6760    unsigned Mask2 = N11C->getZExtValue();
6761
6762    // Mask and ~Mask2 (or reverse) must be equivalent for the BFI pattern
6763    // as is to match.
6764    if (ARM::isBitFieldInvertedMask(Mask) &&
6765        (Mask == ~Mask2)) {
6766      // The pack halfword instruction works better for masks that fit it,
6767      // so use that when it's available.
6768      if (Subtarget->hasT2ExtractPack() &&
6769          (Mask == 0xffff || Mask == 0xffff0000))
6770        return SDValue();
6771      // 2a
6772      unsigned amt = CountTrailingZeros_32(Mask2);
6773      Res = DAG.getNode(ISD::SRL, DL, VT, N1.getOperand(0),
6774                        DAG.getConstant(amt, MVT::i32));
6775      Res = DAG.getNode(ARMISD::BFI, DL, VT, N00, Res,
6776                        DAG.getConstant(Mask, MVT::i32));
6777      // Do not add new nodes to DAG combiner worklist.
6778      DCI.CombineTo(N, Res, false);
6779      return SDValue();
6780    } else if (ARM::isBitFieldInvertedMask(~Mask) &&
6781               (~Mask == Mask2)) {
6782      // The pack halfword instruction works better for masks that fit it,
6783      // so use that when it's available.
6784      if (Subtarget->hasT2ExtractPack() &&
6785          (Mask2 == 0xffff || Mask2 == 0xffff0000))
6786        return SDValue();
6787      // 2b
6788      unsigned lsb = CountTrailingZeros_32(Mask);
6789      Res = DAG.getNode(ISD::SRL, DL, VT, N00,
6790                        DAG.getConstant(lsb, MVT::i32));
6791      Res = DAG.getNode(ARMISD::BFI, DL, VT, N1.getOperand(0), Res,
6792                        DAG.getConstant(Mask2, MVT::i32));
6793      // Do not add new nodes to DAG combiner worklist.
6794      DCI.CombineTo(N, Res, false);
6795      return SDValue();
6796    }
6797  }
6798
6799  if (DAG.MaskedValueIsZero(N1, MaskC->getAPIntValue()) &&
6800      N00.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N00.getOperand(1)) &&
6801      ARM::isBitFieldInvertedMask(~Mask)) {
6802    // Case (3): or (and (shl A, #shamt), mask), B => ARMbfi B, A, ~mask
6803    // where lsb(mask) == #shamt and masked bits of B are known zero.
6804    SDValue ShAmt = N00.getOperand(1);
6805    unsigned ShAmtC = cast<ConstantSDNode>(ShAmt)->getZExtValue();
6806    unsigned LSB = CountTrailingZeros_32(Mask);
6807    if (ShAmtC != LSB)
6808      return SDValue();
6809
6810    Res = DAG.getNode(ARMISD::BFI, DL, VT, N1, N00.getOperand(0),
6811                      DAG.getConstant(~Mask, MVT::i32));
6812
6813    // Do not add new nodes to DAG combiner worklist.
6814    DCI.CombineTo(N, Res, false);
6815  }
6816
6817  return SDValue();
6818}
6819
6820/// PerformBFICombine - (bfi A, (and B, Mask1), Mask2) -> (bfi A, B, Mask2) iff
6821/// the bits being cleared by the AND are not demanded by the BFI.
6822static SDValue PerformBFICombine(SDNode *N,
6823                                 TargetLowering::DAGCombinerInfo &DCI) {
6824  SDValue N1 = N->getOperand(1);
6825  if (N1.getOpcode() == ISD::AND) {
6826    ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
6827    if (!N11C)
6828      return SDValue();
6829    unsigned InvMask = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
6830    unsigned LSB = CountTrailingZeros_32(~InvMask);
6831    unsigned Width = (32 - CountLeadingZeros_32(~InvMask)) - LSB;
6832    unsigned Mask = (1 << Width)-1;
6833    unsigned Mask2 = N11C->getZExtValue();
6834    if ((Mask & (~Mask2)) == 0)
6835      return DCI.DAG.getNode(ARMISD::BFI, N->getDebugLoc(), N->getValueType(0),
6836                             N->getOperand(0), N1.getOperand(0),
6837                             N->getOperand(2));
6838  }
6839  return SDValue();
6840}
6841
6842/// PerformVMOVRRDCombine - Target-specific dag combine xforms for
6843/// ARMISD::VMOVRRD.
6844static SDValue PerformVMOVRRDCombine(SDNode *N,
6845                                     TargetLowering::DAGCombinerInfo &DCI) {
6846  // vmovrrd(vmovdrr x, y) -> x,y
6847  SDValue InDouble = N->getOperand(0);
6848  if (InDouble.getOpcode() == ARMISD::VMOVDRR)
6849    return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
6850
6851  // vmovrrd(load f64) -> (load i32), (load i32)
6852  SDNode *InNode = InDouble.getNode();
6853  if (ISD::isNormalLoad(InNode) && InNode->hasOneUse() &&
6854      InNode->getValueType(0) == MVT::f64 &&
6855      InNode->getOperand(1).getOpcode() == ISD::FrameIndex &&
6856      !cast<LoadSDNode>(InNode)->isVolatile()) {
6857    // TODO: Should this be done for non-FrameIndex operands?
6858    LoadSDNode *LD = cast<LoadSDNode>(InNode);
6859
6860    SelectionDAG &DAG = DCI.DAG;
6861    DebugLoc DL = LD->getDebugLoc();
6862    SDValue BasePtr = LD->getBasePtr();
6863    SDValue NewLD1 = DAG.getLoad(MVT::i32, DL, LD->getChain(), BasePtr,
6864                                 LD->getPointerInfo(), LD->isVolatile(),
6865                                 LD->isNonTemporal(), LD->getAlignment());
6866
6867    SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
6868                                    DAG.getConstant(4, MVT::i32));
6869    SDValue NewLD2 = DAG.getLoad(MVT::i32, DL, NewLD1.getValue(1), OffsetPtr,
6870                                 LD->getPointerInfo(), LD->isVolatile(),
6871                                 LD->isNonTemporal(),
6872                                 std::min(4U, LD->getAlignment() / 2));
6873
6874    DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewLD2.getValue(1));
6875    SDValue Result = DCI.CombineTo(N, NewLD1, NewLD2);
6876    DCI.RemoveFromWorklist(LD);
6877    DAG.DeleteNode(LD);
6878    return Result;
6879  }
6880
6881  return SDValue();
6882}
6883
6884/// PerformVMOVDRRCombine - Target-specific dag combine xforms for
6885/// ARMISD::VMOVDRR.  This is also used for BUILD_VECTORs with 2 operands.
6886static SDValue PerformVMOVDRRCombine(SDNode *N, SelectionDAG &DAG) {
6887  // N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X)
6888  SDValue Op0 = N->getOperand(0);
6889  SDValue Op1 = N->getOperand(1);
6890  if (Op0.getOpcode() == ISD::BITCAST)
6891    Op0 = Op0.getOperand(0);
6892  if (Op1.getOpcode() == ISD::BITCAST)
6893    Op1 = Op1.getOperand(0);
6894  if (Op0.getOpcode() == ARMISD::VMOVRRD &&
6895      Op0.getNode() == Op1.getNode() &&
6896      Op0.getResNo() == 0 && Op1.getResNo() == 1)
6897    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(),
6898                       N->getValueType(0), Op0.getOperand(0));
6899  return SDValue();
6900}
6901
6902/// PerformSTORECombine - Target-specific dag combine xforms for
6903/// ISD::STORE.
6904static SDValue PerformSTORECombine(SDNode *N,
6905                                   TargetLowering::DAGCombinerInfo &DCI) {
6906  // Bitcast an i64 store extracted from a vector to f64.
6907  // Otherwise, the i64 value will be legalized to a pair of i32 values.
6908  StoreSDNode *St = cast<StoreSDNode>(N);
6909  SDValue StVal = St->getValue();
6910  if (!ISD::isNormalStore(St) || St->isVolatile())
6911    return SDValue();
6912
6913  if (StVal.getNode()->getOpcode() == ARMISD::VMOVDRR &&
6914      StVal.getNode()->hasOneUse() && !St->isVolatile()) {
6915    SelectionDAG  &DAG = DCI.DAG;
6916    DebugLoc DL = St->getDebugLoc();
6917    SDValue BasePtr = St->getBasePtr();
6918    SDValue NewST1 = DAG.getStore(St->getChain(), DL,
6919                                  StVal.getNode()->getOperand(0), BasePtr,
6920                                  St->getPointerInfo(), St->isVolatile(),
6921                                  St->isNonTemporal(), St->getAlignment());
6922
6923    SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
6924                                    DAG.getConstant(4, MVT::i32));
6925    return DAG.getStore(NewST1.getValue(0), DL, StVal.getNode()->getOperand(1),
6926                        OffsetPtr, St->getPointerInfo(), St->isVolatile(),
6927                        St->isNonTemporal(),
6928                        std::min(4U, St->getAlignment() / 2));
6929  }
6930
6931  if (StVal.getValueType() != MVT::i64 ||
6932      StVal.getNode()->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
6933    return SDValue();
6934
6935  SelectionDAG &DAG = DCI.DAG;
6936  DebugLoc dl = StVal.getDebugLoc();
6937  SDValue IntVec = StVal.getOperand(0);
6938  EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
6939                                 IntVec.getValueType().getVectorNumElements());
6940  SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, IntVec);
6941  SDValue ExtElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
6942                               Vec, StVal.getOperand(1));
6943  dl = N->getDebugLoc();
6944  SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ExtElt);
6945  // Make the DAGCombiner fold the bitcasts.
6946  DCI.AddToWorklist(Vec.getNode());
6947  DCI.AddToWorklist(ExtElt.getNode());
6948  DCI.AddToWorklist(V.getNode());
6949  return DAG.getStore(St->getChain(), dl, V, St->getBasePtr(),
6950                      St->getPointerInfo(), St->isVolatile(),
6951                      St->isNonTemporal(), St->getAlignment(),
6952                      St->getTBAAInfo());
6953}
6954
6955/// hasNormalLoadOperand - Check if any of the operands of a BUILD_VECTOR node
6956/// are normal, non-volatile loads.  If so, it is profitable to bitcast an
6957/// i64 vector to have f64 elements, since the value can then be loaded
6958/// directly into a VFP register.
6959static bool hasNormalLoadOperand(SDNode *N) {
6960  unsigned NumElts = N->getValueType(0).getVectorNumElements();
6961  for (unsigned i = 0; i < NumElts; ++i) {
6962    SDNode *Elt = N->getOperand(i).getNode();
6963    if (ISD::isNormalLoad(Elt) && !cast<LoadSDNode>(Elt)->isVolatile())
6964      return true;
6965  }
6966  return false;
6967}
6968
6969/// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for
6970/// ISD::BUILD_VECTOR.
