ARMISelLowering.cpp revision f4aea8f34946d4d2b101b8e3c6db95c18be80173
1//===-- ARMISelLowering.cpp - ARM DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that ARM uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "arm-isel"
16#include "ARM.h"
17#include "ARMCallingConv.h"
18#include "ARMConstantPoolValue.h"
19#include "ARMISelLowering.h"
20#include "ARMMachineFunctionInfo.h"
21#include "ARMPerfectShuffle.h"
22#include "ARMRegisterInfo.h"
23#include "ARMSubtarget.h"
24#include "ARMTargetMachine.h"
25#include "ARMTargetObjectFile.h"
26#include "MCTargetDesc/ARMAddressingModes.h"
27#include "llvm/CallingConv.h"
28#include "llvm/Constants.h"
29#include "llvm/Function.h"
30#include "llvm/GlobalValue.h"
31#include "llvm/Instruction.h"
32#include "llvm/Instructions.h"
33#include "llvm/Intrinsics.h"
34#include "llvm/Type.h"
35#include "llvm/CodeGen/CallingConvLower.h"
36#include "llvm/CodeGen/IntrinsicLowering.h"
37#include "llvm/CodeGen/MachineBasicBlock.h"
38#include "llvm/CodeGen/MachineFrameInfo.h"
39#include "llvm/CodeGen/MachineFunction.h"
40#include "llvm/CodeGen/MachineInstrBuilder.h"
41#include "llvm/CodeGen/MachineModuleInfo.h"
42#include "llvm/CodeGen/MachineRegisterInfo.h"
43#include "llvm/CodeGen/SelectionDAG.h"
44#include "llvm/MC/MCSectionMachO.h"
45#include "llvm/Target/TargetOptions.h"
46#include "llvm/ADT/VectorExtras.h"
47#include "llvm/ADT/StringExtras.h"
48#include "llvm/ADT/Statistic.h"
49#include "llvm/Support/CommandLine.h"
50#include "llvm/Support/ErrorHandling.h"
51#include "llvm/Support/MathExtras.h"
52#include "llvm/Support/raw_ostream.h"
53#include <sstream>
54using namespace llvm;
55
56STATISTIC(NumTailCalls, "Number of tail calls");
57STATISTIC(NumMovwMovt, "Number of GAs materialized with movw + movt");
58
59// This option should go away when tail calls fully work.
60static cl::opt<bool>
61EnableARMTailCalls("arm-tail-calls", cl::Hidden,
62  cl::desc("Generate tail calls (TEMPORARY OPTION)."),
63  cl::init(false));
64
65cl::opt<bool>
66EnableARMLongCalls("arm-long-calls", cl::Hidden,
67  cl::desc("Generate calls via indirect call instructions"),
68  cl::init(false));
69
70static cl::opt<bool>
71ARMInterworking("arm-interworking", cl::Hidden,
72  cl::desc("Enable / disable ARM interworking (for debugging only)"),
73  cl::init(true));
74
75namespace {
76  class ARMCCState : public CCState {
77  public:
78    ARMCCState(CallingConv::ID CC, bool isVarArg, MachineFunction &MF,
79               const TargetMachine &TM, SmallVector<CCValAssign, 16> &locs,
80               LLVMContext &C, ParmContext PC)
81        : CCState(CC, isVarArg, MF, TM, locs, C) {
82      assert(((PC == Call) || (PC == Prologue)) &&
83             "ARMCCState users must specify whether their context is call"
84             "or prologue generation.");
85      CallOrPrologue = PC;
86    }
87  };
88}
89
90// The APCS parameter registers.
91static const unsigned GPRArgRegs[] = {
92  ARM::R0, ARM::R1, ARM::R2, ARM::R3
93};
94
95void ARMTargetLowering::addTypeForNEON(EVT VT, EVT PromotedLdStVT,
96                                       EVT PromotedBitwiseVT) {
97  if (VT != PromotedLdStVT) {
98    setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote);
99    AddPromotedToType (ISD::LOAD, VT.getSimpleVT(),
100                       PromotedLdStVT.getSimpleVT());
101
102    setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote);
103    AddPromotedToType (ISD::STORE, VT.getSimpleVT(),
104                       PromotedLdStVT.getSimpleVT());
105  }
106
107  EVT ElemTy = VT.getVectorElementType();
108  if (ElemTy != MVT::i64 && ElemTy != MVT::f64)
109    setOperationAction(ISD::SETCC, VT.getSimpleVT(), Custom);
110  setOperationAction(ISD::INSERT_VECTOR_ELT, VT.getSimpleVT(), Custom);
111  setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT.getSimpleVT(), Custom);
112  if (ElemTy == MVT::i32) {
113    setOperationAction(ISD::SINT_TO_FP, VT.getSimpleVT(), Custom);
114    setOperationAction(ISD::UINT_TO_FP, VT.getSimpleVT(), Custom);
115    setOperationAction(ISD::FP_TO_SINT, VT.getSimpleVT(), Custom);
116    setOperationAction(ISD::FP_TO_UINT, VT.getSimpleVT(), Custom);
117  } else {
118    setOperationAction(ISD::SINT_TO_FP, VT.getSimpleVT(), Expand);
119    setOperationAction(ISD::UINT_TO_FP, VT.getSimpleVT(), Expand);
120    setOperationAction(ISD::FP_TO_SINT, VT.getSimpleVT(), Expand);
121    setOperationAction(ISD::FP_TO_UINT, VT.getSimpleVT(), Expand);
122  }
123  setOperationAction(ISD::BUILD_VECTOR, VT.getSimpleVT(), Custom);
124  setOperationAction(ISD::VECTOR_SHUFFLE, VT.getSimpleVT(), Custom);
125  setOperationAction(ISD::CONCAT_VECTORS, VT.getSimpleVT(), Legal);
126  setOperationAction(ISD::EXTRACT_SUBVECTOR, VT.getSimpleVT(), Legal);
127  setOperationAction(ISD::SELECT, VT.getSimpleVT(), Expand);
128  setOperationAction(ISD::SELECT_CC, VT.getSimpleVT(), Expand);
129  setOperationAction(ISD::SIGN_EXTEND_INREG, VT.getSimpleVT(), Expand);
130  if (VT.isInteger()) {
131    setOperationAction(ISD::SHL, VT.getSimpleVT(), Custom);
132    setOperationAction(ISD::SRA, VT.getSimpleVT(), Custom);
133    setOperationAction(ISD::SRL, VT.getSimpleVT(), Custom);
134  }
135
136  // Promote all bit-wise operations.
137  if (VT.isInteger() && VT != PromotedBitwiseVT) {
138    setOperationAction(ISD::AND, VT.getSimpleVT(), Promote);
139    AddPromotedToType (ISD::AND, VT.getSimpleVT(),
140                       PromotedBitwiseVT.getSimpleVT());
141    setOperationAction(ISD::OR,  VT.getSimpleVT(), Promote);
142    AddPromotedToType (ISD::OR,  VT.getSimpleVT(),
143                       PromotedBitwiseVT.getSimpleVT());
144    setOperationAction(ISD::XOR, VT.getSimpleVT(), Promote);
145    AddPromotedToType (ISD::XOR, VT.getSimpleVT(),
146                       PromotedBitwiseVT.getSimpleVT());
147  }
148
149  // Neon does not support vector divide/remainder operations.
150  setOperationAction(ISD::SDIV, VT.getSimpleVT(), Expand);
151  setOperationAction(ISD::UDIV, VT.getSimpleVT(), Expand);
152  setOperationAction(ISD::FDIV, VT.getSimpleVT(), Expand);
153  setOperationAction(ISD::SREM, VT.getSimpleVT(), Expand);
154  setOperationAction(ISD::UREM, VT.getSimpleVT(), Expand);
155  setOperationAction(ISD::FREM, VT.getSimpleVT(), Expand);
156}
157
158void ARMTargetLowering::addDRTypeForNEON(EVT VT) {
159  addRegisterClass(VT, ARM::DPRRegisterClass);
160  addTypeForNEON(VT, MVT::f64, MVT::v2i32);
161}
162
163void ARMTargetLowering::addQRTypeForNEON(EVT VT) {
164  addRegisterClass(VT, ARM::QPRRegisterClass);
165  addTypeForNEON(VT, MVT::v2f64, MVT::v4i32);
166}
167
168static TargetLoweringObjectFile *createTLOF(TargetMachine &TM) {
169  if (TM.getSubtarget<ARMSubtarget>().isTargetDarwin())
170    return new TargetLoweringObjectFileMachO();
171
172  return new ARMElfTargetObjectFile();
173}
174
175ARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
176    : TargetLowering(TM, createTLOF(TM)) {
177  Subtarget = &TM.getSubtarget<ARMSubtarget>();
178  RegInfo = TM.getRegisterInfo();
179  Itins = TM.getInstrItineraryData();
180
181  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
182
183  if (Subtarget->isTargetDarwin()) {
184    // Uses VFP for Thumb libfuncs if available.
185    if (Subtarget->isThumb() && Subtarget->hasVFP2()) {
186      // Single-precision floating-point arithmetic.
187      setLibcallName(RTLIB::ADD_F32, "__addsf3vfp");
188      setLibcallName(RTLIB::SUB_F32, "__subsf3vfp");
189      setLibcallName(RTLIB::MUL_F32, "__mulsf3vfp");
190      setLibcallName(RTLIB::DIV_F32, "__divsf3vfp");
191
192      // Double-precision floating-point arithmetic.
193      setLibcallName(RTLIB::ADD_F64, "__adddf3vfp");
194      setLibcallName(RTLIB::SUB_F64, "__subdf3vfp");
195      setLibcallName(RTLIB::MUL_F64, "__muldf3vfp");
196      setLibcallName(RTLIB::DIV_F64, "__divdf3vfp");
197
198      // Single-precision comparisons.
199      setLibcallName(RTLIB::OEQ_F32, "__eqsf2vfp");
200      setLibcallName(RTLIB::UNE_F32, "__nesf2vfp");
201      setLibcallName(RTLIB::OLT_F32, "__ltsf2vfp");
202      setLibcallName(RTLIB::OLE_F32, "__lesf2vfp");
203      setLibcallName(RTLIB::OGE_F32, "__gesf2vfp");
204      setLibcallName(RTLIB::OGT_F32, "__gtsf2vfp");
205      setLibcallName(RTLIB::UO_F32,  "__unordsf2vfp");
206      setLibcallName(RTLIB::O_F32,   "__unordsf2vfp");
207
208      setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
209      setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETNE);
210      setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
211      setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
212      setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
213      setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
214      setCmpLibcallCC(RTLIB::UO_F32,  ISD::SETNE);
215      setCmpLibcallCC(RTLIB::O_F32,   ISD::SETEQ);
216
217      // Double-precision comparisons.
218      setLibcallName(RTLIB::OEQ_F64, "__eqdf2vfp");
219      setLibcallName(RTLIB::UNE_F64, "__nedf2vfp");
220      setLibcallName(RTLIB::OLT_F64, "__ltdf2vfp");
221      setLibcallName(RTLIB::OLE_F64, "__ledf2vfp");
222      setLibcallName(RTLIB::OGE_F64, "__gedf2vfp");
223      setLibcallName(RTLIB::OGT_F64, "__gtdf2vfp");
224      setLibcallName(RTLIB::UO_F64,  "__unorddf2vfp");
225      setLibcallName(RTLIB::O_F64,   "__unorddf2vfp");
226
227      setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
228      setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETNE);
229      setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
230      setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
231      setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
232      setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
233      setCmpLibcallCC(RTLIB::UO_F64,  ISD::SETNE);
234      setCmpLibcallCC(RTLIB::O_F64,   ISD::SETEQ);
235
236      // Floating-point to integer conversions.
237      // i64 conversions are done via library routines even when generating VFP
238      // instructions, so use the same ones.
239      setLibcallName(RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp");
240      setLibcallName(RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp");
241      setLibcallName(RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp");
242      setLibcallName(RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp");
243
244      // Conversions between floating types.
245      setLibcallName(RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp");
246      setLibcallName(RTLIB::FPEXT_F32_F64,   "__extendsfdf2vfp");
247
248      // Integer to floating-point conversions.
249      // i64 conversions are done via library routines even when generating VFP
250      // instructions, so use the same ones.
251      // FIXME: There appears to be some naming inconsistency in ARM libgcc:
252      // e.g., __floatunsidf vs. __floatunssidfvfp.
253      setLibcallName(RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp");
254      setLibcallName(RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp");
255      setLibcallName(RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp");
256      setLibcallName(RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp");
257    }
258  }
259
260  // These libcalls are not available in 32-bit.
261  setLibcallName(RTLIB::SHL_I128, 0);
262  setLibcallName(RTLIB::SRL_I128, 0);
263  setLibcallName(RTLIB::SRA_I128, 0);
264
265  if (Subtarget->isAAPCS_ABI()) {
266    // Double-precision floating-point arithmetic helper functions
267    // RTABI chapter 4.1.2, Table 2
268    setLibcallName(RTLIB::ADD_F64, "__aeabi_dadd");
269    setLibcallName(RTLIB::DIV_F64, "__aeabi_ddiv");
270    setLibcallName(RTLIB::MUL_F64, "__aeabi_dmul");
271    setLibcallName(RTLIB::SUB_F64, "__aeabi_dsub");
272    setLibcallCallingConv(RTLIB::ADD_F64, CallingConv::ARM_AAPCS);
273    setLibcallCallingConv(RTLIB::DIV_F64, CallingConv::ARM_AAPCS);
274    setLibcallCallingConv(RTLIB::MUL_F64, CallingConv::ARM_AAPCS);
275    setLibcallCallingConv(RTLIB::SUB_F64, CallingConv::ARM_AAPCS);
276
277    // Double-precision floating-point comparison helper functions
278    // RTABI chapter 4.1.2, Table 3
279    setLibcallName(RTLIB::OEQ_F64, "__aeabi_dcmpeq");
280    setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
281    setLibcallName(RTLIB::UNE_F64, "__aeabi_dcmpeq");
282    setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETEQ);
283    setLibcallName(RTLIB::OLT_F64, "__aeabi_dcmplt");
284    setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
285    setLibcallName(RTLIB::OLE_F64, "__aeabi_dcmple");
286    setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
287    setLibcallName(RTLIB::OGE_F64, "__aeabi_dcmpge");
288    setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
289    setLibcallName(RTLIB::OGT_F64, "__aeabi_dcmpgt");
290    setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
291    setLibcallName(RTLIB::UO_F64,  "__aeabi_dcmpun");
292    setCmpLibcallCC(RTLIB::UO_F64,  ISD::SETNE);
293    setLibcallName(RTLIB::O_F64,   "__aeabi_dcmpun");
294    setCmpLibcallCC(RTLIB::O_F64,   ISD::SETEQ);
295    setLibcallCallingConv(RTLIB::OEQ_F64, CallingConv::ARM_AAPCS);
296    setLibcallCallingConv(RTLIB::UNE_F64, CallingConv::ARM_AAPCS);
297    setLibcallCallingConv(RTLIB::OLT_F64, CallingConv::ARM_AAPCS);
298    setLibcallCallingConv(RTLIB::OLE_F64, CallingConv::ARM_AAPCS);
299    setLibcallCallingConv(RTLIB::OGE_F64, CallingConv::ARM_AAPCS);
300    setLibcallCallingConv(RTLIB::OGT_F64, CallingConv::ARM_AAPCS);
301    setLibcallCallingConv(RTLIB::UO_F64, CallingConv::ARM_AAPCS);
302    setLibcallCallingConv(RTLIB::O_F64, CallingConv::ARM_AAPCS);
303
304    // Single-precision floating-point arithmetic helper functions
305    // RTABI chapter 4.1.2, Table 4
306    setLibcallName(RTLIB::ADD_F32, "__aeabi_fadd");
307    setLibcallName(RTLIB::DIV_F32, "__aeabi_fdiv");
308    setLibcallName(RTLIB::MUL_F32, "__aeabi_fmul");
309    setLibcallName(RTLIB::SUB_F32, "__aeabi_fsub");
310    setLibcallCallingConv(RTLIB::ADD_F32, CallingConv::ARM_AAPCS);
311    setLibcallCallingConv(RTLIB::DIV_F32, CallingConv::ARM_AAPCS);
312    setLibcallCallingConv(RTLIB::MUL_F32, CallingConv::ARM_AAPCS);
313    setLibcallCallingConv(RTLIB::SUB_F32, CallingConv::ARM_AAPCS);
314
315    // Single-precision floating-point comparison helper functions
316    // RTABI chapter 4.1.2, Table 5
317    setLibcallName(RTLIB::OEQ_F32, "__aeabi_fcmpeq");
318    setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
319    setLibcallName(RTLIB::UNE_F32, "__aeabi_fcmpeq");
320    setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETEQ);
321    setLibcallName(RTLIB::OLT_F32, "__aeabi_fcmplt");
322    setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
323    setLibcallName(RTLIB::OLE_F32, "__aeabi_fcmple");
324    setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
325    setLibcallName(RTLIB::OGE_F32, "__aeabi_fcmpge");
326    setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
327    setLibcallName(RTLIB::OGT_F32, "__aeabi_fcmpgt");
328    setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
329    setLibcallName(RTLIB::UO_F32,  "__aeabi_fcmpun");
330    setCmpLibcallCC(RTLIB::UO_F32,  ISD::SETNE);
331    setLibcallName(RTLIB::O_F32,   "__aeabi_fcmpun");
332    setCmpLibcallCC(RTLIB::O_F32,   ISD::SETEQ);
333    setLibcallCallingConv(RTLIB::OEQ_F32, CallingConv::ARM_AAPCS);
334    setLibcallCallingConv(RTLIB::UNE_F32, CallingConv::ARM_AAPCS);
335    setLibcallCallingConv(RTLIB::OLT_F32, CallingConv::ARM_AAPCS);
336    setLibcallCallingConv(RTLIB::OLE_F32, CallingConv::ARM_AAPCS);
337    setLibcallCallingConv(RTLIB::OGE_F32, CallingConv::ARM_AAPCS);
338    setLibcallCallingConv(RTLIB::OGT_F32, CallingConv::ARM_AAPCS);
339    setLibcallCallingConv(RTLIB::UO_F32, CallingConv::ARM_AAPCS);
340    setLibcallCallingConv(RTLIB::O_F32, CallingConv::ARM_AAPCS);
341
342    // Floating-point to integer conversions.
343    // RTABI chapter 4.1.2, Table 6
344    setLibcallName(RTLIB::FPTOSINT_F64_I32, "__aeabi_d2iz");
345    setLibcallName(RTLIB::FPTOUINT_F64_I32, "__aeabi_d2uiz");
346    setLibcallName(RTLIB::FPTOSINT_F64_I64, "__aeabi_d2lz");
347    setLibcallName(RTLIB::FPTOUINT_F64_I64, "__aeabi_d2ulz");
348    setLibcallName(RTLIB::FPTOSINT_F32_I32, "__aeabi_f2iz");
349    setLibcallName(RTLIB::FPTOUINT_F32_I32, "__aeabi_f2uiz");
350    setLibcallName(RTLIB::FPTOSINT_F32_I64, "__aeabi_f2lz");
351    setLibcallName(RTLIB::FPTOUINT_F32_I64, "__aeabi_f2ulz");
352    setLibcallCallingConv(RTLIB::FPTOSINT_F64_I32, CallingConv::ARM_AAPCS);
353    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I32, CallingConv::ARM_AAPCS);
354    setLibcallCallingConv(RTLIB::FPTOSINT_F64_I64, CallingConv::ARM_AAPCS);
355    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::ARM_AAPCS);
356    setLibcallCallingConv(RTLIB::FPTOSINT_F32_I32, CallingConv::ARM_AAPCS);
357    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I32, CallingConv::ARM_AAPCS);
358    setLibcallCallingConv(RTLIB::FPTOSINT_F32_I64, CallingConv::ARM_AAPCS);
359    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::ARM_AAPCS);
360
361    // Conversions between floating types.
362    // RTABI chapter 4.1.2, Table 7
363    setLibcallName(RTLIB::FPROUND_F64_F32, "__aeabi_d2f");
364    setLibcallName(RTLIB::FPEXT_F32_F64,   "__aeabi_f2d");
365    setLibcallCallingConv(RTLIB::FPROUND_F64_F32, CallingConv::ARM_AAPCS);
366    setLibcallCallingConv(RTLIB::FPEXT_F32_F64, CallingConv::ARM_AAPCS);
367
368    // Integer to floating-point conversions.
369    // RTABI chapter 4.1.2, Table 8
370    setLibcallName(RTLIB::SINTTOFP_I32_F64, "__aeabi_i2d");
371    setLibcallName(RTLIB::UINTTOFP_I32_F64, "__aeabi_ui2d");
372    setLibcallName(RTLIB::SINTTOFP_I64_F64, "__aeabi_l2d");
373    setLibcallName(RTLIB::UINTTOFP_I64_F64, "__aeabi_ul2d");
374    setLibcallName(RTLIB::SINTTOFP_I32_F32, "__aeabi_i2f");
375    setLibcallName(RTLIB::UINTTOFP_I32_F32, "__aeabi_ui2f");
376    setLibcallName(RTLIB::SINTTOFP_I64_F32, "__aeabi_l2f");
377    setLibcallName(RTLIB::UINTTOFP_I64_F32, "__aeabi_ul2f");
378    setLibcallCallingConv(RTLIB::SINTTOFP_I32_F64, CallingConv::ARM_AAPCS);
379    setLibcallCallingConv(RTLIB::UINTTOFP_I32_F64, CallingConv::ARM_AAPCS);
380    setLibcallCallingConv(RTLIB::SINTTOFP_I64_F64, CallingConv::ARM_AAPCS);
381    setLibcallCallingConv(RTLIB::UINTTOFP_I64_F64, CallingConv::ARM_AAPCS);
382    setLibcallCallingConv(RTLIB::SINTTOFP_I32_F32, CallingConv::ARM_AAPCS);
383    setLibcallCallingConv(RTLIB::UINTTOFP_I32_F32, CallingConv::ARM_AAPCS);
384    setLibcallCallingConv(RTLIB::SINTTOFP_I64_F32, CallingConv::ARM_AAPCS);
385    setLibcallCallingConv(RTLIB::UINTTOFP_I64_F32, CallingConv::ARM_AAPCS);
386
387    // Long long helper functions
388    // RTABI chapter 4.2, Table 9
389    setLibcallName(RTLIB::MUL_I64,  "__aeabi_lmul");
390    setLibcallName(RTLIB::SDIV_I64, "__aeabi_ldivmod");
391    setLibcallName(RTLIB::UDIV_I64, "__aeabi_uldivmod");
392    setLibcallName(RTLIB::SHL_I64, "__aeabi_llsl");
393    setLibcallName(RTLIB::SRL_I64, "__aeabi_llsr");
394    setLibcallName(RTLIB::SRA_I64, "__aeabi_lasr");
395    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::ARM_AAPCS);
396    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::ARM_AAPCS);
397    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::ARM_AAPCS);
398    setLibcallCallingConv(RTLIB::SHL_I64, CallingConv::ARM_AAPCS);
399    setLibcallCallingConv(RTLIB::SRL_I64, CallingConv::ARM_AAPCS);
400    setLibcallCallingConv(RTLIB::SRA_I64, CallingConv::ARM_AAPCS);
401
402    // Integer division functions
403    // RTABI chapter 4.3.1
404    setLibcallName(RTLIB::SDIV_I8,  "__aeabi_idiv");
405    setLibcallName(RTLIB::SDIV_I16, "__aeabi_idiv");
406    setLibcallName(RTLIB::SDIV_I32, "__aeabi_idiv");
407    setLibcallName(RTLIB::UDIV_I8,  "__aeabi_uidiv");
408    setLibcallName(RTLIB::UDIV_I16, "__aeabi_uidiv");
409    setLibcallName(RTLIB::UDIV_I32, "__aeabi_uidiv");
410    setLibcallCallingConv(RTLIB::SDIV_I8, CallingConv::ARM_AAPCS);
411    setLibcallCallingConv(RTLIB::SDIV_I16, CallingConv::ARM_AAPCS);
412    setLibcallCallingConv(RTLIB::SDIV_I32, CallingConv::ARM_AAPCS);
413    setLibcallCallingConv(RTLIB::UDIV_I8, CallingConv::ARM_AAPCS);
414    setLibcallCallingConv(RTLIB::UDIV_I16, CallingConv::ARM_AAPCS);
415    setLibcallCallingConv(RTLIB::UDIV_I32, CallingConv::ARM_AAPCS);
416
417    // Memory operations
418    // RTABI chapter 4.3.4
419    setLibcallName(RTLIB::MEMCPY,  "__aeabi_memcpy");
420    setLibcallName(RTLIB::MEMMOVE, "__aeabi_memmove");
421    setLibcallName(RTLIB::MEMSET,  "__aeabi_memset");
422  }
423
424  // Use divmod compiler-rt calls for iOS 5.0 and later.
425  if (Subtarget->getTargetTriple().getOS() == Triple::IOS &&
426      !Subtarget->getTargetTriple().isOSVersionLT(5, 0)) {
427    setLibcallName(RTLIB::SDIVREM_I32, "__divmodsi4");
428    setLibcallName(RTLIB::UDIVREM_I32, "__udivmodsi4");
429  }
430
431  if (Subtarget->isThumb1Only())
432    addRegisterClass(MVT::i32, ARM::tGPRRegisterClass);
433  else
434    addRegisterClass(MVT::i32, ARM::GPRRegisterClass);
435  if (!TM.Options.UseSoftFloat && Subtarget->hasVFP2() &&
436      !Subtarget->isThumb1Only()) {
437    addRegisterClass(MVT::f32, ARM::SPRRegisterClass);
438    if (!Subtarget->isFPOnlySP())
439      addRegisterClass(MVT::f64, ARM::DPRRegisterClass);
440
441    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
442  }
443
444  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
445       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
446    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
447         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
448      setTruncStoreAction((MVT::SimpleValueType)VT,
449                          (MVT::SimpleValueType)InnerVT, Expand);
450    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
451    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
452    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
453  }
454
455  if (Subtarget->hasNEON()) {
456    addDRTypeForNEON(MVT::v2f32);
457    addDRTypeForNEON(MVT::v8i8);
458    addDRTypeForNEON(MVT::v4i16);
459    addDRTypeForNEON(MVT::v2i32);
460    addDRTypeForNEON(MVT::v1i64);
461
462    addQRTypeForNEON(MVT::v4f32);
463    addQRTypeForNEON(MVT::v2f64);
464    addQRTypeForNEON(MVT::v16i8);
465    addQRTypeForNEON(MVT::v8i16);
466    addQRTypeForNEON(MVT::v4i32);
467    addQRTypeForNEON(MVT::v2i64);
468
469    // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
470    // neither Neon nor VFP support any arithmetic operations on it.
471    // The same with v4f32. But keep in mind that vadd, vsub, vmul are natively
472    // supported for v4f32.
473    setOperationAction(ISD::FADD, MVT::v2f64, Expand);
474    setOperationAction(ISD::FSUB, MVT::v2f64, Expand);
475    setOperationAction(ISD::FMUL, MVT::v2f64, Expand);
476    // FIXME: Code duplication: FDIV and FREM are expanded always, see
477    // ARMTargetLowering::addTypeForNEON method for details.
478    setOperationAction(ISD::FDIV, MVT::v2f64, Expand);
479    setOperationAction(ISD::FREM, MVT::v2f64, Expand);
480    // FIXME: Create unittest.
481    // In another words, find a way when "copysign" appears in DAG with vector
482    // operands.
483    setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand);
484    // FIXME: Code duplication: SETCC has custom operation action, see
485    // ARMTargetLowering::addTypeForNEON method for details.
486    setOperationAction(ISD::SETCC, MVT::v2f64, Expand);
487    // FIXME: Create unittest for FNEG and for FABS.
488    setOperationAction(ISD::FNEG, MVT::v2f64, Expand);
489    setOperationAction(ISD::FABS, MVT::v2f64, Expand);
490    setOperationAction(ISD::FSQRT, MVT::v2f64, Expand);
491    setOperationAction(ISD::FSIN, MVT::v2f64, Expand);
492    setOperationAction(ISD::FCOS, MVT::v2f64, Expand);
493    setOperationAction(ISD::FPOWI, MVT::v2f64, Expand);
494    setOperationAction(ISD::FPOW, MVT::v2f64, Expand);
495    setOperationAction(ISD::FLOG, MVT::v2f64, Expand);
496    setOperationAction(ISD::FLOG2, MVT::v2f64, Expand);
497    setOperationAction(ISD::FLOG10, MVT::v2f64, Expand);
498    setOperationAction(ISD::FEXP, MVT::v2f64, Expand);
499    setOperationAction(ISD::FEXP2, MVT::v2f64, Expand);
500    // FIXME: Create unittest for FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR.
501    setOperationAction(ISD::FCEIL, MVT::v2f64, Expand);
502    setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand);
503    setOperationAction(ISD::FRINT, MVT::v2f64, Expand);
504    setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand);
505    setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand);
506
507    setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
508    setOperationAction(ISD::FSIN, MVT::v4f32, Expand);
509    setOperationAction(ISD::FCOS, MVT::v4f32, Expand);
510    setOperationAction(ISD::FPOWI, MVT::v4f32, Expand);
511    setOperationAction(ISD::FPOW, MVT::v4f32, Expand);
512    setOperationAction(ISD::FLOG, MVT::v4f32, Expand);
513    setOperationAction(ISD::FLOG2, MVT::v4f32, Expand);
514    setOperationAction(ISD::FLOG10, MVT::v4f32, Expand);
515    setOperationAction(ISD::FEXP, MVT::v4f32, Expand);
516    setOperationAction(ISD::FEXP2, MVT::v4f32, Expand);
517
518    // Neon does not support some operations on v1i64 and v2i64 types.
519    setOperationAction(ISD::MUL, MVT::v1i64, Expand);
520    // Custom handling for some quad-vector types to detect VMULL.
521    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
522    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
523    setOperationAction(ISD::MUL, MVT::v2i64, Custom);
524    // Custom handling for some vector types to avoid expensive expansions
525    setOperationAction(ISD::SDIV, MVT::v4i16, Custom);
526    setOperationAction(ISD::SDIV, MVT::v8i8, Custom);
527    setOperationAction(ISD::UDIV, MVT::v4i16, Custom);
528    setOperationAction(ISD::UDIV, MVT::v8i8, Custom);
529    setOperationAction(ISD::SETCC, MVT::v1i64, Expand);
530    setOperationAction(ISD::SETCC, MVT::v2i64, Expand);
531    // Neon does not have single instruction SINT_TO_FP and UINT_TO_FP with
532    // a destination type that is wider than the source.
533    setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
534    setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
535
536    setTargetDAGCombine(ISD::INTRINSIC_VOID);
537    setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
538    setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
539    setTargetDAGCombine(ISD::SHL);
540    setTargetDAGCombine(ISD::SRL);
541    setTargetDAGCombine(ISD::SRA);
542    setTargetDAGCombine(ISD::SIGN_EXTEND);
543    setTargetDAGCombine(ISD::ZERO_EXTEND);
544    setTargetDAGCombine(ISD::ANY_EXTEND);
545    setTargetDAGCombine(ISD::SELECT_CC);
546    setTargetDAGCombine(ISD::BUILD_VECTOR);
547    setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
548    setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
549    setTargetDAGCombine(ISD::STORE);
550    setTargetDAGCombine(ISD::FP_TO_SINT);
551    setTargetDAGCombine(ISD::FP_TO_UINT);
552    setTargetDAGCombine(ISD::FDIV);
553
554    setLoadExtAction(ISD::EXTLOAD, MVT::v4i8, Expand);
555  }
556
557  computeRegisterProperties();
558
559  // ARM does not have f32 extending load.
560  setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
561
562  // ARM does not have i1 sign extending load.
563  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
564
565  // ARM supports all 4 flavors of integer indexed load / store.
566  if (!Subtarget->isThumb1Only()) {
567    for (unsigned im = (unsigned)ISD::PRE_INC;
568         im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
569      setIndexedLoadAction(im,  MVT::i1,  Legal);
570      setIndexedLoadAction(im,  MVT::i8,  Legal);
571      setIndexedLoadAction(im,  MVT::i16, Legal);
572      setIndexedLoadAction(im,  MVT::i32, Legal);
573      setIndexedStoreAction(im, MVT::i1,  Legal);
574      setIndexedStoreAction(im, MVT::i8,  Legal);
575      setIndexedStoreAction(im, MVT::i16, Legal);
576      setIndexedStoreAction(im, MVT::i32, Legal);
577    }
578  }
579
580  // i64 operation support.
581  setOperationAction(ISD::MUL,     MVT::i64, Expand);
582  setOperationAction(ISD::MULHU,   MVT::i32, Expand);
583  if (Subtarget->isThumb1Only()) {
584    setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
585    setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
586  }
587  if (Subtarget->isThumb1Only() || !Subtarget->hasV6Ops()
588      || (Subtarget->isThumb2() && !Subtarget->hasThumb2DSP()))
589    setOperationAction(ISD::MULHS, MVT::i32, Expand);
590
591  setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
592  setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
593  setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
594  setOperationAction(ISD::SRL,       MVT::i64, Custom);
595  setOperationAction(ISD::SRA,       MVT::i64, Custom);
596
597  if (!Subtarget->isThumb1Only()) {
598    // FIXME: We should do this for Thumb1 as well.
599    setOperationAction(ISD::ADDC,    MVT::i32, Custom);
600    setOperationAction(ISD::ADDE,    MVT::i32, Custom);
601    setOperationAction(ISD::SUBC,    MVT::i32, Custom);
602    setOperationAction(ISD::SUBE,    MVT::i32, Custom);
603  }
604
605  // ARM does not have ROTL.
606  setOperationAction(ISD::ROTL,  MVT::i32, Expand);
607  setOperationAction(ISD::CTTZ,  MVT::i32, Custom);
608  setOperationAction(ISD::CTPOP, MVT::i32, Expand);
609  if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only())
610    setOperationAction(ISD::CTLZ, MVT::i32, Expand);
611
612  // These just redirect to CTTZ and CTLZ on ARM.
613  setOperationAction(ISD::CTTZ_ZERO_UNDEF  , MVT::i32  , Expand);
614  setOperationAction(ISD::CTLZ_ZERO_UNDEF  , MVT::i32  , Expand);
615
616  // Only ARMv6 has BSWAP.
617  if (!Subtarget->hasV6Ops())
618    setOperationAction(ISD::BSWAP, MVT::i32, Expand);
619
620  // These are expanded into libcalls.
621  if (!Subtarget->hasDivide() || !Subtarget->isThumb2()) {
622    // v7M has a hardware divider
623    setOperationAction(ISD::SDIV,  MVT::i32, Expand);
624    setOperationAction(ISD::UDIV,  MVT::i32, Expand);
625  }
626  setOperationAction(ISD::SREM,  MVT::i32, Expand);
627  setOperationAction(ISD::UREM,  MVT::i32, Expand);
628  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
629  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
630
631  setOperationAction(ISD::GlobalAddress, MVT::i32,   Custom);
632  setOperationAction(ISD::ConstantPool,  MVT::i32,   Custom);
633  setOperationAction(ISD::GLOBAL_OFFSET_TABLE, MVT::i32, Custom);
634  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
635  setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
636
637  setOperationAction(ISD::TRAP, MVT::Other, Legal);
638
639  // Use the default implementation.
640  setOperationAction(ISD::VASTART,            MVT::Other, Custom);
641  setOperationAction(ISD::VAARG,              MVT::Other, Expand);
642  setOperationAction(ISD::VACOPY,             MVT::Other, Expand);
643  setOperationAction(ISD::VAEND,              MVT::Other, Expand);
644  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
645  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
646  setOperationAction(ISD::EHSELECTION,        MVT::i32,   Expand);
647  setOperationAction(ISD::EXCEPTIONADDR,      MVT::i32,   Expand);
648  setExceptionPointerRegister(ARM::R0);
649  setExceptionSelectorRegister(ARM::R1);
650
651  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
652  // ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use
653  // the default expansion.
654  // FIXME: This should be checking for v6k, not just v6.
655  if (Subtarget->hasDataBarrier() ||
656      (Subtarget->hasV6Ops() && !Subtarget->isThumb())) {
657    // membarrier needs custom lowering; the rest are legal and handled
658    // normally.
659    setOperationAction(ISD::MEMBARRIER, MVT::Other, Custom);
660    setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
661    // Custom lowering for 64-bit ops
662    setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i64, Custom);
663    setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i64, Custom);
664    setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i64, Custom);
665    setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i64, Custom);
666    setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i64, Custom);
667    setOperationAction(ISD::ATOMIC_SWAP,  MVT::i64, Custom);
668    setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i64, Custom);
669    // Automatically insert fences (dmb ist) around ATOMIC_SWAP etc.
670    setInsertFencesForAtomic(true);
671  } else {
672    // Set them all for expansion, which will force libcalls.
673    setOperationAction(ISD::MEMBARRIER, MVT::Other, Expand);
674    setOperationAction(ISD::ATOMIC_FENCE,   MVT::Other, Expand);
675    setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i32, Expand);
676    setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Expand);
677    setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Expand);
678    setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Expand);
679    setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Expand);
680    setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Expand);
681    setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Expand);
682    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand);
683    setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Expand);
684    setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Expand);
685    setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Expand);
686    setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Expand);
687    // Mark ATOMIC_LOAD and ATOMIC_STORE custom so we can handle the
688    // Unordered/Monotonic case.
689    setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
690    setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
691    // Since the libcalls include locking, fold in the fences
692    setShouldFoldAtomicFences(true);
693  }
694
695  setOperationAction(ISD::PREFETCH,         MVT::Other, Custom);
696
697  // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
698  if (!Subtarget->hasV6Ops()) {
699    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
700    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
701  }
702  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
703
704  if (!TM.Options.UseSoftFloat && Subtarget->hasVFP2() &&
705      !Subtarget->isThumb1Only()) {
706    // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
707    // iff target supports vfp2.
708    setOperationAction(ISD::BITCAST, MVT::i64, Custom);
709    setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
710  }
711
712  // We want to custom lower some of our intrinsics.
713  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
714  if (Subtarget->isTargetDarwin()) {
715    setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
716    setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
717    setLibcallName(RTLIB::UNWIND_RESUME, "_Unwind_SjLj_Resume");
718  }
719
720  setOperationAction(ISD::SETCC,     MVT::i32, Expand);
721  setOperationAction(ISD::SETCC,     MVT::f32, Expand);
722  setOperationAction(ISD::SETCC,     MVT::f64, Expand);
723  setOperationAction(ISD::SELECT,    MVT::i32, Custom);
724  setOperationAction(ISD::SELECT,    MVT::f32, Custom);
725  setOperationAction(ISD::SELECT,    MVT::f64, Custom);
726  setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
727  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
728  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
729
730  setOperationAction(ISD::BRCOND,    MVT::Other, Expand);
731  setOperationAction(ISD::BR_CC,     MVT::i32,   Custom);
732  setOperationAction(ISD::BR_CC,     MVT::f32,   Custom);
733  setOperationAction(ISD::BR_CC,     MVT::f64,   Custom);
734  setOperationAction(ISD::BR_JT,     MVT::Other, Custom);
735
736  // We don't support sin/cos/fmod/copysign/pow
737  setOperationAction(ISD::FSIN,      MVT::f64, Expand);
738  setOperationAction(ISD::FSIN,      MVT::f32, Expand);
739  setOperationAction(ISD::FCOS,      MVT::f32, Expand);
740  setOperationAction(ISD::FCOS,      MVT::f64, Expand);
741  setOperationAction(ISD::FREM,      MVT::f64, Expand);
742  setOperationAction(ISD::FREM,      MVT::f32, Expand);
743  if (!TM.Options.UseSoftFloat && Subtarget->hasVFP2() &&
744      !Subtarget->isThumb1Only()) {
745    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
746    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
747  }
748  setOperationAction(ISD::FPOW,      MVT::f64, Expand);
749  setOperationAction(ISD::FPOW,      MVT::f32, Expand);
750
751  setOperationAction(ISD::FMA, MVT::f64, Expand);
752  setOperationAction(ISD::FMA, MVT::f32, Expand);
753
754  // Various VFP goodness
755  if (!TM.Options.UseSoftFloat && !Subtarget->isThumb1Only()) {
756    // int <-> fp are custom expanded into bit_convert + ARMISD ops.
757    if (Subtarget->hasVFP2()) {
758      setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
759      setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
760      setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
761      setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
762    }
763    // Special handling for half-precision FP.
764    if (!Subtarget->hasFP16()) {
765      setOperationAction(ISD::FP16_TO_FP32, MVT::f32, Expand);
766      setOperationAction(ISD::FP32_TO_FP16, MVT::i32, Expand);
767    }
768  }
769
770  // We have target-specific dag combine patterns for the following nodes:
771  // ARMISD::VMOVRRD  - No need to call setTargetDAGCombine
772  setTargetDAGCombine(ISD::ADD);
773  setTargetDAGCombine(ISD::SUB);
774  setTargetDAGCombine(ISD::MUL);
775
776  if (Subtarget->hasV6T2Ops() || Subtarget->hasNEON())
777    setTargetDAGCombine(ISD::OR);
778  if (Subtarget->hasNEON())
779    setTargetDAGCombine(ISD::AND);
780
781  setStackPointerRegisterToSaveRestore(ARM::SP);
782
783  if (TM.Options.UseSoftFloat || Subtarget->isThumb1Only() ||
784      !Subtarget->hasVFP2())
785    setSchedulingPreference(Sched::RegPressure);
786  else
787    setSchedulingPreference(Sched::Hybrid);
788
789  //// temporary - rewrite interface to use type
790  maxStoresPerMemcpy = maxStoresPerMemcpyOptSize = 1;
791  maxStoresPerMemset = 16;
792  maxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
793
794  // On ARM arguments smaller than 4 bytes are extended, so all arguments
795  // are at least 4 bytes aligned.
796  setMinStackArgumentAlignment(4);
797
798  benefitFromCodePlacementOpt = true;
799
800  setMinFunctionAlignment(Subtarget->isThumb() ? 1 : 2);
801}
802
803// FIXME: It might make sense to define the representative register class as the
804// nearest super-register that has a non-null superset. For example, DPR_VFP2 is
805// a super-register of SPR, and DPR is a superset if DPR_VFP2. Consequently,
806// SPR's representative would be DPR_VFP2. This should work well if register
807// pressure tracking were modified such that a register use would increment the
808// pressure of the register class's representative and all of it's super
809// classes' representatives transitively. We have not implemented this because
810// of the difficulty prior to coalescing of modeling operand register classes
811// due to the common occurrence of cross class copies and subregister insertions
812// and extractions.
813std::pair<const TargetRegisterClass*, uint8_t>
814ARMTargetLowering::findRepresentativeClass(EVT VT) const{
815  const TargetRegisterClass *RRC = 0;
816  uint8_t Cost = 1;
817  switch (VT.getSimpleVT().SimpleTy) {
818  default:
819    return TargetLowering::findRepresentativeClass(VT);
820  // Use DPR as representative register class for all floating point
821  // and vector types. Since there are 32 SPR registers and 32 DPR registers so
822  // the cost is 1 for both f32 and f64.
823  case MVT::f32: case MVT::f64: case MVT::v8i8: case MVT::v4i16:
824  case MVT::v2i32: case MVT::v1i64: case MVT::v2f32:
825    RRC = ARM::DPRRegisterClass;
826    // When NEON is used for SP, only half of the register file is available
827    // because operations that define both SP and DP results will be constrained
828    // to the VFP2 class (D0-D15). We currently model this constraint prior to
829    // coalescing by double-counting the SP regs. See the FIXME above.
