ARMISelLowering.cpp revision fc5d305597ea6336d75bd7f3b741e8d57d6a5105
1//===-- ARMISelLowering.cpp - ARM DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that ARM uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "arm-isel"
16#include "ARM.h"
17#include "ARMAddressingModes.h"
18#include "ARMCallingConv.h"
19#include "ARMConstantPoolValue.h"
20#include "ARMISelLowering.h"
21#include "ARMMachineFunctionInfo.h"
22#include "ARMPerfectShuffle.h"
23#include "ARMRegisterInfo.h"
24#include "ARMSubtarget.h"
25#include "ARMTargetMachine.h"
26#include "ARMTargetObjectFile.h"
27#include "llvm/CallingConv.h"
28#include "llvm/Constants.h"
29#include "llvm/Function.h"
30#include "llvm/GlobalValue.h"
31#include "llvm/Instruction.h"
32#include "llvm/Instructions.h"
33#include "llvm/Intrinsics.h"
34#include "llvm/Type.h"
35#include "llvm/CodeGen/CallingConvLower.h"
36#include "llvm/CodeGen/IntrinsicLowering.h"
37#include "llvm/CodeGen/MachineBasicBlock.h"
38#include "llvm/CodeGen/MachineFrameInfo.h"
39#include "llvm/CodeGen/MachineFunction.h"
40#include "llvm/CodeGen/MachineInstrBuilder.h"
41#include "llvm/CodeGen/MachineRegisterInfo.h"
42#include "llvm/CodeGen/PseudoSourceValue.h"
43#include "llvm/CodeGen/SelectionDAG.h"
44#include "llvm/MC/MCSectionMachO.h"
45#include "llvm/Target/TargetOptions.h"
46#include "llvm/ADT/VectorExtras.h"
47#include "llvm/ADT/StringExtras.h"
48#include "llvm/ADT/Statistic.h"
49#include "llvm/Support/CommandLine.h"
50#include "llvm/Support/ErrorHandling.h"
51#include "llvm/Support/MathExtras.h"
52#include "llvm/Support/raw_ostream.h"
53#include <sstream>
54using namespace llvm;
55
56STATISTIC(NumTailCalls, "Number of tail calls");
57STATISTIC(NumMovwMovt, "Number of GAs materialized with movw + movt");
58
59// This option should go away when tail calls fully work.
60static cl::opt<bool>
61EnableARMTailCalls("arm-tail-calls", cl::Hidden,
62  cl::desc("Generate tail calls (TEMPORARY OPTION)."),
63  cl::init(false));
64
65cl::opt<bool>
66EnableARMLongCalls("arm-long-calls", cl::Hidden,
67  cl::desc("Generate calls via indirect call instructions"),
68  cl::init(false));
69
70static cl::opt<bool>
71ARMInterworking("arm-interworking", cl::Hidden,
72  cl::desc("Enable / disable ARM interworking (for debugging only)"),
73  cl::init(true));
74
75// The APCS parameter registers.
76static const unsigned GPRArgRegs[] = {
77  ARM::R0, ARM::R1, ARM::R2, ARM::R3
78};
79
80void ARMTargetLowering::addTypeForNEON(EVT VT, EVT PromotedLdStVT,
81                                       EVT PromotedBitwiseVT) {
82  if (VT != PromotedLdStVT) {
83    setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote);
84    AddPromotedToType (ISD::LOAD, VT.getSimpleVT(),
85                       PromotedLdStVT.getSimpleVT());
86
87    setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote);
88    AddPromotedToType (ISD::STORE, VT.getSimpleVT(),
89                       PromotedLdStVT.getSimpleVT());
90  }
91
92  EVT ElemTy = VT.getVectorElementType();
93  if (ElemTy != MVT::i64 && ElemTy != MVT::f64)
94    setOperationAction(ISD::VSETCC, VT.getSimpleVT(), Custom);
95  setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT.getSimpleVT(), Custom);
96  if (ElemTy != MVT::i32) {
97    setOperationAction(ISD::SINT_TO_FP, VT.getSimpleVT(), Expand);
98    setOperationAction(ISD::UINT_TO_FP, VT.getSimpleVT(), Expand);
99    setOperationAction(ISD::FP_TO_SINT, VT.getSimpleVT(), Expand);
100    setOperationAction(ISD::FP_TO_UINT, VT.getSimpleVT(), Expand);
101  }
102  setOperationAction(ISD::BUILD_VECTOR, VT.getSimpleVT(), Custom);
103  setOperationAction(ISD::VECTOR_SHUFFLE, VT.getSimpleVT(), Custom);
104  setOperationAction(ISD::CONCAT_VECTORS, VT.getSimpleVT(), Legal);
105  setOperationAction(ISD::EXTRACT_SUBVECTOR, VT.getSimpleVT(), Legal);
106  setOperationAction(ISD::SELECT, VT.getSimpleVT(), Expand);
107  setOperationAction(ISD::SELECT_CC, VT.getSimpleVT(), Expand);
108  if (VT.isInteger()) {
109    setOperationAction(ISD::SHL, VT.getSimpleVT(), Custom);
110    setOperationAction(ISD::SRA, VT.getSimpleVT(), Custom);
111    setOperationAction(ISD::SRL, VT.getSimpleVT(), Custom);
112    setLoadExtAction(ISD::SEXTLOAD, VT.getSimpleVT(), Expand);
113    setLoadExtAction(ISD::ZEXTLOAD, VT.getSimpleVT(), Expand);
114    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
115         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
116      setTruncStoreAction(VT.getSimpleVT(),
117                          (MVT::SimpleValueType)InnerVT, Expand);
118  }
119  setLoadExtAction(ISD::EXTLOAD, VT.getSimpleVT(), Expand);
120
121  // Promote all bit-wise operations.
122  if (VT.isInteger() && VT != PromotedBitwiseVT) {
123    setOperationAction(ISD::AND, VT.getSimpleVT(), Promote);
124    AddPromotedToType (ISD::AND, VT.getSimpleVT(),
125                       PromotedBitwiseVT.getSimpleVT());
126    setOperationAction(ISD::OR,  VT.getSimpleVT(), Promote);
127    AddPromotedToType (ISD::OR,  VT.getSimpleVT(),
128                       PromotedBitwiseVT.getSimpleVT());
129    setOperationAction(ISD::XOR, VT.getSimpleVT(), Promote);
130    AddPromotedToType (ISD::XOR, VT.getSimpleVT(),
131                       PromotedBitwiseVT.getSimpleVT());
132  }
133
134  // Neon does not support vector divide/remainder operations.
135  setOperationAction(ISD::SDIV, VT.getSimpleVT(), Expand);
136  setOperationAction(ISD::UDIV, VT.getSimpleVT(), Expand);
137  setOperationAction(ISD::FDIV, VT.getSimpleVT(), Expand);
138  setOperationAction(ISD::SREM, VT.getSimpleVT(), Expand);
139  setOperationAction(ISD::UREM, VT.getSimpleVT(), Expand);
140  setOperationAction(ISD::FREM, VT.getSimpleVT(), Expand);
141}
142
143void ARMTargetLowering::addDRTypeForNEON(EVT VT) {
144  addRegisterClass(VT, ARM::DPRRegisterClass);
145  addTypeForNEON(VT, MVT::f64, MVT::v2i32);
146}
147
148void ARMTargetLowering::addQRTypeForNEON(EVT VT) {
149  addRegisterClass(VT, ARM::QPRRegisterClass);
150  addTypeForNEON(VT, MVT::v2f64, MVT::v4i32);
151}
152
153static TargetLoweringObjectFile *createTLOF(TargetMachine &TM) {
154  if (TM.getSubtarget<ARMSubtarget>().isTargetDarwin())
155    return new TargetLoweringObjectFileMachO();
156
157  return new ARMElfTargetObjectFile();
158}
159
160ARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
161    : TargetLowering(TM, createTLOF(TM)) {
162  Subtarget = &TM.getSubtarget<ARMSubtarget>();
163  RegInfo = TM.getRegisterInfo();
164  Itins = TM.getInstrItineraryData();
165
166  if (Subtarget->isTargetDarwin()) {
167    // Uses VFP for Thumb libfuncs if available.
168    if (Subtarget->isThumb() && Subtarget->hasVFP2()) {
169      // Single-precision floating-point arithmetic.
170      setLibcallName(RTLIB::ADD_F32, "__addsf3vfp");
171      setLibcallName(RTLIB::SUB_F32, "__subsf3vfp");
172      setLibcallName(RTLIB::MUL_F32, "__mulsf3vfp");
173      setLibcallName(RTLIB::DIV_F32, "__divsf3vfp");
174
175      // Double-precision floating-point arithmetic.
176      setLibcallName(RTLIB::ADD_F64, "__adddf3vfp");
177      setLibcallName(RTLIB::SUB_F64, "__subdf3vfp");
178      setLibcallName(RTLIB::MUL_F64, "__muldf3vfp");
179      setLibcallName(RTLIB::DIV_F64, "__divdf3vfp");
180
181      // Single-precision comparisons.
182      setLibcallName(RTLIB::OEQ_F32, "__eqsf2vfp");
183      setLibcallName(RTLIB::UNE_F32, "__nesf2vfp");
184      setLibcallName(RTLIB::OLT_F32, "__ltsf2vfp");
185      setLibcallName(RTLIB::OLE_F32, "__lesf2vfp");
186      setLibcallName(RTLIB::OGE_F32, "__gesf2vfp");
187      setLibcallName(RTLIB::OGT_F32, "__gtsf2vfp");
188      setLibcallName(RTLIB::UO_F32,  "__unordsf2vfp");
189      setLibcallName(RTLIB::O_F32,   "__unordsf2vfp");
190
191      setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
192      setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETNE);
193      setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
194      setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
195      setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
196      setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
197      setCmpLibcallCC(RTLIB::UO_F32,  ISD::SETNE);
198      setCmpLibcallCC(RTLIB::O_F32,   ISD::SETEQ);
199
200      // Double-precision comparisons.
201      setLibcallName(RTLIB::OEQ_F64, "__eqdf2vfp");
202      setLibcallName(RTLIB::UNE_F64, "__nedf2vfp");
203      setLibcallName(RTLIB::OLT_F64, "__ltdf2vfp");
204      setLibcallName(RTLIB::OLE_F64, "__ledf2vfp");
205      setLibcallName(RTLIB::OGE_F64, "__gedf2vfp");
206      setLibcallName(RTLIB::OGT_F64, "__gtdf2vfp");
207      setLibcallName(RTLIB::UO_F64,  "__unorddf2vfp");
208      setLibcallName(RTLIB::O_F64,   "__unorddf2vfp");
209
210      setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
211      setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETNE);
212      setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
213      setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
214      setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
215      setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
216      setCmpLibcallCC(RTLIB::UO_F64,  ISD::SETNE);
217      setCmpLibcallCC(RTLIB::O_F64,   ISD::SETEQ);
218
219      // Floating-point to integer conversions.
220      // i64 conversions are done via library routines even when generating VFP
221      // instructions, so use the same ones.
222      setLibcallName(RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp");
223      setLibcallName(RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp");
224      setLibcallName(RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp");
225      setLibcallName(RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp");
226
227      // Conversions between floating types.
228      setLibcallName(RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp");
229      setLibcallName(RTLIB::FPEXT_F32_F64,   "__extendsfdf2vfp");
230
231      // Integer to floating-point conversions.
232      // i64 conversions are done via library routines even when generating VFP
233      // instructions, so use the same ones.
234      // FIXME: There appears to be some naming inconsistency in ARM libgcc:
235      // e.g., __floatunsidf vs. __floatunssidfvfp.
236      setLibcallName(RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp");
237      setLibcallName(RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp");
238      setLibcallName(RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp");
239      setLibcallName(RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp");
240    }
241  }
242
243  // These libcalls are not available in 32-bit.
244  setLibcallName(RTLIB::SHL_I128, 0);
245  setLibcallName(RTLIB::SRL_I128, 0);
246  setLibcallName(RTLIB::SRA_I128, 0);
247
248  if (Subtarget->isAAPCS_ABI()) {
249    // Double-precision floating-point arithmetic helper functions
250    // RTABI chapter 4.1.2, Table 2
251    setLibcallName(RTLIB::ADD_F64, "__aeabi_dadd");
252    setLibcallName(RTLIB::DIV_F64, "__aeabi_ddiv");
253    setLibcallName(RTLIB::MUL_F64, "__aeabi_dmul");
254    setLibcallName(RTLIB::SUB_F64, "__aeabi_dsub");
255    setLibcallCallingConv(RTLIB::ADD_F64, CallingConv::ARM_AAPCS);
256    setLibcallCallingConv(RTLIB::DIV_F64, CallingConv::ARM_AAPCS);
257    setLibcallCallingConv(RTLIB::MUL_F64, CallingConv::ARM_AAPCS);
258    setLibcallCallingConv(RTLIB::SUB_F64, CallingConv::ARM_AAPCS);
259
260    // Double-precision floating-point comparison helper functions
261    // RTABI chapter 4.1.2, Table 3
262    setLibcallName(RTLIB::OEQ_F64, "__aeabi_dcmpeq");
263    setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
264    setLibcallName(RTLIB::UNE_F64, "__aeabi_dcmpeq");
265    setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETEQ);
266    setLibcallName(RTLIB::OLT_F64, "__aeabi_dcmplt");
267    setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
268    setLibcallName(RTLIB::OLE_F64, "__aeabi_dcmple");
269    setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
270    setLibcallName(RTLIB::OGE_F64, "__aeabi_dcmpge");
271    setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
272    setLibcallName(RTLIB::OGT_F64, "__aeabi_dcmpgt");
273    setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
274    setLibcallName(RTLIB::UO_F64,  "__aeabi_dcmpun");
275    setCmpLibcallCC(RTLIB::UO_F64,  ISD::SETNE);
276    setLibcallName(RTLIB::O_F64,   "__aeabi_dcmpun");
277    setCmpLibcallCC(RTLIB::O_F64,   ISD::SETEQ);
278    setLibcallCallingConv(RTLIB::OEQ_F64, CallingConv::ARM_AAPCS);
279    setLibcallCallingConv(RTLIB::UNE_F64, CallingConv::ARM_AAPCS);
280    setLibcallCallingConv(RTLIB::OLT_F64, CallingConv::ARM_AAPCS);
281    setLibcallCallingConv(RTLIB::OLE_F64, CallingConv::ARM_AAPCS);
282    setLibcallCallingConv(RTLIB::OGE_F64, CallingConv::ARM_AAPCS);
283    setLibcallCallingConv(RTLIB::OGT_F64, CallingConv::ARM_AAPCS);
284    setLibcallCallingConv(RTLIB::UO_F64, CallingConv::ARM_AAPCS);
285    setLibcallCallingConv(RTLIB::O_F64, CallingConv::ARM_AAPCS);
286
287    // Single-precision floating-point arithmetic helper functions
288    // RTABI chapter 4.1.2, Table 4
289    setLibcallName(RTLIB::ADD_F32, "__aeabi_fadd");
290    setLibcallName(RTLIB::DIV_F32, "__aeabi_fdiv");
291    setLibcallName(RTLIB::MUL_F32, "__aeabi_fmul");
292    setLibcallName(RTLIB::SUB_F32, "__aeabi_fsub");
293    setLibcallCallingConv(RTLIB::ADD_F32, CallingConv::ARM_AAPCS);
294    setLibcallCallingConv(RTLIB::DIV_F32, CallingConv::ARM_AAPCS);
295    setLibcallCallingConv(RTLIB::MUL_F32, CallingConv::ARM_AAPCS);
296    setLibcallCallingConv(RTLIB::SUB_F32, CallingConv::ARM_AAPCS);
297
298    // Single-precision floating-point comparison helper functions
299    // RTABI chapter 4.1.2, Table 5
300    setLibcallName(RTLIB::OEQ_F32, "__aeabi_fcmpeq");
301    setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
302    setLibcallName(RTLIB::UNE_F32, "__aeabi_fcmpeq");
303    setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETEQ);
304    setLibcallName(RTLIB::OLT_F32, "__aeabi_fcmplt");
305    setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
306    setLibcallName(RTLIB::OLE_F32, "__aeabi_fcmple");
307    setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
308    setLibcallName(RTLIB::OGE_F32, "__aeabi_fcmpge");
309    setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
310    setLibcallName(RTLIB::OGT_F32, "__aeabi_fcmpgt");
311    setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
312    setLibcallName(RTLIB::UO_F32,  "__aeabi_fcmpun");
313    setCmpLibcallCC(RTLIB::UO_F32,  ISD::SETNE);
314    setLibcallName(RTLIB::O_F32,   "__aeabi_fcmpun");
315    setCmpLibcallCC(RTLIB::O_F32,   ISD::SETEQ);
316    setLibcallCallingConv(RTLIB::OEQ_F32, CallingConv::ARM_AAPCS);
317    setLibcallCallingConv(RTLIB::UNE_F32, CallingConv::ARM_AAPCS);
318    setLibcallCallingConv(RTLIB::OLT_F32, CallingConv::ARM_AAPCS);
319    setLibcallCallingConv(RTLIB::OLE_F32, CallingConv::ARM_AAPCS);
320    setLibcallCallingConv(RTLIB::OGE_F32, CallingConv::ARM_AAPCS);
321    setLibcallCallingConv(RTLIB::OGT_F32, CallingConv::ARM_AAPCS);
322    setLibcallCallingConv(RTLIB::UO_F32, CallingConv::ARM_AAPCS);
323    setLibcallCallingConv(RTLIB::O_F32, CallingConv::ARM_AAPCS);
324
325    // Floating-point to integer conversions.
326    // RTABI chapter 4.1.2, Table 6
327    setLibcallName(RTLIB::FPTOSINT_F64_I32, "__aeabi_d2iz");
328    setLibcallName(RTLIB::FPTOUINT_F64_I32, "__aeabi_d2uiz");
329    setLibcallName(RTLIB::FPTOSINT_F64_I64, "__aeabi_d2lz");
330    setLibcallName(RTLIB::FPTOUINT_F64_I64, "__aeabi_d2ulz");
331    setLibcallName(RTLIB::FPTOSINT_F32_I32, "__aeabi_f2iz");
332    setLibcallName(RTLIB::FPTOUINT_F32_I32, "__aeabi_f2uiz");
333    setLibcallName(RTLIB::FPTOSINT_F32_I64, "__aeabi_f2lz");
334    setLibcallName(RTLIB::FPTOUINT_F32_I64, "__aeabi_f2ulz");
335    setLibcallCallingConv(RTLIB::FPTOSINT_F64_I32, CallingConv::ARM_AAPCS);
336    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I32, CallingConv::ARM_AAPCS);
337    setLibcallCallingConv(RTLIB::FPTOSINT_F64_I64, CallingConv::ARM_AAPCS);
338    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::ARM_AAPCS);
339    setLibcallCallingConv(RTLIB::FPTOSINT_F32_I32, CallingConv::ARM_AAPCS);
340    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I32, CallingConv::ARM_AAPCS);
341    setLibcallCallingConv(RTLIB::FPTOSINT_F32_I64, CallingConv::ARM_AAPCS);
342    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::ARM_AAPCS);
343
344    // Conversions between floating types.
345    // RTABI chapter 4.1.2, Table 7
346    setLibcallName(RTLIB::FPROUND_F64_F32, "__aeabi_d2f");
347    setLibcallName(RTLIB::FPEXT_F32_F64,   "__aeabi_f2d");
348    setLibcallCallingConv(RTLIB::FPROUND_F64_F32, CallingConv::ARM_AAPCS);
349    setLibcallCallingConv(RTLIB::FPEXT_F32_F64, CallingConv::ARM_AAPCS);
350
351    // Integer to floating-point conversions.
352    // RTABI chapter 4.1.2, Table 8
353    setLibcallName(RTLIB::SINTTOFP_I32_F64, "__aeabi_i2d");
354    setLibcallName(RTLIB::UINTTOFP_I32_F64, "__aeabi_ui2d");
355    setLibcallName(RTLIB::SINTTOFP_I64_F64, "__aeabi_l2d");
356    setLibcallName(RTLIB::UINTTOFP_I64_F64, "__aeabi_ul2d");
357    setLibcallName(RTLIB::SINTTOFP_I32_F32, "__aeabi_i2f");
358    setLibcallName(RTLIB::UINTTOFP_I32_F32, "__aeabi_ui2f");
359    setLibcallName(RTLIB::SINTTOFP_I64_F32, "__aeabi_l2f");
360    setLibcallName(RTLIB::UINTTOFP_I64_F32, "__aeabi_ul2f");
361    setLibcallCallingConv(RTLIB::SINTTOFP_I32_F64, CallingConv::ARM_AAPCS);
362    setLibcallCallingConv(RTLIB::UINTTOFP_I32_F64, CallingConv::ARM_AAPCS);
363    setLibcallCallingConv(RTLIB::SINTTOFP_I64_F64, CallingConv::ARM_AAPCS);
364    setLibcallCallingConv(RTLIB::UINTTOFP_I64_F64, CallingConv::ARM_AAPCS);
365    setLibcallCallingConv(RTLIB::SINTTOFP_I32_F32, CallingConv::ARM_AAPCS);
366    setLibcallCallingConv(RTLIB::UINTTOFP_I32_F32, CallingConv::ARM_AAPCS);
367    setLibcallCallingConv(RTLIB::SINTTOFP_I64_F32, CallingConv::ARM_AAPCS);
368    setLibcallCallingConv(RTLIB::UINTTOFP_I64_F32, CallingConv::ARM_AAPCS);
369
370    // Long long helper functions
371    // RTABI chapter 4.2, Table 9
372    setLibcallName(RTLIB::MUL_I64,  "__aeabi_lmul");
373    setLibcallName(RTLIB::SDIV_I64, "__aeabi_ldivmod");
374    setLibcallName(RTLIB::UDIV_I64, "__aeabi_uldivmod");
375    setLibcallName(RTLIB::SHL_I64, "__aeabi_llsl");
376    setLibcallName(RTLIB::SRL_I64, "__aeabi_llsr");
377    setLibcallName(RTLIB::SRA_I64, "__aeabi_lasr");
378    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::ARM_AAPCS);
379    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::ARM_AAPCS);
380    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::ARM_AAPCS);
381    setLibcallCallingConv(RTLIB::SHL_I64, CallingConv::ARM_AAPCS);
382    setLibcallCallingConv(RTLIB::SRL_I64, CallingConv::ARM_AAPCS);
383    setLibcallCallingConv(RTLIB::SRA_I64, CallingConv::ARM_AAPCS);
384
385    // Integer division functions
386    // RTABI chapter 4.3.1
387    setLibcallName(RTLIB::SDIV_I8,  "__aeabi_idiv");
388    setLibcallName(RTLIB::SDIV_I16, "__aeabi_idiv");
389    setLibcallName(RTLIB::SDIV_I32, "__aeabi_idiv");
390    setLibcallName(RTLIB::UDIV_I8,  "__aeabi_uidiv");
391    setLibcallName(RTLIB::UDIV_I16, "__aeabi_uidiv");
392    setLibcallName(RTLIB::UDIV_I32, "__aeabi_uidiv");
393    setLibcallCallingConv(RTLIB::SDIV_I8, CallingConv::ARM_AAPCS);
394    setLibcallCallingConv(RTLIB::SDIV_I16, CallingConv::ARM_AAPCS);
395    setLibcallCallingConv(RTLIB::SDIV_I32, CallingConv::ARM_AAPCS);
396    setLibcallCallingConv(RTLIB::UDIV_I8, CallingConv::ARM_AAPCS);
397    setLibcallCallingConv(RTLIB::UDIV_I16, CallingConv::ARM_AAPCS);
398    setLibcallCallingConv(RTLIB::UDIV_I32, CallingConv::ARM_AAPCS);
399  }
400
401  if (Subtarget->isThumb1Only())
402    addRegisterClass(MVT::i32, ARM::tGPRRegisterClass);
403  else
404    addRegisterClass(MVT::i32, ARM::GPRRegisterClass);
405  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
406    addRegisterClass(MVT::f32, ARM::SPRRegisterClass);
407    if (!Subtarget->isFPOnlySP())
408      addRegisterClass(MVT::f64, ARM::DPRRegisterClass);
409
410    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
411  }
412
413  if (Subtarget->hasNEON()) {
414    addDRTypeForNEON(MVT::v2f32);
415    addDRTypeForNEON(MVT::v8i8);
416    addDRTypeForNEON(MVT::v4i16);
417    addDRTypeForNEON(MVT::v2i32);
418    addDRTypeForNEON(MVT::v1i64);
419
420    addQRTypeForNEON(MVT::v4f32);
421    addQRTypeForNEON(MVT::v2f64);
422    addQRTypeForNEON(MVT::v16i8);
423    addQRTypeForNEON(MVT::v8i16);
424    addQRTypeForNEON(MVT::v4i32);
425    addQRTypeForNEON(MVT::v2i64);
426
427    // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
428    // neither Neon nor VFP support any arithmetic operations on it.
429    setOperationAction(ISD::FADD, MVT::v2f64, Expand);
430    setOperationAction(ISD::FSUB, MVT::v2f64, Expand);
431    setOperationAction(ISD::FMUL, MVT::v2f64, Expand);
432    setOperationAction(ISD::FDIV, MVT::v2f64, Expand);
433    setOperationAction(ISD::FREM, MVT::v2f64, Expand);
434    setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand);
435    setOperationAction(ISD::VSETCC, MVT::v2f64, Expand);
436    setOperationAction(ISD::FNEG, MVT::v2f64, Expand);
437    setOperationAction(ISD::FABS, MVT::v2f64, Expand);
438    setOperationAction(ISD::FSQRT, MVT::v2f64, Expand);
439    setOperationAction(ISD::FSIN, MVT::v2f64, Expand);
440    setOperationAction(ISD::FCOS, MVT::v2f64, Expand);
441    setOperationAction(ISD::FPOWI, MVT::v2f64, Expand);
442    setOperationAction(ISD::FPOW, MVT::v2f64, Expand);
443    setOperationAction(ISD::FLOG, MVT::v2f64, Expand);
444    setOperationAction(ISD::FLOG2, MVT::v2f64, Expand);
445    setOperationAction(ISD::FLOG10, MVT::v2f64, Expand);
446    setOperationAction(ISD::FEXP, MVT::v2f64, Expand);
447    setOperationAction(ISD::FEXP2, MVT::v2f64, Expand);
448    setOperationAction(ISD::FCEIL, MVT::v2f64, Expand);
449    setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand);
450    setOperationAction(ISD::FRINT, MVT::v2f64, Expand);
451    setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand);
452    setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand);
453
454    setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand);
455
456    // Neon does not support some operations on v1i64 and v2i64 types.
457    setOperationAction(ISD::MUL, MVT::v1i64, Expand);
458    // Custom handling for some quad-vector types to detect VMULL.
459    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
460    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
461    setOperationAction(ISD::MUL, MVT::v2i64, Custom);
462    // Custom handling for some vector types to avoid expensive expansions
463    setOperationAction(ISD::SDIV, MVT::v4i16, Custom);
464    setOperationAction(ISD::SDIV, MVT::v8i8, Custom);
465    setOperationAction(ISD::UDIV, MVT::v4i16, Custom);
466    setOperationAction(ISD::UDIV, MVT::v8i8, Custom);
467    setOperationAction(ISD::VSETCC, MVT::v1i64, Expand);
468    setOperationAction(ISD::VSETCC, MVT::v2i64, Expand);
469    // Neon does not have single instruction SINT_TO_FP and UINT_TO_FP with
470    // a destination type that is wider than the source.