6971static SDValue PerformBUILD_VECTORCombine(SDNode *N,
6972                                          TargetLowering::DAGCombinerInfo &DCI){
6973  // build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X):
6974  // VMOVRRD is introduced when legalizing i64 types.  It forces the i64 value
6975  // into a pair of GPRs, which is fine when the value is used as a scalar,
6976  // but if the i64 value is converted to a vector, we need to undo the VMOVRRD.
6977  SelectionDAG &DAG = DCI.DAG;
6978  if (N->getNumOperands() == 2) {
6979    SDValue RV = PerformVMOVDRRCombine(N, DAG);
6980    if (RV.getNode())
6981      return RV;
6982  }
6983
6984  // Load i64 elements as f64 values so that type legalization does not split
6985  // them up into i32 values.
6986  EVT VT = N->getValueType(0);
6987  if (VT.getVectorElementType() != MVT::i64 || !hasNormalLoadOperand(N))
6988    return SDValue();
6989  DebugLoc dl = N->getDebugLoc();
6990  SmallVector<SDValue, 8> Ops;
6991  unsigned NumElts = VT.getVectorNumElements();
6992  for (unsigned i = 0; i < NumElts; ++i) {
6993    SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(i));
6994    Ops.push_back(V);
6995    // Make the DAGCombiner fold the bitcast.
6996    DCI.AddToWorklist(V.getNode());
6997  }
6998  EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, NumElts);
6999  SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, FloatVT, Ops.data(), NumElts);
7000  return DAG.getNode(ISD::BITCAST, dl, VT, BV);
7001}
7002
7003/// PerformInsertEltCombine - Target-specific dag combine xforms for
7004/// ISD::INSERT_VECTOR_ELT.
7005static SDValue PerformInsertEltCombine(SDNode *N,
7006                                       TargetLowering::DAGCombinerInfo &DCI) {
7007  // Bitcast an i64 load inserted into a vector to f64.
7008  // Otherwise, the i64 value will be legalized to a pair of i32 values.
7009  EVT VT = N->getValueType(0);
7010  SDNode *Elt = N->getOperand(1).getNode();
7011  if (VT.getVectorElementType() != MVT::i64 ||
7012      !ISD::isNormalLoad(Elt) || cast<LoadSDNode>(Elt)->isVolatile())
7013    return SDValue();
7014
7015  SelectionDAG &DAG = DCI.DAG;
7016  DebugLoc dl = N->getDebugLoc();
7017  EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
7018                                 VT.getVectorNumElements());
7019  SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, N->getOperand(0));
7020  SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(1));
7021  // Make the DAGCombiner fold the bitcasts.
7022  DCI.AddToWorklist(Vec.getNode());
7023  DCI.AddToWorklist(V.getNode());
7024  SDValue InsElt = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, FloatVT,
7025                               Vec, V, N->getOperand(2));
7026  return DAG.getNode(ISD::BITCAST, dl, VT, InsElt);
7027}
7028
7029/// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for
7030/// ISD::VECTOR_SHUFFLE.
7031static SDValue PerformVECTOR_SHUFFLECombine(SDNode *N, SelectionDAG &DAG) {
7032  // The LLVM shufflevector instruction does not require the shuffle mask
7033  // length to match the operand vector length, but ISD::VECTOR_SHUFFLE does
7034  // have that requirement.  When translating to ISD::VECTOR_SHUFFLE, if the
7035  // operands do not match the mask length, they are extended by concatenating
7036  // them with undef vectors.  That is probably the right thing for other
7037  // targets, but for NEON it is better to concatenate two double-register
7038  // size vector operands into a single quad-register size vector.  Do that
7039  // transformation here:
7040  //   shuffle(concat(v1, undef), concat(v2, undef)) ->
7041  //   shuffle(concat(v1, v2), undef)
7042  SDValue Op0 = N->getOperand(0);
7043  SDValue Op1 = N->getOperand(1);
7044  if (Op0.getOpcode() != ISD::CONCAT_VECTORS ||
7045      Op1.getOpcode() != ISD::CONCAT_VECTORS ||
7046      Op0.getNumOperands() != 2 ||
7047      Op1.getNumOperands() != 2)
7048    return SDValue();
7049  SDValue Concat0Op1 = Op0.getOperand(1);
7050  SDValue Concat1Op1 = Op1.getOperand(1);
7051  if (Concat0Op1.getOpcode() != ISD::UNDEF ||
7052      Concat1Op1.getOpcode() != ISD::UNDEF)
7053    return SDValue();
7054  // Skip the transformation if any of the types are illegal.
7055  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7056  EVT VT = N->getValueType(0);
7057  if (!TLI.isTypeLegal(VT) ||
7058      !TLI.isTypeLegal(Concat0Op1.getValueType()) ||
7059      !TLI.isTypeLegal(Concat1Op1.getValueType()))
7060    return SDValue();
7061
7062  SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, N->getDebugLoc(), VT,
7063                                  Op0.getOperand(0), Op1.getOperand(0));
7064  // Translate the shuffle mask.
7065  SmallVector<int, 16> NewMask;
7066  unsigned NumElts = VT.getVectorNumElements();
7067  unsigned HalfElts = NumElts/2;
7068  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
7069  for (unsigned n = 0; n < NumElts; ++n) {
7070    int MaskElt = SVN->getMaskElt(n);
7071    int NewElt = -1;
7072    if (MaskElt < (int)HalfElts)
7073      NewElt = MaskElt;
7074    else if (MaskElt >= (int)NumElts && MaskElt < (int)(NumElts + HalfElts))
7075      NewElt = HalfElts + MaskElt - NumElts;
7076    NewMask.push_back(NewElt);
7077  }
7078  return DAG.getVectorShuffle(VT, N->getDebugLoc(), NewConcat,
7079                              DAG.getUNDEF(VT), NewMask.data());
7080}
7081
7082/// CombineBaseUpdate - Target-specific DAG combine function for VLDDUP and
7083/// NEON load/store intrinsics to merge base address updates.
7084static SDValue CombineBaseUpdate(SDNode *N,
7085                                 TargetLowering::DAGCombinerInfo &DCI) {
7086  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
7087    return SDValue();
7088
7089  SelectionDAG &DAG = DCI.DAG;
7090  bool isIntrinsic = (N->getOpcode() == ISD::INTRINSIC_VOID ||
7091                      N->getOpcode() == ISD::INTRINSIC_W_CHAIN);
7092  unsigned AddrOpIdx = (isIntrinsic ? 2 : 1);
7093  SDValue Addr = N->getOperand(AddrOpIdx);
7094
7095  // Search for a use of the address operand that is an increment.
7096  for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
7097         UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
7098    SDNode *User = *UI;
7099    if (User->getOpcode() != ISD::ADD ||
7100        UI.getUse().getResNo() != Addr.getResNo())
7101      continue;
7102
7103    // Check that the add is independent of the load/store.  Otherwise, folding
7104    // it would create a cycle.
7105    if (User->isPredecessorOf(N) || N->isPredecessorOf(User))
7106      continue;
7107
7108    // Find the new opcode for the updating load/store.
7109    bool isLoad = true;
7110    bool isLaneOp = false;
7111    unsigned NewOpc = 0;
7112    unsigned NumVecs = 0;
7113    if (isIntrinsic) {
7114      unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
7115      switch (IntNo) {
7116      default: assert(0 && "unexpected intrinsic for Neon base update");
7117      case Intrinsic::arm_neon_vld1:     NewOpc = ARMISD::VLD1_UPD;
7118        NumVecs = 1; break;
7119      case Intrinsic::arm_neon_vld2:     NewOpc = ARMISD::VLD2_UPD;
7120        NumVecs = 2; break;
7121      case Intrinsic::arm_neon_vld3:     NewOpc = ARMISD::VLD3_UPD;
7122        NumVecs = 3; break;
7123      case Intrinsic::arm_neon_vld4:     NewOpc = ARMISD::VLD4_UPD;
7124        NumVecs = 4; break;
7125      case Intrinsic::arm_neon_vld2lane: NewOpc = ARMISD::VLD2LN_UPD;
7126        NumVecs = 2; isLaneOp = true; break;
7127      case Intrinsic::arm_neon_vld3lane: NewOpc = ARMISD::VLD3LN_UPD;
7128        NumVecs = 3; isLaneOp = true; break;
7129      case Intrinsic::arm_neon_vld4lane: NewOpc = ARMISD::VLD4LN_UPD;
7130        NumVecs = 4; isLaneOp = true; break;
7131      case Intrinsic::arm_neon_vst1:     NewOpc = ARMISD::VST1_UPD;
7132        NumVecs = 1; isLoad = false; break;
7133      case Intrinsic::arm_neon_vst2:     NewOpc = ARMISD::VST2_UPD;
7134        NumVecs = 2; isLoad = false; break;
7135      case Intrinsic::arm_neon_vst3:     NewOpc = ARMISD::VST3_UPD;
7136        NumVecs = 3; isLoad = false; break;
7137      case Intrinsic::arm_neon_vst4:     NewOpc = ARMISD::VST4_UPD;
7138        NumVecs = 4; isLoad = false; break;
7139      case Intrinsic::arm_neon_vst2lane: NewOpc = ARMISD::VST2LN_UPD;
7140        NumVecs = 2; isLoad = false; isLaneOp = true; break;
7141      case Intrinsic::arm_neon_vst3lane: NewOpc = ARMISD::VST3LN_UPD;
7142        NumVecs = 3; isLoad = false; isLaneOp = true; break;
7143      case Intrinsic::arm_neon_vst4lane: NewOpc = ARMISD::VST4LN_UPD;
7144        NumVecs = 4; isLoad = false; isLaneOp = true; break;
7145      }
7146    } else {
7147      isLaneOp = true;
7148      switch (N->getOpcode()) {
7149      default: assert(0 && "unexpected opcode for Neon base update");
7150      case ARMISD::VLD2DUP: NewOpc = ARMISD::VLD2DUP_UPD; NumVecs = 2; break;
7151      case ARMISD::VLD3DUP: NewOpc = ARMISD::VLD3DUP_UPD; NumVecs = 3; break;
7152      case ARMISD::VLD4DUP: NewOpc = ARMISD::VLD4DUP_UPD; NumVecs = 4; break;
7153      }
7154    }
7155
7156    // Find the size of memory referenced by the load/store.
7157    EVT VecTy;
7158    if (isLoad)
7159      VecTy = N->getValueType(0);
7160    else
7161      VecTy = N->getOperand(AddrOpIdx+1).getValueType();
7162    unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
7163    if (isLaneOp)
7164      NumBytes /= VecTy.getVectorNumElements();
7165
7166    // If the increment is a constant, it must match the memory ref size.