830    if (Subtarget->useNEONForSinglePrecisionFP())
831      Cost = 2;
832    break;
833  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
834  case MVT::v4f32: case MVT::v2f64:
835    RRC = ARM::DPRRegisterClass;
836    Cost = 2;
837    break;
838  case MVT::v4i64:
839    RRC = ARM::DPRRegisterClass;
840    Cost = 4;
841    break;
842  case MVT::v8i64:
843    RRC = ARM::DPRRegisterClass;
844    Cost = 8;
845    break;
846  }
847  return std::make_pair(RRC, Cost);
848}
849
850const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
851  switch (Opcode) {
852  default: return 0;
853  case ARMISD::Wrapper:       return "ARMISD::Wrapper";
854  case ARMISD::WrapperDYN:    return "ARMISD::WrapperDYN";
855  case ARMISD::WrapperPIC:    return "ARMISD::WrapperPIC";
856  case ARMISD::WrapperJT:     return "ARMISD::WrapperJT";
857  case ARMISD::CALL:          return "ARMISD::CALL";
858  case ARMISD::CALL_PRED:     return "ARMISD::CALL_PRED";
859  case ARMISD::CALL_NOLINK:   return "ARMISD::CALL_NOLINK";
860  case ARMISD::tCALL:         return "ARMISD::tCALL";
861  case ARMISD::BRCOND:        return "ARMISD::BRCOND";
862  case ARMISD::BR_JT:         return "ARMISD::BR_JT";
863  case ARMISD::BR2_JT:        return "ARMISD::BR2_JT";
864  case ARMISD::RET_FLAG:      return "ARMISD::RET_FLAG";
865  case ARMISD::PIC_ADD:       return "ARMISD::PIC_ADD";
866  case ARMISD::CMP:           return "ARMISD::CMP";
867  case ARMISD::CMPZ:          return "ARMISD::CMPZ";
868  case ARMISD::CMPFP:         return "ARMISD::CMPFP";
869  case ARMISD::CMPFPw0:       return "ARMISD::CMPFPw0";
870  case ARMISD::BCC_i64:       return "ARMISD::BCC_i64";
871  case ARMISD::FMSTAT:        return "ARMISD::FMSTAT";
872  case ARMISD::CMOV:          return "ARMISD::CMOV";
873
874  case ARMISD::RBIT:          return "ARMISD::RBIT";
875
876  case ARMISD::FTOSI:         return "ARMISD::FTOSI";
877  case ARMISD::FTOUI:         return "ARMISD::FTOUI";
878  case ARMISD::SITOF:         return "ARMISD::SITOF";
879  case ARMISD::UITOF:         return "ARMISD::UITOF";
880
881  case ARMISD::SRL_FLAG:      return "ARMISD::SRL_FLAG";
882  case ARMISD::SRA_FLAG:      return "ARMISD::SRA_FLAG";
883  case ARMISD::RRX:           return "ARMISD::RRX";
884
885  case ARMISD::ADDC:          return "ARMISD::ADDC";
886  case ARMISD::ADDE:          return "ARMISD::ADDE";
887  case ARMISD::SUBC:          return "ARMISD::SUBC";
888  case ARMISD::SUBE:          return "ARMISD::SUBE";
889
890  case ARMISD::VMOVRRD:       return "ARMISD::VMOVRRD";
891  case ARMISD::VMOVDRR:       return "ARMISD::VMOVDRR";
892
893  case ARMISD::EH_SJLJ_SETJMP: return "ARMISD::EH_SJLJ_SETJMP";
894  case ARMISD::EH_SJLJ_LONGJMP:return "ARMISD::EH_SJLJ_LONGJMP";
895
896  case ARMISD::TC_RETURN:     return "ARMISD::TC_RETURN";
897
898  case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER";
899
900  case ARMISD::DYN_ALLOC:     return "ARMISD::DYN_ALLOC";
901
902  case ARMISD::MEMBARRIER:    return "ARMISD::MEMBARRIER";
903  case ARMISD::MEMBARRIER_MCR: return "ARMISD::MEMBARRIER_MCR";
904
905  case ARMISD::PRELOAD:       return "ARMISD::PRELOAD";
906
907  case ARMISD::VCEQ:          return "ARMISD::VCEQ";
908  case ARMISD::VCEQZ:         return "ARMISD::VCEQZ";
909  case ARMISD::VCGE:          return "ARMISD::VCGE";
910  case ARMISD::VCGEZ:         return "ARMISD::VCGEZ";
911  case ARMISD::VCLEZ:         return "ARMISD::VCLEZ";
912  case ARMISD::VCGEU:         return "ARMISD::VCGEU";
913  case ARMISD::VCGT:          return "ARMISD::VCGT";
914  case ARMISD::VCGTZ:         return "ARMISD::VCGTZ";
915  case ARMISD::VCLTZ:         return "ARMISD::VCLTZ";
916  case ARMISD::VCGTU:         return "ARMISD::VCGTU";
917  case ARMISD::VTST:          return "ARMISD::VTST";
918
919  case ARMISD::VSHL:          return "ARMISD::VSHL";
920  case ARMISD::VSHRs:         return "ARMISD::VSHRs";
921  case ARMISD::VSHRu:         return "ARMISD::VSHRu";
922  case ARMISD::VSHLLs:        return "ARMISD::VSHLLs";
923  case ARMISD::VSHLLu:        return "ARMISD::VSHLLu";
924  case ARMISD::VSHLLi:        return "ARMISD::VSHLLi";
925  case ARMISD::VSHRN:         return "ARMISD::VSHRN";
926  case ARMISD::VRSHRs:        return "ARMISD::VRSHRs";
927  case ARMISD::VRSHRu:        return "ARMISD::VRSHRu";
928  case ARMISD::VRSHRN:        return "ARMISD::VRSHRN";
929  case ARMISD::VQSHLs:        return "ARMISD::VQSHLs";
930  case ARMISD::VQSHLu:        return "ARMISD::VQSHLu";
931  case ARMISD::VQSHLsu:       return "ARMISD::VQSHLsu";
932  case ARMISD::VQSHRNs:       return "ARMISD::VQSHRNs";
933  case ARMISD::VQSHRNu:       return "ARMISD::VQSHRNu";
934  case ARMISD::VQSHRNsu:      return "ARMISD::VQSHRNsu";
935  case ARMISD::VQRSHRNs:      return "ARMISD::VQRSHRNs";
936  case ARMISD::VQRSHRNu:      return "ARMISD::VQRSHRNu";
937  case ARMISD::VQRSHRNsu:     return "ARMISD::VQRSHRNsu";
938  case ARMISD::VGETLANEu:     return "ARMISD::VGETLANEu";
939  case ARMISD::VGETLANEs:     return "ARMISD::VGETLANEs";
940  case ARMISD::VMOVIMM:       return "ARMISD::VMOVIMM";
941  case ARMISD::VMVNIMM:       return "ARMISD::VMVNIMM";
942  case ARMISD::VMOVFPIMM:     return "ARMISD::VMOVFPIMM";
943  case ARMISD::VDUP:          return "ARMISD::VDUP";
944  case ARMISD::VDUPLANE:      return "ARMISD::VDUPLANE";
945  case ARMISD::VEXT:          return "ARMISD::VEXT";
946  case ARMISD::VREV64:        return "ARMISD::VREV64";
947  case ARMISD::VREV32:        return "ARMISD::VREV32";
948  case ARMISD::VREV16:        return "ARMISD::VREV16";
949  case ARMISD::VZIP:          return "ARMISD::VZIP";
950  case ARMISD::VUZP:          return "ARMISD::VUZP";
951  case ARMISD::VTRN:          return "ARMISD::VTRN";
952  case ARMISD::VTBL1:         return "ARMISD::VTBL1";
953  case ARMISD::VTBL2:         return "ARMISD::VTBL2";
954  case ARMISD::VMULLs:        return "ARMISD::VMULLs";
955  case ARMISD::VMULLu:        return "ARMISD::VMULLu";
956  case ARMISD::BUILD_VECTOR:  return "ARMISD::BUILD_VECTOR";
957  case ARMISD::FMAX:          return "ARMISD::FMAX";
958  case ARMISD::FMIN:          return "ARMISD::FMIN";
959  case ARMISD::BFI:           return "ARMISD::BFI";
960  case ARMISD::VORRIMM:       return "ARMISD::VORRIMM";
961  case ARMISD::VBICIMM:       return "ARMISD::VBICIMM";
962  case ARMISD::VBSL:          return "ARMISD::VBSL";
963  case ARMISD::VLD2DUP:       return "ARMISD::VLD2DUP";
964  case ARMISD::VLD3DUP:       return "ARMISD::VLD3DUP";
965  case ARMISD::VLD4DUP:       return "ARMISD::VLD4DUP";
966  case ARMISD::VLD1_UPD:      return "ARMISD::VLD1_UPD";
967  case ARMISD::VLD2_UPD:      return "ARMISD::VLD2_UPD";
968  case ARMISD::VLD3_UPD:      return "ARMISD::VLD3_UPD";
969  case ARMISD::VLD4_UPD:      return "ARMISD::VLD4_UPD";
970  case ARMISD::VLD2LN_UPD:    return "ARMISD::VLD2LN_UPD";
971  case ARMISD::VLD3LN_UPD:    return "ARMISD::VLD3LN_UPD";
972  case ARMISD::VLD4LN_UPD:    return "ARMISD::VLD4LN_UPD";
973  case ARMISD::VLD2DUP_UPD:   return "ARMISD::VLD2DUP_UPD";
974  case ARMISD::VLD3DUP_UPD:   return "ARMISD::VLD3DUP_UPD";
975  case ARMISD::VLD4DUP_UPD:   return "ARMISD::VLD4DUP_UPD";
976  case ARMISD::VST1_UPD:      return "ARMISD::VST1_UPD";
977  case ARMISD::VST2_UPD:      return "ARMISD::VST2_UPD";
978  case ARMISD::VST3_UPD:      return "ARMISD::VST3_UPD";
979  case ARMISD::VST4_UPD:      return "ARMISD::VST4_UPD";
980  case ARMISD::VST2LN_UPD:    return "ARMISD::VST2LN_UPD";
981  case ARMISD::VST3LN_UPD:    return "ARMISD::VST3LN_UPD";
982  case ARMISD::VST4LN_UPD:    return "ARMISD::VST4LN_UPD";
983  }
984}
985
986EVT ARMTargetLowering::getSetCCResultType(EVT VT) const {
987  if (!VT.isVector()) return getPointerTy();
988  return VT.changeVectorElementTypeToInteger();
989}
990
991/// getRegClassFor - Return the register class that should be used for the
992/// specified value type.
993TargetRegisterClass *ARMTargetLowering::getRegClassFor(EVT VT) const {
994  // Map v4i64 to QQ registers but do not make the type legal. Similarly map
995  // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
996  // load / store 4 to 8 consecutive D registers.
997  if (Subtarget->hasNEON()) {
998    if (VT == MVT::v4i64)
999      return ARM::QQPRRegisterClass;
1000    else if (VT == MVT::v8i64)
1001      return ARM::QQQQPRRegisterClass;
1002  }
1003  return TargetLowering::getRegClassFor(VT);
1004}
1005
1006// Create a fast isel object.
1007FastISel *
1008ARMTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
1009  return ARM::createFastISel(funcInfo);
1010}
1011
1012/// getMaximalGlobalOffset - Returns the maximal possible offset which can
1013/// be used for loads / stores from the global.
1014unsigned ARMTargetLowering::getMaximalGlobalOffset() const {
1015  return (Subtarget->isThumb1Only() ? 127 : 4095);
1016}
1017
1018Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const {
1019  unsigned NumVals = N->getNumValues();
1020  if (!NumVals)
1021    return Sched::RegPressure;
1022
1023  for (unsigned i = 0; i != NumVals; ++i) {
1024    EVT VT = N->getValueType(i);
1025    if (VT == MVT::Glue || VT == MVT::Other)
1026      continue;
1027    if (VT.isFloatingPoint() || VT.isVector())
1028      return Sched::ILP;
1029  }
1030
1031  if (!N->isMachineOpcode())
1032    return Sched::RegPressure;
1033
1034  // Load are scheduled for latency even if there instruction itinerary
1035  // is not available.
1036  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1037  const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
1038
1039  if (MCID.getNumDefs() == 0)
1040    return Sched::RegPressure;
1041  if (!Itins->isEmpty() &&
1042      Itins->getOperandCycle(MCID.getSchedClass(), 0) > 2)
1043    return Sched::ILP;
1044
1045  return Sched::RegPressure;
1046}
1047
1048//===----------------------------------------------------------------------===//
1049// Lowering Code
1050//===----------------------------------------------------------------------===//
1051
1052/// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
1053static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
1054  switch (CC) {
1055  default: llvm_unreachable("Unknown condition code!");
1056  case ISD::SETNE:  return ARMCC::NE;
1057  case ISD::SETEQ:  return ARMCC::EQ;
1058  case ISD::SETGT:  return ARMCC::GT;
1059  case ISD::SETGE:  return ARMCC::GE;
1060  case ISD::SETLT:  return ARMCC::LT;
1061  case ISD::SETLE:  return ARMCC::LE;
1062  case ISD::SETUGT: return ARMCC::HI;
1063  case ISD::SETUGE: return ARMCC::HS;
1064  case ISD::SETULT: return ARMCC::LO;
1065  case ISD::SETULE: return ARMCC::LS;
1066  }
1067}
1068
1069/// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
1070static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
1071                        ARMCC::CondCodes &CondCode2) {
1072  CondCode2 = ARMCC::AL;
1073  switch (CC) {
1074  default: llvm_unreachable("Unknown FP condition!");
1075  case ISD::SETEQ:
1076  case ISD::SETOEQ: CondCode = ARMCC::EQ; break;
1077  case ISD::SETGT:
1078  case ISD::SETOGT: CondCode = ARMCC::GT; break;
1079  case ISD::SETGE:
1080  case ISD::SETOGE: CondCode = ARMCC::GE; break;
1081  case ISD::SETOLT: CondCode = ARMCC::MI; break;
1082  case ISD::SETOLE: CondCode = ARMCC::LS; break;
1083  case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break;
1084  case ISD::SETO:   CondCode = ARMCC::VC; break;
1085  case ISD::SETUO:  CondCode = ARMCC::VS; break;
1086  case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break;
1087  case ISD::SETUGT: CondCode = ARMCC::HI; break;
1088  case ISD::SETUGE: CondCode = ARMCC::PL; break;
1089  case ISD::SETLT:
1090  case ISD::SETULT: CondCode = ARMCC::LT; break;
1091  case ISD::SETLE:
1092  case ISD::SETULE: CondCode = ARMCC::LE; break;
1093  case ISD::SETNE:
1094  case ISD::SETUNE: CondCode = ARMCC::NE; break;
1095  }
1096}
1097
1098//===----------------------------------------------------------------------===//
1099//                      Calling Convention Implementation
1100//===----------------------------------------------------------------------===//
1101
1102#include "ARMGenCallingConv.inc"
1103
1104/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
1105/// given CallingConvention value.
1106CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC,
1107                                                 bool Return,
1108                                                 bool isVarArg) const {
1109  switch (CC) {
1110  default:
1111    llvm_unreachable("Unsupported calling convention");
1112  case CallingConv::Fast:
1113    if (Subtarget->hasVFP2() && !isVarArg) {
1114      if (!Subtarget->isAAPCS_ABI())
1115        return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
1116      // For AAPCS ABI targets, just use VFP variant of the calling convention.
1117      return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1118    }
1119    // Fallthrough
1120  case CallingConv::C: {
1121    // Use target triple & subtarget features to do actual dispatch.
1122    if (!Subtarget->isAAPCS_ABI())
1123      return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
1124    else if (Subtarget->hasVFP2() &&
1125             getTargetMachine().Options.FloatABIType == FloatABI::Hard &&
1126             !isVarArg)
1127      return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1128    return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
1129  }
1130  case CallingConv::ARM_AAPCS_VFP:
1131    return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1132  case CallingConv::ARM_AAPCS:
1133    return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
1134  case CallingConv::ARM_APCS:
1135    return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
1136  }
1137}
1138
1139/// LowerCallResult - Lower the result values of a call into the
1140/// appropriate copies out of appropriate physical registers.
1141SDValue
1142ARMTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1143                                   CallingConv::ID CallConv, bool isVarArg,
1144                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1145                                   DebugLoc dl, SelectionDAG &DAG,
1146                                   SmallVectorImpl<SDValue> &InVals) const {
1147
1148  // Assign locations to each value returned by this call.
1149  SmallVector<CCValAssign, 16> RVLocs;
1150  ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1151                    getTargetMachine(), RVLocs, *DAG.getContext(), Call);
1152  CCInfo.AnalyzeCallResult(Ins,
1153                           CCAssignFnForNode(CallConv, /* Return*/ true,
1154                                             isVarArg));
1155
1156  // Copy all of the result registers out of their specified physreg.
1157  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1158    CCValAssign VA = RVLocs[i];
1159
1160    SDValue Val;
1161    if (VA.needsCustom()) {
1162      // Handle f64 or half of a v2f64.
1163      SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1164                                      InFlag);
1165      Chain = Lo.getValue(1);
1166      InFlag = Lo.getValue(2);
1167      VA = RVLocs[++i]; // skip ahead to next loc
1168      SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1169                                      InFlag);
1170      Chain = Hi.getValue(1);
1171      InFlag = Hi.getValue(2);
1172      Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1173
1174      if (VA.getLocVT() == MVT::v2f64) {
1175        SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
1176        Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1177                          DAG.getConstant(0, MVT::i32));
1178
1179        VA = RVLocs[++i]; // skip ahead to next loc
1180        Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1181        Chain = Lo.getValue(1);
1182        InFlag = Lo.getValue(2);
1183        VA = RVLocs[++i]; // skip ahead to next loc
1184        Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1185        Chain = Hi.getValue(1);
1186        InFlag = Hi.getValue(2);
1187        Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1188        Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1189                          DAG.getConstant(1, MVT::i32));
1190      }
1191    } else {
1192      Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
1193                               InFlag);
1194      Chain = Val.getValue(1);
1195      InFlag = Val.getValue(2);
1196    }
1197
1198    switch (VA.getLocInfo()) {
1199    default: llvm_unreachable("Unknown loc info!");
1200    case CCValAssign::Full: break;
1201    case CCValAssign::BCvt:
1202      Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val);
1203      break;
1204    }
1205
1206    InVals.push_back(Val);
1207  }
1208
1209  return Chain;
1210}
1211
1212/// LowerMemOpCallTo - Store the argument to the stack.
1213SDValue
1214ARMTargetLowering::LowerMemOpCallTo(SDValue Chain,
1215                                    SDValue StackPtr, SDValue Arg,
1216                                    DebugLoc dl, SelectionDAG &DAG,
1217                                    const CCValAssign &VA,
1218                                    ISD::ArgFlagsTy Flags) const {
1219  unsigned LocMemOffset = VA.getLocMemOffset();
1220  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1221  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1222  return DAG.getStore(Chain, dl, Arg, PtrOff,
1223                      MachinePointerInfo::getStack(LocMemOffset),
1224                      false, false, 0);
1225}
1226
1227void ARMTargetLowering::PassF64ArgInRegs(DebugLoc dl, SelectionDAG &DAG,
1228                                         SDValue Chain, SDValue &Arg,
1229                                         RegsToPassVector &RegsToPass,
1230                                         CCValAssign &VA, CCValAssign &NextVA,
1231                                         SDValue &StackPtr,
1232                                         SmallVector<SDValue, 8> &MemOpChains,
1233                                         ISD::ArgFlagsTy Flags) const {
1234
1235  SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
1236                              DAG.getVTList(MVT::i32, MVT::i32), Arg);
1237  RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd));
1238
1239  if (NextVA.isRegLoc())
1240    RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1)));
1241  else {
1242    assert(NextVA.isMemLoc());
1243    if (StackPtr.getNode() == 0)
1244      StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
1245
1246    MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1),
1247                                           dl, DAG, NextVA,
1248                                           Flags));
1249  }
1250}
1251
1252/// LowerCall - Lowering a call into a callseq_start <-
1253/// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
1254/// nodes.
1255SDValue
1256ARMTargetLowering::LowerCall(SDValue Chain, SDValue Callee,
1257                             CallingConv::ID CallConv, bool isVarArg,
1258                             bool &isTailCall,
1259                             const SmallVectorImpl<ISD::OutputArg> &Outs,
1260                             const SmallVectorImpl<SDValue> &OutVals,
1261                             const SmallVectorImpl<ISD::InputArg> &Ins,
1262                             DebugLoc dl, SelectionDAG &DAG,
1263                             SmallVectorImpl<SDValue> &InVals) const {
1264  MachineFunction &MF = DAG.getMachineFunction();
1265  bool IsStructRet    = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
1266  bool IsSibCall = false;
1267  // Disable tail calls if they're not supported.
1268  if (!EnableARMTailCalls && !Subtarget->supportsTailCall())
1269    isTailCall = false;
1270  if (isTailCall) {
1271    // Check if it's really possible to do a tail call.
1272    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1273                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
1274                                                   Outs, OutVals, Ins, DAG);
1275    // We don't support GuaranteedTailCallOpt for ARM, only automatically
1276    // detected sibcalls.
1277    if (isTailCall) {
1278      ++NumTailCalls;
1279      IsSibCall = true;
1280    }
1281  }
1282
1283  // Analyze operands of the call, assigning locations to each operand.
1284  SmallVector<CCValAssign, 16> ArgLocs;
1285  ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1286                 getTargetMachine(), ArgLocs, *DAG.getContext(), Call);
1287  CCInfo.AnalyzeCallOperands(Outs,
1288                             CCAssignFnForNode(CallConv, /* Return*/ false,
1289                                               isVarArg));
1290
1291  // Get a count of how many bytes are to be pushed on the stack.
1292  unsigned NumBytes = CCInfo.getNextStackOffset();
1293
1294  // For tail calls, memory operands are available in our caller's stack.
1295  if (IsSibCall)
1296    NumBytes = 0;
1297
1298  // Adjust the stack pointer for the new arguments...
1299  // These operations are automatically eliminated by the prolog/epilog pass
1300  if (!IsSibCall)
1301    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
1302
1303  SDValue StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
1304
1305  RegsToPassVector RegsToPass;
1306  SmallVector<SDValue, 8> MemOpChains;
1307
1308  // Walk the register/memloc assignments, inserting copies/loads.  In the case
1309  // of tail call optimization, arguments are handled later.
1310  for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
1311       i != e;
1312       ++i, ++realArgIdx) {
1313    CCValAssign &VA = ArgLocs[i];
1314    SDValue Arg = OutVals[realArgIdx];
1315    ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
1316    bool isByVal = Flags.isByVal();
1317
1318    // Promote the value if needed.
1319    switch (VA.getLocInfo()) {
1320    default: llvm_unreachable("Unknown loc info!");
1321    case CCValAssign::Full: break;
1322    case CCValAssign::SExt:
1323      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
1324      break;
1325    case CCValAssign::ZExt:
1326      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
1327      break;
1328    case CCValAssign::AExt:
1329      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
1330      break;
1331    case CCValAssign::BCvt:
1332      Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
1333      break;
1334    }
1335
1336    // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
1337    if (VA.needsCustom()) {
1338      if (VA.getLocVT() == MVT::v2f64) {
1339        SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1340                                  DAG.getConstant(0, MVT::i32));
1341        SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1342                                  DAG.getConstant(1, MVT::i32));
1343
1344        PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass,
1345                         VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1346
1347        VA = ArgLocs[++i]; // skip ahead to next loc
1348        if (VA.isRegLoc()) {
1349          PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass,
1350                           VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1351        } else {
1352          assert(VA.isMemLoc());
1353
1354          MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Op1,
1355                                                 dl, DAG, VA, Flags));
1356        }
1357      } else {
1358        PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
1359                         StackPtr, MemOpChains, Flags);
1360      }
1361    } else if (VA.isRegLoc()) {
1362      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1363    } else if (isByVal) {
1364      assert(VA.isMemLoc());
1365      unsigned offset = 0;
1366
1367      // True if this byval aggregate will be split between registers
1368      // and memory.
1369      if (CCInfo.isFirstByValRegValid()) {
1370        EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1371        unsigned int i, j;
1372        for (i = 0, j = CCInfo.getFirstByValReg(); j < ARM::R4; i++, j++) {
1373          SDValue Const = DAG.getConstant(4*i, MVT::i32);
1374          SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
1375          SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
1376                                     MachinePointerInfo(),
1377                                     false, false, false, 0);
1378          MemOpChains.push_back(Load.getValue(1));
1379          RegsToPass.push_back(std::make_pair(j, Load));
1380        }
1381        offset = ARM::R4 - CCInfo.getFirstByValReg();
1382        CCInfo.clearFirstByValReg();
1383      }
1384
1385      unsigned LocMemOffset = VA.getLocMemOffset();
1386      SDValue StkPtrOff = DAG.getIntPtrConstant(LocMemOffset);
1387      SDValue Dst = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr,
1388                                StkPtrOff);
1389      SDValue SrcOffset = DAG.getIntPtrConstant(4*offset);
1390      SDValue Src = DAG.getNode(ISD::ADD, dl, getPointerTy(), Arg, SrcOffset);
1391      SDValue SizeNode = DAG.getConstant(Flags.getByValSize() - 4*offset,
1392                                         MVT::i32);
1393      MemOpChains.push_back(DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode,
1394                                          Flags.getByValAlign(),
1395                                          /*isVolatile=*/false,
1396                                          /*AlwaysInline=*/false,
1397                                          MachinePointerInfo(0),
1398                                          MachinePointerInfo(0)));
1399
1400    } else if (!IsSibCall) {
1401      assert(VA.isMemLoc());
1402
1403      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
1404                                             dl, DAG, VA, Flags));
1405    }
1406  }
1407
1408  if (!MemOpChains.empty())
1409    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1410                        &MemOpChains[0], MemOpChains.size());
1411
1412  // Build a sequence of copy-to-reg nodes chained together with token chain
1413  // and flag operands which copy the outgoing args into the appropriate regs.
1414  SDValue InFlag;
1415  // Tail call byval lowering might overwrite argument registers so in case of
1416  // tail call optimization the copies to registers are lowered later.
1417  if (!isTailCall)
1418    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1419      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1420                               RegsToPass[i].second, InFlag);
1421      InFlag = Chain.getValue(1);
1422    }
1423
1424  // For tail calls lower the arguments to the 'real' stack slot.
1425  if (isTailCall) {
1426    // Force all the incoming stack arguments to be loaded from the stack
1427    // before any new outgoing arguments are stored to the stack, because the
1428    // outgoing stack slots may alias the incoming argument stack slots, and
1429    // the alias isn't otherwise explicit. This is slightly more conservative
1430    // than necessary, because it means that each store effectively depends
1431    // on every argument instead of just those arguments it would clobber.
1432
1433    // Do not flag preceding copytoreg stuff together with the following stuff.
1434    InFlag = SDValue();
1435    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1436      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1437                               RegsToPass[i].second, InFlag);
1438      InFlag = Chain.getValue(1);
1439    }
1440    InFlag =SDValue();
1441  }
1442
1443  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
1444  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
1445  // node so that legalize doesn't hack it.
1446  bool isDirect = false;
1447  bool isARMFunc = false;
1448  bool isLocalARMFunc = false;
1449  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1450
1451  if (EnableARMLongCalls) {
1452    assert (getTargetMachine().getRelocationModel() == Reloc::Static
1453            && "long-calls with non-static relocation model!");
1454    // Handle a global address or an external symbol. If it's not one of
1455    // those, the target's already in a register, so we don't need to do
1456    // anything extra.
1457    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1458      const GlobalValue *GV = G->getGlobal();
1459      // Create a constant pool entry for the callee address
1460      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1461      ARMConstantPoolValue *CPV =
1462        ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, 0);
1463
1464      // Get the address of the callee into a register
1465      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1466      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1467      Callee = DAG.getLoad(getPointerTy(), dl,
1468                           DAG.getEntryNode(), CPAddr,
1469                           MachinePointerInfo::getConstantPool(),
1470                           false, false, false, 0);
1471    } else if (ExternalSymbolSDNode *S=dyn_cast<ExternalSymbolSDNode>(Callee)) {
1472      const char *Sym = S->getSymbol();
1473
1474      // Create a constant pool entry for the callee address
1475      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1476      ARMConstantPoolValue *CPV =
1477        ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
1478                                      ARMPCLabelIndex, 0);
1479      // Get the address of the callee into a register
1480      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1481      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1482      Callee = DAG.getLoad(getPointerTy(), dl,
1483                           DAG.getEntryNode(), CPAddr,
1484                           MachinePointerInfo::getConstantPool(),
1485                           false, false, false, 0);
1486    }
1487  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1488    const GlobalValue *GV = G->getGlobal();
1489    isDirect = true;
1490    bool isExt = GV->isDeclaration() || GV->isWeakForLinker();
1491    bool isStub = (isExt && Subtarget->isTargetDarwin()) &&
1492                   getTargetMachine().getRelocationModel() != Reloc::Static;
1493    isARMFunc = !Subtarget->isThumb() || isStub;
1494    // ARM call to a local ARM function is predicable.
1495    isLocalARMFunc = !Subtarget->isThumb() && (!isExt || !ARMInterworking);
1496    // tBX takes a register source operand.
1497    if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
1498      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1499      ARMConstantPoolValue *CPV =
1500        ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, 4);
1501      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1502      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1503      Callee = DAG.getLoad(getPointerTy(), dl,
1504                           DAG.getEntryNode(), CPAddr,
1505                           MachinePointerInfo::getConstantPool(),
1506                           false, false, false, 0);
1507      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1508      Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
1509                           getPointerTy(), Callee, PICLabel);
1510    } else {
1511      // On ELF targets for PIC code, direct calls should go through the PLT
1512      unsigned OpFlags = 0;
1513      if (Subtarget->isTargetELF() &&
1514                  getTargetMachine().getRelocationModel() == Reloc::PIC_)
1515        OpFlags = ARMII::MO_PLT;
1516      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
1517    }
1518  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1519    isDirect = true;
1520    bool isStub = Subtarget->isTargetDarwin() &&
1521                  getTargetMachine().getRelocationModel() != Reloc::Static;
1522    isARMFunc = !Subtarget->isThumb() || isStub;
1523    // tBX takes a register source operand.
1524    const char *Sym = S->getSymbol();
1525    if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
1526      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1527      ARMConstantPoolValue *CPV =
1528        ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
1529                                      ARMPCLabelIndex, 4);
1530      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1531      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1532      Callee = DAG.getLoad(getPointerTy(), dl,
1533                           DAG.getEntryNode(), CPAddr,
1534                           MachinePointerInfo::getConstantPool(),
1535                           false, false, false, 0);
1536      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1537      Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
1538                           getPointerTy(), Callee, PICLabel);
1539    } else {
1540      unsigned OpFlags = 0;
1541      // On ELF targets for PIC code, direct calls should go through the PLT
1542      if (Subtarget->isTargetELF() &&
1543                  getTargetMachine().getRelocationModel() == Reloc::PIC_)
1544        OpFlags = ARMII::MO_PLT;
1545      Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlags);
1546    }
1547  }
1548
1549  // FIXME: handle tail calls differently.
1550  unsigned CallOpc;
1551  if (Subtarget->isThumb()) {
1552    if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps())
1553      CallOpc = ARMISD::CALL_NOLINK;
1554    else
1555      CallOpc = isARMFunc ? ARMISD::CALL : ARMISD::tCALL;
1556  } else {
1557    CallOpc = (isDirect || Subtarget->hasV5TOps())
1558      ? (isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL)
1559      : ARMISD::CALL_NOLINK;
1560  }
1561
1562  std::vector<SDValue> Ops;
1563  Ops.push_back(Chain);
1564  Ops.push_back(Callee);
1565
1566  // Add argument registers to the end of the list so that they are known live
1567  // into the call.
1568  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1569    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1570                                  RegsToPass[i].second.getValueType()));
1571
1572  if (InFlag.getNode())
1573    Ops.push_back(InFlag);
1574
1575  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1576  if (isTailCall)
1577    return DAG.getNode(ARMISD::TC_RETURN, dl, NodeTys, &Ops[0], Ops.size());
1578
1579  // Returns a chain and a flag for retval copy to use.
1580  Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size());
1581  InFlag = Chain.getValue(1);
1582
1583  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
1584                             DAG.getIntPtrConstant(0, true), InFlag);
1585  if (!Ins.empty())
1586    InFlag = Chain.getValue(1);
1587
1588  // Handle result values, copying them out of physregs into vregs that we
1589  // return.
1590  return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins,
1591                         dl, DAG, InVals);
1592}
1593
1594/// HandleByVal - Every parameter *after* a byval parameter is passed
1595/// on the stack.  Remember the next parameter register to allocate,
1596/// and then confiscate the rest of the parameter registers to insure
1597/// this.
1598void
1599llvm::ARMTargetLowering::HandleByVal(CCState *State, unsigned &size) const {
1600  unsigned reg = State->AllocateReg(GPRArgRegs, 4);
1601  assert((State->getCallOrPrologue() == Prologue ||
1602          State->getCallOrPrologue() == Call) &&
1603         "unhandled ParmContext");
1604  if ((!State->isFirstByValRegValid()) &&
1605      (ARM::R0 <= reg) && (reg <= ARM::R3)) {
1606    State->setFirstByValReg(reg);
1607    // At a call site, a byval parameter that is split between
1608    // registers and memory needs its size truncated here.  In a
1609    // function prologue, such byval parameters are reassembled in
1610    // memory, and are not truncated.
1611    if (State->getCallOrPrologue() == Call) {
1612      unsigned excess = 4 * (ARM::R4 - reg);
1613      assert(size >= excess && "expected larger existing stack allocation");
1614      size -= excess;
1615    }
1616  }
1617  // Confiscate any remaining parameter registers to preclude their
1618  // assignment to subsequent parameters.
1619  while (State->AllocateReg(GPRArgRegs, 4))
1620    ;
1621}
1622
1623/// MatchingStackOffset - Return true if the given stack call argument is
1624/// already available in the same position (relatively) of the caller's
1625/// incoming argument stack.
1626static
1627bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
1628                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
1629                         const ARMInstrInfo *TII) {
1630  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
1631  int FI = INT_MAX;
1632  if (Arg.getOpcode() == ISD::CopyFromReg) {
1633    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
1634    if (!TargetRegisterInfo::isVirtualRegister(VR))
1635      return false;
1636    MachineInstr *Def = MRI->getVRegDef(VR);
1637    if (!Def)
1638      return false;
1639    if (!Flags.isByVal()) {
1640      if (!TII->isLoadFromStackSlot(Def, FI))
1641        return false;
1642    } else {
1643      return false;
1644    }
1645  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
1646    if (Flags.isByVal())
1647      // ByVal argument is passed in as a pointer but it's now being
1648      // dereferenced. e.g.
1649      // define @foo(%struct.X* %A) {
1650      //   tail call @bar(%struct.X* byval %A)
1651      // }
1652      return false;
1653    SDValue Ptr = Ld->getBasePtr();
1654    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
1655    if (!FINode)
1656      return false;
1657    FI = FINode->getIndex();
1658  } else
1659    return false;
1660
1661  assert(FI != INT_MAX);
1662  if (!MFI->isFixedObjectIndex(FI))
1663    return false;
1664  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
1665}
1666
1667/// IsEligibleForTailCallOptimization - Check whether the call is eligible
1668/// for tail call optimization. Targets which want to do tail call
1669/// optimization should implement this function.
1670bool
1671ARMTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
1672                                                     CallingConv::ID CalleeCC,
1673                                                     bool isVarArg,
1674                                                     bool isCalleeStructRet,
1675                                                     bool isCallerStructRet,
1676                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
1677                                    const SmallVectorImpl<SDValue> &OutVals,
1678                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1679                                                     SelectionDAG& DAG) const {
1680  const Function *CallerF = DAG.getMachineFunction().getFunction();
1681  CallingConv::ID CallerCC = CallerF->getCallingConv();
1682  bool CCMatch = CallerCC == CalleeCC;
1683
1684  // Look for obvious safe cases to perform tail call optimization that do not
1685  // require ABI changes. This is what gcc calls sibcall.
1686
1687  // Do not sibcall optimize vararg calls unless the call site is not passing
1688  // any arguments.
1689  if (isVarArg && !Outs.empty())
1690    return false;
1691
1692  // Also avoid sibcall optimization if either caller or callee uses struct
1693  // return semantics.
1694  if (isCalleeStructRet || isCallerStructRet)
1695    return false;
1696
1697  // FIXME: Completely disable sibcall for Thumb1 since Thumb1RegisterInfo::
1698  // emitEpilogue is not ready for them. Thumb tail calls also use t2B, as
1699  // the Thumb1 16-bit unconditional branch doesn't have sufficient relocation
1700  // support in the assembler and linker to be used. This would need to be
1701  // fixed to fully support tail calls in Thumb1.
1702  //
1703  // Doing this is tricky, since the LDM/POP instruction on Thumb doesn't take
1704  // LR.  This means if we need to reload LR, it takes an extra instructions,
1705  // which outweighs the value of the tail call; but here we don't know yet
1706  // whether LR is going to be used.  Probably the right approach is to
1707  // generate the tail call here and turn it back into CALL/RET in
1708  // emitEpilogue if LR is used.
1709
1710  // Thumb1 PIC calls to external symbols use BX, so they can be tail calls,
1711  // but we need to make sure there are enough registers; the only valid
1712  // registers are the 4 used for parameters.  We don't currently do this
1713  // case.
1714  if (Subtarget->isThumb1Only())
1715    return false;
1716
1717  // If the calling conventions do not match, then we'd better make sure the
1718  // results are returned in the same way as what the caller expects.
1719  if (!CCMatch) {
1720    SmallVector<CCValAssign, 16> RVLocs1;
1721    ARMCCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
1722                       getTargetMachine(), RVLocs1, *DAG.getContext(), Call);
1723    CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForNode(CalleeCC, true, isVarArg));
1724
1725    SmallVector<CCValAssign, 16> RVLocs2;
1726    ARMCCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
1727                       getTargetMachine(), RVLocs2, *DAG.getContext(), Call);
1728    CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForNode(CallerCC, true, isVarArg));
1729
1730    if (RVLocs1.size() != RVLocs2.size())
1731      return false;
1732    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
1733      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
1734        return false;
1735      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
1736        return false;
1737      if (RVLocs1[i].isRegLoc()) {
1738        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
1739          return false;
1740      } else {
1741        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
1742          return false;
1743      }
1744    }
1745  }
1746
1747  // If the callee takes no arguments then go on to check the results of the
1748  // call.
1749  if (!Outs.empty()) {
1750    // Check if stack adjustment is needed. For now, do not do this if any
1751    // argument is passed on the stack.
1752    SmallVector<CCValAssign, 16> ArgLocs;
1753    ARMCCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
1754                      getTargetMachine(), ArgLocs, *DAG.getContext(), Call);
1755    CCInfo.AnalyzeCallOperands(Outs,
1756                               CCAssignFnForNode(CalleeCC, false, isVarArg));
1757    if (CCInfo.getNextStackOffset()) {
1758      MachineFunction &MF = DAG.getMachineFunction();
1759
1760      // Check if the arguments are already laid out in the right way as
1761      // the caller's fixed stack objects.
1762      MachineFrameInfo *MFI = MF.getFrameInfo();
1763      const MachineRegisterInfo *MRI = &MF.getRegInfo();
1764      const ARMInstrInfo *TII =
1765        ((ARMTargetMachine&)getTargetMachine()).getInstrInfo();
1766      for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
1767           i != e;
1768           ++i, ++realArgIdx) {
1769        CCValAssign &VA = ArgLocs[i];
1770        EVT RegVT = VA.getLocVT();
1771        SDValue Arg = OutVals[realArgIdx];
1772        ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
1773        if (VA.getLocInfo() == CCValAssign::Indirect)
1774          return false;
1775        if (VA.needsCustom()) {
1776          // f64 and vector types are split into multiple registers or
1777          // register/stack-slot combinations.  The types will not match
1778          // the registers; give up on memory f64 refs until we figure
1779          // out what to do about this.
1780          if (!VA.isRegLoc())
1781            return false;
1782          if (!ArgLocs[++i].isRegLoc())
1783            return false;
1784          if (RegVT == MVT::v2f64) {
1785            if (!ArgLocs[++i].isRegLoc())
1786              return false;
1787            if (!ArgLocs[++i].isRegLoc())
1788              return false;
1789          }
1790        } else if (!VA.isRegLoc()) {
1791          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
1792                                   MFI, MRI, TII))
1793            return false;
1794        }
1795      }
1796    }
1797  }
1798
1799  return true;
1800}
1801
1802SDValue
1803ARMTargetLowering::LowerReturn(SDValue Chain,
1804                               CallingConv::ID CallConv, bool isVarArg,
1805                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1806                               const SmallVectorImpl<SDValue> &OutVals,
1807                               DebugLoc dl, SelectionDAG &DAG) const {
1808
1809  // CCValAssign - represent the assignment of the return value to a location.
1810  SmallVector<CCValAssign, 16> RVLocs;
1811
1812  // CCState - Info about the registers and stack slots.
1813  ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1814                    getTargetMachine(), RVLocs, *DAG.getContext(), Call);
1815
1816  // Analyze outgoing return values.
1817  CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv, /* Return */ true,
1818                                               isVarArg));
1819
1820  // If this is the first return lowered for this function, add
1821  // the regs to the liveout set for the function.
1822  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
1823    for (unsigned i = 0; i != RVLocs.size(); ++i)
1824      if (RVLocs[i].isRegLoc())
1825        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
1826  }
1827
1828  SDValue Flag;
1829
1830  // Copy the result values into the output registers.
1831  for (unsigned i = 0, realRVLocIdx = 0;
1832       i != RVLocs.size();
1833       ++i, ++realRVLocIdx) {
1834    CCValAssign &VA = RVLocs[i];
1835    assert(VA.isRegLoc() && "Can only return in registers!");
1836
1837    SDValue Arg = OutVals[realRVLocIdx];
1838
1839    switch (VA.getLocInfo()) {
1840    default: llvm_unreachable("Unknown loc info!");
1841    case CCValAssign::Full: break;
1842    case CCValAssign::BCvt:
1843      Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
1844      break;
1845    }
1846
1847    if (VA.needsCustom()) {
1848      if (VA.getLocVT() == MVT::v2f64) {
1849        // Extract the first half and return it in two registers.
1850        SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1851                                   DAG.getConstant(0, MVT::i32));
1852        SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl,
1853                                       DAG.getVTList(MVT::i32, MVT::i32), Half);
1854
1855        Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), HalfGPRs, Flag);
1856        Flag = Chain.getValue(1);
1857        VA = RVLocs[++i]; // skip ahead to next loc
1858        Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
1859                                 HalfGPRs.getValue(1), Flag);
1860        Flag = Chain.getValue(1);
1861        VA = RVLocs[++i]; // skip ahead to next loc
1862
1863        // Extract the 2nd half and fall through to handle it as an f64 value.
1864        Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1865                          DAG.getConstant(1, MVT::i32));
1866      }
1867      // Legalize ret f64 -> ret 2 x i32.  We always have fmrrd if f64 is
1868      // available.
1869      SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
1870                                  DAG.getVTList(MVT::i32, MVT::i32), &Arg, 1);
1871      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd, Flag);
1872      Flag = Chain.getValue(1);
1873      VA = RVLocs[++i]; // skip ahead to next loc
1874      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd.getValue(1),
1875                               Flag);
1876    } else
1877      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
1878
1879    // Guarantee that all emitted copies are
1880    // stuck together, avoiding something bad.
1881    Flag = Chain.getValue(1);
1882  }
1883
1884  SDValue result;
1885  if (Flag.getNode())
1886    result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain, Flag);
1887  else // Return Void
1888    result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain);
1889
1890  return result;
1891}
1892
1893bool ARMTargetLowering::isUsedByReturnOnly(SDNode *N) const {
1894  if (N->getNumValues() != 1)
1895    return false;
1896  if (!N->hasNUsesOfValue(1, 0))
1897    return false;
1898
1899  unsigned NumCopies = 0;
1900  SDNode* Copies[2];
1901  SDNode *Use = *N->use_begin();
1902  if (Use->getOpcode() == ISD::CopyToReg) {
1903    Copies[NumCopies++] = Use;
1904  } else if (Use->getOpcode() == ARMISD::VMOVRRD) {
1905    // f64 returned in a pair of GPRs.
1906    for (SDNode::use_iterator UI = Use->use_begin(), UE = Use->use_end();
1907         UI != UE; ++UI) {
1908      if (UI->getOpcode() != ISD::CopyToReg)
1909        return false;
1910      Copies[UI.getUse().getResNo()] = *UI;
1911      ++NumCopies;
1912    }
1913  } else if (Use->getOpcode() == ISD::BITCAST) {
1914    // f32 returned in a single GPR.
1915    if (!Use->hasNUsesOfValue(1, 0))
1916      return false;
1917    Use = *Use->use_begin();
1918    if (Use->getOpcode() != ISD::CopyToReg || !Use->hasNUsesOfValue(1, 0))
1919      return false;
1920    Copies[NumCopies++] = Use;
1921  } else {
1922    return false;
1923  }
1924
1925  if (NumCopies != 1 && NumCopies != 2)
1926    return false;
1927
1928  bool HasRet = false;
1929  for (unsigned i = 0; i < NumCopies; ++i) {
1930    SDNode *Copy = Copies[i];
1931    for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1932         UI != UE; ++UI) {
1933      if (UI->getOpcode() == ISD::CopyToReg) {
1934        SDNode *Use = *UI;
1935        if (Use == Copies[0] || Use == Copies[1])
1936          continue;
1937        return false;
1938      }
1939      if (UI->getOpcode() != ARMISD::RET_FLAG)
1940        return false;
1941      HasRet = true;
1942    }
1943  }
1944
1945  return HasRet;
1946}
1947
1948bool ARMTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
1949  if (!EnableARMTailCalls)
1950    return false;
1951
1952  if (!CI->isTailCall())
1953    return false;
1954
1955  return !Subtarget->isThumb1Only();
1956}
1957
1958// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
1959// their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
1960// one of the above mentioned nodes. It has to be wrapped because otherwise
1961// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
1962// be used to form addressing mode. These wrapped nodes will be selected
1963// into MOVi.
1964static SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
1965  EVT PtrVT = Op.getValueType();
1966  // FIXME there is no actual debug info here
1967  DebugLoc dl = Op.getDebugLoc();
1968  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1969  SDValue Res;
1970  if (CP->isMachineConstantPoolEntry())
1971    Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
1972                                    CP->getAlignment());
1973  else
1974    Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
1975                                    CP->getAlignment());
1976  return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
1977}
1978
1979unsigned ARMTargetLowering::getJumpTableEncoding() const {
1980  return MachineJumpTableInfo::EK_Inline;
1981}
1982
1983SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op,
1984                                             SelectionDAG &DAG) const {
1985  MachineFunction &MF = DAG.getMachineFunction();
1986  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1987  unsigned ARMPCLabelIndex = 0;
1988  DebugLoc DL = Op.getDebugLoc();
1989  EVT PtrVT = getPointerTy();
1990  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1991  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
1992  SDValue CPAddr;
1993  if (RelocM == Reloc::Static) {
1994    CPAddr = DAG.getTargetConstantPool(BA, PtrVT, 4);
1995  } else {
1996    unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
1997    ARMPCLabelIndex = AFI->createPICLabelUId();
1998    ARMConstantPoolValue *CPV =
1999      ARMConstantPoolConstant::Create(BA, ARMPCLabelIndex,
2000                                      ARMCP::CPBlockAddress, PCAdj);
2001    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2002  }
2003  CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr);
2004  SDValue Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), CPAddr,
2005                               MachinePointerInfo::getConstantPool(),
2006                               false, false, false, 0);
2007  if (RelocM == Reloc::Static)
2008    return Result;
2009  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2010  return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel);
2011}
2012
2013// Lower ISD::GlobalTLSAddress using the "general dynamic" model
2014SDValue
2015ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
2016                                                 SelectionDAG &DAG) const {
2017  DebugLoc dl = GA->getDebugLoc();
2018  EVT PtrVT = getPointerTy();
2019  unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
2020  MachineFunction &MF = DAG.getMachineFunction();
2021  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2022  unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2023  ARMConstantPoolValue *CPV =
2024    ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
2025                                    ARMCP::CPValue, PCAdj, ARMCP::TLSGD, true);
2026  SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2027  Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
2028  Argument = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Argument,
2029                         MachinePointerInfo::getConstantPool(),
2030                         false, false, false, 0);
2031  SDValue Chain = Argument.getValue(1);
2032
2033  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2034  Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);
2035
2036  // call __tls_get_addr.
2037  ArgListTy Args;
2038  ArgListEntry Entry;
2039  Entry.Node = Argument;
2040  Entry.Ty = (Type *) Type::getInt32Ty(*DAG.getContext());
2041  Args.push_back(Entry);
2042  // FIXME: is there useful debug info available here?
2043  std::pair<SDValue, SDValue> CallResult =
2044    LowerCallTo(Chain, (Type *) Type::getInt32Ty(*DAG.getContext()),
2045                false, false, false, false,
2046                0, CallingConv::C, false, /*isReturnValueUsed=*/true,
2047                DAG.getExternalSymbol("__tls_get_addr", PtrVT), Args, DAG, dl);
2048  return CallResult.first;
2049}
2050
2051// Lower ISD::GlobalTLSAddress using the "initial exec" or
2052// "local exec" model.
2053SDValue
2054ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
2055                                        SelectionDAG &DAG) const {
2056  const GlobalValue *GV = GA->getGlobal();
2057  DebugLoc dl = GA->getDebugLoc();
2058  SDValue Offset;
2059  SDValue Chain = DAG.getEntryNode();
2060  EVT PtrVT = getPointerTy();
2061  // Get the Thread Pointer
2062  SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
2063
2064  if (GV->isDeclaration()) {
2065    MachineFunction &MF = DAG.getMachineFunction();
2066    ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2067    unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2068    // Initial exec model.
2069    unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
2070    ARMConstantPoolValue *CPV =
2071      ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
2072                                      ARMCP::CPValue, PCAdj, ARMCP::GOTTPOFF,
2073                                      true);
2074    Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2075    Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
2076    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
2077                         MachinePointerInfo::getConstantPool(),
2078                         false, false, false, 0);
2079    Chain = Offset.getValue(1);
2080
2081    SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2082    Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
2083
2084    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
2085                         MachinePointerInfo::getConstantPool(),
2086                         false, false, false, 0);
2087  } else {
2088    // local exec model
2089    ARMConstantPoolValue *CPV =
2090      ARMConstantPoolConstant::Create(GV, ARMCP::TPOFF);
2091    Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2092    Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
2093    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
2094                         MachinePointerInfo::getConstantPool(),
2095                         false, false, false, 0);
2096  }
2097
2098  // The address of the thread local variable is the add of the thread
2099  // pointer with the offset of the variable.