471    setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
472    setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
473
474    setTargetDAGCombine(ISD::INTRINSIC_VOID);
475    setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
476    setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
477    setTargetDAGCombine(ISD::SHL);
478    setTargetDAGCombine(ISD::SRL);
479    setTargetDAGCombine(ISD::SRA);
480    setTargetDAGCombine(ISD::SIGN_EXTEND);
481    setTargetDAGCombine(ISD::ZERO_EXTEND);
482    setTargetDAGCombine(ISD::ANY_EXTEND);
483    setTargetDAGCombine(ISD::SELECT_CC);
484    setTargetDAGCombine(ISD::BUILD_VECTOR);
485    setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
486    setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
487    setTargetDAGCombine(ISD::STORE);
488  }
489
490  computeRegisterProperties();
491
492  // ARM does not have f32 extending load.
493  setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
494
495  // ARM does not have i1 sign extending load.
496  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
497
498  // ARM supports all 4 flavors of integer indexed load / store.
499  if (!Subtarget->isThumb1Only()) {
500    for (unsigned im = (unsigned)ISD::PRE_INC;
501         im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
502      setIndexedLoadAction(im,  MVT::i1,  Legal);
503      setIndexedLoadAction(im,  MVT::i8,  Legal);
504      setIndexedLoadAction(im,  MVT::i16, Legal);
505      setIndexedLoadAction(im,  MVT::i32, Legal);
506      setIndexedStoreAction(im, MVT::i1,  Legal);
507      setIndexedStoreAction(im, MVT::i8,  Legal);
508      setIndexedStoreAction(im, MVT::i16, Legal);
509      setIndexedStoreAction(im, MVT::i32, Legal);
510    }
511  }
512
513  // i64 operation support.
514  setOperationAction(ISD::MUL,     MVT::i64, Expand);
515  setOperationAction(ISD::MULHU,   MVT::i32, Expand);
516  if (Subtarget->isThumb1Only()) {
517    setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
518    setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
519  }
520  if (Subtarget->isThumb1Only() || !Subtarget->hasV6Ops())
521    setOperationAction(ISD::MULHS, MVT::i32, Expand);
522
523  setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
524  setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
525  setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
526  setOperationAction(ISD::SRL,       MVT::i64, Custom);
527  setOperationAction(ISD::SRA,       MVT::i64, Custom);
528
529  // ARM does not have ROTL.
530  setOperationAction(ISD::ROTL,  MVT::i32, Expand);
531  setOperationAction(ISD::CTTZ,  MVT::i32, Custom);
532  setOperationAction(ISD::CTPOP, MVT::i32, Expand);
533  if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only())
534    setOperationAction(ISD::CTLZ, MVT::i32, Expand);
535
536  // Only ARMv6 has BSWAP.
537  if (!Subtarget->hasV6Ops())
538    setOperationAction(ISD::BSWAP, MVT::i32, Expand);
539
540  // These are expanded into libcalls.
541  if (!Subtarget->hasDivide() || !Subtarget->isThumb2()) {
542    // v7M has a hardware divider
543    setOperationAction(ISD::SDIV,  MVT::i32, Expand);
544    setOperationAction(ISD::UDIV,  MVT::i32, Expand);
545  }
546  setOperationAction(ISD::SREM,  MVT::i32, Expand);
547  setOperationAction(ISD::UREM,  MVT::i32, Expand);
548  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
549  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
550
551  setOperationAction(ISD::GlobalAddress, MVT::i32,   Custom);
552  setOperationAction(ISD::ConstantPool,  MVT::i32,   Custom);
553  setOperationAction(ISD::GLOBAL_OFFSET_TABLE, MVT::i32, Custom);
554  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
555  setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
556
557  setOperationAction(ISD::TRAP, MVT::Other, Legal);
558
559  // Use the default implementation.
560  setOperationAction(ISD::VASTART,            MVT::Other, Custom);
561  setOperationAction(ISD::VAARG,              MVT::Other, Expand);
562  setOperationAction(ISD::VACOPY,             MVT::Other, Expand);
563  setOperationAction(ISD::VAEND,              MVT::Other, Expand);
564  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
565  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
566  setOperationAction(ISD::EHSELECTION,        MVT::i32,   Expand);
567  setOperationAction(ISD::EXCEPTIONADDR,      MVT::i32,   Expand);
568  setExceptionPointerRegister(ARM::R0);
569  setExceptionSelectorRegister(ARM::R1);
570
571  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
572  // ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use
573  // the default expansion.
574  if (Subtarget->hasDataBarrier() ||
575      (Subtarget->hasV6Ops() && !Subtarget->isThumb())) {
576    // membarrier needs custom lowering; the rest are legal and handled
577    // normally.
578    setOperationAction(ISD::MEMBARRIER, MVT::Other, Custom);
579  } else {
580    // Set them all for expansion, which will force libcalls.
581    setOperationAction(ISD::MEMBARRIER, MVT::Other, Expand);
582    setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i8,  Expand);
583    setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i16, Expand);
584    setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i32, Expand);
585    setOperationAction(ISD::ATOMIC_SWAP,      MVT::i8,  Expand);
586    setOperationAction(ISD::ATOMIC_SWAP,      MVT::i16, Expand);
587    setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Expand);
588    setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i8,  Expand);
589    setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i16, Expand);
590    setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Expand);
591    setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i8,  Expand);
592    setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i16, Expand);
593    setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Expand);
594    setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i8,  Expand);
595    setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i16, Expand);
596    setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Expand);
597    setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i8,  Expand);
598    setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i16, Expand);
599    setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Expand);
600    setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i8,  Expand);
601    setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i16, Expand);
602    setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Expand);
603    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i8,  Expand);
604    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i16, Expand);
605    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand);
606    setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i8,  Expand);
607    setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i16, Expand);
608    setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Expand);
609    setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i8,  Expand);
610    setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i16, Expand);
611    setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Expand);
612    setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i8,  Expand);
613    setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i16, Expand);
614    setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Expand);
615    setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i8,  Expand);
616    setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i16, Expand);
617    setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Expand);
618    // Since the libcalls include locking, fold in the fences
619    setShouldFoldAtomicFences(true);
620  }
621  // 64-bit versions are always libcalls (for now)
622  setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i64, Expand);
623  setOperationAction(ISD::ATOMIC_SWAP,      MVT::i64, Expand);
624  setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i64, Expand);
625  setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i64, Expand);
626  setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i64, Expand);
627  setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i64, Expand);
628  setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i64, Expand);
629  setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Expand);
630
631  setOperationAction(ISD::PREFETCH,         MVT::Other, Custom);
632
633  // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
634  if (!Subtarget->hasV6Ops()) {
635    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
636    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
637  }
638  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
639
640  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
641    // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
642    // iff target supports vfp2.
643    setOperationAction(ISD::BITCAST, MVT::i64, Custom);
644    setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
645  }
646
647  // We want to custom lower some of our intrinsics.
648  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
649  if (Subtarget->isTargetDarwin()) {
650    setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
651    setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
652    setOperationAction(ISD::EH_SJLJ_DISPATCHSETUP, MVT::Other, Custom);
653  }
654
655  setOperationAction(ISD::SETCC,     MVT::i32, Expand);
656  setOperationAction(ISD::SETCC,     MVT::f32, Expand);
657  setOperationAction(ISD::SETCC,     MVT::f64, Expand);
658  setOperationAction(ISD::SELECT,    MVT::i32, Custom);
659  setOperationAction(ISD::SELECT,    MVT::f32, Custom);
660  setOperationAction(ISD::SELECT,    MVT::f64, Custom);
661  setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
662  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
663  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
664
665  setOperationAction(ISD::BRCOND,    MVT::Other, Expand);
666  setOperationAction(ISD::BR_CC,     MVT::i32,   Custom);
667  setOperationAction(ISD::BR_CC,     MVT::f32,   Custom);
668  setOperationAction(ISD::BR_CC,     MVT::f64,   Custom);
669  setOperationAction(ISD::BR_JT,     MVT::Other, Custom);
670
671  // We don't support sin/cos/fmod/copysign/pow
672  setOperationAction(ISD::FSIN,      MVT::f64, Expand);
673  setOperationAction(ISD::FSIN,      MVT::f32, Expand);
674  setOperationAction(ISD::FCOS,      MVT::f32, Expand);
675  setOperationAction(ISD::FCOS,      MVT::f64, Expand);
676  setOperationAction(ISD::FREM,      MVT::f64, Expand);
677  setOperationAction(ISD::FREM,      MVT::f32, Expand);
678  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
679    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
680    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
681  }
682  setOperationAction(ISD::FPOW,      MVT::f64, Expand);
683  setOperationAction(ISD::FPOW,      MVT::f32, Expand);
684
685  // Various VFP goodness
686  if (!UseSoftFloat && !Subtarget->isThumb1Only()) {
687    // int <-> fp are custom expanded into bit_convert + ARMISD ops.
688    if (Subtarget->hasVFP2()) {
689      setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
690      setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
691      setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
692      setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
693    }
694    // Special handling for half-precision FP.
695    if (!Subtarget->hasFP16()) {
696      setOperationAction(ISD::FP16_TO_FP32, MVT::f32, Expand);
697      setOperationAction(ISD::FP32_TO_FP16, MVT::i32, Expand);
698    }
699  }
700
701  // We have target-specific dag combine patterns for the following nodes:
702  // ARMISD::VMOVRRD  - No need to call setTargetDAGCombine
703  setTargetDAGCombine(ISD::ADD);
704  setTargetDAGCombine(ISD::SUB);
705  setTargetDAGCombine(ISD::MUL);
706
707  if (Subtarget->hasV6T2Ops() || Subtarget->hasNEON())
708    setTargetDAGCombine(ISD::OR);
709  if (Subtarget->hasNEON())
710    setTargetDAGCombine(ISD::AND);
711
712  setStackPointerRegisterToSaveRestore(ARM::SP);
713
714  if (UseSoftFloat || Subtarget->isThumb1Only() || !Subtarget->hasVFP2())
715    setSchedulingPreference(Sched::RegPressure);
716  else
717    setSchedulingPreference(Sched::Hybrid);
718
719  //// temporary - rewrite interface to use type
720  maxStoresPerMemcpy = maxStoresPerMemcpyOptSize = 1;
721
722  // On ARM arguments smaller than 4 bytes are extended, so all arguments
723  // are at least 4 bytes aligned.
724  setMinStackArgumentAlignment(4);
725
726  benefitFromCodePlacementOpt = true;
727
728  setMinFunctionAlignment(Subtarget->isThumb() ? 1 : 2);
729}
730
731// FIXME: It might make sense to define the representative register class as the
732// nearest super-register that has a non-null superset. For example, DPR_VFP2 is
733// a super-register of SPR, and DPR is a superset if DPR_VFP2. Consequently,
734// SPR's representative would be DPR_VFP2. This should work well if register
735// pressure tracking were modified such that a register use would increment the
736// pressure of the register class's representative and all of it's super
737// classes' representatives transitively. We have not implemented this because
738// of the difficulty prior to coalescing of modeling operand register classes
739// due to the common occurrence of cross class copies and subregister insertions
740// and extractions.
741std::pair<const TargetRegisterClass*, uint8_t>
742ARMTargetLowering::findRepresentativeClass(EVT VT) const{
743  const TargetRegisterClass *RRC = 0;
744  uint8_t Cost = 1;
745  switch (VT.getSimpleVT().SimpleTy) {
746  default:
747    return TargetLowering::findRepresentativeClass(VT);
748  // Use DPR as representative register class for all floating point
749  // and vector types. Since there are 32 SPR registers and 32 DPR registers so
750  // the cost is 1 for both f32 and f64.
751  case MVT::f32: case MVT::f64: case MVT::v8i8: case MVT::v4i16:
752  case MVT::v2i32: case MVT::v1i64: case MVT::v2f32:
753    RRC = ARM::DPRRegisterClass;
754    // When NEON is used for SP, only half of the register file is available
755    // because operations that define both SP and DP results will be constrained
756    // to the VFP2 class (D0-D15). We currently model this constraint prior to
757    // coalescing by double-counting the SP regs. See the FIXME above.
758    if (Subtarget->useNEONForSinglePrecisionFP())
759      Cost = 2;
760    break;
761  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
762  case MVT::v4f32: case MVT::v2f64:
763    RRC = ARM::DPRRegisterClass;
764    Cost = 2;
765    break;
766  case MVT::v4i64:
767    RRC = ARM::DPRRegisterClass;
768    Cost = 4;
769    break;
770  case MVT::v8i64:
771    RRC = ARM::DPRRegisterClass;
772    Cost = 8;
773    break;
774  }
775  return std::make_pair(RRC, Cost);
776}
777
778const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
779  switch (Opcode) {
780  default: return 0;
781  case ARMISD::Wrapper:       return "ARMISD::Wrapper";
782  case ARMISD::WrapperDYN:    return "ARMISD::WrapperDYN";
783  case ARMISD::WrapperPIC:    return "ARMISD::WrapperPIC";
784  case ARMISD::WrapperJT:     return "ARMISD::WrapperJT";
785  case ARMISD::CALL:          return "ARMISD::CALL";
786  case ARMISD::CALL_PRED:     return "ARMISD::CALL_PRED";
787  case ARMISD::CALL_NOLINK:   return "ARMISD::CALL_NOLINK";
788  case ARMISD::tCALL:         return "ARMISD::tCALL";
789  case ARMISD::BRCOND:        return "ARMISD::BRCOND";
790  case ARMISD::BR_JT:         return "ARMISD::BR_JT";
791  case ARMISD::BR2_JT:        return "ARMISD::BR2_JT";
792  case ARMISD::RET_FLAG:      return "ARMISD::RET_FLAG";
793  case ARMISD::PIC_ADD:       return "ARMISD::PIC_ADD";
794  case ARMISD::CMP:           return "ARMISD::CMP";
795  case ARMISD::CMPZ:          return "ARMISD::CMPZ";
796  case ARMISD::CMPFP:         return "ARMISD::CMPFP";
797  case ARMISD::CMPFPw0:       return "ARMISD::CMPFPw0";
798  case ARMISD::BCC_i64:       return "ARMISD::BCC_i64";
799  case ARMISD::FMSTAT:        return "ARMISD::FMSTAT";
800  case ARMISD::CMOV:          return "ARMISD::CMOV";
801
802  case ARMISD::RBIT:          return "ARMISD::RBIT";
803
804  case ARMISD::FTOSI:         return "ARMISD::FTOSI";
805  case ARMISD::FTOUI:         return "ARMISD::FTOUI";
806  case ARMISD::SITOF:         return "ARMISD::SITOF";
807  case ARMISD::UITOF:         return "ARMISD::UITOF";
808
809  case ARMISD::SRL_FLAG:      return "ARMISD::SRL_FLAG";
810  case ARMISD::SRA_FLAG:      return "ARMISD::SRA_FLAG";
811  case ARMISD::RRX:           return "ARMISD::RRX";
812
813  case ARMISD::VMOVRRD:       return "ARMISD::VMOVRRD";
814  case ARMISD::VMOVDRR:       return "ARMISD::VMOVDRR";
815
816  case ARMISD::EH_SJLJ_SETJMP: return "ARMISD::EH_SJLJ_SETJMP";
817  case ARMISD::EH_SJLJ_LONGJMP:return "ARMISD::EH_SJLJ_LONGJMP";
818  case ARMISD::EH_SJLJ_DISPATCHSETUP:return "ARMISD::EH_SJLJ_DISPATCHSETUP";
819
820  case ARMISD::TC_RETURN:     return "ARMISD::TC_RETURN";
821
822  case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER";
823
824  case ARMISD::DYN_ALLOC:     return "ARMISD::DYN_ALLOC";
825
826  case ARMISD::MEMBARRIER:    return "ARMISD::MEMBARRIER";
827  case ARMISD::MEMBARRIER_MCR: return "ARMISD::MEMBARRIER_MCR";
828
829  case ARMISD::PRELOAD:       return "ARMISD::PRELOAD";
830
831  case ARMISD::VCEQ:          return "ARMISD::VCEQ";
832  case ARMISD::VCEQZ:         return "ARMISD::VCEQZ";
833  case ARMISD::VCGE:          return "ARMISD::VCGE";
834  case ARMISD::VCGEZ:         return "ARMISD::VCGEZ";
835  case ARMISD::VCLEZ:         return "ARMISD::VCLEZ";
836  case ARMISD::VCGEU:         return "ARMISD::VCGEU";
837  case ARMISD::VCGT:          return "ARMISD::VCGT";
838  case ARMISD::VCGTZ:         return "ARMISD::VCGTZ";
839  case ARMISD::VCLTZ:         return "ARMISD::VCLTZ";
840  case ARMISD::VCGTU:         return "ARMISD::VCGTU";
841  case ARMISD::VTST:          return "ARMISD::VTST";
842
843  case ARMISD::VSHL:          return "ARMISD::VSHL";
844  case ARMISD::VSHRs:         return "ARMISD::VSHRs";
845  case ARMISD::VSHRu:         return "ARMISD::VSHRu";
846  case ARMISD::VSHLLs:        return "ARMISD::VSHLLs";
847  case ARMISD::VSHLLu:        return "ARMISD::VSHLLu";
848  case ARMISD::VSHLLi:        return "ARMISD::VSHLLi";
849  case ARMISD::VSHRN:         return "ARMISD::VSHRN";
850  case ARMISD::VRSHRs:        return "ARMISD::VRSHRs";
851  case ARMISD::VRSHRu:        return "ARMISD::VRSHRu";
852  case ARMISD::VRSHRN:        return "ARMISD::VRSHRN";
853  case ARMISD::VQSHLs:        return "ARMISD::VQSHLs";
854  case ARMISD::VQSHLu:        return "ARMISD::VQSHLu";
855  case ARMISD::VQSHLsu:       return "ARMISD::VQSHLsu";
856  case ARMISD::VQSHRNs:       return "ARMISD::VQSHRNs";
857  case ARMISD::VQSHRNu:       return "ARMISD::VQSHRNu";
858  case ARMISD::VQSHRNsu:      return "ARMISD::VQSHRNsu";
859  case ARMISD::VQRSHRNs:      return "ARMISD::VQRSHRNs";
860  case ARMISD::VQRSHRNu:      return "ARMISD::VQRSHRNu";
861  case ARMISD::VQRSHRNsu:     return "ARMISD::VQRSHRNsu";
862  case ARMISD::VGETLANEu:     return "ARMISD::VGETLANEu";
863  case ARMISD::VGETLANEs:     return "ARMISD::VGETLANEs";
864  case ARMISD::VMOVIMM:       return "ARMISD::VMOVIMM";
865  case ARMISD::VMVNIMM:       return "ARMISD::VMVNIMM";
866  case ARMISD::VDUP:          return "ARMISD::VDUP";
867  case ARMISD::VDUPLANE:      return "ARMISD::VDUPLANE";
868  case ARMISD::VEXT:          return "ARMISD::VEXT";
869  case ARMISD::VREV64:        return "ARMISD::VREV64";
870  case ARMISD::VREV32:        return "ARMISD::VREV32";
871  case ARMISD::VREV16:        return "ARMISD::VREV16";
872  case ARMISD::VZIP:          return "ARMISD::VZIP";
873  case ARMISD::VUZP:          return "ARMISD::VUZP";
874  case ARMISD::VTRN:          return "ARMISD::VTRN";
875  case ARMISD::VTBL1:         return "ARMISD::VTBL1";
876  case ARMISD::VTBL2:         return "ARMISD::VTBL2";
877  case ARMISD::VMULLs:        return "ARMISD::VMULLs";
878  case ARMISD::VMULLu:        return "ARMISD::VMULLu";
879  case ARMISD::BUILD_VECTOR:  return "ARMISD::BUILD_VECTOR";
880  case ARMISD::FMAX:          return "ARMISD::FMAX";
881  case ARMISD::FMIN:          return "ARMISD::FMIN";
882  case ARMISD::BFI:           return "ARMISD::BFI";
883  case ARMISD::VORRIMM:       return "ARMISD::VORRIMM";
884  case ARMISD::VBICIMM:       return "ARMISD::VBICIMM";
885  case ARMISD::VBSL:          return "ARMISD::VBSL";
886  case ARMISD::VLD2DUP:       return "ARMISD::VLD2DUP";
887  case ARMISD::VLD3DUP:       return "ARMISD::VLD3DUP";
888  case ARMISD::VLD4DUP:       return "ARMISD::VLD4DUP";
889  case ARMISD::VLD1_UPD:      return "ARMISD::VLD1_UPD";
890  case ARMISD::VLD2_UPD:      return "ARMISD::VLD2_UPD";
891  case ARMISD::VLD3_UPD:      return "ARMISD::VLD3_UPD";
892  case ARMISD::VLD4_UPD:      return "ARMISD::VLD4_UPD";
893  case ARMISD::VLD2LN_UPD:    return "ARMISD::VLD2LN_UPD";
894  case ARMISD::VLD3LN_UPD:    return "ARMISD::VLD3LN_UPD";
895  case ARMISD::VLD4LN_UPD:    return "ARMISD::VLD4LN_UPD";
896  case ARMISD::VLD2DUP_UPD:   return "ARMISD::VLD2DUP_UPD";
897  case ARMISD::VLD3DUP_UPD:   return "ARMISD::VLD3DUP_UPD";
898  case ARMISD::VLD4DUP_UPD:   return "ARMISD::VLD4DUP_UPD";
899  case ARMISD::VST1_UPD:      return "ARMISD::VST1_UPD";
900  case ARMISD::VST2_UPD:      return "ARMISD::VST2_UPD";
901  case ARMISD::VST3_UPD:      return "ARMISD::VST3_UPD";
902  case ARMISD::VST4_UPD:      return "ARMISD::VST4_UPD";
903  case ARMISD::VST2LN_UPD:    return "ARMISD::VST2LN_UPD";
904  case ARMISD::VST3LN_UPD:    return "ARMISD::VST3LN_UPD";
905  case ARMISD::VST4LN_UPD:    return "ARMISD::VST4LN_UPD";
906  }
907}
908
909/// getRegClassFor - Return the register class that should be used for the
910/// specified value type.
911TargetRegisterClass *ARMTargetLowering::getRegClassFor(EVT VT) const {
912  // Map v4i64 to QQ registers but do not make the type legal. Similarly map
913  // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
914  // load / store 4 to 8 consecutive D registers.
915  if (Subtarget->hasNEON()) {
916    if (VT == MVT::v4i64)
917      return ARM::QQPRRegisterClass;
918    else if (VT == MVT::v8i64)
919      return ARM::QQQQPRRegisterClass;
920  }
921  return TargetLowering::getRegClassFor(VT);
922}
923
924// Create a fast isel object.
925FastISel *
926ARMTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
927  return ARM::createFastISel(funcInfo);
928}
929
930/// getMaximalGlobalOffset - Returns the maximal possible offset which can
931/// be used for loads / stores from the global.
932unsigned ARMTargetLowering::getMaximalGlobalOffset() const {
933  return (Subtarget->isThumb1Only() ? 127 : 4095);
934}
935
936Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const {
937  unsigned NumVals = N->getNumValues();
938  if (!NumVals)
939    return Sched::RegPressure;
940
941  for (unsigned i = 0; i != NumVals; ++i) {
942    EVT VT = N->getValueType(i);
943    if (VT == MVT::Glue || VT == MVT::Other)
944      continue;
945    if (VT.isFloatingPoint() || VT.isVector())
946      return Sched::Latency;
947  }
948
949  if (!N->isMachineOpcode())
950    return Sched::RegPressure;
951
952  // Load are scheduled for latency even if there instruction itinerary
953  // is not available.
954  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
955  const TargetInstrDesc &TID = TII->get(N->getMachineOpcode());
956
957  if (TID.getNumDefs() == 0)
958    return Sched::RegPressure;
959  if (!Itins->isEmpty() &&
960      Itins->getOperandCycle(TID.getSchedClass(), 0) > 2)
961    return Sched::Latency;
962
963  return Sched::RegPressure;
964}
965
966//===----------------------------------------------------------------------===//
967// Lowering Code
968//===----------------------------------------------------------------------===//
969
970/// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
971static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
972  switch (CC) {
973  default: llvm_unreachable("Unknown condition code!");
974  case ISD::SETNE:  return ARMCC::NE;
975  case ISD::SETEQ:  return ARMCC::EQ;
976  case ISD::SETGT:  return ARMCC::GT;
977  case ISD::SETGE:  return ARMCC::GE;
978  case ISD::SETLT:  return ARMCC::LT;
979  case ISD::SETLE:  return ARMCC::LE;
980  case ISD::SETUGT: return ARMCC::HI;
981  case ISD::SETUGE: return ARMCC::HS;
982  case ISD::SETULT: return ARMCC::LO;
983  case ISD::SETULE: return ARMCC::LS;
984  }
985}
986
987/// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
988static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
989                        ARMCC::CondCodes &CondCode2) {
990  CondCode2 = ARMCC::AL;
991  switch (CC) {
992  default: llvm_unreachable("Unknown FP condition!");
993  case ISD::SETEQ:
994  case ISD::SETOEQ: CondCode = ARMCC::EQ; break;
995  case ISD::SETGT:
996  case ISD::SETOGT: CondCode = ARMCC::GT; break;
997  case ISD::SETGE:
998  case ISD::SETOGE: CondCode = ARMCC::GE; break;
999  case ISD::SETOLT: CondCode = ARMCC::MI; break;
1000  case ISD::SETOLE: CondCode = ARMCC::LS; break;
1001  case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break;
1002  case ISD::SETO:   CondCode = ARMCC::VC; break;
1003  case ISD::SETUO:  CondCode = ARMCC::VS; break;
1004  case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break;
1005  case ISD::SETUGT: CondCode = ARMCC::HI; break;
1006  case ISD::SETUGE: CondCode = ARMCC::PL; break;
1007  case ISD::SETLT:
1008  case ISD::SETULT: CondCode = ARMCC::LT; break;
1009  case ISD::SETLE:
1010  case ISD::SETULE: CondCode = ARMCC::LE; break;
1011  case ISD::SETNE:
1012  case ISD::SETUNE: CondCode = ARMCC::NE; break;
1013  }
1014}
1015
1016//===----------------------------------------------------------------------===//
1017//                      Calling Convention Implementation
1018//===----------------------------------------------------------------------===//
1019
1020#include "ARMGenCallingConv.inc"
1021
1022/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
1023/// given CallingConvention value.
1024CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC,
1025                                                 bool Return,
1026                                                 bool isVarArg) const {
1027  switch (CC) {
1028  default:
1029    llvm_unreachable("Unsupported calling convention");
1030  case CallingConv::Fast:
1031    if (Subtarget->hasVFP2() && !isVarArg) {
1032      if (!Subtarget->isAAPCS_ABI())
1033        return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
1034      // For AAPCS ABI targets, just use VFP variant of the calling convention.
1035      return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1036    }
1037    // Fallthrough
1038  case CallingConv::C: {
1039    // Use target triple & subtarget features to do actual dispatch.
1040    if (!Subtarget->isAAPCS_ABI())
1041      return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
1042    else if (Subtarget->hasVFP2() &&
1043             FloatABIType == FloatABI::Hard && !isVarArg)
1044      return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1045    return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
1046  }
1047  case CallingConv::ARM_AAPCS_VFP:
1048    return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1049  case CallingConv::ARM_AAPCS:
1050    return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
1051  case CallingConv::ARM_APCS:
1052    return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
1053  }
1054}
1055
1056/// LowerCallResult - Lower the result values of a call into the
1057/// appropriate copies out of appropriate physical registers.
1058SDValue
1059ARMTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1060                                   CallingConv::ID CallConv, bool isVarArg,
1061                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1062                                   DebugLoc dl, SelectionDAG &DAG,
1063                                   SmallVectorImpl<SDValue> &InVals) const {
1064
1065  // Assign locations to each value returned by this call.
1066  SmallVector<CCValAssign, 16> RVLocs;
1067  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1068                 RVLocs, *DAG.getContext());
1069  CCInfo.AnalyzeCallResult(Ins,
1070                           CCAssignFnForNode(CallConv, /* Return*/ true,
1071                                             isVarArg));
1072
1073  // Copy all of the result registers out of their specified physreg.