7167    SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
7168    if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
7169      uint64_t IncVal = CInc->getZExtValue();
7170      if (IncVal != NumBytes)
7171        continue;
7172    } else if (NumBytes >= 3 * 16) {
7173      // VLD3/4 and VST3/4 for 128-bit vectors are implemented with two
7174      // separate instructions that make it harder to use a non-constant update.
7175      continue;
7176    }
7177
7178    // Create the new updating load/store node.
7179    EVT Tys[6];
7180    unsigned NumResultVecs = (isLoad ? NumVecs : 0);
7181    unsigned n;
7182    for (n = 0; n < NumResultVecs; ++n)
7183      Tys[n] = VecTy;
7184    Tys[n++] = MVT::i32;
7185    Tys[n] = MVT::Other;
7186    SDVTList SDTys = DAG.getVTList(Tys, NumResultVecs+2);
7187    SmallVector<SDValue, 8> Ops;
7188    Ops.push_back(N->getOperand(0)); // incoming chain
7189    Ops.push_back(N->getOperand(AddrOpIdx));
7190    Ops.push_back(Inc);
7191    for (unsigned i = AddrOpIdx + 1; i < N->getNumOperands(); ++i) {
7192      Ops.push_back(N->getOperand(i));
7193    }
7194    MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N);
7195    SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, N->getDebugLoc(), SDTys,
7196                                           Ops.data(), Ops.size(),
7197                                           MemInt->getMemoryVT(),
7198                                           MemInt->getMemOperand());
7199
7200    // Update the uses.
7201    std::vector<SDValue> NewResults;
7202    for (unsigned i = 0; i < NumResultVecs; ++i) {
7203      NewResults.push_back(SDValue(UpdN.getNode(), i));
7204    }
7205    NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs+1)); // chain
7206    DCI.CombineTo(N, NewResults);
7207    DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
7208
7209    break;
7210  }
7211  return SDValue();
7212}
7213
7214/// CombineVLDDUP - For a VDUPLANE node N, check if its source operand is a
7215/// vldN-lane (N > 1) intrinsic, and if all the other uses of that intrinsic
7216/// are also VDUPLANEs.  If so, combine them to a vldN-dup operation and
7217/// return true.
7218static bool CombineVLDDUP(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
7219  SelectionDAG &DAG = DCI.DAG;
7220  EVT VT = N->getValueType(0);
7221  // vldN-dup instructions only support 64-bit vectors for N > 1.
7222  if (!VT.is64BitVector())
7223    return false;
7224
7225  // Check if the VDUPLANE operand is a vldN-dup intrinsic.
7226  SDNode *VLD = N->getOperand(0).getNode();
7227  if (VLD->getOpcode() != ISD::INTRINSIC_W_CHAIN)
7228    return false;
7229  unsigned NumVecs = 0;
7230  unsigned NewOpc = 0;
7231  unsigned IntNo = cast<ConstantSDNode>(VLD->getOperand(1))->getZExtValue();
7232  if (IntNo == Intrinsic::arm_neon_vld2lane) {
7233    NumVecs = 2;
7234    NewOpc = ARMISD::VLD2DUP;
7235  } else if (IntNo == Intrinsic::arm_neon_vld3lane) {
7236    NumVecs = 3;
7237    NewOpc = ARMISD::VLD3DUP;
7238  } else if (IntNo == Intrinsic::arm_neon_vld4lane) {
7239    NumVecs = 4;
7240    NewOpc = ARMISD::VLD4DUP;
7241  } else {
7242    return false;
7243  }
7244
7245  // First check that all the vldN-lane uses are VDUPLANEs and that the lane
7246  // numbers match the load.
7247  unsigned VLDLaneNo =
7248    cast<ConstantSDNode>(VLD->getOperand(NumVecs+3))->getZExtValue();
7249  for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
7250       UI != UE; ++UI) {
7251    // Ignore uses of the chain result.
7252    if (UI.getUse().getResNo() == NumVecs)
7253      continue;
7254    SDNode *User = *UI;
7255    if (User->getOpcode() != ARMISD::VDUPLANE ||
7256        VLDLaneNo != cast<ConstantSDNode>(User->getOperand(1))->getZExtValue())
7257      return false;
7258  }
7259
7260  // Create the vldN-dup node.
7261  EVT Tys[5];
7262  unsigned n;
7263  for (n = 0; n < NumVecs; ++n)
7264    Tys[n] = VT;
7265  Tys[n] = MVT::Other;
7266  SDVTList SDTys = DAG.getVTList(Tys, NumVecs+1);
7267  SDValue Ops[] = { VLD->getOperand(0), VLD->getOperand(2) };
7268  MemIntrinsicSDNode *VLDMemInt = cast<MemIntrinsicSDNode>(VLD);
7269  SDValue VLDDup = DAG.getMemIntrinsicNode(NewOpc, VLD->getDebugLoc(), SDTys,
7270                                           Ops, 2, VLDMemInt->getMemoryVT(),
7271                                           VLDMemInt->getMemOperand());
7272
7273  // Update the uses.
7274  for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
7275       UI != UE; ++UI) {
7276    unsigned ResNo = UI.getUse().getResNo();
7277    // Ignore uses of the chain result.
7278    if (ResNo == NumVecs)
7279      continue;
7280    SDNode *User = *UI;
7281    DCI.CombineTo(User, SDValue(VLDDup.getNode(), ResNo));
7282  }
7283
7284  // Now the vldN-lane intrinsic is dead except for its chain result.
7285  // Update uses of the chain.
7286  std::vector<SDValue> VLDDupResults;
7287  for (unsigned n = 0; n < NumVecs; ++n)
7288    VLDDupResults.push_back(SDValue(VLDDup.getNode(), n));
7289  VLDDupResults.push_back(SDValue(VLDDup.getNode(), NumVecs));
7290  DCI.CombineTo(VLD, VLDDupResults);
7291
7292  return true;
7293}
7294
7295/// PerformVDUPLANECombine - Target-specific dag combine xforms for
7296/// ARMISD::VDUPLANE.
7297static SDValue PerformVDUPLANECombine(SDNode *N,
7298                                      TargetLowering::DAGCombinerInfo &DCI) {
7299  SDValue Op = N->getOperand(0);
7300
7301  // If the source is a vldN-lane (N > 1) intrinsic, and all the other uses
7302  // of that intrinsic are also VDUPLANEs, combine them to a vldN-dup operation.
7303  if (CombineVLDDUP(N, DCI))
7304    return SDValue(N, 0);
7305
7306  // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is
7307  // redundant.  Ignore bit_converts for now; element sizes are checked below.
7308  while (Op.getOpcode() == ISD::BITCAST)
7309    Op = Op.getOperand(0);
7310  if (Op.getOpcode() != ARMISD::VMOVIMM && Op.getOpcode() != ARMISD::VMVNIMM)
7311    return SDValue();
7312
7313  // Make sure the VMOV element size is not bigger than the VDUPLANE elements.
7314  unsigned EltSize = Op.getValueType().getVectorElementType().getSizeInBits();
7315  // The canonical VMOV for a zero vector uses a 32-bit element size.
7316  unsigned Imm = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7317  unsigned EltBits;
7318  if (ARM_AM::decodeNEONModImm(Imm, EltBits) == 0)
7319    EltSize = 8;
7320  EVT VT = N->getValueType(0);
7321  if (EltSize > VT.getVectorElementType().getSizeInBits())
7322    return SDValue();
7323
7324  return DCI.DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
7325}
7326
7327// isConstVecPow2 - Return true if each vector element is a power of 2, all
7328// elements are the same constant, C, and Log2(C) ranges from 1 to 32.
7329static bool isConstVecPow2(SDValue ConstVec, bool isSigned, uint64_t &C)
7330{
7331  integerPart cN;
7332  integerPart c0 = 0;
7333  for (unsigned I = 0, E = ConstVec.getValueType().getVectorNumElements();
7334       I != E; I++) {
7335    ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(ConstVec.getOperand(I));
7336    if (!C)
7337      return false;
7338
7339    bool isExact;
7340    APFloat APF = C->getValueAPF();
7341    if (APF.convertToInteger(&cN, 64, isSigned, APFloat::rmTowardZero, &isExact)
7342        != APFloat::opOK || !isExact)
7343      return false;
7344
7345    c0 = (I == 0) ? cN : c0;
7346    if (!isPowerOf2_64(cN) || c0 != cN || Log2_64(c0) < 1 || Log2_64(c0) > 32)
7347      return false;
7348  }
7349  C = c0;
7350  return true;
7351}
7352
7353/// PerformVCVTCombine - VCVT (floating-point to fixed-point, Advanced SIMD)
7354/// can replace combinations of VMUL and VCVT (floating-point to integer)
7355/// when the VMUL has a constant operand that is a power of 2.
7356///
7357/// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
7358///  vmul.f32        d16, d17, d16
7359///  vcvt.s32.f32    d16, d16
7360/// becomes:
7361///  vcvt.s32.f32    d16, d16, #3
7362static SDValue PerformVCVTCombine(SDNode *N,
7363                                  TargetLowering::DAGCombinerInfo &DCI,
7364                                  const ARMSubtarget *Subtarget) {
7365  SelectionDAG &DAG = DCI.DAG;
7366  SDValue Op = N->getOperand(0);
7367
7368  if (!Subtarget->hasNEON() || !Op.getValueType().isVector() ||
7369      Op.getOpcode() != ISD::FMUL)
7370    return SDValue();
7371
7372  uint64_t C;
7373  SDValue N0 = Op->getOperand(0);
7374  SDValue ConstVec = Op->getOperand(1);
7375  bool isSigned = N->getOpcode() == ISD::FP_TO_SINT;
7376
7377  if (ConstVec.getOpcode() != ISD::BUILD_VECTOR ||
7378      !isConstVecPow2(ConstVec, isSigned, C))
7379    return SDValue();
7380
7381  unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfp2fxs :
7382    Intrinsic::arm_neon_vcvtfp2fxu;
7383  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, N->getDebugLoc(),
7384                     N->getValueType(0),
7385                     DAG.getConstant(IntrinsicOpcode, MVT::i32), N0,
7386                     DAG.getConstant(Log2_64(C), MVT::i32));
7387}
7388
7389/// PerformVDIVCombine - VCVT (fixed-point to floating-point, Advanced SIMD)
7390/// can replace combinations of VCVT (integer to floating-point) and VDIV
7391/// when the VDIV has a constant operand that is a power of 2.