2100  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
2101}
2102
2103SDValue
2104ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
2105  // TODO: implement the "local dynamic" model
2106  assert(Subtarget->isTargetELF() &&
2107         "TLS not implemented for non-ELF targets");
2108  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2109  // If the relocation model is PIC, use the "General Dynamic" TLS Model,
2110  // otherwise use the "Local Exec" TLS Model
2111  if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
2112    return LowerToTLSGeneralDynamicModel(GA, DAG);
2113  else
2114    return LowerToTLSExecModels(GA, DAG);
2115}
2116
2117SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
2118                                                 SelectionDAG &DAG) const {
2119  EVT PtrVT = getPointerTy();
2120  DebugLoc dl = Op.getDebugLoc();
2121  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
2122  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2123  if (RelocM == Reloc::PIC_) {
2124    bool UseGOTOFF = GV->hasLocalLinkage() || GV->hasHiddenVisibility();
2125    ARMConstantPoolValue *CPV =
2126      ARMConstantPoolConstant::Create(GV,
2127                                      UseGOTOFF ? ARMCP::GOTOFF : ARMCP::GOT);
2128    SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2129    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2130    SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
2131                                 CPAddr,
2132                                 MachinePointerInfo::getConstantPool(),
2133                                 false, false, false, 0);
2134    SDValue Chain = Result.getValue(1);
2135    SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
2136    Result = DAG.getNode(ISD::ADD, dl, PtrVT, Result, GOT);
2137    if (!UseGOTOFF)
2138      Result = DAG.getLoad(PtrVT, dl, Chain, Result,
2139                           MachinePointerInfo::getGOT(),
2140                           false, false, false, 0);
2141    return Result;
2142  }
2143
2144  // If we have T2 ops, we can materialize the address directly via movt/movw
2145  // pair. This is always cheaper.
2146  if (Subtarget->useMovt()) {
2147    ++NumMovwMovt;
2148    // FIXME: Once remat is capable of dealing with instructions with register
2149    // operands, expand this into two nodes.
2150    return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
2151                       DAG.getTargetGlobalAddress(GV, dl, PtrVT));
2152  } else {
2153    SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
2154    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2155    return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2156                       MachinePointerInfo::getConstantPool(),
2157                       false, false, false, 0);
2158  }
2159}
2160
2161SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
2162                                                    SelectionDAG &DAG) const {
2163  EVT PtrVT = getPointerTy();
2164  DebugLoc dl = Op.getDebugLoc();
2165  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
2166  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2167  MachineFunction &MF = DAG.getMachineFunction();
2168  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2169
2170  // FIXME: Enable this for static codegen when tool issues are fixed.
2171  if (Subtarget->useMovt() && RelocM != Reloc::Static) {
2172    ++NumMovwMovt;
2173    // FIXME: Once remat is capable of dealing with instructions with register
2174    // operands, expand this into two nodes.
2175    if (RelocM == Reloc::Static)
2176      return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
2177                                 DAG.getTargetGlobalAddress(GV, dl, PtrVT));
2178
2179    unsigned Wrapper = (RelocM == Reloc::PIC_)
2180      ? ARMISD::WrapperPIC : ARMISD::WrapperDYN;
2181    SDValue Result = DAG.getNode(Wrapper, dl, PtrVT,
2182                                 DAG.getTargetGlobalAddress(GV, dl, PtrVT));
2183    if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
2184      Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
2185                           MachinePointerInfo::getGOT(),
2186                           false, false, false, 0);
2187    return Result;
2188  }
2189
2190  unsigned ARMPCLabelIndex = 0;
2191  SDValue CPAddr;
2192  if (RelocM == Reloc::Static) {
2193    CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
2194  } else {
2195    ARMPCLabelIndex = AFI->createPICLabelUId();
2196    unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : (Subtarget->isThumb()?4:8);
2197    ARMConstantPoolValue *CPV =
2198      ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue,
2199                                      PCAdj);
2200    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2201  }
2202  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2203
2204  SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2205                               MachinePointerInfo::getConstantPool(),
2206                               false, false, false, 0);
2207  SDValue Chain = Result.getValue(1);
2208
2209  if (RelocM == Reloc::PIC_) {
2210    SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2211    Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2212  }
2213
2214  if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
2215    Result = DAG.getLoad(PtrVT, dl, Chain, Result, MachinePointerInfo::getGOT(),
2216                         false, false, false, 0);
2217
2218  return Result;
2219}
2220
2221SDValue ARMTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op,
2222                                                    SelectionDAG &DAG) const {
2223  assert(Subtarget->isTargetELF() &&
2224         "GLOBAL OFFSET TABLE not implemented for non-ELF targets");
2225  MachineFunction &MF = DAG.getMachineFunction();
2226  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2227  unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2228  EVT PtrVT = getPointerTy();
2229  DebugLoc dl = Op.getDebugLoc();
2230  unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
2231  ARMConstantPoolValue *CPV =
2232    ARMConstantPoolSymbol::Create(*DAG.getContext(), "_GLOBAL_OFFSET_TABLE_",
2233                                  ARMPCLabelIndex, PCAdj);
2234  SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2235  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2236  SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2237                               MachinePointerInfo::getConstantPool(),
2238                               false, false, false, 0);
2239  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2240  return DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2241}
2242
2243SDValue
2244ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const {
2245  DebugLoc dl = Op.getDebugLoc();
2246  SDValue Val = DAG.getConstant(0, MVT::i32);
2247  return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl,
2248                     DAG.getVTList(MVT::i32, MVT::Other), Op.getOperand(0),
2249                     Op.getOperand(1), Val);
2250}
2251
2252SDValue
2253ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const {
2254  DebugLoc dl = Op.getDebugLoc();
2255  return DAG.getNode(ARMISD::EH_SJLJ_LONGJMP, dl, MVT::Other, Op.getOperand(0),
2256                     Op.getOperand(1), DAG.getConstant(0, MVT::i32));
2257}
2258
2259SDValue
2260ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG,
2261                                          const ARMSubtarget *Subtarget) const {
2262  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2263  DebugLoc dl = Op.getDebugLoc();
2264  switch (IntNo) {
2265  default: return SDValue();    // Don't custom lower most intrinsics.
2266  case Intrinsic::arm_thread_pointer: {
2267    EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2268    return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
2269  }
2270  case Intrinsic::eh_sjlj_lsda: {
2271    MachineFunction &MF = DAG.getMachineFunction();
2272    ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2273    unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2274    EVT PtrVT = getPointerTy();
2275    DebugLoc dl = Op.getDebugLoc();
2276    Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2277    SDValue CPAddr;
2278    unsigned PCAdj = (RelocM != Reloc::PIC_)
2279      ? 0 : (Subtarget->isThumb() ? 4 : 8);
2280    ARMConstantPoolValue *CPV =
2281      ARMConstantPoolConstant::Create(MF.getFunction(), ARMPCLabelIndex,
2282                                      ARMCP::CPLSDA, PCAdj);
2283    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2284    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2285    SDValue Result =
2286      DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2287                  MachinePointerInfo::getConstantPool(),
2288                  false, false, false, 0);
2289
2290    if (RelocM == Reloc::PIC_) {
2291      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2292      Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2293    }
2294    return Result;
2295  }
2296  case Intrinsic::arm_neon_vmulls:
2297  case Intrinsic::arm_neon_vmullu: {
2298    unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmulls)
2299      ? ARMISD::VMULLs : ARMISD::VMULLu;
2300    return DAG.getNode(NewOpc, Op.getDebugLoc(), Op.getValueType(),
2301                       Op.getOperand(1), Op.getOperand(2));
2302  }
2303  }
2304}
2305
2306static SDValue LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG,
2307                               const ARMSubtarget *Subtarget) {
2308  DebugLoc dl = Op.getDebugLoc();
2309  if (!Subtarget->hasDataBarrier()) {
2310    // Some ARMv6 cpus can support data barriers with an mcr instruction.
2311    // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
2312    // here.
2313    assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&
2314           "Unexpected ISD::MEMBARRIER encountered. Should be libcall!");
2315    return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
2316                       DAG.getConstant(0, MVT::i32));
2317  }
2318
2319  SDValue Op5 = Op.getOperand(5);
2320  bool isDeviceBarrier = cast<ConstantSDNode>(Op5)->getZExtValue() != 0;
2321  unsigned isLL = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
2322  unsigned isLS = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
2323  bool isOnlyStoreBarrier = (isLL == 0 && isLS == 0);
2324
2325  ARM_MB::MemBOpt DMBOpt;
2326  if (isDeviceBarrier)
2327    DMBOpt = isOnlyStoreBarrier ? ARM_MB::ST : ARM_MB::SY;
2328  else
2329    DMBOpt = isOnlyStoreBarrier ? ARM_MB::ISHST : ARM_MB::ISH;
2330  return DAG.getNode(ARMISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0),
2331                     DAG.getConstant(DMBOpt, MVT::i32));
2332}
2333
2334
2335static SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG,
2336                                 const ARMSubtarget *Subtarget) {
2337  // FIXME: handle "fence singlethread" more efficiently.
2338  DebugLoc dl = Op.getDebugLoc();
2339  if (!Subtarget->hasDataBarrier()) {
2340    // Some ARMv6 cpus can support data barriers with an mcr instruction.
2341    // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
2342    // here.
2343    assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&
2344           "Unexpected ISD::MEMBARRIER encountered. Should be libcall!");
2345    return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
2346                       DAG.getConstant(0, MVT::i32));
2347  }
2348
2349  return DAG.getNode(ARMISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0),
2350                     DAG.getConstant(ARM_MB::ISH, MVT::i32));
2351}
2352
2353static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG,
2354                             const ARMSubtarget *Subtarget) {
2355  // ARM pre v5TE and Thumb1 does not have preload instructions.
2356  if (!(Subtarget->isThumb2() ||
2357        (!Subtarget->isThumb1Only() && Subtarget->hasV5TEOps())))
2358    // Just preserve the chain.
2359    return Op.getOperand(0);
2360
2361  DebugLoc dl = Op.getDebugLoc();
2362  unsigned isRead = ~cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() & 1;
2363  if (!isRead &&
2364      (!Subtarget->hasV7Ops() || !Subtarget->hasMPExtension()))
2365    // ARMv7 with MP extension has PLDW.
2366    return Op.getOperand(0);
2367
2368  unsigned isData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
2369  if (Subtarget->isThumb()) {
2370    // Invert the bits.
2371    isRead = ~isRead & 1;
2372    isData = ~isData & 1;
2373  }
2374
2375  return DAG.getNode(ARMISD::PRELOAD, dl, MVT::Other, Op.getOperand(0),
2376                     Op.getOperand(1), DAG.getConstant(isRead, MVT::i32),
2377                     DAG.getConstant(isData, MVT::i32));
2378}
2379
2380static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) {
2381  MachineFunction &MF = DAG.getMachineFunction();
2382  ARMFunctionInfo *FuncInfo = MF.getInfo<ARMFunctionInfo>();
2383
2384  // vastart just stores the address of the VarArgsFrameIndex slot into the
2385  // memory location argument.
2386  DebugLoc dl = Op.getDebugLoc();
2387  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2388  SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2389  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2390  return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
2391                      MachinePointerInfo(SV), false, false, 0);
2392}
2393
2394SDValue
2395ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA, CCValAssign &NextVA,
2396                                        SDValue &Root, SelectionDAG &DAG,
2397                                        DebugLoc dl) const {
2398  MachineFunction &MF = DAG.getMachineFunction();
2399  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2400
2401  TargetRegisterClass *RC;
2402  if (AFI->isThumb1OnlyFunction())
2403    RC = ARM::tGPRRegisterClass;
2404  else
2405    RC = ARM::GPRRegisterClass;
2406
2407  // Transform the arguments stored in physical registers into virtual ones.
2408  unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2409  SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
2410
2411  SDValue ArgValue2;
2412  if (NextVA.isMemLoc()) {
2413    MachineFrameInfo *MFI = MF.getFrameInfo();
2414    int FI = MFI->CreateFixedObject(4, NextVA.getLocMemOffset(), true);
2415
2416    // Create load node to retrieve arguments from the stack.
2417    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2418    ArgValue2 = DAG.getLoad(MVT::i32, dl, Root, FIN,
2419                            MachinePointerInfo::getFixedStack(FI),
2420                            false, false, false, 0);
2421  } else {
2422    Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
2423    ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
2424  }
2425
2426  return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2);
2427}
2428
2429void
2430ARMTargetLowering::computeRegArea(CCState &CCInfo, MachineFunction &MF,
2431                                  unsigned &VARegSize, unsigned &VARegSaveSize)
2432  const {
2433  unsigned NumGPRs;
2434  if (CCInfo.isFirstByValRegValid())
2435    NumGPRs = ARM::R4 - CCInfo.getFirstByValReg();
2436  else {
2437    unsigned int firstUnalloced;
2438    firstUnalloced = CCInfo.getFirstUnallocated(GPRArgRegs,
2439                                                sizeof(GPRArgRegs) /
2440                                                sizeof(GPRArgRegs[0]));
2441    NumGPRs = (firstUnalloced <= 3) ? (4 - firstUnalloced) : 0;
2442  }
2443
2444  unsigned Align = MF.getTarget().getFrameLowering()->getStackAlignment();
2445  VARegSize = NumGPRs * 4;
2446  VARegSaveSize = (VARegSize + Align - 1) & ~(Align - 1);
2447}
2448
2449// The remaining GPRs hold either the beginning of variable-argument
2450// data, or the beginning of an aggregate passed by value (usuall
2451// byval).  Either way, we allocate stack slots adjacent to the data
2452// provided by our caller, and store the unallocated registers there.
2453// If this is a variadic function, the va_list pointer will begin with
2454// these values; otherwise, this reassembles a (byval) structure that
2455// was split between registers and memory.
2456void
2457ARMTargetLowering::VarArgStyleRegisters(CCState &CCInfo, SelectionDAG &DAG,
2458                                        DebugLoc dl, SDValue &Chain,
2459                                        unsigned ArgOffset) const {
2460  MachineFunction &MF = DAG.getMachineFunction();
2461  MachineFrameInfo *MFI = MF.getFrameInfo();
2462  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2463  unsigned firstRegToSaveIndex;
2464  if (CCInfo.isFirstByValRegValid())
2465    firstRegToSaveIndex = CCInfo.getFirstByValReg() - ARM::R0;
2466  else {
2467    firstRegToSaveIndex = CCInfo.getFirstUnallocated
2468      (GPRArgRegs, sizeof(GPRArgRegs) / sizeof(GPRArgRegs[0]));
2469  }
2470
2471  unsigned VARegSize, VARegSaveSize;
2472  computeRegArea(CCInfo, MF, VARegSize, VARegSaveSize);
2473  if (VARegSaveSize) {
2474    // If this function is vararg, store any remaining integer argument regs
2475    // to their spots on the stack so that they may be loaded by deferencing
2476    // the result of va_next.
2477    AFI->setVarArgsRegSaveSize(VARegSaveSize);
2478    AFI->setVarArgsFrameIndex(MFI->CreateFixedObject(VARegSaveSize,
2479                                                     ArgOffset + VARegSaveSize
2480                                                     - VARegSize,
2481                                                     false));
2482    SDValue FIN = DAG.getFrameIndex(AFI->getVarArgsFrameIndex(),
2483                                    getPointerTy());
2484
2485    SmallVector<SDValue, 4> MemOps;
2486    for (; firstRegToSaveIndex < 4; ++firstRegToSaveIndex) {
2487      TargetRegisterClass *RC;
2488      if (AFI->isThumb1OnlyFunction())
2489        RC = ARM::tGPRRegisterClass;
2490      else
2491        RC = ARM::GPRRegisterClass;
2492
2493      unsigned VReg = MF.addLiveIn(GPRArgRegs[firstRegToSaveIndex], RC);
2494      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
2495      SDValue Store =
2496        DAG.getStore(Val.getValue(1), dl, Val, FIN,
2497                 MachinePointerInfo::getFixedStack(AFI->getVarArgsFrameIndex()),
2498                     false, false, 0);
2499      MemOps.push_back(Store);
2500      FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN,
2501                        DAG.getConstant(4, getPointerTy()));
2502    }
2503    if (!MemOps.empty())
2504      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2505                          &MemOps[0], MemOps.size());
2506  } else
2507    // This will point to the next argument passed via stack.
2508    AFI->setVarArgsFrameIndex(MFI->CreateFixedObject(4, ArgOffset, true));
2509}
2510
2511SDValue
2512ARMTargetLowering::LowerFormalArguments(SDValue Chain,
2513                                        CallingConv::ID CallConv, bool isVarArg,
2514                                        const SmallVectorImpl<ISD::InputArg>
2515                                          &Ins,
2516                                        DebugLoc dl, SelectionDAG &DAG,
2517                                        SmallVectorImpl<SDValue> &InVals)
2518                                          const {
2519  MachineFunction &MF = DAG.getMachineFunction();
2520  MachineFrameInfo *MFI = MF.getFrameInfo();
2521
2522  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2523
2524  // Assign locations to all of the incoming arguments.
2525  SmallVector<CCValAssign, 16> ArgLocs;
2526  ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2527                    getTargetMachine(), ArgLocs, *DAG.getContext(), Prologue);
2528  CCInfo.AnalyzeFormalArguments(Ins,
2529                                CCAssignFnForNode(CallConv, /* Return*/ false,
2530                                                  isVarArg));
2531
2532  SmallVector<SDValue, 16> ArgValues;
2533  int lastInsIndex = -1;
2534
2535  SDValue ArgValue;
2536  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2537    CCValAssign &VA = ArgLocs[i];
2538
2539    // Arguments stored in registers.
2540    if (VA.isRegLoc()) {
2541      EVT RegVT = VA.getLocVT();
2542
2543      if (VA.needsCustom()) {
2544        // f64 and vector types are split up into multiple registers or
2545        // combinations of registers and stack slots.
2546        if (VA.getLocVT() == MVT::v2f64) {
2547          SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i],
2548                                                   Chain, DAG, dl);
2549          VA = ArgLocs[++i]; // skip ahead to next loc
2550          SDValue ArgValue2;
2551          if (VA.isMemLoc()) {
2552            int FI = MFI->CreateFixedObject(8, VA.getLocMemOffset(), true);
2553            SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2554            ArgValue2 = DAG.getLoad(MVT::f64, dl, Chain, FIN,
2555                                    MachinePointerInfo::getFixedStack(FI),
2556                                    false, false, false, 0);
2557          } else {
2558            ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i],
2559                                             Chain, DAG, dl);
2560          }
2561          ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
2562          ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
2563                                 ArgValue, ArgValue1, DAG.getIntPtrConstant(0));
2564          ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
2565                                 ArgValue, ArgValue2, DAG.getIntPtrConstant(1));
2566        } else
2567          ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
2568
2569      } else {
2570        TargetRegisterClass *RC;
2571
2572        if (RegVT == MVT::f32)
2573          RC = ARM::SPRRegisterClass;
2574        else if (RegVT == MVT::f64)
2575          RC = ARM::DPRRegisterClass;
2576        else if (RegVT == MVT::v2f64)
2577          RC = ARM::QPRRegisterClass;
2578        else if (RegVT == MVT::i32)
2579          RC = (AFI->isThumb1OnlyFunction() ?
2580                ARM::tGPRRegisterClass : ARM::GPRRegisterClass);
2581        else
2582          llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
2583
2584        // Transform the arguments in physical registers into virtual ones.
2585        unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2586        ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
2587      }
2588
2589      // If this is an 8 or 16-bit value, it is really passed promoted
2590      // to 32 bits.  Insert an assert[sz]ext to capture this, then
2591      // truncate to the right size.
2592      switch (VA.getLocInfo()) {
2593      default: llvm_unreachable("Unknown loc info!");
2594      case CCValAssign::Full: break;
2595      case CCValAssign::BCvt:
2596        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
2597        break;
2598      case CCValAssign::SExt:
2599        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
2600                               DAG.getValueType(VA.getValVT()));
2601        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
2602        break;
2603      case CCValAssign::ZExt:
2604        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
2605                               DAG.getValueType(VA.getValVT()));
2606        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
2607        break;
2608      }
2609
2610      InVals.push_back(ArgValue);
2611
2612    } else { // VA.isRegLoc()
2613
2614      // sanity check
2615      assert(VA.isMemLoc());
2616      assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered");
2617
2618      int index = ArgLocs[i].getValNo();
2619
2620      // Some Ins[] entries become multiple ArgLoc[] entries.
2621      // Process them only once.
2622      if (index != lastInsIndex)
2623        {
2624          ISD::ArgFlagsTy Flags = Ins[index].Flags;
2625          // FIXME: For now, all byval parameter objects are marked mutable.
2626          // This can be changed with more analysis.
2627          // In case of tail call optimization mark all arguments mutable.
2628          // Since they could be overwritten by lowering of arguments in case of
2629          // a tail call.
2630          if (Flags.isByVal()) {
2631            unsigned VARegSize, VARegSaveSize;
2632            computeRegArea(CCInfo, MF, VARegSize, VARegSaveSize);
2633            VarArgStyleRegisters(CCInfo, DAG, dl, Chain, 0);
2634            unsigned Bytes = Flags.getByValSize() - VARegSize;
2635            if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
2636            int FI = MFI->CreateFixedObject(Bytes,
2637                                            VA.getLocMemOffset(), false);
2638            InVals.push_back(DAG.getFrameIndex(FI, getPointerTy()));
2639          } else {
2640            int FI = MFI->CreateFixedObject(VA.getLocVT().getSizeInBits()/8,
2641                                            VA.getLocMemOffset(), true);
2642
2643            // Create load nodes to retrieve arguments from the stack.
2644            SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2645            InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
2646                                         MachinePointerInfo::getFixedStack(FI),
2647                                         false, false, false, 0));
2648          }
2649          lastInsIndex = index;
2650        }
2651    }
2652  }
2653
2654  // varargs
2655  if (isVarArg)
2656    VarArgStyleRegisters(CCInfo, DAG, dl, Chain, CCInfo.getNextStackOffset());
2657
2658  return Chain;
2659}
2660
2661/// isFloatingPointZero - Return true if this is +0.0.
2662static bool isFloatingPointZero(SDValue Op) {
2663  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
2664    return CFP->getValueAPF().isPosZero();
2665  else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
2666    // Maybe this has already been legalized into the constant pool?
2667    if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
2668      SDValue WrapperOp = Op.getOperand(1).getOperand(0);
2669      if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
2670        if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
2671          return CFP->getValueAPF().isPosZero();
2672    }
2673  }
2674  return false;
2675}
2676
2677/// Returns appropriate ARM CMP (cmp) and corresponding condition code for
2678/// the given operands.
2679SDValue
2680ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
2681                             SDValue &ARMcc, SelectionDAG &DAG,
2682                             DebugLoc dl) const {
2683  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
2684    unsigned C = RHSC->getZExtValue();
2685    if (!isLegalICmpImmediate(C)) {
2686      // Constant does not fit, try adjusting it by one?
2687      switch (CC) {
2688      default: break;
2689      case ISD::SETLT:
2690      case ISD::SETGE:
2691        if (C != 0x80000000 && isLegalICmpImmediate(C-1)) {
2692          CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
2693          RHS = DAG.getConstant(C-1, MVT::i32);
2694        }
2695        break;
2696      case ISD::SETULT:
2697      case ISD::SETUGE:
2698        if (C != 0 && isLegalICmpImmediate(C-1)) {
2699          CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
2700          RHS = DAG.getConstant(C-1, MVT::i32);
2701        }
2702        break;
2703      case ISD::SETLE:
2704      case ISD::SETGT:
2705        if (C != 0x7fffffff && isLegalICmpImmediate(C+1)) {
2706          CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
2707          RHS = DAG.getConstant(C+1, MVT::i32);
2708        }
2709        break;
2710      case ISD::SETULE:
2711      case ISD::SETUGT:
2712        if (C != 0xffffffff && isLegalICmpImmediate(C+1)) {
2713          CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
2714          RHS = DAG.getConstant(C+1, MVT::i32);
2715        }
2716        break;
2717      }
2718    }
2719  }
2720
2721  ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
2722  ARMISD::NodeType CompareType;
2723  switch (CondCode) {
2724  default:
2725    CompareType = ARMISD::CMP;
2726    break;
2727  case ARMCC::EQ:
2728  case ARMCC::NE:
2729    // Uses only Z Flag
2730    CompareType = ARMISD::CMPZ;
2731    break;
2732  }
2733  ARMcc = DAG.getConstant(CondCode, MVT::i32);
2734  return DAG.getNode(CompareType, dl, MVT::Glue, LHS, RHS);
2735}
2736
2737/// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
2738SDValue
2739ARMTargetLowering::getVFPCmp(SDValue LHS, SDValue RHS, SelectionDAG &DAG,
2740                             DebugLoc dl) const {
2741  SDValue Cmp;
2742  if (!isFloatingPointZero(RHS))
2743    Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Glue, LHS, RHS);
2744  else
2745    Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Glue, LHS);
2746  return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Glue, Cmp);
2747}
2748
2749/// duplicateCmp - Glue values can have only one use, so this function
2750/// duplicates a comparison node.
2751SDValue
2752ARMTargetLowering::duplicateCmp(SDValue Cmp, SelectionDAG &DAG) const {
2753  unsigned Opc = Cmp.getOpcode();
2754  DebugLoc DL = Cmp.getDebugLoc();
2755  if (Opc == ARMISD::CMP || Opc == ARMISD::CMPZ)
2756    return DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
2757
2758  assert(Opc == ARMISD::FMSTAT && "unexpected comparison operation");
2759  Cmp = Cmp.getOperand(0);
2760  Opc = Cmp.getOpcode();
2761  if (Opc == ARMISD::CMPFP)
2762    Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
2763  else {
2764    assert(Opc == ARMISD::CMPFPw0 && "unexpected operand of FMSTAT");
2765    Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0));
2766  }
2767  return DAG.getNode(ARMISD::FMSTAT, DL, MVT::Glue, Cmp);
2768}
2769
2770SDValue ARMTargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
2771  SDValue Cond = Op.getOperand(0);
2772  SDValue SelectTrue = Op.getOperand(1);
2773  SDValue SelectFalse = Op.getOperand(2);
2774  DebugLoc dl = Op.getDebugLoc();
2775
2776  // Convert:
2777  //
2778  //   (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond)
2779  //   (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond)
2780  //
2781  if (Cond.getOpcode() == ARMISD::CMOV && Cond.hasOneUse()) {
2782    const ConstantSDNode *CMOVTrue =
2783      dyn_cast<ConstantSDNode>(Cond.getOperand(0));
2784    const ConstantSDNode *CMOVFalse =
2785      dyn_cast<ConstantSDNode>(Cond.getOperand(1));
2786
2787    if (CMOVTrue && CMOVFalse) {
2788      unsigned CMOVTrueVal = CMOVTrue->getZExtValue();
2789      unsigned CMOVFalseVal = CMOVFalse->getZExtValue();
2790
2791      SDValue True;
2792      SDValue False;
2793      if (CMOVTrueVal == 1 && CMOVFalseVal == 0) {
2794        True = SelectTrue;
2795        False = SelectFalse;
2796      } else if (CMOVTrueVal == 0 && CMOVFalseVal == 1) {
2797        True = SelectFalse;
2798        False = SelectTrue;
2799      }
2800
2801      if (True.getNode() && False.getNode()) {
2802        EVT VT = Op.getValueType();
2803        SDValue ARMcc = Cond.getOperand(2);
2804        SDValue CCR = Cond.getOperand(3);
2805        SDValue Cmp = duplicateCmp(Cond.getOperand(4), DAG);
2806        assert(True.getValueType() == VT);
2807        return DAG.getNode(ARMISD::CMOV, dl, VT, True, False, ARMcc, CCR, Cmp);
2808      }
2809    }
2810  }
2811
2812  return DAG.getSelectCC(dl, Cond,
2813                         DAG.getConstant(0, Cond.getValueType()),
2814                         SelectTrue, SelectFalse, ISD::SETNE);
2815}
2816
2817SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
2818  EVT VT = Op.getValueType();
2819  SDValue LHS = Op.getOperand(0);
2820  SDValue RHS = Op.getOperand(1);
2821  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2822  SDValue TrueVal = Op.getOperand(2);
2823  SDValue FalseVal = Op.getOperand(3);
2824  DebugLoc dl = Op.getDebugLoc();
2825
2826  if (LHS.getValueType() == MVT::i32) {
2827    SDValue ARMcc;
2828    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2829    SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
2830    return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, CCR,Cmp);
2831  }
2832
2833  ARMCC::CondCodes CondCode, CondCode2;
2834  FPCCToARMCC(CC, CondCode, CondCode2);
2835
2836  SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
2837  SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
2838  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2839  SDValue Result = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal,
2840                               ARMcc, CCR, Cmp);
2841  if (CondCode2 != ARMCC::AL) {
2842    SDValue ARMcc2 = DAG.getConstant(CondCode2, MVT::i32);
2843    // FIXME: Needs another CMP because flag can have but one use.
2844    SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl);
2845    Result = DAG.getNode(ARMISD::CMOV, dl, VT,
2846                         Result, TrueVal, ARMcc2, CCR, Cmp2);
2847  }
2848  return Result;
2849}
2850
2851/// canChangeToInt - Given the fp compare operand, return true if it is suitable
2852/// to morph to an integer compare sequence.
2853static bool canChangeToInt(SDValue Op, bool &SeenZero,
2854                           const ARMSubtarget *Subtarget) {
2855  SDNode *N = Op.getNode();
2856  if (!N->hasOneUse())
2857    // Otherwise it requires moving the value from fp to integer registers.
2858    return false;
2859  if (!N->getNumValues())
2860    return false;
2861  EVT VT = Op.getValueType();
2862  if (VT != MVT::f32 && !Subtarget->isFPBrccSlow())
2863    // f32 case is generally profitable. f64 case only makes sense when vcmpe +
2864    // vmrs are very slow, e.g. cortex-a8.
2865    return false;
2866
2867  if (isFloatingPointZero(Op)) {
2868    SeenZero = true;
2869    return true;
2870  }
2871  return ISD::isNormalLoad(N);
2872}
2873
2874static SDValue bitcastf32Toi32(SDValue Op, SelectionDAG &DAG) {
2875  if (isFloatingPointZero(Op))
2876    return DAG.getConstant(0, MVT::i32);
2877
2878  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op))
2879    return DAG.getLoad(MVT::i32, Op.getDebugLoc(),
2880                       Ld->getChain(), Ld->getBasePtr(), Ld->getPointerInfo(),
2881                       Ld->isVolatile(), Ld->isNonTemporal(),
2882                       Ld->isInvariant(), Ld->getAlignment());
2883
2884  llvm_unreachable("Unknown VFP cmp argument!");
2885}
2886
2887static void expandf64Toi32(SDValue Op, SelectionDAG &DAG,
2888                           SDValue &RetVal1, SDValue &RetVal2) {
2889  if (isFloatingPointZero(Op)) {
2890    RetVal1 = DAG.getConstant(0, MVT::i32);
2891    RetVal2 = DAG.getConstant(0, MVT::i32);
2892    return;
2893  }
2894
2895  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) {
2896    SDValue Ptr = Ld->getBasePtr();
2897    RetVal1 = DAG.getLoad(MVT::i32, Op.getDebugLoc(),
2898                          Ld->getChain(), Ptr,
2899                          Ld->getPointerInfo(),
2900                          Ld->isVolatile(), Ld->isNonTemporal(),
2901                          Ld->isInvariant(), Ld->getAlignment());
2902
2903    EVT PtrType = Ptr.getValueType();
2904    unsigned NewAlign = MinAlign(Ld->getAlignment(), 4);
2905    SDValue NewPtr = DAG.getNode(ISD::ADD, Op.getDebugLoc(),
2906                                 PtrType, Ptr, DAG.getConstant(4, PtrType));
2907    RetVal2 = DAG.getLoad(MVT::i32, Op.getDebugLoc(),
2908                          Ld->getChain(), NewPtr,
2909                          Ld->getPointerInfo().getWithOffset(4),
2910                          Ld->isVolatile(), Ld->isNonTemporal(),
2911                          Ld->isInvariant(), NewAlign);
2912    return;
2913  }
2914
2915  llvm_unreachable("Unknown VFP cmp argument!");
2916}
2917
2918/// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some
2919/// f32 and even f64 comparisons to integer ones.
2920SDValue
2921ARMTargetLowering::OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const {
2922  SDValue Chain = Op.getOperand(0);
2923  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
2924  SDValue LHS = Op.getOperand(2);
2925  SDValue RHS = Op.getOperand(3);
2926  SDValue Dest = Op.getOperand(4);
2927  DebugLoc dl = Op.getDebugLoc();
2928
2929  bool SeenZero = false;
2930  if (canChangeToInt(LHS, SeenZero, Subtarget) &&
2931      canChangeToInt(RHS, SeenZero, Subtarget) &&
2932      // If one of the operand is zero, it's safe to ignore the NaN case since
2933      // we only care about equality comparisons.
2934      (SeenZero || (DAG.isKnownNeverNaN(LHS) && DAG.isKnownNeverNaN(RHS)))) {
2935    // If unsafe fp math optimization is enabled and there are no other uses of
2936    // the CMP operands, and the condition code is EQ or NE, we can optimize it
2937    // to an integer comparison.
2938    if (CC == ISD::SETOEQ)
2939      CC = ISD::SETEQ;
2940    else if (CC == ISD::SETUNE)
2941      CC = ISD::SETNE;
2942
2943    SDValue ARMcc;
2944    if (LHS.getValueType() == MVT::f32) {
2945      LHS = bitcastf32Toi32(LHS, DAG);
2946      RHS = bitcastf32Toi32(RHS, DAG);
2947      SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
2948      SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2949      return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
2950                         Chain, Dest, ARMcc, CCR, Cmp);
2951    }
2952
2953    SDValue LHS1, LHS2;
2954    SDValue RHS1, RHS2;
2955    expandf64Toi32(LHS, DAG, LHS1, LHS2);
2956    expandf64Toi32(RHS, DAG, RHS1, RHS2);
2957    ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
2958    ARMcc = DAG.getConstant(CondCode, MVT::i32);
2959    SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
2960    SDValue Ops[] = { Chain, ARMcc, LHS1, LHS2, RHS1, RHS2, Dest };
2961    return DAG.getNode(ARMISD::BCC_i64, dl, VTList, Ops, 7);
2962  }
2963
2964  return SDValue();
2965}
2966
2967SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
2968  SDValue Chain = Op.getOperand(0);
2969  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
2970  SDValue LHS = Op.getOperand(2);
2971  SDValue RHS = Op.getOperand(3);
2972  SDValue Dest = Op.getOperand(4);
2973  DebugLoc dl = Op.getDebugLoc();
2974
2975  if (LHS.getValueType() == MVT::i32) {
2976    SDValue ARMcc;
2977    SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
2978    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2979    return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
2980                       Chain, Dest, ARMcc, CCR, Cmp);
2981  }
2982
2983  assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
2984
2985  if (getTargetMachine().Options.UnsafeFPMath &&
2986      (CC == ISD::SETEQ || CC == ISD::SETOEQ ||
2987       CC == ISD::SETNE || CC == ISD::SETUNE)) {
2988    SDValue Result = OptimizeVFPBrcond(Op, DAG);
2989    if (Result.getNode())
2990      return Result;
2991  }
2992
2993  ARMCC::CondCodes CondCode, CondCode2;
2994  FPCCToARMCC(CC, CondCode, CondCode2);
2995
2996  SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
2997  SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
2998  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2999  SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
3000  SDValue Ops[] = { Chain, Dest, ARMcc, CCR, Cmp };
3001  SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
3002  if (CondCode2 != ARMCC::AL) {
3003    ARMcc = DAG.getConstant(CondCode2, MVT::i32);
3004    SDValue Ops[] = { Res, Dest, ARMcc, CCR, Res.getValue(1) };
3005    Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
3006  }
3007  return Res;
3008}
3009
3010SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
3011  SDValue Chain = Op.getOperand(0);
3012  SDValue Table = Op.getOperand(1);
3013  SDValue Index = Op.getOperand(2);
3014  DebugLoc dl = Op.getDebugLoc();
3015
3016  EVT PTy = getPointerTy();
3017  JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
3018  ARMFunctionInfo *AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
3019  SDValue UId = DAG.getConstant(AFI->createJumpTableUId(), PTy);
3020  SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
3021  Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI, UId);
3022  Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, PTy));
3023  SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
3024  if (Subtarget->isThumb2()) {
3025    // Thumb2 uses a two-level jump. That is, it jumps into the jump table
3026    // which does another jump to the destination. This also makes it easier
3027    // to translate it to TBB / TBH later.
3028    // FIXME: This might not work if the function is extremely large.
3029    return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain,
3030                       Addr, Op.getOperand(2), JTI, UId);
3031  }
3032  if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
3033    Addr = DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr,
3034                       MachinePointerInfo::getJumpTable(),
3035                       false, false, false, 0);
3036    Chain = Addr.getValue(1);
3037    Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, Table);
3038    return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
3039  } else {
3040    Addr = DAG.getLoad(PTy, dl, Chain, Addr,
3041                       MachinePointerInfo::getJumpTable(),
3042                       false, false, false, 0);
3043    Chain = Addr.getValue(1);
3044    return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
3045  }
3046}
3047
3048static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
3049  EVT VT = Op.getValueType();
3050  assert(VT.getVectorElementType() == MVT::i32 && "Unexpected custom lowering");
3051
3052  if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::f32)
3053    return Op;
3054  return DAG.UnrollVectorOp(Op.getNode());
3055}
3056
3057static SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
3058  EVT VT = Op.getValueType();
3059  if (VT.isVector())
3060    return LowerVectorFP_TO_INT(Op, DAG);
3061
3062  DebugLoc dl = Op.getDebugLoc();
3063  unsigned Opc;
3064
3065  switch (Op.getOpcode()) {
3066  default:
3067    assert(0 && "Invalid opcode!");
3068  case ISD::FP_TO_SINT:
3069    Opc = ARMISD::FTOSI;
3070    break;
3071  case ISD::FP_TO_UINT:
3072    Opc = ARMISD::FTOUI;
3073    break;
3074  }
3075  Op = DAG.getNode(Opc, dl, MVT::f32, Op.getOperand(0));
3076  return DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3077}
3078
3079static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
3080  EVT VT = Op.getValueType();
3081  DebugLoc dl = Op.getDebugLoc();
3082
3083  if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i32) {
3084    if (VT.getVectorElementType() == MVT::f32)
3085      return Op;
3086    return DAG.UnrollVectorOp(Op.getNode());
3087  }
3088
3089  assert(Op.getOperand(0).getValueType() == MVT::v4i16 &&
3090         "Invalid type for custom lowering!");
3091  if (VT != MVT::v4f32)
3092    return DAG.UnrollVectorOp(Op.getNode());
3093
3094  unsigned CastOpc;
3095  unsigned Opc;
3096  switch (Op.getOpcode()) {
3097  default:
3098    assert(0 && "Invalid opcode!");
3099  case ISD::SINT_TO_FP:
3100    CastOpc = ISD::SIGN_EXTEND;
3101    Opc = ISD::SINT_TO_FP;
3102    break;
3103  case ISD::UINT_TO_FP:
3104    CastOpc = ISD::ZERO_EXTEND;
3105    Opc = ISD::UINT_TO_FP;
3106    break;
3107  }
3108
3109  Op = DAG.getNode(CastOpc, dl, MVT::v4i32, Op.getOperand(0));
3110  return DAG.getNode(Opc, dl, VT, Op);
3111}
3112
3113static SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
3114  EVT VT = Op.getValueType();
3115  if (VT.isVector())
3116    return LowerVectorINT_TO_FP(Op, DAG);
3117
3118  DebugLoc dl = Op.getDebugLoc();
3119  unsigned Opc;
3120
3121  switch (Op.getOpcode()) {
3122  default:
3123    assert(0 && "Invalid opcode!");
3124  case ISD::SINT_TO_FP:
3125    Opc = ARMISD::SITOF;
3126    break;
3127  case ISD::UINT_TO_FP:
3128    Opc = ARMISD::UITOF;
3129    break;
3130  }
3131
3132  Op = DAG.getNode(ISD::BITCAST, dl, MVT::f32, Op.getOperand(0));
3133  return DAG.getNode(Opc, dl, VT, Op);
3134}
3135
3136SDValue ARMTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
3137  // Implement fcopysign with a fabs and a conditional fneg.
3138  SDValue Tmp0 = Op.getOperand(0);
3139  SDValue Tmp1 = Op.getOperand(1);
3140  DebugLoc dl = Op.getDebugLoc();
3141  EVT VT = Op.getValueType();
3142  EVT SrcVT = Tmp1.getValueType();
3143  bool InGPR = Tmp0.getOpcode() == ISD::BITCAST ||
3144    Tmp0.getOpcode() == ARMISD::VMOVDRR;
3145  bool UseNEON = !InGPR && Subtarget->hasNEON();
3146
3147  if (UseNEON) {
3148    // Use VBSL to copy the sign bit.
3149    unsigned EncodedVal = ARM_AM::createNEONModImm(0x6, 0x80);
3150    SDValue Mask = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v2i32,
3151                               DAG.getTargetConstant(EncodedVal, MVT::i32));
3152    EVT OpVT = (VT == MVT::f32) ? MVT::v2i32 : MVT::v1i64;
3153    if (VT == MVT::f64)
3154      Mask = DAG.getNode(ARMISD::VSHL, dl, OpVT,
3155                         DAG.getNode(ISD::BITCAST, dl, OpVT, Mask),
3156                         DAG.getConstant(32, MVT::i32));
3157    else /*if (VT == MVT::f32)*/
3158      Tmp0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp0);
3159    if (SrcVT == MVT::f32) {
3160      Tmp1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp1);
3161      if (VT == MVT::f64)
3162        Tmp1 = DAG.getNode(ARMISD::VSHL, dl, OpVT,
3163                           DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1),
3164                           DAG.getConstant(32, MVT::i32));
3165    } else if (VT == MVT::f32)
3166      Tmp1 = DAG.getNode(ARMISD::VSHRu, dl, MVT::v1i64,
3167                         DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, Tmp1),
3168                         DAG.getConstant(32, MVT::i32));
3169    Tmp0 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp0);
3170    Tmp1 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1);
3171
3172    SDValue AllOnes = DAG.getTargetConstant(ARM_AM::createNEONModImm(0xe, 0xff),
3173                                            MVT::i32);
3174    AllOnes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v8i8, AllOnes);
3175    SDValue MaskNot = DAG.getNode(ISD::XOR, dl, OpVT, Mask,
3176                                  DAG.getNode(ISD::BITCAST, dl, OpVT, AllOnes));
3177
3178    SDValue Res = DAG.getNode(ISD::OR, dl, OpVT,
3179                              DAG.getNode(ISD::AND, dl, OpVT, Tmp1, Mask),
3180                              DAG.getNode(ISD::AND, dl, OpVT, Tmp0, MaskNot));
3181    if (VT == MVT::f32) {
3182      Res = DAG.getNode(ISD::BITCAST, dl, MVT::v2f32, Res);
3183      Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, Res,
3184                        DAG.getConstant(0, MVT::i32));
3185    } else {
3186      Res = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Res);
3187    }
3188
3189    return Res;
3190  }
3191
3192  // Bitcast operand 1 to i32.
3193  if (SrcVT == MVT::f64)
3194    Tmp1 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
3195                       &Tmp1, 1).getValue(1);
3196  Tmp1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp1);
3197
3198  // Or in the signbit with integer operations.
3199  SDValue Mask1 = DAG.getConstant(0x80000000, MVT::i32);
3200  SDValue Mask2 = DAG.getConstant(0x7fffffff, MVT::i32);
3201  Tmp1 = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp1, Mask1);
3202  if (VT == MVT::f32) {
3203    Tmp0 = DAG.getNode(ISD::AND, dl, MVT::i32,
3204                       DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp0), Mask2);
3205    return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
3206                       DAG.getNode(ISD::OR, dl, MVT::i32, Tmp0, Tmp1));
3207  }
3208
3209  // f64: Or the high part with signbit and then combine two parts.
3210  Tmp0 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
3211                     &Tmp0, 1);
3212  SDValue Lo = Tmp0.getValue(0);
3213  SDValue Hi = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp0.getValue(1), Mask2);
3214  Hi = DAG.getNode(ISD::OR, dl, MVT::i32, Hi, Tmp1);
3215  return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
3216}
3217
3218SDValue ARMTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{
3219  MachineFunction &MF = DAG.getMachineFunction();
3220  MachineFrameInfo *MFI = MF.getFrameInfo();
3221  MFI->setReturnAddressIsTaken(true);
3222
3223  EVT VT = Op.getValueType();
3224  DebugLoc dl = Op.getDebugLoc();
3225  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3226  if (Depth) {
3227    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
3228    SDValue Offset = DAG.getConstant(4, MVT::i32);
3229    return DAG.getLoad(VT, dl, DAG.getEntryNode(),
3230                       DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
3231                       MachinePointerInfo(), false, false, false, 0);
3232  }
3233
3234  // Return LR, which contains the return address. Mark it an implicit live-in.
3235  unsigned Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32));
3236  return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
3237}
3238
3239SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
3240  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3241  MFI->setFrameAddressIsTaken(true);
3242
3243  EVT VT = Op.getValueType();
3244  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
3245  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3246  unsigned FrameReg = (Subtarget->isThumb() || Subtarget->isTargetDarwin())
3247    ? ARM::R7 : ARM::R11;
3248  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
3249  while (Depth--)
3250    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
3251                            MachinePointerInfo(),
3252                            false, false, false, 0);
3253  return FrameAddr;
3254}
3255
3256/// ExpandBITCAST - If the target supports VFP, this function is called to
3257/// expand a bit convert where either the source or destination type is i64 to
3258/// use a VMOVDRR or VMOVRRD node.  This should not be done when the non-i64
3259/// operand type is illegal (e.g., v2f32 for a target that doesn't support
3260/// vectors), since the legalizer won't know what to do with that.
3261static SDValue ExpandBITCAST(SDNode *N, SelectionDAG &DAG) {
3262  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3263  DebugLoc dl = N->getDebugLoc();
3264  SDValue Op = N->getOperand(0);
3265
3266  // This function is only supposed to be called for i64 types, either as the
3267  // source or destination of the bit convert.
3268  EVT SrcVT = Op.getValueType();
3269  EVT DstVT = N->getValueType(0);
3270  assert((SrcVT == MVT::i64 || DstVT == MVT::i64) &&
3271         "ExpandBITCAST called for non-i64 type");
3272
3273  // Turn i64->f64 into VMOVDRR.
3274  if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) {
3275    SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
3276                             DAG.getConstant(0, MVT::i32));
3277    SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
3278                             DAG.getConstant(1, MVT::i32));
3279    return DAG.getNode(ISD::BITCAST, dl, DstVT,
3280                       DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi));
3281  }
3282
3283  // Turn f64->i64 into VMOVRRD.
3284  if (DstVT == MVT::i64 && TLI.isTypeLegal(SrcVT)) {
3285    SDValue Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
3286                              DAG.getVTList(MVT::i32, MVT::i32), &Op, 1);
3287    // Merge the pieces into a single i64 value.
3288    return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1));
3289  }
3290
3291  return SDValue();
3292}
3293
3294/// getZeroVector - Returns a vector of specified type with all zero elements.
3295/// Zero vectors are used to represent vector negation and in those cases
3296/// will be implemented with the NEON VNEG instruction.  However, VNEG does
3297/// not support i64 elements, so sometimes the zero vectors will need to be
3298/// explicitly constructed.  Regardless, use a canonical VMOV to create the
3299/// zero vector.
3300static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
3301  assert(VT.isVector() && "Expected a vector type");
3302  // The canonical modified immediate encoding of a zero vector is....0!
3303  SDValue EncodedVal = DAG.getTargetConstant(0, MVT::i32);
3304  EVT VmovVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
3305  SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, EncodedVal);
3306  return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
3307}
3308
3309/// LowerShiftRightParts - Lower SRA_PARTS, which returns two
3310/// i32 values and take a 2 x i32 value to shift plus a shift amount.