1074  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1075    CCValAssign VA = RVLocs[i];
1076
1077    SDValue Val;
1078    if (VA.needsCustom()) {
1079      // Handle f64 or half of a v2f64.
1080      SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1081                                      InFlag);
1082      Chain = Lo.getValue(1);
1083      InFlag = Lo.getValue(2);
1084      VA = RVLocs[++i]; // skip ahead to next loc
1085      SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1086                                      InFlag);
1087      Chain = Hi.getValue(1);
1088      InFlag = Hi.getValue(2);
1089      Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1090
1091      if (VA.getLocVT() == MVT::v2f64) {
1092        SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
1093        Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1094                          DAG.getConstant(0, MVT::i32));
1095
1096        VA = RVLocs[++i]; // skip ahead to next loc
1097        Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1098        Chain = Lo.getValue(1);
1099        InFlag = Lo.getValue(2);
1100        VA = RVLocs[++i]; // skip ahead to next loc
1101        Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1102        Chain = Hi.getValue(1);
1103        InFlag = Hi.getValue(2);
1104        Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1105        Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1106                          DAG.getConstant(1, MVT::i32));
1107      }
1108    } else {
1109      Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
1110                               InFlag);
1111      Chain = Val.getValue(1);
1112      InFlag = Val.getValue(2);
1113    }
1114
1115    switch (VA.getLocInfo()) {
1116    default: llvm_unreachable("Unknown loc info!");
1117    case CCValAssign::Full: break;
1118    case CCValAssign::BCvt:
1119      Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val);
1120      break;
1121    }
1122
1123    InVals.push_back(Val);
1124  }
1125
1126  return Chain;
1127}
1128
1129/// LowerMemOpCallTo - Store the argument to the stack.
1130SDValue
1131ARMTargetLowering::LowerMemOpCallTo(SDValue Chain,
1132                                    SDValue StackPtr, SDValue Arg,
1133                                    DebugLoc dl, SelectionDAG &DAG,
1134                                    const CCValAssign &VA,
1135                                    ISD::ArgFlagsTy Flags) const {
1136  unsigned LocMemOffset = VA.getLocMemOffset();
1137  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1138  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1139  return DAG.getStore(Chain, dl, Arg, PtrOff,
1140                      MachinePointerInfo::getStack(LocMemOffset),
1141                      false, false, 0);
1142}
1143
1144void ARMTargetLowering::PassF64ArgInRegs(DebugLoc dl, SelectionDAG &DAG,
1145                                         SDValue Chain, SDValue &Arg,
1146                                         RegsToPassVector &RegsToPass,
1147                                         CCValAssign &VA, CCValAssign &NextVA,
1148                                         SDValue &StackPtr,
1149                                         SmallVector<SDValue, 8> &MemOpChains,
1150                                         ISD::ArgFlagsTy Flags) const {
1151
1152  SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
1153                              DAG.getVTList(MVT::i32, MVT::i32), Arg);
1154  RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd));
1155
1156  if (NextVA.isRegLoc())
1157    RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1)));
1158  else {
1159    assert(NextVA.isMemLoc());
1160    if (StackPtr.getNode() == 0)
1161      StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
1162
1163    MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1),
1164                                           dl, DAG, NextVA,
1165                                           Flags));
1166  }
1167}
1168
1169/// LowerCall - Lowering a call into a callseq_start <-
1170/// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
1171/// nodes.
1172SDValue
1173ARMTargetLowering::LowerCall(SDValue Chain, SDValue Callee,
1174                             CallingConv::ID CallConv, bool isVarArg,
1175                             bool &isTailCall,
1176                             const SmallVectorImpl<ISD::OutputArg> &Outs,
1177                             const SmallVectorImpl<SDValue> &OutVals,
1178                             const SmallVectorImpl<ISD::InputArg> &Ins,
1179                             DebugLoc dl, SelectionDAG &DAG,
1180                             SmallVectorImpl<SDValue> &InVals) const {
1181  MachineFunction &MF = DAG.getMachineFunction();
1182  bool IsStructRet    = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
1183  bool IsSibCall = false;
1184  // Temporarily disable tail calls so things don't break.
1185  if (!EnableARMTailCalls)
1186    isTailCall = false;
1187  if (isTailCall) {
1188    // Check if it's really possible to do a tail call.
1189    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1190                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
1191                                                   Outs, OutVals, Ins, DAG);
1192    // We don't support GuaranteedTailCallOpt for ARM, only automatically
1193    // detected sibcalls.
1194    if (isTailCall) {
1195      ++NumTailCalls;
1196      IsSibCall = true;
1197    }
1198  }
1199
1200  // Analyze operands of the call, assigning locations to each operand.
1201  SmallVector<CCValAssign, 16> ArgLocs;
1202  CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs,
1203                 *DAG.getContext());
1204  CCInfo.setCallOrPrologue(Call);
1205  CCInfo.AnalyzeCallOperands(Outs,
1206                             CCAssignFnForNode(CallConv, /* Return*/ false,
1207                                               isVarArg));
1208
1209  // Get a count of how many bytes are to be pushed on the stack.
1210  unsigned NumBytes = CCInfo.getNextStackOffset();
1211
1212  // For tail calls, memory operands are available in our caller's stack.
1213  if (IsSibCall)
1214    NumBytes = 0;
1215
1216  // Adjust the stack pointer for the new arguments...
1217  // These operations are automatically eliminated by the prolog/epilog pass
1218  if (!IsSibCall)
1219    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
1220
1221  SDValue StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
1222
1223  RegsToPassVector RegsToPass;
1224  SmallVector<SDValue, 8> MemOpChains;
1225
1226  // Walk the register/memloc assignments, inserting copies/loads.  In the case
1227  // of tail call optimization, arguments are handled later.
1228  for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
1229       i != e;
1230       ++i, ++realArgIdx) {
1231    CCValAssign &VA = ArgLocs[i];
1232    SDValue Arg = OutVals[realArgIdx];
1233    ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
1234    bool isByVal = Flags.isByVal();
1235
1236    // Promote the value if needed.
1237    switch (VA.getLocInfo()) {
1238    default: llvm_unreachable("Unknown loc info!");
1239    case CCValAssign::Full: break;
1240    case CCValAssign::SExt:
1241      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
1242      break;
1243    case CCValAssign::ZExt:
1244      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
1245      break;
1246    case CCValAssign::AExt:
1247      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
1248      break;
1249    case CCValAssign::BCvt:
1250      Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
1251      break;
1252    }
1253
1254    // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
1255    if (VA.needsCustom()) {
1256      if (VA.getLocVT() == MVT::v2f64) {
1257        SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1258                                  DAG.getConstant(0, MVT::i32));
1259        SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1260                                  DAG.getConstant(1, MVT::i32));
1261
1262        PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass,
1263                         VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1264
1265        VA = ArgLocs[++i]; // skip ahead to next loc
1266        if (VA.isRegLoc()) {
1267          PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass,
1268                           VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1269        } else {
1270          assert(VA.isMemLoc());
1271
1272          MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Op1,
1273                                                 dl, DAG, VA, Flags));
1274        }
1275      } else {
1276        PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
1277                         StackPtr, MemOpChains, Flags);
1278      }
1279    } else if (VA.isRegLoc()) {
1280      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1281    } else if (isByVal) {
1282      assert(VA.isMemLoc());
1283      unsigned offset = 0;
1284
1285      // True if this byval aggregate will be split between registers
1286      // and memory.
1287      if (CCInfo.isFirstByValRegValid()) {
1288        EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1289        unsigned int i, j;
1290        for (i = 0, j = CCInfo.getFirstByValReg(); j < ARM::R4; i++, j++) {
1291          SDValue Const = DAG.getConstant(4*i, MVT::i32);
1292          SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
1293          SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
1294                                     MachinePointerInfo(),
1295                                     false, false, 0);
1296          MemOpChains.push_back(Load.getValue(1));
1297          RegsToPass.push_back(std::make_pair(j, Load));
1298        }
1299        offset = ARM::R4 - CCInfo.getFirstByValReg();
1300        CCInfo.clearFirstByValReg();
1301      }
1302
1303      unsigned LocMemOffset = VA.getLocMemOffset();
1304      SDValue StkPtrOff = DAG.getIntPtrConstant(LocMemOffset);
1305      SDValue Dst = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr,
1306                                StkPtrOff);
1307      SDValue SrcOffset = DAG.getIntPtrConstant(4*offset);
1308      SDValue Src = DAG.getNode(ISD::ADD, dl, getPointerTy(), Arg, SrcOffset);
1309      SDValue SizeNode = DAG.getConstant(Flags.getByValSize() - 4*offset,
1310                                         MVT::i32);
1311      MemOpChains.push_back(DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode,
1312                                          Flags.getByValAlign(),
1313                                          /*isVolatile=*/false,
1314                                          /*AlwaysInline=*/false,
1315                                          MachinePointerInfo(0),
1316                                          MachinePointerInfo(0)));
1317
1318    } else if (!IsSibCall) {
1319      assert(VA.isMemLoc());
1320
1321      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
1322                                             dl, DAG, VA, Flags));
1323    }
1324  }
1325
1326  if (!MemOpChains.empty())
1327    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1328                        &MemOpChains[0], MemOpChains.size());
1329
1330  // Build a sequence of copy-to-reg nodes chained together with token chain
1331  // and flag operands which copy the outgoing args into the appropriate regs.
1332  SDValue InFlag;
1333  // Tail call byval lowering might overwrite argument registers so in case of
1334  // tail call optimization the copies to registers are lowered later.
1335  if (!isTailCall)
1336    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1337      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1338                               RegsToPass[i].second, InFlag);
1339      InFlag = Chain.getValue(1);
1340    }
1341
1342  // For tail calls lower the arguments to the 'real' stack slot.
1343  if (isTailCall) {
1344    // Force all the incoming stack arguments to be loaded from the stack
1345    // before any new outgoing arguments are stored to the stack, because the
1346    // outgoing stack slots may alias the incoming argument stack slots, and
1347    // the alias isn't otherwise explicit. This is slightly more conservative
1348    // than necessary, because it means that each store effectively depends
1349    // on every argument instead of just those arguments it would clobber.
1350
1351    // Do not flag preceding copytoreg stuff together with the following stuff.
1352    InFlag = SDValue();
1353    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1354      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1355                               RegsToPass[i].second, InFlag);
1356      InFlag = Chain.getValue(1);
1357    }
1358    InFlag =SDValue();
1359  }
1360
1361  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
1362  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
1363  // node so that legalize doesn't hack it.
1364  bool isDirect = false;
1365  bool isARMFunc = false;
1366  bool isLocalARMFunc = false;
1367  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1368
1369  if (EnableARMLongCalls) {
1370    assert (getTargetMachine().getRelocationModel() == Reloc::Static
1371            && "long-calls with non-static relocation model!");
1372    // Handle a global address or an external symbol. If it's not one of
1373    // those, the target's already in a register, so we don't need to do
1374    // anything extra.
1375    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1376      const GlobalValue *GV = G->getGlobal();
1377      // Create a constant pool entry for the callee address
1378      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1379      ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV,
1380                                                           ARMPCLabelIndex,
1381                                                           ARMCP::CPValue, 0);
1382      // Get the address of the callee into a register
1383      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1384      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1385      Callee = DAG.getLoad(getPointerTy(), dl,
1386                           DAG.getEntryNode(), CPAddr,
1387                           MachinePointerInfo::getConstantPool(),
1388                           false, false, 0);
1389    } else if (ExternalSymbolSDNode *S=dyn_cast<ExternalSymbolSDNode>(Callee)) {
1390      const char *Sym = S->getSymbol();
1391
1392      // Create a constant pool entry for the callee address
1393      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1394      ARMConstantPoolValue *CPV = new ARMConstantPoolValue(*DAG.getContext(),
1395                                                       Sym, ARMPCLabelIndex, 0);
1396      // Get the address of the callee into a register
1397      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1398      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1399      Callee = DAG.getLoad(getPointerTy(), dl,
1400                           DAG.getEntryNode(), CPAddr,
1401                           MachinePointerInfo::getConstantPool(),
1402                           false, false, 0);
1403    }
1404  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1405    const GlobalValue *GV = G->getGlobal();
1406    isDirect = true;
1407    bool isExt = GV->isDeclaration() || GV->isWeakForLinker();
1408    bool isStub = (isExt && Subtarget->isTargetDarwin()) &&
1409                   getTargetMachine().getRelocationModel() != Reloc::Static;
1410    isARMFunc = !Subtarget->isThumb() || isStub;
1411    // ARM call to a local ARM function is predicable.
1412    isLocalARMFunc = !Subtarget->isThumb() && (!isExt || !ARMInterworking);
1413    // tBX takes a register source operand.
1414    if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
1415      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1416      ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV,
1417                                                           ARMPCLabelIndex,
1418                                                           ARMCP::CPValue, 4);
1419      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1420      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1421      Callee = DAG.getLoad(getPointerTy(), dl,
1422                           DAG.getEntryNode(), CPAddr,
1423                           MachinePointerInfo::getConstantPool(),
1424                           false, false, 0);
1425      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1426      Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
1427                           getPointerTy(), Callee, PICLabel);
1428    } else {
1429      // On ELF targets for PIC code, direct calls should go through the PLT
1430      unsigned OpFlags = 0;
1431      if (Subtarget->isTargetELF() &&
1432                  getTargetMachine().getRelocationModel() == Reloc::PIC_)
1433        OpFlags = ARMII::MO_PLT;
1434      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
1435    }
1436  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1437    isDirect = true;
1438    bool isStub = Subtarget->isTargetDarwin() &&
1439                  getTargetMachine().getRelocationModel() != Reloc::Static;
1440    isARMFunc = !Subtarget->isThumb() || isStub;
1441    // tBX takes a register source operand.
1442    const char *Sym = S->getSymbol();
1443    if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
1444      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1445      ARMConstantPoolValue *CPV = new ARMConstantPoolValue(*DAG.getContext(),
1446                                                       Sym, ARMPCLabelIndex, 4);
1447      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1448      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1449      Callee = DAG.getLoad(getPointerTy(), dl,
1450                           DAG.getEntryNode(), CPAddr,
1451                           MachinePointerInfo::getConstantPool(),
1452                           false, false, 0);
1453      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1454      Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
1455                           getPointerTy(), Callee, PICLabel);
1456    } else {
1457      unsigned OpFlags = 0;
1458      // On ELF targets for PIC code, direct calls should go through the PLT
1459      if (Subtarget->isTargetELF() &&
1460                  getTargetMachine().getRelocationModel() == Reloc::PIC_)
1461        OpFlags = ARMII::MO_PLT;
1462      Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlags);
1463    }
1464  }
1465
1466  // FIXME: handle tail calls differently.
1467  unsigned CallOpc;
1468  if (Subtarget->isThumb()) {
1469    if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps())
1470      CallOpc = ARMISD::CALL_NOLINK;
1471    else
1472      CallOpc = isARMFunc ? ARMISD::CALL : ARMISD::tCALL;
1473  } else {
1474    CallOpc = (isDirect || Subtarget->hasV5TOps())
1475      ? (isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL)
1476      : ARMISD::CALL_NOLINK;
1477  }
1478
1479  std::vector<SDValue> Ops;
1480  Ops.push_back(Chain);
1481  Ops.push_back(Callee);
1482
1483  // Add argument registers to the end of the list so that they are known live
1484  // into the call.
1485  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1486    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1487                                  RegsToPass[i].second.getValueType()));
1488
1489  if (InFlag.getNode())
1490    Ops.push_back(InFlag);
1491
1492  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1493  if (isTailCall)
1494    return DAG.getNode(ARMISD::TC_RETURN, dl, NodeTys, &Ops[0], Ops.size());
1495
1496  // Returns a chain and a flag for retval copy to use.
1497  Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size());
1498  InFlag = Chain.getValue(1);
1499
1500  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
1501                             DAG.getIntPtrConstant(0, true), InFlag);
1502  if (!Ins.empty())
1503    InFlag = Chain.getValue(1);
1504
1505  // Handle result values, copying them out of physregs into vregs that we
1506  // return.
1507  return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins,
1508                         dl, DAG, InVals);
1509}
1510
1511/// HandleByVal - Every parameter *after* a byval parameter is passed
1512/// on the stack.  Remember the next parameter register to allocate,
1513/// and then confiscate the rest of the parameter registers to insure
1514/// this.
1515void
1516llvm::ARMTargetLowering::HandleByVal(CCState *State, unsigned &size) const {
1517  unsigned reg = State->AllocateReg(GPRArgRegs, 4);
1518  assert((State->getCallOrPrologue() == Prologue ||
1519          State->getCallOrPrologue() == Call) &&
1520         "unhandled ParmContext");
1521  if ((!State->isFirstByValRegValid()) &&
1522      (ARM::R0 <= reg) && (reg <= ARM::R3)) {
1523    State->setFirstByValReg(reg);
1524    // At a call site, a byval parameter that is split between
1525    // registers and memory needs its size truncated here.  In a
1526    // function prologue, such byval parameters are reassembled in
1527    // memory, and are not truncated.
1528    if (State->getCallOrPrologue() == Call) {
1529      unsigned excess = 4 * (ARM::R4 - reg);
1530      assert(size >= excess && "expected larger existing stack allocation");
1531      size -= excess;
1532    }
1533  }
1534  // Confiscate any remaining parameter registers to preclude their
1535  // assignment to subsequent parameters.
1536  while (State->AllocateReg(GPRArgRegs, 4))
1537    ;
1538}
1539
1540/// MatchingStackOffset - Return true if the given stack call argument is
1541/// already available in the same position (relatively) of the caller's
1542/// incoming argument stack.
1543static
1544bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
1545                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
1546                         const ARMInstrInfo *TII) {
1547  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
1548  int FI = INT_MAX;
1549  if (Arg.getOpcode() == ISD::CopyFromReg) {
1550    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
1551    if (!TargetRegisterInfo::isVirtualRegister(VR))
1552      return false;
1553    MachineInstr *Def = MRI->getVRegDef(VR);
1554    if (!Def)
1555      return false;
1556    if (!Flags.isByVal()) {
1557      if (!TII->isLoadFromStackSlot(Def, FI))
1558        return false;
1559    } else {
1560      return false;
1561    }
1562  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
1563    if (Flags.isByVal())
1564      // ByVal argument is passed in as a pointer but it's now being
1565      // dereferenced. e.g.
1566      // define @foo(%struct.X* %A) {
1567      //   tail call @bar(%struct.X* byval %A)
1568      // }
1569      return false;
1570    SDValue Ptr = Ld->getBasePtr();
1571    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
1572    if (!FINode)
1573      return false;
1574    FI = FINode->getIndex();
1575  } else
1576    return false;
1577
1578  assert(FI != INT_MAX);
1579  if (!MFI->isFixedObjectIndex(FI))
1580    return false;
1581  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
1582}
1583
1584/// IsEligibleForTailCallOptimization - Check whether the call is eligible
1585/// for tail call optimization. Targets which want to do tail call
1586/// optimization should implement this function.
1587bool
1588ARMTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
1589                                                     CallingConv::ID CalleeCC,
1590                                                     bool isVarArg,
1591                                                     bool isCalleeStructRet,
1592                                                     bool isCallerStructRet,
1593                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
1594                                    const SmallVectorImpl<SDValue> &OutVals,
1595                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1596                                                     SelectionDAG& DAG) const {
1597  const Function *CallerF = DAG.getMachineFunction().getFunction();
1598  CallingConv::ID CallerCC = CallerF->getCallingConv();
1599  bool CCMatch = CallerCC == CalleeCC;
1600
1601  // Look for obvious safe cases to perform tail call optimization that do not
1602  // require ABI changes. This is what gcc calls sibcall.
1603
1604  // Do not sibcall optimize vararg calls unless the call site is not passing
1605  // any arguments.
1606  if (isVarArg && !Outs.empty())
1607    return false;
1608
1609  // Also avoid sibcall optimization if either caller or callee uses struct
1610  // return semantics.
1611  if (isCalleeStructRet || isCallerStructRet)
1612    return false;
1613
1614  // FIXME: Completely disable sibcall for Thumb1 since Thumb1RegisterInfo::
1615  // emitEpilogue is not ready for them.
1616  // Doing this is tricky, since the LDM/POP instruction on Thumb doesn't take
1617  // LR.  This means if we need to reload LR, it takes an extra instructions,
1618  // which outweighs the value of the tail call; but here we don't know yet
1619  // whether LR is going to be used.  Probably the right approach is to
1620  // generate the tail call here and turn it back into CALL/RET in
1621  // emitEpilogue if LR is used.
1622
1623  // Thumb1 PIC calls to external symbols use BX, so they can be tail calls,
1624  // but we need to make sure there are enough registers; the only valid
1625  // registers are the 4 used for parameters.  We don't currently do this
1626  // case.
1627  if (Subtarget->isThumb1Only())
1628    return false;
1629
1630  // If the calling conventions do not match, then we'd better make sure the
1631  // results are returned in the same way as what the caller expects.
1632  if (!CCMatch) {
1633    SmallVector<CCValAssign, 16> RVLocs1;
1634    CCState CCInfo1(CalleeCC, false, getTargetMachine(),
1635                    RVLocs1, *DAG.getContext());
1636    CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForNode(CalleeCC, true, isVarArg));
1637
1638    SmallVector<CCValAssign, 16> RVLocs2;
1639    CCState CCInfo2(CallerCC, false, getTargetMachine(),
1640                    RVLocs2, *DAG.getContext());
1641    CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForNode(CallerCC, true, isVarArg));
1642
1643    if (RVLocs1.size() != RVLocs2.size())
1644      return false;
1645    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
1646      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
1647        return false;
1648      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
1649        return false;
1650      if (RVLocs1[i].isRegLoc()) {
1651        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
1652          return false;
1653      } else {
1654        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
1655          return false;
1656      }
1657    }
1658  }
1659
1660  // If the callee takes no arguments then go on to check the results of the
1661  // call.
1662  if (!Outs.empty()) {
1663    // Check if stack adjustment is needed. For now, do not do this if any
1664    // argument is passed on the stack.
1665    SmallVector<CCValAssign, 16> ArgLocs;
1666    CCState CCInfo(CalleeCC, isVarArg, getTargetMachine(),
1667                   ArgLocs, *DAG.getContext());
1668    CCInfo.AnalyzeCallOperands(Outs,
1669                               CCAssignFnForNode(CalleeCC, false, isVarArg));
1670    if (CCInfo.getNextStackOffset()) {
1671      MachineFunction &MF = DAG.getMachineFunction();
1672
1673      // Check if the arguments are already laid out in the right way as
1674      // the caller's fixed stack objects.
1675      MachineFrameInfo *MFI = MF.getFrameInfo();
1676      const MachineRegisterInfo *MRI = &MF.getRegInfo();
1677      const ARMInstrInfo *TII =
1678        ((ARMTargetMachine&)getTargetMachine()).getInstrInfo();
1679      for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
1680           i != e;
1681           ++i, ++realArgIdx) {
1682        CCValAssign &VA = ArgLocs[i];
1683        EVT RegVT = VA.getLocVT();
1684        SDValue Arg = OutVals[realArgIdx];
1685        ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
1686        if (VA.getLocInfo() == CCValAssign::Indirect)
1687          return false;
1688        if (VA.needsCustom()) {
1689          // f64 and vector types are split into multiple registers or
1690          // register/stack-slot combinations.  The types will not match
1691          // the registers; give up on memory f64 refs until we figure
1692          // out what to do about this.
1693          if (!VA.isRegLoc())
1694            return false;
1695          if (!ArgLocs[++i].isRegLoc())
1696            return false;
1697          if (RegVT == MVT::v2f64) {
1698            if (!ArgLocs[++i].isRegLoc())
1699              return false;
1700            if (!ArgLocs[++i].isRegLoc())
1701              return false;
1702          }
1703        } else if (!VA.isRegLoc()) {
1704          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
1705                                   MFI, MRI, TII))
1706            return false;
1707        }
1708      }
1709    }
1710  }
1711
1712  return true;
1713}
1714
1715SDValue
1716ARMTargetLowering::LowerReturn(SDValue Chain,
1717                               CallingConv::ID CallConv, bool isVarArg,
1718                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1719                               const SmallVectorImpl<SDValue> &OutVals,
1720                               DebugLoc dl, SelectionDAG &DAG) const {
1721
1722  // CCValAssign - represent the assignment of the return value to a location.
1723  SmallVector<CCValAssign, 16> RVLocs;
1724
1725  // CCState - Info about the registers and stack slots.
1726  CCState CCInfo(CallConv, isVarArg, getTargetMachine(), RVLocs,
1727                 *DAG.getContext());
1728
1729  // Analyze outgoing return values.
1730  CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv, /* Return */ true,
1731                                               isVarArg));
1732
1733  // If this is the first return lowered for this function, add
1734  // the regs to the liveout set for the function.
1735  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
1736    for (unsigned i = 0; i != RVLocs.size(); ++i)
1737      if (RVLocs[i].isRegLoc())
1738        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
1739  }
1740
1741  SDValue Flag;
1742
1743  // Copy the result values into the output registers.
1744  for (unsigned i = 0, realRVLocIdx = 0;
1745       i != RVLocs.size();
1746       ++i, ++realRVLocIdx) {
1747    CCValAssign &VA = RVLocs[i];
1748    assert(VA.isRegLoc() && "Can only return in registers!");
1749
1750    SDValue Arg = OutVals[realRVLocIdx];
1751
1752    switch (VA.getLocInfo()) {
1753    default: llvm_unreachable("Unknown loc info!");
1754    case CCValAssign::Full: break;
1755    case CCValAssign::BCvt:
1756      Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
1757      break;
1758    }
1759
1760    if (VA.needsCustom()) {
1761      if (VA.getLocVT() == MVT::v2f64) {
1762        // Extract the first half and return it in two registers.
1763        SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1764                                   DAG.getConstant(0, MVT::i32));
1765        SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl,
1766                                       DAG.getVTList(MVT::i32, MVT::i32), Half);
1767
1768        Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), HalfGPRs, Flag);
1769        Flag = Chain.getValue(1);
1770        VA = RVLocs[++i]; // skip ahead to next loc
1771        Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
1772                                 HalfGPRs.getValue(1), Flag);
1773        Flag = Chain.getValue(1);
1774        VA = RVLocs[++i]; // skip ahead to next loc
1775
1776        // Extract the 2nd half and fall through to handle it as an f64 value.
1777        Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1778                          DAG.getConstant(1, MVT::i32));
1779      }
1780      // Legalize ret f64 -> ret 2 x i32.  We always have fmrrd if f64 is
1781      // available.
1782      SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
1783                                  DAG.getVTList(MVT::i32, MVT::i32), &Arg, 1);
1784      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd, Flag);
1785      Flag = Chain.getValue(1);
1786      VA = RVLocs[++i]; // skip ahead to next loc
1787      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd.getValue(1),
1788                               Flag);
1789    } else
1790      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
1791
1792    // Guarantee that all emitted copies are
1793    // stuck together, avoiding something bad.
1794    Flag = Chain.getValue(1);
1795  }
1796
1797  SDValue result;
1798  if (Flag.getNode())
1799    result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain, Flag);
1800  else // Return Void
1801    result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain);
1802
1803  return result;
1804}
1805
1806bool ARMTargetLowering::isUsedByReturnOnly(SDNode *N) const {
1807  if (N->getNumValues() != 1)
1808    return false;
1809  if (!N->hasNUsesOfValue(1, 0))
1810    return false;
1811
1812  unsigned NumCopies = 0;
1813  SDNode* Copies[2];
1814  SDNode *Use = *N->use_begin();
1815  if (Use->getOpcode() == ISD::CopyToReg) {
1816    Copies[NumCopies++] = Use;
1817  } else if (Use->getOpcode() == ARMISD::VMOVRRD) {
1818    // f64 returned in a pair of GPRs.