7392///
7393/// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
7394///  vcvt.f32.s32    d16, d16
7395///  vdiv.f32        d16, d17, d16
7396/// becomes:
7397///  vcvt.f32.s32    d16, d16, #3
7398static SDValue PerformVDIVCombine(SDNode *N,
7399                                  TargetLowering::DAGCombinerInfo &DCI,
7400                                  const ARMSubtarget *Subtarget) {
7401  SelectionDAG &DAG = DCI.DAG;
7402  SDValue Op = N->getOperand(0);
7403  unsigned OpOpcode = Op.getNode()->getOpcode();
7404
7405  if (!Subtarget->hasNEON() || !N->getValueType(0).isVector() ||
7406      (OpOpcode != ISD::SINT_TO_FP && OpOpcode != ISD::UINT_TO_FP))
7407    return SDValue();
7408
7409  uint64_t C;
7410  SDValue ConstVec = N->getOperand(1);
7411  bool isSigned = OpOpcode == ISD::SINT_TO_FP;
7412
7413  if (ConstVec.getOpcode() != ISD::BUILD_VECTOR ||
7414      !isConstVecPow2(ConstVec, isSigned, C))
7415    return SDValue();
7416
7417  unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfxs2fp :
7418    Intrinsic::arm_neon_vcvtfxu2fp;
7419  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, N->getDebugLoc(),
7420                     Op.getValueType(),
7421                     DAG.getConstant(IntrinsicOpcode, MVT::i32),
7422                     Op.getOperand(0), DAG.getConstant(Log2_64(C), MVT::i32));
7423}
7424
7425/// Getvshiftimm - Check if this is a valid build_vector for the immediate
7426/// operand of a vector shift operation, where all the elements of the
7427/// build_vector must have the same constant integer value.
7428static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
7429  // Ignore bit_converts.
7430  while (Op.getOpcode() == ISD::BITCAST)
7431    Op = Op.getOperand(0);
7432  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
7433  APInt SplatBits, SplatUndef;
7434  unsigned SplatBitSize;
7435  bool HasAnyUndefs;
7436  if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
7437                                      HasAnyUndefs, ElementBits) ||
7438      SplatBitSize > ElementBits)
7439    return false;
7440  Cnt = SplatBits.getSExtValue();
7441  return true;
7442}
7443
7444/// isVShiftLImm - Check if this is a valid build_vector for the immediate
7445/// operand of a vector shift left operation.  That value must be in the range:
7446///   0 <= Value < ElementBits for a left shift; or
7447///   0 <= Value <= ElementBits for a long left shift.
7448static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
7449  assert(VT.isVector() && "vector shift count is not a vector type");
7450  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
7451  if (! getVShiftImm(Op, ElementBits, Cnt))
7452    return false;
7453  return (Cnt >= 0 && (isLong ? Cnt-1 : Cnt) < ElementBits);
7454}
7455
7456/// isVShiftRImm - Check if this is a valid build_vector for the immediate
7457/// operand of a vector shift right operation.  For a shift opcode, the value
7458/// is positive, but for an intrinsic the value count must be negative. The
7459/// absolute value must be in the range:
7460///   1 <= |Value| <= ElementBits for a right shift; or
7461///   1 <= |Value| <= ElementBits/2 for a narrow right shift.
7462static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
7463                         int64_t &Cnt) {
7464  assert(VT.isVector() && "vector shift count is not a vector type");
7465  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
7466  if (! getVShiftImm(Op, ElementBits, Cnt))
7467    return false;
7468  if (isIntrinsic)
7469    Cnt = -Cnt;
7470  return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits/2 : ElementBits));
7471}
7472
7473/// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
7474static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
7475  unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
7476  switch (IntNo) {
7477  default:
7478    // Don't do anything for most intrinsics.
7479    break;
7480
7481  // Vector shifts: check for immediate versions and lower them.
7482  // Note: This is done during DAG combining instead of DAG legalizing because
7483  // the build_vectors for 64-bit vector element shift counts are generally
7484  // not legal, and it is hard to see their values after they get legalized to
7485  // loads from a constant pool.
7486  case Intrinsic::arm_neon_vshifts:
7487  case Intrinsic::arm_neon_vshiftu:
7488  case Intrinsic::arm_neon_vshiftls:
7489  case Intrinsic::arm_neon_vshiftlu:
7490  case Intrinsic::arm_neon_vshiftn:
7491  case Intrinsic::arm_neon_vrshifts:
7492  case Intrinsic::arm_neon_vrshiftu:
7493  case Intrinsic::arm_neon_vrshiftn:
7494  case Intrinsic::arm_neon_vqshifts:
7495  case Intrinsic::arm_neon_vqshiftu:
7496  case Intrinsic::arm_neon_vqshiftsu:
7497  case Intrinsic::arm_neon_vqshiftns:
7498  case Intrinsic::arm_neon_vqshiftnu:
7499  case Intrinsic::arm_neon_vqshiftnsu:
7500  case Intrinsic::arm_neon_vqrshiftns:
7501  case Intrinsic::arm_neon_vqrshiftnu:
7502  case Intrinsic::arm_neon_vqrshiftnsu: {
7503    EVT VT = N->getOperand(1).getValueType();
7504    int64_t Cnt;
7505    unsigned VShiftOpc = 0;
7506
7507    switch (IntNo) {
7508    case Intrinsic::arm_neon_vshifts:
7509    case Intrinsic::arm_neon_vshiftu:
7510      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) {
7511        VShiftOpc = ARMISD::VSHL;
7512        break;
7513      }
7514      if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) {
7515        VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ?
7516                     ARMISD::VSHRs : ARMISD::VSHRu);
7517        break;
7518      }
7519      return SDValue();
7520
7521    case Intrinsic::arm_neon_vshiftls:
7522    case Intrinsic::arm_neon_vshiftlu:
7523      if (isVShiftLImm(N->getOperand(2), VT, true, Cnt))
7524        break;
7525      llvm_unreachable("invalid shift count for vshll intrinsic");
7526
7527    case Intrinsic::arm_neon_vrshifts:
7528    case Intrinsic::arm_neon_vrshiftu:
7529      if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt))
7530        break;
7531      return SDValue();
7532
7533    case Intrinsic::arm_neon_vqshifts:
7534    case Intrinsic::arm_neon_vqshiftu:
7535      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
7536        break;
7537      return SDValue();
7538
7539    case Intrinsic::arm_neon_vqshiftsu:
7540      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
7541        break;
7542      llvm_unreachable("invalid shift count for vqshlu intrinsic");
7543
7544    case Intrinsic::arm_neon_vshiftn:
7545    case Intrinsic::arm_neon_vrshiftn:
7546    case Intrinsic::arm_neon_vqshiftns:
7547    case Intrinsic::arm_neon_vqshiftnu:
7548    case Intrinsic::arm_neon_vqshiftnsu:
7549    case Intrinsic::arm_neon_vqrshiftns:
7550    case Intrinsic::arm_neon_vqrshiftnu:
7551    case Intrinsic::arm_neon_vqrshiftnsu:
7552      // Narrowing shifts require an immediate right shift.
7553      if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt))
7554        break;
7555      llvm_unreachable("invalid shift count for narrowing vector shift "
7556                       "intrinsic");
7557
7558    default:
7559      llvm_unreachable("unhandled vector shift");
7560    }
7561
7562    switch (IntNo) {
7563    case Intrinsic::arm_neon_vshifts:
7564    case Intrinsic::arm_neon_vshiftu:
7565      // Opcode already set above.
7566      break;
7567    case Intrinsic::arm_neon_vshiftls:
7568    case Intrinsic::arm_neon_vshiftlu:
7569      if (Cnt == VT.getVectorElementType().getSizeInBits())
7570        VShiftOpc = ARMISD::VSHLLi;
7571      else
7572        VShiftOpc = (IntNo == Intrinsic::arm_neon_vshiftls ?
7573                     ARMISD::VSHLLs : ARMISD::VSHLLu);
7574      break;
7575    case Intrinsic::arm_neon_vshiftn:
7576      VShiftOpc = ARMISD::VSHRN; break;
7577    case Intrinsic::arm_neon_vrshifts:
7578      VShiftOpc = ARMISD::VRSHRs; break;
7579    case Intrinsic::arm_neon_vrshiftu:
7580      VShiftOpc = ARMISD::VRSHRu; break;
7581    case Intrinsic::arm_neon_vrshiftn:
7582      VShiftOpc = ARMISD::VRSHRN; break;
7583    case Intrinsic::arm_neon_vqshifts:
7584      VShiftOpc = ARMISD::VQSHLs; break;
7585    case Intrinsic::arm_neon_vqshiftu:
7586      VShiftOpc = ARMISD::VQSHLu; break;
7587    case Intrinsic::arm_neon_vqshiftsu:
7588      VShiftOpc = ARMISD::VQSHLsu; break;
7589    case Intrinsic::arm_neon_vqshiftns:
7590      VShiftOpc = ARMISD::VQSHRNs; break;
7591    case Intrinsic::arm_neon_vqshiftnu:
7592      VShiftOpc = ARMISD::VQSHRNu; break;
7593    case Intrinsic::arm_neon_vqshiftnsu:
7594      VShiftOpc = ARMISD::VQSHRNsu; break;
7595    case Intrinsic::arm_neon_vqrshiftns:
7596      VShiftOpc = ARMISD::VQRSHRNs; break;
7597    case Intrinsic::arm_neon_vqrshiftnu:
7598      VShiftOpc = ARMISD::VQRSHRNu; break;
7599    case Intrinsic::arm_neon_vqrshiftnsu:
7600      VShiftOpc = ARMISD::VQRSHRNsu; break;
7601    }
7602
7603    return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
7604                       N->getOperand(1), DAG.getConstant(Cnt, MVT::i32));
7605  }
7606
7607  case Intrinsic::arm_neon_vshiftins: {
7608    EVT VT = N->getOperand(1).getValueType();
7609    int64_t Cnt;
7610    unsigned VShiftOpc = 0;
7611
7612    if (isVShiftLImm(N->getOperand(3), VT, false, Cnt))
7613      VShiftOpc = ARMISD::VSLI;
7614    else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt))
7615      VShiftOpc = ARMISD::VSRI;
7616    else {
7617      llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
7618    }
7619
7620    return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
7621                       N->getOperand(1), N->getOperand(2),
7622                       DAG.getConstant(Cnt, MVT::i32));
7623  }
7624
7625  case Intrinsic::arm_neon_vqrshifts:
7626  case Intrinsic::arm_neon_vqrshiftu:
7627    // No immediate versions of these to check for.
7628    break;
7629  }
7630
7631  return SDValue();
7632}
7633
7634/// PerformShiftCombine - Checks for immediate versions of vector shifts and
7635/// lowers them.  As with the vector shift intrinsics, this is done during DAG
7636/// combining instead of DAG legalizing because the build_vectors for 64-bit
7637/// vector element shift counts are generally not legal, and it is hard to see
7638/// their values after they get legalized to loads from a constant pool.
7639static SDValue PerformShiftCombine(SDNode *N, SelectionDAG &DAG,
7640                                   const ARMSubtarget *ST) {
7641  EVT VT = N->getValueType(0);
7642
7643  // Nothing to be done for scalar shifts.