3311SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op,
3312                                                SelectionDAG &DAG) const {
3313  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
3314  EVT VT = Op.getValueType();
3315  unsigned VTBits = VT.getSizeInBits();
3316  DebugLoc dl = Op.getDebugLoc();
3317  SDValue ShOpLo = Op.getOperand(0);
3318  SDValue ShOpHi = Op.getOperand(1);
3319  SDValue ShAmt  = Op.getOperand(2);
3320  SDValue ARMcc;
3321  unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
3322
3323  assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
3324
3325  SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
3326                                 DAG.getConstant(VTBits, MVT::i32), ShAmt);
3327  SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
3328  SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
3329                                   DAG.getConstant(VTBits, MVT::i32));
3330  SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
3331  SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
3332  SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
3333
3334  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3335  SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
3336                          ARMcc, DAG, dl);
3337  SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
3338  SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc,
3339                           CCR, Cmp);
3340
3341  SDValue Ops[2] = { Lo, Hi };
3342  return DAG.getMergeValues(Ops, 2, dl);
3343}
3344
3345/// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
3346/// i32 values and take a 2 x i32 value to shift plus a shift amount.
3347SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op,
3348                                               SelectionDAG &DAG) const {
3349  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
3350  EVT VT = Op.getValueType();
3351  unsigned VTBits = VT.getSizeInBits();
3352  DebugLoc dl = Op.getDebugLoc();
3353  SDValue ShOpLo = Op.getOperand(0);
3354  SDValue ShOpHi = Op.getOperand(1);
3355  SDValue ShAmt  = Op.getOperand(2);
3356  SDValue ARMcc;
3357
3358  assert(Op.getOpcode() == ISD::SHL_PARTS);
3359  SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
3360                                 DAG.getConstant(VTBits, MVT::i32), ShAmt);
3361  SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
3362  SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
3363                                   DAG.getConstant(VTBits, MVT::i32));
3364  SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
3365  SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
3366
3367  SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
3368  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3369  SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
3370                          ARMcc, DAG, dl);
3371  SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
3372  SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, Tmp3, ARMcc,
3373                           CCR, Cmp);
3374
3375  SDValue Ops[2] = { Lo, Hi };
3376  return DAG.getMergeValues(Ops, 2, dl);
3377}
3378
3379SDValue ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
3380                                            SelectionDAG &DAG) const {
3381  // The rounding mode is in bits 23:22 of the FPSCR.
3382  // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
3383  // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
3384  // so that the shift + and get folded into a bitfield extract.
3385  DebugLoc dl = Op.getDebugLoc();
3386  SDValue FPSCR = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::i32,
3387                              DAG.getConstant(Intrinsic::arm_get_fpscr,
3388                                              MVT::i32));
3389  SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPSCR,
3390                                  DAG.getConstant(1U << 22, MVT::i32));
3391  SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds,
3392                              DAG.getConstant(22, MVT::i32));
3393  return DAG.getNode(ISD::AND, dl, MVT::i32, RMODE,
3394                     DAG.getConstant(3, MVT::i32));
3395}
3396
3397static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG,
3398                         const ARMSubtarget *ST) {
3399  EVT VT = N->getValueType(0);
3400  DebugLoc dl = N->getDebugLoc();
3401
3402  if (!ST->hasV6T2Ops())
3403    return SDValue();
3404
3405  SDValue rbit = DAG.getNode(ARMISD::RBIT, dl, VT, N->getOperand(0));
3406  return DAG.getNode(ISD::CTLZ, dl, VT, rbit);
3407}
3408
3409static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
3410                          const ARMSubtarget *ST) {
3411  EVT VT = N->getValueType(0);
3412  DebugLoc dl = N->getDebugLoc();
3413
3414  if (!VT.isVector())
3415    return SDValue();
3416
3417  // Lower vector shifts on NEON to use VSHL.
3418  assert(ST->hasNEON() && "unexpected vector shift");
3419
3420  // Left shifts translate directly to the vshiftu intrinsic.
3421  if (N->getOpcode() == ISD::SHL)
3422    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
3423                       DAG.getConstant(Intrinsic::arm_neon_vshiftu, MVT::i32),
3424                       N->getOperand(0), N->getOperand(1));
3425
3426  assert((N->getOpcode() == ISD::SRA ||
3427          N->getOpcode() == ISD::SRL) && "unexpected vector shift opcode");
3428
3429  // NEON uses the same intrinsics for both left and right shifts.  For
3430  // right shifts, the shift amounts are negative, so negate the vector of
3431  // shift amounts.
3432  EVT ShiftVT = N->getOperand(1).getValueType();
3433  SDValue NegatedCount = DAG.getNode(ISD::SUB, dl, ShiftVT,
3434                                     getZeroVector(ShiftVT, DAG, dl),
3435                                     N->getOperand(1));
3436  Intrinsic::ID vshiftInt = (N->getOpcode() == ISD::SRA ?
3437                             Intrinsic::arm_neon_vshifts :
3438                             Intrinsic::arm_neon_vshiftu);
3439  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
3440                     DAG.getConstant(vshiftInt, MVT::i32),
3441                     N->getOperand(0), NegatedCount);
3442}
3443
3444static SDValue Expand64BitShift(SDNode *N, SelectionDAG &DAG,
3445                                const ARMSubtarget *ST) {
3446  EVT VT = N->getValueType(0);
3447  DebugLoc dl = N->getDebugLoc();
3448
3449  // We can get here for a node like i32 = ISD::SHL i32, i64
3450  if (VT != MVT::i64)
3451    return SDValue();
3452
3453  assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) &&
3454         "Unknown shift to lower!");
3455
3456  // We only lower SRA, SRL of 1 here, all others use generic lowering.
3457  if (!isa<ConstantSDNode>(N->getOperand(1)) ||
3458      cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 1)
3459    return SDValue();
3460
3461  // If we are in thumb mode, we don't have RRX.
3462  if (ST->isThumb1Only()) return SDValue();
3463
3464  // Okay, we have a 64-bit SRA or SRL of 1.  Lower this to an RRX expr.
3465  SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
3466                           DAG.getConstant(0, MVT::i32));
3467  SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
3468                           DAG.getConstant(1, MVT::i32));
3469
3470  // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
3471  // captures the result into a carry flag.
3472  unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
3473  Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Glue), &Hi, 1);
3474
3475  // The low part is an ARMISD::RRX operand, which shifts the carry in.
3476  Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));
3477
3478  // Merge the pieces into a single i64 value.
3479 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
3480}
3481
3482static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
3483  SDValue TmpOp0, TmpOp1;
3484  bool Invert = false;
3485  bool Swap = false;
3486  unsigned Opc = 0;
3487
3488  SDValue Op0 = Op.getOperand(0);
3489  SDValue Op1 = Op.getOperand(1);
3490  SDValue CC = Op.getOperand(2);
3491  EVT VT = Op.getValueType();
3492  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
3493  DebugLoc dl = Op.getDebugLoc();
3494
3495  if (Op.getOperand(1).getValueType().isFloatingPoint()) {
3496    switch (SetCCOpcode) {
3497    default: llvm_unreachable("Illegal FP comparison"); break;
3498    case ISD::SETUNE:
3499    case ISD::SETNE:  Invert = true; // Fallthrough
3500    case ISD::SETOEQ:
3501    case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
3502    case ISD::SETOLT:
3503    case ISD::SETLT: Swap = true; // Fallthrough
3504    case ISD::SETOGT:
3505    case ISD::SETGT:  Opc = ARMISD::VCGT; break;
3506    case ISD::SETOLE:
3507    case ISD::SETLE:  Swap = true; // Fallthrough
3508    case ISD::SETOGE:
3509    case ISD::SETGE: Opc = ARMISD::VCGE; break;
3510    case ISD::SETUGE: Swap = true; // Fallthrough
3511    case ISD::SETULE: Invert = true; Opc = ARMISD::VCGT; break;
3512    case ISD::SETUGT: Swap = true; // Fallthrough
3513    case ISD::SETULT: Invert = true; Opc = ARMISD::VCGE; break;
3514    case ISD::SETUEQ: Invert = true; // Fallthrough
3515    case ISD::SETONE:
3516      // Expand this to (OLT | OGT).
3517      TmpOp0 = Op0;
3518      TmpOp1 = Op1;
3519      Opc = ISD::OR;
3520      Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
3521      Op1 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp0, TmpOp1);
3522      break;
3523    case ISD::SETUO: Invert = true; // Fallthrough
3524    case ISD::SETO:
3525      // Expand this to (OLT | OGE).
3526      TmpOp0 = Op0;
3527      TmpOp1 = Op1;
3528      Opc = ISD::OR;
3529      Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
3530      Op1 = DAG.getNode(ARMISD::VCGE, dl, VT, TmpOp0, TmpOp1);
3531      break;
3532    }
3533  } else {
3534    // Integer comparisons.
3535    switch (SetCCOpcode) {
3536    default: llvm_unreachable("Illegal integer comparison"); break;
3537    case ISD::SETNE:  Invert = true;
3538    case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
3539    case ISD::SETLT:  Swap = true;
3540    case ISD::SETGT:  Opc = ARMISD::VCGT; break;
3541    case ISD::SETLE:  Swap = true;
3542    case ISD::SETGE:  Opc = ARMISD::VCGE; break;
3543    case ISD::SETULT: Swap = true;
3544    case ISD::SETUGT: Opc = ARMISD::VCGTU; break;
3545    case ISD::SETULE: Swap = true;
3546    case ISD::SETUGE: Opc = ARMISD::VCGEU; break;
3547    }
3548
3549    // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
3550    if (Opc == ARMISD::VCEQ) {
3551
3552      SDValue AndOp;
3553      if (ISD::isBuildVectorAllZeros(Op1.getNode()))
3554        AndOp = Op0;
3555      else if (ISD::isBuildVectorAllZeros(Op0.getNode()))
3556        AndOp = Op1;
3557
3558      // Ignore bitconvert.
3559      if (AndOp.getNode() && AndOp.getOpcode() == ISD::BITCAST)
3560        AndOp = AndOp.getOperand(0);
3561
3562      if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) {
3563        Opc = ARMISD::VTST;
3564        Op0 = DAG.getNode(ISD::BITCAST, dl, VT, AndOp.getOperand(0));
3565        Op1 = DAG.getNode(ISD::BITCAST, dl, VT, AndOp.getOperand(1));
3566        Invert = !Invert;
3567      }
3568    }
3569  }
3570
3571  if (Swap)
3572    std::swap(Op0, Op1);
3573
3574  // If one of the operands is a constant vector zero, attempt to fold the
3575  // comparison to a specialized compare-against-zero form.
3576  SDValue SingleOp;
3577  if (ISD::isBuildVectorAllZeros(Op1.getNode()))
3578    SingleOp = Op0;
3579  else if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
3580    if (Opc == ARMISD::VCGE)
3581      Opc = ARMISD::VCLEZ;
3582    else if (Opc == ARMISD::VCGT)
3583      Opc = ARMISD::VCLTZ;
3584    SingleOp = Op1;
3585  }
3586
3587  SDValue Result;
3588  if (SingleOp.getNode()) {
3589    switch (Opc) {
3590    case ARMISD::VCEQ:
3591      Result = DAG.getNode(ARMISD::VCEQZ, dl, VT, SingleOp); break;
3592    case ARMISD::VCGE:
3593      Result = DAG.getNode(ARMISD::VCGEZ, dl, VT, SingleOp); break;
3594    case ARMISD::VCLEZ:
3595      Result = DAG.getNode(ARMISD::VCLEZ, dl, VT, SingleOp); break;
3596    case ARMISD::VCGT:
3597      Result = DAG.getNode(ARMISD::VCGTZ, dl, VT, SingleOp); break;
3598    case ARMISD::VCLTZ:
3599      Result = DAG.getNode(ARMISD::VCLTZ, dl, VT, SingleOp); break;
3600    default:
3601      Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
3602    }
3603  } else {
3604     Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
3605  }
3606
3607  if (Invert)
3608    Result = DAG.getNOT(dl, Result, VT);
3609
3610  return Result;
3611}
3612
3613/// isNEONModifiedImm - Check if the specified splat value corresponds to a
3614/// valid vector constant for a NEON instruction with a "modified immediate"
3615/// operand (e.g., VMOV).  If so, return the encoded value.
3616static SDValue isNEONModifiedImm(uint64_t SplatBits, uint64_t SplatUndef,
3617                                 unsigned SplatBitSize, SelectionDAG &DAG,
3618                                 EVT &VT, bool is128Bits, NEONModImmType type) {
3619  unsigned OpCmode, Imm;
3620
3621  // SplatBitSize is set to the smallest size that splats the vector, so a
3622  // zero vector will always have SplatBitSize == 8.  However, NEON modified
3623  // immediate instructions others than VMOV do not support the 8-bit encoding
3624  // of a zero vector, and the default encoding of zero is supposed to be the
3625  // 32-bit version.
3626  if (SplatBits == 0)
3627    SplatBitSize = 32;
3628
3629  switch (SplatBitSize) {
3630  case 8:
3631    if (type != VMOVModImm)
3632      return SDValue();
3633    // Any 1-byte value is OK.  Op=0, Cmode=1110.
3634    assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
3635    OpCmode = 0xe;
3636    Imm = SplatBits;
3637    VT = is128Bits ? MVT::v16i8 : MVT::v8i8;
3638    break;
3639
3640  case 16:
3641    // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
3642    VT = is128Bits ? MVT::v8i16 : MVT::v4i16;
3643    if ((SplatBits & ~0xff) == 0) {
3644      // Value = 0x00nn: Op=x, Cmode=100x.
3645      OpCmode = 0x8;
3646      Imm = SplatBits;
3647      break;
3648    }
3649    if ((SplatBits & ~0xff00) == 0) {
3650      // Value = 0xnn00: Op=x, Cmode=101x.
3651      OpCmode = 0xa;
3652      Imm = SplatBits >> 8;
3653      break;
3654    }
3655    return SDValue();
3656
3657  case 32:
3658    // NEON's 32-bit VMOV supports splat values where:
3659    // * only one byte is nonzero, or
3660    // * the least significant byte is 0xff and the second byte is nonzero, or
3661    // * the least significant 2 bytes are 0xff and the third is nonzero.
3662    VT = is128Bits ? MVT::v4i32 : MVT::v2i32;
3663    if ((SplatBits & ~0xff) == 0) {
3664      // Value = 0x000000nn: Op=x, Cmode=000x.
3665      OpCmode = 0;
3666      Imm = SplatBits;
3667      break;
3668    }
3669    if ((SplatBits & ~0xff00) == 0) {
3670      // Value = 0x0000nn00: Op=x, Cmode=001x.
3671      OpCmode = 0x2;
3672      Imm = SplatBits >> 8;
3673      break;
3674    }
3675    if ((SplatBits & ~0xff0000) == 0) {
3676      // Value = 0x00nn0000: Op=x, Cmode=010x.
3677      OpCmode = 0x4;
3678      Imm = SplatBits >> 16;
3679      break;
3680    }
3681    if ((SplatBits & ~0xff000000) == 0) {
3682      // Value = 0xnn000000: Op=x, Cmode=011x.
3683      OpCmode = 0x6;
3684      Imm = SplatBits >> 24;
3685      break;
3686    }
3687
3688    // cmode == 0b1100 and cmode == 0b1101 are not supported for VORR or VBIC
3689    if (type == OtherModImm) return SDValue();
3690
3691    if ((SplatBits & ~0xffff) == 0 &&
3692        ((SplatBits | SplatUndef) & 0xff) == 0xff) {
3693      // Value = 0x0000nnff: Op=x, Cmode=1100.
3694      OpCmode = 0xc;
3695      Imm = SplatBits >> 8;
3696      SplatBits |= 0xff;
3697      break;
3698    }
3699
3700    if ((SplatBits & ~0xffffff) == 0 &&
3701        ((SplatBits | SplatUndef) & 0xffff) == 0xffff) {
3702      // Value = 0x00nnffff: Op=x, Cmode=1101.
3703      OpCmode = 0xd;
3704      Imm = SplatBits >> 16;
3705      SplatBits |= 0xffff;
3706      break;
3707    }
3708
3709    // Note: there are a few 32-bit splat values (specifically: 00ffff00,
3710    // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
3711    // VMOV.I32.  A (very) minor optimization would be to replicate the value
3712    // and fall through here to test for a valid 64-bit splat.  But, then the
3713    // caller would also need to check and handle the change in size.
3714    return SDValue();
3715
3716  case 64: {
3717    if (type != VMOVModImm)
3718      return SDValue();
3719    // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
3720    uint64_t BitMask = 0xff;
3721    uint64_t Val = 0;
3722    unsigned ImmMask = 1;
3723    Imm = 0;
3724    for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
3725      if (((SplatBits | SplatUndef) & BitMask) == BitMask) {
3726        Val |= BitMask;
3727        Imm |= ImmMask;
3728      } else if ((SplatBits & BitMask) != 0) {
3729        return SDValue();
3730      }
3731      BitMask <<= 8;
3732      ImmMask <<= 1;
3733    }
3734    // Op=1, Cmode=1110.
3735    OpCmode = 0x1e;
3736    SplatBits = Val;
3737    VT = is128Bits ? MVT::v2i64 : MVT::v1i64;
3738    break;
3739  }
3740
3741  default:
3742    llvm_unreachable("unexpected size for isNEONModifiedImm");
3743    return SDValue();
3744  }
3745
3746  unsigned EncodedVal = ARM_AM::createNEONModImm(OpCmode, Imm);
3747  return DAG.getTargetConstant(EncodedVal, MVT::i32);
3748}
3749
3750static bool isVEXTMask(const SmallVectorImpl<int> &M, EVT VT,
3751                       bool &ReverseVEXT, unsigned &Imm) {
3752  unsigned NumElts = VT.getVectorNumElements();
3753  ReverseVEXT = false;
3754
3755  // Assume that the first shuffle index is not UNDEF.  Fail if it is.
3756  if (M[0] < 0)
3757    return false;
3758
3759  Imm = M[0];
3760
3761  // If this is a VEXT shuffle, the immediate value is the index of the first
3762  // element.  The other shuffle indices must be the successive elements after
3763  // the first one.
3764  unsigned ExpectedElt = Imm;
3765  for (unsigned i = 1; i < NumElts; ++i) {
3766    // Increment the expected index.  If it wraps around, it may still be
3767    // a VEXT but the source vectors must be swapped.
3768    ExpectedElt += 1;
3769    if (ExpectedElt == NumElts * 2) {
3770      ExpectedElt = 0;
3771      ReverseVEXT = true;
3772    }
3773
3774    if (M[i] < 0) continue; // ignore UNDEF indices
3775    if (ExpectedElt != static_cast<unsigned>(M[i]))
3776      return false;
3777  }
3778
3779  // Adjust the index value if the source operands will be swapped.
3780  if (ReverseVEXT)
3781    Imm -= NumElts;
3782
3783  return true;
3784}
3785
3786/// isVREVMask - Check if a vector shuffle corresponds to a VREV
3787/// instruction with the specified blocksize.  (The order of the elements
3788/// within each block of the vector is reversed.)
3789static bool isVREVMask(const SmallVectorImpl<int> &M, EVT VT,
3790                       unsigned BlockSize) {
3791  assert((BlockSize==16 || BlockSize==32 || BlockSize==64) &&
3792         "Only possible block sizes for VREV are: 16, 32, 64");
3793
3794  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3795  if (EltSz == 64)
3796    return false;
3797
3798  unsigned NumElts = VT.getVectorNumElements();
3799  unsigned BlockElts = M[0] + 1;
3800  // If the first shuffle index is UNDEF, be optimistic.
3801  if (M[0] < 0)
3802    BlockElts = BlockSize / EltSz;
3803
3804  if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
3805    return false;
3806
3807  for (unsigned i = 0; i < NumElts; ++i) {
3808    if (M[i] < 0) continue; // ignore UNDEF indices
3809    if ((unsigned) M[i] != (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts))
3810      return false;
3811  }
3812
3813  return true;
3814}
3815
3816static bool isVTBLMask(const SmallVectorImpl<int> &M, EVT VT) {
3817  // We can handle <8 x i8> vector shuffles. If the index in the mask is out of
3818  // range, then 0 is placed into the resulting vector. So pretty much any mask
3819  // of 8 elements can work here.
3820  return VT == MVT::v8i8 && M.size() == 8;
3821}
3822
3823static bool isVTRNMask(const SmallVectorImpl<int> &M, EVT VT,
3824                       unsigned &WhichResult) {
3825  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3826  if (EltSz == 64)
3827    return false;
3828
3829  unsigned NumElts = VT.getVectorNumElements();
3830  WhichResult = (M[0] == 0 ? 0 : 1);
3831  for (unsigned i = 0; i < NumElts; i += 2) {
3832    if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) ||
3833        (M[i+1] >= 0 && (unsigned) M[i+1] != i + NumElts + WhichResult))
3834      return false;
3835  }
3836  return true;
3837}
3838
3839/// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
3840/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
3841/// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
3842static bool isVTRN_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
3843                                unsigned &WhichResult) {
3844  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3845  if (EltSz == 64)
3846    return false;
3847
3848  unsigned NumElts = VT.getVectorNumElements();
3849  WhichResult = (M[0] == 0 ? 0 : 1);
3850  for (unsigned i = 0; i < NumElts; i += 2) {
3851    if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) ||
3852        (M[i+1] >= 0 && (unsigned) M[i+1] != i + WhichResult))
3853      return false;
3854  }
3855  return true;
3856}
3857
3858static bool isVUZPMask(const SmallVectorImpl<int> &M, EVT VT,
3859                       unsigned &WhichResult) {
3860  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3861  if (EltSz == 64)
3862    return false;
3863
3864  unsigned NumElts = VT.getVectorNumElements();
3865  WhichResult = (M[0] == 0 ? 0 : 1);
3866  for (unsigned i = 0; i != NumElts; ++i) {
3867    if (M[i] < 0) continue; // ignore UNDEF indices
3868    if ((unsigned) M[i] != 2 * i + WhichResult)
3869      return false;
3870  }
3871
3872  // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3873  if (VT.is64BitVector() && EltSz == 32)
3874    return false;
3875
3876  return true;
3877}
3878
3879/// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
3880/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
3881/// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
3882static bool isVUZP_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
3883                                unsigned &WhichResult) {
3884  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3885  if (EltSz == 64)
3886    return false;
3887
3888  unsigned Half = VT.getVectorNumElements() / 2;
3889  WhichResult = (M[0] == 0 ? 0 : 1);
3890  for (unsigned j = 0; j != 2; ++j) {
3891    unsigned Idx = WhichResult;
3892    for (unsigned i = 0; i != Half; ++i) {
3893      int MIdx = M[i + j * Half];
3894      if (MIdx >= 0 && (unsigned) MIdx != Idx)
3895        return false;
3896      Idx += 2;
3897    }
3898  }
3899
3900  // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3901  if (VT.is64BitVector() && EltSz == 32)
3902    return false;
3903
3904  return true;
3905}
3906
3907static bool isVZIPMask(const SmallVectorImpl<int> &M, EVT VT,
3908                       unsigned &WhichResult) {
3909  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3910  if (EltSz == 64)
3911    return false;
3912
3913  unsigned NumElts = VT.getVectorNumElements();
3914  WhichResult = (M[0] == 0 ? 0 : 1);
3915  unsigned Idx = WhichResult * NumElts / 2;
3916  for (unsigned i = 0; i != NumElts; i += 2) {
3917    if ((M[i] >= 0 && (unsigned) M[i] != Idx) ||
3918        (M[i+1] >= 0 && (unsigned) M[i+1] != Idx + NumElts))
3919      return false;
3920    Idx += 1;
3921  }
3922
3923  // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3924  if (VT.is64BitVector() && EltSz == 32)
3925    return false;
3926
3927  return true;
3928}
3929
3930/// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
3931/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
3932/// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
3933static bool isVZIP_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
3934                                unsigned &WhichResult) {
3935  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3936  if (EltSz == 64)
3937    return false;
3938
3939  unsigned NumElts = VT.getVectorNumElements();
3940  WhichResult = (M[0] == 0 ? 0 : 1);
3941  unsigned Idx = WhichResult * NumElts / 2;
3942  for (unsigned i = 0; i != NumElts; i += 2) {
3943    if ((M[i] >= 0 && (unsigned) M[i] != Idx) ||
3944        (M[i+1] >= 0 && (unsigned) M[i+1] != Idx))
3945      return false;
3946    Idx += 1;
3947  }
3948
3949  // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3950  if (VT.is64BitVector() && EltSz == 32)
3951    return false;
3952
3953  return true;
3954}
3955
3956// If N is an integer constant that can be moved into a register in one
3957// instruction, return an SDValue of such a constant (will become a MOV
3958// instruction).  Otherwise return null.
3959static SDValue IsSingleInstrConstant(SDValue N, SelectionDAG &DAG,
3960                                     const ARMSubtarget *ST, DebugLoc dl) {
3961  uint64_t Val;
3962  if (!isa<ConstantSDNode>(N))
3963    return SDValue();
3964  Val = cast<ConstantSDNode>(N)->getZExtValue();
3965
3966  if (ST->isThumb1Only()) {
3967    if (Val <= 255 || ~Val <= 255)
3968      return DAG.getConstant(Val, MVT::i32);
3969  } else {
3970    if (ARM_AM::getSOImmVal(Val) != -1 || ARM_AM::getSOImmVal(~Val) != -1)
3971      return DAG.getConstant(Val, MVT::i32);
3972  }
3973  return SDValue();
3974}
3975
3976// If this is a case we can't handle, return null and let the default
3977// expansion code take care of it.
3978SDValue ARMTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
3979                                             const ARMSubtarget *ST) const {
3980  BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
3981  DebugLoc dl = Op.getDebugLoc();
3982  EVT VT = Op.getValueType();
3983
3984  APInt SplatBits, SplatUndef;
3985  unsigned SplatBitSize;
3986  bool HasAnyUndefs;
3987  if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
3988    if (SplatBitSize <= 64) {
3989      // Check if an immediate VMOV works.
3990      EVT VmovVT;
3991      SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
3992                                      SplatUndef.getZExtValue(), SplatBitSize,
3993                                      DAG, VmovVT, VT.is128BitVector(),
3994                                      VMOVModImm);
3995      if (Val.getNode()) {
3996        SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, Val);
3997        return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
3998      }
3999
4000      // Try an immediate VMVN.
4001      uint64_t NegatedImm = (~SplatBits).getZExtValue();
4002      Val = isNEONModifiedImm(NegatedImm,
4003                                      SplatUndef.getZExtValue(), SplatBitSize,
4004                                      DAG, VmovVT, VT.is128BitVector(),
4005                                      VMVNModImm);
4006      if (Val.getNode()) {
4007        SDValue Vmov = DAG.getNode(ARMISD::VMVNIMM, dl, VmovVT, Val);
4008        return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
4009      }
4010
4011      // Use vmov.f32 to materialize other v2f32 and v4f32 splats.
4012      if ((VT == MVT::v2f32 || VT == MVT::v4f32) && SplatBitSize == 32) {
4013        int ImmVal = ARM_AM::getFP32Imm(SplatBits);
4014        if (ImmVal != -1) {
4015          SDValue Val = DAG.getTargetConstant(ImmVal, MVT::i32);
4016          return DAG.getNode(ARMISD::VMOVFPIMM, dl, VT, Val);
4017        }
4018      }
4019    }
4020  }
4021
4022  // Scan through the operands to see if only one value is used.
4023  unsigned NumElts = VT.getVectorNumElements();
4024  bool isOnlyLowElement = true;
4025  bool usesOnlyOneValue = true;
4026  bool isConstant = true;
4027  SDValue Value;
4028  for (unsigned i = 0; i < NumElts; ++i) {
4029    SDValue V = Op.getOperand(i);
4030    if (V.getOpcode() == ISD::UNDEF)
4031      continue;
4032    if (i > 0)
4033      isOnlyLowElement = false;
4034    if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
4035      isConstant = false;
4036
4037    if (!Value.getNode())
4038      Value = V;
4039    else if (V != Value)
4040      usesOnlyOneValue = false;
4041  }
4042
4043  if (!Value.getNode())
4044    return DAG.getUNDEF(VT);
4045
4046  if (isOnlyLowElement)
4047    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
4048
4049  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4050
4051  // Use VDUP for non-constant splats.  For f32 constant splats, reduce to
4052  // i32 and try again.
4053  if (usesOnlyOneValue && EltSize <= 32) {
4054    if (!isConstant)
4055      return DAG.getNode(ARMISD::VDUP, dl, VT, Value);
4056    if (VT.getVectorElementType().isFloatingPoint()) {
4057      SmallVector<SDValue, 8> Ops;
4058      for (unsigned i = 0; i < NumElts; ++i)
4059        Ops.push_back(DAG.getNode(ISD::BITCAST, dl, MVT::i32,
4060                                  Op.getOperand(i)));
4061      EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
4062      SDValue Val = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, &Ops[0], NumElts);
4063      Val = LowerBUILD_VECTOR(Val, DAG, ST);
4064      if (Val.getNode())
4065        return DAG.getNode(ISD::BITCAST, dl, VT, Val);
4066    }
4067    SDValue Val = IsSingleInstrConstant(Value, DAG, ST, dl);
4068    if (Val.getNode())
4069      return DAG.getNode(ARMISD::VDUP, dl, VT, Val);
4070  }
4071
4072  // If all elements are constants and the case above didn't get hit, fall back
4073  // to the default expansion, which will generate a load from the constant
4074  // pool.
4075  if (isConstant)
4076    return SDValue();
4077
4078  // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
4079  if (NumElts >= 4) {
4080    SDValue shuffle = ReconstructShuffle(Op, DAG);
4081    if (shuffle != SDValue())
4082      return shuffle;
4083  }
4084
4085  // Vectors with 32- or 64-bit elements can be built by directly assigning
4086  // the subregisters.  Lower it to an ARMISD::BUILD_VECTOR so the operands
4087  // will be legalized.
4088  if (EltSize >= 32) {
4089    // Do the expansion with floating-point types, since that is what the VFP
4090    // registers are defined to use, and since i64 is not legal.
4091    EVT EltVT = EVT::getFloatingPointVT(EltSize);
4092    EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
4093    SmallVector<SDValue, 8> Ops;
4094    for (unsigned i = 0; i < NumElts; ++i)
4095      Ops.push_back(DAG.getNode(ISD::BITCAST, dl, EltVT, Op.getOperand(i)));
4096    SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts);
4097    return DAG.getNode(ISD::BITCAST, dl, VT, Val);
4098  }
4099
4100  return SDValue();
4101}
4102
4103// Gather data to see if the operation can be modelled as a
4104// shuffle in combination with VEXTs.
4105SDValue ARMTargetLowering::ReconstructShuffle(SDValue Op,
4106                                              SelectionDAG &DAG) const {
4107  DebugLoc dl = Op.getDebugLoc();
4108  EVT VT = Op.getValueType();
4109  unsigned NumElts = VT.getVectorNumElements();
4110
4111  SmallVector<SDValue, 2> SourceVecs;
4112  SmallVector<unsigned, 2> MinElts;
4113  SmallVector<unsigned, 2> MaxElts;
4114
4115  for (unsigned i = 0; i < NumElts; ++i) {
4116    SDValue V = Op.getOperand(i);
4117    if (V.getOpcode() == ISD::UNDEF)
4118      continue;
4119    else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) {
4120      // A shuffle can only come from building a vector from various
4121      // elements of other vectors.
4122      return SDValue();
4123    } else if (V.getOperand(0).getValueType().getVectorElementType() !=
4124               VT.getVectorElementType()) {
4125      // This code doesn't know how to handle shuffles where the vector
4126      // element types do not match (this happens because type legalization
4127      // promotes the return type of EXTRACT_VECTOR_ELT).
4128      // FIXME: It might be appropriate to extend this code to handle
4129      // mismatched types.
4130      return SDValue();
4131    }
4132
4133    // Record this extraction against the appropriate vector if possible...
4134    SDValue SourceVec = V.getOperand(0);
4135    unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
4136    bool FoundSource = false;
4137    for (unsigned j = 0; j < SourceVecs.size(); ++j) {
4138      if (SourceVecs[j] == SourceVec) {
4139        if (MinElts[j] > EltNo)
4140          MinElts[j] = EltNo;
4141        if (MaxElts[j] < EltNo)
4142          MaxElts[j] = EltNo;
4143        FoundSource = true;
4144        break;
4145      }
4146    }
4147
4148    // Or record a new source if not...
4149    if (!FoundSource) {
4150      SourceVecs.push_back(SourceVec);
4151      MinElts.push_back(EltNo);
4152      MaxElts.push_back(EltNo);
4153    }
4154  }
4155
4156  // Currently only do something sane when at most two source vectors
4157  // involved.
4158  if (SourceVecs.size() > 2)
4159    return SDValue();
4160
4161  SDValue ShuffleSrcs[2] = {DAG.getUNDEF(VT), DAG.getUNDEF(VT) };
4162  int VEXTOffsets[2] = {0, 0};
4163
4164  // This loop extracts the usage patterns of the source vectors
4165  // and prepares appropriate SDValues for a shuffle if possible.
4166  for (unsigned i = 0; i < SourceVecs.size(); ++i) {
4167    if (SourceVecs[i].getValueType() == VT) {
4168      // No VEXT necessary
4169      ShuffleSrcs[i] = SourceVecs[i];
4170      VEXTOffsets[i] = 0;
4171      continue;
4172    } else if (SourceVecs[i].getValueType().getVectorNumElements() < NumElts) {
4173      // It probably isn't worth padding out a smaller vector just to
4174      // break it down again in a shuffle.
4175      return SDValue();
4176    }
4177
4178    // Since only 64-bit and 128-bit vectors are legal on ARM and
4179    // we've eliminated the other cases...
4180    assert(SourceVecs[i].getValueType().getVectorNumElements() == 2*NumElts &&
4181           "unexpected vector sizes in ReconstructShuffle");
4182
4183    if (MaxElts[i] - MinElts[i] >= NumElts) {
4184      // Span too large for a VEXT to cope
4185      return SDValue();
4186    }
4187
4188    if (MinElts[i] >= NumElts) {
4189      // The extraction can just take the second half
4190      VEXTOffsets[i] = NumElts;
4191      ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4192                                   SourceVecs[i],
4193                                   DAG.getIntPtrConstant(NumElts));
4194    } else if (MaxElts[i] < NumElts) {
4195      // The extraction can just take the first half
4196      VEXTOffsets[i] = 0;
4197      ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4198                                   SourceVecs[i],
4199                                   DAG.getIntPtrConstant(0));
4200    } else {
4201      // An actual VEXT is needed
4202      VEXTOffsets[i] = MinElts[i];
4203      SDValue VEXTSrc1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4204                                     SourceVecs[i],
4205                                     DAG.getIntPtrConstant(0));
4206      SDValue VEXTSrc2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4207                                     SourceVecs[i],
4208                                     DAG.getIntPtrConstant(NumElts));
4209      ShuffleSrcs[i] = DAG.getNode(ARMISD::VEXT, dl, VT, VEXTSrc1, VEXTSrc2,
4210                                   DAG.getConstant(VEXTOffsets[i], MVT::i32));
4211    }
4212  }
4213
4214  SmallVector<int, 8> Mask;
4215
4216  for (unsigned i = 0; i < NumElts; ++i) {
4217    SDValue Entry = Op.getOperand(i);
4218    if (Entry.getOpcode() == ISD::UNDEF) {
4219      Mask.push_back(-1);
4220      continue;
4221    }
4222
4223    SDValue ExtractVec = Entry.getOperand(0);
4224    int ExtractElt = cast<ConstantSDNode>(Op.getOperand(i)
4225                                          .getOperand(1))->getSExtValue();
4226    if (ExtractVec == SourceVecs[0]) {
4227      Mask.push_back(ExtractElt - VEXTOffsets[0]);
4228    } else {
4229      Mask.push_back(ExtractElt + NumElts - VEXTOffsets[1]);
4230    }
4231  }
4232
4233  // Final check before we try to produce nonsense...
4234  if (isShuffleMaskLegal(Mask, VT))
4235    return DAG.getVectorShuffle(VT, dl, ShuffleSrcs[0], ShuffleSrcs[1],
4236                                &Mask[0]);
4237
4238  return SDValue();
4239}
4240
4241/// isShuffleMaskLegal - Targets can use this to indicate that they only
4242/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
4243/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
4244/// are assumed to be legal.
4245bool
4246ARMTargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
4247                                      EVT VT) const {
4248  if (VT.getVectorNumElements() == 4 &&
4249      (VT.is128BitVector() || VT.is64BitVector())) {
4250    unsigned PFIndexes[4];
4251    for (unsigned i = 0; i != 4; ++i) {
4252      if (M[i] < 0)
4253        PFIndexes[i] = 8;
4254      else
4255        PFIndexes[i] = M[i];
4256    }
4257
4258    // Compute the index in the perfect shuffle table.
4259    unsigned PFTableIndex =
4260      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
4261    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
4262    unsigned Cost = (PFEntry >> 30);
4263
4264    if (Cost <= 4)
4265      return true;
4266  }
4267
4268  bool ReverseVEXT;
4269  unsigned Imm, WhichResult;
4270
4271  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4272  return (EltSize >= 32 ||
4273          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
4274          isVREVMask(M, VT, 64) ||
4275          isVREVMask(M, VT, 32) ||
4276          isVREVMask(M, VT, 16) ||
4277          isVEXTMask(M, VT, ReverseVEXT, Imm) ||
4278          isVTBLMask(M, VT) ||
4279          isVTRNMask(M, VT, WhichResult) ||
4280          isVUZPMask(M, VT, WhichResult) ||
4281          isVZIPMask(M, VT, WhichResult) ||
4282          isVTRN_v_undef_Mask(M, VT, WhichResult) ||
4283          isVUZP_v_undef_Mask(M, VT, WhichResult) ||
4284          isVZIP_v_undef_Mask(M, VT, WhichResult));
4285}
4286
4287/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
4288/// the specified operations to build the shuffle.
4289static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
4290                                      SDValue RHS, SelectionDAG &DAG,
4291                                      DebugLoc dl) {
4292  unsigned OpNum = (PFEntry >> 26) & 0x0F;
4293  unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
4294  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
4295
4296  enum {
4297    OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
4298    OP_VREV,
4299    OP_VDUP0,
4300    OP_VDUP1,
4301    OP_VDUP2,
4302    OP_VDUP3,
4303    OP_VEXT1,
4304    OP_VEXT2,
4305    OP_VEXT3,
4306    OP_VUZPL, // VUZP, left result
4307    OP_VUZPR, // VUZP, right result
4308    OP_VZIPL, // VZIP, left result
4309    OP_VZIPR, // VZIP, right result
4310    OP_VTRNL, // VTRN, left result
4311    OP_VTRNR  // VTRN, right result
4312  };
4313
4314  if (OpNum == OP_COPY) {
4315    if (LHSID == (1*9+2)*9+3) return LHS;
4316    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
4317    return RHS;
4318  }
4319
4320  SDValue OpLHS, OpRHS;
4321  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
4322  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
4323  EVT VT = OpLHS.getValueType();
4324
4325  switch (OpNum) {
4326  default: llvm_unreachable("Unknown shuffle opcode!");
4327  case OP_VREV:
4328    // VREV divides the vector in half and swaps within the half.
4329    if (VT.getVectorElementType() == MVT::i32 ||
4330        VT.getVectorElementType() == MVT::f32)
4331      return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS);
4332    // vrev <4 x i16> -> VREV32
4333    if (VT.getVectorElementType() == MVT::i16)
4334      return DAG.getNode(ARMISD::VREV32, dl, VT, OpLHS);
4335    // vrev <4 x i8> -> VREV16
4336    assert(VT.getVectorElementType() == MVT::i8);
4337    return DAG.getNode(ARMISD::VREV16, dl, VT, OpLHS);
4338  case OP_VDUP0:
4339  case OP_VDUP1:
4340  case OP_VDUP2:
4341  case OP_VDUP3:
4342    return DAG.getNode(ARMISD::VDUPLANE, dl, VT,
4343                       OpLHS, DAG.getConstant(OpNum-OP_VDUP0, MVT::i32));
4344  case OP_VEXT1:
4345  case OP_VEXT2:
4346  case OP_VEXT3:
4347    return DAG.getNode(ARMISD::VEXT, dl, VT,
4348                       OpLHS, OpRHS,
4349                       DAG.getConstant(OpNum-OP_VEXT1+1, MVT::i32));
4350  case OP_VUZPL:
4351  case OP_VUZPR:
4352    return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
4353                       OpLHS, OpRHS).getValue(OpNum-OP_VUZPL);
4354  case OP_VZIPL:
4355  case OP_VZIPR:
4356    return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
4357                       OpLHS, OpRHS).getValue(OpNum-OP_VZIPL);
4358  case OP_VTRNL:
4359  case OP_VTRNR:
4360    return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
4361                       OpLHS, OpRHS).getValue(OpNum-OP_VTRNL);
4362  }
4363}
4364
4365static SDValue LowerVECTOR_SHUFFLEv8i8(SDValue Op,
4366                                       SmallVectorImpl<int> &ShuffleMask,
4367                                       SelectionDAG &DAG) {
4368  // Check to see if we can use the VTBL instruction.
4369  SDValue V1 = Op.getOperand(0);
4370  SDValue V2 = Op.getOperand(1);
4371  DebugLoc DL = Op.getDebugLoc();
4372
4373  SmallVector<SDValue, 8> VTBLMask;
4374  for (SmallVectorImpl<int>::iterator
4375         I = ShuffleMask.begin(), E = ShuffleMask.end(); I != E; ++I)
4376    VTBLMask.push_back(DAG.getConstant(*I, MVT::i32));
4377
4378  if (V2.getNode()->getOpcode() == ISD::UNDEF)
4379    return DAG.getNode(ARMISD::VTBL1, DL, MVT::v8i8, V1,
4380                       DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i8,
4381                                   &VTBLMask[0], 8));
4382
4383  return DAG.getNode(ARMISD::VTBL2, DL, MVT::v8i8, V1, V2,
4384                     DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i8,
4385                                 &VTBLMask[0], 8));
4386}
4387
4388static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
4389  SDValue V1 = Op.getOperand(0);
4390  SDValue V2 = Op.getOperand(1);
4391  DebugLoc dl = Op.getDebugLoc();
4392  EVT VT = Op.getValueType();
4393  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
4394  SmallVector<int, 8> ShuffleMask;
4395
4396  // Convert shuffles that are directly supported on NEON to target-specific
4397  // DAG nodes, instead of keeping them as shuffles and matching them again
4398  // during code selection.  This is more efficient and avoids the possibility
4399  // of inconsistencies between legalization and selection.
4400  // FIXME: floating-point vectors should be canonicalized to integer vectors
4401  // of the same time so that they get CSEd properly.
4402  SVN->getMask(ShuffleMask);
4403
4404  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4405  if (EltSize <= 32) {
4406    if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0], VT)) {
4407      int Lane = SVN->getSplatIndex();
4408      // If this is undef splat, generate it via "just" vdup, if possible.
4409      if (Lane == -1) Lane = 0;
4410
4411      // Test if V1 is a SCALAR_TO_VECTOR.
4412      if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
4413        return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
4414      }
4415      // Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR
4416      // (and probably will turn into a SCALAR_TO_VECTOR once legalization
4417      // reaches it).
4418      if (Lane == 0 && V1.getOpcode() == ISD::BUILD_VECTOR &&
4419          !isa<ConstantSDNode>(V1.getOperand(0))) {
4420        bool IsScalarToVector = true;
4421        for (unsigned i = 1, e = V1.getNumOperands(); i != e; ++i)
4422          if (V1.getOperand(i).getOpcode() != ISD::UNDEF) {
4423            IsScalarToVector = false;
4424            break;
4425          }
4426        if (IsScalarToVector)
4427          return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
4428      }
4429      return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1,
4430                         DAG.getConstant(Lane, MVT::i32));
4431    }
4432
4433    bool ReverseVEXT;
4434    unsigned Imm;
4435    if (isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) {
4436      if (ReverseVEXT)
4437        std::swap(V1, V2);
4438      return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2,
4439                         DAG.getConstant(Imm, MVT::i32));
4440    }
4441
4442    if (isVREVMask(ShuffleMask, VT, 64))
4443      return DAG.getNode(ARMISD::VREV64, dl, VT, V1);
4444    if (isVREVMask(ShuffleMask, VT, 32))
4445      return DAG.getNode(ARMISD::VREV32, dl, VT, V1);
4446    if (isVREVMask(ShuffleMask, VT, 16))
4447      return DAG.getNode(ARMISD::VREV16, dl, VT, V1);
4448
4449    // Check for Neon shuffles that modify both input vectors in place.
4450    // If both results are used, i.e., if there are two shuffles with the same
4451    // source operands and with masks corresponding to both results of one of
4452    // these operations, DAG memoization will ensure that a single node is
4453    // used for both shuffles.
4454    unsigned WhichResult;
4455    if (isVTRNMask(ShuffleMask, VT, WhichResult))
4456      return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
4457                         V1, V2).getValue(WhichResult);
4458    if (isVUZPMask(ShuffleMask, VT, WhichResult))
4459      return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
4460                         V1, V2).getValue(WhichResult);
4461    if (isVZIPMask(ShuffleMask, VT, WhichResult))
4462      return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
4463                         V1, V2).getValue(WhichResult);
4464
4465    if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult))
4466      return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
4467                         V1, V1).getValue(WhichResult);
4468    if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult))
4469      return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
4470                         V1, V1).getValue(WhichResult);
4471    if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult))
4472      return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
4473                         V1, V1).getValue(WhichResult);
4474  }
4475
4476  // If the shuffle is not directly supported and it has 4 elements, use
4477  // the PerfectShuffle-generated table to synthesize it from other shuffles.
4478  unsigned NumElts = VT.getVectorNumElements();
4479  if (NumElts == 4) {
4480    unsigned PFIndexes[4];
4481    for (unsigned i = 0; i != 4; ++i) {
4482      if (ShuffleMask[i] < 0)
4483        PFIndexes[i] = 8;
4484      else
4485        PFIndexes[i] = ShuffleMask[i];
4486    }
4487
4488    // Compute the index in the perfect shuffle table.
4489    unsigned PFTableIndex =
4490      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
4491    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
4492    unsigned Cost = (PFEntry >> 30);
4493
4494    if (Cost <= 4)
4495      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
4496  }
4497
4498  // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs.
4499  if (EltSize >= 32) {
4500    // Do the expansion with floating-point types, since that is what the VFP
4501    // registers are defined to use, and since i64 is not legal.
4502    EVT EltVT = EVT::getFloatingPointVT(EltSize);
4503    EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
4504    V1 = DAG.getNode(ISD::BITCAST, dl, VecVT, V1);
4505    V2 = DAG.getNode(ISD::BITCAST, dl, VecVT, V2);
4506    SmallVector<SDValue, 8> Ops;
4507    for (unsigned i = 0; i < NumElts; ++i) {
4508      if (ShuffleMask[i] < 0)
4509        Ops.push_back(DAG.getUNDEF(EltVT));
4510      else
4511        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
4512                                  ShuffleMask[i] < (int)NumElts ? V1 : V2,
4513                                  DAG.getConstant(ShuffleMask[i] & (NumElts-1),
4514                                                  MVT::i32)));
4515    }
4516    SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts);
4517    return DAG.getNode(ISD::BITCAST, dl, VT, Val);
4518  }
4519
4520  if (VT == MVT::v8i8) {
4521    SDValue NewOp = LowerVECTOR_SHUFFLEv8i8(Op, ShuffleMask, DAG);
4522    if (NewOp.getNode())
4523      return NewOp;
4524  }
4525
4526  return SDValue();
4527}
4528
4529static SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4530  // INSERT_VECTOR_ELT is legal only for immediate indexes.