1819    for (SDNode::use_iterator UI = Use->use_begin(), UE = Use->use_end();
1820         UI != UE; ++UI) {
1821      if (UI->getOpcode() != ISD::CopyToReg)
1822        return false;
1823      Copies[UI.getUse().getResNo()] = *UI;
1824      ++NumCopies;
1825    }
1826  } else if (Use->getOpcode() == ISD::BITCAST) {
1827    // f32 returned in a single GPR.
1828    if (!Use->hasNUsesOfValue(1, 0))
1829      return false;
1830    Use = *Use->use_begin();
1831    if (Use->getOpcode() != ISD::CopyToReg || !Use->hasNUsesOfValue(1, 0))
1832      return false;
1833    Copies[NumCopies++] = Use;
1834  } else {
1835    return false;
1836  }
1837
1838  if (NumCopies != 1 && NumCopies != 2)
1839    return false;
1840
1841  bool HasRet = false;
1842  for (unsigned i = 0; i < NumCopies; ++i) {
1843    SDNode *Copy = Copies[i];
1844    for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1845         UI != UE; ++UI) {
1846      if (UI->getOpcode() == ISD::CopyToReg) {
1847        SDNode *Use = *UI;
1848        if (Use == Copies[0] || Use == Copies[1])
1849          continue;
1850        return false;
1851      }
1852      if (UI->getOpcode() != ARMISD::RET_FLAG)
1853        return false;
1854      HasRet = true;
1855    }
1856  }
1857
1858  return HasRet;
1859}
1860
1861bool ARMTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
1862  if (!EnableARMTailCalls)
1863    return false;
1864
1865  if (!CI->isTailCall())
1866    return false;
1867
1868  return !Subtarget->isThumb1Only();
1869}
1870
1871// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
1872// their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
1873// one of the above mentioned nodes. It has to be wrapped because otherwise
1874// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
1875// be used to form addressing mode. These wrapped nodes will be selected
1876// into MOVi.
1877static SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
1878  EVT PtrVT = Op.getValueType();
1879  // FIXME there is no actual debug info here
1880  DebugLoc dl = Op.getDebugLoc();
1881  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1882  SDValue Res;
1883  if (CP->isMachineConstantPoolEntry())
1884    Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
1885                                    CP->getAlignment());
1886  else
1887    Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
1888                                    CP->getAlignment());
1889  return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
1890}
1891
1892unsigned ARMTargetLowering::getJumpTableEncoding() const {
1893  return MachineJumpTableInfo::EK_Inline;
1894}
1895
1896SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op,
1897                                             SelectionDAG &DAG) const {
1898  MachineFunction &MF = DAG.getMachineFunction();
1899  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1900  unsigned ARMPCLabelIndex = 0;
1901  DebugLoc DL = Op.getDebugLoc();
1902  EVT PtrVT = getPointerTy();
1903  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1904  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
1905  SDValue CPAddr;
1906  if (RelocM == Reloc::Static) {
1907    CPAddr = DAG.getTargetConstantPool(BA, PtrVT, 4);
1908  } else {
1909    unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
1910    ARMPCLabelIndex = AFI->createPICLabelUId();
1911    ARMConstantPoolValue *CPV = new ARMConstantPoolValue(BA, ARMPCLabelIndex,
1912                                                         ARMCP::CPBlockAddress,
1913                                                         PCAdj);
1914    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1915  }
1916  CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr);
1917  SDValue Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), CPAddr,
1918                               MachinePointerInfo::getConstantPool(),
1919                               false, false, 0);
1920  if (RelocM == Reloc::Static)
1921    return Result;
1922  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1923  return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel);
1924}
1925
1926// Lower ISD::GlobalTLSAddress using the "general dynamic" model
1927SDValue
1928ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
1929                                                 SelectionDAG &DAG) const {
1930  DebugLoc dl = GA->getDebugLoc();
1931  EVT PtrVT = getPointerTy();
1932  unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
1933  MachineFunction &MF = DAG.getMachineFunction();
1934  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1935  unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1936  ARMConstantPoolValue *CPV =
1937    new ARMConstantPoolValue(GA->getGlobal(), ARMPCLabelIndex,
1938                             ARMCP::CPValue, PCAdj, ARMCP::TLSGD, true);
1939  SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1940  Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
1941  Argument = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Argument,
1942                         MachinePointerInfo::getConstantPool(),
1943                         false, false, 0);
1944  SDValue Chain = Argument.getValue(1);
1945
1946  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1947  Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);
1948
1949  // call __tls_get_addr.
1950  ArgListTy Args;
1951  ArgListEntry Entry;
1952  Entry.Node = Argument;
1953  Entry.Ty = (const Type *) Type::getInt32Ty(*DAG.getContext());
1954  Args.push_back(Entry);
1955  // FIXME: is there useful debug info available here?
1956  std::pair<SDValue, SDValue> CallResult =
1957    LowerCallTo(Chain, (const Type *) Type::getInt32Ty(*DAG.getContext()),
1958                false, false, false, false,
1959                0, CallingConv::C, false, /*isReturnValueUsed=*/true,
1960                DAG.getExternalSymbol("__tls_get_addr", PtrVT), Args, DAG, dl);
1961  return CallResult.first;
1962}
1963
1964// Lower ISD::GlobalTLSAddress using the "initial exec" or
1965// "local exec" model.
1966SDValue
1967ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
1968                                        SelectionDAG &DAG) const {
1969  const GlobalValue *GV = GA->getGlobal();
1970  DebugLoc dl = GA->getDebugLoc();
1971  SDValue Offset;
1972  SDValue Chain = DAG.getEntryNode();
1973  EVT PtrVT = getPointerTy();
1974  // Get the Thread Pointer
1975  SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
1976
1977  if (GV->isDeclaration()) {
1978    MachineFunction &MF = DAG.getMachineFunction();
1979    ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1980    unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1981    // Initial exec model.
1982    unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
1983    ARMConstantPoolValue *CPV =
1984      new ARMConstantPoolValue(GA->getGlobal(), ARMPCLabelIndex,
1985                               ARMCP::CPValue, PCAdj, ARMCP::GOTTPOFF, true);
1986    Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1987    Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
1988    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
1989                         MachinePointerInfo::getConstantPool(),
1990                         false, false, 0);
1991    Chain = Offset.getValue(1);
1992
1993    SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1994    Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
1995
1996    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
1997                         MachinePointerInfo::getConstantPool(),
1998                         false, false, 0);
1999  } else {
2000    // local exec model
2001    ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV, ARMCP::TPOFF);
2002    Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2003    Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
2004    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
2005                         MachinePointerInfo::getConstantPool(),
2006                         false, false, 0);
2007  }
2008
2009  // The address of the thread local variable is the add of the thread
2010  // pointer with the offset of the variable.
2011  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
2012}
2013
2014SDValue
2015ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
2016  // TODO: implement the "local dynamic" model
2017  assert(Subtarget->isTargetELF() &&
2018         "TLS not implemented for non-ELF targets");
2019  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2020  // If the relocation model is PIC, use the "General Dynamic" TLS Model,
2021  // otherwise use the "Local Exec" TLS Model
2022  if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
2023    return LowerToTLSGeneralDynamicModel(GA, DAG);
2024  else
2025    return LowerToTLSExecModels(GA, DAG);
2026}
2027
2028SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
2029                                                 SelectionDAG &DAG) const {
2030  EVT PtrVT = getPointerTy();
2031  DebugLoc dl = Op.getDebugLoc();
2032  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
2033  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2034  if (RelocM == Reloc::PIC_) {
2035    bool UseGOTOFF = GV->hasLocalLinkage() || GV->hasHiddenVisibility();
2036    ARMConstantPoolValue *CPV =
2037      new ARMConstantPoolValue(GV, UseGOTOFF ? ARMCP::GOTOFF : ARMCP::GOT);
2038    SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2039    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2040    SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
2041                                 CPAddr,
2042                                 MachinePointerInfo::getConstantPool(),
2043                                 false, false, 0);
2044    SDValue Chain = Result.getValue(1);
2045    SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
2046    Result = DAG.getNode(ISD::ADD, dl, PtrVT, Result, GOT);
2047    if (!UseGOTOFF)
2048      Result = DAG.getLoad(PtrVT, dl, Chain, Result,
2049                           MachinePointerInfo::getGOT(), false, false, 0);
2050    return Result;
2051  }
2052
2053  // If we have T2 ops, we can materialize the address directly via movt/movw
2054  // pair. This is always cheaper.
2055  if (Subtarget->useMovt()) {
2056    ++NumMovwMovt;
2057    // FIXME: Once remat is capable of dealing with instructions with register
2058    // operands, expand this into two nodes.
2059    return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
2060                       DAG.getTargetGlobalAddress(GV, dl, PtrVT));
2061  } else {
2062    SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
2063    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2064    return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2065                       MachinePointerInfo::getConstantPool(),
2066                       false, false, 0);
2067  }
2068}
2069
2070SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
2071                                                    SelectionDAG &DAG) const {
2072  EVT PtrVT = getPointerTy();
2073  DebugLoc dl = Op.getDebugLoc();
2074  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
2075  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2076  MachineFunction &MF = DAG.getMachineFunction();
2077  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2078
2079  if (Subtarget->useMovt()) {
2080    ++NumMovwMovt;
2081    // FIXME: Once remat is capable of dealing with instructions with register
2082    // operands, expand this into two nodes.
2083    if (RelocM == Reloc::Static)
2084      return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
2085                                 DAG.getTargetGlobalAddress(GV, dl, PtrVT));
2086
2087    unsigned Wrapper = (RelocM == Reloc::PIC_)
2088      ? ARMISD::WrapperPIC : ARMISD::WrapperDYN;
2089    SDValue Result = DAG.getNode(Wrapper, dl, PtrVT,
2090                                 DAG.getTargetGlobalAddress(GV, dl, PtrVT));
2091    if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
2092      Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
2093                           MachinePointerInfo::getGOT(), false, false, 0);
2094    return Result;
2095  }
2096
2097  unsigned ARMPCLabelIndex = 0;
2098  SDValue CPAddr;
2099  if (RelocM == Reloc::Static) {
2100    CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
2101  } else {
2102    ARMPCLabelIndex = AFI->createPICLabelUId();
2103    unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : (Subtarget->isThumb()?4:8);
2104    ARMConstantPoolValue *CPV =
2105      new ARMConstantPoolValue(GV, ARMPCLabelIndex, ARMCP::CPValue, PCAdj);
2106    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2107  }
2108  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2109
2110  SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2111                               MachinePointerInfo::getConstantPool(),
2112                               false, false, 0);
2113  SDValue Chain = Result.getValue(1);
2114
2115  if (RelocM == Reloc::PIC_) {
2116    SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2117    Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2118  }
2119
2120  if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
2121    Result = DAG.getLoad(PtrVT, dl, Chain, Result, MachinePointerInfo::getGOT(),
2122                         false, false, 0);
2123
2124  return Result;
2125}
2126
2127SDValue ARMTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op,
2128                                                    SelectionDAG &DAG) const {
2129  assert(Subtarget->isTargetELF() &&
2130         "GLOBAL OFFSET TABLE not implemented for non-ELF targets");
2131  MachineFunction &MF = DAG.getMachineFunction();
2132  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2133  unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2134  EVT PtrVT = getPointerTy();
2135  DebugLoc dl = Op.getDebugLoc();
2136  unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
2137  ARMConstantPoolValue *CPV = new ARMConstantPoolValue(*DAG.getContext(),
2138                                                       "_GLOBAL_OFFSET_TABLE_",
2139                                                       ARMPCLabelIndex, PCAdj);
2140  SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2141  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2142  SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2143                               MachinePointerInfo::getConstantPool(),
2144                               false, false, 0);
2145  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2146  return DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2147}
2148
2149SDValue
2150ARMTargetLowering::LowerEH_SJLJ_DISPATCHSETUP(SDValue Op, SelectionDAG &DAG)
2151  const {
2152  DebugLoc dl = Op.getDebugLoc();
2153  return DAG.getNode(ARMISD::EH_SJLJ_DISPATCHSETUP, dl, MVT::Other,
2154                     Op.getOperand(0));
2155}
2156
2157SDValue
2158ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const {
2159  DebugLoc dl = Op.getDebugLoc();
2160  SDValue Val = DAG.getConstant(0, MVT::i32);
2161  return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl, MVT::i32, Op.getOperand(0),
2162                     Op.getOperand(1), Val);
2163}
2164
2165SDValue
2166ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const {
2167  DebugLoc dl = Op.getDebugLoc();
2168  return DAG.getNode(ARMISD::EH_SJLJ_LONGJMP, dl, MVT::Other, Op.getOperand(0),
2169                     Op.getOperand(1), DAG.getConstant(0, MVT::i32));
2170}
2171
2172SDValue
2173ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG,
2174                                          const ARMSubtarget *Subtarget) const {
2175  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2176  DebugLoc dl = Op.getDebugLoc();
2177  switch (IntNo) {
2178  default: return SDValue();    // Don't custom lower most intrinsics.
2179  case Intrinsic::arm_thread_pointer: {
2180    EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2181    return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
2182  }
2183  case Intrinsic::eh_sjlj_lsda: {
2184    MachineFunction &MF = DAG.getMachineFunction();
2185    ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2186    unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2187    EVT PtrVT = getPointerTy();
2188    DebugLoc dl = Op.getDebugLoc();
2189    Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2190    SDValue CPAddr;
2191    unsigned PCAdj = (RelocM != Reloc::PIC_)
2192      ? 0 : (Subtarget->isThumb() ? 4 : 8);
2193    ARMConstantPoolValue *CPV =
2194      new ARMConstantPoolValue(MF.getFunction(), ARMPCLabelIndex,
2195                               ARMCP::CPLSDA, PCAdj);
2196    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2197    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2198    SDValue Result =
2199      DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2200                  MachinePointerInfo::getConstantPool(),
2201                  false, false, 0);
2202
2203    if (RelocM == Reloc::PIC_) {
2204      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2205      Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2206    }
2207    return Result;
2208  }
2209  case Intrinsic::arm_neon_vmulls:
2210  case Intrinsic::arm_neon_vmullu: {
2211    unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmulls)
2212      ? ARMISD::VMULLs : ARMISD::VMULLu;
2213    return DAG.getNode(NewOpc, Op.getDebugLoc(), Op.getValueType(),
2214                       Op.getOperand(1), Op.getOperand(2));
2215  }
2216  }
2217}
2218
2219static SDValue LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG,
2220                               const ARMSubtarget *Subtarget) {
2221  DebugLoc dl = Op.getDebugLoc();
2222  if (!Subtarget->hasDataBarrier()) {
2223    // Some ARMv6 cpus can support data barriers with an mcr instruction.
2224    // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
2225    // here.
2226    assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&
2227           "Unexpected ISD::MEMBARRIER encountered. Should be libcall!");
2228    return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
2229                       DAG.getConstant(0, MVT::i32));
2230  }
2231
2232  SDValue Op5 = Op.getOperand(5);
2233  bool isDeviceBarrier = cast<ConstantSDNode>(Op5)->getZExtValue() != 0;
2234  unsigned isLL = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
2235  unsigned isLS = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
2236  bool isOnlyStoreBarrier = (isLL == 0 && isLS == 0);
2237
2238  ARM_MB::MemBOpt DMBOpt;
2239  if (isDeviceBarrier)
2240    DMBOpt = isOnlyStoreBarrier ? ARM_MB::ST : ARM_MB::SY;
2241  else
2242    DMBOpt = isOnlyStoreBarrier ? ARM_MB::ISHST : ARM_MB::ISH;
2243  return DAG.getNode(ARMISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0),
2244                     DAG.getConstant(DMBOpt, MVT::i32));
2245}
2246
2247static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG,
2248                             const ARMSubtarget *Subtarget) {
2249  // ARM pre v5TE and Thumb1 does not have preload instructions.
2250  if (!(Subtarget->isThumb2() ||
2251        (!Subtarget->isThumb1Only() && Subtarget->hasV5TEOps())))
2252    // Just preserve the chain.
2253    return Op.getOperand(0);
2254
2255  DebugLoc dl = Op.getDebugLoc();
2256  unsigned isRead = ~cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() & 1;
2257  if (!isRead &&
2258      (!Subtarget->hasV7Ops() || !Subtarget->hasMPExtension()))
2259    // ARMv7 with MP extension has PLDW.
2260    return Op.getOperand(0);
2261
2262  if (Subtarget->isThumb())
2263    // Invert the bits.
2264    isRead = ~isRead & 1;
2265  unsigned isData = Subtarget->isThumb() ? 0 : 1;
2266
2267  // Currently there is no intrinsic that matches pli.
2268  return DAG.getNode(ARMISD::PRELOAD, dl, MVT::Other, Op.getOperand(0),
2269                     Op.getOperand(1), DAG.getConstant(isRead, MVT::i32),
2270                     DAG.getConstant(isData, MVT::i32));
2271}
2272
2273static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) {
2274  MachineFunction &MF = DAG.getMachineFunction();
2275  ARMFunctionInfo *FuncInfo = MF.getInfo<ARMFunctionInfo>();
2276
2277  // vastart just stores the address of the VarArgsFrameIndex slot into the
2278  // memory location argument.
2279  DebugLoc dl = Op.getDebugLoc();
2280  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2281  SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2282  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2283  return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
2284                      MachinePointerInfo(SV), false, false, 0);
2285}
2286
2287SDValue
2288ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA, CCValAssign &NextVA,
2289                                        SDValue &Root, SelectionDAG &DAG,
2290                                        DebugLoc dl) const {
2291  MachineFunction &MF = DAG.getMachineFunction();
2292  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2293
2294  TargetRegisterClass *RC;
2295  if (AFI->isThumb1OnlyFunction())
2296    RC = ARM::tGPRRegisterClass;
2297  else
2298    RC = ARM::GPRRegisterClass;
2299
2300  // Transform the arguments stored in physical registers into virtual ones.
2301  unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2302  SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
2303
2304  SDValue ArgValue2;
2305  if (NextVA.isMemLoc()) {
2306    MachineFrameInfo *MFI = MF.getFrameInfo();
2307    int FI = MFI->CreateFixedObject(4, NextVA.getLocMemOffset(), true);
2308
2309    // Create load node to retrieve arguments from the stack.
2310    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2311    ArgValue2 = DAG.getLoad(MVT::i32, dl, Root, FIN,
2312                            MachinePointerInfo::getFixedStack(FI),
2313                            false, false, 0);
2314  } else {
2315    Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
2316    ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
2317  }
2318
2319  return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2);
2320}
2321
2322void
2323ARMTargetLowering::computeRegArea(CCState &CCInfo, MachineFunction &MF,
2324                                  unsigned &VARegSize, unsigned &VARegSaveSize)
2325  const {
2326  unsigned NumGPRs;
2327  if (CCInfo.isFirstByValRegValid())
2328    NumGPRs = ARM::R4 - CCInfo.getFirstByValReg();
2329  else {
2330    unsigned int firstUnalloced;
2331    firstUnalloced = CCInfo.getFirstUnallocated(GPRArgRegs,
2332                                                sizeof(GPRArgRegs) /
2333                                                sizeof(GPRArgRegs[0]));
2334    NumGPRs = (firstUnalloced <= 3) ? (4 - firstUnalloced) : 0;
2335  }
2336
2337  unsigned Align = MF.getTarget().getFrameLowering()->getStackAlignment();
2338  VARegSize = NumGPRs * 4;
2339  VARegSaveSize = (VARegSize + Align - 1) & ~(Align - 1);
2340}
2341
2342// The remaining GPRs hold either the beginning of variable-argument
2343// data, or the beginning of an aggregate passed by value (usuall
2344// byval).  Either way, we allocate stack slots adjacent to the data
2345// provided by our caller, and store the unallocated registers there.
2346// If this is a variadic function, the va_list pointer will begin with
2347// these values; otherwise, this reassembles a (byval) structure that
2348// was split between registers and memory.
2349void
2350ARMTargetLowering::VarArgStyleRegisters(CCState &CCInfo, SelectionDAG &DAG,
2351                                        DebugLoc dl, SDValue &Chain,
2352                                        unsigned ArgOffset) const {
2353  MachineFunction &MF = DAG.getMachineFunction();
2354  MachineFrameInfo *MFI = MF.getFrameInfo();
2355  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2356  unsigned firstRegToSaveIndex;
2357  if (CCInfo.isFirstByValRegValid())
2358    firstRegToSaveIndex = CCInfo.getFirstByValReg() - ARM::R0;
2359  else {
2360    firstRegToSaveIndex = CCInfo.getFirstUnallocated
2361      (GPRArgRegs, sizeof(GPRArgRegs) / sizeof(GPRArgRegs[0]));
2362  }
2363
2364  unsigned VARegSize, VARegSaveSize;
2365  computeRegArea(CCInfo, MF, VARegSize, VARegSaveSize);
2366  if (VARegSaveSize) {
2367    // If this function is vararg, store any remaining integer argument regs
2368    // to their spots on the stack so that they may be loaded by deferencing
2369    // the result of va_next.
2370    AFI->setVarArgsRegSaveSize(VARegSaveSize);
2371    AFI->setVarArgsFrameIndex(MFI->CreateFixedObject(VARegSaveSize,
2372                                                     ArgOffset + VARegSaveSize
2373                                                     - VARegSize,
2374                                                     false));
2375    SDValue FIN = DAG.getFrameIndex(AFI->getVarArgsFrameIndex(),
2376                                    getPointerTy());
2377
2378    SmallVector<SDValue, 4> MemOps;
2379    for (; firstRegToSaveIndex < 4; ++firstRegToSaveIndex) {
2380      TargetRegisterClass *RC;
2381      if (AFI->isThumb1OnlyFunction())
2382        RC = ARM::tGPRRegisterClass;
2383      else
2384        RC = ARM::GPRRegisterClass;
2385
2386      unsigned VReg = MF.addLiveIn(GPRArgRegs[firstRegToSaveIndex], RC);
2387      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
2388      SDValue Store =
2389        DAG.getStore(Val.getValue(1), dl, Val, FIN,
2390                 MachinePointerInfo::getFixedStack(AFI->getVarArgsFrameIndex()),
2391                     false, false, 0);
2392      MemOps.push_back(Store);
2393      FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN,
2394                        DAG.getConstant(4, getPointerTy()));
2395    }
2396    if (!MemOps.empty())
2397      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2398                          &MemOps[0], MemOps.size());
2399  } else
2400    // This will point to the next argument passed via stack.
2401    AFI->setVarArgsFrameIndex(MFI->CreateFixedObject(4, ArgOffset, true));
2402}
2403
2404SDValue
2405ARMTargetLowering::LowerFormalArguments(SDValue Chain,
2406                                        CallingConv::ID CallConv, bool isVarArg,
2407                                        const SmallVectorImpl<ISD::InputArg>
2408                                          &Ins,
2409                                        DebugLoc dl, SelectionDAG &DAG,
2410                                        SmallVectorImpl<SDValue> &InVals)
2411                                          const {
2412  MachineFunction &MF = DAG.getMachineFunction();
2413  MachineFrameInfo *MFI = MF.getFrameInfo();
2414
2415  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2416
2417  // Assign locations to all of the incoming arguments.
2418  SmallVector<CCValAssign, 16> ArgLocs;
2419  CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs,
2420                 *DAG.getContext());
2421  CCInfo.setCallOrPrologue(Prologue);
2422  CCInfo.AnalyzeFormalArguments(Ins,
2423                                CCAssignFnForNode(CallConv, /* Return*/ false,
2424                                                  isVarArg));
2425
2426  SmallVector<SDValue, 16> ArgValues;
2427  int lastInsIndex = -1;
2428
2429  SDValue ArgValue;
2430  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2431    CCValAssign &VA = ArgLocs[i];
2432
2433    // Arguments stored in registers.
2434    if (VA.isRegLoc()) {
2435      EVT RegVT = VA.getLocVT();
2436
2437      if (VA.needsCustom()) {
2438        // f64 and vector types are split up into multiple registers or
2439        // combinations of registers and stack slots.
2440        if (VA.getLocVT() == MVT::v2f64) {
2441          SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i],
2442                                                   Chain, DAG, dl);
2443          VA = ArgLocs[++i]; // skip ahead to next loc
2444          SDValue ArgValue2;
2445          if (VA.isMemLoc()) {
2446            int FI = MFI->CreateFixedObject(8, VA.getLocMemOffset(), true);
2447            SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2448            ArgValue2 = DAG.getLoad(MVT::f64, dl, Chain, FIN,
2449                                    MachinePointerInfo::getFixedStack(FI),
2450                                    false, false, 0);
2451          } else {
2452            ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i],
2453                                             Chain, DAG, dl);
2454          }
2455          ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
2456          ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
2457                                 ArgValue, ArgValue1, DAG.getIntPtrConstant(0));
2458          ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
2459                                 ArgValue, ArgValue2, DAG.getIntPtrConstant(1));
2460        } else
2461          ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
2462
2463      } else {
2464        TargetRegisterClass *RC;
2465
2466        if (RegVT == MVT::f32)
2467          RC = ARM::SPRRegisterClass;
2468        else if (RegVT == MVT::f64)
2469          RC = ARM::DPRRegisterClass;
2470        else if (RegVT == MVT::v2f64)
2471          RC = ARM::QPRRegisterClass;
2472        else if (RegVT == MVT::i32)
2473          RC = (AFI->isThumb1OnlyFunction() ?
2474                ARM::tGPRRegisterClass : ARM::GPRRegisterClass);
2475        else
2476          llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
2477
2478        // Transform the arguments in physical registers into virtual ones.
2479        unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2480        ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
2481      }
2482
2483      // If this is an 8 or 16-bit value, it is really passed promoted
2484      // to 32 bits.  Insert an assert[sz]ext to capture this, then
2485      // truncate to the right size.
2486      switch (VA.getLocInfo()) {
2487      default: llvm_unreachable("Unknown loc info!");
2488      case CCValAssign::Full: break;
2489      case CCValAssign::BCvt:
2490        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
2491        break;
2492      case CCValAssign::SExt:
2493        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
2494                               DAG.getValueType(VA.getValVT()));
2495        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
2496        break;
2497      case CCValAssign::ZExt:
2498        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
2499                               DAG.getValueType(VA.getValVT()));
2500        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
2501        break;
2502      }
2503
2504      InVals.push_back(ArgValue);
2505
2506    } else { // VA.isRegLoc()
2507
2508      // sanity check
2509      assert(VA.isMemLoc());
2510      assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered");
2511
2512      int index = ArgLocs[i].getValNo();
2513
2514      // Some Ins[] entries become multiple ArgLoc[] entries.
2515      // Process them only once.
2516      if (index != lastInsIndex)
2517        {
2518          ISD::ArgFlagsTy Flags = Ins[index].Flags;
2519          // FIXME: For now, all byval parameter objects are marked mutable.
2520          // This can be changed with more analysis.
2521          // In case of tail call optimization mark all arguments mutable.
2522          // Since they could be overwritten by lowering of arguments in case of
2523          // a tail call.
2524          if (Flags.isByVal()) {
2525            unsigned VARegSize, VARegSaveSize;
2526            computeRegArea(CCInfo, MF, VARegSize, VARegSaveSize);
2527            VarArgStyleRegisters(CCInfo, DAG, dl, Chain, 0);
2528            unsigned Bytes = Flags.getByValSize() - VARegSize;
2529            if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
2530            int FI = MFI->CreateFixedObject(Bytes,
2531                                            VA.getLocMemOffset(), false);
2532            InVals.push_back(DAG.getFrameIndex(FI, getPointerTy()));
2533          } else {
2534            int FI = MFI->CreateFixedObject(VA.getLocVT().getSizeInBits()/8,
2535                                            VA.getLocMemOffset(), true);
2536
2537            // Create load nodes to retrieve arguments from the stack.
2538            SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2539            InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
2540                                         MachinePointerInfo::getFixedStack(FI),
2541                                         false, false, 0));
2542          }
2543          lastInsIndex = index;
2544        }
2545    }
2546  }
2547
2548  // varargs
2549  if (isVarArg)
2550    VarArgStyleRegisters(CCInfo, DAG, dl, Chain, CCInfo.getNextStackOffset());
2551
2552  return Chain;
2553}
2554
2555/// isFloatingPointZero - Return true if this is +0.0.