7644  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7645  if (!VT.isVector() || !TLI.isTypeLegal(VT))
7646    return SDValue();
7647
7648  assert(ST->hasNEON() && "unexpected vector shift");
7649  int64_t Cnt;
7650
7651  switch (N->getOpcode()) {
7652  default: llvm_unreachable("unexpected shift opcode");
7653
7654  case ISD::SHL:
7655    if (isVShiftLImm(N->getOperand(1), VT, false, Cnt))
7656      return DAG.getNode(ARMISD::VSHL, N->getDebugLoc(), VT, N->getOperand(0),
7657                         DAG.getConstant(Cnt, MVT::i32));
7658    break;
7659
7660  case ISD::SRA:
7661  case ISD::SRL:
7662    if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
7663      unsigned VShiftOpc = (N->getOpcode() == ISD::SRA ?
7664                            ARMISD::VSHRs : ARMISD::VSHRu);
7665      return DAG.getNode(VShiftOpc, N->getDebugLoc(), VT, N->getOperand(0),
7666                         DAG.getConstant(Cnt, MVT::i32));
7667    }
7668  }
7669  return SDValue();
7670}
7671
7672/// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
7673/// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
7674static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG,
7675                                    const ARMSubtarget *ST) {
7676  SDValue N0 = N->getOperand(0);
7677
7678  // Check for sign- and zero-extensions of vector extract operations of 8-
7679  // and 16-bit vector elements.  NEON supports these directly.  They are
7680  // handled during DAG combining because type legalization will promote them
7681  // to 32-bit types and it is messy to recognize the operations after that.
7682  if (ST->hasNEON() && N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
7683    SDValue Vec = N0.getOperand(0);
7684    SDValue Lane = N0.getOperand(1);
7685    EVT VT = N->getValueType(0);
7686    EVT EltVT = N0.getValueType();
7687    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7688
7689    if (VT == MVT::i32 &&
7690        (EltVT == MVT::i8 || EltVT == MVT::i16) &&
7691        TLI.isTypeLegal(Vec.getValueType()) &&
7692        isa<ConstantSDNode>(Lane)) {
7693
7694      unsigned Opc = 0;
7695      switch (N->getOpcode()) {
7696      default: llvm_unreachable("unexpected opcode");
7697      case ISD::SIGN_EXTEND:
7698        Opc = ARMISD::VGETLANEs;
7699        break;
7700      case ISD::ZERO_EXTEND:
7701      case ISD::ANY_EXTEND:
7702        Opc = ARMISD::VGETLANEu;
7703        break;
7704      }
7705      return DAG.getNode(Opc, N->getDebugLoc(), VT, Vec, Lane);
7706    }
7707  }
7708
7709  return SDValue();
7710}
7711
7712/// PerformSELECT_CCCombine - Target-specific DAG combining for ISD::SELECT_CC
7713/// to match f32 max/min patterns to use NEON vmax/vmin instructions.
7714static SDValue PerformSELECT_CCCombine(SDNode *N, SelectionDAG &DAG,
7715                                       const ARMSubtarget *ST) {
7716  // If the target supports NEON, try to use vmax/vmin instructions for f32
7717  // selects like "x < y ? x : y".  Unless the NoNaNsFPMath option is set,
7718  // be careful about NaNs:  NEON's vmax/vmin return NaN if either operand is
7719  // a NaN; only do the transformation when it matches that behavior.
7720
7721  // For now only do this when using NEON for FP operations; if using VFP, it
7722  // is not obvious that the benefit outweighs the cost of switching to the
7723  // NEON pipeline.
7724  if (!ST->hasNEON() || !ST->useNEONForSinglePrecisionFP() ||
7725      N->getValueType(0) != MVT::f32)
7726    return SDValue();
7727
7728  SDValue CondLHS = N->getOperand(0);
7729  SDValue CondRHS = N->getOperand(1);
7730  SDValue LHS = N->getOperand(2);
7731  SDValue RHS = N->getOperand(3);
7732  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
7733
7734  unsigned Opcode = 0;
7735  bool IsReversed;
7736  if (DAG.isEqualTo(LHS, CondLHS) && DAG.isEqualTo(RHS, CondRHS)) {
7737    IsReversed = false; // x CC y ? x : y
7738  } else if (DAG.isEqualTo(LHS, CondRHS) && DAG.isEqualTo(RHS, CondLHS)) {
7739    IsReversed = true ; // x CC y ? y : x
7740  } else {
7741    return SDValue();
7742  }
7743
7744  bool IsUnordered;
7745  switch (CC) {
7746  default: break;
7747  case ISD::SETOLT:
7748  case ISD::SETOLE:
7749  case ISD::SETLT:
7750  case ISD::SETLE:
7751  case ISD::SETULT:
7752  case ISD::SETULE:
7753    // If LHS is NaN, an ordered comparison will be false and the result will
7754    // be the RHS, but vmin(NaN, RHS) = NaN.  Avoid this by checking that LHS
7755    // != NaN.  Likewise, for unordered comparisons, check for RHS != NaN.
7756    IsUnordered = (CC == ISD::SETULT || CC == ISD::SETULE);
7757    if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
7758      break;
7759    // For less-than-or-equal comparisons, "+0 <= -0" will be true but vmin
7760    // will return -0, so vmin can only be used for unsafe math or if one of
7761    // the operands is known to be nonzero.
7762    if ((CC == ISD::SETLE || CC == ISD::SETOLE || CC == ISD::SETULE) &&
7763        !UnsafeFPMath &&
7764        !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
7765      break;
7766    Opcode = IsReversed ? ARMISD::FMAX : ARMISD::FMIN;
7767    break;
7768
7769  case ISD::SETOGT:
7770  case ISD::SETOGE:
7771  case ISD::SETGT:
7772  case ISD::SETGE:
7773  case ISD::SETUGT:
7774  case ISD::SETUGE:
7775    // If LHS is NaN, an ordered comparison will be false and the result will
7776    // be the RHS, but vmax(NaN, RHS) = NaN.  Avoid this by checking that LHS
7777    // != NaN.  Likewise, for unordered comparisons, check for RHS != NaN.
7778    IsUnordered = (CC == ISD::SETUGT || CC == ISD::SETUGE);
7779    if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
7780      break;
7781    // For greater-than-or-equal comparisons, "-0 >= +0" will be true but vmax
7782    // will return +0, so vmax can only be used for unsafe math or if one of
7783    // the operands is known to be nonzero.
7784    if ((CC == ISD::SETGE || CC == ISD::SETOGE || CC == ISD::SETUGE) &&
7785        !UnsafeFPMath &&
7786        !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
7787      break;
7788    Opcode = IsReversed ? ARMISD::FMIN : ARMISD::FMAX;
7789    break;
7790  }
7791
7792  if (!Opcode)
7793    return SDValue();
7794  return DAG.getNode(Opcode, N->getDebugLoc(), N->getValueType(0), LHS, RHS);
7795}
7796
7797/// PerformCMOVCombine - Target-specific DAG combining for ARMISD::CMOV.
7798SDValue
7799ARMTargetLowering::PerformCMOVCombine(SDNode *N, SelectionDAG &DAG) const {
7800  SDValue Cmp = N->getOperand(4);
7801  if (Cmp.getOpcode() != ARMISD::CMPZ)
7802    // Only looking at EQ and NE cases.
7803    return SDValue();
7804
7805  EVT VT = N->getValueType(0);
7806  DebugLoc dl = N->getDebugLoc();
7807  SDValue LHS = Cmp.getOperand(0);
7808  SDValue RHS = Cmp.getOperand(1);
7809  SDValue FalseVal = N->getOperand(0);
7810  SDValue TrueVal = N->getOperand(1);
7811  SDValue ARMcc = N->getOperand(2);
7812  ARMCC::CondCodes CC =
7813    (ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue();
7814
7815  // Simplify
7816  //   mov     r1, r0
7817  //   cmp     r1, x
7818  //   mov     r0, y
7819  //   moveq   r0, x
7820  // to
7821  //   cmp     r0, x
7822  //   movne   r0, y
7823  //
7824  //   mov     r1, r0
7825  //   cmp     r1, x
7826  //   mov     r0, x
7827  //   movne   r0, y
7828  // to
7829  //   cmp     r0, x
7830  //   movne   r0, y
7831  /// FIXME: Turn this into a target neutral optimization?
7832  SDValue Res;
7833  if (CC == ARMCC::NE && FalseVal == RHS && FalseVal != LHS) {
7834    Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, TrueVal, ARMcc,
7835                      N->getOperand(3), Cmp);
7836  } else if (CC == ARMCC::EQ && TrueVal == RHS) {
7837    SDValue ARMcc;
7838    SDValue NewCmp = getARMCmp(LHS, RHS, ISD::SETNE, ARMcc, DAG, dl);
7839    Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, FalseVal, ARMcc,
7840                      N->getOperand(3), NewCmp);
7841  }
7842
7843  if (Res.getNode()) {
7844    APInt KnownZero, KnownOne;
7845    APInt Mask = APInt::getAllOnesValue(VT.getScalarType().getSizeInBits());
7846    DAG.ComputeMaskedBits(SDValue(N,0), Mask, KnownZero, KnownOne);
7847    // Capture demanded bits information that would be otherwise lost.