4531  SDValue Lane = Op.getOperand(2);
4532  if (!isa<ConstantSDNode>(Lane))
4533    return SDValue();
4534
4535  return Op;
4536}
4537
4538static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4539  // EXTRACT_VECTOR_ELT is legal only for immediate indexes.
4540  SDValue Lane = Op.getOperand(1);
4541  if (!isa<ConstantSDNode>(Lane))
4542    return SDValue();
4543
4544  SDValue Vec = Op.getOperand(0);
4545  if (Op.getValueType() == MVT::i32 &&
4546      Vec.getValueType().getVectorElementType().getSizeInBits() < 32) {
4547    DebugLoc dl = Op.getDebugLoc();
4548    return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
4549  }
4550
4551  return Op;
4552}
4553
4554static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
4555  // The only time a CONCAT_VECTORS operation can have legal types is when
4556  // two 64-bit vectors are concatenated to a 128-bit vector.
4557  assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 &&
4558         "unexpected CONCAT_VECTORS");
4559  DebugLoc dl = Op.getDebugLoc();
4560  SDValue Val = DAG.getUNDEF(MVT::v2f64);
4561  SDValue Op0 = Op.getOperand(0);
4562  SDValue Op1 = Op.getOperand(1);
4563  if (Op0.getOpcode() != ISD::UNDEF)
4564    Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
4565                      DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op0),
4566                      DAG.getIntPtrConstant(0));
4567  if (Op1.getOpcode() != ISD::UNDEF)
4568    Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
4569                      DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op1),
4570                      DAG.getIntPtrConstant(1));
4571  return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Val);
4572}
4573
4574/// isExtendedBUILD_VECTOR - Check if N is a constant BUILD_VECTOR where each
4575/// element has been zero/sign-extended, depending on the isSigned parameter,
4576/// from an integer type half its size.
4577static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
4578                                   bool isSigned) {
4579  // A v2i64 BUILD_VECTOR will have been legalized to a BITCAST from v4i32.
4580  EVT VT = N->getValueType(0);
4581  if (VT == MVT::v2i64 && N->getOpcode() == ISD::BITCAST) {
4582    SDNode *BVN = N->getOperand(0).getNode();
4583    if (BVN->getValueType(0) != MVT::v4i32 ||
4584        BVN->getOpcode() != ISD::BUILD_VECTOR)
4585      return false;
4586    unsigned LoElt = DAG.getTargetLoweringInfo().isBigEndian() ? 1 : 0;
4587    unsigned HiElt = 1 - LoElt;
4588    ConstantSDNode *Lo0 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt));
4589    ConstantSDNode *Hi0 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt));
4590    ConstantSDNode *Lo1 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt+2));
4591    ConstantSDNode *Hi1 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt+2));
4592    if (!Lo0 || !Hi0 || !Lo1 || !Hi1)
4593      return false;
4594    if (isSigned) {
4595      if (Hi0->getSExtValue() == Lo0->getSExtValue() >> 32 &&
4596          Hi1->getSExtValue() == Lo1->getSExtValue() >> 32)
4597        return true;
4598    } else {
4599      if (Hi0->isNullValue() && Hi1->isNullValue())
4600        return true;
4601    }
4602    return false;
4603  }
4604
4605  if (N->getOpcode() != ISD::BUILD_VECTOR)
4606    return false;
4607
4608  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
4609    SDNode *Elt = N->getOperand(i).getNode();
4610    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
4611      unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4612      unsigned HalfSize = EltSize / 2;
4613      if (isSigned) {
4614        if (!isIntN(HalfSize, C->getSExtValue()))
4615          return false;
4616      } else {
4617        if (!isUIntN(HalfSize, C->getZExtValue()))
4618          return false;
4619      }
4620      continue;
4621    }
4622    return false;
4623  }
4624
4625  return true;
4626}
4627
4628/// isSignExtended - Check if a node is a vector value that is sign-extended
4629/// or a constant BUILD_VECTOR with sign-extended elements.
4630static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
4631  if (N->getOpcode() == ISD::SIGN_EXTEND || ISD::isSEXTLoad(N))
4632    return true;
4633  if (isExtendedBUILD_VECTOR(N, DAG, true))
4634    return true;
4635  return false;
4636}
4637
4638/// isZeroExtended - Check if a node is a vector value that is zero-extended
4639/// or a constant BUILD_VECTOR with zero-extended elements.
4640static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
4641  if (N->getOpcode() == ISD::ZERO_EXTEND || ISD::isZEXTLoad(N))
4642    return true;
4643  if (isExtendedBUILD_VECTOR(N, DAG, false))
4644    return true;
4645  return false;
4646}
4647
4648/// SkipExtension - For a node that is a SIGN_EXTEND, ZERO_EXTEND, extending
4649/// load, or BUILD_VECTOR with extended elements, return the unextended value.
4650static SDValue SkipExtension(SDNode *N, SelectionDAG &DAG) {
4651  if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
4652    return N->getOperand(0);
4653  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N))
4654    return DAG.getLoad(LD->getMemoryVT(), N->getDebugLoc(), LD->getChain(),
4655                       LD->getBasePtr(), LD->getPointerInfo(), LD->isVolatile(),
4656                       LD->isNonTemporal(), LD->isInvariant(),
4657                       LD->getAlignment());
4658  // Otherwise, the value must be a BUILD_VECTOR.  For v2i64, it will
4659  // have been legalized as a BITCAST from v4i32.
4660  if (N->getOpcode() == ISD::BITCAST) {
4661    SDNode *BVN = N->getOperand(0).getNode();
4662    assert(BVN->getOpcode() == ISD::BUILD_VECTOR &&
4663           BVN->getValueType(0) == MVT::v4i32 && "expected v4i32 BUILD_VECTOR");
4664    unsigned LowElt = DAG.getTargetLoweringInfo().isBigEndian() ? 1 : 0;
4665    return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(), MVT::v2i32,
4666                       BVN->getOperand(LowElt), BVN->getOperand(LowElt+2));
4667  }
4668  // Construct a new BUILD_VECTOR with elements truncated to half the size.
4669  assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
4670  EVT VT = N->getValueType(0);
4671  unsigned EltSize = VT.getVectorElementType().getSizeInBits() / 2;
4672  unsigned NumElts = VT.getVectorNumElements();
4673  MVT TruncVT = MVT::getIntegerVT(EltSize);
4674  SmallVector<SDValue, 8> Ops;
4675  for (unsigned i = 0; i != NumElts; ++i) {
4676    ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
4677    const APInt &CInt = C->getAPIntValue();
4678    Ops.push_back(DAG.getConstant(CInt.trunc(EltSize), TruncVT));
4679  }
4680  return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(),
4681                     MVT::getVectorVT(TruncVT, NumElts), Ops.data(), NumElts);
4682}
4683
4684static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
4685  unsigned Opcode = N->getOpcode();
4686  if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
4687    SDNode *N0 = N->getOperand(0).getNode();
4688    SDNode *N1 = N->getOperand(1).getNode();
4689    return N0->hasOneUse() && N1->hasOneUse() &&
4690      isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
4691  }
4692  return false;
4693}
4694
4695static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
4696  unsigned Opcode = N->getOpcode();
4697  if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
4698    SDNode *N0 = N->getOperand(0).getNode();
4699    SDNode *N1 = N->getOperand(1).getNode();
4700    return N0->hasOneUse() && N1->hasOneUse() &&
4701      isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
4702  }
4703  return false;
4704}
4705
4706static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
4707  // Multiplications are only custom-lowered for 128-bit vectors so that
4708  // VMULL can be detected.  Otherwise v2i64 multiplications are not legal.
4709  EVT VT = Op.getValueType();
4710  assert(VT.is128BitVector() && "unexpected type for custom-lowering ISD::MUL");
4711  SDNode *N0 = Op.getOperand(0).getNode();
4712  SDNode *N1 = Op.getOperand(1).getNode();
4713  unsigned NewOpc = 0;
4714  bool isMLA = false;
4715  bool isN0SExt = isSignExtended(N0, DAG);
4716  bool isN1SExt = isSignExtended(N1, DAG);
4717  if (isN0SExt && isN1SExt)
4718    NewOpc = ARMISD::VMULLs;
4719  else {
4720    bool isN0ZExt = isZeroExtended(N0, DAG);
4721    bool isN1ZExt = isZeroExtended(N1, DAG);
4722    if (isN0ZExt && isN1ZExt)
4723      NewOpc = ARMISD::VMULLu;
4724    else if (isN1SExt || isN1ZExt) {
4725      // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
4726      // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
4727      if (isN1SExt && isAddSubSExt(N0, DAG)) {
4728        NewOpc = ARMISD::VMULLs;
4729        isMLA = true;
4730      } else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
4731        NewOpc = ARMISD::VMULLu;
4732        isMLA = true;
4733      } else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
4734        std::swap(N0, N1);
4735        NewOpc = ARMISD::VMULLu;
4736        isMLA = true;
4737      }
4738    }
4739
4740    if (!NewOpc) {
4741      if (VT == MVT::v2i64)
4742        // Fall through to expand this.  It is not legal.
4743        return SDValue();
4744      else
4745        // Other vector multiplications are legal.
4746        return Op;
4747    }
4748  }
4749
4750  // Legalize to a VMULL instruction.
4751  DebugLoc DL = Op.getDebugLoc();
4752  SDValue Op0;
4753  SDValue Op1 = SkipExtension(N1, DAG);
4754  if (!isMLA) {
4755    Op0 = SkipExtension(N0, DAG);
4756    assert(Op0.getValueType().is64BitVector() &&
4757           Op1.getValueType().is64BitVector() &&
4758           "unexpected types for extended operands to VMULL");
4759    return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
4760  }
4761
4762  // Optimizing (zext A + zext B) * C, to (VMULL A, C) + (VMULL B, C) during
4763  // isel lowering to take advantage of no-stall back to back vmul + vmla.
4764  //   vmull q0, d4, d6
4765  //   vmlal q0, d5, d6
4766  // is faster than
4767  //   vaddl q0, d4, d5
4768  //   vmovl q1, d6
4769  //   vmul  q0, q0, q1
4770  SDValue N00 = SkipExtension(N0->getOperand(0).getNode(), DAG);
4771  SDValue N01 = SkipExtension(N0->getOperand(1).getNode(), DAG);
4772  EVT Op1VT = Op1.getValueType();
4773  return DAG.getNode(N0->getOpcode(), DL, VT,
4774                     DAG.getNode(NewOpc, DL, VT,
4775                               DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
4776                     DAG.getNode(NewOpc, DL, VT,
4777                               DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
4778}
4779
4780static SDValue
4781LowerSDIV_v4i8(SDValue X, SDValue Y, DebugLoc dl, SelectionDAG &DAG) {
4782  // Convert to float
4783  // float4 xf = vcvt_f32_s32(vmovl_s16(a.lo));
4784  // float4 yf = vcvt_f32_s32(vmovl_s16(b.lo));
4785  X = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, X);
4786  Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, Y);
4787  X = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, X);
4788  Y = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, Y);
4789  // Get reciprocal estimate.
4790  // float4 recip = vrecpeq_f32(yf);
4791  Y = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
4792                   DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), Y);
4793  // Because char has a smaller range than uchar, we can actually get away
4794  // without any newton steps.  This requires that we use a weird bias
4795  // of 0xb000, however (again, this has been exhaustively tested).
4796  // float4 result = as_float4(as_int4(xf*recip) + 0xb000);
4797  X = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, X, Y);
4798  X = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, X);
4799  Y = DAG.getConstant(0xb000, MVT::i32);
4800  Y = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Y, Y, Y, Y);
4801  X = DAG.getNode(ISD::ADD, dl, MVT::v4i32, X, Y);
4802  X = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, X);
4803  // Convert back to short.
4804  X = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, X);
4805  X = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, X);
4806  return X;
4807}
4808
4809static SDValue
4810LowerSDIV_v4i16(SDValue N0, SDValue N1, DebugLoc dl, SelectionDAG &DAG) {
4811  SDValue N2;
4812  // Convert to float.
4813  // float4 yf = vcvt_f32_s32(vmovl_s16(y));
4814  // float4 xf = vcvt_f32_s32(vmovl_s16(x));
4815  N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N0);
4816  N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N1);
4817  N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
4818  N1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
4819
4820  // Use reciprocal estimate and one refinement step.
4821  // float4 recip = vrecpeq_f32(yf);
4822  // recip *= vrecpsq_f32(yf, recip);
4823  N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
4824                   DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), N1);
4825  N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
4826                   DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
4827                   N1, N2);
4828  N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
4829  // Because short has a smaller range than ushort, we can actually get away
4830  // with only a single newton step.  This requires that we use a weird bias
4831  // of 89, however (again, this has been exhaustively tested).
4832  // float4 result = as_float4(as_int4(xf*recip) + 0x89);
4833  N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
4834  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
4835  N1 = DAG.getConstant(0x89, MVT::i32);
4836  N1 = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, N1, N1, N1, N1);
4837  N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
4838  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
4839  // Convert back to integer and return.
4840  // return vmovn_s32(vcvt_s32_f32(result));
4841  N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
4842  N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
4843  return N0;
4844}
4845
4846static SDValue LowerSDIV(SDValue Op, SelectionDAG &DAG) {
4847  EVT VT = Op.getValueType();
4848  assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
4849         "unexpected type for custom-lowering ISD::SDIV");
4850
4851  DebugLoc dl = Op.getDebugLoc();
4852  SDValue N0 = Op.getOperand(0);
4853  SDValue N1 = Op.getOperand(1);
4854  SDValue N2, N3;
4855
4856  if (VT == MVT::v8i8) {
4857    N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N0);
4858    N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N1);
4859
4860    N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
4861                     DAG.getIntPtrConstant(4));
4862    N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
4863                     DAG.getIntPtrConstant(4));
4864    N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
4865                     DAG.getIntPtrConstant(0));
4866    N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
4867                     DAG.getIntPtrConstant(0));
4868
4869    N0 = LowerSDIV_v4i8(N0, N1, dl, DAG); // v4i16
4870    N2 = LowerSDIV_v4i8(N2, N3, dl, DAG); // v4i16
4871
4872    N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
4873    N0 = LowerCONCAT_VECTORS(N0, DAG);
4874
4875    N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v8i8, N0);
4876    return N0;
4877  }
4878  return LowerSDIV_v4i16(N0, N1, dl, DAG);
4879}
4880
4881static SDValue LowerUDIV(SDValue Op, SelectionDAG &DAG) {
4882  EVT VT = Op.getValueType();
4883  assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
4884         "unexpected type for custom-lowering ISD::UDIV");
4885
4886  DebugLoc dl = Op.getDebugLoc();
4887  SDValue N0 = Op.getOperand(0);
4888  SDValue N1 = Op.getOperand(1);
4889  SDValue N2, N3;
4890
4891  if (VT == MVT::v8i8) {
4892    N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N0);
4893    N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N1);
4894
4895    N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
4896                     DAG.getIntPtrConstant(4));
4897    N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
4898                     DAG.getIntPtrConstant(4));
4899    N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
4900                     DAG.getIntPtrConstant(0));
4901    N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
4902                     DAG.getIntPtrConstant(0));
4903
4904    N0 = LowerSDIV_v4i16(N0, N1, dl, DAG); // v4i16
4905    N2 = LowerSDIV_v4i16(N2, N3, dl, DAG); // v4i16
4906
4907    N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
4908    N0 = LowerCONCAT_VECTORS(N0, DAG);
4909
4910    N0 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v8i8,
4911                     DAG.getConstant(Intrinsic::arm_neon_vqmovnsu, MVT::i32),
4912                     N0);
4913    return N0;
4914  }
4915
4916  // v4i16 sdiv ... Convert to float.
4917  // float4 yf = vcvt_f32_s32(vmovl_u16(y));
4918  // float4 xf = vcvt_f32_s32(vmovl_u16(x));
4919  N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N0);
4920  N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N1);
4921  N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
4922  SDValue BN1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
4923
4924  // Use reciprocal estimate and two refinement steps.
4925  // float4 recip = vrecpeq_f32(yf);
4926  // recip *= vrecpsq_f32(yf, recip);
4927  // recip *= vrecpsq_f32(yf, recip);
4928  N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
4929                   DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), BN1);
4930  N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
4931                   DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
4932                   BN1, N2);
4933  N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
4934  N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
4935                   DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
4936                   BN1, N2);
4937  N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
4938  // Simply multiplying by the reciprocal estimate can leave us a few ulps
4939  // too low, so we add 2 ulps (exhaustive testing shows that this is enough,
4940  // and that it will never cause us to return an answer too large).
4941  // float4 result = as_float4(as_int4(xf*recip) + 2);
4942  N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
4943  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
4944  N1 = DAG.getConstant(2, MVT::i32);
4945  N1 = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, N1, N1, N1, N1);
4946  N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
4947  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
4948  // Convert back to integer and return.
4949  // return vmovn_u32(vcvt_s32_f32(result));
4950  N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
4951  N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
4952  return N0;
4953}
4954
4955static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
4956  EVT VT = Op.getNode()->getValueType(0);
4957  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
4958
4959  unsigned Opc;
4960  bool ExtraOp = false;
4961  switch (Op.getOpcode()) {
4962  default: assert(0 && "Invalid code");
4963  case ISD::ADDC: Opc = ARMISD::ADDC; break;
4964  case ISD::ADDE: Opc = ARMISD::ADDE; ExtraOp = true; break;
4965  case ISD::SUBC: Opc = ARMISD::SUBC; break;
4966  case ISD::SUBE: Opc = ARMISD::SUBE; ExtraOp = true; break;
4967  }
4968
4969  if (!ExtraOp)
4970    return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
4971                       Op.getOperand(1));
4972  return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
4973                     Op.getOperand(1), Op.getOperand(2));
4974}
4975
4976static SDValue LowerAtomicLoadStore(SDValue Op, SelectionDAG &DAG) {
4977  // Monotonic load/store is legal for all targets
4978  if (cast<AtomicSDNode>(Op)->getOrdering() <= Monotonic)
4979    return Op;
4980
4981  // Aquire/Release load/store is not legal for targets without a
4982  // dmb or equivalent available.
4983  return SDValue();
4984}
4985
4986
4987static void
4988ReplaceATOMIC_OP_64(SDNode *Node, SmallVectorImpl<SDValue>& Results,
4989                    SelectionDAG &DAG, unsigned NewOp) {
4990  DebugLoc dl = Node->getDebugLoc();
4991  assert (Node->getValueType(0) == MVT::i64 &&
4992          "Only know how to expand i64 atomics");
4993
4994  SmallVector<SDValue, 6> Ops;
4995  Ops.push_back(Node->getOperand(0)); // Chain
4996  Ops.push_back(Node->getOperand(1)); // Ptr
4997  // Low part of Val1
4998  Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
4999                            Node->getOperand(2), DAG.getIntPtrConstant(0)));
5000  // High part of Val1
5001  Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5002                            Node->getOperand(2), DAG.getIntPtrConstant(1)));
5003  if (NewOp == ARMISD::ATOMCMPXCHG64_DAG) {
5004    // High part of Val1
5005    Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5006                              Node->getOperand(3), DAG.getIntPtrConstant(0)));
5007    // High part of Val2
5008    Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5009                              Node->getOperand(3), DAG.getIntPtrConstant(1)));
5010  }
5011  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
5012  SDValue Result =
5013    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops.data(), Ops.size(), MVT::i64,
5014                            cast<MemSDNode>(Node)->getMemOperand());
5015  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1) };
5016  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
5017  Results.push_back(Result.getValue(2));
5018}
5019
5020SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
5021  switch (Op.getOpcode()) {
5022  default: llvm_unreachable("Don't know how to custom lower this!");
5023  case ISD::ConstantPool:  return LowerConstantPool(Op, DAG);
5024  case ISD::BlockAddress:  return LowerBlockAddress(Op, DAG);
5025  case ISD::GlobalAddress:
5026    return Subtarget->isTargetDarwin() ? LowerGlobalAddressDarwin(Op, DAG) :
5027      LowerGlobalAddressELF(Op, DAG);
5028  case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
5029  case ISD::SELECT:        return LowerSELECT(Op, DAG);
5030  case ISD::SELECT_CC:     return LowerSELECT_CC(Op, DAG);
5031  case ISD::BR_CC:         return LowerBR_CC(Op, DAG);
5032  case ISD::BR_JT:         return LowerBR_JT(Op, DAG);
5033  case ISD::VASTART:       return LowerVASTART(Op, DAG);
5034  case ISD::MEMBARRIER:    return LowerMEMBARRIER(Op, DAG, Subtarget);
5035  case ISD::ATOMIC_FENCE:  return LowerATOMIC_FENCE(Op, DAG, Subtarget);
5036  case ISD::PREFETCH:      return LowerPREFETCH(Op, DAG, Subtarget);
5037  case ISD::SINT_TO_FP:
5038  case ISD::UINT_TO_FP:    return LowerINT_TO_FP(Op, DAG);
5039  case ISD::FP_TO_SINT:
5040  case ISD::FP_TO_UINT:    return LowerFP_TO_INT(Op, DAG);
5041  case ISD::FCOPYSIGN:     return LowerFCOPYSIGN(Op, DAG);
5042  case ISD::RETURNADDR:    return LowerRETURNADDR(Op, DAG);
5043  case ISD::FRAMEADDR:     return LowerFRAMEADDR(Op, DAG);
5044  case ISD::GLOBAL_OFFSET_TABLE: return LowerGLOBAL_OFFSET_TABLE(Op, DAG);
5045  case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG);
5046  case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG);
5047  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG,
5048                                                               Subtarget);
5049  case ISD::BITCAST:       return ExpandBITCAST(Op.getNode(), DAG);
5050  case ISD::SHL:
5051  case ISD::SRL:
5052  case ISD::SRA:           return LowerShift(Op.getNode(), DAG, Subtarget);
5053  case ISD::SHL_PARTS:     return LowerShiftLeftParts(Op, DAG);
5054  case ISD::SRL_PARTS:
5055  case ISD::SRA_PARTS:     return LowerShiftRightParts(Op, DAG);
5056  case ISD::CTTZ:          return LowerCTTZ(Op.getNode(), DAG, Subtarget);
5057  case ISD::SETCC:         return LowerVSETCC(Op, DAG);
5058  case ISD::BUILD_VECTOR:  return LowerBUILD_VECTOR(Op, DAG, Subtarget);
5059  case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
5060  case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
5061  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
5062  case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
5063  case ISD::FLT_ROUNDS_:   return LowerFLT_ROUNDS_(Op, DAG);
5064  case ISD::MUL:           return LowerMUL(Op, DAG);
5065  case ISD::SDIV:          return LowerSDIV(Op, DAG);
5066  case ISD::UDIV:          return LowerUDIV(Op, DAG);
5067  case ISD::ADDC:
5068  case ISD::ADDE:
5069  case ISD::SUBC:
5070  case ISD::SUBE:          return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
5071  case ISD::ATOMIC_LOAD:
5072  case ISD::ATOMIC_STORE:  return LowerAtomicLoadStore(Op, DAG);
5073  }
5074  return SDValue();
5075}
5076
5077/// ReplaceNodeResults - Replace the results of node with an illegal result
5078/// type with new values built out of custom code.
5079void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
5080                                           SmallVectorImpl<SDValue>&Results,
5081                                           SelectionDAG &DAG) const {
5082  SDValue Res;
5083  switch (N->getOpcode()) {
5084  default:
5085    llvm_unreachable("Don't know how to custom expand this!");
5086    break;
5087  case ISD::BITCAST:
5088    Res = ExpandBITCAST(N, DAG);
5089    break;
5090  case ISD::SRL:
5091  case ISD::SRA:
5092    Res = Expand64BitShift(N, DAG, Subtarget);
5093    break;
5094  case ISD::ATOMIC_LOAD_ADD:
5095    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMADD64_DAG);
5096    return;
5097  case ISD::ATOMIC_LOAD_AND:
5098    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMAND64_DAG);
5099    return;
5100  case ISD::ATOMIC_LOAD_NAND:
5101    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMNAND64_DAG);
5102    return;
5103  case ISD::ATOMIC_LOAD_OR:
5104    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMOR64_DAG);
5105    return;
5106  case ISD::ATOMIC_LOAD_SUB:
5107    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMSUB64_DAG);
5108    return;
5109  case ISD::ATOMIC_LOAD_XOR:
5110    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMXOR64_DAG);
5111    return;
5112  case ISD::ATOMIC_SWAP:
5113    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMSWAP64_DAG);
5114    return;
5115  case ISD::ATOMIC_CMP_SWAP:
5116    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMCMPXCHG64_DAG);
5117    return;
5118  }
5119  if (Res.getNode())
5120    Results.push_back(Res);
5121}
5122
5123//===----------------------------------------------------------------------===//
5124//                           ARM Scheduler Hooks
5125//===----------------------------------------------------------------------===//
5126
5127MachineBasicBlock *
5128ARMTargetLowering::EmitAtomicCmpSwap(MachineInstr *MI,
5129                                     MachineBasicBlock *BB,
5130                                     unsigned Size) const {
5131  unsigned dest    = MI->getOperand(0).getReg();
5132  unsigned ptr     = MI->getOperand(1).getReg();
5133  unsigned oldval  = MI->getOperand(2).getReg();
5134  unsigned newval  = MI->getOperand(3).getReg();
5135  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5136  DebugLoc dl = MI->getDebugLoc();
5137  bool isThumb2 = Subtarget->isThumb2();
5138
5139  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
5140  unsigned scratch =
5141    MRI.createVirtualRegister(isThumb2 ? ARM::rGPRRegisterClass
5142                                       : ARM::GPRRegisterClass);
5143
5144  if (isThumb2) {
5145    MRI.constrainRegClass(dest, ARM::rGPRRegisterClass);
5146    MRI.constrainRegClass(oldval, ARM::rGPRRegisterClass);
5147    MRI.constrainRegClass(newval, ARM::rGPRRegisterClass);
5148  }
5149
5150  unsigned ldrOpc, strOpc;
5151  switch (Size) {
5152  default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
5153  case 1:
5154    ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
5155    strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
5156    break;
5157  case 2:
5158    ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
5159    strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
5160    break;
5161  case 4:
5162    ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
5163    strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
5164    break;
5165  }
5166
5167  MachineFunction *MF = BB->getParent();
5168  const BasicBlock *LLVM_BB = BB->getBasicBlock();
5169  MachineFunction::iterator It = BB;
5170  ++It; // insert the new blocks after the current block
5171
5172  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
5173  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
5174  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5175  MF->insert(It, loop1MBB);
5176  MF->insert(It, loop2MBB);
5177  MF->insert(It, exitMBB);
5178
5179  // Transfer the remainder of BB and its successor edges to exitMBB.
5180  exitMBB->splice(exitMBB->begin(), BB,
5181                  llvm::next(MachineBasicBlock::iterator(MI)),
5182                  BB->end());
5183  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5184
5185  //  thisMBB:
5186  //   ...
5187  //   fallthrough --> loop1MBB
5188  BB->addSuccessor(loop1MBB);
5189
5190  // loop1MBB:
5191  //   ldrex dest, [ptr]
5192  //   cmp dest, oldval
5193  //   bne exitMBB
5194  BB = loop1MBB;
5195  MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
5196  if (ldrOpc == ARM::t2LDREX)
5197    MIB.addImm(0);
5198  AddDefaultPred(MIB);
5199  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
5200                 .addReg(dest).addReg(oldval));
5201  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5202    .addMBB(exitMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5203  BB->addSuccessor(loop2MBB);
5204  BB->addSuccessor(exitMBB);
5205
5206  // loop2MBB:
5207  //   strex scratch, newval, [ptr]
5208  //   cmp scratch, #0
5209  //   bne loop1MBB
5210  BB = loop2MBB;
5211  MIB = BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(newval).addReg(ptr);
5212  if (strOpc == ARM::t2STREX)
5213    MIB.addImm(0);
5214  AddDefaultPred(MIB);
5215  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
5216                 .addReg(scratch).addImm(0));
5217  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5218    .addMBB(loop1MBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5219  BB->addSuccessor(loop1MBB);
5220  BB->addSuccessor(exitMBB);
5221
5222  //  exitMBB:
5223  //   ...
5224  BB = exitMBB;
5225
5226  MI->eraseFromParent();   // The instruction is gone now.
5227
5228  return BB;
5229}
5230
5231MachineBasicBlock *
5232ARMTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
5233                                    unsigned Size, unsigned BinOpcode) const {
5234  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
5235  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5236
5237  const BasicBlock *LLVM_BB = BB->getBasicBlock();
5238  MachineFunction *MF = BB->getParent();
5239  MachineFunction::iterator It = BB;
5240  ++It;
5241
5242  unsigned dest = MI->getOperand(0).getReg();
5243  unsigned ptr = MI->getOperand(1).getReg();
5244  unsigned incr = MI->getOperand(2).getReg();
5245  DebugLoc dl = MI->getDebugLoc();
5246  bool isThumb2 = Subtarget->isThumb2();
5247
5248  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
5249  if (isThumb2) {
5250    MRI.constrainRegClass(dest, ARM::rGPRRegisterClass);
5251    MRI.constrainRegClass(ptr, ARM::rGPRRegisterClass);
5252  }
5253
5254  unsigned ldrOpc, strOpc;
5255  switch (Size) {
5256  default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
5257  case 1:
5258    ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
5259    strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
5260    break;
5261  case 2:
5262    ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
5263    strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
5264    break;
5265  case 4:
5266    ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
5267    strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
5268    break;
5269  }
5270
5271  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5272  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5273  MF->insert(It, loopMBB);
5274  MF->insert(It, exitMBB);
5275
5276  // Transfer the remainder of BB and its successor edges to exitMBB.
5277  exitMBB->splice(exitMBB->begin(), BB,
5278                  llvm::next(MachineBasicBlock::iterator(MI)),
5279                  BB->end());
5280  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5281
5282  TargetRegisterClass *TRC =
5283    isThumb2 ? ARM::tGPRRegisterClass : ARM::GPRRegisterClass;
5284  unsigned scratch = MRI.createVirtualRegister(TRC);
5285  unsigned scratch2 = (!BinOpcode) ? incr : MRI.createVirtualRegister(TRC);
5286
5287  //  thisMBB:
5288  //   ...
5289  //   fallthrough --> loopMBB
5290  BB->addSuccessor(loopMBB);
5291
5292  //  loopMBB:
5293  //   ldrex dest, ptr
5294  //   <binop> scratch2, dest, incr
5295  //   strex scratch, scratch2, ptr
5296  //   cmp scratch, #0
5297  //   bne- loopMBB
5298  //   fallthrough --> exitMBB
5299  BB = loopMBB;
5300  MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
5301  if (ldrOpc == ARM::t2LDREX)
5302    MIB.addImm(0);
5303  AddDefaultPred(MIB);
5304  if (BinOpcode) {
5305    // operand order needs to go the other way for NAND
5306    if (BinOpcode == ARM::BICrr || BinOpcode == ARM::t2BICrr)
5307      AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
5308                     addReg(incr).addReg(dest)).addReg(0);
5309    else
5310      AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
5311                     addReg(dest).addReg(incr)).addReg(0);
5312  }
5313
5314  MIB = BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(scratch2).addReg(ptr);
5315  if (strOpc == ARM::t2STREX)
5316    MIB.addImm(0);
5317  AddDefaultPred(MIB);
5318  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
5319                 .addReg(scratch).addImm(0));
5320  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5321    .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5322
5323  BB->addSuccessor(loopMBB);
5324  BB->addSuccessor(exitMBB);
5325
5326  //  exitMBB:
5327  //   ...
5328  BB = exitMBB;
5329
5330  MI->eraseFromParent();   // The instruction is gone now.
5331
5332  return BB;
5333}
5334
5335MachineBasicBlock *
5336ARMTargetLowering::EmitAtomicBinaryMinMax(MachineInstr *MI,
5337                                          MachineBasicBlock *BB,
5338                                          unsigned Size,
5339                                          bool signExtend,
5340                                          ARMCC::CondCodes Cond) const {
5341  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5342
5343  const BasicBlock *LLVM_BB = BB->getBasicBlock();
5344  MachineFunction *MF = BB->getParent();
5345  MachineFunction::iterator It = BB;
5346  ++It;
5347
5348  unsigned dest = MI->getOperand(0).getReg();
5349  unsigned ptr = MI->getOperand(1).getReg();
5350  unsigned incr = MI->getOperand(2).getReg();
5351  unsigned oldval = dest;
5352  DebugLoc dl = MI->getDebugLoc();
5353  bool isThumb2 = Subtarget->isThumb2();
5354
5355  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
5356  if (isThumb2) {
5357    MRI.constrainRegClass(dest, ARM::rGPRRegisterClass);
5358    MRI.constrainRegClass(ptr, ARM::rGPRRegisterClass);
5359  }
5360
5361  unsigned ldrOpc, strOpc, extendOpc;
5362  switch (Size) {
5363  default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
5364  case 1:
5365    ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
5366    strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
5367    extendOpc = isThumb2 ? ARM::t2SXTB : ARM::SXTB;
5368    break;
5369  case 2:
5370    ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
5371    strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
5372    extendOpc = isThumb2 ? ARM::t2SXTH : ARM::SXTH;
5373    break;
5374  case 4:
5375    ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
5376    strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
5377    extendOpc = 0;
5378    break;
5379  }
5380
5381  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5382  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5383  MF->insert(It, loopMBB);
5384  MF->insert(It, exitMBB);
5385
5386  // Transfer the remainder of BB and its successor edges to exitMBB.
5387  exitMBB->splice(exitMBB->begin(), BB,
5388                  llvm::next(MachineBasicBlock::iterator(MI)),
5389                  BB->end());
5390  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5391
5392  TargetRegisterClass *TRC =
5393    isThumb2 ? ARM::tGPRRegisterClass : ARM::GPRRegisterClass;
5394  unsigned scratch = MRI.createVirtualRegister(TRC);
5395  unsigned scratch2 = MRI.createVirtualRegister(TRC);
5396
5397  //  thisMBB:
5398  //   ...
5399  //   fallthrough --> loopMBB
5400  BB->addSuccessor(loopMBB);
5401
5402  //  loopMBB:
5403  //   ldrex dest, ptr
5404  //   (sign extend dest, if required)
5405  //   cmp dest, incr
5406  //   cmov.cond scratch2, dest, incr
5407  //   strex scratch, scratch2, ptr
5408  //   cmp scratch, #0
5409  //   bne- loopMBB
5410  //   fallthrough --> exitMBB
5411  BB = loopMBB;
5412  MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
5413  if (ldrOpc == ARM::t2LDREX)
5414    MIB.addImm(0);
5415  AddDefaultPred(MIB);
5416
5417  // Sign extend the value, if necessary.
5418  if (signExtend && extendOpc) {
5419    oldval = MRI.createVirtualRegister(ARM::GPRRegisterClass);
5420    AddDefaultPred(BuildMI(BB, dl, TII->get(extendOpc), oldval)
5421                     .addReg(dest)
5422                     .addImm(0));
5423  }
5424
5425  // Build compare and cmov instructions.
5426  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
5427                 .addReg(oldval).addReg(incr));
5428  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2MOVCCr : ARM::MOVCCr), scratch2)
5429         .addReg(oldval).addReg(incr).addImm(Cond).addReg(ARM::CPSR);
5430
5431  MIB = BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(scratch2).addReg(ptr);
5432  if (strOpc == ARM::t2STREX)
5433    MIB.addImm(0);
5434  AddDefaultPred(MIB);
5435  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
5436                 .addReg(scratch).addImm(0));
5437  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5438    .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5439
5440  BB->addSuccessor(loopMBB);
5441  BB->addSuccessor(exitMBB);
5442
5443  //  exitMBB:
5444  //   ...
5445  BB = exitMBB;
5446
5447  MI->eraseFromParent();   // The instruction is gone now.
5448
5449  return BB;
5450}
5451
5452MachineBasicBlock *
5453ARMTargetLowering::EmitAtomicBinary64(MachineInstr *MI, MachineBasicBlock *BB,
5454                                      unsigned Op1, unsigned Op2,
5455                                      bool NeedsCarry, bool IsCmpxchg) const {
5456  // This also handles ATOMIC_SWAP, indicated by Op1==0.
5457  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5458
5459  const BasicBlock *LLVM_BB = BB->getBasicBlock();
5460  MachineFunction *MF = BB->getParent();
5461  MachineFunction::iterator It = BB;
5462  ++It;
5463
5464  unsigned destlo = MI->getOperand(0).getReg();
5465  unsigned desthi = MI->getOperand(1).getReg();
5466  unsigned ptr = MI->getOperand(2).getReg();
5467  unsigned vallo = MI->getOperand(3).getReg();
5468  unsigned valhi = MI->getOperand(4).getReg();
5469  DebugLoc dl = MI->getDebugLoc();
5470  bool isThumb2 = Subtarget->isThumb2();
5471
5472  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
5473  if (isThumb2) {
5474    MRI.constrainRegClass(destlo, ARM::rGPRRegisterClass);
5475    MRI.constrainRegClass(desthi, ARM::rGPRRegisterClass);
5476    MRI.constrainRegClass(ptr, ARM::rGPRRegisterClass);
5477  }
5478
5479  unsigned ldrOpc = isThumb2 ? ARM::t2LDREXD : ARM::LDREXD;
5480  unsigned strOpc = isThumb2 ? ARM::t2STREXD : ARM::STREXD;
5481
5482  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5483  MachineBasicBlock *contBB = 0, *cont2BB = 0;
5484  if (IsCmpxchg) {
5485    contBB = MF->CreateMachineBasicBlock(LLVM_BB);
5486    cont2BB = MF->CreateMachineBasicBlock(LLVM_BB);
5487  }
5488  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5489  MF->insert(It, loopMBB);
5490  if (IsCmpxchg) {
5491    MF->insert(It, contBB);
5492    MF->insert(It, cont2BB);
5493  }
5494  MF->insert(It, exitMBB);
5495
5496  // Transfer the remainder of BB and its successor edges to exitMBB.
5497  exitMBB->splice(exitMBB->begin(), BB,
5498                  llvm::next(MachineBasicBlock::iterator(MI)),
5499                  BB->end());
5500  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5501
5502  TargetRegisterClass *TRC =
5503    isThumb2 ? ARM::tGPRRegisterClass : ARM::GPRRegisterClass;
5504  unsigned storesuccess = MRI.createVirtualRegister(TRC);
5505
5506  //  thisMBB:
5507  //   ...
5508  //   fallthrough --> loopMBB
5509  BB->addSuccessor(loopMBB);
5510
5511  //  loopMBB:
5512  //   ldrexd r2, r3, ptr
5513  //   <binopa> r0, r2, incr
5514  //   <binopb> r1, r3, incr
5515  //   strexd storesuccess, r0, r1, ptr
5516  //   cmp storesuccess, #0
5517  //   bne- loopMBB
5518  //   fallthrough --> exitMBB
5519  //
5520  // Note that the registers are explicitly specified because there is not any
5521  // way to force the register allocator to allocate a register pair.
5522  //
5523  // FIXME: The hardcoded registers are not necessary for Thumb2, but we
5524  // need to properly enforce the restriction that the two output registers
5525  // for ldrexd must be different.
5526  BB = loopMBB;
5527  // Load
5528  AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc))
5529                 .addReg(ARM::R2, RegState::Define)
5530                 .addReg(ARM::R3, RegState::Define).addReg(ptr));
5531  // Copy r2/r3 into dest.  (This copy will normally be coalesced.)
5532  BuildMI(BB, dl, TII->get(TargetOpcode::COPY), destlo).addReg(ARM::R2);
5533  BuildMI(BB, dl, TII->get(TargetOpcode::COPY), desthi).addReg(ARM::R3);
5534
5535  if (IsCmpxchg) {
5536    // Add early exit
5537    for (unsigned i = 0; i < 2; i++) {
5538      AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr :
5539                                                         ARM::CMPrr))
5540                     .addReg(i == 0 ? destlo : desthi)
5541                     .addReg(i == 0 ? vallo : valhi));
5542      BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5543        .addMBB(exitMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5544      BB->addSuccessor(exitMBB);
5545      BB->addSuccessor(i == 0 ? contBB : cont2BB);
5546      BB = (i == 0 ? contBB : cont2BB);
5547    }
5548
5549    // Copy to physregs for strexd
5550    unsigned setlo = MI->getOperand(5).getReg();
5551    unsigned sethi = MI->getOperand(6).getReg();
5552    BuildMI(BB, dl, TII->get(TargetOpcode::COPY), ARM::R0).addReg(setlo);
5553    BuildMI(BB, dl, TII->get(TargetOpcode::COPY), ARM::R1).addReg(sethi);
5554  } else if (Op1) {
5555    // Perform binary operation
5556    AddDefaultPred(BuildMI(BB, dl, TII->get(Op1), ARM::R0)
5557                   .addReg(destlo).addReg(vallo))
5558        .addReg(NeedsCarry ? ARM::CPSR : 0, getDefRegState(NeedsCarry));
5559    AddDefaultPred(BuildMI(BB, dl, TII->get(Op2), ARM::R1)
5560                   .addReg(desthi).addReg(valhi)).addReg(0);
5561  } else {
5562    // Copy to physregs for strexd
5563    BuildMI(BB, dl, TII->get(TargetOpcode::COPY), ARM::R0).addReg(vallo);
5564    BuildMI(BB, dl, TII->get(TargetOpcode::COPY), ARM::R1).addReg(valhi);
5565  }
5566
5567  // Store
5568  AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), storesuccess)
5569                 .addReg(ARM::R0).addReg(ARM::R1).addReg(ptr));
5570  // Cmp+jump
5571  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
5572                 .addReg(storesuccess).addImm(0));
5573  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5574    .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5575
5576  BB->addSuccessor(loopMBB);
5577  BB->addSuccessor(exitMBB);
5578
5579  //  exitMBB:
5580  //   ...
5581  BB = exitMBB;
5582
5583  MI->eraseFromParent();   // The instruction is gone now.
5584
5585  return BB;
5586}
5587
5588/// SetupEntryBlockForSjLj - Insert code into the entry block that creates and
5589/// registers the function context.
5590void ARMTargetLowering::
5591SetupEntryBlockForSjLj(MachineInstr *MI, MachineBasicBlock *MBB,
5592                       MachineBasicBlock *DispatchBB, int FI) const {
5593  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5594  DebugLoc dl = MI->getDebugLoc();
5595  MachineFunction *MF = MBB->getParent();
5596  MachineRegisterInfo *MRI = &MF->getRegInfo();
5597  MachineConstantPool *MCP = MF->getConstantPool();
5598  ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>();
5599  const Function *F = MF->getFunction();
5600
5601  bool isThumb = Subtarget->isThumb();
5602  bool isThumb2 = Subtarget->isThumb2();
5603
5604  unsigned PCLabelId = AFI->createPICLabelUId();
5605  unsigned PCAdj = (isThumb || isThumb2) ? 4 : 8;
5606  ARMConstantPoolValue *CPV =
5607    ARMConstantPoolMBB::Create(F->getContext(), DispatchBB, PCLabelId, PCAdj);
5608  unsigned CPI = MCP->getConstantPoolIndex(CPV, 4);
5609
5610  const TargetRegisterClass *TRC =
5611    isThumb ? ARM::tGPRRegisterClass : ARM::GPRRegisterClass;
5612
5613  // Grab constant pool and fixed stack memory operands.
5614  MachineMemOperand *CPMMO =
5615    MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(),
5616                             MachineMemOperand::MOLoad, 4, 4);
5617
5618  MachineMemOperand *FIMMOSt =
5619    MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
5620                             MachineMemOperand::MOStore, 4, 4);
5621
5622  // Load the address of the dispatch MBB into the jump buffer.
5623  if (isThumb2) {
5624    // Incoming value: jbuf
5625    //   ldr.n  r5, LCPI1_1
5626    //   orr    r5, r5, #1
5627    //   add    r5, pc
5628    //   str    r5, [$jbuf, #+4] ; &jbuf[1]
5629    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
5630    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2LDRpci), NewVReg1)
5631                   .addConstantPoolIndex(CPI)
5632                   .addMemOperand(CPMMO));
5633    // Set the low bit because of thumb mode.
5634    unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
5635    AddDefaultCC(
5636      AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2ORRri), NewVReg2)
5637                     .addReg(NewVReg1, RegState::Kill)
5638                     .addImm(0x01)));
5639    unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
5640    BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg3)
5641      .addReg(NewVReg2, RegState::Kill)
5642      .addImm(PCLabelId);
5643    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2STRi12))
5644                   .addReg(NewVReg3, RegState::Kill)
5645                   .addFrameIndex(FI)
5646                   .addImm(36)  // &jbuf[1] :: pc
5647                   .addMemOperand(FIMMOSt));
5648  } else if (isThumb) {
5649    // Incoming value: jbuf
5650    //   ldr.n  r1, LCPI1_4
5651    //   add    r1, pc
5652    //   mov    r2, #1
5653    //   orrs   r1, r2
5654    //   add    r2, $jbuf, #+4 ; &jbuf[1]
5655    //   str    r1, [r2]
5656    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
5657    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tLDRpci), NewVReg1)
5658                   .addConstantPoolIndex(CPI)
5659                   .addMemOperand(CPMMO));
5660    unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
5661    BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg2)
5662      .addReg(NewVReg1, RegState::Kill)
5663      .addImm(PCLabelId);
5664    // Set the low bit because of thumb mode.
5665    unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
5666    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tMOVi8), NewVReg3)
5667                   .addReg(ARM::CPSR, RegState::Define)
5668                   .addImm(1));
5669    unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
5670    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tORR), NewVReg4)
5671                   .addReg(ARM::CPSR, RegState::Define)
5672                   .addReg(NewVReg2, RegState::Kill)
5673                   .addReg(NewVReg3, RegState::Kill));
5674    unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
5675    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tADDrSPi), NewVReg5)
5676                   .addFrameIndex(FI)
5677                   .addImm(36)); // &jbuf[1] :: pc
5678    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tSTRi))
5679                   .addReg(NewVReg4, RegState::Kill)
5680                   .addReg(NewVReg5, RegState::Kill)
5681                   .addImm(0)
5682                   .addMemOperand(FIMMOSt));
5683  } else {
5684    // Incoming value: jbuf
5685    //   ldr  r1, LCPI1_1
5686    //   add  r1, pc, r1
5687    //   str  r1, [$jbuf, #+4] ; &jbuf[1]
5688    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
5689    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::LDRi12),  NewVReg1)
5690                   .addConstantPoolIndex(CPI)
5691                   .addImm(0)
5692                   .addMemOperand(CPMMO));
5693    unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
5694    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::PICADD), NewVReg2)
5695                   .addReg(NewVReg1, RegState::Kill)
5696                   .addImm(PCLabelId));
5697    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::STRi12))
5698                   .addReg(NewVReg2, RegState::Kill)
5699                   .addFrameIndex(FI)
5700                   .addImm(36)  // &jbuf[1] :: pc
5701                   .addMemOperand(FIMMOSt));
5702  }
5703}
5704
5705MachineBasicBlock *ARMTargetLowering::
5706EmitSjLjDispatchBlock(MachineInstr *MI, MachineBasicBlock *MBB) const {
5707  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5708  DebugLoc dl = MI->getDebugLoc();
5709  MachineFunction *MF = MBB->getParent();
5710  MachineRegisterInfo *MRI = &MF->getRegInfo();
5711  ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>();
5712  MachineFrameInfo *MFI = MF->getFrameInfo();
5713  int FI = MFI->getFunctionContextIndex();
5714
5715  const TargetRegisterClass *TRC =
5716    Subtarget->isThumb() ? ARM::tGPRRegisterClass : ARM::GPRRegisterClass;
5717
5718  // Get a mapping of the call site numbers to all of the landing pads they're
5719  // associated with.