2556static bool isFloatingPointZero(SDValue Op) {
2557  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
2558    return CFP->getValueAPF().isPosZero();
2559  else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
2560    // Maybe this has already been legalized into the constant pool?
2561    if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
2562      SDValue WrapperOp = Op.getOperand(1).getOperand(0);
2563      if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
2564        if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
2565          return CFP->getValueAPF().isPosZero();
2566    }
2567  }
2568  return false;
2569}
2570
2571/// Returns appropriate ARM CMP (cmp) and corresponding condition code for
2572/// the given operands.
2573SDValue
2574ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
2575                             SDValue &ARMcc, SelectionDAG &DAG,
2576                             DebugLoc dl) const {
2577  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
2578    unsigned C = RHSC->getZExtValue();
2579    if (!isLegalICmpImmediate(C)) {
2580      // Constant does not fit, try adjusting it by one?
2581      switch (CC) {
2582      default: break;
2583      case ISD::SETLT:
2584      case ISD::SETGE:
2585        if (C != 0x80000000 && isLegalICmpImmediate(C-1)) {
2586          CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
2587          RHS = DAG.getConstant(C-1, MVT::i32);
2588        }
2589        break;
2590      case ISD::SETULT:
2591      case ISD::SETUGE:
2592        if (C != 0 && isLegalICmpImmediate(C-1)) {
2593          CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
2594          RHS = DAG.getConstant(C-1, MVT::i32);
2595        }
2596        break;
2597      case ISD::SETLE:
2598      case ISD::SETGT:
2599        if (C != 0x7fffffff && isLegalICmpImmediate(C+1)) {
2600          CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
2601          RHS = DAG.getConstant(C+1, MVT::i32);
2602        }
2603        break;
2604      case ISD::SETULE:
2605      case ISD::SETUGT:
2606        if (C != 0xffffffff && isLegalICmpImmediate(C+1)) {
2607          CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
2608          RHS = DAG.getConstant(C+1, MVT::i32);
2609        }
2610        break;
2611      }
2612    }
2613  }
2614
2615  ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
2616  ARMISD::NodeType CompareType;
2617  switch (CondCode) {
2618  default:
2619    CompareType = ARMISD::CMP;
2620    break;
2621  case ARMCC::EQ:
2622  case ARMCC::NE:
2623    // Uses only Z Flag
2624    CompareType = ARMISD::CMPZ;
2625    break;
2626  }
2627  ARMcc = DAG.getConstant(CondCode, MVT::i32);
2628  return DAG.getNode(CompareType, dl, MVT::Glue, LHS, RHS);
2629}
2630
2631/// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
2632SDValue
2633ARMTargetLowering::getVFPCmp(SDValue LHS, SDValue RHS, SelectionDAG &DAG,
2634                             DebugLoc dl) const {
2635  SDValue Cmp;
2636  if (!isFloatingPointZero(RHS))
2637    Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Glue, LHS, RHS);
2638  else
2639    Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Glue, LHS);
2640  return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Glue, Cmp);
2641}
2642
2643/// duplicateCmp - Glue values can have only one use, so this function
2644/// duplicates a comparison node.
2645SDValue
2646ARMTargetLowering::duplicateCmp(SDValue Cmp, SelectionDAG &DAG) const {
2647  unsigned Opc = Cmp.getOpcode();
2648  DebugLoc DL = Cmp.getDebugLoc();
2649  if (Opc == ARMISD::CMP || Opc == ARMISD::CMPZ)
2650    return DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
2651
2652  assert(Opc == ARMISD::FMSTAT && "unexpected comparison operation");
2653  Cmp = Cmp.getOperand(0);
2654  Opc = Cmp.getOpcode();
2655  if (Opc == ARMISD::CMPFP)
2656    Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
2657  else {
2658    assert(Opc == ARMISD::CMPFPw0 && "unexpected operand of FMSTAT");
2659    Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0));
2660  }
2661  return DAG.getNode(ARMISD::FMSTAT, DL, MVT::Glue, Cmp);
2662}
2663
2664SDValue ARMTargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
2665  SDValue Cond = Op.getOperand(0);
2666  SDValue SelectTrue = Op.getOperand(1);
2667  SDValue SelectFalse = Op.getOperand(2);
2668  DebugLoc dl = Op.getDebugLoc();
2669
2670  // Convert:
2671  //
2672  //   (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond)
2673  //   (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond)
2674  //
2675  if (Cond.getOpcode() == ARMISD::CMOV && Cond.hasOneUse()) {
2676    const ConstantSDNode *CMOVTrue =
2677      dyn_cast<ConstantSDNode>(Cond.getOperand(0));
2678    const ConstantSDNode *CMOVFalse =
2679      dyn_cast<ConstantSDNode>(Cond.getOperand(1));
2680
2681    if (CMOVTrue && CMOVFalse) {
2682      unsigned CMOVTrueVal = CMOVTrue->getZExtValue();
2683      unsigned CMOVFalseVal = CMOVFalse->getZExtValue();
2684
2685      SDValue True;
2686      SDValue False;
2687      if (CMOVTrueVal == 1 && CMOVFalseVal == 0) {
2688        True = SelectTrue;
2689        False = SelectFalse;
2690      } else if (CMOVTrueVal == 0 && CMOVFalseVal == 1) {
2691        True = SelectFalse;
2692        False = SelectTrue;
2693      }
2694
2695      if (True.getNode() && False.getNode()) {
2696        EVT VT = Cond.getValueType();
2697        SDValue ARMcc = Cond.getOperand(2);
2698        SDValue CCR = Cond.getOperand(3);
2699        SDValue Cmp = duplicateCmp(Cond.getOperand(4), DAG);
2700        return DAG.getNode(ARMISD::CMOV, dl, VT, True, False, ARMcc, CCR, Cmp);
2701      }
2702    }
2703  }
2704
2705  return DAG.getSelectCC(dl, Cond,
2706                         DAG.getConstant(0, Cond.getValueType()),
2707                         SelectTrue, SelectFalse, ISD::SETNE);
2708}
2709
2710SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
2711  EVT VT = Op.getValueType();
2712  SDValue LHS = Op.getOperand(0);
2713  SDValue RHS = Op.getOperand(1);
2714  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2715  SDValue TrueVal = Op.getOperand(2);
2716  SDValue FalseVal = Op.getOperand(3);
2717  DebugLoc dl = Op.getDebugLoc();
2718
2719  if (LHS.getValueType() == MVT::i32) {
2720    SDValue ARMcc;
2721    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2722    SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
2723    return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, CCR,Cmp);
2724  }
2725
2726  ARMCC::CondCodes CondCode, CondCode2;
2727  FPCCToARMCC(CC, CondCode, CondCode2);
2728
2729  SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
2730  SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
2731  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2732  SDValue Result = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal,
2733                               ARMcc, CCR, Cmp);
2734  if (CondCode2 != ARMCC::AL) {
2735    SDValue ARMcc2 = DAG.getConstant(CondCode2, MVT::i32);
2736    // FIXME: Needs another CMP because flag can have but one use.
2737    SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl);
2738    Result = DAG.getNode(ARMISD::CMOV, dl, VT,
2739                         Result, TrueVal, ARMcc2, CCR, Cmp2);
2740  }
2741  return Result;
2742}
2743
2744/// canChangeToInt - Given the fp compare operand, return true if it is suitable
2745/// to morph to an integer compare sequence.
2746static bool canChangeToInt(SDValue Op, bool &SeenZero,
2747                           const ARMSubtarget *Subtarget) {
2748  SDNode *N = Op.getNode();
2749  if (!N->hasOneUse())
2750    // Otherwise it requires moving the value from fp to integer registers.
2751    return false;
2752  if (!N->getNumValues())
2753    return false;
2754  EVT VT = Op.getValueType();
2755  if (VT != MVT::f32 && !Subtarget->isFPBrccSlow())
2756    // f32 case is generally profitable. f64 case only makes sense when vcmpe +
2757    // vmrs are very slow, e.g. cortex-a8.
2758    return false;
2759
2760  if (isFloatingPointZero(Op)) {
2761    SeenZero = true;
2762    return true;
2763  }
2764  return ISD::isNormalLoad(N);
2765}
2766
2767static SDValue bitcastf32Toi32(SDValue Op, SelectionDAG &DAG) {
2768  if (isFloatingPointZero(Op))
2769    return DAG.getConstant(0, MVT::i32);
2770
2771  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op))
2772    return DAG.getLoad(MVT::i32, Op.getDebugLoc(),
2773                       Ld->getChain(), Ld->getBasePtr(), Ld->getPointerInfo(),
2774                       Ld->isVolatile(), Ld->isNonTemporal(),
2775                       Ld->getAlignment());
2776
2777  llvm_unreachable("Unknown VFP cmp argument!");
2778}
2779
2780static void expandf64Toi32(SDValue Op, SelectionDAG &DAG,
2781                           SDValue &RetVal1, SDValue &RetVal2) {
2782  if (isFloatingPointZero(Op)) {
2783    RetVal1 = DAG.getConstant(0, MVT::i32);
2784    RetVal2 = DAG.getConstant(0, MVT::i32);
2785    return;
2786  }
2787
2788  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) {
2789    SDValue Ptr = Ld->getBasePtr();
2790    RetVal1 = DAG.getLoad(MVT::i32, Op.getDebugLoc(),
2791                          Ld->getChain(), Ptr,
2792                          Ld->getPointerInfo(),
2793                          Ld->isVolatile(), Ld->isNonTemporal(),
2794                          Ld->getAlignment());
2795
2796    EVT PtrType = Ptr.getValueType();
2797    unsigned NewAlign = MinAlign(Ld->getAlignment(), 4);
2798    SDValue NewPtr = DAG.getNode(ISD::ADD, Op.getDebugLoc(),
2799                                 PtrType, Ptr, DAG.getConstant(4, PtrType));
2800    RetVal2 = DAG.getLoad(MVT::i32, Op.getDebugLoc(),
2801                          Ld->getChain(), NewPtr,
2802                          Ld->getPointerInfo().getWithOffset(4),
2803                          Ld->isVolatile(), Ld->isNonTemporal(),
2804                          NewAlign);
2805    return;
2806  }
2807
2808  llvm_unreachable("Unknown VFP cmp argument!");
2809}
2810
2811/// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some
2812/// f32 and even f64 comparisons to integer ones.
2813SDValue
2814ARMTargetLowering::OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const {
2815  SDValue Chain = Op.getOperand(0);
2816  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
2817  SDValue LHS = Op.getOperand(2);
2818  SDValue RHS = Op.getOperand(3);
2819  SDValue Dest = Op.getOperand(4);
2820  DebugLoc dl = Op.getDebugLoc();
2821
2822  bool SeenZero = false;
2823  if (canChangeToInt(LHS, SeenZero, Subtarget) &&
2824      canChangeToInt(RHS, SeenZero, Subtarget) &&
2825      // If one of the operand is zero, it's safe to ignore the NaN case since
2826      // we only care about equality comparisons.
2827      (SeenZero || (DAG.isKnownNeverNaN(LHS) && DAG.isKnownNeverNaN(RHS)))) {
2828    // If unsafe fp math optimization is enabled and there are no other uses of
2829    // the CMP operands, and the condition code is EQ or NE, we can optimize it
2830    // to an integer comparison.
2831    if (CC == ISD::SETOEQ)
2832      CC = ISD::SETEQ;
2833    else if (CC == ISD::SETUNE)
2834      CC = ISD::SETNE;
2835
2836    SDValue ARMcc;
2837    if (LHS.getValueType() == MVT::f32) {
2838      LHS = bitcastf32Toi32(LHS, DAG);
2839      RHS = bitcastf32Toi32(RHS, DAG);
2840      SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
2841      SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2842      return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
2843                         Chain, Dest, ARMcc, CCR, Cmp);
2844    }
2845
2846    SDValue LHS1, LHS2;
2847    SDValue RHS1, RHS2;
2848    expandf64Toi32(LHS, DAG, LHS1, LHS2);
2849    expandf64Toi32(RHS, DAG, RHS1, RHS2);
2850    ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
2851    ARMcc = DAG.getConstant(CondCode, MVT::i32);
2852    SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
2853    SDValue Ops[] = { Chain, ARMcc, LHS1, LHS2, RHS1, RHS2, Dest };
2854    return DAG.getNode(ARMISD::BCC_i64, dl, VTList, Ops, 7);
2855  }
2856
2857  return SDValue();
2858}
2859
2860SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
2861  SDValue Chain = Op.getOperand(0);
2862  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
2863  SDValue LHS = Op.getOperand(2);
2864  SDValue RHS = Op.getOperand(3);
2865  SDValue Dest = Op.getOperand(4);
2866  DebugLoc dl = Op.getDebugLoc();
2867
2868  if (LHS.getValueType() == MVT::i32) {
2869    SDValue ARMcc;
2870    SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
2871    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2872    return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
2873                       Chain, Dest, ARMcc, CCR, Cmp);
2874  }
2875
2876  assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
2877
2878  if (UnsafeFPMath &&
2879      (CC == ISD::SETEQ || CC == ISD::SETOEQ ||
2880       CC == ISD::SETNE || CC == ISD::SETUNE)) {
2881    SDValue Result = OptimizeVFPBrcond(Op, DAG);
2882    if (Result.getNode())
2883      return Result;
2884  }
2885
2886  ARMCC::CondCodes CondCode, CondCode2;
2887  FPCCToARMCC(CC, CondCode, CondCode2);
2888
2889  SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
2890  SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
2891  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2892  SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
2893  SDValue Ops[] = { Chain, Dest, ARMcc, CCR, Cmp };
2894  SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
2895  if (CondCode2 != ARMCC::AL) {
2896    ARMcc = DAG.getConstant(CondCode2, MVT::i32);
2897    SDValue Ops[] = { Res, Dest, ARMcc, CCR, Res.getValue(1) };
2898    Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
2899  }
2900  return Res;
2901}
2902
2903SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
2904  SDValue Chain = Op.getOperand(0);
2905  SDValue Table = Op.getOperand(1);
2906  SDValue Index = Op.getOperand(2);
2907  DebugLoc dl = Op.getDebugLoc();
2908
2909  EVT PTy = getPointerTy();
2910  JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
2911  ARMFunctionInfo *AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
2912  SDValue UId = DAG.getConstant(AFI->createJumpTableUId(), PTy);
2913  SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
2914  Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI, UId);
2915  Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, PTy));
2916  SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
2917  if (Subtarget->isThumb2()) {
2918    // Thumb2 uses a two-level jump. That is, it jumps into the jump table
2919    // which does another jump to the destination. This also makes it easier
2920    // to translate it to TBB / TBH later.
2921    // FIXME: This might not work if the function is extremely large.
2922    return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain,
2923                       Addr, Op.getOperand(2), JTI, UId);
2924  }
2925  if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2926    Addr = DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr,
2927                       MachinePointerInfo::getJumpTable(),
2928                       false, false, 0);
2929    Chain = Addr.getValue(1);
2930    Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, Table);
2931    return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
2932  } else {
2933    Addr = DAG.getLoad(PTy, dl, Chain, Addr,
2934                       MachinePointerInfo::getJumpTable(), false, false, 0);
2935    Chain = Addr.getValue(1);
2936    return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
2937  }
2938}
2939
2940static SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
2941  DebugLoc dl = Op.getDebugLoc();
2942  unsigned Opc;
2943
2944  switch (Op.getOpcode()) {
2945  default:
2946    assert(0 && "Invalid opcode!");
2947  case ISD::FP_TO_SINT:
2948    Opc = ARMISD::FTOSI;
2949    break;
2950  case ISD::FP_TO_UINT:
2951    Opc = ARMISD::FTOUI;
2952    break;
2953  }
2954  Op = DAG.getNode(Opc, dl, MVT::f32, Op.getOperand(0));
2955  return DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
2956}
2957
2958static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
2959  EVT VT = Op.getValueType();
2960  DebugLoc dl = Op.getDebugLoc();
2961
2962  EVT OperandVT = Op.getOperand(0).getValueType();
2963  assert(OperandVT == MVT::v4i16 && "Invalid type for custom lowering!");
2964  if (VT != MVT::v4f32)
2965    return DAG.UnrollVectorOp(Op.getNode());
2966
2967  unsigned CastOpc;
2968  unsigned Opc;
2969  switch (Op.getOpcode()) {
2970  default:
2971    assert(0 && "Invalid opcode!");
2972  case ISD::SINT_TO_FP:
2973    CastOpc = ISD::SIGN_EXTEND;
2974    Opc = ISD::SINT_TO_FP;
2975    break;
2976  case ISD::UINT_TO_FP:
2977    CastOpc = ISD::ZERO_EXTEND;
2978    Opc = ISD::UINT_TO_FP;
2979    break;
2980  }
2981
2982  Op = DAG.getNode(CastOpc, dl, MVT::v4i32, Op.getOperand(0));
2983  return DAG.getNode(Opc, dl, VT, Op);
2984}
2985
2986static SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
2987  EVT VT = Op.getValueType();
2988  if (VT.isVector())
2989    return LowerVectorINT_TO_FP(Op, DAG);
2990
2991  DebugLoc dl = Op.getDebugLoc();
2992  unsigned Opc;
2993
2994  switch (Op.getOpcode()) {
2995  default:
2996    assert(0 && "Invalid opcode!");
2997  case ISD::SINT_TO_FP:
2998    Opc = ARMISD::SITOF;
2999    break;
3000  case ISD::UINT_TO_FP:
3001    Opc = ARMISD::UITOF;
3002    break;
3003  }
3004
3005  Op = DAG.getNode(ISD::BITCAST, dl, MVT::f32, Op.getOperand(0));
3006  return DAG.getNode(Opc, dl, VT, Op);
3007}
3008
3009SDValue ARMTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
3010  // Implement fcopysign with a fabs and a conditional fneg.
3011  SDValue Tmp0 = Op.getOperand(0);
3012  SDValue Tmp1 = Op.getOperand(1);
3013  DebugLoc dl = Op.getDebugLoc();
3014  EVT VT = Op.getValueType();
3015  EVT SrcVT = Tmp1.getValueType();
3016  bool InGPR = Tmp0.getOpcode() == ISD::BITCAST ||
3017    Tmp0.getOpcode() == ARMISD::VMOVDRR;
3018  bool UseNEON = !InGPR && Subtarget->hasNEON();
3019
3020  if (UseNEON) {
3021    // Use VBSL to copy the sign bit.
3022    unsigned EncodedVal = ARM_AM::createNEONModImm(0x6, 0x80);
3023    SDValue Mask = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v2i32,
3024                               DAG.getTargetConstant(EncodedVal, MVT::i32));
3025    EVT OpVT = (VT == MVT::f32) ? MVT::v2i32 : MVT::v1i64;
3026    if (VT == MVT::f64)
3027      Mask = DAG.getNode(ARMISD::VSHL, dl, OpVT,
3028                         DAG.getNode(ISD::BITCAST, dl, OpVT, Mask),
3029                         DAG.getConstant(32, MVT::i32));
3030    else /*if (VT == MVT::f32)*/
3031      Tmp0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp0);
3032    if (SrcVT == MVT::f32) {
3033      Tmp1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp1);
3034      if (VT == MVT::f64)
3035        Tmp1 = DAG.getNode(ARMISD::VSHL, dl, OpVT,
3036                           DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1),
3037                           DAG.getConstant(32, MVT::i32));
3038    } else if (VT == MVT::f32)
3039      Tmp1 = DAG.getNode(ARMISD::VSHRu, dl, MVT::v1i64,
3040                         DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, Tmp1),
3041                         DAG.getConstant(32, MVT::i32));
3042    Tmp0 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp0);
3043    Tmp1 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1);
3044
3045    SDValue AllOnes = DAG.getTargetConstant(ARM_AM::createNEONModImm(0xe, 0xff),
3046                                            MVT::i32);
3047    AllOnes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v8i8, AllOnes);
3048    SDValue MaskNot = DAG.getNode(ISD::XOR, dl, OpVT, Mask,
3049                                  DAG.getNode(ISD::BITCAST, dl, OpVT, AllOnes));
3050
3051    SDValue Res = DAG.getNode(ISD::OR, dl, OpVT,
3052                              DAG.getNode(ISD::AND, dl, OpVT, Tmp1, Mask),
3053                              DAG.getNode(ISD::AND, dl, OpVT, Tmp0, MaskNot));
3054    if (VT == MVT::f32) {
3055      Res = DAG.getNode(ISD::BITCAST, dl, MVT::v2f32, Res);
3056      Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, Res,
3057                        DAG.getConstant(0, MVT::i32));
3058    } else {
3059      Res = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Res);
3060    }
3061
3062    return Res;
3063  }
3064
3065  // Bitcast operand 1 to i32.
3066  if (SrcVT == MVT::f64)
3067    Tmp1 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
3068                       &Tmp1, 1).getValue(1);
3069  Tmp1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp1);
3070
3071  // Or in the signbit with integer operations.
3072  SDValue Mask1 = DAG.getConstant(0x80000000, MVT::i32);
3073  SDValue Mask2 = DAG.getConstant(0x7fffffff, MVT::i32);
3074  Tmp1 = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp1, Mask1);
3075  if (VT == MVT::f32) {
3076    Tmp0 = DAG.getNode(ISD::AND, dl, MVT::i32,
3077                       DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp0), Mask2);
3078    return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
3079                       DAG.getNode(ISD::OR, dl, MVT::i32, Tmp0, Tmp1));
3080  }
3081
3082  // f64: Or the high part with signbit and then combine two parts.
3083  Tmp0 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
3084                     &Tmp0, 1);
3085  SDValue Lo = Tmp0.getValue(0);
3086  SDValue Hi = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp0.getValue(1), Mask2);
3087  Hi = DAG.getNode(ISD::OR, dl, MVT::i32, Hi, Tmp1);
3088  return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
3089}
3090
3091SDValue ARMTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{
3092  MachineFunction &MF = DAG.getMachineFunction();
3093  MachineFrameInfo *MFI = MF.getFrameInfo();
3094  MFI->setReturnAddressIsTaken(true);
3095
3096  EVT VT = Op.getValueType();
3097  DebugLoc dl = Op.getDebugLoc();
3098  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3099  if (Depth) {
3100    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
3101    SDValue Offset = DAG.getConstant(4, MVT::i32);
3102    return DAG.getLoad(VT, dl, DAG.getEntryNode(),
3103                       DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
3104                       MachinePointerInfo(), false, false, 0);
3105  }
3106
3107  // Return LR, which contains the return address. Mark it an implicit live-in.
3108  unsigned Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32));
3109  return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
3110}
3111
3112SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
3113  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3114  MFI->setFrameAddressIsTaken(true);
3115
3116  EVT VT = Op.getValueType();
3117  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
3118  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3119  unsigned FrameReg = (Subtarget->isThumb() || Subtarget->isTargetDarwin())
3120    ? ARM::R7 : ARM::R11;
3121  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
3122  while (Depth--)
3123    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
3124                            MachinePointerInfo(),
3125                            false, false, 0);
3126  return FrameAddr;
3127}
3128
3129/// ExpandBITCAST - If the target supports VFP, this function is called to
3130/// expand a bit convert where either the source or destination type is i64 to
3131/// use a VMOVDRR or VMOVRRD node.  This should not be done when the non-i64
3132/// operand type is illegal (e.g., v2f32 for a target that doesn't support
3133/// vectors), since the legalizer won't know what to do with that.
3134static SDValue ExpandBITCAST(SDNode *N, SelectionDAG &DAG) {
3135  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3136  DebugLoc dl = N->getDebugLoc();
3137  SDValue Op = N->getOperand(0);
3138
3139  // This function is only supposed to be called for i64 types, either as the
3140  // source or destination of the bit convert.
3141  EVT SrcVT = Op.getValueType();
3142  EVT DstVT = N->getValueType(0);
3143  assert((SrcVT == MVT::i64 || DstVT == MVT::i64) &&
3144         "ExpandBITCAST called for non-i64 type");
3145
3146  // Turn i64->f64 into VMOVDRR.
3147  if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) {
3148    SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
3149                             DAG.getConstant(0, MVT::i32));
3150    SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
3151                             DAG.getConstant(1, MVT::i32));
3152    return DAG.getNode(ISD::BITCAST, dl, DstVT,
3153                       DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi));
3154  }
3155
3156  // Turn f64->i64 into VMOVRRD.
3157  if (DstVT == MVT::i64 && TLI.isTypeLegal(SrcVT)) {
3158    SDValue Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
3159                              DAG.getVTList(MVT::i32, MVT::i32), &Op, 1);
3160    // Merge the pieces into a single i64 value.
3161    return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1));
3162  }
3163
3164  return SDValue();
3165}
3166
3167/// getZeroVector - Returns a vector of specified type with all zero elements.
3168/// Zero vectors are used to represent vector negation and in those cases
3169/// will be implemented with the NEON VNEG instruction.  However, VNEG does
3170/// not support i64 elements, so sometimes the zero vectors will need to be
3171/// explicitly constructed.  Regardless, use a canonical VMOV to create the
3172/// zero vector.
3173static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
3174  assert(VT.isVector() && "Expected a vector type");
3175  // The canonical modified immediate encoding of a zero vector is....0!
3176  SDValue EncodedVal = DAG.getTargetConstant(0, MVT::i32);
3177  EVT VmovVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
3178  SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, EncodedVal);
3179  return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
3180}
3181
3182/// LowerShiftRightParts - Lower SRA_PARTS, which returns two
3183/// i32 values and take a 2 x i32 value to shift plus a shift amount.
3184SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op,
3185                                                SelectionDAG &DAG) const {
3186  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
3187  EVT VT = Op.getValueType();
3188  unsigned VTBits = VT.getSizeInBits();
3189  DebugLoc dl = Op.getDebugLoc();
3190  SDValue ShOpLo = Op.getOperand(0);
3191  SDValue ShOpHi = Op.getOperand(1);
3192  SDValue ShAmt  = Op.getOperand(2);
3193  SDValue ARMcc;
3194  unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
3195
3196  assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
3197
3198  SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
3199                                 DAG.getConstant(VTBits, MVT::i32), ShAmt);
3200  SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
3201  SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
3202                                   DAG.getConstant(VTBits, MVT::i32));
3203  SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
3204  SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
3205  SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
3206
3207  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3208  SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
3209                          ARMcc, DAG, dl);
3210  SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
3211  SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc,
3212                           CCR, Cmp);
3213
3214  SDValue Ops[2] = { Lo, Hi };
3215  return DAG.getMergeValues(Ops, 2, dl);
3216}
3217
3218/// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
3219/// i32 values and take a 2 x i32 value to shift plus a shift amount.
3220SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op,
3221                                               SelectionDAG &DAG) const {
3222  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
3223  EVT VT = Op.getValueType();
3224  unsigned VTBits = VT.getSizeInBits();
3225  DebugLoc dl = Op.getDebugLoc();
3226  SDValue ShOpLo = Op.getOperand(0);
3227  SDValue ShOpHi = Op.getOperand(1);
3228  SDValue ShAmt  = Op.getOperand(2);
3229  SDValue ARMcc;
3230
3231  assert(Op.getOpcode() == ISD::SHL_PARTS);
3232  SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
3233                                 DAG.getConstant(VTBits, MVT::i32), ShAmt);
3234  SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
3235  SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
3236                                   DAG.getConstant(VTBits, MVT::i32));
3237  SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
3238  SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
3239
3240  SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
3241  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3242  SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
3243                          ARMcc, DAG, dl);
3244  SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
3245  SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, Tmp3, ARMcc,
3246                           CCR, Cmp);
3247
3248  SDValue Ops[2] = { Lo, Hi };
3249  return DAG.getMergeValues(Ops, 2, dl);
3250}
3251
3252SDValue ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
3253                                            SelectionDAG &DAG) const {
3254  // The rounding mode is in bits 23:22 of the FPSCR.