7848    if (KnownZero == 0xfffffffe)
7849      Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
7850                        DAG.getValueType(MVT::i1));
7851    else if (KnownZero == 0xffffff00)
7852      Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
7853                        DAG.getValueType(MVT::i8));
7854    else if (KnownZero == 0xffff0000)
7855      Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
7856                        DAG.getValueType(MVT::i16));
7857  }
7858
7859  return Res;
7860}
7861
7862SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
7863                                             DAGCombinerInfo &DCI) const {
7864  switch (N->getOpcode()) {
7865  default: break;
7866  case ISD::ADD:        return PerformADDCombine(N, DCI, Subtarget);
7867  case ISD::SUB:        return PerformSUBCombine(N, DCI);
7868  case ISD::MUL:        return PerformMULCombine(N, DCI, Subtarget);
7869  case ISD::OR:         return PerformORCombine(N, DCI, Subtarget);
7870  case ISD::AND:        return PerformANDCombine(N, DCI);
7871  case ARMISD::BFI:     return PerformBFICombine(N, DCI);
7872  case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI);
7873  case ARMISD::VMOVDRR: return PerformVMOVDRRCombine(N, DCI.DAG);
7874  case ISD::STORE:      return PerformSTORECombine(N, DCI);
7875  case ISD::BUILD_VECTOR: return PerformBUILD_VECTORCombine(N, DCI);
7876  case ISD::INSERT_VECTOR_ELT: return PerformInsertEltCombine(N, DCI);
7877  case ISD::VECTOR_SHUFFLE: return PerformVECTOR_SHUFFLECombine(N, DCI.DAG);
7878  case ARMISD::VDUPLANE: return PerformVDUPLANECombine(N, DCI);
7879  case ISD::FP_TO_SINT:
7880  case ISD::FP_TO_UINT: return PerformVCVTCombine(N, DCI, Subtarget);
7881  case ISD::FDIV:       return PerformVDIVCombine(N, DCI, Subtarget);
7882  case ISD::INTRINSIC_WO_CHAIN: return PerformIntrinsicCombine(N, DCI.DAG);
7883  case ISD::SHL:
7884  case ISD::SRA:
7885  case ISD::SRL:        return PerformShiftCombine(N, DCI.DAG, Subtarget);
7886  case ISD::SIGN_EXTEND:
7887  case ISD::ZERO_EXTEND:
7888  case ISD::ANY_EXTEND: return PerformExtendCombine(N, DCI.DAG, Subtarget);
7889  case ISD::SELECT_CC:  return PerformSELECT_CCCombine(N, DCI.DAG, Subtarget);
7890  case ARMISD::CMOV: return PerformCMOVCombine(N, DCI.DAG);
7891  case ARMISD::VLD2DUP:
7892  case ARMISD::VLD3DUP:
7893  case ARMISD::VLD4DUP:
7894    return CombineBaseUpdate(N, DCI);
7895  case ISD::INTRINSIC_VOID:
7896  case ISD::INTRINSIC_W_CHAIN:
7897    switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
7898    case Intrinsic::arm_neon_vld1:
7899    case Intrinsic::arm_neon_vld2:
7900    case Intrinsic::arm_neon_vld3:
7901    case Intrinsic::arm_neon_vld4:
7902    case Intrinsic::arm_neon_vld2lane:
7903    case Intrinsic::arm_neon_vld3lane:
7904    case Intrinsic::arm_neon_vld4lane:
7905    case Intrinsic::arm_neon_vst1:
7906    case Intrinsic::arm_neon_vst2:
7907    case Intrinsic::arm_neon_vst3:
7908    case Intrinsic::arm_neon_vst4:
7909    case Intrinsic::arm_neon_vst2lane:
7910    case Intrinsic::arm_neon_vst3lane:
7911    case Intrinsic::arm_neon_vst4lane:
7912      return CombineBaseUpdate(N, DCI);
7913    default: break;
7914    }
7915    break;
7916  }
7917  return SDValue();
7918}
7919
7920bool ARMTargetLowering::isDesirableToTransformToIntegerOp(unsigned Opc,
7921                                                          EVT VT) const {
7922  return (VT == MVT::f32) && (Opc == ISD::LOAD || Opc == ISD::STORE);
7923}
7924
7925bool ARMTargetLowering::allowsUnalignedMemoryAccesses(EVT VT) const {
7926  if (!Subtarget->allowsUnalignedMem())
7927    return false;
7928
7929  switch (VT.getSimpleVT().SimpleTy) {
7930  default:
7931    return false;
7932  case MVT::i8:
7933  case MVT::i16:
7934  case MVT::i32:
7935    return true;
7936  // FIXME: VLD1 etc with standard alignment is legal.
7937  }
7938}
7939
7940static bool isLegalT1AddressImmediate(int64_t V, EVT VT) {
7941  if (V < 0)
7942    return false;
7943
7944  unsigned Scale = 1;
7945  switch (VT.getSimpleVT().SimpleTy) {
7946  default: return false;
7947  case MVT::i1:
7948  case MVT::i8:
7949    // Scale == 1;
7950    break;
7951  case MVT::i16:
7952    // Scale == 2;
7953    Scale = 2;
7954    break;
7955  case MVT::i32:
7956    // Scale == 4;
7957    Scale = 4;
7958    break;
7959  }
7960
7961  if ((V & (Scale - 1)) != 0)
7962    return false;
7963  V /= Scale;
7964  return V == (V & ((1LL << 5) - 1));
7965}
7966
7967static bool isLegalT2AddressImmediate(int64_t V, EVT VT,
7968                                      const ARMSubtarget *Subtarget) {
7969  bool isNeg = false;
7970  if (V < 0) {
7971    isNeg = true;
7972    V = - V;
7973  }
7974
7975  switch (VT.getSimpleVT().SimpleTy) {
7976  default: return false;
7977  case MVT::i1:
7978  case MVT::i8:
7979  case MVT::i16:
7980  case MVT::i32:
7981    // + imm12 or - imm8
7982    if (isNeg)
7983      return V == (V & ((1LL << 8) - 1));
7984    return V == (V & ((1LL << 12) - 1));
7985  case MVT::f32:
7986  case MVT::f64:
7987    // Same as ARM mode. FIXME: NEON?
7988    if (!Subtarget->hasVFP2())
7989      return false;
7990    if ((V & 3) != 0)
7991      return false;
7992    V >>= 2;
7993    return V == (V & ((1LL << 8) - 1));
7994  }
7995}
7996
7997/// isLegalAddressImmediate - Return true if the integer value can be used
7998/// as the offset of the target addressing mode for load / store of the
7999/// given type.
8000static bool isLegalAddressImmediate(int64_t V, EVT VT,
8001                                    const ARMSubtarget *Subtarget) {
8002  if (V == 0)
8003    return true;
8004
8005  if (!VT.isSimple())
8006    return false;
8007
8008  if (Subtarget->isThumb1Only())
8009    return isLegalT1AddressImmediate(V, VT);
8010  else if (Subtarget->isThumb2())
8011    return isLegalT2AddressImmediate(V, VT, Subtarget);
8012
8013  // ARM mode.
8014  if (V < 0)
8015    V = - V;
8016  switch (VT.getSimpleVT().SimpleTy) {
8017  default: return false;
8018  case MVT::i1:
8019  case MVT::i8:
8020  case MVT::i32:
8021    // +- imm12
8022    return V == (V & ((1LL << 12) - 1));
8023  case MVT::i16:
8024    // +- imm8
8025    return V == (V & ((1LL << 8) - 1));
8026  case MVT::f32:
8027  case MVT::f64:
8028    if (!Subtarget->hasVFP2()) // FIXME: NEON?
8029      return false;
8030    if ((V & 3) != 0)
8031      return false;
8032    V >>= 2;
8033    return V == (V & ((1LL << 8) - 1));
8034  }
8035}
8036
8037bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM,
8038                                                      EVT VT) const {
8039  int Scale = AM.Scale;
8040  if (Scale < 0)
8041    return false;
8042
8043  switch (VT.getSimpleVT().SimpleTy) {
8044  default: return false;
8045  case MVT::i1:
8046  case MVT::i8:
8047  case MVT::i16:
8048  case MVT::i32:
8049    if (Scale == 1)
8050      return true;
8051    // r + r << imm
8052    Scale = Scale & ~1;
8053    return Scale == 2 || Scale == 4 || Scale == 8;
8054  case MVT::i64:
8055    // r + r
8056    if (((unsigned)AM.HasBaseReg + Scale) <= 2)
8057      return true;
8058    return false;
8059  case MVT::isVoid:
8060    // Note, we allow "void" uses (basically, uses that aren't loads or
8061    // stores), because arm allows folding a scale into many arithmetic
8062    // operations.  This should be made more precise and revisited later.
8063
8064    // Allow r << imm, but the imm has to be a multiple of two.
8065    if (Scale & 1) return false;
8066    return isPowerOf2_32(Scale);
8067  }
8068}
8069
8070/// isLegalAddressingMode - Return true if the addressing mode represented
8071/// by AM is legal for this target, for a load/store of the specified type.
8072bool ARMTargetLowering::isLegalAddressingMode(const AddrMode &AM,
8073                                              Type *Ty) const {
8074  EVT VT = getValueType(Ty, true);
8075  if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget))
8076    return false;
8077
8078  // Can never fold addr of global into load/store.
8079  if (AM.BaseGV)
8080    return false;
8081
8082  switch (AM.Scale) {
8083  case 0:  // no scale reg, must be "r+i" or "r", or "i".
8084    break;
8085  case 1:
8086    if (Subtarget->isThumb1Only())
8087      return false;
8088    // FALL THROUGH.
8089  default:
8090    // ARM doesn't support any R+R*scale+imm addr modes.
8091    if (AM.BaseOffs)
8092      return false;
8093
8094    if (!VT.isSimple())
8095      return false;
8096
8097    if (Subtarget->isThumb2())
8098      return isLegalT2ScaledAddressingMode(AM, VT);
8099
8100    int Scale = AM.Scale;
8101    switch (VT.getSimpleVT().SimpleTy) {
8102    default: return false;
8103    case MVT::i1:
8104    case MVT::i8:
8105    case MVT::i32:
8106      if (Scale < 0) Scale = -Scale;
8107      if (Scale == 1)
8108        return true;
8109      // r + r << imm
8110      return isPowerOf2_32(Scale & ~1);
8111    case MVT::i16:
8112    case MVT::i64:
8113      // r + r
8114      if (((unsigned)AM.HasBaseReg + Scale) <= 2)
8115        return true;
8116      return false;
8117
8118    case MVT::isVoid:
8119      // Note, we allow "void" uses (basically, uses that aren't loads or
8120      // stores), because arm allows folding a scale into many arithmetic
8121      // operations.  This should be made more precise and revisited later.
8122
8123      // Allow r << imm, but the imm has to be a multiple of two.
8124      if (Scale & 1) return false;
8125      return isPowerOf2_32(Scale);
8126    }
8127    break;
8128  }
8129  return true;
8130}
8131
8132/// isLegalICmpImmediate - Return true if the specified immediate is legal
8133/// icmp immediate, that is the target has icmp instructions which can compare
8134/// a register against the immediate without having to materialize the
8135/// immediate into a register.
8136bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
8137  if (!Subtarget->isThumb())
8138    return ARM_AM::getSOImmVal(Imm) != -1;
8139  if (Subtarget->isThumb2())
8140    return ARM_AM::getT2SOImmVal(Imm) != -1;
8141  return Imm >= 0 && Imm <= 255;
8142}
8143
8144/// isLegalAddImmediate - Return true if the specified immediate is legal
8145/// add immediate, that is the target has add instructions which can add
8146/// a register with the immediate without having to materialize the
8147/// immediate into a register.