5720  DenseMap<unsigned, SmallVector<MachineBasicBlock*, 2> > CallSiteNumToLPad;
5721  unsigned MaxCSNum = 0;
5722  MachineModuleInfo &MMI = MF->getMMI();
5723  for (MachineFunction::iterator BB = MF->begin(), E = MF->end(); BB != E; ++BB) {
5724    if (!BB->isLandingPad()) continue;
5725
5726    // FIXME: We should assert that the EH_LABEL is the first MI in the landing
5727    // pad.
5728    for (MachineBasicBlock::iterator
5729           II = BB->begin(), IE = BB->end(); II != IE; ++II) {
5730      if (!II->isEHLabel()) continue;
5731
5732      MCSymbol *Sym = II->getOperand(0).getMCSymbol();
5733      if (!MMI.hasCallSiteLandingPad(Sym)) continue;
5734
5735      SmallVectorImpl<unsigned> &CallSiteIdxs = MMI.getCallSiteLandingPad(Sym);
5736      for (SmallVectorImpl<unsigned>::iterator
5737             CSI = CallSiteIdxs.begin(), CSE = CallSiteIdxs.end();
5738           CSI != CSE; ++CSI) {
5739        CallSiteNumToLPad[*CSI].push_back(BB);
5740        MaxCSNum = std::max(MaxCSNum, *CSI);
5741      }
5742      break;
5743    }
5744  }
5745
5746  // Get an ordered list of the machine basic blocks for the jump table.
5747  std::vector<MachineBasicBlock*> LPadList;
5748  SmallPtrSet<MachineBasicBlock*, 64> InvokeBBs;
5749  LPadList.reserve(CallSiteNumToLPad.size());
5750  for (unsigned I = 1; I <= MaxCSNum; ++I) {
5751    SmallVectorImpl<MachineBasicBlock*> &MBBList = CallSiteNumToLPad[I];
5752    for (SmallVectorImpl<MachineBasicBlock*>::iterator
5753           II = MBBList.begin(), IE = MBBList.end(); II != IE; ++II) {
5754      LPadList.push_back(*II);
5755      InvokeBBs.insert((*II)->pred_begin(), (*II)->pred_end());
5756    }
5757  }
5758
5759  assert(!LPadList.empty() &&
5760         "No landing pad destinations for the dispatch jump table!");
5761
5762  // Create the jump table and associated information.
5763  MachineJumpTableInfo *JTI =
5764    MF->getOrCreateJumpTableInfo(MachineJumpTableInfo::EK_Inline);
5765  unsigned MJTI = JTI->createJumpTableIndex(LPadList);
5766  unsigned UId = AFI->createJumpTableUId();
5767
5768  // Create the MBBs for the dispatch code.
5769
5770  // Shove the dispatch's address into the return slot in the function context.
5771  MachineBasicBlock *DispatchBB = MF->CreateMachineBasicBlock();
5772  DispatchBB->setIsLandingPad();
5773
5774  MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
5775  BuildMI(TrapBB, dl, TII->get(Subtarget->isThumb() ? ARM::tTRAP : ARM::TRAP));
5776  DispatchBB->addSuccessor(TrapBB);
5777
5778  MachineBasicBlock *DispContBB = MF->CreateMachineBasicBlock();
5779  DispatchBB->addSuccessor(DispContBB);
5780
5781  // Insert and MBBs.
5782  MF->insert(MF->end(), DispatchBB);
5783  MF->insert(MF->end(), DispContBB);
5784  MF->insert(MF->end(), TrapBB);
5785
5786  // Insert code into the entry block that creates and registers the function
5787  // context.
5788  SetupEntryBlockForSjLj(MI, MBB, DispatchBB, FI);
5789
5790  MachineMemOperand *FIMMOLd =
5791    MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
5792                             MachineMemOperand::MOLoad |
5793                             MachineMemOperand::MOVolatile, 4, 4);
5794
5795  if (AFI->isThumb1OnlyFunction())
5796    BuildMI(DispatchBB, dl, TII->get(ARM::tInt_eh_sjlj_dispatchsetup));
5797  else if (!Subtarget->hasVFP2())
5798    BuildMI(DispatchBB, dl, TII->get(ARM::Int_eh_sjlj_dispatchsetup_nofp));
5799  else
5800    BuildMI(DispatchBB, dl, TII->get(ARM::Int_eh_sjlj_dispatchsetup));
5801
5802  unsigned NumLPads = LPadList.size();
5803  if (Subtarget->isThumb2()) {
5804    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
5805    AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2LDRi12), NewVReg1)
5806                   .addFrameIndex(FI)
5807                   .addImm(4)
5808                   .addMemOperand(FIMMOLd));
5809
5810    if (NumLPads < 256) {
5811      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPri))
5812                     .addReg(NewVReg1)
5813                     .addImm(LPadList.size()));
5814    } else {
5815      unsigned VReg1 = MRI->createVirtualRegister(TRC);
5816      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVi16), VReg1)
5817                     .addImm(NumLPads & 0xFFFF));
5818
5819      unsigned VReg2 = VReg1;
5820      if ((NumLPads & 0xFFFF0000) != 0) {
5821        VReg2 = MRI->createVirtualRegister(TRC);
5822        AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVTi16), VReg2)
5823                       .addReg(VReg1)
5824                       .addImm(NumLPads >> 16));
5825      }
5826
5827      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPrr))
5828                     .addReg(NewVReg1)
5829                     .addReg(VReg2));
5830    }
5831
5832    BuildMI(DispatchBB, dl, TII->get(ARM::t2Bcc))
5833      .addMBB(TrapBB)
5834      .addImm(ARMCC::HI)
5835      .addReg(ARM::CPSR);
5836
5837    unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
5838    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::t2LEApcrelJT),NewVReg3)
5839                   .addJumpTableIndex(MJTI)
5840                   .addImm(UId));
5841
5842    unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
5843    AddDefaultCC(
5844      AddDefaultPred(
5845        BuildMI(DispContBB, dl, TII->get(ARM::t2ADDrs), NewVReg4)
5846        .addReg(NewVReg3, RegState::Kill)
5847        .addReg(NewVReg1)
5848        .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))));
5849
5850    BuildMI(DispContBB, dl, TII->get(ARM::t2BR_JT))
5851      .addReg(NewVReg4, RegState::Kill)
5852      .addReg(NewVReg1)
5853      .addJumpTableIndex(MJTI)
5854      .addImm(UId);
5855  } else if (Subtarget->isThumb()) {
5856    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
5857    AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tLDRspi), NewVReg1)
5858                   .addFrameIndex(FI)
5859                   .addImm(1)
5860                   .addMemOperand(FIMMOLd));
5861
5862    if (NumLPads < 256) {
5863      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tCMPi8))
5864                     .addReg(NewVReg1)
5865                     .addImm(NumLPads));
5866    } else {
5867      MachineConstantPool *ConstantPool = MF->getConstantPool();
5868      Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
5869      const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
5870
5871      // MachineConstantPool wants an explicit alignment.
5872      unsigned Align = getTargetData()->getPrefTypeAlignment(Int32Ty);
5873      if (Align == 0)
5874        Align = getTargetData()->getTypeAllocSize(C->getType());
5875      unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
5876
5877      unsigned VReg1 = MRI->createVirtualRegister(TRC);
5878      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tLDRpci))
5879                     .addReg(VReg1, RegState::Define)
5880                     .addConstantPoolIndex(Idx));
5881      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tCMPr))
5882                     .addReg(NewVReg1)
5883                     .addReg(VReg1));
5884    }
5885
5886    BuildMI(DispatchBB, dl, TII->get(ARM::tBcc))
5887      .addMBB(TrapBB)
5888      .addImm(ARMCC::HI)
5889      .addReg(ARM::CPSR);
5890
5891    unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
5892    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLSLri), NewVReg2)
5893                   .addReg(ARM::CPSR, RegState::Define)
5894                   .addReg(NewVReg1)
5895                   .addImm(2));
5896
5897    unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
5898    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLEApcrelJT), NewVReg3)
5899                   .addJumpTableIndex(MJTI)
5900                   .addImm(UId));
5901
5902    unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
5903    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg4)
5904                   .addReg(ARM::CPSR, RegState::Define)
5905                   .addReg(NewVReg2, RegState::Kill)
5906                   .addReg(NewVReg3));
5907
5908    MachineMemOperand *JTMMOLd =
5909      MF->getMachineMemOperand(MachinePointerInfo::getJumpTable(),
5910                               MachineMemOperand::MOLoad, 4, 4);
5911
5912    unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
5913    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLDRi), NewVReg5)
5914                   .addReg(NewVReg4, RegState::Kill)
5915                   .addImm(0)
5916                   .addMemOperand(JTMMOLd));
5917
5918    unsigned NewVReg6 = MRI->createVirtualRegister(TRC);
5919    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg6)
5920                   .addReg(ARM::CPSR, RegState::Define)
5921                   .addReg(NewVReg5, RegState::Kill)
5922                   .addReg(NewVReg3));
5923
5924    BuildMI(DispContBB, dl, TII->get(ARM::tBR_JTr))
5925      .addReg(NewVReg6, RegState::Kill)
5926      .addJumpTableIndex(MJTI)
5927      .addImm(UId);
5928  } else {
5929    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
5930    AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::LDRi12), NewVReg1)
5931                   .addFrameIndex(FI)
5932                   .addImm(4)
5933                   .addMemOperand(FIMMOLd));
5934
5935    if (NumLPads < 256) {
5936      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPri))
5937                     .addReg(NewVReg1)
5938                     .addImm(NumLPads));
5939    } else if (Subtarget->hasV6T2Ops() && isUInt<16>(NumLPads)) {
5940      unsigned VReg1 = MRI->createVirtualRegister(TRC);
5941      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::MOVi16), VReg1)
5942                     .addImm(NumLPads & 0xFFFF));
5943
5944      unsigned VReg2 = VReg1;
5945      if ((NumLPads & 0xFFFF0000) != 0) {
5946        VReg2 = MRI->createVirtualRegister(TRC);
5947        AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::MOVTi16), VReg2)
5948                       .addReg(VReg1)
5949                       .addImm(NumLPads >> 16));
5950      }
5951
5952      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
5953                     .addReg(NewVReg1)
5954                     .addReg(VReg2));
5955    } else {
5956      MachineConstantPool *ConstantPool = MF->getConstantPool();
5957      Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
5958      const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
5959
5960      // MachineConstantPool wants an explicit alignment.
5961      unsigned Align = getTargetData()->getPrefTypeAlignment(Int32Ty);
5962      if (Align == 0)
5963        Align = getTargetData()->getTypeAllocSize(C->getType());
5964      unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
5965
5966      unsigned VReg1 = MRI->createVirtualRegister(TRC);
5967      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::LDRcp))
5968                     .addReg(VReg1, RegState::Define)
5969                     .addConstantPoolIndex(Idx)
5970                     .addImm(0));
5971      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
5972                     .addReg(NewVReg1)
5973                     .addReg(VReg1, RegState::Kill));
5974    }
5975
5976    BuildMI(DispatchBB, dl, TII->get(ARM::Bcc))
5977      .addMBB(TrapBB)
5978      .addImm(ARMCC::HI)
5979      .addReg(ARM::CPSR);
5980
5981    unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
5982    AddDefaultCC(
5983      AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::MOVsi), NewVReg3)
5984                     .addReg(NewVReg1)
5985                     .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))));
5986    unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
5987    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::LEApcrelJT), NewVReg4)
5988                   .addJumpTableIndex(MJTI)
5989                   .addImm(UId));
5990
5991    MachineMemOperand *JTMMOLd =
5992      MF->getMachineMemOperand(MachinePointerInfo::getJumpTable(),
5993                               MachineMemOperand::MOLoad, 4, 4);
5994    unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
5995    AddDefaultPred(
5996      BuildMI(DispContBB, dl, TII->get(ARM::LDRrs), NewVReg5)
5997      .addReg(NewVReg3, RegState::Kill)
5998      .addReg(NewVReg4)
5999      .addImm(0)
6000      .addMemOperand(JTMMOLd));
6001
6002    BuildMI(DispContBB, dl, TII->get(ARM::BR_JTadd))
6003      .addReg(NewVReg5, RegState::Kill)
6004      .addReg(NewVReg4)
6005      .addJumpTableIndex(MJTI)
6006      .addImm(UId);
6007  }
6008
6009  // Add the jump table entries as successors to the MBB.
6010  MachineBasicBlock *PrevMBB = 0;
6011  for (std::vector<MachineBasicBlock*>::iterator
6012         I = LPadList.begin(), E = LPadList.end(); I != E; ++I) {
6013    MachineBasicBlock *CurMBB = *I;
6014    if (PrevMBB != CurMBB)
6015      DispContBB->addSuccessor(CurMBB);
6016    PrevMBB = CurMBB;
6017  }
6018
6019  // N.B. the order the invoke BBs are processed in doesn't matter here.
6020  const ARMBaseInstrInfo *AII = static_cast<const ARMBaseInstrInfo*>(TII);
6021  const ARMBaseRegisterInfo &RI = AII->getRegisterInfo();
6022  const unsigned *SavedRegs = RI.getCalleeSavedRegs(MF);
6023  SmallVector<MachineBasicBlock*, 64> MBBLPads;
6024  for (SmallPtrSet<MachineBasicBlock*, 64>::iterator
6025         I = InvokeBBs.begin(), E = InvokeBBs.end(); I != E; ++I) {
6026    MachineBasicBlock *BB = *I;
6027
6028    // Remove the landing pad successor from the invoke block and replace it
6029    // with the new dispatch block.
6030    SmallVector<MachineBasicBlock*, 4> Successors(BB->succ_begin(),
6031                                                  BB->succ_end());
6032    while (!Successors.empty()) {
6033      MachineBasicBlock *SMBB = Successors.pop_back_val();
6034      if (SMBB->isLandingPad()) {
6035        BB->removeSuccessor(SMBB);
6036        MBBLPads.push_back(SMBB);
6037      }
6038    }
6039
6040    BB->addSuccessor(DispatchBB);
6041
6042    // Find the invoke call and mark all of the callee-saved registers as
6043    // 'implicit defined' so that they're spilled. This prevents code from
6044    // moving instructions to before the EH block, where they will never be
6045    // executed.
6046    for (MachineBasicBlock::reverse_iterator
6047           II = BB->rbegin(), IE = BB->rend(); II != IE; ++II) {
6048      if (!II->isCall()) continue;
6049
6050      DenseMap<unsigned, bool> DefRegs;
6051      for (MachineInstr::mop_iterator
6052             OI = II->operands_begin(), OE = II->operands_end();
6053           OI != OE; ++OI) {
6054        if (!OI->isReg()) continue;
6055        DefRegs[OI->getReg()] = true;
6056      }
6057
6058      MachineInstrBuilder MIB(&*II);
6059
6060      for (unsigned i = 0; SavedRegs[i] != 0; ++i) {
6061        unsigned Reg = SavedRegs[i];
6062        if (Subtarget->isThumb2() &&
6063            !ARM::tGPRRegisterClass->contains(Reg) &&
6064            !ARM::hGPRRegisterClass->contains(Reg))
6065          continue;
6066        else if (Subtarget->isThumb1Only() &&
6067                 !ARM::tGPRRegisterClass->contains(Reg))
6068          continue;
6069        else if (!Subtarget->isThumb() &&
6070                 !ARM::GPRRegisterClass->contains(Reg))
6071          continue;
6072        if (!DefRegs[Reg])
6073          MIB.addReg(Reg, RegState::ImplicitDefine | RegState::Dead);
6074      }
6075
6076      break;
6077    }
6078  }
6079
6080  // Mark all former landing pads as non-landing pads. The dispatch is the only
6081  // landing pad now.
6082  for (SmallVectorImpl<MachineBasicBlock*>::iterator
6083         I = MBBLPads.begin(), E = MBBLPads.end(); I != E; ++I)
6084    (*I)->setIsLandingPad(false);
6085
6086  // The instruction is gone now.
6087  MI->eraseFromParent();
6088
6089  return MBB;
6090}
6091
6092static
6093MachineBasicBlock *OtherSucc(MachineBasicBlock *MBB, MachineBasicBlock *Succ) {
6094  for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
6095       E = MBB->succ_end(); I != E; ++I)
6096    if (*I != Succ)
6097      return *I;
6098  llvm_unreachable("Expecting a BB with two successors!");
6099}
6100
6101MachineBasicBlock *
6102ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
6103                                               MachineBasicBlock *BB) const {
6104  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6105  DebugLoc dl = MI->getDebugLoc();
6106  bool isThumb2 = Subtarget->isThumb2();
6107  switch (MI->getOpcode()) {
6108  default: {
6109    MI->dump();
6110    llvm_unreachable("Unexpected instr type to insert");
6111  }
6112  // The Thumb2 pre-indexed stores have the same MI operands, they just
6113  // define them differently in the .td files from the isel patterns, so
6114  // they need pseudos.
6115  case ARM::t2STR_preidx:
6116    MI->setDesc(TII->get(ARM::t2STR_PRE));
6117    return BB;
6118  case ARM::t2STRB_preidx:
6119    MI->setDesc(TII->get(ARM::t2STRB_PRE));
6120    return BB;
6121  case ARM::t2STRH_preidx:
6122    MI->setDesc(TII->get(ARM::t2STRH_PRE));
6123    return BB;
6124
6125  case ARM::STRi_preidx:
6126  case ARM::STRBi_preidx: {
6127    unsigned NewOpc = MI->getOpcode() == ARM::STRi_preidx ?
6128      ARM::STR_PRE_IMM : ARM::STRB_PRE_IMM;
6129    // Decode the offset.
6130    unsigned Offset = MI->getOperand(4).getImm();
6131    bool isSub = ARM_AM::getAM2Op(Offset) == ARM_AM::sub;
6132    Offset = ARM_AM::getAM2Offset(Offset);
6133    if (isSub)
6134      Offset = -Offset;
6135
6136    MachineMemOperand *MMO = *MI->memoperands_begin();
6137    BuildMI(*BB, MI, dl, TII->get(NewOpc))
6138      .addOperand(MI->getOperand(0))  // Rn_wb
6139      .addOperand(MI->getOperand(1))  // Rt
6140      .addOperand(MI->getOperand(2))  // Rn
6141      .addImm(Offset)                 // offset (skip GPR==zero_reg)
6142      .addOperand(MI->getOperand(5))  // pred
6143      .addOperand(MI->getOperand(6))
6144      .addMemOperand(MMO);
6145    MI->eraseFromParent();
6146    return BB;
6147  }
6148  case ARM::STRr_preidx:
6149  case ARM::STRBr_preidx:
6150  case ARM::STRH_preidx: {
6151    unsigned NewOpc;
6152    switch (MI->getOpcode()) {
6153    default: llvm_unreachable("unexpected opcode!");
6154    case ARM::STRr_preidx: NewOpc = ARM::STR_PRE_REG; break;
6155    case ARM::STRBr_preidx: NewOpc = ARM::STRB_PRE_REG; break;
6156    case ARM::STRH_preidx: NewOpc = ARM::STRH_PRE; break;
6157    }
6158    MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(NewOpc));
6159    for (unsigned i = 0; i < MI->getNumOperands(); ++i)
6160      MIB.addOperand(MI->getOperand(i));
6161    MI->eraseFromParent();
6162    return BB;
6163  }
6164  case ARM::ATOMIC_LOAD_ADD_I8:
6165     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
6166  case ARM::ATOMIC_LOAD_ADD_I16:
6167     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
6168  case ARM::ATOMIC_LOAD_ADD_I32:
6169     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
6170
6171  case ARM::ATOMIC_LOAD_AND_I8:
6172     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
6173  case ARM::ATOMIC_LOAD_AND_I16:
6174     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
6175  case ARM::ATOMIC_LOAD_AND_I32:
6176     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
6177
6178  case ARM::ATOMIC_LOAD_OR_I8:
6179     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
6180  case ARM::ATOMIC_LOAD_OR_I16:
6181     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
6182  case ARM::ATOMIC_LOAD_OR_I32:
6183     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
6184
6185  case ARM::ATOMIC_LOAD_XOR_I8:
6186     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
6187  case ARM::ATOMIC_LOAD_XOR_I16:
6188     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
6189  case ARM::ATOMIC_LOAD_XOR_I32:
6190     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
6191
6192  case ARM::ATOMIC_LOAD_NAND_I8:
6193     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
6194  case ARM::ATOMIC_LOAD_NAND_I16:
6195     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
6196  case ARM::ATOMIC_LOAD_NAND_I32:
6197     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
6198
6199  case ARM::ATOMIC_LOAD_SUB_I8:
6200     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
6201  case ARM::ATOMIC_LOAD_SUB_I16:
6202     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
6203  case ARM::ATOMIC_LOAD_SUB_I32:
6204     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
6205
6206  case ARM::ATOMIC_LOAD_MIN_I8:
6207     return EmitAtomicBinaryMinMax(MI, BB, 1, true, ARMCC::LT);
6208  case ARM::ATOMIC_LOAD_MIN_I16:
6209     return EmitAtomicBinaryMinMax(MI, BB, 2, true, ARMCC::LT);
6210  case ARM::ATOMIC_LOAD_MIN_I32:
6211     return EmitAtomicBinaryMinMax(MI, BB, 4, true, ARMCC::LT);
6212
6213  case ARM::ATOMIC_LOAD_MAX_I8:
6214     return EmitAtomicBinaryMinMax(MI, BB, 1, true, ARMCC::GT);
6215  case ARM::ATOMIC_LOAD_MAX_I16:
6216     return EmitAtomicBinaryMinMax(MI, BB, 2, true, ARMCC::GT);
6217  case ARM::ATOMIC_LOAD_MAX_I32:
6218     return EmitAtomicBinaryMinMax(MI, BB, 4, true, ARMCC::GT);
6219
6220  case ARM::ATOMIC_LOAD_UMIN_I8:
6221     return EmitAtomicBinaryMinMax(MI, BB, 1, false, ARMCC::LO);
6222  case ARM::ATOMIC_LOAD_UMIN_I16:
6223     return EmitAtomicBinaryMinMax(MI, BB, 2, false, ARMCC::LO);
6224  case ARM::ATOMIC_LOAD_UMIN_I32:
6225     return EmitAtomicBinaryMinMax(MI, BB, 4, false, ARMCC::LO);
6226
6227  case ARM::ATOMIC_LOAD_UMAX_I8:
6228     return EmitAtomicBinaryMinMax(MI, BB, 1, false, ARMCC::HI);
6229  case ARM::ATOMIC_LOAD_UMAX_I16:
6230     return EmitAtomicBinaryMinMax(MI, BB, 2, false, ARMCC::HI);
6231  case ARM::ATOMIC_LOAD_UMAX_I32:
6232     return EmitAtomicBinaryMinMax(MI, BB, 4, false, ARMCC::HI);
6233
6234  case ARM::ATOMIC_SWAP_I8:  return EmitAtomicBinary(MI, BB, 1, 0);
6235  case ARM::ATOMIC_SWAP_I16: return EmitAtomicBinary(MI, BB, 2, 0);
6236  case ARM::ATOMIC_SWAP_I32: return EmitAtomicBinary(MI, BB, 4, 0);
6237
6238  case ARM::ATOMIC_CMP_SWAP_I8:  return EmitAtomicCmpSwap(MI, BB, 1);
6239  case ARM::ATOMIC_CMP_SWAP_I16: return EmitAtomicCmpSwap(MI, BB, 2);
6240  case ARM::ATOMIC_CMP_SWAP_I32: return EmitAtomicCmpSwap(MI, BB, 4);
6241
6242
6243  case ARM::ATOMADD6432:
6244    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr,
6245                              isThumb2 ? ARM::t2ADCrr : ARM::ADCrr,
6246                              /*NeedsCarry*/ true);
6247  case ARM::ATOMSUB6432:
6248    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr,
6249                              isThumb2 ? ARM::t2SBCrr : ARM::SBCrr,
6250                              /*NeedsCarry*/ true);
6251  case ARM::ATOMOR6432:
6252    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr,
6253                              isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
6254  case ARM::ATOMXOR6432:
6255    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2EORrr : ARM::EORrr,
6256                              isThumb2 ? ARM::t2EORrr : ARM::EORrr);
6257  case ARM::ATOMAND6432:
6258    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr,
6259                              isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
6260  case ARM::ATOMSWAP6432:
6261    return EmitAtomicBinary64(MI, BB, 0, 0, false);
6262  case ARM::ATOMCMPXCHG6432:
6263    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr,
6264                              isThumb2 ? ARM::t2SBCrr : ARM::SBCrr,
6265                              /*NeedsCarry*/ false, /*IsCmpxchg*/true);
6266
6267  case ARM::tMOVCCr_pseudo: {
6268    // To "insert" a SELECT_CC instruction, we actually have to insert the
6269    // diamond control-flow pattern.  The incoming instruction knows the
6270    // destination vreg to set, the condition code register to branch on, the
6271    // true/false values to select between, and a branch opcode to use.
6272    const BasicBlock *LLVM_BB = BB->getBasicBlock();
6273    MachineFunction::iterator It = BB;
6274    ++It;
6275
6276    //  thisMBB:
6277    //  ...
6278    //   TrueVal = ...
6279    //   cmpTY ccX, r1, r2
6280    //   bCC copy1MBB
6281    //   fallthrough --> copy0MBB
6282    MachineBasicBlock *thisMBB  = BB;
6283    MachineFunction *F = BB->getParent();
6284    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
6285    MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
6286    F->insert(It, copy0MBB);
6287    F->insert(It, sinkMBB);
6288
6289    // Transfer the remainder of BB and its successor edges to sinkMBB.
6290    sinkMBB->splice(sinkMBB->begin(), BB,
6291                    llvm::next(MachineBasicBlock::iterator(MI)),
6292                    BB->end());
6293    sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
6294
6295    BB->addSuccessor(copy0MBB);
6296    BB->addSuccessor(sinkMBB);
6297
6298    BuildMI(BB, dl, TII->get(ARM::tBcc)).addMBB(sinkMBB)
6299      .addImm(MI->getOperand(3).getImm()).addReg(MI->getOperand(4).getReg());
6300
6301    //  copy0MBB:
6302    //   %FalseValue = ...
6303    //   # fallthrough to sinkMBB
6304    BB = copy0MBB;
6305
6306    // Update machine-CFG edges
6307    BB->addSuccessor(sinkMBB);
6308
6309    //  sinkMBB:
6310    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
6311    //  ...
6312    BB = sinkMBB;
6313    BuildMI(*BB, BB->begin(), dl,
6314            TII->get(ARM::PHI), MI->getOperand(0).getReg())
6315      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
6316      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
6317
6318    MI->eraseFromParent();   // The pseudo instruction is gone now.
6319    return BB;
6320  }
6321
6322  case ARM::BCCi64:
6323  case ARM::BCCZi64: {
6324    // If there is an unconditional branch to the other successor, remove it.
6325    BB->erase(llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
6326
6327    // Compare both parts that make up the double comparison separately for
6328    // equality.
6329    bool RHSisZero = MI->getOpcode() == ARM::BCCZi64;
6330
6331    unsigned LHS1 = MI->getOperand(1).getReg();
6332    unsigned LHS2 = MI->getOperand(2).getReg();
6333    if (RHSisZero) {
6334      AddDefaultPred(BuildMI(BB, dl,
6335                             TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
6336                     .addReg(LHS1).addImm(0));
6337      BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
6338        .addReg(LHS2).addImm(0)
6339        .addImm(ARMCC::EQ).addReg(ARM::CPSR);
6340    } else {
6341      unsigned RHS1 = MI->getOperand(3).getReg();
6342      unsigned RHS2 = MI->getOperand(4).getReg();
6343      AddDefaultPred(BuildMI(BB, dl,
6344                             TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
6345                     .addReg(LHS1).addReg(RHS1));
6346      BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
6347        .addReg(LHS2).addReg(RHS2)
6348        .addImm(ARMCC::EQ).addReg(ARM::CPSR);
6349    }
6350
6351    MachineBasicBlock *destMBB = MI->getOperand(RHSisZero ? 3 : 5).getMBB();
6352    MachineBasicBlock *exitMBB = OtherSucc(BB, destMBB);
6353    if (MI->getOperand(0).getImm() == ARMCC::NE)
6354      std::swap(destMBB, exitMBB);
6355
6356    BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
6357      .addMBB(destMBB).addImm(ARMCC::EQ).addReg(ARM::CPSR);
6358    if (isThumb2)
6359      AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2B)).addMBB(exitMBB));
6360    else
6361      BuildMI(BB, dl, TII->get(ARM::B)) .addMBB(exitMBB);
6362
6363    MI->eraseFromParent();   // The pseudo instruction is gone now.
6364    return BB;
6365  }
6366
6367  case ARM::Int_eh_sjlj_setjmp:
6368  case ARM::Int_eh_sjlj_setjmp_nofp:
6369  case ARM::tInt_eh_sjlj_setjmp:
6370  case ARM::t2Int_eh_sjlj_setjmp:
6371  case ARM::t2Int_eh_sjlj_setjmp_nofp:
6372    EmitSjLjDispatchBlock(MI, BB);
6373    return BB;
6374
6375  case ARM::ABS:
6376  case ARM::t2ABS: {
6377    // To insert an ABS instruction, we have to insert the
6378    // diamond control-flow pattern.  The incoming instruction knows the
6379    // source vreg to test against 0, the destination vreg to set,
6380    // the condition code register to branch on, the
6381    // true/false values to select between, and a branch opcode to use.
6382    // It transforms
6383    //     V1 = ABS V0
6384    // into
6385    //     V2 = MOVS V0
6386    //     BCC                      (branch to SinkBB if V0 >= 0)
6387    //     RSBBB: V3 = RSBri V2, 0  (compute ABS if V2 < 0)
6388    //     SinkBB: V1 = PHI(V2, V3)
6389    const BasicBlock *LLVM_BB = BB->getBasicBlock();
6390    MachineFunction::iterator BBI = BB;
6391    ++BBI;
6392    MachineFunction *Fn = BB->getParent();
6393    MachineBasicBlock *RSBBB = Fn->CreateMachineBasicBlock(LLVM_BB);
6394    MachineBasicBlock *SinkBB  = Fn->CreateMachineBasicBlock(LLVM_BB);
6395    Fn->insert(BBI, RSBBB);
6396    Fn->insert(BBI, SinkBB);
6397
6398    unsigned int ABSSrcReg = MI->getOperand(1).getReg();
6399    unsigned int ABSDstReg = MI->getOperand(0).getReg();
6400    bool isThumb2 = Subtarget->isThumb2();
6401    MachineRegisterInfo &MRI = Fn->getRegInfo();
6402    // In Thumb mode S must not be specified if source register is the SP or
6403    // PC and if destination register is the SP, so restrict register class
6404    unsigned NewMovDstReg = MRI.createVirtualRegister(
6405      isThumb2 ? ARM::rGPRRegisterClass : ARM::GPRRegisterClass);
6406    unsigned NewRsbDstReg = MRI.createVirtualRegister(
6407      isThumb2 ? ARM::rGPRRegisterClass : ARM::GPRRegisterClass);
6408
6409    // Transfer the remainder of BB and its successor edges to sinkMBB.
6410    SinkBB->splice(SinkBB->begin(), BB,
6411      llvm::next(MachineBasicBlock::iterator(MI)),
6412      BB->end());
6413    SinkBB->transferSuccessorsAndUpdatePHIs(BB);
6414
6415    BB->addSuccessor(RSBBB);
6416    BB->addSuccessor(SinkBB);
6417
6418    // fall through to SinkMBB
6419    RSBBB->addSuccessor(SinkBB);
6420
6421    // insert a movs at the end of BB
6422    BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2MOVr : ARM::MOVr),
6423      NewMovDstReg)
6424      .addReg(ABSSrcReg, RegState::Kill)
6425      .addImm((unsigned)ARMCC::AL).addReg(0)
6426      .addReg(ARM::CPSR, RegState::Define);
6427
6428    // insert a bcc with opposite CC to ARMCC::MI at the end of BB
6429    BuildMI(BB, dl,
6430      TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)).addMBB(SinkBB)
6431      .addImm(ARMCC::getOppositeCondition(ARMCC::MI)).addReg(ARM::CPSR);
6432
6433    // insert rsbri in RSBBB
6434    // Note: BCC and rsbri will be converted into predicated rsbmi
6435    // by if-conversion pass
6436    BuildMI(*RSBBB, RSBBB->begin(), dl,
6437      TII->get(isThumb2 ? ARM::t2RSBri : ARM::RSBri), NewRsbDstReg)
6438      .addReg(NewMovDstReg, RegState::Kill)
6439      .addImm(0).addImm((unsigned)ARMCC::AL).addReg(0).addReg(0);
6440
6441    // insert PHI in SinkBB,
6442    // reuse ABSDstReg to not change uses of ABS instruction
6443    BuildMI(*SinkBB, SinkBB->begin(), dl,
6444      TII->get(ARM::PHI), ABSDstReg)
6445      .addReg(NewRsbDstReg).addMBB(RSBBB)
6446      .addReg(NewMovDstReg).addMBB(BB);
6447
6448    // remove ABS instruction
6449    MI->eraseFromParent();
6450
6451    // return last added BB
6452    return SinkBB;
6453  }
6454  }
6455}
6456
6457void ARMTargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI,
6458                                                      SDNode *Node) const {
6459  if (!MI->hasPostISelHook()) {
6460    assert(!convertAddSubFlagsOpcode(MI->getOpcode()) &&
6461           "Pseudo flag-setting opcodes must be marked with 'hasPostISelHook'");
6462    return;
6463  }
6464
6465  const MCInstrDesc *MCID = &MI->getDesc();
6466  // Adjust potentially 's' setting instructions after isel, i.e. ADC, SBC, RSB,
6467  // RSC. Coming out of isel, they have an implicit CPSR def, but the optional
6468  // operand is still set to noreg. If needed, set the optional operand's
6469  // register to CPSR, and remove the redundant implicit def.
6470  //
6471  // e.g. ADCS (..., CPSR<imp-def>) -> ADC (... opt:CPSR<def>).
6472
6473  // Rename pseudo opcodes.
6474  unsigned NewOpc = convertAddSubFlagsOpcode(MI->getOpcode());
6475  if (NewOpc) {
6476    const ARMBaseInstrInfo *TII =
6477      static_cast<const ARMBaseInstrInfo*>(getTargetMachine().getInstrInfo());
6478    MCID = &TII->get(NewOpc);
6479
6480    assert(MCID->getNumOperands() == MI->getDesc().getNumOperands() + 1 &&
6481           "converted opcode should be the same except for cc_out");
6482
6483    MI->setDesc(*MCID);
6484
6485    // Add the optional cc_out operand
6486    MI->addOperand(MachineOperand::CreateReg(0, /*isDef=*/true));
6487  }
6488  unsigned ccOutIdx = MCID->getNumOperands() - 1;
6489
6490  // Any ARM instruction that sets the 's' bit should specify an optional
6491  // "cc_out" operand in the last operand position.
6492  if (!MI->hasOptionalDef() || !MCID->OpInfo[ccOutIdx].isOptionalDef()) {
6493    assert(!NewOpc && "Optional cc_out operand required");
6494    return;
6495  }
6496  // Look for an implicit def of CPSR added by MachineInstr ctor. Remove it
6497  // since we already have an optional CPSR def.
6498  bool definesCPSR = false;
6499  bool deadCPSR = false;
6500  for (unsigned i = MCID->getNumOperands(), e = MI->getNumOperands();
6501       i != e; ++i) {
6502    const MachineOperand &MO = MI->getOperand(i);
6503    if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR) {
6504      definesCPSR = true;
6505      if (MO.isDead())
6506        deadCPSR = true;
6507      MI->RemoveOperand(i);
6508      break;
6509    }
6510  }
6511  if (!definesCPSR) {
6512    assert(!NewOpc && "Optional cc_out operand required");
6513    return;
6514  }
6515  assert(deadCPSR == !Node->hasAnyUseOfValue(1) && "inconsistent dead flag");
6516  if (deadCPSR) {
6517    assert(!MI->getOperand(ccOutIdx).getReg() &&
6518           "expect uninitialized optional cc_out operand");
6519    return;
6520  }
6521
6522  // If this instruction was defined with an optional CPSR def and its dag node
6523  // had a live implicit CPSR def, then activate the optional CPSR def.
6524  MachineOperand &MO = MI->getOperand(ccOutIdx);
6525  MO.setReg(ARM::CPSR);
6526  MO.setIsDef(true);
6527}
6528
6529//===----------------------------------------------------------------------===//
6530//                           ARM Optimization Hooks
6531//===----------------------------------------------------------------------===//
6532
6533static
6534SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
6535                            TargetLowering::DAGCombinerInfo &DCI) {
6536  SelectionDAG &DAG = DCI.DAG;
6537  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6538  EVT VT = N->getValueType(0);
6539  unsigned Opc = N->getOpcode();
6540  bool isSlctCC = Slct.getOpcode() == ISD::SELECT_CC;
6541  SDValue LHS = isSlctCC ? Slct.getOperand(2) : Slct.getOperand(1);
6542  SDValue RHS = isSlctCC ? Slct.getOperand(3) : Slct.getOperand(2);
6543  ISD::CondCode CC = ISD::SETCC_INVALID;
6544
6545  if (isSlctCC) {
6546    CC = cast<CondCodeSDNode>(Slct.getOperand(4))->get();
6547  } else {
6548    SDValue CCOp = Slct.getOperand(0);
6549    if (CCOp.getOpcode() == ISD::SETCC)
6550      CC = cast<CondCodeSDNode>(CCOp.getOperand(2))->get();
6551  }
6552
6553  bool DoXform = false;
6554  bool InvCC = false;
6555  assert ((Opc == ISD::ADD || (Opc == ISD::SUB && Slct == N->getOperand(1))) &&
6556          "Bad input!");
6557
6558  if (LHS.getOpcode() == ISD::Constant &&
6559      cast<ConstantSDNode>(LHS)->isNullValue()) {
6560    DoXform = true;
6561  } else if (CC != ISD::SETCC_INVALID &&
6562             RHS.getOpcode() == ISD::Constant &&
6563             cast<ConstantSDNode>(RHS)->isNullValue()) {
6564    std::swap(LHS, RHS);
6565    SDValue Op0 = Slct.getOperand(0);
6566    EVT OpVT = isSlctCC ? Op0.getValueType() :
6567                          Op0.getOperand(0).getValueType();
6568    bool isInt = OpVT.isInteger();
6569    CC = ISD::getSetCCInverse(CC, isInt);
6570
6571    if (!TLI.isCondCodeLegal(CC, OpVT))
6572      return SDValue();         // Inverse operator isn't legal.
6573
6574    DoXform = true;
6575    InvCC = true;
6576  }
6577
6578  if (DoXform) {
6579    SDValue Result = DAG.getNode(Opc, RHS.getDebugLoc(), VT, OtherOp, RHS);
6580    if (isSlctCC)
6581      return DAG.getSelectCC(N->getDebugLoc(), OtherOp, Result,
6582                             Slct.getOperand(0), Slct.getOperand(1), CC);
6583    SDValue CCOp = Slct.getOperand(0);
6584    if (InvCC)
6585      CCOp = DAG.getSetCC(Slct.getDebugLoc(), CCOp.getValueType(),
6586                          CCOp.getOperand(0), CCOp.getOperand(1), CC);
6587    return DAG.getNode(ISD::SELECT, N->getDebugLoc(), VT,
6588                       CCOp, OtherOp, Result);
6589  }
6590  return SDValue();
6591}
6592
6593// AddCombineToVPADDL- For pair-wise add on neon, use the vpaddl instruction
6594// (only after legalization).
6595static SDValue AddCombineToVPADDL(SDNode *N, SDValue N0, SDValue N1,
6596                                 TargetLowering::DAGCombinerInfo &DCI,
6597                                 const ARMSubtarget *Subtarget) {
6598
6599  // Only perform optimization if after legalize, and if NEON is available. We
6600  // also expected both operands to be BUILD_VECTORs.
6601  if (DCI.isBeforeLegalize() || !Subtarget->hasNEON()
6602      || N0.getOpcode() != ISD::BUILD_VECTOR
6603      || N1.getOpcode() != ISD::BUILD_VECTOR)
6604    return SDValue();
6605
6606  // Check output type since VPADDL operand elements can only be 8, 16, or 32.
6607  EVT VT = N->getValueType(0);
6608  if (!VT.isInteger() || VT.getVectorElementType() == MVT::i64)
6609    return SDValue();
6610
6611  // Check that the vector operands are of the right form.
6612  // N0 and N1 are BUILD_VECTOR nodes with N number of EXTRACT_VECTOR
6613  // operands, where N is the size of the formed vector.
6614  // Each EXTRACT_VECTOR should have the same input vector and odd or even
6615  // index such that we have a pair wise add pattern.
6616
6617  // Grab the vector that all EXTRACT_VECTOR nodes should be referencing.
6618  if (N0->getOperand(0)->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
6619    return SDValue();
6620  SDValue Vec = N0->getOperand(0)->getOperand(0);
6621  SDNode *V = Vec.getNode();
6622  unsigned nextIndex = 0;
6623
6624  // For each operands to the ADD which are BUILD_VECTORs,
6625  // check to see if each of their operands are an EXTRACT_VECTOR with
6626  // the same vector and appropriate index.
6627  for (unsigned i = 0, e = N0->getNumOperands(); i != e; ++i) {
6628    if (N0->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT
6629        && N1->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
6630
6631      SDValue ExtVec0 = N0->getOperand(i);
6632      SDValue ExtVec1 = N1->getOperand(i);
6633
6634      // First operand is the vector, verify its the same.
6635      if (V != ExtVec0->getOperand(0).getNode() ||
6636          V != ExtVec1->getOperand(0).getNode())
6637        return SDValue();
6638
6639      // Second is the constant, verify its correct.
6640      ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(ExtVec0->getOperand(1));
6641      ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(ExtVec1->getOperand(1));
6642
6643      // For the constant, we want to see all the even or all the odd.
6644      if (!C0 || !C1 || C0->getZExtValue() != nextIndex
6645          || C1->getZExtValue() != nextIndex+1)
6646        return SDValue();
6647
6648      // Increment index.
6649      nextIndex+=2;
6650    } else
6651      return SDValue();
6652  }
6653
6654  // Create VPADDL node.
6655  SelectionDAG &DAG = DCI.DAG;
6656  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6657
6658  // Build operand list.
6659  SmallVector<SDValue, 8> Ops;
6660  Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpaddls,
6661                                TLI.getPointerTy()));
6662
6663  // Input is the vector.
6664  Ops.push_back(Vec);
6665
6666  // Get widened type and narrowed type.
6667  MVT widenType;
6668  unsigned numElem = VT.getVectorNumElements();
6669  switch (VT.getVectorElementType().getSimpleVT().SimpleTy) {
6670    case MVT::i8: widenType = MVT::getVectorVT(MVT::i16, numElem); break;
6671    case MVT::i16: widenType = MVT::getVectorVT(MVT::i32, numElem); break;
6672    case MVT::i32: widenType = MVT::getVectorVT(MVT::i64, numElem); break;
6673    default:
6674      assert(0 && "Invalid vector element type for padd optimization.");
6675  }
6676
6677  SDValue tmp = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, N->getDebugLoc(),
6678                            widenType, &Ops[0], Ops.size());
6679  return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, tmp);
6680}
6681
6682/// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
6683/// operands N0 and N1.  This is a helper for PerformADDCombine that is
6684/// called with the default operands, and if that fails, with commuted
6685/// operands.
6686static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
6687                                          TargetLowering::DAGCombinerInfo &DCI,
6688                                          const ARMSubtarget *Subtarget){
6689
6690  // Attempt to create vpaddl for this add.
6691  SDValue Result = AddCombineToVPADDL(N, N0, N1, DCI, Subtarget);
6692  if (Result.getNode())
6693    return Result;
6694
6695  // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
6696  if (N0.getOpcode() == ISD::SELECT && N0.getNode()->hasOneUse()) {
6697    SDValue Result = combineSelectAndUse(N, N0, N1, DCI);
6698    if (Result.getNode()) return Result;
6699  }
6700  return SDValue();
6701}
6702
6703/// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
6704///
6705static SDValue PerformADDCombine(SDNode *N,
6706                                 TargetLowering::DAGCombinerInfo &DCI,
6707                                 const ARMSubtarget *Subtarget) {
6708  SDValue N0 = N->getOperand(0);
6709  SDValue N1 = N->getOperand(1);
6710
6711  // First try with the default operand order.
6712  SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI, Subtarget);
6713  if (Result.getNode())
6714    return Result;
6715
6716  // If that didn't work, try again with the operands commuted.
6717  return PerformADDCombineWithOperands(N, N1, N0, DCI, Subtarget);
6718}
6719
6720/// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
6721///
6722static SDValue PerformSUBCombine(SDNode *N,
6723                                 TargetLowering::DAGCombinerInfo &DCI) {
6724  SDValue N0 = N->getOperand(0);
6725  SDValue N1 = N->getOperand(1);
6726
6727  // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
6728  if (N1.getOpcode() == ISD::SELECT && N1.getNode()->hasOneUse()) {
6729    SDValue Result = combineSelectAndUse(N, N1, N0, DCI);
6730    if (Result.getNode()) return Result;
6731  }
6732
6733  return SDValue();
6734}
6735
6736/// PerformVMULCombine
6737/// Distribute (A + B) * C to (A * C) + (B * C) to take advantage of the
6738/// special multiplier accumulator forwarding.