3255  // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
3256  // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
3257  // so that the shift + and get folded into a bitfield extract.
3258  DebugLoc dl = Op.getDebugLoc();
3259  SDValue FPSCR = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::i32,
3260                              DAG.getConstant(Intrinsic::arm_get_fpscr,
3261                                              MVT::i32));
3262  SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPSCR,
3263                                  DAG.getConstant(1U << 22, MVT::i32));
3264  SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds,
3265                              DAG.getConstant(22, MVT::i32));
3266  return DAG.getNode(ISD::AND, dl, MVT::i32, RMODE,
3267                     DAG.getConstant(3, MVT::i32));
3268}
3269
3270static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG,
3271                         const ARMSubtarget *ST) {
3272  EVT VT = N->getValueType(0);
3273  DebugLoc dl = N->getDebugLoc();
3274
3275  if (!ST->hasV6T2Ops())
3276    return SDValue();
3277
3278  SDValue rbit = DAG.getNode(ARMISD::RBIT, dl, VT, N->getOperand(0));
3279  return DAG.getNode(ISD::CTLZ, dl, VT, rbit);
3280}
3281
3282static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
3283                          const ARMSubtarget *ST) {
3284  EVT VT = N->getValueType(0);
3285  DebugLoc dl = N->getDebugLoc();
3286
3287  if (!VT.isVector())
3288    return SDValue();
3289
3290  // Lower vector shifts on NEON to use VSHL.
3291  assert(ST->hasNEON() && "unexpected vector shift");
3292
3293  // Left shifts translate directly to the vshiftu intrinsic.
3294  if (N->getOpcode() == ISD::SHL)
3295    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
3296                       DAG.getConstant(Intrinsic::arm_neon_vshiftu, MVT::i32),
3297                       N->getOperand(0), N->getOperand(1));
3298
3299  assert((N->getOpcode() == ISD::SRA ||
3300          N->getOpcode() == ISD::SRL) && "unexpected vector shift opcode");
3301
3302  // NEON uses the same intrinsics for both left and right shifts.  For
3303  // right shifts, the shift amounts are negative, so negate the vector of
3304  // shift amounts.
3305  EVT ShiftVT = N->getOperand(1).getValueType();
3306  SDValue NegatedCount = DAG.getNode(ISD::SUB, dl, ShiftVT,
3307                                     getZeroVector(ShiftVT, DAG, dl),
3308                                     N->getOperand(1));
3309  Intrinsic::ID vshiftInt = (N->getOpcode() == ISD::SRA ?
3310                             Intrinsic::arm_neon_vshifts :
3311                             Intrinsic::arm_neon_vshiftu);
3312  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
3313                     DAG.getConstant(vshiftInt, MVT::i32),
3314                     N->getOperand(0), NegatedCount);
3315}
3316
3317static SDValue Expand64BitShift(SDNode *N, SelectionDAG &DAG,
3318                                const ARMSubtarget *ST) {
3319  EVT VT = N->getValueType(0);
3320  DebugLoc dl = N->getDebugLoc();
3321
3322  // We can get here for a node like i32 = ISD::SHL i32, i64
3323  if (VT != MVT::i64)
3324    return SDValue();
3325
3326  assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) &&
3327         "Unknown shift to lower!");
3328
3329  // We only lower SRA, SRL of 1 here, all others use generic lowering.
3330  if (!isa<ConstantSDNode>(N->getOperand(1)) ||
3331      cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 1)
3332    return SDValue();
3333
3334  // If we are in thumb mode, we don't have RRX.
3335  if (ST->isThumb1Only()) return SDValue();
3336
3337  // Okay, we have a 64-bit SRA or SRL of 1.  Lower this to an RRX expr.
3338  SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
3339                           DAG.getConstant(0, MVT::i32));
3340  SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
3341                           DAG.getConstant(1, MVT::i32));
3342
3343  // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
3344  // captures the result into a carry flag.
3345  unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
3346  Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Glue), &Hi, 1);
3347
3348  // The low part is an ARMISD::RRX operand, which shifts the carry in.
3349  Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));
3350
3351  // Merge the pieces into a single i64 value.
3352 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
3353}
3354
3355static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
3356  SDValue TmpOp0, TmpOp1;
3357  bool Invert = false;
3358  bool Swap = false;
3359  unsigned Opc = 0;
3360
3361  SDValue Op0 = Op.getOperand(0);
3362  SDValue Op1 = Op.getOperand(1);
3363  SDValue CC = Op.getOperand(2);
3364  EVT VT = Op.getValueType();
3365  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
3366  DebugLoc dl = Op.getDebugLoc();
3367
3368  if (Op.getOperand(1).getValueType().isFloatingPoint()) {
3369    switch (SetCCOpcode) {
3370    default: llvm_unreachable("Illegal FP comparison"); break;
3371    case ISD::SETUNE:
3372    case ISD::SETNE:  Invert = true; // Fallthrough
3373    case ISD::SETOEQ:
3374    case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
3375    case ISD::SETOLT:
3376    case ISD::SETLT: Swap = true; // Fallthrough
3377    case ISD::SETOGT:
3378    case ISD::SETGT:  Opc = ARMISD::VCGT; break;
3379    case ISD::SETOLE:
3380    case ISD::SETLE:  Swap = true; // Fallthrough
3381    case ISD::SETOGE:
3382    case ISD::SETGE: Opc = ARMISD::VCGE; break;
3383    case ISD::SETUGE: Swap = true; // Fallthrough
3384    case ISD::SETULE: Invert = true; Opc = ARMISD::VCGT; break;
3385    case ISD::SETUGT: Swap = true; // Fallthrough
3386    case ISD::SETULT: Invert = true; Opc = ARMISD::VCGE; break;
3387    case ISD::SETUEQ: Invert = true; // Fallthrough
3388    case ISD::SETONE:
3389      // Expand this to (OLT | OGT).
3390      TmpOp0 = Op0;
3391      TmpOp1 = Op1;
3392      Opc = ISD::OR;
3393      Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
3394      Op1 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp0, TmpOp1);
3395      break;
3396    case ISD::SETUO: Invert = true; // Fallthrough
3397    case ISD::SETO:
3398      // Expand this to (OLT | OGE).
3399      TmpOp0 = Op0;
3400      TmpOp1 = Op1;
3401      Opc = ISD::OR;
3402      Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
3403      Op1 = DAG.getNode(ARMISD::VCGE, dl, VT, TmpOp0, TmpOp1);
3404      break;
3405    }
3406  } else {
3407    // Integer comparisons.
3408    switch (SetCCOpcode) {
3409    default: llvm_unreachable("Illegal integer comparison"); break;
3410    case ISD::SETNE:  Invert = true;
3411    case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
3412    case ISD::SETLT:  Swap = true;
3413    case ISD::SETGT:  Opc = ARMISD::VCGT; break;
3414    case ISD::SETLE:  Swap = true;
3415    case ISD::SETGE:  Opc = ARMISD::VCGE; break;
3416    case ISD::SETULT: Swap = true;
3417    case ISD::SETUGT: Opc = ARMISD::VCGTU; break;
3418    case ISD::SETULE: Swap = true;
3419    case ISD::SETUGE: Opc = ARMISD::VCGEU; break;
3420    }
3421
3422    // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
3423    if (Opc == ARMISD::VCEQ) {
3424
3425      SDValue AndOp;
3426      if (ISD::isBuildVectorAllZeros(Op1.getNode()))
3427        AndOp = Op0;
3428      else if (ISD::isBuildVectorAllZeros(Op0.getNode()))
3429        AndOp = Op1;
3430
3431      // Ignore bitconvert.
3432      if (AndOp.getNode() && AndOp.getOpcode() == ISD::BITCAST)
3433        AndOp = AndOp.getOperand(0);
3434
3435      if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) {
3436        Opc = ARMISD::VTST;
3437        Op0 = DAG.getNode(ISD::BITCAST, dl, VT, AndOp.getOperand(0));
3438        Op1 = DAG.getNode(ISD::BITCAST, dl, VT, AndOp.getOperand(1));
3439        Invert = !Invert;
3440      }
3441    }
3442  }
3443
3444  if (Swap)
3445    std::swap(Op0, Op1);
3446
3447  // If one of the operands is a constant vector zero, attempt to fold the
3448  // comparison to a specialized compare-against-zero form.
3449  SDValue SingleOp;
3450  if (ISD::isBuildVectorAllZeros(Op1.getNode()))
3451    SingleOp = Op0;
3452  else if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
3453    if (Opc == ARMISD::VCGE)
3454      Opc = ARMISD::VCLEZ;
3455    else if (Opc == ARMISD::VCGT)
3456      Opc = ARMISD::VCLTZ;
3457    SingleOp = Op1;
3458  }
3459
3460  SDValue Result;
3461  if (SingleOp.getNode()) {
3462    switch (Opc) {
3463    case ARMISD::VCEQ:
3464      Result = DAG.getNode(ARMISD::VCEQZ, dl, VT, SingleOp); break;
3465    case ARMISD::VCGE:
3466      Result = DAG.getNode(ARMISD::VCGEZ, dl, VT, SingleOp); break;
3467    case ARMISD::VCLEZ:
3468      Result = DAG.getNode(ARMISD::VCLEZ, dl, VT, SingleOp); break;
3469    case ARMISD::VCGT:
3470      Result = DAG.getNode(ARMISD::VCGTZ, dl, VT, SingleOp); break;
3471    case ARMISD::VCLTZ:
3472      Result = DAG.getNode(ARMISD::VCLTZ, dl, VT, SingleOp); break;
3473    default:
3474      Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
3475    }
3476  } else {
3477     Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
3478  }
3479
3480  if (Invert)
3481    Result = DAG.getNOT(dl, Result, VT);
3482
3483  return Result;
3484}
3485
3486/// isNEONModifiedImm - Check if the specified splat value corresponds to a
3487/// valid vector constant for a NEON instruction with a "modified immediate"
3488/// operand (e.g., VMOV).  If so, return the encoded value.
3489static SDValue isNEONModifiedImm(uint64_t SplatBits, uint64_t SplatUndef,
3490                                 unsigned SplatBitSize, SelectionDAG &DAG,
3491                                 EVT &VT, bool is128Bits, NEONModImmType type) {
3492  unsigned OpCmode, Imm;
3493
3494  // SplatBitSize is set to the smallest size that splats the vector, so a
3495  // zero vector will always have SplatBitSize == 8.  However, NEON modified
3496  // immediate instructions others than VMOV do not support the 8-bit encoding
3497  // of a zero vector, and the default encoding of zero is supposed to be the
3498  // 32-bit version.
3499  if (SplatBits == 0)
3500    SplatBitSize = 32;
3501
3502  switch (SplatBitSize) {
3503  case 8:
3504    if (type != VMOVModImm)
3505      return SDValue();
3506    // Any 1-byte value is OK.  Op=0, Cmode=1110.
3507    assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
3508    OpCmode = 0xe;
3509    Imm = SplatBits;
3510    VT = is128Bits ? MVT::v16i8 : MVT::v8i8;
3511    break;
3512
3513  case 16:
3514    // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
3515    VT = is128Bits ? MVT::v8i16 : MVT::v4i16;
3516    if ((SplatBits & ~0xff) == 0) {
3517      // Value = 0x00nn: Op=x, Cmode=100x.
3518      OpCmode = 0x8;
3519      Imm = SplatBits;
3520      break;
3521    }
3522    if ((SplatBits & ~0xff00) == 0) {
3523      // Value = 0xnn00: Op=x, Cmode=101x.
3524      OpCmode = 0xa;
3525      Imm = SplatBits >> 8;
3526      break;
3527    }
3528    return SDValue();
3529
3530  case 32:
3531    // NEON's 32-bit VMOV supports splat values where:
3532    // * only one byte is nonzero, or
3533    // * the least significant byte is 0xff and the second byte is nonzero, or
3534    // * the least significant 2 bytes are 0xff and the third is nonzero.
3535    VT = is128Bits ? MVT::v4i32 : MVT::v2i32;
3536    if ((SplatBits & ~0xff) == 0) {
3537      // Value = 0x000000nn: Op=x, Cmode=000x.
3538      OpCmode = 0;
3539      Imm = SplatBits;
3540      break;
3541    }
3542    if ((SplatBits & ~0xff00) == 0) {
3543      // Value = 0x0000nn00: Op=x, Cmode=001x.
3544      OpCmode = 0x2;
3545      Imm = SplatBits >> 8;
3546      break;
3547    }
3548    if ((SplatBits & ~0xff0000) == 0) {
3549      // Value = 0x00nn0000: Op=x, Cmode=010x.
3550      OpCmode = 0x4;
3551      Imm = SplatBits >> 16;
3552      break;
3553    }
3554    if ((SplatBits & ~0xff000000) == 0) {
3555      // Value = 0xnn000000: Op=x, Cmode=011x.
3556      OpCmode = 0x6;
3557      Imm = SplatBits >> 24;
3558      break;
3559    }
3560
3561    // cmode == 0b1100 and cmode == 0b1101 are not supported for VORR or VBIC
3562    if (type == OtherModImm) return SDValue();
3563
3564    if ((SplatBits & ~0xffff) == 0 &&
3565        ((SplatBits | SplatUndef) & 0xff) == 0xff) {
3566      // Value = 0x0000nnff: Op=x, Cmode=1100.
3567      OpCmode = 0xc;
3568      Imm = SplatBits >> 8;
3569      SplatBits |= 0xff;
3570      break;
3571    }
3572
3573    if ((SplatBits & ~0xffffff) == 0 &&
3574        ((SplatBits | SplatUndef) & 0xffff) == 0xffff) {
3575      // Value = 0x00nnffff: Op=x, Cmode=1101.
3576      OpCmode = 0xd;
3577      Imm = SplatBits >> 16;
3578      SplatBits |= 0xffff;
3579      break;
3580    }
3581
3582    // Note: there are a few 32-bit splat values (specifically: 00ffff00,
3583    // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
3584    // VMOV.I32.  A (very) minor optimization would be to replicate the value
3585    // and fall through here to test for a valid 64-bit splat.  But, then the
3586    // caller would also need to check and handle the change in size.
3587    return SDValue();
3588
3589  case 64: {
3590    if (type != VMOVModImm)
3591      return SDValue();
3592    // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
3593    uint64_t BitMask = 0xff;
3594    uint64_t Val = 0;
3595    unsigned ImmMask = 1;
3596    Imm = 0;
3597    for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
3598      if (((SplatBits | SplatUndef) & BitMask) == BitMask) {
3599        Val |= BitMask;
3600        Imm |= ImmMask;
3601      } else if ((SplatBits & BitMask) != 0) {
3602        return SDValue();
3603      }
3604      BitMask <<= 8;
3605      ImmMask <<= 1;
3606    }
3607    // Op=1, Cmode=1110.
3608    OpCmode = 0x1e;
3609    SplatBits = Val;
3610    VT = is128Bits ? MVT::v2i64 : MVT::v1i64;
3611    break;
3612  }
3613
3614  default:
3615    llvm_unreachable("unexpected size for isNEONModifiedImm");
3616    return SDValue();
3617  }
3618
3619  unsigned EncodedVal = ARM_AM::createNEONModImm(OpCmode, Imm);
3620  return DAG.getTargetConstant(EncodedVal, MVT::i32);
3621}
3622
3623static bool isVEXTMask(const SmallVectorImpl<int> &M, EVT VT,
3624                       bool &ReverseVEXT, unsigned &Imm) {
3625  unsigned NumElts = VT.getVectorNumElements();
3626  ReverseVEXT = false;
3627
3628  // Assume that the first shuffle index is not UNDEF.  Fail if it is.
3629  if (M[0] < 0)
3630    return false;
3631
3632  Imm = M[0];
3633
3634  // If this is a VEXT shuffle, the immediate value is the index of the first
3635  // element.  The other shuffle indices must be the successive elements after
3636  // the first one.
3637  unsigned ExpectedElt = Imm;
3638  for (unsigned i = 1; i < NumElts; ++i) {
3639    // Increment the expected index.  If it wraps around, it may still be
3640    // a VEXT but the source vectors must be swapped.
3641    ExpectedElt += 1;
3642    if (ExpectedElt == NumElts * 2) {
3643      ExpectedElt = 0;
3644      ReverseVEXT = true;
3645    }
3646
3647    if (M[i] < 0) continue; // ignore UNDEF indices
3648    if (ExpectedElt != static_cast<unsigned>(M[i]))
3649      return false;
3650  }
3651
3652  // Adjust the index value if the source operands will be swapped.
3653  if (ReverseVEXT)
3654    Imm -= NumElts;
3655
3656  return true;
3657}
3658
3659/// isVREVMask - Check if a vector shuffle corresponds to a VREV
3660/// instruction with the specified blocksize.  (The order of the elements
3661/// within each block of the vector is reversed.)
3662static bool isVREVMask(const SmallVectorImpl<int> &M, EVT VT,
3663                       unsigned BlockSize) {
3664  assert((BlockSize==16 || BlockSize==32 || BlockSize==64) &&
3665         "Only possible block sizes for VREV are: 16, 32, 64");
3666
3667  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3668  if (EltSz == 64)
3669    return false;
3670
3671  unsigned NumElts = VT.getVectorNumElements();
3672  unsigned BlockElts = M[0] + 1;
3673  // If the first shuffle index is UNDEF, be optimistic.
3674  if (M[0] < 0)
3675    BlockElts = BlockSize / EltSz;
3676
3677  if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
3678    return false;
3679
3680  for (unsigned i = 0; i < NumElts; ++i) {
3681    if (M[i] < 0) continue; // ignore UNDEF indices
3682    if ((unsigned) M[i] != (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts))
3683      return false;
3684  }
3685
3686  return true;
3687}
3688
3689static bool isVTBLMask(const SmallVectorImpl<int> &M, EVT VT) {
3690  // We can handle <8 x i8> vector shuffles. If the index in the mask is out of
3691  // range, then 0 is placed into the resulting vector. So pretty much any mask
3692  // of 8 elements can work here.
3693  return VT == MVT::v8i8 && M.size() == 8;
3694}
3695
3696static bool isVTRNMask(const SmallVectorImpl<int> &M, EVT VT,
3697                       unsigned &WhichResult) {
3698  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3699  if (EltSz == 64)
3700    return false;
3701
3702  unsigned NumElts = VT.getVectorNumElements();
3703  WhichResult = (M[0] == 0 ? 0 : 1);
3704  for (unsigned i = 0; i < NumElts; i += 2) {
3705    if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) ||
3706        (M[i+1] >= 0 && (unsigned) M[i+1] != i + NumElts + WhichResult))
3707      return false;
3708  }
3709  return true;
3710}
3711
3712/// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
3713/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
3714/// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
3715static bool isVTRN_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
3716                                unsigned &WhichResult) {
3717  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3718  if (EltSz == 64)
3719    return false;
3720
3721  unsigned NumElts = VT.getVectorNumElements();
3722  WhichResult = (M[0] == 0 ? 0 : 1);
3723  for (unsigned i = 0; i < NumElts; i += 2) {
3724    if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) ||
3725        (M[i+1] >= 0 && (unsigned) M[i+1] != i + WhichResult))
3726      return false;
3727  }
3728  return true;
3729}
3730
3731static bool isVUZPMask(const SmallVectorImpl<int> &M, EVT VT,
3732                       unsigned &WhichResult) {
3733  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3734  if (EltSz == 64)
3735    return false;
3736
3737  unsigned NumElts = VT.getVectorNumElements();
3738  WhichResult = (M[0] == 0 ? 0 : 1);
3739  for (unsigned i = 0; i != NumElts; ++i) {
3740    if (M[i] < 0) continue; // ignore UNDEF indices
3741    if ((unsigned) M[i] != 2 * i + WhichResult)
3742      return false;
3743  }
3744
3745  // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3746  if (VT.is64BitVector() && EltSz == 32)
3747    return false;
3748
3749  return true;
3750}
3751
3752/// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
3753/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
3754/// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
3755static bool isVUZP_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
3756                                unsigned &WhichResult) {
3757  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3758  if (EltSz == 64)
3759    return false;
3760
3761  unsigned Half = VT.getVectorNumElements() / 2;
3762  WhichResult = (M[0] == 0 ? 0 : 1);
3763  for (unsigned j = 0; j != 2; ++j) {
3764    unsigned Idx = WhichResult;
3765    for (unsigned i = 0; i != Half; ++i) {
3766      int MIdx = M[i + j * Half];
3767      if (MIdx >= 0 && (unsigned) MIdx != Idx)
3768        return false;
3769      Idx += 2;
3770    }
3771  }
3772
3773  // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3774  if (VT.is64BitVector() && EltSz == 32)
3775    return false;
3776
3777  return true;
3778}
3779
3780static bool isVZIPMask(const SmallVectorImpl<int> &M, EVT VT,
3781                       unsigned &WhichResult) {
3782  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3783  if (EltSz == 64)
3784    return false;
3785
3786  unsigned NumElts = VT.getVectorNumElements();
3787  WhichResult = (M[0] == 0 ? 0 : 1);
3788  unsigned Idx = WhichResult * NumElts / 2;
3789  for (unsigned i = 0; i != NumElts; i += 2) {
3790    if ((M[i] >= 0 && (unsigned) M[i] != Idx) ||
3791        (M[i+1] >= 0 && (unsigned) M[i+1] != Idx + NumElts))
3792      return false;
3793    Idx += 1;
3794  }
3795
3796  // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3797  if (VT.is64BitVector() && EltSz == 32)
3798    return false;
3799
3800  return true;
3801}
3802
3803/// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
3804/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
3805/// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
3806static bool isVZIP_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
3807                                unsigned &WhichResult) {
3808  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3809  if (EltSz == 64)
3810    return false;
3811
3812  unsigned NumElts = VT.getVectorNumElements();
3813  WhichResult = (M[0] == 0 ? 0 : 1);
3814  unsigned Idx = WhichResult * NumElts / 2;
3815  for (unsigned i = 0; i != NumElts; i += 2) {
3816    if ((M[i] >= 0 && (unsigned) M[i] != Idx) ||
3817        (M[i+1] >= 0 && (unsigned) M[i+1] != Idx))
3818      return false;
3819    Idx += 1;
3820  }
3821
3822  // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3823  if (VT.is64BitVector() && EltSz == 32)
3824    return false;
3825
3826  return true;
3827}
3828
3829// If N is an integer constant that can be moved into a register in one
3830// instruction, return an SDValue of such a constant (will become a MOV
3831// instruction).  Otherwise return null.
3832static SDValue IsSingleInstrConstant(SDValue N, SelectionDAG &DAG,
3833                                     const ARMSubtarget *ST, DebugLoc dl) {
3834  uint64_t Val;
3835  if (!isa<ConstantSDNode>(N))
3836    return SDValue();
3837  Val = cast<ConstantSDNode>(N)->getZExtValue();
3838
3839  if (ST->isThumb1Only()) {
3840    if (Val <= 255 || ~Val <= 255)
3841      return DAG.getConstant(Val, MVT::i32);
3842  } else {
3843    if (ARM_AM::getSOImmVal(Val) != -1 || ARM_AM::getSOImmVal(~Val) != -1)
3844      return DAG.getConstant(Val, MVT::i32);
3845  }
3846  return SDValue();
3847}
3848
3849// If this is a case we can't handle, return null and let the default
3850// expansion code take care of it.
3851SDValue ARMTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
3852                                             const ARMSubtarget *ST) const {
3853  BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
3854  DebugLoc dl = Op.getDebugLoc();
3855  EVT VT = Op.getValueType();
3856
3857  APInt SplatBits, SplatUndef;
3858  unsigned SplatBitSize;
3859  bool HasAnyUndefs;
3860  if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
3861    if (SplatBitSize <= 64) {
3862      // Check if an immediate VMOV works.
3863      EVT VmovVT;
3864      SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
3865                                      SplatUndef.getZExtValue(), SplatBitSize,
3866                                      DAG, VmovVT, VT.is128BitVector(),
3867                                      VMOVModImm);
3868      if (Val.getNode()) {
3869        SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, Val);
3870        return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
3871      }
3872
3873      // Try an immediate VMVN.
3874      uint64_t NegatedImm = (SplatBits.getZExtValue() ^
3875                             ((1LL << SplatBitSize) - 1));
3876      Val = isNEONModifiedImm(NegatedImm,
3877                                      SplatUndef.getZExtValue(), SplatBitSize,
3878                                      DAG, VmovVT, VT.is128BitVector(),
3879                                      VMVNModImm);
3880      if (Val.getNode()) {
3881        SDValue Vmov = DAG.getNode(ARMISD::VMVNIMM, dl, VmovVT, Val);
3882        return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
3883      }
3884    }
3885  }
3886
3887  // Scan through the operands to see if only one value is used.
3888  unsigned NumElts = VT.getVectorNumElements();
3889  bool isOnlyLowElement = true;
3890  bool usesOnlyOneValue = true;
3891  bool isConstant = true;
3892  SDValue Value;
3893  for (unsigned i = 0; i < NumElts; ++i) {
3894    SDValue V = Op.getOperand(i);
3895    if (V.getOpcode() == ISD::UNDEF)
3896      continue;
3897    if (i > 0)
3898      isOnlyLowElement = false;
3899    if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
3900      isConstant = false;
3901
3902    if (!Value.getNode())
3903      Value = V;
3904    else if (V != Value)
3905      usesOnlyOneValue = false;
3906  }
3907
3908  if (!Value.getNode())
3909    return DAG.getUNDEF(VT);
3910
3911  if (isOnlyLowElement)
3912    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
3913
3914  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
3915
3916  // Use VDUP for non-constant splats.  For f32 constant splats, reduce to
3917  // i32 and try again.
3918  if (usesOnlyOneValue && EltSize <= 32) {
3919    if (!isConstant)
3920      return DAG.getNode(ARMISD::VDUP, dl, VT, Value);
3921    if (VT.getVectorElementType().isFloatingPoint()) {
3922      SmallVector<SDValue, 8> Ops;
3923      for (unsigned i = 0; i < NumElts; ++i)
3924        Ops.push_back(DAG.getNode(ISD::BITCAST, dl, MVT::i32,
3925                                  Op.getOperand(i)));
3926      EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
3927      SDValue Val = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, &Ops[0], NumElts);
3928      Val = LowerBUILD_VECTOR(Val, DAG, ST);
3929      if (Val.getNode())
3930        return DAG.getNode(ISD::BITCAST, dl, VT, Val);
3931    }
3932    SDValue Val = IsSingleInstrConstant(Value, DAG, ST, dl);
3933    if (Val.getNode())
3934      return DAG.getNode(ARMISD::VDUP, dl, VT, Val);
3935  }
3936
3937  // If all elements are constants and the case above didn't get hit, fall back
3938  // to the default expansion, which will generate a load from the constant
3939  // pool.
3940  if (isConstant)
3941    return SDValue();
3942
3943  // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
3944  if (NumElts >= 4) {
3945    SDValue shuffle = ReconstructShuffle(Op, DAG);
3946    if (shuffle != SDValue())
3947      return shuffle;
3948  }
3949
3950  // Vectors with 32- or 64-bit elements can be built by directly assigning
3951  // the subregisters.  Lower it to an ARMISD::BUILD_VECTOR so the operands
3952  // will be legalized.
3953  if (EltSize >= 32) {
3954    // Do the expansion with floating-point types, since that is what the VFP
3955    // registers are defined to use, and since i64 is not legal.
3956    EVT EltVT = EVT::getFloatingPointVT(EltSize);
3957    EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
3958    SmallVector<SDValue, 8> Ops;
3959    for (unsigned i = 0; i < NumElts; ++i)
3960      Ops.push_back(DAG.getNode(ISD::BITCAST, dl, EltVT, Op.getOperand(i)));
3961    SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts);
3962    return DAG.getNode(ISD::BITCAST, dl, VT, Val);
3963  }
3964
3965  return SDValue();
3966}
3967
3968// Gather data to see if the operation can be modelled as a
3969// shuffle in combination with VEXTs.