8148bool ARMTargetLowering::isLegalAddImmediate(int64_t Imm) const {
8149  return ARM_AM::getSOImmVal(Imm) != -1;
8150}
8151
8152static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT,
8153                                      bool isSEXTLoad, SDValue &Base,
8154                                      SDValue &Offset, bool &isInc,
8155                                      SelectionDAG &DAG) {
8156  if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
8157    return false;
8158
8159  if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
8160    // AddressingMode 3
8161    Base = Ptr->getOperand(0);
8162    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
8163      int RHSC = (int)RHS->getZExtValue();
8164      if (RHSC < 0 && RHSC > -256) {
8165        assert(Ptr->getOpcode() == ISD::ADD);
8166        isInc = false;
8167        Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
8168        return true;
8169      }
8170    }
8171    isInc = (Ptr->getOpcode() == ISD::ADD);
8172    Offset = Ptr->getOperand(1);
8173    return true;
8174  } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
8175    // AddressingMode 2
8176    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
8177      int RHSC = (int)RHS->getZExtValue();
8178      if (RHSC < 0 && RHSC > -0x1000) {
8179        assert(Ptr->getOpcode() == ISD::ADD);
8180        isInc = false;
8181        Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
8182        Base = Ptr->getOperand(0);
8183        return true;
8184      }
8185    }
8186
8187    if (Ptr->getOpcode() == ISD::ADD) {
8188      isInc = true;
8189      ARM_AM::ShiftOpc ShOpcVal=
8190        ARM_AM::getShiftOpcForNode(Ptr->getOperand(0).getOpcode());
8191      if (ShOpcVal != ARM_AM::no_shift) {
8192        Base = Ptr->getOperand(1);
8193        Offset = Ptr->getOperand(0);
8194      } else {
8195        Base = Ptr->getOperand(0);
8196        Offset = Ptr->getOperand(1);
8197      }
8198      return true;
8199    }
8200
8201    isInc = (Ptr->getOpcode() == ISD::ADD);
8202    Base = Ptr->getOperand(0);
8203    Offset = Ptr->getOperand(1);
8204    return true;
8205  }
8206
8207  // FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
8208  return false;
8209}
8210
8211static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT,
8212                                     bool isSEXTLoad, SDValue &Base,
8213                                     SDValue &Offset, bool &isInc,
8214                                     SelectionDAG &DAG) {
8215  if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
8216    return false;
8217
8218  Base = Ptr->getOperand(0);
8219  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
8220    int RHSC = (int)RHS->getZExtValue();
8221    if (RHSC < 0 && RHSC > -0x100) { // 8 bits.
8222      assert(Ptr->getOpcode() == ISD::ADD);
8223      isInc = false;
8224      Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
8225      return true;
8226    } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero.
8227      isInc = Ptr->getOpcode() == ISD::ADD;
8228      Offset = DAG.getConstant(RHSC, RHS->getValueType(0));
8229      return true;
8230    }
8231  }
8232
8233  return false;
8234}
8235
8236/// getPreIndexedAddressParts - returns true by value, base pointer and
8237/// offset pointer and addressing mode by reference if the node's address
8238/// can be legally represented as pre-indexed load / store address.
8239bool
8240ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
8241                                             SDValue &Offset,
8242                                             ISD::MemIndexedMode &AM,
8243                                             SelectionDAG &DAG) const {
8244  if (Subtarget->isThumb1Only())
8245    return false;
8246
8247  EVT VT;
8248  SDValue Ptr;
8249  bool isSEXTLoad = false;
8250  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
8251    Ptr = LD->getBasePtr();
8252    VT  = LD->getMemoryVT();
8253    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
8254  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
8255    Ptr = ST->getBasePtr();
8256    VT  = ST->getMemoryVT();
8257  } else
8258    return false;
8259
8260  bool isInc;
8261  bool isLegal = false;
8262  if (Subtarget->isThumb2())
8263    isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
8264                                       Offset, isInc, DAG);
8265  else
8266    isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
8267                                        Offset, isInc, DAG);
8268  if (!isLegal)
8269    return false;
8270
8271  AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
8272  return true;
8273}
8274
8275/// getPostIndexedAddressParts - returns true by value, base pointer and
8276/// offset pointer and addressing mode by reference if this node can be
8277/// combined with a load / store to form a post-indexed load / store.
8278bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
8279                                                   SDValue &Base,
8280                                                   SDValue &Offset,
8281                                                   ISD::MemIndexedMode &AM,
8282                                                   SelectionDAG &DAG) const {
8283  if (Subtarget->isThumb1Only())
8284    return false;
8285
8286  EVT VT;
8287  SDValue Ptr;
8288  bool isSEXTLoad = false;
8289  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
8290    VT  = LD->getMemoryVT();
8291    Ptr = LD->getBasePtr();
8292    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
8293  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
8294    VT  = ST->getMemoryVT();
8295    Ptr = ST->getBasePtr();
8296  } else
8297    return false;
8298
8299  bool isInc;
8300  bool isLegal = false;
8301  if (Subtarget->isThumb2())
8302    isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
8303                                       isInc, DAG);
8304  else
8305    isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
8306                                        isInc, DAG);
8307  if (!isLegal)
8308    return false;
8309
8310  if (Ptr != Base) {
8311    // Swap base ptr and offset to catch more post-index load / store when
8312    // it's legal. In Thumb2 mode, offset must be an immediate.
8313    if (Ptr == Offset && Op->getOpcode() == ISD::ADD &&
8314        !Subtarget->isThumb2())
8315      std::swap(Base, Offset);
8316
8317    // Post-indexed load / store update the base pointer.
8318    if (Ptr != Base)
8319      return false;
8320  }
8321
8322  AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
8323  return true;
8324}
8325
8326void ARMTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
8327                                                       const APInt &Mask,
8328                                                       APInt &KnownZero,
8329                                                       APInt &KnownOne,
8330                                                       const SelectionDAG &DAG,
8331                                                       unsigned Depth) const {
8332  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
8333  switch (Op.getOpcode()) {
8334  default: break;
8335  case ARMISD::CMOV: {
8336    // Bits are known zero/one if known on the LHS and RHS.
8337    DAG.ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
8338    if (KnownZero == 0 && KnownOne == 0) return;
8339
8340    APInt KnownZeroRHS, KnownOneRHS;
8341    DAG.ComputeMaskedBits(Op.getOperand(1), Mask,
8342                          KnownZeroRHS, KnownOneRHS, Depth+1);
8343    KnownZero &= KnownZeroRHS;
8344    KnownOne  &= KnownOneRHS;
8345    return;
8346  }
8347  }
8348}
8349
8350//===----------------------------------------------------------------------===//
8351//                           ARM Inline Assembly Support
8352//===----------------------------------------------------------------------===//
8353
8354bool ARMTargetLowering::ExpandInlineAsm(CallInst *CI) const {
8355  // Looking for "rev" which is V6+.
8356  if (!Subtarget->hasV6Ops())
8357    return false;
8358
8359  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
8360  std::string AsmStr = IA->getAsmString();
8361  SmallVector<StringRef, 4> AsmPieces;
8362  SplitString(AsmStr, AsmPieces, ";\n");
8363
8364  switch (AsmPieces.size()) {
8365  default: return false;
8366  case 1:
8367    AsmStr = AsmPieces[0];
8368    AsmPieces.clear();
8369    SplitString(AsmStr, AsmPieces, " \t,");
8370
8371    // rev $0, $1
8372    if (AsmPieces.size() == 3 &&
8373        AsmPieces[0] == "rev" && AsmPieces[1] == "$0" && AsmPieces[2] == "$1" &&
8374        IA->getConstraintString().compare(0, 4, "=l,l") == 0) {
8375      IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
8376      if (Ty && Ty->getBitWidth() == 32)
8377        return IntrinsicLowering::LowerToByteSwap(CI);
8378    }
8379    break;
8380  }
8381
8382  return false;
8383}
8384
8385/// getConstraintType - Given a constraint letter, return the type of
8386/// constraint it is for this target.
8387ARMTargetLowering::ConstraintType
8388ARMTargetLowering::getConstraintType(const std::string &Constraint) const {
8389  if (Constraint.size() == 1) {
8390    switch (Constraint[0]) {
8391    default:  break;
8392    case 'l': return C_RegisterClass;
8393    case 'w': return C_RegisterClass;
8394    case 'h': return C_RegisterClass;
8395    case 'x': return C_RegisterClass;
8396    case 't': return C_RegisterClass;
8397    case 'j': return C_Other; // Constant for movw.
8398      // An address with a single base register. Due to the way we
8399      // currently handle addresses it is the same as an 'r' memory constraint.
8400    case 'Q': return C_Memory;
8401    }
8402  } else if (Constraint.size() == 2) {
8403    switch (Constraint[0]) {
8404    default: break;
8405    // All 'U+' constraints are addresses.
8406    case 'U': return C_Memory;
8407    }
8408  }
8409  return TargetLowering::getConstraintType(Constraint);
8410}
8411
8412/// Examine constraint type and operand type and determine a weight value.
8413/// This object must already have been set up with the operand type
8414/// and the current alternative constraint selected.
8415TargetLowering::ConstraintWeight
8416ARMTargetLowering::getSingleConstraintMatchWeight(
8417    AsmOperandInfo &info, const char *constraint) const {
8418  ConstraintWeight weight = CW_Invalid;
8419  Value *CallOperandVal = info.CallOperandVal;
8420    // If we don't have a value, we can't do a match,
8421    // but allow it at the lowest weight.
8422  if (CallOperandVal == NULL)
8423    return CW_Default;
8424  Type *type = CallOperandVal->getType();
8425  // Look at the constraint type.
8426  switch (*constraint) {
8427  default:
8428    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
8429    break;
8430  case 'l':
8431    if (type->isIntegerTy()) {
8432      if (Subtarget->isThumb())
8433        weight = CW_SpecificReg;
8434      else
8435        weight = CW_Register;
8436    }
8437    break;
8438  case 'w':
8439    if (type->isFloatingPointTy())
8440      weight = CW_Register;
8441    break;
8442  }
8443  return weight;
8444}
8445
8446typedef std::pair<unsigned, const TargetRegisterClass*> RCPair;
8447RCPair
8448ARMTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
8449                                                EVT VT) const {
8450  if (Constraint.size() == 1) {
8451    // GCC ARM Constraint Letters
8452    switch (Constraint[0]) {
8453    case 'l': // Low regs or general regs.
8454      if (Subtarget->isThumb())
8455        return RCPair(0U, ARM::tGPRRegisterClass);
8456      else
8457        return RCPair(0U, ARM::GPRRegisterClass);
8458    case 'h': // High regs or no regs.
8459      if (Subtarget->isThumb())
8460        return RCPair(0U, ARM::hGPRRegisterClass);
8461      break;
8462    case 'r':
8463      return RCPair(0U, ARM::GPRRegisterClass);
8464    case 'w':
8465      if (VT == MVT::f32)
8466        return RCPair(0U, ARM::SPRRegisterClass);
8467      if (VT.getSizeInBits() == 64)
8468        return RCPair(0U, ARM::DPRRegisterClass);
8469      if (VT.getSizeInBits() == 128)
8470        return RCPair(0U, ARM::QPRRegisterClass);
8471      break;
8472    case 'x':
8473      if (VT == MVT::f32)
8474        return RCPair(0U, ARM::SPR_8RegisterClass);
8475      if (VT.getSizeInBits() == 64)
8476        return RCPair(0U, ARM::DPR_8RegisterClass);
8477      if (VT.getSizeInBits() == 128)
8478        return RCPair(0U, ARM::QPR_8RegisterClass);
8479      break;
8480    case 't':
8481      if (VT == MVT::f32)
8482        return RCPair(0U, ARM::SPRRegisterClass);
8483      break;
8484    }
8485  }
8486  if (StringRef("{cc}").equals_lower(Constraint))
8487    return std::make_pair(unsigned(ARM::CPSR), ARM::CCRRegisterClass);
8488
8489  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
8490}
8491
8492/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
8493/// vector.  If it is invalid, don't add anything to Ops.