6739///   vmul d3, d0, d2
6740///   vmla d3, d1, d2
6741/// is faster than
6742///   vadd d3, d0, d1
6743///   vmul d3, d3, d2
6744static SDValue PerformVMULCombine(SDNode *N,
6745                                  TargetLowering::DAGCombinerInfo &DCI,
6746                                  const ARMSubtarget *Subtarget) {
6747  if (!Subtarget->hasVMLxForwarding())
6748    return SDValue();
6749
6750  SelectionDAG &DAG = DCI.DAG;
6751  SDValue N0 = N->getOperand(0);
6752  SDValue N1 = N->getOperand(1);
6753  unsigned Opcode = N0.getOpcode();
6754  if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
6755      Opcode != ISD::FADD && Opcode != ISD::FSUB) {
6756    Opcode = N1.getOpcode();
6757    if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
6758        Opcode != ISD::FADD && Opcode != ISD::FSUB)
6759      return SDValue();
6760    std::swap(N0, N1);
6761  }
6762
6763  EVT VT = N->getValueType(0);
6764  DebugLoc DL = N->getDebugLoc();
6765  SDValue N00 = N0->getOperand(0);
6766  SDValue N01 = N0->getOperand(1);
6767  return DAG.getNode(Opcode, DL, VT,
6768                     DAG.getNode(ISD::MUL, DL, VT, N00, N1),
6769                     DAG.getNode(ISD::MUL, DL, VT, N01, N1));
6770}
6771
6772static SDValue PerformMULCombine(SDNode *N,
6773                                 TargetLowering::DAGCombinerInfo &DCI,
6774                                 const ARMSubtarget *Subtarget) {
6775  SelectionDAG &DAG = DCI.DAG;
6776
6777  if (Subtarget->isThumb1Only())
6778    return SDValue();
6779
6780  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
6781    return SDValue();
6782
6783  EVT VT = N->getValueType(0);
6784  if (VT.is64BitVector() || VT.is128BitVector())
6785    return PerformVMULCombine(N, DCI, Subtarget);
6786  if (VT != MVT::i32)
6787    return SDValue();
6788
6789  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
6790  if (!C)
6791    return SDValue();
6792
6793  uint64_t MulAmt = C->getZExtValue();
6794  unsigned ShiftAmt = CountTrailingZeros_64(MulAmt);
6795  ShiftAmt = ShiftAmt & (32 - 1);
6796  SDValue V = N->getOperand(0);
6797  DebugLoc DL = N->getDebugLoc();
6798
6799  SDValue Res;
6800  MulAmt >>= ShiftAmt;
6801  if (isPowerOf2_32(MulAmt - 1)) {
6802    // (mul x, 2^N + 1) => (add (shl x, N), x)
6803    Res = DAG.getNode(ISD::ADD, DL, VT,
6804                      V, DAG.getNode(ISD::SHL, DL, VT,
6805                                     V, DAG.getConstant(Log2_32(MulAmt-1),
6806                                                        MVT::i32)));
6807  } else if (isPowerOf2_32(MulAmt + 1)) {
6808    // (mul x, 2^N - 1) => (sub (shl x, N), x)
6809    Res = DAG.getNode(ISD::SUB, DL, VT,
6810                      DAG.getNode(ISD::SHL, DL, VT,
6811                                  V, DAG.getConstant(Log2_32(MulAmt+1),
6812                                                     MVT::i32)),
6813                                                     V);
6814  } else
6815    return SDValue();
6816
6817  if (ShiftAmt != 0)
6818    Res = DAG.getNode(ISD::SHL, DL, VT, Res,
6819                      DAG.getConstant(ShiftAmt, MVT::i32));
6820
6821  // Do not add new nodes to DAG combiner worklist.
6822  DCI.CombineTo(N, Res, false);
6823  return SDValue();
6824}
6825
6826static SDValue PerformANDCombine(SDNode *N,
6827                                TargetLowering::DAGCombinerInfo &DCI) {
6828
6829  // Attempt to use immediate-form VBIC
6830  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
6831  DebugLoc dl = N->getDebugLoc();
6832  EVT VT = N->getValueType(0);
6833  SelectionDAG &DAG = DCI.DAG;
6834
6835  if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
6836    return SDValue();
6837
6838  APInt SplatBits, SplatUndef;
6839  unsigned SplatBitSize;
6840  bool HasAnyUndefs;
6841  if (BVN &&
6842      BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
6843    if (SplatBitSize <= 64) {
6844      EVT VbicVT;
6845      SDValue Val = isNEONModifiedImm((~SplatBits).getZExtValue(),
6846                                      SplatUndef.getZExtValue(), SplatBitSize,
6847                                      DAG, VbicVT, VT.is128BitVector(),
6848                                      OtherModImm);
6849      if (Val.getNode()) {
6850        SDValue Input =
6851          DAG.getNode(ISD::BITCAST, dl, VbicVT, N->getOperand(0));
6852        SDValue Vbic = DAG.getNode(ARMISD::VBICIMM, dl, VbicVT, Input, Val);
6853        return DAG.getNode(ISD::BITCAST, dl, VT, Vbic);
6854      }
6855    }
6856  }
6857
6858  return SDValue();
6859}
6860
6861/// PerformORCombine - Target-specific dag combine xforms for ISD::OR
6862static SDValue PerformORCombine(SDNode *N,
6863                                TargetLowering::DAGCombinerInfo &DCI,
6864                                const ARMSubtarget *Subtarget) {
6865  // Attempt to use immediate-form VORR
6866  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
6867  DebugLoc dl = N->getDebugLoc();
6868  EVT VT = N->getValueType(0);
6869  SelectionDAG &DAG = DCI.DAG;
6870
6871  if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
6872    return SDValue();
6873
6874  APInt SplatBits, SplatUndef;
6875  unsigned SplatBitSize;
6876  bool HasAnyUndefs;
6877  if (BVN && Subtarget->hasNEON() &&
6878      BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
6879    if (SplatBitSize <= 64) {
6880      EVT VorrVT;
6881      SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
6882                                      SplatUndef.getZExtValue(), SplatBitSize,
6883                                      DAG, VorrVT, VT.is128BitVector(),
6884                                      OtherModImm);
6885      if (Val.getNode()) {
6886        SDValue Input =
6887          DAG.getNode(ISD::BITCAST, dl, VorrVT, N->getOperand(0));
6888        SDValue Vorr = DAG.getNode(ARMISD::VORRIMM, dl, VorrVT, Input, Val);
6889        return DAG.getNode(ISD::BITCAST, dl, VT, Vorr);
6890      }
6891    }
6892  }
6893
6894  SDValue N0 = N->getOperand(0);
6895  if (N0.getOpcode() != ISD::AND)
6896    return SDValue();
6897  SDValue N1 = N->getOperand(1);
6898
6899  // (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant.
6900  if (Subtarget->hasNEON() && N1.getOpcode() == ISD::AND && VT.isVector() &&
6901      DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
6902    APInt SplatUndef;
6903    unsigned SplatBitSize;
6904    bool HasAnyUndefs;
6905
6906    BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(1));
6907    APInt SplatBits0;
6908    if (BVN0 && BVN0->isConstantSplat(SplatBits0, SplatUndef, SplatBitSize,
6909                                  HasAnyUndefs) && !HasAnyUndefs) {
6910      BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(1));
6911      APInt SplatBits1;
6912      if (BVN1 && BVN1->isConstantSplat(SplatBits1, SplatUndef, SplatBitSize,
6913                                    HasAnyUndefs) && !HasAnyUndefs &&
6914          SplatBits0 == ~SplatBits1) {
6915        // Canonicalize the vector type to make instruction selection simpler.
6916        EVT CanonicalVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
6917        SDValue Result = DAG.getNode(ARMISD::VBSL, dl, CanonicalVT,
6918                                     N0->getOperand(1), N0->getOperand(0),
6919                                     N1->getOperand(0));
6920        return DAG.getNode(ISD::BITCAST, dl, VT, Result);
6921      }
6922    }
6923  }
6924
6925  // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when
6926  // reasonable.
6927
6928  // BFI is only available on V6T2+
6929  if (Subtarget->isThumb1Only() || !Subtarget->hasV6T2Ops())
6930    return SDValue();
6931
6932  DebugLoc DL = N->getDebugLoc();
6933  // 1) or (and A, mask), val => ARMbfi A, val, mask
6934  //      iff (val & mask) == val
6935  //
6936  // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
6937  //  2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2)
6938  //          && mask == ~mask2
6939  //  2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2)
6940  //          && ~mask == mask2
6941  //  (i.e., copy a bitfield value into another bitfield of the same width)
6942
6943  if (VT != MVT::i32)
6944    return SDValue();
6945
6946  SDValue N00 = N0.getOperand(0);
6947
6948  // The value and the mask need to be constants so we can verify this is
6949  // actually a bitfield set. If the mask is 0xffff, we can do better
6950  // via a movt instruction, so don't use BFI in that case.
6951  SDValue MaskOp = N0.getOperand(1);
6952  ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(MaskOp);
6953  if (!MaskC)
6954    return SDValue();
6955  unsigned Mask = MaskC->getZExtValue();
6956  if (Mask == 0xffff)
6957    return SDValue();
6958  SDValue Res;
6959  // Case (1): or (and A, mask), val => ARMbfi A, val, mask
6960  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
6961  if (N1C) {
6962    unsigned Val = N1C->getZExtValue();
6963    if ((Val & ~Mask) != Val)
6964      return SDValue();
6965
6966    if (ARM::isBitFieldInvertedMask(Mask)) {
6967      Val >>= CountTrailingZeros_32(~Mask);
6968
6969      Res = DAG.getNode(ARMISD::BFI, DL, VT, N00,
6970                        DAG.getConstant(Val, MVT::i32),
6971                        DAG.getConstant(Mask, MVT::i32));
6972
6973      // Do not add new nodes to DAG combiner worklist.
6974      DCI.CombineTo(N, Res, false);
6975      return SDValue();
6976    }
6977  } else if (N1.getOpcode() == ISD::AND) {
6978    // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
6979    ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
6980    if (!N11C)
6981      return SDValue();
6982    unsigned Mask2 = N11C->getZExtValue();
6983
6984    // Mask and ~Mask2 (or reverse) must be equivalent for the BFI pattern
6985    // as is to match.
6986    if (ARM::isBitFieldInvertedMask(Mask) &&
6987        (Mask == ~Mask2)) {
6988      // The pack halfword instruction works better for masks that fit it,
6989      // so use that when it's available.
6990      if (Subtarget->hasT2ExtractPack() &&
6991          (Mask == 0xffff || Mask == 0xffff0000))
6992        return SDValue();
6993      // 2a
6994      unsigned amt = CountTrailingZeros_32(Mask2);
6995      Res = DAG.getNode(ISD::SRL, DL, VT, N1.getOperand(0),
6996                        DAG.getConstant(amt, MVT::i32));
6997      Res = DAG.getNode(ARMISD::BFI, DL, VT, N00, Res,
6998                        DAG.getConstant(Mask, MVT::i32));
6999      // Do not add new nodes to DAG combiner worklist.
7000      DCI.CombineTo(N, Res, false);
7001      return SDValue();
7002    } else if (ARM::isBitFieldInvertedMask(~Mask) &&
7003               (~Mask == Mask2)) {
7004      // The pack halfword instruction works better for masks that fit it,
7005      // so use that when it's available.
7006      if (Subtarget->hasT2ExtractPack() &&
7007          (Mask2 == 0xffff || Mask2 == 0xffff0000))
7008        return SDValue();
7009      // 2b
7010      unsigned lsb = CountTrailingZeros_32(Mask);
7011      Res = DAG.getNode(ISD::SRL, DL, VT, N00,
7012                        DAG.getConstant(lsb, MVT::i32));
7013      Res = DAG.getNode(ARMISD::BFI, DL, VT, N1.getOperand(0), Res,
7014                        DAG.getConstant(Mask2, MVT::i32));
7015      // Do not add new nodes to DAG combiner worklist.
7016      DCI.CombineTo(N, Res, false);
7017      return SDValue();
7018    }
7019  }
7020
7021  if (DAG.MaskedValueIsZero(N1, MaskC->getAPIntValue()) &&
7022      N00.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N00.getOperand(1)) &&
7023      ARM::isBitFieldInvertedMask(~Mask)) {
7024    // Case (3): or (and (shl A, #shamt), mask), B => ARMbfi B, A, ~mask
7025    // where lsb(mask) == #shamt and masked bits of B are known zero.
7026    SDValue ShAmt = N00.getOperand(1);
7027    unsigned ShAmtC = cast<ConstantSDNode>(ShAmt)->getZExtValue();
7028    unsigned LSB = CountTrailingZeros_32(Mask);
7029    if (ShAmtC != LSB)
7030      return SDValue();
7031
7032    Res = DAG.getNode(ARMISD::BFI, DL, VT, N1, N00.getOperand(0),
7033                      DAG.getConstant(~Mask, MVT::i32));
7034
7035    // Do not add new nodes to DAG combiner worklist.
7036    DCI.CombineTo(N, Res, false);
7037  }
7038
7039  return SDValue();
7040}
7041
7042/// PerformBFICombine - (bfi A, (and B, Mask1), Mask2) -> (bfi A, B, Mask2) iff
7043/// the bits being cleared by the AND are not demanded by the BFI.
7044static SDValue PerformBFICombine(SDNode *N,
7045                                 TargetLowering::DAGCombinerInfo &DCI) {
7046  SDValue N1 = N->getOperand(1);
7047  if (N1.getOpcode() == ISD::AND) {
7048    ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
7049    if (!N11C)
7050      return SDValue();
7051    unsigned InvMask = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
7052    unsigned LSB = CountTrailingZeros_32(~InvMask);
7053    unsigned Width = (32 - CountLeadingZeros_32(~InvMask)) - LSB;
7054    unsigned Mask = (1 << Width)-1;
7055    unsigned Mask2 = N11C->getZExtValue();
7056    if ((Mask & (~Mask2)) == 0)
7057      return DCI.DAG.getNode(ARMISD::BFI, N->getDebugLoc(), N->getValueType(0),
7058                             N->getOperand(0), N1.getOperand(0),
7059                             N->getOperand(2));
7060  }
7061  return SDValue();
7062}
7063
7064/// PerformVMOVRRDCombine - Target-specific dag combine xforms for
7065/// ARMISD::VMOVRRD.
7066static SDValue PerformVMOVRRDCombine(SDNode *N,
7067                                     TargetLowering::DAGCombinerInfo &DCI) {
7068  // vmovrrd(vmovdrr x, y) -> x,y
7069  SDValue InDouble = N->getOperand(0);
7070  if (InDouble.getOpcode() == ARMISD::VMOVDRR)
7071    return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
7072
7073  // vmovrrd(load f64) -> (load i32), (load i32)
7074  SDNode *InNode = InDouble.getNode();
7075  if (ISD::isNormalLoad(InNode) && InNode->hasOneUse() &&
7076      InNode->getValueType(0) == MVT::f64 &&
7077      InNode->getOperand(1).getOpcode() == ISD::FrameIndex &&
7078      !cast<LoadSDNode>(InNode)->isVolatile()) {
7079    // TODO: Should this be done for non-FrameIndex operands?
7080    LoadSDNode *LD = cast<LoadSDNode>(InNode);
7081
7082    SelectionDAG &DAG = DCI.DAG;
7083    DebugLoc DL = LD->getDebugLoc();
7084    SDValue BasePtr = LD->getBasePtr();
7085    SDValue NewLD1 = DAG.getLoad(MVT::i32, DL, LD->getChain(), BasePtr,
7086                                 LD->getPointerInfo(), LD->isVolatile(),
7087                                 LD->isNonTemporal(), LD->isInvariant(),
7088                                 LD->getAlignment());
7089
7090    SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
7091                                    DAG.getConstant(4, MVT::i32));
7092    SDValue NewLD2 = DAG.getLoad(MVT::i32, DL, NewLD1.getValue(1), OffsetPtr,
7093                                 LD->getPointerInfo(), LD->isVolatile(),
7094                                 LD->isNonTemporal(), LD->isInvariant(),
7095                                 std::min(4U, LD->getAlignment() / 2));
7096
7097    DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewLD2.getValue(1));
7098    SDValue Result = DCI.CombineTo(N, NewLD1, NewLD2);
7099    DCI.RemoveFromWorklist(LD);
7100    DAG.DeleteNode(LD);
7101    return Result;
7102  }
7103
7104  return SDValue();
7105}
7106
7107/// PerformVMOVDRRCombine - Target-specific dag combine xforms for
7108/// ARMISD::VMOVDRR.  This is also used for BUILD_VECTORs with 2 operands.
7109static SDValue PerformVMOVDRRCombine(SDNode *N, SelectionDAG &DAG) {
7110  // N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X)
7111  SDValue Op0 = N->getOperand(0);
7112  SDValue Op1 = N->getOperand(1);
7113  if (Op0.getOpcode() == ISD::BITCAST)
7114    Op0 = Op0.getOperand(0);
7115  if (Op1.getOpcode() == ISD::BITCAST)
7116    Op1 = Op1.getOperand(0);
7117  if (Op0.getOpcode() == ARMISD::VMOVRRD &&
7118      Op0.getNode() == Op1.getNode() &&
7119      Op0.getResNo() == 0 && Op1.getResNo() == 1)
7120    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(),
7121                       N->getValueType(0), Op0.getOperand(0));
7122  return SDValue();
7123}
7124
7125/// PerformSTORECombine - Target-specific dag combine xforms for
7126/// ISD::STORE.
7127static SDValue PerformSTORECombine(SDNode *N,
7128                                   TargetLowering::DAGCombinerInfo &DCI) {
7129  // Bitcast an i64 store extracted from a vector to f64.
7130  // Otherwise, the i64 value will be legalized to a pair of i32 values.
7131  StoreSDNode *St = cast<StoreSDNode>(N);
7132  SDValue StVal = St->getValue();
7133  if (!ISD::isNormalStore(St) || St->isVolatile())
7134    return SDValue();
7135
7136  if (StVal.getNode()->getOpcode() == ARMISD::VMOVDRR &&
7137      StVal.getNode()->hasOneUse() && !St->isVolatile()) {
7138    SelectionDAG  &DAG = DCI.DAG;
7139    DebugLoc DL = St->getDebugLoc();
7140    SDValue BasePtr = St->getBasePtr();
7141    SDValue NewST1 = DAG.getStore(St->getChain(), DL,
7142                                  StVal.getNode()->getOperand(0), BasePtr,
7143                                  St->getPointerInfo(), St->isVolatile(),
7144                                  St->isNonTemporal(), St->getAlignment());
7145
7146    SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
7147                                    DAG.getConstant(4, MVT::i32));
7148    return DAG.getStore(NewST1.getValue(0), DL, StVal.getNode()->getOperand(1),
7149                        OffsetPtr, St->getPointerInfo(), St->isVolatile(),
7150                        St->isNonTemporal(),
7151                        std::min(4U, St->getAlignment() / 2));
7152  }
7153
7154  if (StVal.getValueType() != MVT::i64 ||
7155      StVal.getNode()->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
7156    return SDValue();
7157
7158  SelectionDAG &DAG = DCI.DAG;
7159  DebugLoc dl = StVal.getDebugLoc();
7160  SDValue IntVec = StVal.getOperand(0);
7161  EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
7162                                 IntVec.getValueType().getVectorNumElements());
7163  SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, IntVec);
7164  SDValue ExtElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7165                               Vec, StVal.getOperand(1));
7166  dl = N->getDebugLoc();
7167  SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ExtElt);
7168  // Make the DAGCombiner fold the bitcasts.
7169  DCI.AddToWorklist(Vec.getNode());
7170  DCI.AddToWorklist(ExtElt.getNode());
7171  DCI.AddToWorklist(V.getNode());
7172  return DAG.getStore(St->getChain(), dl, V, St->getBasePtr(),
7173                      St->getPointerInfo(), St->isVolatile(),
7174                      St->isNonTemporal(), St->getAlignment(),
7175                      St->getTBAAInfo());
7176}
7177
7178/// hasNormalLoadOperand - Check if any of the operands of a BUILD_VECTOR node
7179/// are normal, non-volatile loads.  If so, it is profitable to bitcast an
7180/// i64 vector to have f64 elements, since the value can then be loaded
7181/// directly into a VFP register.
7182static bool hasNormalLoadOperand(SDNode *N) {
7183  unsigned NumElts = N->getValueType(0).getVectorNumElements();
7184  for (unsigned i = 0; i < NumElts; ++i) {
7185    SDNode *Elt = N->getOperand(i).getNode();
7186    if (ISD::isNormalLoad(Elt) && !cast<LoadSDNode>(Elt)->isVolatile())
7187      return true;
7188  }
7189  return false;
7190}
7191
7192/// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for
7193/// ISD::BUILD_VECTOR.
7194static SDValue PerformBUILD_VECTORCombine(SDNode *N,
7195                                          TargetLowering::DAGCombinerInfo &DCI){
7196  // build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X):
7197  // VMOVRRD is introduced when legalizing i64 types.  It forces the i64 value
7198  // into a pair of GPRs, which is fine when the value is used as a scalar,
7199  // but if the i64 value is converted to a vector, we need to undo the VMOVRRD.
7200  SelectionDAG &DAG = DCI.DAG;
7201  if (N->getNumOperands() == 2) {
7202    SDValue RV = PerformVMOVDRRCombine(N, DAG);
7203    if (RV.getNode())
7204      return RV;
7205  }
7206
7207  // Load i64 elements as f64 values so that type legalization does not split
7208  // them up into i32 values.
7209  EVT VT = N->getValueType(0);
7210  if (VT.getVectorElementType() != MVT::i64 || !hasNormalLoadOperand(N))
7211    return SDValue();
7212  DebugLoc dl = N->getDebugLoc();
7213  SmallVector<SDValue, 8> Ops;
7214  unsigned NumElts = VT.getVectorNumElements();
7215  for (unsigned i = 0; i < NumElts; ++i) {
7216    SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(i));
7217    Ops.push_back(V);
7218    // Make the DAGCombiner fold the bitcast.
7219    DCI.AddToWorklist(V.getNode());
7220  }
7221  EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, NumElts);
7222  SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, FloatVT, Ops.data(), NumElts);
7223  return DAG.getNode(ISD::BITCAST, dl, VT, BV);
7224}
7225
7226/// PerformInsertEltCombine - Target-specific dag combine xforms for
7227/// ISD::INSERT_VECTOR_ELT.
7228static SDValue PerformInsertEltCombine(SDNode *N,
7229                                       TargetLowering::DAGCombinerInfo &DCI) {
7230  // Bitcast an i64 load inserted into a vector to f64.
7231  // Otherwise, the i64 value will be legalized to a pair of i32 values.
7232  EVT VT = N->getValueType(0);
7233  SDNode *Elt = N->getOperand(1).getNode();
7234  if (VT.getVectorElementType() != MVT::i64 ||
7235      !ISD::isNormalLoad(Elt) || cast<LoadSDNode>(Elt)->isVolatile())
7236    return SDValue();
7237
7238  SelectionDAG &DAG = DCI.DAG;
7239  DebugLoc dl = N->getDebugLoc();
7240  EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
7241                                 VT.getVectorNumElements());
7242  SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, N->getOperand(0));
7243  SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(1));
7244  // Make the DAGCombiner fold the bitcasts.
7245  DCI.AddToWorklist(Vec.getNode());
7246  DCI.AddToWorklist(V.getNode());
7247  SDValue InsElt = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, FloatVT,
7248                               Vec, V, N->getOperand(2));
7249  return DAG.getNode(ISD::BITCAST, dl, VT, InsElt);
7250}
7251
7252/// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for
7253/// ISD::VECTOR_SHUFFLE.
7254static SDValue PerformVECTOR_SHUFFLECombine(SDNode *N, SelectionDAG &DAG) {
7255  // The LLVM shufflevector instruction does not require the shuffle mask
7256  // length to match the operand vector length, but ISD::VECTOR_SHUFFLE does
7257  // have that requirement.  When translating to ISD::VECTOR_SHUFFLE, if the
7258  // operands do not match the mask length, they are extended by concatenating
7259  // them with undef vectors.  That is probably the right thing for other
7260  // targets, but for NEON it is better to concatenate two double-register
7261  // size vector operands into a single quad-register size vector.  Do that
7262  // transformation here:
7263  //   shuffle(concat(v1, undef), concat(v2, undef)) ->
7264  //   shuffle(concat(v1, v2), undef)
7265  SDValue Op0 = N->getOperand(0);
7266  SDValue Op1 = N->getOperand(1);
7267  if (Op0.getOpcode() != ISD::CONCAT_VECTORS ||
7268      Op1.getOpcode() != ISD::CONCAT_VECTORS ||
7269      Op0.getNumOperands() != 2 ||
7270      Op1.getNumOperands() != 2)
7271    return SDValue();
7272  SDValue Concat0Op1 = Op0.getOperand(1);
7273  SDValue Concat1Op1 = Op1.getOperand(1);
7274  if (Concat0Op1.getOpcode() != ISD::UNDEF ||
7275      Concat1Op1.getOpcode() != ISD::UNDEF)
7276    return SDValue();
7277  // Skip the transformation if any of the types are illegal.
7278  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7279  EVT VT = N->getValueType(0);
7280  if (!TLI.isTypeLegal(VT) ||
7281      !TLI.isTypeLegal(Concat0Op1.getValueType()) ||
7282      !TLI.isTypeLegal(Concat1Op1.getValueType()))
7283    return SDValue();
7284
7285  SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, N->getDebugLoc(), VT,
7286                                  Op0.getOperand(0), Op1.getOperand(0));
7287  // Translate the shuffle mask.
7288  SmallVector<int, 16> NewMask;
7289  unsigned NumElts = VT.getVectorNumElements();
7290  unsigned HalfElts = NumElts/2;
7291  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
7292  for (unsigned n = 0; n < NumElts; ++n) {
7293    int MaskElt = SVN->getMaskElt(n);
7294    int NewElt = -1;
7295    if (MaskElt < (int)HalfElts)
7296      NewElt = MaskElt;
7297    else if (MaskElt >= (int)NumElts && MaskElt < (int)(NumElts + HalfElts))
7298      NewElt = HalfElts + MaskElt - NumElts;
7299    NewMask.push_back(NewElt);
7300  }
7301  return DAG.getVectorShuffle(VT, N->getDebugLoc(), NewConcat,
7302                              DAG.getUNDEF(VT), NewMask.data());
7303}
7304
7305/// CombineBaseUpdate - Target-specific DAG combine function for VLDDUP and
7306/// NEON load/store intrinsics to merge base address updates.
7307static SDValue CombineBaseUpdate(SDNode *N,
7308                                 TargetLowering::DAGCombinerInfo &DCI) {
7309  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
7310    return SDValue();
7311
7312  SelectionDAG &DAG = DCI.DAG;
7313  bool isIntrinsic = (N->getOpcode() == ISD::INTRINSIC_VOID ||
7314                      N->getOpcode() == ISD::INTRINSIC_W_CHAIN);
7315  unsigned AddrOpIdx = (isIntrinsic ? 2 : 1);
7316  SDValue Addr = N->getOperand(AddrOpIdx);
7317
7318  // Search for a use of the address operand that is an increment.
7319  for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
7320         UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
7321    SDNode *User = *UI;
7322    if (User->getOpcode() != ISD::ADD ||
7323        UI.getUse().getResNo() != Addr.getResNo())
7324      continue;
7325
7326    // Check that the add is independent of the load/store.  Otherwise, folding
7327    // it would create a cycle.
7328    if (User->isPredecessorOf(N) || N->isPredecessorOf(User))
7329      continue;
7330
7331    // Find the new opcode for the updating load/store.
7332    bool isLoad = true;
7333    bool isLaneOp = false;
7334    unsigned NewOpc = 0;
7335    unsigned NumVecs = 0;
7336    if (isIntrinsic) {
7337      unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
7338      switch (IntNo) {
7339      default: assert(0 && "unexpected intrinsic for Neon base update");
7340      case Intrinsic::arm_neon_vld1:     NewOpc = ARMISD::VLD1_UPD;
7341        NumVecs = 1; break;
7342      case Intrinsic::arm_neon_vld2:     NewOpc = ARMISD::VLD2_UPD;
7343        NumVecs = 2; break;
7344      case Intrinsic::arm_neon_vld3:     NewOpc = ARMISD::VLD3_UPD;
7345        NumVecs = 3; break;
7346      case Intrinsic::arm_neon_vld4:     NewOpc = ARMISD::VLD4_UPD;
7347        NumVecs = 4; break;
7348      case Intrinsic::arm_neon_vld2lane: NewOpc = ARMISD::VLD2LN_UPD;
7349        NumVecs = 2; isLaneOp = true; break;
7350      case Intrinsic::arm_neon_vld3lane: NewOpc = ARMISD::VLD3LN_UPD;
7351        NumVecs = 3; isLaneOp = true; break;
7352      case Intrinsic::arm_neon_vld4lane: NewOpc = ARMISD::VLD4LN_UPD;
7353        NumVecs = 4; isLaneOp = true; break;
7354      case Intrinsic::arm_neon_vst1:     NewOpc = ARMISD::VST1_UPD;
7355        NumVecs = 1; isLoad = false; break;
7356      case Intrinsic::arm_neon_vst2:     NewOpc = ARMISD::VST2_UPD;
7357        NumVecs = 2; isLoad = false; break;
7358      case Intrinsic::arm_neon_vst3:     NewOpc = ARMISD::VST3_UPD;
7359        NumVecs = 3; isLoad = false; break;
7360      case Intrinsic::arm_neon_vst4:     NewOpc = ARMISD::VST4_UPD;
7361        NumVecs = 4; isLoad = false; break;
7362      case Intrinsic::arm_neon_vst2lane: NewOpc = ARMISD::VST2LN_UPD;
7363        NumVecs = 2; isLoad = false; isLaneOp = true; break;
7364      case Intrinsic::arm_neon_vst3lane: NewOpc = ARMISD::VST3LN_UPD;
7365        NumVecs = 3; isLoad = false; isLaneOp = true; break;
7366      case Intrinsic::arm_neon_vst4lane: NewOpc = ARMISD::VST4LN_UPD;
7367        NumVecs = 4; isLoad = false; isLaneOp = true; break;
7368      }
7369    } else {
7370      isLaneOp = true;
7371      switch (N->getOpcode()) {
7372      default: assert(0 && "unexpected opcode for Neon base update");
7373      case ARMISD::VLD2DUP: NewOpc = ARMISD::VLD2DUP_UPD; NumVecs = 2; break;
7374      case ARMISD::VLD3DUP: NewOpc = ARMISD::VLD3DUP_UPD; NumVecs = 3; break;
7375      case ARMISD::VLD4DUP: NewOpc = ARMISD::VLD4DUP_UPD; NumVecs = 4; break;
7376      }
7377    }
7378
7379    // Find the size of memory referenced by the load/store.
7380    EVT VecTy;
7381    if (isLoad)
7382      VecTy = N->getValueType(0);
7383    else
7384      VecTy = N->getOperand(AddrOpIdx+1).getValueType();
7385    unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
7386    if (isLaneOp)
7387      NumBytes /= VecTy.getVectorNumElements();
7388
7389    // If the increment is a constant, it must match the memory ref size.
7390    SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
7391    if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
7392      uint64_t IncVal = CInc->getZExtValue();
7393      if (IncVal != NumBytes)
7394        continue;
7395    } else if (NumBytes >= 3 * 16) {
7396      // VLD3/4 and VST3/4 for 128-bit vectors are implemented with two
7397      // separate instructions that make it harder to use a non-constant update.
7398      continue;
7399    }
7400
7401    // Create the new updating load/store node.
7402    EVT Tys[6];
7403    unsigned NumResultVecs = (isLoad ? NumVecs : 0);
7404    unsigned n;
7405    for (n = 0; n < NumResultVecs; ++n)
7406      Tys[n] = VecTy;
7407    Tys[n++] = MVT::i32;
7408    Tys[n] = MVT::Other;
7409    SDVTList SDTys = DAG.getVTList(Tys, NumResultVecs+2);
7410    SmallVector<SDValue, 8> Ops;
7411    Ops.push_back(N->getOperand(0)); // incoming chain
7412    Ops.push_back(N->getOperand(AddrOpIdx));
7413    Ops.push_back(Inc);
7414    for (unsigned i = AddrOpIdx + 1; i < N->getNumOperands(); ++i) {
7415      Ops.push_back(N->getOperand(i));
7416    }
7417    MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N);
7418    SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, N->getDebugLoc(), SDTys,
7419                                           Ops.data(), Ops.size(),
7420                                           MemInt->getMemoryVT(),
7421                                           MemInt->getMemOperand());
7422
7423    // Update the uses.
7424    std::vector<SDValue> NewResults;
7425    for (unsigned i = 0; i < NumResultVecs; ++i) {
7426      NewResults.push_back(SDValue(UpdN.getNode(), i));
7427    }
7428    NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs+1)); // chain
7429    DCI.CombineTo(N, NewResults);
7430    DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
7431
7432    break;
7433  }
7434  return SDValue();
7435}
7436
7437/// CombineVLDDUP - For a VDUPLANE node N, check if its source operand is a
7438/// vldN-lane (N > 1) intrinsic, and if all the other uses of that intrinsic
7439/// are also VDUPLANEs.  If so, combine them to a vldN-dup operation and
7440/// return true.
7441static bool CombineVLDDUP(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
7442  SelectionDAG &DAG = DCI.DAG;
7443  EVT VT = N->getValueType(0);
7444  // vldN-dup instructions only support 64-bit vectors for N > 1.
7445  if (!VT.is64BitVector())
7446    return false;
7447
7448  // Check if the VDUPLANE operand is a vldN-dup intrinsic.
7449  SDNode *VLD = N->getOperand(0).getNode();
7450  if (VLD->getOpcode() != ISD::INTRINSIC_W_CHAIN)
7451    return false;
7452  unsigned NumVecs = 0;
7453  unsigned NewOpc = 0;
7454  unsigned IntNo = cast<ConstantSDNode>(VLD->getOperand(1))->getZExtValue();
7455  if (IntNo == Intrinsic::arm_neon_vld2lane) {
7456    NumVecs = 2;
7457    NewOpc = ARMISD::VLD2DUP;
7458  } else if (IntNo == Intrinsic::arm_neon_vld3lane) {
7459    NumVecs = 3;
7460    NewOpc = ARMISD::VLD3DUP;
7461  } else if (IntNo == Intrinsic::arm_neon_vld4lane) {
7462    NumVecs = 4;
7463    NewOpc = ARMISD::VLD4DUP;
7464  } else {
7465    return false;
7466  }
7467
7468  // First check that all the vldN-lane uses are VDUPLANEs and that the lane
7469  // numbers match the load.
7470  unsigned VLDLaneNo =
7471    cast<ConstantSDNode>(VLD->getOperand(NumVecs+3))->getZExtValue();
7472  for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
7473       UI != UE; ++UI) {
7474    // Ignore uses of the chain result.
7475    if (UI.getUse().getResNo() == NumVecs)
7476      continue;
7477    SDNode *User = *UI;
7478    if (User->getOpcode() != ARMISD::VDUPLANE ||
7479        VLDLaneNo != cast<ConstantSDNode>(User->getOperand(1))->getZExtValue())
7480      return false;
7481  }
7482
7483  // Create the vldN-dup node.
7484  EVT Tys[5];
7485  unsigned n;
7486  for (n = 0; n < NumVecs; ++n)
7487    Tys[n] = VT;
7488  Tys[n] = MVT::Other;
7489  SDVTList SDTys = DAG.getVTList(Tys, NumVecs+1);
7490  SDValue Ops[] = { VLD->getOperand(0), VLD->getOperand(2) };
7491  MemIntrinsicSDNode *VLDMemInt = cast<MemIntrinsicSDNode>(VLD);
7492  SDValue VLDDup = DAG.getMemIntrinsicNode(NewOpc, VLD->getDebugLoc(), SDTys,
7493                                           Ops, 2, VLDMemInt->getMemoryVT(),
7494                                           VLDMemInt->getMemOperand());
7495
7496  // Update the uses.
7497  for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
7498       UI != UE; ++UI) {
7499    unsigned ResNo = UI.getUse().getResNo();
7500    // Ignore uses of the chain result.
7501    if (ResNo == NumVecs)
7502      continue;
7503    SDNode *User = *UI;
7504    DCI.CombineTo(User, SDValue(VLDDup.getNode(), ResNo));
7505  }
7506
7507  // Now the vldN-lane intrinsic is dead except for its chain result.
7508  // Update uses of the chain.
7509  std::vector<SDValue> VLDDupResults;
7510  for (unsigned n = 0; n < NumVecs; ++n)
7511    VLDDupResults.push_back(SDValue(VLDDup.getNode(), n));
7512  VLDDupResults.push_back(SDValue(VLDDup.getNode(), NumVecs));
7513  DCI.CombineTo(VLD, VLDDupResults);
7514
7515  return true;
7516}
7517
7518/// PerformVDUPLANECombine - Target-specific dag combine xforms for
7519/// ARMISD::VDUPLANE.
7520static SDValue PerformVDUPLANECombine(SDNode *N,
7521                                      TargetLowering::DAGCombinerInfo &DCI) {
7522  SDValue Op = N->getOperand(0);
7523
7524  // If the source is a vldN-lane (N > 1) intrinsic, and all the other uses
7525  // of that intrinsic are also VDUPLANEs, combine them to a vldN-dup operation.
7526  if (CombineVLDDUP(N, DCI))
7527    return SDValue(N, 0);
7528
7529  // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is
7530  // redundant.  Ignore bit_converts for now; element sizes are checked below.
7531  while (Op.getOpcode() == ISD::BITCAST)
7532    Op = Op.getOperand(0);
7533  if (Op.getOpcode() != ARMISD::VMOVIMM && Op.getOpcode() != ARMISD::VMVNIMM)
7534    return SDValue();
7535
7536  // Make sure the VMOV element size is not bigger than the VDUPLANE elements.
7537  unsigned EltSize = Op.getValueType().getVectorElementType().getSizeInBits();
7538  // The canonical VMOV for a zero vector uses a 32-bit element size.
7539  unsigned Imm = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7540  unsigned EltBits;
7541  if (ARM_AM::decodeNEONModImm(Imm, EltBits) == 0)
7542    EltSize = 8;
7543  EVT VT = N->getValueType(0);
7544  if (EltSize > VT.getVectorElementType().getSizeInBits())
7545    return SDValue();
7546
7547  return DCI.DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
7548}
7549
7550// isConstVecPow2 - Return true if each vector element is a power of 2, all
7551// elements are the same constant, C, and Log2(C) ranges from 1 to 32.
7552static bool isConstVecPow2(SDValue ConstVec, bool isSigned, uint64_t &C)
7553{
7554  integerPart cN;
7555  integerPart c0 = 0;
7556  for (unsigned I = 0, E = ConstVec.getValueType().getVectorNumElements();
7557       I != E; I++) {
7558    ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(ConstVec.getOperand(I));
7559    if (!C)
7560      return false;
7561
7562    bool isExact;
7563    APFloat APF = C->getValueAPF();
7564    if (APF.convertToInteger(&cN, 64, isSigned, APFloat::rmTowardZero, &isExact)
7565        != APFloat::opOK || !isExact)
7566      return false;
7567
7568    c0 = (I == 0) ? cN : c0;
7569    if (!isPowerOf2_64(cN) || c0 != cN || Log2_64(c0) < 1 || Log2_64(c0) > 32)
7570      return false;
7571  }
7572  C = c0;
7573  return true;
7574}
7575
7576/// PerformVCVTCombine - VCVT (floating-point to fixed-point, Advanced SIMD)
7577/// can replace combinations of VMUL and VCVT (floating-point to integer)
7578/// when the VMUL has a constant operand that is a power of 2.
7579///
7580/// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
7581///  vmul.f32        d16, d17, d16
7582///  vcvt.s32.f32    d16, d16
7583/// becomes:
7584///  vcvt.s32.f32    d16, d16, #3
7585static SDValue PerformVCVTCombine(SDNode *N,
7586                                  TargetLowering::DAGCombinerInfo &DCI,
7587                                  const ARMSubtarget *Subtarget) {
7588  SelectionDAG &DAG = DCI.DAG;
7589  SDValue Op = N->getOperand(0);
7590
7591  if (!Subtarget->hasNEON() || !Op.getValueType().isVector() ||
7592      Op.getOpcode() != ISD::FMUL)
7593    return SDValue();
7594
7595  uint64_t C;
7596  SDValue N0 = Op->getOperand(0);
7597  SDValue ConstVec = Op->getOperand(1);
7598  bool isSigned = N->getOpcode() == ISD::FP_TO_SINT;
7599
7600  if (ConstVec.getOpcode() != ISD::BUILD_VECTOR ||
7601      !isConstVecPow2(ConstVec, isSigned, C))
7602    return SDValue();
7603
7604  unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfp2fxs :
7605    Intrinsic::arm_neon_vcvtfp2fxu;
7606  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, N->getDebugLoc(),
7607                     N->getValueType(0),
7608                     DAG.getConstant(IntrinsicOpcode, MVT::i32), N0,
7609                     DAG.getConstant(Log2_64(C), MVT::i32));
7610}
7611
7612/// PerformVDIVCombine - VCVT (fixed-point to floating-point, Advanced SIMD)
7613/// can replace combinations of VCVT (integer to floating-point) and VDIV
7614/// when the VDIV has a constant operand that is a power of 2.
7615///
7616/// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
7617///  vcvt.f32.s32    d16, d16
7618///  vdiv.f32        d16, d17, d16
7619/// becomes:
7620///  vcvt.f32.s32    d16, d16, #3
7621static SDValue PerformVDIVCombine(SDNode *N,
7622                                  TargetLowering::DAGCombinerInfo &DCI,
7623                                  const ARMSubtarget *Subtarget) {
7624  SelectionDAG &DAG = DCI.DAG;
7625  SDValue Op = N->getOperand(0);
7626  unsigned OpOpcode = Op.getNode()->getOpcode();
7627
7628  if (!Subtarget->hasNEON() || !N->getValueType(0).isVector() ||
7629      (OpOpcode != ISD::SINT_TO_FP && OpOpcode != ISD::UINT_TO_FP))
7630    return SDValue();
7631
7632  uint64_t C;
7633  SDValue ConstVec = N->getOperand(1);
7634  bool isSigned = OpOpcode == ISD::SINT_TO_FP;
7635
7636  if (ConstVec.getOpcode() != ISD::BUILD_VECTOR ||
7637      !isConstVecPow2(ConstVec, isSigned, C))
7638    return SDValue();
7639
7640  unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfxs2fp :
7641    Intrinsic::arm_neon_vcvtfxu2fp;
7642  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, N->getDebugLoc(),
7643                     Op.getValueType(),
7644                     DAG.getConstant(IntrinsicOpcode, MVT::i32),
7645                     Op.getOperand(0), DAG.getConstant(Log2_64(C), MVT::i32));
7646}
7647
7648/// Getvshiftimm - Check if this is a valid build_vector for the immediate
7649/// operand of a vector shift operation, where all the elements of the
7650/// build_vector must have the same constant integer value.
7651static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
7652  // Ignore bit_converts.
7653  while (Op.getOpcode() == ISD::BITCAST)
7654    Op = Op.getOperand(0);
7655  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
7656  APInt SplatBits, SplatUndef;
7657  unsigned SplatBitSize;
7658  bool HasAnyUndefs;
7659  if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
7660                                      HasAnyUndefs, ElementBits) ||
7661      SplatBitSize > ElementBits)
7662    return false;
7663  Cnt = SplatBits.getSExtValue();
7664  return true;
7665}
7666
7667/// isVShiftLImm - Check if this is a valid build_vector for the immediate
7668/// operand of a vector shift left operation.  That value must be in the range:
7669///   0 <= Value < ElementBits for a left shift; or
7670///   0 <= Value <= ElementBits for a long left shift.
7671static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
7672  assert(VT.isVector() && "vector shift count is not a vector type");
7673  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
7674  if (! getVShiftImm(Op, ElementBits, Cnt))
7675    return false;
7676  return (Cnt >= 0 && (isLong ? Cnt-1 : Cnt) < ElementBits);
7677}
7678
7679/// isVShiftRImm - Check if this is a valid build_vector for the immediate
7680/// operand of a vector shift right operation.  For a shift opcode, the value
7681/// is positive, but for an intrinsic the value count must be negative. The
7682/// absolute value must be in the range:
7683///   1 <= |Value| <= ElementBits for a right shift; or
7684///   1 <= |Value| <= ElementBits/2 for a narrow right shift.
7685static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
7686                         int64_t &Cnt) {
7687  assert(VT.isVector() && "vector shift count is not a vector type");
7688  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
7689  if (! getVShiftImm(Op, ElementBits, Cnt))
7690    return false;
7691  if (isIntrinsic)
7692    Cnt = -Cnt;
7693  return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits/2 : ElementBits));
7694}
7695
7696/// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
7697static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
7698  unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
7699  switch (IntNo) {
7700  default:
7701    // Don't do anything for most intrinsics.
7702    break;
7703
7704  // Vector shifts: check for immediate versions and lower them.
7705  // Note: This is done during DAG combining instead of DAG legalizing because
7706  // the build_vectors for 64-bit vector element shift counts are generally
7707  // not legal, and it is hard to see their values after they get legalized to
7708  // loads from a constant pool.
7709  case Intrinsic::arm_neon_vshifts:
7710  case Intrinsic::arm_neon_vshiftu:
7711  case Intrinsic::arm_neon_vshiftls:
7712  case Intrinsic::arm_neon_vshiftlu:
7713  case Intrinsic::arm_neon_vshiftn:
7714  case Intrinsic::arm_neon_vrshifts:
7715  case Intrinsic::arm_neon_vrshiftu:
7716  case Intrinsic::arm_neon_vrshiftn:
7717  case Intrinsic::arm_neon_vqshifts:
7718  case Intrinsic::arm_neon_vqshiftu:
7719  case Intrinsic::arm_neon_vqshiftsu:
7720  case Intrinsic::arm_neon_vqshiftns:
7721  case Intrinsic::arm_neon_vqshiftnu:
7722  case Intrinsic::arm_neon_vqshiftnsu:
7723  case Intrinsic::arm_neon_vqrshiftns:
7724  case Intrinsic::arm_neon_vqrshiftnu:
7725  case Intrinsic::arm_neon_vqrshiftnsu: {
7726    EVT VT = N->getOperand(1).getValueType();
7727    int64_t Cnt;
7728    unsigned VShiftOpc = 0;
7729
7730    switch (IntNo) {
7731    case Intrinsic::arm_neon_vshifts:
7732    case Intrinsic::arm_neon_vshiftu:
7733      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) {
7734        VShiftOpc = ARMISD::VSHL;
7735        break;
7736      }
7737      if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) {
7738        VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ?
7739                     ARMISD::VSHRs : ARMISD::VSHRu);
7740        break;
7741      }
7742      return SDValue();
7743
7744    case Intrinsic::arm_neon_vshiftls:
7745    case Intrinsic::arm_neon_vshiftlu:
7746      if (isVShiftLImm(N->getOperand(2), VT, true, Cnt))
7747        break;
7748      llvm_unreachable("invalid shift count for vshll intrinsic");
7749
7750    case Intrinsic::arm_neon_vrshifts:
7751    case Intrinsic::arm_neon_vrshiftu:
7752      if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt))
7753        break;
7754      return SDValue();
7755
7756    case Intrinsic::arm_neon_vqshifts:
7757    case Intrinsic::arm_neon_vqshiftu:
7758      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
7759        break;
7760      return SDValue();
7761
7762    case Intrinsic::arm_neon_vqshiftsu:
7763      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
7764        break;
7765      llvm_unreachable("invalid shift count for vqshlu intrinsic");
7766
7767    case Intrinsic::arm_neon_vshiftn:
7768    case Intrinsic::arm_neon_vrshiftn:
7769    case Intrinsic::arm_neon_vqshiftns:
7770    case Intrinsic::arm_neon_vqshiftnu:
7771    case Intrinsic::arm_neon_vqshiftnsu:
7772    case Intrinsic::arm_neon_vqrshiftns:
7773    case Intrinsic::arm_neon_vqrshiftnu:
7774    case Intrinsic::arm_neon_vqrshiftnsu:
7775      // Narrowing shifts require an immediate right shift.
7776      if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt))
7777        break;
7778      llvm_unreachable("invalid shift count for narrowing vector shift "
7779                       "intrinsic");
7780
7781    default:
7782      llvm_unreachable("unhandled vector shift");
7783    }
7784
7785    switch (IntNo) {
7786    case Intrinsic::arm_neon_vshifts:
7787    case Intrinsic::arm_neon_vshiftu:
7788      // Opcode already set above.