3970SDValue ARMTargetLowering::ReconstructShuffle(SDValue Op,
3971                                              SelectionDAG &DAG) const {
3972  DebugLoc dl = Op.getDebugLoc();
3973  EVT VT = Op.getValueType();
3974  unsigned NumElts = VT.getVectorNumElements();
3975
3976  SmallVector<SDValue, 2> SourceVecs;
3977  SmallVector<unsigned, 2> MinElts;
3978  SmallVector<unsigned, 2> MaxElts;
3979
3980  for (unsigned i = 0; i < NumElts; ++i) {
3981    SDValue V = Op.getOperand(i);
3982    if (V.getOpcode() == ISD::UNDEF)
3983      continue;
3984    else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) {
3985      // A shuffle can only come from building a vector from various
3986      // elements of other vectors.
3987      return SDValue();
3988    }
3989
3990    // Record this extraction against the appropriate vector if possible...
3991    SDValue SourceVec = V.getOperand(0);
3992    unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
3993    bool FoundSource = false;
3994    for (unsigned j = 0; j < SourceVecs.size(); ++j) {
3995      if (SourceVecs[j] == SourceVec) {
3996        if (MinElts[j] > EltNo)
3997          MinElts[j] = EltNo;
3998        if (MaxElts[j] < EltNo)
3999          MaxElts[j] = EltNo;
4000        FoundSource = true;
4001        break;
4002      }
4003    }
4004
4005    // Or record a new source if not...
4006    if (!FoundSource) {
4007      SourceVecs.push_back(SourceVec);
4008      MinElts.push_back(EltNo);
4009      MaxElts.push_back(EltNo);
4010    }
4011  }
4012
4013  // Currently only do something sane when at most two source vectors
4014  // involved.
4015  if (SourceVecs.size() > 2)
4016    return SDValue();
4017
4018  SDValue ShuffleSrcs[2] = {DAG.getUNDEF(VT), DAG.getUNDEF(VT) };
4019  int VEXTOffsets[2] = {0, 0};
4020
4021  // This loop extracts the usage patterns of the source vectors
4022  // and prepares appropriate SDValues for a shuffle if possible.
4023  for (unsigned i = 0; i < SourceVecs.size(); ++i) {
4024    if (SourceVecs[i].getValueType() == VT) {
4025      // No VEXT necessary
4026      ShuffleSrcs[i] = SourceVecs[i];
4027      VEXTOffsets[i] = 0;
4028      continue;
4029    } else if (SourceVecs[i].getValueType().getVectorNumElements() < NumElts) {
4030      // It probably isn't worth padding out a smaller vector just to
4031      // break it down again in a shuffle.
4032      return SDValue();
4033    }
4034
4035    // Since only 64-bit and 128-bit vectors are legal on ARM and
4036    // we've eliminated the other cases...
4037    assert(SourceVecs[i].getValueType().getVectorNumElements() == 2*NumElts &&
4038           "unexpected vector sizes in ReconstructShuffle");
4039
4040    if (MaxElts[i] - MinElts[i] >= NumElts) {
4041      // Span too large for a VEXT to cope
4042      return SDValue();
4043    }
4044
4045    if (MinElts[i] >= NumElts) {
4046      // The extraction can just take the second half
4047      VEXTOffsets[i] = NumElts;
4048      ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4049                                   SourceVecs[i],
4050                                   DAG.getIntPtrConstant(NumElts));
4051    } else if (MaxElts[i] < NumElts) {
4052      // The extraction can just take the first half
4053      VEXTOffsets[i] = 0;
4054      ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4055                                   SourceVecs[i],
4056                                   DAG.getIntPtrConstant(0));
4057    } else {
4058      // An actual VEXT is needed
4059      VEXTOffsets[i] = MinElts[i];
4060      SDValue VEXTSrc1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4061                                     SourceVecs[i],
4062                                     DAG.getIntPtrConstant(0));
4063      SDValue VEXTSrc2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4064                                     SourceVecs[i],
4065                                     DAG.getIntPtrConstant(NumElts));
4066      ShuffleSrcs[i] = DAG.getNode(ARMISD::VEXT, dl, VT, VEXTSrc1, VEXTSrc2,
4067                                   DAG.getConstant(VEXTOffsets[i], MVT::i32));
4068    }
4069  }
4070
4071  SmallVector<int, 8> Mask;
4072
4073  for (unsigned i = 0; i < NumElts; ++i) {
4074    SDValue Entry = Op.getOperand(i);
4075    if (Entry.getOpcode() == ISD::UNDEF) {
4076      Mask.push_back(-1);
4077      continue;
4078    }
4079
4080    SDValue ExtractVec = Entry.getOperand(0);
4081    int ExtractElt = cast<ConstantSDNode>(Op.getOperand(i)
4082                                          .getOperand(1))->getSExtValue();
4083    if (ExtractVec == SourceVecs[0]) {
4084      Mask.push_back(ExtractElt - VEXTOffsets[0]);
4085    } else {
4086      Mask.push_back(ExtractElt + NumElts - VEXTOffsets[1]);
4087    }
4088  }
4089
4090  // Final check before we try to produce nonsense...
4091  if (isShuffleMaskLegal(Mask, VT))
4092    return DAG.getVectorShuffle(VT, dl, ShuffleSrcs[0], ShuffleSrcs[1],
4093                                &Mask[0]);
4094
4095  return SDValue();
4096}
4097
4098/// isShuffleMaskLegal - Targets can use this to indicate that they only
4099/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
4100/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
4101/// are assumed to be legal.
4102bool
4103ARMTargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
4104                                      EVT VT) const {
4105  if (VT.getVectorNumElements() == 4 &&
4106      (VT.is128BitVector() || VT.is64BitVector())) {
4107    unsigned PFIndexes[4];
4108    for (unsigned i = 0; i != 4; ++i) {
4109      if (M[i] < 0)
4110        PFIndexes[i] = 8;
4111      else
4112        PFIndexes[i] = M[i];
4113    }
4114
4115    // Compute the index in the perfect shuffle table.
4116    unsigned PFTableIndex =
4117      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
4118    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
4119    unsigned Cost = (PFEntry >> 30);
4120
4121    if (Cost <= 4)
4122      return true;
4123  }
4124
4125  bool ReverseVEXT;
4126  unsigned Imm, WhichResult;
4127
4128  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4129  return (EltSize >= 32 ||
4130          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
4131          isVREVMask(M, VT, 64) ||
4132          isVREVMask(M, VT, 32) ||
4133          isVREVMask(M, VT, 16) ||
4134          isVEXTMask(M, VT, ReverseVEXT, Imm) ||
4135          isVTBLMask(M, VT) ||
4136          isVTRNMask(M, VT, WhichResult) ||
4137          isVUZPMask(M, VT, WhichResult) ||
4138          isVZIPMask(M, VT, WhichResult) ||
4139          isVTRN_v_undef_Mask(M, VT, WhichResult) ||
4140          isVUZP_v_undef_Mask(M, VT, WhichResult) ||
4141          isVZIP_v_undef_Mask(M, VT, WhichResult));
4142}
4143
4144/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
4145/// the specified operations to build the shuffle.
4146static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
4147                                      SDValue RHS, SelectionDAG &DAG,
4148                                      DebugLoc dl) {
4149  unsigned OpNum = (PFEntry >> 26) & 0x0F;
4150  unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
4151  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
4152
4153  enum {
4154    OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
4155    OP_VREV,
4156    OP_VDUP0,
4157    OP_VDUP1,
4158    OP_VDUP2,
4159    OP_VDUP3,
4160    OP_VEXT1,
4161    OP_VEXT2,
4162    OP_VEXT3,
4163    OP_VUZPL, // VUZP, left result
4164    OP_VUZPR, // VUZP, right result
4165    OP_VZIPL, // VZIP, left result
4166    OP_VZIPR, // VZIP, right result
4167    OP_VTRNL, // VTRN, left result
4168    OP_VTRNR  // VTRN, right result
4169  };
4170
4171  if (OpNum == OP_COPY) {
4172    if (LHSID == (1*9+2)*9+3) return LHS;
4173    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
4174    return RHS;
4175  }
4176
4177  SDValue OpLHS, OpRHS;
4178  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
4179  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
4180  EVT VT = OpLHS.getValueType();
4181
4182  switch (OpNum) {
4183  default: llvm_unreachable("Unknown shuffle opcode!");
4184  case OP_VREV:
4185    return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS);
4186  case OP_VDUP0:
4187  case OP_VDUP1:
4188  case OP_VDUP2:
4189  case OP_VDUP3:
4190    return DAG.getNode(ARMISD::VDUPLANE, dl, VT,
4191                       OpLHS, DAG.getConstant(OpNum-OP_VDUP0, MVT::i32));
4192  case OP_VEXT1:
4193  case OP_VEXT2:
4194  case OP_VEXT3:
4195    return DAG.getNode(ARMISD::VEXT, dl, VT,
4196                       OpLHS, OpRHS,
4197                       DAG.getConstant(OpNum-OP_VEXT1+1, MVT::i32));
4198  case OP_VUZPL:
4199  case OP_VUZPR:
4200    return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
4201                       OpLHS, OpRHS).getValue(OpNum-OP_VUZPL);
4202  case OP_VZIPL:
4203  case OP_VZIPR:
4204    return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
4205                       OpLHS, OpRHS).getValue(OpNum-OP_VZIPL);
4206  case OP_VTRNL:
4207  case OP_VTRNR:
4208    return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
4209                       OpLHS, OpRHS).getValue(OpNum-OP_VTRNL);
4210  }
4211}
4212
4213static SDValue LowerVECTOR_SHUFFLEv8i8(SDValue Op,
4214                                       SmallVectorImpl<int> &ShuffleMask,
4215                                       SelectionDAG &DAG) {
4216  // Check to see if we can use the VTBL instruction.
4217  SDValue V1 = Op.getOperand(0);
4218  SDValue V2 = Op.getOperand(1);
4219  DebugLoc DL = Op.getDebugLoc();
4220
4221  SmallVector<SDValue, 8> VTBLMask;
4222  for (SmallVectorImpl<int>::iterator
4223         I = ShuffleMask.begin(), E = ShuffleMask.end(); I != E; ++I)
4224    VTBLMask.push_back(DAG.getConstant(*I, MVT::i32));
4225
4226  if (V2.getNode()->getOpcode() == ISD::UNDEF)
4227    return DAG.getNode(ARMISD::VTBL1, DL, MVT::v8i8, V1,
4228                       DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i8,
4229                                   &VTBLMask[0], 8));
4230
4231  return DAG.getNode(ARMISD::VTBL2, DL, MVT::v8i8, V1, V2,
4232                     DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i8,
4233                                 &VTBLMask[0], 8));
4234}
4235
4236static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
4237  SDValue V1 = Op.getOperand(0);
4238  SDValue V2 = Op.getOperand(1);
4239  DebugLoc dl = Op.getDebugLoc();
4240  EVT VT = Op.getValueType();
4241  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
4242  SmallVector<int, 8> ShuffleMask;
4243
4244  // Convert shuffles that are directly supported on NEON to target-specific
4245  // DAG nodes, instead of keeping them as shuffles and matching them again
4246  // during code selection.  This is more efficient and avoids the possibility
4247  // of inconsistencies between legalization and selection.
4248  // FIXME: floating-point vectors should be canonicalized to integer vectors
4249  // of the same time so that they get CSEd properly.
4250  SVN->getMask(ShuffleMask);
4251
4252  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4253  if (EltSize <= 32) {
4254    if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0], VT)) {
4255      int Lane = SVN->getSplatIndex();
4256      // If this is undef splat, generate it via "just" vdup, if possible.
4257      if (Lane == -1) Lane = 0;
4258
4259      if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
4260        return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
4261      }
4262      return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1,
4263                         DAG.getConstant(Lane, MVT::i32));
4264    }
4265
4266    bool ReverseVEXT;
4267    unsigned Imm;
4268    if (isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) {
4269      if (ReverseVEXT)
4270        std::swap(V1, V2);
4271      return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2,
4272                         DAG.getConstant(Imm, MVT::i32));
4273    }
4274
4275    if (isVREVMask(ShuffleMask, VT, 64))
4276      return DAG.getNode(ARMISD::VREV64, dl, VT, V1);
4277    if (isVREVMask(ShuffleMask, VT, 32))
4278      return DAG.getNode(ARMISD::VREV32, dl, VT, V1);
4279    if (isVREVMask(ShuffleMask, VT, 16))
4280      return DAG.getNode(ARMISD::VREV16, dl, VT, V1);
4281
4282    // Check for Neon shuffles that modify both input vectors in place.
4283    // If both results are used, i.e., if there are two shuffles with the same
4284    // source operands and with masks corresponding to both results of one of
4285    // these operations, DAG memoization will ensure that a single node is
4286    // used for both shuffles.
4287    unsigned WhichResult;
4288    if (isVTRNMask(ShuffleMask, VT, WhichResult))
4289      return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
4290                         V1, V2).getValue(WhichResult);
4291    if (isVUZPMask(ShuffleMask, VT, WhichResult))
4292      return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
4293                         V1, V2).getValue(WhichResult);
4294    if (isVZIPMask(ShuffleMask, VT, WhichResult))
4295      return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
4296                         V1, V2).getValue(WhichResult);
4297
4298    if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult))
4299      return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
4300                         V1, V1).getValue(WhichResult);
4301    if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult))
4302      return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
4303                         V1, V1).getValue(WhichResult);
4304    if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult))
4305      return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
4306                         V1, V1).getValue(WhichResult);
4307  }
4308
4309  // If the shuffle is not directly supported and it has 4 elements, use
4310  // the PerfectShuffle-generated table to synthesize it from other shuffles.
4311  unsigned NumElts = VT.getVectorNumElements();
4312  if (NumElts == 4) {
4313    unsigned PFIndexes[4];
4314    for (unsigned i = 0; i != 4; ++i) {
4315      if (ShuffleMask[i] < 0)
4316        PFIndexes[i] = 8;
4317      else
4318        PFIndexes[i] = ShuffleMask[i];
4319    }
4320
4321    // Compute the index in the perfect shuffle table.
4322    unsigned PFTableIndex =
4323      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
4324    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
4325    unsigned Cost = (PFEntry >> 30);
4326
4327    if (Cost <= 4)
4328      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
4329  }
4330
4331  // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs.
4332  if (EltSize >= 32) {
4333    // Do the expansion with floating-point types, since that is what the VFP
4334    // registers are defined to use, and since i64 is not legal.
4335    EVT EltVT = EVT::getFloatingPointVT(EltSize);
4336    EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
4337    V1 = DAG.getNode(ISD::BITCAST, dl, VecVT, V1);
4338    V2 = DAG.getNode(ISD::BITCAST, dl, VecVT, V2);
4339    SmallVector<SDValue, 8> Ops;
4340    for (unsigned i = 0; i < NumElts; ++i) {
4341      if (ShuffleMask[i] < 0)
4342        Ops.push_back(DAG.getUNDEF(EltVT));
4343      else
4344        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
4345                                  ShuffleMask[i] < (int)NumElts ? V1 : V2,
4346                                  DAG.getConstant(ShuffleMask[i] & (NumElts-1),
4347                                                  MVT::i32)));
4348    }
4349    SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts);
4350    return DAG.getNode(ISD::BITCAST, dl, VT, Val);
4351  }
4352
4353  if (VT == MVT::v8i8) {
4354    SDValue NewOp = LowerVECTOR_SHUFFLEv8i8(Op, ShuffleMask, DAG);
4355    if (NewOp.getNode())
4356      return NewOp;
4357  }
4358
4359  return SDValue();
4360}
4361
4362static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4363  // EXTRACT_VECTOR_ELT is legal only for immediate indexes.
4364  SDValue Lane = Op.getOperand(1);
4365  if (!isa<ConstantSDNode>(Lane))
4366    return SDValue();
4367
4368  SDValue Vec = Op.getOperand(0);
4369  if (Op.getValueType() == MVT::i32 &&
4370      Vec.getValueType().getVectorElementType().getSizeInBits() < 32) {
4371    DebugLoc dl = Op.getDebugLoc();
4372    return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
4373  }
4374
4375  return Op;
4376}
4377
4378static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
4379  // The only time a CONCAT_VECTORS operation can have legal types is when
4380  // two 64-bit vectors are concatenated to a 128-bit vector.
4381  assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 &&
4382         "unexpected CONCAT_VECTORS");
4383  DebugLoc dl = Op.getDebugLoc();
4384  SDValue Val = DAG.getUNDEF(MVT::v2f64);
4385  SDValue Op0 = Op.getOperand(0);
4386  SDValue Op1 = Op.getOperand(1);
4387  if (Op0.getOpcode() != ISD::UNDEF)
4388    Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
4389                      DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op0),
4390                      DAG.getIntPtrConstant(0));
4391  if (Op1.getOpcode() != ISD::UNDEF)
4392    Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
4393                      DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op1),
4394                      DAG.getIntPtrConstant(1));
4395  return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Val);
4396}
4397
4398/// isExtendedBUILD_VECTOR - Check if N is a constant BUILD_VECTOR where each
4399/// element has been zero/sign-extended, depending on the isSigned parameter,
4400/// from an integer type half its size.
4401static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
4402                                   bool isSigned) {
4403  // A v2i64 BUILD_VECTOR will have been legalized to a BITCAST from v4i32.
4404  EVT VT = N->getValueType(0);
4405  if (VT == MVT::v2i64 && N->getOpcode() == ISD::BITCAST) {
4406    SDNode *BVN = N->getOperand(0).getNode();
4407    if (BVN->getValueType(0) != MVT::v4i32 ||
4408        BVN->getOpcode() != ISD::BUILD_VECTOR)
4409      return false;
4410    unsigned LoElt = DAG.getTargetLoweringInfo().isBigEndian() ? 1 : 0;
4411    unsigned HiElt = 1 - LoElt;
4412    ConstantSDNode *Lo0 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt));
4413    ConstantSDNode *Hi0 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt));
4414    ConstantSDNode *Lo1 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt+2));
4415    ConstantSDNode *Hi1 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt+2));
4416    if (!Lo0 || !Hi0 || !Lo1 || !Hi1)
4417      return false;
4418    if (isSigned) {
4419      if (Hi0->getSExtValue() == Lo0->getSExtValue() >> 32 &&
4420          Hi1->getSExtValue() == Lo1->getSExtValue() >> 32)
4421        return true;
4422    } else {
4423      if (Hi0->isNullValue() && Hi1->isNullValue())
4424        return true;
4425    }
4426    return false;
4427  }
4428
4429  if (N->getOpcode() != ISD::BUILD_VECTOR)
4430    return false;
4431
4432  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
4433    SDNode *Elt = N->getOperand(i).getNode();
4434    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
4435      unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4436      unsigned HalfSize = EltSize / 2;
4437      if (isSigned) {
4438        int64_t SExtVal = C->getSExtValue();
4439        if ((SExtVal >> HalfSize) != (SExtVal >> EltSize))
4440          return false;
4441      } else {
4442        if ((C->getZExtValue() >> HalfSize) != 0)
4443          return false;
4444      }
4445      continue;
4446    }
4447    return false;
4448  }
4449
4450  return true;
4451}
4452
4453/// isSignExtended - Check if a node is a vector value that is sign-extended
4454/// or a constant BUILD_VECTOR with sign-extended elements.
4455static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
4456  if (N->getOpcode() == ISD::SIGN_EXTEND || ISD::isSEXTLoad(N))
4457    return true;
4458  if (isExtendedBUILD_VECTOR(N, DAG, true))
4459    return true;
4460  return false;
4461}
4462
4463/// isZeroExtended - Check if a node is a vector value that is zero-extended
4464/// or a constant BUILD_VECTOR with zero-extended elements.
4465static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
4466  if (N->getOpcode() == ISD::ZERO_EXTEND || ISD::isZEXTLoad(N))
4467    return true;
4468  if (isExtendedBUILD_VECTOR(N, DAG, false))
4469    return true;
4470  return false;
4471}
4472
4473/// SkipExtension - For a node that is a SIGN_EXTEND, ZERO_EXTEND, extending
4474/// load, or BUILD_VECTOR with extended elements, return the unextended value.
4475static SDValue SkipExtension(SDNode *N, SelectionDAG &DAG) {
4476  if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
4477    return N->getOperand(0);
4478  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N))
4479    return DAG.getLoad(LD->getMemoryVT(), N->getDebugLoc(), LD->getChain(),
4480                       LD->getBasePtr(), LD->getPointerInfo(), LD->isVolatile(),
4481                       LD->isNonTemporal(), LD->getAlignment());
4482  // Otherwise, the value must be a BUILD_VECTOR.  For v2i64, it will
4483  // have been legalized as a BITCAST from v4i32.
4484  if (N->getOpcode() == ISD::BITCAST) {
4485    SDNode *BVN = N->getOperand(0).getNode();
4486    assert(BVN->getOpcode() == ISD::BUILD_VECTOR &&
4487           BVN->getValueType(0) == MVT::v4i32 && "expected v4i32 BUILD_VECTOR");
4488    unsigned LowElt = DAG.getTargetLoweringInfo().isBigEndian() ? 1 : 0;
4489    return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(), MVT::v2i32,
4490                       BVN->getOperand(LowElt), BVN->getOperand(LowElt+2));
4491  }
4492  // Construct a new BUILD_VECTOR with elements truncated to half the size.
4493  assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
4494  EVT VT = N->getValueType(0);
4495  unsigned EltSize = VT.getVectorElementType().getSizeInBits() / 2;
4496  unsigned NumElts = VT.getVectorNumElements();
4497  MVT TruncVT = MVT::getIntegerVT(EltSize);
4498  SmallVector<SDValue, 8> Ops;
4499  for (unsigned i = 0; i != NumElts; ++i) {
4500    ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
4501    const APInt &CInt = C->getAPIntValue();
4502    Ops.push_back(DAG.getConstant(CInt.trunc(EltSize), TruncVT));
4503  }
4504  return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(),
4505                     MVT::getVectorVT(TruncVT, NumElts), Ops.data(), NumElts);
4506}
4507
4508static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
4509  unsigned Opcode = N->getOpcode();
4510  if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
4511    SDNode *N0 = N->getOperand(0).getNode();
4512    SDNode *N1 = N->getOperand(1).getNode();
4513    return N0->hasOneUse() && N1->hasOneUse() &&
4514      isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
4515  }
4516  return false;
4517}
4518
4519static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
4520  unsigned Opcode = N->getOpcode();
4521  if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
4522    SDNode *N0 = N->getOperand(0).getNode();
4523    SDNode *N1 = N->getOperand(1).getNode();
4524    return N0->hasOneUse() && N1->hasOneUse() &&
4525      isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
4526  }
4527  return false;
4528}
4529
4530static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
4531  // Multiplications are only custom-lowered for 128-bit vectors so that
4532  // VMULL can be detected.  Otherwise v2i64 multiplications are not legal.
4533  EVT VT = Op.getValueType();
4534  assert(VT.is128BitVector() && "unexpected type for custom-lowering ISD::MUL");
4535  SDNode *N0 = Op.getOperand(0).getNode();
4536  SDNode *N1 = Op.getOperand(1).getNode();
4537  unsigned NewOpc = 0;
4538  bool isMLA = false;
4539  bool isN0SExt = isSignExtended(N0, DAG);
4540  bool isN1SExt = isSignExtended(N1, DAG);
4541  if (isN0SExt && isN1SExt)
4542    NewOpc = ARMISD::VMULLs;
4543  else {
4544    bool isN0ZExt = isZeroExtended(N0, DAG);
4545    bool isN1ZExt = isZeroExtended(N1, DAG);
4546    if (isN0ZExt && isN1ZExt)
4547      NewOpc = ARMISD::VMULLu;
4548    else if (isN1SExt || isN1ZExt) {
4549      // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
4550      // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
4551      if (isN1SExt && isAddSubSExt(N0, DAG)) {
4552        NewOpc = ARMISD::VMULLs;
4553        isMLA = true;
4554      } else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
4555        NewOpc = ARMISD::VMULLu;
4556        isMLA = true;
4557      } else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
4558        std::swap(N0, N1);
4559        NewOpc = ARMISD::VMULLu;
4560        isMLA = true;
4561      }
4562    }
4563
4564    if (!NewOpc) {
4565      if (VT == MVT::v2i64)
4566        // Fall through to expand this.  It is not legal.
4567        return SDValue();
4568      else
4569        // Other vector multiplications are legal.
4570        return Op;
4571    }
4572  }
4573
4574  // Legalize to a VMULL instruction.
4575  DebugLoc DL = Op.getDebugLoc();
4576  SDValue Op0;
4577  SDValue Op1 = SkipExtension(N1, DAG);
4578  if (!isMLA) {
4579    Op0 = SkipExtension(N0, DAG);
4580    assert(Op0.getValueType().is64BitVector() &&
4581           Op1.getValueType().is64BitVector() &&
4582           "unexpected types for extended operands to VMULL");
4583    return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
4584  }
4585
4586  // Optimizing (zext A + zext B) * C, to (VMULL A, C) + (VMULL B, C) during
4587  // isel lowering to take advantage of no-stall back to back vmul + vmla.
4588  //   vmull q0, d4, d6
4589  //   vmlal q0, d5, d6
4590  // is faster than
4591  //   vaddl q0, d4, d5
4592  //   vmovl q1, d6
4593  //   vmul  q0, q0, q1
4594  SDValue N00 = SkipExtension(N0->getOperand(0).getNode(), DAG);
4595  SDValue N01 = SkipExtension(N0->getOperand(1).getNode(), DAG);
4596  EVT Op1VT = Op1.getValueType();
4597  return DAG.getNode(N0->getOpcode(), DL, VT,
4598                     DAG.getNode(NewOpc, DL, VT,
4599                               DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
4600                     DAG.getNode(NewOpc, DL, VT,
4601                               DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
4602}
4603
4604static SDValue
4605LowerSDIV_v4i8(SDValue X, SDValue Y, DebugLoc dl, SelectionDAG &DAG) {
4606  // Convert to float
4607  // float4 xf = vcvt_f32_s32(vmovl_s16(a.lo));
4608  // float4 yf = vcvt_f32_s32(vmovl_s16(b.lo));
4609  X = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, X);
4610  Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, Y);
4611  X = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, X);
4612  Y = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, Y);
4613  // Get reciprocal estimate.
4614  // float4 recip = vrecpeq_f32(yf);
4615  Y = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
4616                   DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), Y);
4617  // Because char has a smaller range than uchar, we can actually get away
4618  // without any newton steps.  This requires that we use a weird bias
4619  // of 0xb000, however (again, this has been exhaustively tested).
4620  // float4 result = as_float4(as_int4(xf*recip) + 0xb000);
4621  X = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, X, Y);
4622  X = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, X);
4623  Y = DAG.getConstant(0xb000, MVT::i32);
4624  Y = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Y, Y, Y, Y);
4625  X = DAG.getNode(ISD::ADD, dl, MVT::v4i32, X, Y);
4626  X = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, X);
4627  // Convert back to short.
4628  X = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, X);
4629  X = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, X);
4630  return X;
4631}
4632
4633static SDValue
4634LowerSDIV_v4i16(SDValue N0, SDValue N1, DebugLoc dl, SelectionDAG &DAG) {
4635  SDValue N2;
4636  // Convert to float.
4637  // float4 yf = vcvt_f32_s32(vmovl_s16(y));
4638  // float4 xf = vcvt_f32_s32(vmovl_s16(x));
4639  N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N0);
4640  N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N1);
4641  N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
4642  N1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
4643
4644  // Use reciprocal estimate and one refinement step.
4645  // float4 recip = vrecpeq_f32(yf);
4646  // recip *= vrecpsq_f32(yf, recip);
4647  N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
4648                   DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), N1);
4649  N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
4650                   DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
4651                   N1, N2);
4652  N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
4653  // Because short has a smaller range than ushort, we can actually get away
4654  // with only a single newton step.  This requires that we use a weird bias
4655  // of 89, however (again, this has been exhaustively tested).