8494void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
8495                                                     std::string &Constraint,
8496                                                     std::vector<SDValue>&Ops,
8497                                                     SelectionDAG &DAG) const {
8498  SDValue Result(0, 0);
8499
8500  // Currently only support length 1 constraints.
8501  if (Constraint.length() != 1) return;
8502
8503  char ConstraintLetter = Constraint[0];
8504  switch (ConstraintLetter) {
8505  default: break;
8506  case 'j':
8507  case 'I': case 'J': case 'K': case 'L':
8508  case 'M': case 'N': case 'O':
8509    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
8510    if (!C)
8511      return;
8512
8513    int64_t CVal64 = C->getSExtValue();
8514    int CVal = (int) CVal64;
8515    // None of these constraints allow values larger than 32 bits.  Check
8516    // that the value fits in an int.
8517    if (CVal != CVal64)
8518      return;
8519
8520    switch (ConstraintLetter) {
8521      case 'j':
8522        // Constant suitable for movw, must be between 0 and
8523        // 65535.
8524        if (Subtarget->hasV6T2Ops())
8525          if (CVal >= 0 && CVal <= 65535)
8526            break;
8527        return;
8528      case 'I':
8529        if (Subtarget->isThumb1Only()) {
8530          // This must be a constant between 0 and 255, for ADD
8531          // immediates.
8532          if (CVal >= 0 && CVal <= 255)
8533            break;
8534        } else if (Subtarget->isThumb2()) {
8535          // A constant that can be used as an immediate value in a
8536          // data-processing instruction.
8537          if (ARM_AM::getT2SOImmVal(CVal) != -1)
8538            break;
8539        } else {
8540          // A constant that can be used as an immediate value in a
8541          // data-processing instruction.
8542          if (ARM_AM::getSOImmVal(CVal) != -1)
8543            break;
8544        }
8545        return;
8546
8547      case 'J':
8548        if (Subtarget->isThumb()) {  // FIXME thumb2
8549          // This must be a constant between -255 and -1, for negated ADD
8550          // immediates. This can be used in GCC with an "n" modifier that
8551          // prints the negated value, for use with SUB instructions. It is
8552          // not useful otherwise but is implemented for compatibility.
8553          if (CVal >= -255 && CVal <= -1)
8554            break;
8555        } else {
8556          // This must be a constant between -4095 and 4095. It is not clear
8557          // what this constraint is intended for. Implemented for
8558          // compatibility with GCC.
8559          if (CVal >= -4095 && CVal <= 4095)
8560            break;
8561        }
8562        return;
8563
8564      case 'K':
8565        if (Subtarget->isThumb1Only()) {
8566          // A 32-bit value where only one byte has a nonzero value. Exclude
8567          // zero to match GCC. This constraint is used by GCC internally for
8568          // constants that can be loaded with a move/shift combination.
8569          // It is not useful otherwise but is implemented for compatibility.
8570          if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal))
8571            break;
8572        } else if (Subtarget->isThumb2()) {
8573          // A constant whose bitwise inverse can be used as an immediate
8574          // value in a data-processing instruction. This can be used in GCC
8575          // with a "B" modifier that prints the inverted value, for use with
8576          // BIC and MVN instructions. It is not useful otherwise but is
8577          // implemented for compatibility.
8578          if (ARM_AM::getT2SOImmVal(~CVal) != -1)
8579            break;
8580        } else {
8581          // A constant whose bitwise inverse can be used as an immediate
8582          // value in a data-processing instruction. This can be used in GCC
8583          // with a "B" modifier that prints the inverted value, for use with
8584          // BIC and MVN instructions. It is not useful otherwise but is
8585          // implemented for compatibility.
8586          if (ARM_AM::getSOImmVal(~CVal) != -1)
8587            break;
8588        }
8589        return;
8590
8591      case 'L':
8592        if (Subtarget->isThumb1Only()) {
8593          // This must be a constant between -7 and 7,
8594          // for 3-operand ADD/SUB immediate instructions.
8595          if (CVal >= -7 && CVal < 7)
8596            break;
8597        } else if (Subtarget->isThumb2()) {
8598          // A constant whose negation can be used as an immediate value in a
8599          // data-processing instruction. This can be used in GCC with an "n"
8600          // modifier that prints the negated value, for use with SUB
8601          // instructions. It is not useful otherwise but is implemented for
8602          // compatibility.
8603          if (ARM_AM::getT2SOImmVal(-CVal) != -1)
8604            break;
8605        } else {
8606          // A constant whose negation can be used as an immediate value in a
8607          // data-processing instruction. This can be used in GCC with an "n"
8608          // modifier that prints the negated value, for use with SUB
8609          // instructions. It is not useful otherwise but is implemented for
8610          // compatibility.
8611          if (ARM_AM::getSOImmVal(-CVal) != -1)
8612            break;
8613        }
8614        return;
8615
8616      case 'M':
8617        if (Subtarget->isThumb()) { // FIXME thumb2
8618          // This must be a multiple of 4 between 0 and 1020, for
8619          // ADD sp + immediate.
8620          if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
8621            break;
8622        } else {
8623          // A power of two or a constant between 0 and 32.  This is used in
8624          // GCC for the shift amount on shifted register operands, but it is
8625          // useful in general for any shift amounts.
8626          if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0))
8627            break;
8628        }
8629        return;
8630
8631      case 'N':
8632        if (Subtarget->isThumb()) {  // FIXME thumb2
8633          // This must be a constant between 0 and 31, for shift amounts.
8634          if (CVal >= 0 && CVal <= 31)
8635            break;
8636        }
8637        return;
8638
8639      case 'O':
8640        if (Subtarget->isThumb()) {  // FIXME thumb2
8641          // This must be a multiple of 4 between -508 and 508, for
8642          // ADD/SUB sp = sp + immediate.
8643          if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
8644            break;
8645        }
8646        return;
8647    }
8648    Result = DAG.getTargetConstant(CVal, Op.getValueType());
8649    break;
8650  }
8651
8652  if (Result.getNode()) {
8653    Ops.push_back(Result);
8654    return;
8655  }
8656  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
8657}
8658
8659bool
8660ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
8661  // The ARM target isn't yet aware of offsets.
8662  return false;
8663}
8664
8665bool ARM::isBitFieldInvertedMask(unsigned v) {
8666  if (v == 0xffffffff)
8667    return 0;
8668  // there can be 1's on either or both "outsides", all the "inside"
8669  // bits must be 0's
8670  unsigned int lsb = 0, msb = 31;
8671  while (v & (1 << msb)) --msb;
8672  while (v & (1 << lsb)) ++lsb;
8673  for (unsigned int i = lsb; i <= msb; ++i) {
8674    if (v & (1 << i))
8675      return 0;
8676  }
8677  return 1;
8678}
8679
8680/// isFPImmLegal - Returns true if the target can instruction select the
8681/// specified FP immediate natively. If false, the legalizer will
8682/// materialize the FP immediate as a load from a constant pool.
8683bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
8684  if (!Subtarget->hasVFP3())
8685    return false;
8686  if (VT == MVT::f32)
8687    return ARM_AM::getFP32Imm(Imm) != -1;
8688  if (VT == MVT::f64)
8689    return ARM_AM::getFP64Imm(Imm) != -1;
8690  return false;
8691}
8692
8693/// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
8694/// MemIntrinsicNodes.  The associated MachineMemOperands record the alignment
8695/// specified in the intrinsic calls.
8696bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
8697                                           const CallInst &I,
8698                                           unsigned Intrinsic) const {
8699  switch (Intrinsic) {
8700  case Intrinsic::arm_neon_vld1:
8701  case Intrinsic::arm_neon_vld2:
8702  case Intrinsic::arm_neon_vld3:
8703  case Intrinsic::arm_neon_vld4:
8704  case Intrinsic::arm_neon_vld2lane:
8705  case Intrinsic::arm_neon_vld3lane:
8706  case Intrinsic::arm_neon_vld4lane: {
8707    Info.opc = ISD::INTRINSIC_W_CHAIN;
8708    // Conservatively set memVT to the entire set of vectors loaded.
8709    uint64_t NumElts = getTargetData()->getTypeAllocSize(I.getType()) / 8;
8710    Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
8711    Info.ptrVal = I.getArgOperand(0);
8712    Info.offset = 0;
8713    Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
8714    Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
8715    Info.vol = false; // volatile loads with NEON intrinsics not supported
8716    Info.readMem = true;
8717    Info.writeMem = false;
8718    return true;
8719  }
8720  case Intrinsic::arm_neon_vst1:
8721  case Intrinsic::arm_neon_vst2:
8722  case Intrinsic::arm_neon_vst3:
8723  case Intrinsic::arm_neon_vst4:
8724  case Intrinsic::arm_neon_vst2lane:
8725  case Intrinsic::arm_neon_vst3lane:
8726  case Intrinsic::arm_neon_vst4lane: {
8727    Info.opc = ISD::INTRINSIC_VOID;
8728    // Conservatively set memVT to the entire set of vectors stored.
8729    unsigned NumElts = 0;
8730    for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
8731      Type *ArgTy = I.getArgOperand(ArgI)->getType();
8732      if (!ArgTy->isVectorTy())
8733        break;
8734      NumElts += getTargetData()->getTypeAllocSize(ArgTy) / 8;
8735    }
8736    Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
8737    Info.ptrVal = I.getArgOperand(0);
8738    Info.offset = 0;
8739    Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
8740    Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
8741    Info.vol = false; // volatile stores with NEON intrinsics not supported
8742    Info.readMem = false;
8743    Info.writeMem = true;
8744    return true;
8745  }
8746  case Intrinsic::arm_strexd: {
8747    Info.opc = ISD::INTRINSIC_W_CHAIN;
8748    Info.memVT = MVT::i64;
8749    Info.ptrVal = I.getArgOperand(2);
8750    Info.offset = 0;
8751    Info.align = 8;
8752    Info.vol = true;
8753    Info.readMem = false;
8754    Info.writeMem = true;
8755    return true;
8756  }
8757  case Intrinsic::arm_ldrexd: {
8758    Info.opc = ISD::INTRINSIC_W_CHAIN;
8759    Info.memVT = MVT::i64;
8760    Info.ptrVal = I.getArgOperand(0);
8761    Info.offset = 0;
8762    Info.align = 8;
8763    Info.vol = true;
8764    Info.readMem = true;
8765    Info.writeMem = false;
8766    return true;
8767  }
8768  default:
8769    break;
8770  }
8771
8772  return false;
8773}
8774