7789      break;
7790    case Intrinsic::arm_neon_vshiftls:
7791    case Intrinsic::arm_neon_vshiftlu:
7792      if (Cnt == VT.getVectorElementType().getSizeInBits())
7793        VShiftOpc = ARMISD::VSHLLi;
7794      else
7795        VShiftOpc = (IntNo == Intrinsic::arm_neon_vshiftls ?
7796                     ARMISD::VSHLLs : ARMISD::VSHLLu);
7797      break;
7798    case Intrinsic::arm_neon_vshiftn:
7799      VShiftOpc = ARMISD::VSHRN; break;
7800    case Intrinsic::arm_neon_vrshifts:
7801      VShiftOpc = ARMISD::VRSHRs; break;
7802    case Intrinsic::arm_neon_vrshiftu:
7803      VShiftOpc = ARMISD::VRSHRu; break;
7804    case Intrinsic::arm_neon_vrshiftn:
7805      VShiftOpc = ARMISD::VRSHRN; break;
7806    case Intrinsic::arm_neon_vqshifts:
7807      VShiftOpc = ARMISD::VQSHLs; break;
7808    case Intrinsic::arm_neon_vqshiftu:
7809      VShiftOpc = ARMISD::VQSHLu; break;
7810    case Intrinsic::arm_neon_vqshiftsu:
7811      VShiftOpc = ARMISD::VQSHLsu; break;
7812    case Intrinsic::arm_neon_vqshiftns:
7813      VShiftOpc = ARMISD::VQSHRNs; break;
7814    case Intrinsic::arm_neon_vqshiftnu:
7815      VShiftOpc = ARMISD::VQSHRNu; break;
7816    case Intrinsic::arm_neon_vqshiftnsu:
7817      VShiftOpc = ARMISD::VQSHRNsu; break;
7818    case Intrinsic::arm_neon_vqrshiftns:
7819      VShiftOpc = ARMISD::VQRSHRNs; break;
7820    case Intrinsic::arm_neon_vqrshiftnu:
7821      VShiftOpc = ARMISD::VQRSHRNu; break;
7822    case Intrinsic::arm_neon_vqrshiftnsu:
7823      VShiftOpc = ARMISD::VQRSHRNsu; break;
7824    }
7825
7826    return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
7827                       N->getOperand(1), DAG.getConstant(Cnt, MVT::i32));
7828  }
7829
7830  case Intrinsic::arm_neon_vshiftins: {
7831    EVT VT = N->getOperand(1).getValueType();
7832    int64_t Cnt;
7833    unsigned VShiftOpc = 0;
7834
7835    if (isVShiftLImm(N->getOperand(3), VT, false, Cnt))
7836      VShiftOpc = ARMISD::VSLI;
7837    else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt))
7838      VShiftOpc = ARMISD::VSRI;
7839    else {
7840      llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
7841    }
7842
7843    return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
7844                       N->getOperand(1), N->getOperand(2),
7845                       DAG.getConstant(Cnt, MVT::i32));
7846  }
7847
7848  case Intrinsic::arm_neon_vqrshifts:
7849  case Intrinsic::arm_neon_vqrshiftu:
7850    // No immediate versions of these to check for.
7851    break;
7852  }
7853
7854  return SDValue();
7855}
7856
7857/// PerformShiftCombine - Checks for immediate versions of vector shifts and
7858/// lowers them.  As with the vector shift intrinsics, this is done during DAG
7859/// combining instead of DAG legalizing because the build_vectors for 64-bit
7860/// vector element shift counts are generally not legal, and it is hard to see
7861/// their values after they get legalized to loads from a constant pool.
7862static SDValue PerformShiftCombine(SDNode *N, SelectionDAG &DAG,
7863                                   const ARMSubtarget *ST) {
7864  EVT VT = N->getValueType(0);
7865
7866  // Nothing to be done for scalar shifts.
7867  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7868  if (!VT.isVector() || !TLI.isTypeLegal(VT))
7869    return SDValue();
7870
7871  assert(ST->hasNEON() && "unexpected vector shift");
7872  int64_t Cnt;
7873
7874  switch (N->getOpcode()) {
7875  default: llvm_unreachable("unexpected shift opcode");
7876
7877  case ISD::SHL:
7878    if (isVShiftLImm(N->getOperand(1), VT, false, Cnt))
7879      return DAG.getNode(ARMISD::VSHL, N->getDebugLoc(), VT, N->getOperand(0),
7880                         DAG.getConstant(Cnt, MVT::i32));
7881    break;
7882
7883  case ISD::SRA:
7884  case ISD::SRL:
7885    if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
7886      unsigned VShiftOpc = (N->getOpcode() == ISD::SRA ?
7887                            ARMISD::VSHRs : ARMISD::VSHRu);
7888      return DAG.getNode(VShiftOpc, N->getDebugLoc(), VT, N->getOperand(0),
7889                         DAG.getConstant(Cnt, MVT::i32));
7890    }
7891  }
7892  return SDValue();
7893}
7894
7895/// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
7896/// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
7897static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG,
7898                                    const ARMSubtarget *ST) {
7899  SDValue N0 = N->getOperand(0);
7900
7901  // Check for sign- and zero-extensions of vector extract operations of 8-
7902  // and 16-bit vector elements.  NEON supports these directly.  They are
7903  // handled during DAG combining because type legalization will promote them
7904  // to 32-bit types and it is messy to recognize the operations after that.
7905  if (ST->hasNEON() && N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
7906    SDValue Vec = N0.getOperand(0);
7907    SDValue Lane = N0.getOperand(1);
7908    EVT VT = N->getValueType(0);
7909    EVT EltVT = N0.getValueType();
7910    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7911
7912    if (VT == MVT::i32 &&
7913        (EltVT == MVT::i8 || EltVT == MVT::i16) &&
7914        TLI.isTypeLegal(Vec.getValueType()) &&
7915        isa<ConstantSDNode>(Lane)) {
7916
7917      unsigned Opc = 0;
7918      switch (N->getOpcode()) {
7919      default: llvm_unreachable("unexpected opcode");
7920      case ISD::SIGN_EXTEND:
7921        Opc = ARMISD::VGETLANEs;
7922        break;
7923      case ISD::ZERO_EXTEND:
7924      case ISD::ANY_EXTEND:
7925        Opc = ARMISD::VGETLANEu;
7926        break;
7927      }
7928      return DAG.getNode(Opc, N->getDebugLoc(), VT, Vec, Lane);
7929    }
7930  }
7931
7932  return SDValue();
7933}
7934
7935/// PerformSELECT_CCCombine - Target-specific DAG combining for ISD::SELECT_CC
7936/// to match f32 max/min patterns to use NEON vmax/vmin instructions.
7937static SDValue PerformSELECT_CCCombine(SDNode *N, SelectionDAG &DAG,
7938                                       const ARMSubtarget *ST) {
7939  // If the target supports NEON, try to use vmax/vmin instructions for f32
7940  // selects like "x < y ? x : y".  Unless the NoNaNsFPMath option is set,
7941  // be careful about NaNs:  NEON's vmax/vmin return NaN if either operand is
7942  // a NaN; only do the transformation when it matches that behavior.
7943
7944  // For now only do this when using NEON for FP operations; if using VFP, it
7945  // is not obvious that the benefit outweighs the cost of switching to the
7946  // NEON pipeline.
7947  if (!ST->hasNEON() || !ST->useNEONForSinglePrecisionFP() ||
7948      N->getValueType(0) != MVT::f32)
7949    return SDValue();
7950
7951  SDValue CondLHS = N->getOperand(0);
7952  SDValue CondRHS = N->getOperand(1);
7953  SDValue LHS = N->getOperand(2);
7954  SDValue RHS = N->getOperand(3);
7955  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
7956
7957  unsigned Opcode = 0;
7958  bool IsReversed;
7959  if (DAG.isEqualTo(LHS, CondLHS) && DAG.isEqualTo(RHS, CondRHS)) {
7960    IsReversed = false; // x CC y ? x : y
7961  } else if (DAG.isEqualTo(LHS, CondRHS) && DAG.isEqualTo(RHS, CondLHS)) {
7962    IsReversed = true ; // x CC y ? y : x
7963  } else {
7964    return SDValue();
7965  }
7966
7967  bool IsUnordered;
7968  switch (CC) {
7969  default: break;
7970  case ISD::SETOLT:
7971  case ISD::SETOLE:
7972  case ISD::SETLT:
7973  case ISD::SETLE:
7974  case ISD::SETULT:
7975  case ISD::SETULE:
7976    // If LHS is NaN, an ordered comparison will be false and the result will
7977    // be the RHS, but vmin(NaN, RHS) = NaN.  Avoid this by checking that LHS
7978    // != NaN.  Likewise, for unordered comparisons, check for RHS != NaN.
7979    IsUnordered = (CC == ISD::SETULT || CC == ISD::SETULE);
7980    if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
7981      break;
7982    // For less-than-or-equal comparisons, "+0 <= -0" will be true but vmin
7983    // will return -0, so vmin can only be used for unsafe math or if one of
7984    // the operands is known to be nonzero.
7985    if ((CC == ISD::SETLE || CC == ISD::SETOLE || CC == ISD::SETULE) &&
7986        !DAG.getTarget().Options.UnsafeFPMath &&
7987        !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
7988      break;
7989    Opcode = IsReversed ? ARMISD::FMAX : ARMISD::FMIN;
7990    break;
7991
7992  case ISD::SETOGT:
7993  case ISD::SETOGE:
7994  case ISD::SETGT:
7995  case ISD::SETGE:
7996  case ISD::SETUGT:
7997  case ISD::SETUGE:
7998    // If LHS is NaN, an ordered comparison will be false and the result will
7999    // be the RHS, but vmax(NaN, RHS) = NaN.  Avoid this by checking that LHS
8000    // != NaN.  Likewise, for unordered comparisons, check for RHS != NaN.
8001    IsUnordered = (CC == ISD::SETUGT || CC == ISD::SETUGE);
8002    if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
8003      break;
8004    // For greater-than-or-equal comparisons, "-0 >= +0" will be true but vmax
8005    // will return +0, so vmax can only be used for unsafe math or if one of
8006    // the operands is known to be nonzero.
8007    if ((CC == ISD::SETGE || CC == ISD::SETOGE || CC == ISD::SETUGE) &&
8008        !DAG.getTarget().Options.UnsafeFPMath &&
8009        !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
8010      break;
8011    Opcode = IsReversed ? ARMISD::FMIN : ARMISD::FMAX;
8012    break;
8013  }
8014
8015  if (!Opcode)
8016    return SDValue();
8017  return DAG.getNode(Opcode, N->getDebugLoc(), N->getValueType(0), LHS, RHS);
8018}
8019
8020/// PerformCMOVCombine - Target-specific DAG combining for ARMISD::CMOV.
8021SDValue
8022ARMTargetLowering::PerformCMOVCombine(SDNode *N, SelectionDAG &DAG) const {
8023  SDValue Cmp = N->getOperand(4);
8024  if (Cmp.getOpcode() != ARMISD::CMPZ)
8025    // Only looking at EQ and NE cases.
8026    return SDValue();
8027
8028  EVT VT = N->getValueType(0);
8029  DebugLoc dl = N->getDebugLoc();
8030  SDValue LHS = Cmp.getOperand(0);
8031  SDValue RHS = Cmp.getOperand(1);
8032  SDValue FalseVal = N->getOperand(0);
8033  SDValue TrueVal = N->getOperand(1);
8034  SDValue ARMcc = N->getOperand(2);
8035  ARMCC::CondCodes CC =
8036    (ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue();
8037
8038  // Simplify
8039  //   mov     r1, r0
8040  //   cmp     r1, x
8041  //   mov     r0, y
8042  //   moveq   r0, x
8043  // to
8044  //   cmp     r0, x
8045  //   movne   r0, y
8046  //
8047  //   mov     r1, r0
8048  //   cmp     r1, x
8049  //   mov     r0, x
8050  //   movne   r0, y
8051  // to
8052  //   cmp     r0, x
8053  //   movne   r0, y
8054  /// FIXME: Turn this into a target neutral optimization?
8055  SDValue Res;
8056  if (CC == ARMCC::NE && FalseVal == RHS && FalseVal != LHS) {
8057    Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, TrueVal, ARMcc,
8058                      N->getOperand(3), Cmp);
8059  } else if (CC == ARMCC::EQ && TrueVal == RHS) {
8060    SDValue ARMcc;
8061    SDValue NewCmp = getARMCmp(LHS, RHS, ISD::SETNE, ARMcc, DAG, dl);
8062    Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, FalseVal, ARMcc,
8063                      N->getOperand(3), NewCmp);
8064  }
8065
8066  if (Res.getNode()) {
8067    APInt KnownZero, KnownOne;
8068    APInt Mask = APInt::getAllOnesValue(VT.getScalarType().getSizeInBits());
8069    DAG.ComputeMaskedBits(SDValue(N,0), Mask, KnownZero, KnownOne);
8070    // Capture demanded bits information that would be otherwise lost.
8071    if (KnownZero == 0xfffffffe)
8072      Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
8073                        DAG.getValueType(MVT::i1));
8074    else if (KnownZero == 0xffffff00)
8075      Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
8076                        DAG.getValueType(MVT::i8));
8077    else if (KnownZero == 0xffff0000)
8078      Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
8079                        DAG.getValueType(MVT::i16));
8080  }
8081
8082  return Res;
8083}
8084
8085SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
8086                                             DAGCombinerInfo &DCI) const {
8087  switch (N->getOpcode()) {
8088  default: break;
8089  case ISD::ADD:        return PerformADDCombine(N, DCI, Subtarget);
8090  case ISD::SUB:        return PerformSUBCombine(N, DCI);
8091  case ISD::MUL:        return PerformMULCombine(N, DCI, Subtarget);
8092  case ISD::OR:         return PerformORCombine(N, DCI, Subtarget);
8093  case ISD::AND:        return PerformANDCombine(N, DCI);
8094  case ARMISD::BFI:     return PerformBFICombine(N, DCI);
8095  case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI);
8096  case ARMISD::VMOVDRR: return PerformVMOVDRRCombine(N, DCI.DAG);
8097  case ISD::STORE:      return PerformSTORECombine(N, DCI);
8098  case ISD::BUILD_VECTOR: return PerformBUILD_VECTORCombine(N, DCI);
8099  case ISD::INSERT_VECTOR_ELT: return PerformInsertEltCombine(N, DCI);
8100  case ISD::VECTOR_SHUFFLE: return PerformVECTOR_SHUFFLECombine(N, DCI.DAG);
8101  case ARMISD::VDUPLANE: return PerformVDUPLANECombine(N, DCI);
8102  case ISD::FP_TO_SINT:
8103  case ISD::FP_TO_UINT: return PerformVCVTCombine(N, DCI, Subtarget);
8104  case ISD::FDIV:       return PerformVDIVCombine(N, DCI, Subtarget);
8105  case ISD::INTRINSIC_WO_CHAIN: return PerformIntrinsicCombine(N, DCI.DAG);
8106  case ISD::SHL:
8107  case ISD::SRA:
8108  case ISD::SRL:        return PerformShiftCombine(N, DCI.DAG, Subtarget);
8109  case ISD::SIGN_EXTEND:
8110  case ISD::ZERO_EXTEND:
8111  case ISD::ANY_EXTEND: return PerformExtendCombine(N, DCI.DAG, Subtarget);
8112  case ISD::SELECT_CC:  return PerformSELECT_CCCombine(N, DCI.DAG, Subtarget);
8113  case ARMISD::CMOV: return PerformCMOVCombine(N, DCI.DAG);
8114  case ARMISD::VLD2DUP:
8115  case ARMISD::VLD3DUP:
8116  case ARMISD::VLD4DUP:
8117    return CombineBaseUpdate(N, DCI);
8118  case ISD::INTRINSIC_VOID:
8119  case ISD::INTRINSIC_W_CHAIN:
8120    switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
8121    case Intrinsic::arm_neon_vld1:
8122    case Intrinsic::arm_neon_vld2:
8123    case Intrinsic::arm_neon_vld3:
8124    case Intrinsic::arm_neon_vld4:
8125    case Intrinsic::arm_neon_vld2lane:
8126    case Intrinsic::arm_neon_vld3lane:
8127    case Intrinsic::arm_neon_vld4lane:
8128    case Intrinsic::arm_neon_vst1:
8129    case Intrinsic::arm_neon_vst2:
8130    case Intrinsic::arm_neon_vst3:
8131    case Intrinsic::arm_neon_vst4:
8132    case Intrinsic::arm_neon_vst2lane:
8133    case Intrinsic::arm_neon_vst3lane:
8134    case Intrinsic::arm_neon_vst4lane:
8135      return CombineBaseUpdate(N, DCI);
8136    default: break;
8137    }
8138    break;
8139  }
8140  return SDValue();
8141}
8142
8143bool ARMTargetLowering::isDesirableToTransformToIntegerOp(unsigned Opc,
8144                                                          EVT VT) const {
8145  return (VT == MVT::f32) && (Opc == ISD::LOAD || Opc == ISD::STORE);
8146}
8147
8148bool ARMTargetLowering::allowsUnalignedMemoryAccesses(EVT VT) const {
8149  if (!Subtarget->allowsUnalignedMem())
8150    return false;
8151
8152  switch (VT.getSimpleVT().SimpleTy) {
8153  default:
8154    return false;
8155  case MVT::i8:
8156  case MVT::i16:
8157  case MVT::i32:
8158    return true;
8159  // FIXME: VLD1 etc with standard alignment is legal.
8160  }
8161}
8162
8163static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign,
8164                       unsigned AlignCheck) {
8165  return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) &&
8166          (DstAlign == 0 || DstAlign % AlignCheck == 0));
8167}
8168
8169EVT ARMTargetLowering::getOptimalMemOpType(uint64_t Size,
8170                                           unsigned DstAlign, unsigned SrcAlign,
8171                                           bool IsZeroVal,
8172                                           bool MemcpyStrSrc,
8173                                           MachineFunction &MF) const {
8174  const Function *F = MF.getFunction();
8175
8176  // See if we can use NEON instructions for this...
8177  if (IsZeroVal &&
8178      !F->hasFnAttr(Attribute::NoImplicitFloat) &&
8179      Subtarget->hasNEON()) {
8180    if (memOpAlign(SrcAlign, DstAlign, 16) && Size >= 16) {
8181      return MVT::v4i32;
8182    } else if (memOpAlign(SrcAlign, DstAlign, 8) && Size >= 8) {
8183      return MVT::v2i32;
8184    }
8185  }
8186
8187  // Lowering to i32/i16 if the size permits.
8188  if (Size >= 4) {
8189    return MVT::i32;
8190  } else if (Size >= 2) {
8191    return MVT::i16;
8192  }
8193
8194  // Let the target-independent logic figure it out.
8195  return MVT::Other;
8196}
8197
8198static bool isLegalT1AddressImmediate(int64_t V, EVT VT) {
8199  if (V < 0)
8200    return false;
8201
8202  unsigned Scale = 1;
8203  switch (VT.getSimpleVT().SimpleTy) {
8204  default: return false;
8205  case MVT::i1:
8206  case MVT::i8:
8207    // Scale == 1;
8208    break;
8209  case MVT::i16:
8210    // Scale == 2;
8211    Scale = 2;
8212    break;
8213  case MVT::i32:
8214    // Scale == 4;
8215    Scale = 4;
8216    break;
8217  }
8218
8219  if ((V & (Scale - 1)) != 0)
8220    return false;
8221  V /= Scale;
8222  return V == (V & ((1LL << 5) - 1));
8223}
8224
8225static bool isLegalT2AddressImmediate(int64_t V, EVT VT,
8226                                      const ARMSubtarget *Subtarget) {
8227  bool isNeg = false;
8228  if (V < 0) {
8229    isNeg = true;
8230    V = - V;
8231  }
8232
8233  switch (VT.getSimpleVT().SimpleTy) {
8234  default: return false;
8235  case MVT::i1:
8236  case MVT::i8:
8237  case MVT::i16:
8238  case MVT::i32:
8239    // + imm12 or - imm8
8240    if (isNeg)
8241      return V == (V & ((1LL << 8) - 1));
8242    return V == (V & ((1LL << 12) - 1));
8243  case MVT::f32:
8244  case MVT::f64:
8245    // Same as ARM mode. FIXME: NEON?
8246    if (!Subtarget->hasVFP2())
8247      return false;
8248    if ((V & 3) != 0)
8249      return false;
8250    V >>= 2;
8251    return V == (V & ((1LL << 8) - 1));
8252  }
8253}
8254
8255/// isLegalAddressImmediate - Return true if the integer value can be used
8256/// as the offset of the target addressing mode for load / store of the
8257/// given type.
8258static bool isLegalAddressImmediate(int64_t V, EVT VT,
8259                                    const ARMSubtarget *Subtarget) {
8260  if (V == 0)
8261    return true;
8262
8263  if (!VT.isSimple())
8264    return false;
8265
8266  if (Subtarget->isThumb1Only())
8267    return isLegalT1AddressImmediate(V, VT);
8268  else if (Subtarget->isThumb2())
8269    return isLegalT2AddressImmediate(V, VT, Subtarget);
8270
8271  // ARM mode.
8272  if (V < 0)
8273    V = - V;
8274  switch (VT.getSimpleVT().SimpleTy) {
8275  default: return false;
8276  case MVT::i1:
8277  case MVT::i8:
8278  case MVT::i32:
8279    // +- imm12
8280    return V == (V & ((1LL << 12) - 1));
8281  case MVT::i16:
8282    // +- imm8
8283    return V == (V & ((1LL << 8) - 1));
8284  case MVT::f32:
8285  case MVT::f64:
8286    if (!Subtarget->hasVFP2()) // FIXME: NEON?
8287      return false;
8288    if ((V & 3) != 0)
8289      return false;
8290    V >>= 2;
8291    return V == (V & ((1LL << 8) - 1));
8292  }
8293}
8294
8295bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM,
8296                                                      EVT VT) const {
8297  int Scale = AM.Scale;
8298  if (Scale < 0)
8299    return false;
8300
8301  switch (VT.getSimpleVT().SimpleTy) {
8302  default: return false;
8303  case MVT::i1:
8304  case MVT::i8:
8305  case MVT::i16:
8306  case MVT::i32:
8307    if (Scale == 1)
8308      return true;
8309    // r + r << imm
8310    Scale = Scale & ~1;
8311    return Scale == 2 || Scale == 4 || Scale == 8;
8312  case MVT::i64:
8313    // r + r
8314    if (((unsigned)AM.HasBaseReg + Scale) <= 2)
8315      return true;
8316    return false;
8317  case MVT::isVoid:
8318    // Note, we allow "void" uses (basically, uses that aren't loads or
8319    // stores), because arm allows folding a scale into many arithmetic
8320    // operations.  This should be made more precise and revisited later.
8321
8322    // Allow r << imm, but the imm has to be a multiple of two.
8323    if (Scale & 1) return false;
8324    return isPowerOf2_32(Scale);
8325  }
8326}
8327
8328/// isLegalAddressingMode - Return true if the addressing mode represented
8329/// by AM is legal for this target, for a load/store of the specified type.
8330bool ARMTargetLowering::isLegalAddressingMode(const AddrMode &AM,
8331                                              Type *Ty) const {
8332  EVT VT = getValueType(Ty, true);
8333  if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget))
8334    return false;
8335
8336  // Can never fold addr of global into load/store.
8337  if (AM.BaseGV)
8338    return false;
8339
8340  switch (AM.Scale) {
8341  case 0:  // no scale reg, must be "r+i" or "r", or "i".
8342    break;
8343  case 1:
8344    if (Subtarget->isThumb1Only())
8345      return false;
8346    // FALL THROUGH.
8347  default:
8348    // ARM doesn't support any R+R*scale+imm addr modes.
8349    if (AM.BaseOffs)
8350      return false;
8351
8352    if (!VT.isSimple())
8353      return false;
8354
8355    if (Subtarget->isThumb2())
8356      return isLegalT2ScaledAddressingMode(AM, VT);
8357
8358    int Scale = AM.Scale;
8359    switch (VT.getSimpleVT().SimpleTy) {
8360    default: return false;
8361    case MVT::i1:
8362    case MVT::i8:
8363    case MVT::i32:
8364      if (Scale < 0) Scale = -Scale;
8365      if (Scale == 1)
8366        return true;
8367      // r + r << imm
8368      return isPowerOf2_32(Scale & ~1);
8369    case MVT::i16:
8370    case MVT::i64:
8371      // r + r
8372      if (((unsigned)AM.HasBaseReg + Scale) <= 2)
8373        return true;
8374      return false;
8375
8376    case MVT::isVoid:
8377      // Note, we allow "void" uses (basically, uses that aren't loads or
8378      // stores), because arm allows folding a scale into many arithmetic
8379      // operations.  This should be made more precise and revisited later.
8380
8381      // Allow r << imm, but the imm has to be a multiple of two.
8382      if (Scale & 1) return false;
8383      return isPowerOf2_32(Scale);
8384    }
8385    break;
8386  }
8387  return true;
8388}
8389
8390/// isLegalICmpImmediate - Return true if the specified immediate is legal
8391/// icmp immediate, that is the target has icmp instructions which can compare
8392/// a register against the immediate without having to materialize the
8393/// immediate into a register.
8394bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
8395  if (!Subtarget->isThumb())
8396    return ARM_AM::getSOImmVal(Imm) != -1;
8397  if (Subtarget->isThumb2())
8398    return ARM_AM::getT2SOImmVal(Imm) != -1;
8399  return Imm >= 0 && Imm <= 255;
8400}
8401
8402/// isLegalAddImmediate - Return true if the specified immediate is legal
8403/// add immediate, that is the target has add instructions which can add
8404/// a register with the immediate without having to materialize the
8405/// immediate into a register.
8406bool ARMTargetLowering::isLegalAddImmediate(int64_t Imm) const {
8407  return ARM_AM::getSOImmVal(Imm) != -1;
8408}
8409
8410static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT,
8411                                      bool isSEXTLoad, SDValue &Base,
8412                                      SDValue &Offset, bool &isInc,
8413                                      SelectionDAG &DAG) {
8414  if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
8415    return false;
8416
8417  if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
8418    // AddressingMode 3
8419    Base = Ptr->getOperand(0);
8420    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
8421      int RHSC = (int)RHS->getZExtValue();
8422      if (RHSC < 0 && RHSC > -256) {
8423        assert(Ptr->getOpcode() == ISD::ADD);
8424        isInc = false;
8425        Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
8426        return true;
8427      }
8428    }
8429    isInc = (Ptr->getOpcode() == ISD::ADD);
8430    Offset = Ptr->getOperand(1);
8431    return true;
8432  } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
8433    // AddressingMode 2
8434    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
8435      int RHSC = (int)RHS->getZExtValue();
8436      if (RHSC < 0 && RHSC > -0x1000) {
8437        assert(Ptr->getOpcode() == ISD::ADD);
8438        isInc = false;
8439        Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
8440        Base = Ptr->getOperand(0);
8441        return true;
8442      }
8443    }
8444
8445    if (Ptr->getOpcode() == ISD::ADD) {
8446      isInc = true;
8447      ARM_AM::ShiftOpc ShOpcVal=
8448        ARM_AM::getShiftOpcForNode(Ptr->getOperand(0).getOpcode());
8449      if (ShOpcVal != ARM_AM::no_shift) {
8450        Base = Ptr->getOperand(1);
8451        Offset = Ptr->getOperand(0);
8452      } else {
8453        Base = Ptr->getOperand(0);
8454        Offset = Ptr->getOperand(1);
8455      }
8456      return true;
8457    }
8458
8459    isInc = (Ptr->getOpcode() == ISD::ADD);
8460    Base = Ptr->getOperand(0);
8461    Offset = Ptr->getOperand(1);
8462    return true;
8463  }
8464
8465  // FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
8466  return false;
8467}
8468
8469static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT,
8470                                     bool isSEXTLoad, SDValue &Base,
8471                                     SDValue &Offset, bool &isInc,
8472                                     SelectionDAG &DAG) {
8473  if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
8474    return false;
8475
8476  Base = Ptr->getOperand(0);
8477  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
8478    int RHSC = (int)RHS->getZExtValue();
8479    if (RHSC < 0 && RHSC > -0x100) { // 8 bits.
8480      assert(Ptr->getOpcode() == ISD::ADD);
8481      isInc = false;
8482      Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
8483      return true;
8484    } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero.
8485      isInc = Ptr->getOpcode() == ISD::ADD;
8486      Offset = DAG.getConstant(RHSC, RHS->getValueType(0));
8487      return true;
8488    }
8489  }
8490
8491  return false;
8492}
8493
8494/// getPreIndexedAddressParts - returns true by value, base pointer and
8495/// offset pointer and addressing mode by reference if the node's address
8496/// can be legally represented as pre-indexed load / store address.
8497bool
8498ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
8499                                             SDValue &Offset,
8500                                             ISD::MemIndexedMode &AM,
8501                                             SelectionDAG &DAG) const {
8502  if (Subtarget->isThumb1Only())
8503    return false;
8504
8505  EVT VT;
8506  SDValue Ptr;
8507  bool isSEXTLoad = false;
8508  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
8509    Ptr = LD->getBasePtr();
8510    VT  = LD->getMemoryVT();
8511    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
8512  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
8513    Ptr = ST->getBasePtr();
8514    VT  = ST->getMemoryVT();
8515  } else
8516    return false;
8517
8518  bool isInc;
8519  bool isLegal = false;
8520  if (Subtarget->isThumb2())
8521    isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
8522                                       Offset, isInc, DAG);
8523  else
8524    isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
8525                                        Offset, isInc, DAG);
8526  if (!isLegal)
8527    return false;
8528
8529  AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
8530  return true;
8531}
8532
8533/// getPostIndexedAddressParts - returns true by value, base pointer and
8534/// offset pointer and addressing mode by reference if this node can be
8535/// combined with a load / store to form a post-indexed load / store.
8536bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
8537                                                   SDValue &Base,
8538                                                   SDValue &Offset,
8539                                                   ISD::MemIndexedMode &AM,
8540                                                   SelectionDAG &DAG) const {
8541  if (Subtarget->isThumb1Only())
8542    return false;
8543
8544  EVT VT;
8545  SDValue Ptr;
8546  bool isSEXTLoad = false;
8547  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
8548    VT  = LD->getMemoryVT();
8549    Ptr = LD->getBasePtr();
8550    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
8551  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
8552    VT  = ST->getMemoryVT();
8553    Ptr = ST->getBasePtr();
8554  } else
8555    return false;
8556
8557  bool isInc;
8558  bool isLegal = false;
8559  if (Subtarget->isThumb2())
8560    isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
8561                                       isInc, DAG);
8562  else
8563    isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
8564                                        isInc, DAG);
8565  if (!isLegal)
8566    return false;
8567
8568  if (Ptr != Base) {
8569    // Swap base ptr and offset to catch more post-index load / store when
8570    // it's legal. In Thumb2 mode, offset must be an immediate.
8571    if (Ptr == Offset && Op->getOpcode() == ISD::ADD &&
8572        !Subtarget->isThumb2())
8573      std::swap(Base, Offset);
8574
8575    // Post-indexed load / store update the base pointer.
8576    if (Ptr != Base)
8577      return false;
8578  }
8579
8580  AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
8581  return true;
8582}
8583
8584void ARMTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
8585                                                       const APInt &Mask,
8586                                                       APInt &KnownZero,
8587                                                       APInt &KnownOne,
8588                                                       const SelectionDAG &DAG,
8589                                                       unsigned Depth) const {
8590  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
8591  switch (Op.getOpcode()) {
8592  default: break;
8593  case ARMISD::CMOV: {
8594    // Bits are known zero/one if known on the LHS and RHS.
8595    DAG.ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
8596    if (KnownZero == 0 && KnownOne == 0) return;
8597
8598    APInt KnownZeroRHS, KnownOneRHS;
8599    DAG.ComputeMaskedBits(Op.getOperand(1), Mask,
8600                          KnownZeroRHS, KnownOneRHS, Depth+1);
8601    KnownZero &= KnownZeroRHS;
8602    KnownOne  &= KnownOneRHS;
8603    return;
8604  }
8605  }
8606}
8607
8608//===----------------------------------------------------------------------===//
8609//                           ARM Inline Assembly Support
8610//===----------------------------------------------------------------------===//
8611
8612bool ARMTargetLowering::ExpandInlineAsm(CallInst *CI) const {
8613  // Looking for "rev" which is V6+.
8614  if (!Subtarget->hasV6Ops())
8615    return false;
8616
8617  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
8618  std::string AsmStr = IA->getAsmString();
8619  SmallVector<StringRef, 4> AsmPieces;
8620  SplitString(AsmStr, AsmPieces, ";\n");
8621
8622  switch (AsmPieces.size()) {
8623  default: return false;
8624  case 1:
8625    AsmStr = AsmPieces[0];
8626    AsmPieces.clear();
8627    SplitString(AsmStr, AsmPieces, " \t,");
8628
8629    // rev $0, $1
8630    if (AsmPieces.size() == 3 &&
8631        AsmPieces[0] == "rev" && AsmPieces[1] == "$0" && AsmPieces[2] == "$1" &&
8632        IA->getConstraintString().compare(0, 4, "=l,l") == 0) {
8633      IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
8634      if (Ty && Ty->getBitWidth() == 32)
8635        return IntrinsicLowering::LowerToByteSwap(CI);
8636    }
8637    break;
8638  }
8639
8640  return false;
8641}
8642
8643/// getConstraintType - Given a constraint letter, return the type of
8644/// constraint it is for this target.
8645ARMTargetLowering::ConstraintType
8646ARMTargetLowering::getConstraintType(const std::string &Constraint) const {
8647  if (Constraint.size() == 1) {
8648    switch (Constraint[0]) {
8649    default:  break;
8650    case 'l': return C_RegisterClass;
8651    case 'w': return C_RegisterClass;
8652    case 'h': return C_RegisterClass;
8653    case 'x': return C_RegisterClass;
8654    case 't': return C_RegisterClass;
8655    case 'j': return C_Other; // Constant for movw.
8656      // An address with a single base register. Due to the way we
8657      // currently handle addresses it is the same as an 'r' memory constraint.
8658    case 'Q': return C_Memory;
8659    }
8660  } else if (Constraint.size() == 2) {
8661    switch (Constraint[0]) {
8662    default: break;
8663    // All 'U+' constraints are addresses.
8664    case 'U': return C_Memory;
8665    }
8666  }
8667  return TargetLowering::getConstraintType(Constraint);
8668}
8669
8670/// Examine constraint type and operand type and determine a weight value.
8671/// This object must already have been set up with the operand type
8672/// and the current alternative constraint selected.
8673TargetLowering::ConstraintWeight
8674ARMTargetLowering::getSingleConstraintMatchWeight(
8675    AsmOperandInfo &info, const char *constraint) const {
8676  ConstraintWeight weight = CW_Invalid;
8677  Value *CallOperandVal = info.CallOperandVal;
8678    // If we don't have a value, we can't do a match,
8679    // but allow it at the lowest weight.
8680  if (CallOperandVal == NULL)
8681    return CW_Default;
8682  Type *type = CallOperandVal->getType();
8683  // Look at the constraint type.
8684  switch (*constraint) {
8685  default:
8686    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
8687    break;
8688  case 'l':
8689    if (type->isIntegerTy()) {
8690      if (Subtarget->isThumb())
8691        weight = CW_SpecificReg;
8692      else
8693        weight = CW_Register;
8694    }
8695    break;
8696  case 'w':
8697    if (type->isFloatingPointTy())
8698      weight = CW_Register;
8699    break;
8700  }
8701  return weight;
8702}
8703
8704typedef std::pair<unsigned, const TargetRegisterClass*> RCPair;
8705RCPair
8706ARMTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
8707                                                EVT VT) const {
8708  if (Constraint.size() == 1) {
8709    // GCC ARM Constraint Letters
8710    switch (Constraint[0]) {
8711    case 'l': // Low regs or general regs.
8712      if (Subtarget->isThumb())
8713        return RCPair(0U, ARM::tGPRRegisterClass);
8714      else
8715        return RCPair(0U, ARM::GPRRegisterClass);
8716    case 'h': // High regs or no regs.
8717      if (Subtarget->isThumb())
8718        return RCPair(0U, ARM::hGPRRegisterClass);
8719      break;
8720    case 'r':
8721      return RCPair(0U, ARM::GPRRegisterClass);
8722    case 'w':
8723      if (VT == MVT::f32)
8724        return RCPair(0U, ARM::SPRRegisterClass);
8725      if (VT.getSizeInBits() == 64)
8726        return RCPair(0U, ARM::DPRRegisterClass);
8727      if (VT.getSizeInBits() == 128)
8728        return RCPair(0U, ARM::QPRRegisterClass);
8729      break;
8730    case 'x':
8731      if (VT == MVT::f32)
8732        return RCPair(0U, ARM::SPR_8RegisterClass);
8733      if (VT.getSizeInBits() == 64)
8734        return RCPair(0U, ARM::DPR_8RegisterClass);
8735      if (VT.getSizeInBits() == 128)
8736        return RCPair(0U, ARM::QPR_8RegisterClass);
8737      break;
8738    case 't':
8739      if (VT == MVT::f32)
8740        return RCPair(0U, ARM::SPRRegisterClass);
8741      break;
8742    }
8743  }
8744  if (StringRef("{cc}").equals_lower(Constraint))
8745    return std::make_pair(unsigned(ARM::CPSR), ARM::CCRRegisterClass);
8746
8747  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
8748}
8749
8750/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
8751/// vector.  If it is invalid, don't add anything to Ops.
8752void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
8753                                                     std::string &Constraint,
8754                                                     std::vector<SDValue>&Ops,
8755                                                     SelectionDAG &DAG) const {
8756  SDValue Result(0, 0);
8757
8758  // Currently only support length 1 constraints.
8759  if (Constraint.length() != 1) return;
8760
8761  char ConstraintLetter = Constraint[0];
8762  switch (ConstraintLetter) {
8763  default: break;
8764  case 'j':
8765  case 'I': case 'J': case 'K': case 'L':
8766  case 'M': case 'N': case 'O':
8767    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
8768    if (!C)
8769      return;
8770
8771    int64_t CVal64 = C->getSExtValue();
8772    int CVal = (int) CVal64;
8773    // None of these constraints allow values larger than 32 bits.  Check
8774    // that the value fits in an int.
8775    if (CVal != CVal64)
8776      return;
8777
8778    switch (ConstraintLetter) {
8779      case 'j':
8780        // Constant suitable for movw, must be between 0 and
8781        // 65535.
8782        if (Subtarget->hasV6T2Ops())
8783          if (CVal >= 0 && CVal <= 65535)
8784            break;
8785        return;
8786      case 'I':
8787        if (Subtarget->isThumb1Only()) {
8788          // This must be a constant between 0 and 255, for ADD
8789          // immediates.
8790          if (CVal >= 0 && CVal <= 255)
8791            break;
8792        } else if (Subtarget->isThumb2()) {
8793          // A constant that can be used as an immediate value in a
8794          // data-processing instruction.
8795          if (ARM_AM::getT2SOImmVal(CVal) != -1)
8796            break;
8797        } else {
8798          // A constant that can be used as an immediate value in a
8799          // data-processing instruction.
8800          if (ARM_AM::getSOImmVal(CVal) != -1)
8801            break;
8802        }
8803        return;
8804
8805      case 'J':
8806        if (Subtarget->isThumb()) {  // FIXME thumb2
8807          // This must be a constant between -255 and -1, for negated ADD
8808          // immediates. This can be used in GCC with an "n" modifier that
8809          // prints the negated value, for use with SUB instructions. It is
8810          // not useful otherwise but is implemented for compatibility.
8811          if (CVal >= -255 && CVal <= -1)
8812            break;
8813        } else {
8814          // This must be a constant between -4095 and 4095. It is not clear
8815          // what this constraint is intended for. Implemented for
8816          // compatibility with GCC.
8817          if (CVal >= -4095 && CVal <= 4095)
8818            break;
8819        }
8820        return;
8821
8822      case 'K':
8823        if (Subtarget->isThumb1Only()) {
8824          // A 32-bit value where only one byte has a nonzero value. Exclude
8825          // zero to match GCC. This constraint is used by GCC internally for
8826          // constants that can be loaded with a move/shift combination.
8827          // It is not useful otherwise but is implemented for compatibility.
8828          if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal))
8829            break;
8830        } else if (Subtarget->isThumb2()) {
8831          // A constant whose bitwise inverse can be used as an immediate
8832          // value in a data-processing instruction. This can be used in GCC
8833          // with a "B" modifier that prints the inverted value, for use with
8834          // BIC and MVN instructions. It is not useful otherwise but is
8835          // implemented for compatibility.
8836          if (ARM_AM::getT2SOImmVal(~CVal) != -1)
8837            break;
8838        } else {
8839          // A constant whose bitwise inverse can be used as an immediate
8840          // value in a data-processing instruction. This can be used in GCC
8841          // with a "B" modifier that prints the inverted value, for use with
8842          // BIC and MVN instructions. It is not useful otherwise but is
8843          // implemented for compatibility.
8844          if (ARM_AM::getSOImmVal(~CVal) != -1)
8845            break;
8846        }
8847        return;
8848
8849      case 'L':
8850        if (Subtarget->isThumb1Only()) {
8851          // This must be a constant between -7 and 7,
8852          // for 3-operand ADD/SUB immediate instructions.
8853          if (CVal >= -7 && CVal < 7)
8854            break;
8855        } else if (Subtarget->isThumb2()) {
8856          // A constant whose negation can be used as an immediate value in a
8857          // data-processing instruction. This can be used in GCC with an "n"
8858          // modifier that prints the negated value, for use with SUB
8859          // instructions. It is not useful otherwise but is implemented for
8860          // compatibility.
8861          if (ARM_AM::getT2SOImmVal(-CVal) != -1)
8862            break;
8863        } else {
8864          // A constant whose negation can be used as an immediate value in a
8865          // data-processing instruction. This can be used in GCC with an "n"
8866          // modifier that prints the negated value, for use with SUB
8867          // instructions. It is not useful otherwise but is implemented for
8868          // compatibility.
8869          if (ARM_AM::getSOImmVal(-CVal) != -1)
8870            break;
8871        }
8872        return;
8873
8874      case 'M':
8875        if (Subtarget->isThumb()) { // FIXME thumb2
8876          // This must be a multiple of 4 between 0 and 1020, for
8877          // ADD sp + immediate.
8878          if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
8879            break;
8880        } else {
8881          // A power of two or a constant between 0 and 32.  This is used in
8882          // GCC for the shift amount on shifted register operands, but it is
8883          // useful in general for any shift amounts.
8884          if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0))
8885            break;
8886        }
8887        return;
8888
8889      case 'N':
8890        if (Subtarget->isThumb()) {  // FIXME thumb2
8891          // This must be a constant between 0 and 31, for shift amounts.
8892          if (CVal >= 0 && CVal <= 31)
8893            break;
8894        }
8895        return;
8896
8897      case 'O':
8898        if (Subtarget->isThumb()) {  // FIXME thumb2
8899          // This must be a multiple of 4 between -508 and 508, for
8900          // ADD/SUB sp = sp + immediate.
8901          if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
8902            break;
8903        }
8904        return;
8905    }
8906    Result = DAG.getTargetConstant(CVal, Op.getValueType());
8907    break;
8908  }
8909
8910  if (Result.getNode()) {
8911    Ops.push_back(Result);
8912    return;
8913  }
8914  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
8915}
8916
8917bool
8918ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
8919  // The ARM target isn't yet aware of offsets.
8920  return false;
8921}
8922
8923bool ARM::isBitFieldInvertedMask(unsigned v) {
8924  if (v == 0xffffffff)
8925    return 0;
8926  // there can be 1's on either or both "outsides", all the "inside"
8927  // bits must be 0's
8928  unsigned int lsb = 0, msb = 31;
8929  while (v & (1 << msb)) --msb;
8930  while (v & (1 << lsb)) ++lsb;
8931  for (unsigned int i = lsb; i <= msb; ++i) {
8932    if (v & (1 << i))
8933      return 0;
8934  }
8935  return 1;
8936}
8937
8938/// isFPImmLegal - Returns true if the target can instruction select the
8939/// specified FP immediate natively. If false, the legalizer will
8940/// materialize the FP immediate as a load from a constant pool.
8941bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
8942  if (!Subtarget->hasVFP3())
8943    return false;
8944  if (VT == MVT::f32)
8945    return ARM_AM::getFP32Imm(Imm) != -1;
8946  if (VT == MVT::f64)
8947    return ARM_AM::getFP64Imm(Imm) != -1;
8948  return false;
8949}
8950
8951/// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
8952/// MemIntrinsicNodes.  The associated MachineMemOperands record the alignment
8953/// specified in the intrinsic calls.
8954bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
8955                                           const CallInst &I,
8956                                           unsigned Intrinsic) const {
8957  switch (Intrinsic) {
8958  case Intrinsic::arm_neon_vld1:
8959  case Intrinsic::arm_neon_vld2:
8960  case Intrinsic::arm_neon_vld3:
8961  case Intrinsic::arm_neon_vld4:
8962  case Intrinsic::arm_neon_vld2lane:
8963  case Intrinsic::arm_neon_vld3lane:
8964  case Intrinsic::arm_neon_vld4lane: {
8965    Info.opc = ISD::INTRINSIC_W_CHAIN;
8966    // Conservatively set memVT to the entire set of vectors loaded.
8967    uint64_t NumElts = getTargetData()->getTypeAllocSize(I.getType()) / 8;
8968    Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
8969    Info.ptrVal = I.getArgOperand(0);
8970    Info.offset = 0;
8971    Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
8972    Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
8973    Info.vol = false; // volatile loads with NEON intrinsics not supported
8974    Info.readMem = true;
8975    Info.writeMem = false;
8976    return true;
8977  }
8978  case Intrinsic::arm_neon_vst1:
8979  case Intrinsic::arm_neon_vst2:
8980  case Intrinsic::arm_neon_vst3:
8981  case Intrinsic::arm_neon_vst4:
8982  case Intrinsic::arm_neon_vst2lane:
8983  case Intrinsic::arm_neon_vst3lane:
8984  case Intrinsic::arm_neon_vst4lane: {
8985    Info.opc = ISD::INTRINSIC_VOID;
8986    // Conservatively set memVT to the entire set of vectors stored.
8987    unsigned NumElts = 0;
8988    for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
8989      Type *ArgTy = I.getArgOperand(ArgI)->getType();
8990      if (!ArgTy->isVectorTy())
8991        break;
8992      NumElts += getTargetData()->getTypeAllocSize(ArgTy) / 8;
8993    }
8994    Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
8995    Info.ptrVal = I.getArgOperand(0);
8996    Info.offset = 0;
8997    Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
8998    Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
8999    Info.vol = false; // volatile stores with NEON intrinsics not supported
9000    Info.readMem = false;
9001    Info.writeMem = true;
9002    return true;
9003  }
9004  case Intrinsic::arm_strexd: {
9005    Info.opc = ISD::INTRINSIC_W_CHAIN;
9006    Info.memVT = MVT::i64;
9007    Info.ptrVal = I.getArgOperand(2);
9008    Info.offset = 0;
9009    Info.align = 8;
9010    Info.vol = true;
9011    Info.readMem = false;
9012    Info.writeMem = true;
9013    return true;
9014  }
9015  case Intrinsic::arm_ldrexd: {
9016    Info.opc = ISD::INTRINSIC_W_CHAIN;
9017    Info.memVT = MVT::i64;
9018    Info.ptrVal = I.getArgOperand(0);
9019    Info.offset = 0;
9020    Info.align = 8;
9021    Info.vol = true;
9022    Info.readMem = true;
9023    Info.writeMem = false;
9024    return true;
9025  }
9026  default:
9027    break;
9028  }
9029
9030  return false;
9031}
9032