4656  // float4 result = as_float4(as_int4(xf*recip) + 89);
4657  N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
4658  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
4659  N1 = DAG.getConstant(89, MVT::i32);
4660  N1 = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, N1, N1, N1, N1);
4661  N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
4662  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
4663  // Convert back to integer and return.
4664  // return vmovn_s32(vcvt_s32_f32(result));
4665  N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
4666  N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
4667  return N0;
4668}
4669
4670static SDValue LowerSDIV(SDValue Op, SelectionDAG &DAG) {
4671  EVT VT = Op.getValueType();
4672  assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
4673         "unexpected type for custom-lowering ISD::SDIV");
4674
4675  DebugLoc dl = Op.getDebugLoc();
4676  SDValue N0 = Op.getOperand(0);
4677  SDValue N1 = Op.getOperand(1);
4678  SDValue N2, N3;
4679
4680  if (VT == MVT::v8i8) {
4681    N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N0);
4682    N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N1);
4683
4684    N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
4685                     DAG.getIntPtrConstant(4));
4686    N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
4687                     DAG.getIntPtrConstant(4));
4688    N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
4689                     DAG.getIntPtrConstant(0));
4690    N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
4691                     DAG.getIntPtrConstant(0));
4692
4693    N0 = LowerSDIV_v4i8(N0, N1, dl, DAG); // v4i16
4694    N2 = LowerSDIV_v4i8(N2, N3, dl, DAG); // v4i16
4695
4696    N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
4697    N0 = LowerCONCAT_VECTORS(N0, DAG);
4698
4699    N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v8i8, N0);
4700    return N0;
4701  }
4702  return LowerSDIV_v4i16(N0, N1, dl, DAG);
4703}
4704
4705static SDValue LowerUDIV(SDValue Op, SelectionDAG &DAG) {
4706  EVT VT = Op.getValueType();
4707  assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
4708         "unexpected type for custom-lowering ISD::UDIV");
4709
4710  DebugLoc dl = Op.getDebugLoc();
4711  SDValue N0 = Op.getOperand(0);
4712  SDValue N1 = Op.getOperand(1);
4713  SDValue N2, N3;
4714
4715  if (VT == MVT::v8i8) {
4716    N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N0);
4717    N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N1);
4718
4719    N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
4720                     DAG.getIntPtrConstant(4));
4721    N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
4722                     DAG.getIntPtrConstant(4));
4723    N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
4724                     DAG.getIntPtrConstant(0));
4725    N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
4726                     DAG.getIntPtrConstant(0));
4727
4728    N0 = LowerSDIV_v4i16(N0, N1, dl, DAG); // v4i16
4729    N2 = LowerSDIV_v4i16(N2, N3, dl, DAG); // v4i16
4730
4731    N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
4732    N0 = LowerCONCAT_VECTORS(N0, DAG);
4733
4734    N0 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v8i8,
4735                     DAG.getConstant(Intrinsic::arm_neon_vqmovnsu, MVT::i32),
4736                     N0);
4737    return N0;
4738  }
4739
4740  // v4i16 sdiv ... Convert to float.
4741  // float4 yf = vcvt_f32_s32(vmovl_u16(y));
4742  // float4 xf = vcvt_f32_s32(vmovl_u16(x));
4743  N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N0);
4744  N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N1);
4745  N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
4746  N1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
4747
4748  // Use reciprocal estimate and two refinement steps.
4749  // float4 recip = vrecpeq_f32(yf);
4750  // recip *= vrecpsq_f32(yf, recip);
4751  // recip *= vrecpsq_f32(yf, recip);
4752  N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
4753                   DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), N1);
4754  N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
4755                   DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
4756                   N1, N2);
4757  N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
4758  N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
4759                   DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
4760                   N1, N2);
4761  N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
4762  // Simply multiplying by the reciprocal estimate can leave us a few ulps
4763  // too low, so we add 2 ulps (exhaustive testing shows that this is enough,
4764  // and that it will never cause us to return an answer too large).
4765  // float4 result = as_float4(as_int4(xf*recip) + 89);
4766  N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
4767  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
4768  N1 = DAG.getConstant(2, MVT::i32);
4769  N1 = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, N1, N1, N1, N1);
4770  N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
4771  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
4772  // Convert back to integer and return.
4773  // return vmovn_u32(vcvt_s32_f32(result));
4774  N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
4775  N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
4776  return N0;
4777}
4778
4779SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
4780  switch (Op.getOpcode()) {
4781  default: llvm_unreachable("Don't know how to custom lower this!");
4782  case ISD::ConstantPool:  return LowerConstantPool(Op, DAG);
4783  case ISD::BlockAddress:  return LowerBlockAddress(Op, DAG);
4784  case ISD::GlobalAddress:
4785    return Subtarget->isTargetDarwin() ? LowerGlobalAddressDarwin(Op, DAG) :
4786      LowerGlobalAddressELF(Op, DAG);
4787  case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
4788  case ISD::SELECT:        return LowerSELECT(Op, DAG);
4789  case ISD::SELECT_CC:     return LowerSELECT_CC(Op, DAG);
4790  case ISD::BR_CC:         return LowerBR_CC(Op, DAG);
4791  case ISD::BR_JT:         return LowerBR_JT(Op, DAG);
4792  case ISD::VASTART:       return LowerVASTART(Op, DAG);
4793  case ISD::MEMBARRIER:    return LowerMEMBARRIER(Op, DAG, Subtarget);
4794  case ISD::PREFETCH:      return LowerPREFETCH(Op, DAG, Subtarget);
4795  case ISD::SINT_TO_FP:
4796  case ISD::UINT_TO_FP:    return LowerINT_TO_FP(Op, DAG);
4797  case ISD::FP_TO_SINT:
4798  case ISD::FP_TO_UINT:    return LowerFP_TO_INT(Op, DAG);
4799  case ISD::FCOPYSIGN:     return LowerFCOPYSIGN(Op, DAG);
4800  case ISD::RETURNADDR:    return LowerRETURNADDR(Op, DAG);
4801  case ISD::FRAMEADDR:     return LowerFRAMEADDR(Op, DAG);
4802  case ISD::GLOBAL_OFFSET_TABLE: return LowerGLOBAL_OFFSET_TABLE(Op, DAG);
4803  case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG);
4804  case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG);
4805  case ISD::EH_SJLJ_DISPATCHSETUP: return LowerEH_SJLJ_DISPATCHSETUP(Op, DAG);
4806  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG,
4807                                                               Subtarget);
4808  case ISD::BITCAST:       return ExpandBITCAST(Op.getNode(), DAG);
4809  case ISD::SHL:
4810  case ISD::SRL:
4811  case ISD::SRA:           return LowerShift(Op.getNode(), DAG, Subtarget);
4812  case ISD::SHL_PARTS:     return LowerShiftLeftParts(Op, DAG);
4813  case ISD::SRL_PARTS:
4814  case ISD::SRA_PARTS:     return LowerShiftRightParts(Op, DAG);
4815  case ISD::CTTZ:          return LowerCTTZ(Op.getNode(), DAG, Subtarget);
4816  case ISD::VSETCC:        return LowerVSETCC(Op, DAG);
4817  case ISD::BUILD_VECTOR:  return LowerBUILD_VECTOR(Op, DAG, Subtarget);
4818  case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
4819  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
4820  case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
4821  case ISD::FLT_ROUNDS_:   return LowerFLT_ROUNDS_(Op, DAG);
4822  case ISD::MUL:           return LowerMUL(Op, DAG);
4823  case ISD::SDIV:          return LowerSDIV(Op, DAG);
4824  case ISD::UDIV:          return LowerUDIV(Op, DAG);
4825  }
4826  return SDValue();
4827}
4828
4829/// ReplaceNodeResults - Replace the results of node with an illegal result
4830/// type with new values built out of custom code.
4831void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
4832                                           SmallVectorImpl<SDValue>&Results,
4833                                           SelectionDAG &DAG) const {
4834  SDValue Res;
4835  switch (N->getOpcode()) {
4836  default:
4837    llvm_unreachable("Don't know how to custom expand this!");
4838    break;
4839  case ISD::BITCAST:
4840    Res = ExpandBITCAST(N, DAG);
4841    break;
4842  case ISD::SRL:
4843  case ISD::SRA:
4844    Res = Expand64BitShift(N, DAG, Subtarget);
4845    break;
4846  }
4847  if (Res.getNode())
4848    Results.push_back(Res);
4849}
4850
4851//===----------------------------------------------------------------------===//
4852//                           ARM Scheduler Hooks
4853//===----------------------------------------------------------------------===//
4854
4855MachineBasicBlock *
4856ARMTargetLowering::EmitAtomicCmpSwap(MachineInstr *MI,
4857                                     MachineBasicBlock *BB,
4858                                     unsigned Size) const {
4859  unsigned dest    = MI->getOperand(0).getReg();
4860  unsigned ptr     = MI->getOperand(1).getReg();
4861  unsigned oldval  = MI->getOperand(2).getReg();
4862  unsigned newval  = MI->getOperand(3).getReg();
4863  unsigned scratch = BB->getParent()->getRegInfo()
4864    .createVirtualRegister(ARM::GPRRegisterClass);
4865  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4866  DebugLoc dl = MI->getDebugLoc();
4867  bool isThumb2 = Subtarget->isThumb2();
4868
4869  unsigned ldrOpc, strOpc;
4870  switch (Size) {
4871  default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
4872  case 1:
4873    ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
4874    strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
4875    break;
4876  case 2:
4877    ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
4878    strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
4879    break;
4880  case 4:
4881    ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
4882    strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
4883    break;
4884  }
4885
4886  MachineFunction *MF = BB->getParent();
4887  const BasicBlock *LLVM_BB = BB->getBasicBlock();
4888  MachineFunction::iterator It = BB;
4889  ++It; // insert the new blocks after the current block
4890
4891  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
4892  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
4893  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
4894  MF->insert(It, loop1MBB);
4895  MF->insert(It, loop2MBB);
4896  MF->insert(It, exitMBB);
4897
4898  // Transfer the remainder of BB and its successor edges to exitMBB.
4899  exitMBB->splice(exitMBB->begin(), BB,
4900                  llvm::next(MachineBasicBlock::iterator(MI)),
4901                  BB->end());
4902  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
4903
4904  //  thisMBB:
4905  //   ...
4906  //   fallthrough --> loop1MBB
4907  BB->addSuccessor(loop1MBB);
4908
4909  // loop1MBB:
4910  //   ldrex dest, [ptr]
4911  //   cmp dest, oldval
4912  //   bne exitMBB
4913  BB = loop1MBB;
4914  AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr));
4915  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
4916                 .addReg(dest).addReg(oldval));
4917  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
4918    .addMBB(exitMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
4919  BB->addSuccessor(loop2MBB);
4920  BB->addSuccessor(exitMBB);
4921
4922  // loop2MBB:
4923  //   strex scratch, newval, [ptr]
4924  //   cmp scratch, #0
4925  //   bne loop1MBB
4926  BB = loop2MBB;
4927  AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(newval)
4928                 .addReg(ptr));
4929  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
4930                 .addReg(scratch).addImm(0));
4931  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
4932    .addMBB(loop1MBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
4933  BB->addSuccessor(loop1MBB);
4934  BB->addSuccessor(exitMBB);
4935
4936  //  exitMBB:
4937  //   ...
4938  BB = exitMBB;
4939
4940  MI->eraseFromParent();   // The instruction is gone now.
4941
4942  return BB;
4943}
4944
4945MachineBasicBlock *
4946ARMTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
4947                                    unsigned Size, unsigned BinOpcode) const {
4948  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
4949  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4950
4951  const BasicBlock *LLVM_BB = BB->getBasicBlock();
4952  MachineFunction *MF = BB->getParent();
4953  MachineFunction::iterator It = BB;
4954  ++It;
4955
4956  unsigned dest = MI->getOperand(0).getReg();
4957  unsigned ptr = MI->getOperand(1).getReg();
4958  unsigned incr = MI->getOperand(2).getReg();
4959  DebugLoc dl = MI->getDebugLoc();
4960
4961  bool isThumb2 = Subtarget->isThumb2();
4962  unsigned ldrOpc, strOpc;
4963  switch (Size) {
4964  default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
4965  case 1:
4966    ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
4967    strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
4968    break;
4969  case 2:
4970    ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
4971    strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
4972    break;
4973  case 4:
4974    ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
4975    strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
4976    break;
4977  }
4978
4979  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
4980  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
4981  MF->insert(It, loopMBB);
4982  MF->insert(It, exitMBB);
4983
4984  // Transfer the remainder of BB and its successor edges to exitMBB.
4985  exitMBB->splice(exitMBB->begin(), BB,
4986                  llvm::next(MachineBasicBlock::iterator(MI)),
4987                  BB->end());
4988  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
4989
4990  MachineRegisterInfo &RegInfo = MF->getRegInfo();
4991  unsigned scratch = RegInfo.createVirtualRegister(ARM::GPRRegisterClass);
4992  unsigned scratch2 = (!BinOpcode) ? incr :
4993    RegInfo.createVirtualRegister(ARM::GPRRegisterClass);
4994
4995  //  thisMBB:
4996  //   ...
4997  //   fallthrough --> loopMBB
4998  BB->addSuccessor(loopMBB);
4999
5000  //  loopMBB:
5001  //   ldrex dest, ptr
5002  //   <binop> scratch2, dest, incr
5003  //   strex scratch, scratch2, ptr
5004  //   cmp scratch, #0
5005  //   bne- loopMBB
5006  //   fallthrough --> exitMBB
5007  BB = loopMBB;
5008  AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr));
5009  if (BinOpcode) {
5010    // operand order needs to go the other way for NAND
5011    if (BinOpcode == ARM::BICrr || BinOpcode == ARM::t2BICrr)
5012      AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
5013                     addReg(incr).addReg(dest)).addReg(0);
5014    else
5015      AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
5016                     addReg(dest).addReg(incr)).addReg(0);
5017  }
5018
5019  AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(scratch2)
5020                 .addReg(ptr));
5021  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
5022                 .addReg(scratch).addImm(0));
5023  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5024    .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5025
5026  BB->addSuccessor(loopMBB);
5027  BB->addSuccessor(exitMBB);
5028
5029  //  exitMBB:
5030  //   ...
5031  BB = exitMBB;
5032
5033  MI->eraseFromParent();   // The instruction is gone now.
5034
5035  return BB;
5036}
5037
5038MachineBasicBlock *
5039ARMTargetLowering::EmitAtomicBinaryMinMax(MachineInstr *MI,
5040                                          MachineBasicBlock *BB,
5041                                          unsigned Size,
5042                                          bool signExtend,
5043                                          ARMCC::CondCodes Cond) const {
5044  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5045
5046  const BasicBlock *LLVM_BB = BB->getBasicBlock();
5047  MachineFunction *MF = BB->getParent();
5048  MachineFunction::iterator It = BB;
5049  ++It;
5050
5051  unsigned dest = MI->getOperand(0).getReg();
5052  unsigned ptr = MI->getOperand(1).getReg();
5053  unsigned incr = MI->getOperand(2).getReg();
5054  unsigned oldval = dest;
5055  DebugLoc dl = MI->getDebugLoc();
5056
5057  bool isThumb2 = Subtarget->isThumb2();
5058  unsigned ldrOpc, strOpc, extendOpc;
5059  switch (Size) {
5060  default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
5061  case 1:
5062    ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
5063    strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
5064    extendOpc = isThumb2 ? ARM::t2SXTBr : ARM::SXTBr;
5065    break;
5066  case 2:
5067    ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
5068    strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
5069    extendOpc = isThumb2 ? ARM::t2SXTHr : ARM::SXTHr;
5070    break;
5071  case 4:
5072    ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
5073    strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
5074    extendOpc = 0;
5075    break;
5076  }
5077
5078  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5079  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5080  MF->insert(It, loopMBB);
5081  MF->insert(It, exitMBB);
5082
5083  // Transfer the remainder of BB and its successor edges to exitMBB.
5084  exitMBB->splice(exitMBB->begin(), BB,
5085                  llvm::next(MachineBasicBlock::iterator(MI)),
5086                  BB->end());
5087  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5088
5089  MachineRegisterInfo &RegInfo = MF->getRegInfo();
5090  unsigned scratch = RegInfo.createVirtualRegister(ARM::GPRRegisterClass);
5091  unsigned scratch2 = RegInfo.createVirtualRegister(ARM::GPRRegisterClass);
5092
5093  //  thisMBB:
5094  //   ...
5095  //   fallthrough --> loopMBB
5096  BB->addSuccessor(loopMBB);
5097
5098  //  loopMBB:
5099  //   ldrex dest, ptr
5100  //   (sign extend dest, if required)
5101  //   cmp dest, incr
5102  //   cmov.cond scratch2, dest, incr
5103  //   strex scratch, scratch2, ptr
5104  //   cmp scratch, #0
5105  //   bne- loopMBB
5106  //   fallthrough --> exitMBB
5107  BB = loopMBB;
5108  AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr));
5109
5110  // Sign extend the value, if necessary.
5111  if (signExtend && extendOpc) {
5112    oldval = RegInfo.createVirtualRegister(ARM::GPRRegisterClass);
5113    AddDefaultPred(BuildMI(BB, dl, TII->get(extendOpc), oldval).addReg(dest));
5114  }
5115
5116  // Build compare and cmov instructions.
5117  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
5118                 .addReg(oldval).addReg(incr));
5119  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2MOVCCr : ARM::MOVCCr), scratch2)
5120         .addReg(oldval).addReg(incr).addImm(Cond).addReg(ARM::CPSR);
5121
5122  AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(scratch2)
5123                 .addReg(ptr));
5124  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
5125                 .addReg(scratch).addImm(0));
5126  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5127    .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5128
5129  BB->addSuccessor(loopMBB);
5130  BB->addSuccessor(exitMBB);
5131
5132  //  exitMBB:
5133  //   ...
5134  BB = exitMBB;
5135
5136  MI->eraseFromParent();   // The instruction is gone now.
5137
5138  return BB;
5139}
5140
5141static
5142MachineBasicBlock *OtherSucc(MachineBasicBlock *MBB, MachineBasicBlock *Succ) {
5143  for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
5144       E = MBB->succ_end(); I != E; ++I)
5145    if (*I != Succ)
5146      return *I;
5147  llvm_unreachable("Expecting a BB with two successors!");
5148}
5149
5150// FIXME: This opcode table should obviously be expressed in the target
5151// description. We probably just need a "machine opcode" value in the pseudo
5152// instruction. But the ideal solution maybe to simply remove the "S" version
5153// of the opcode altogether.
5154struct AddSubFlagsOpcodePair {
5155  unsigned PseudoOpc;
5156  unsigned MachineOpc;
5157};
5158
5159static AddSubFlagsOpcodePair AddSubFlagsOpcodeMap[] = {
5160  {ARM::ADCSri, ARM::ADCri},
5161  {ARM::ADCSrr, ARM::ADCrr},
5162  {ARM::ADCSrs, ARM::ADCrs},
5163  {ARM::SBCSri, ARM::SBCri},
5164  {ARM::SBCSrr, ARM::SBCrr},
5165  {ARM::SBCSrs, ARM::SBCrs},
5166  {ARM::RSBSri, ARM::RSBri},
5167  {ARM::RSBSrr, ARM::RSBrr},
5168  {ARM::RSBSrs, ARM::RSBrs},
5169  {ARM::RSCSri, ARM::RSCri},
5170  {ARM::RSCSrs, ARM::RSCrs},
5171  {ARM::t2ADCSri, ARM::t2ADCri},
5172  {ARM::t2ADCSrr, ARM::t2ADCrr},
5173  {ARM::t2ADCSrs, ARM::t2ADCrs},
5174  {ARM::t2SBCSri, ARM::t2SBCri},
5175  {ARM::t2SBCSrr, ARM::t2SBCrr},
5176  {ARM::t2SBCSrs, ARM::t2SBCrs},
5177  {ARM::t2RSBSri, ARM::t2RSBri},
5178  {ARM::t2RSBSrs, ARM::t2RSBrs},
5179};
5180
5181// Convert and Add or Subtract with Carry and Flags to a generic opcode with
5182// CPSR<def> operand. e.g. ADCS (...) -> ADC (... CPSR<def>).
5183//
5184// FIXME: Somewhere we should assert that CPSR<def> is in the correct
5185// position to be recognized by the target descrition as the 'S' bit.
5186bool ARMTargetLowering::RemapAddSubWithFlags(MachineInstr *MI,
5187                                             MachineBasicBlock *BB) const {
5188  unsigned OldOpc = MI->getOpcode();
5189  unsigned NewOpc = 0;
5190
5191  // This is only called for instructions that need remapping, so iterating over
5192  // the tiny opcode table is not costly.
5193  static const int NPairs =
5194    sizeof(AddSubFlagsOpcodeMap) / sizeof(AddSubFlagsOpcodePair);
5195  for (AddSubFlagsOpcodePair *Pair = &AddSubFlagsOpcodeMap[0],
5196         *End = &AddSubFlagsOpcodeMap[NPairs]; Pair != End; ++Pair) {
5197    if (OldOpc == Pair->PseudoOpc) {
5198      NewOpc = Pair->MachineOpc;
5199      break;
5200    }
5201  }
5202  if (!NewOpc)
5203    return false;
5204
5205  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5206  DebugLoc dl = MI->getDebugLoc();
5207  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(NewOpc));
5208  for (unsigned i = 0; i < MI->getNumOperands(); ++i)
5209    MIB.addOperand(MI->getOperand(i));
5210  AddDefaultPred(MIB);
5211  MIB.addReg(ARM::CPSR, RegState::Define); // S bit
5212  MI->eraseFromParent();
5213  return true;
5214}
5215
5216MachineBasicBlock *
5217ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
5218                                               MachineBasicBlock *BB) const {
5219  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5220  DebugLoc dl = MI->getDebugLoc();
5221  bool isThumb2 = Subtarget->isThumb2();
5222  switch (MI->getOpcode()) {
5223  default: {
5224    if (RemapAddSubWithFlags(MI, BB))
5225      return BB;
5226
5227    MI->dump();
5228    llvm_unreachable("Unexpected instr type to insert");
5229  }
5230  case ARM::ATOMIC_LOAD_ADD_I8:
5231     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
5232  case ARM::ATOMIC_LOAD_ADD_I16:
5233     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
5234  case ARM::ATOMIC_LOAD_ADD_I32:
5235     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
5236
5237  case ARM::ATOMIC_LOAD_AND_I8:
5238     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
5239  case ARM::ATOMIC_LOAD_AND_I16:
5240     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
5241  case ARM::ATOMIC_LOAD_AND_I32:
5242     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
5243
5244  case ARM::ATOMIC_LOAD_OR_I8:
5245     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
5246  case ARM::ATOMIC_LOAD_OR_I16:
5247     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
5248  case ARM::ATOMIC_LOAD_OR_I32:
5249     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
5250
5251  case ARM::ATOMIC_LOAD_XOR_I8:
5252     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
5253  case ARM::ATOMIC_LOAD_XOR_I16:
5254     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
5255  case ARM::ATOMIC_LOAD_XOR_I32:
5256     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
5257
5258  case ARM::ATOMIC_LOAD_NAND_I8:
5259     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
5260  case ARM::ATOMIC_LOAD_NAND_I16:
5261     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
5262  case ARM::ATOMIC_LOAD_NAND_I32:
5263     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
5264
5265  case ARM::ATOMIC_LOAD_SUB_I8:
5266     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
5267  case ARM::ATOMIC_LOAD_SUB_I16:
5268     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
5269  case ARM::ATOMIC_LOAD_SUB_I32:
5270     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
5271
5272  case ARM::ATOMIC_LOAD_MIN_I8:
5273     return EmitAtomicBinaryMinMax(MI, BB, 1, true, ARMCC::LT);
5274  case ARM::ATOMIC_LOAD_MIN_I16:
5275     return EmitAtomicBinaryMinMax(MI, BB, 2, true, ARMCC::LT);
5276  case ARM::ATOMIC_LOAD_MIN_I32:
5277     return EmitAtomicBinaryMinMax(MI, BB, 4, true, ARMCC::LT);
5278
5279  case ARM::ATOMIC_LOAD_MAX_I8:
5280     return EmitAtomicBinaryMinMax(MI, BB, 1, true, ARMCC::GT);
5281  case ARM::ATOMIC_LOAD_MAX_I16:
5282     return EmitAtomicBinaryMinMax(MI, BB, 2, true, ARMCC::GT);
5283  case ARM::ATOMIC_LOAD_MAX_I32:
5284     return EmitAtomicBinaryMinMax(MI, BB, 4, true, ARMCC::GT);
5285
5286  case ARM::ATOMIC_LOAD_UMIN_I8:
5287     return EmitAtomicBinaryMinMax(MI, BB, 1, false, ARMCC::LO);
5288  case ARM::ATOMIC_LOAD_UMIN_I16:
5289     return EmitAtomicBinaryMinMax(MI, BB, 2, false, ARMCC::LO);
5290  case ARM::ATOMIC_LOAD_UMIN_I32:
5291     return EmitAtomicBinaryMinMax(MI, BB, 4, false, ARMCC::LO);
5292
5293  case ARM::ATOMIC_LOAD_UMAX_I8:
5294     return EmitAtomicBinaryMinMax(MI, BB, 1, false, ARMCC::HI);
5295  case ARM::ATOMIC_LOAD_UMAX_I16:
5296     return EmitAtomicBinaryMinMax(MI, BB, 2, false, ARMCC::HI);
5297  case ARM::ATOMIC_LOAD_UMAX_I32:
5298     return EmitAtomicBinaryMinMax(MI, BB, 4, false, ARMCC::HI);
5299
5300  case ARM::ATOMIC_SWAP_I8:  return EmitAtomicBinary(MI, BB, 1, 0);
5301  case ARM::ATOMIC_SWAP_I16: return EmitAtomicBinary(MI, BB, 2, 0);
5302  case ARM::ATOMIC_SWAP_I32: return EmitAtomicBinary(MI, BB, 4, 0);
5303
5304  case ARM::ATOMIC_CMP_SWAP_I8:  return EmitAtomicCmpSwap(MI, BB, 1);
5305  case ARM::ATOMIC_CMP_SWAP_I16: return EmitAtomicCmpSwap(MI, BB, 2);
5306  case ARM::ATOMIC_CMP_SWAP_I32: return EmitAtomicCmpSwap(MI, BB, 4);
5307
5308  case ARM::tMOVCCr_pseudo: {
5309    // To "insert" a SELECT_CC instruction, we actually have to insert the
5310    // diamond control-flow pattern.  The incoming instruction knows the
5311    // destination vreg to set, the condition code register to branch on, the
5312    // true/false values to select between, and a branch opcode to use.
5313    const BasicBlock *LLVM_BB = BB->getBasicBlock();
5314    MachineFunction::iterator It = BB;
5315    ++It;
5316
5317    //  thisMBB:
5318    //  ...
5319    //   TrueVal = ...
5320    //   cmpTY ccX, r1, r2
5321    //   bCC copy1MBB
5322    //   fallthrough --> copy0MBB
5323    MachineBasicBlock *thisMBB  = BB;
5324    MachineFunction *F = BB->getParent();
5325    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
5326    MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
5327    F->insert(It, copy0MBB);
5328    F->insert(It, sinkMBB);
5329
5330    // Transfer the remainder of BB and its successor edges to sinkMBB.
5331    sinkMBB->splice(sinkMBB->begin(), BB,
5332                    llvm::next(MachineBasicBlock::iterator(MI)),
5333                    BB->end());
5334    sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
5335
5336    BB->addSuccessor(copy0MBB);
5337    BB->addSuccessor(sinkMBB);
5338
5339    BuildMI(BB, dl, TII->get(ARM::tBcc)).addMBB(sinkMBB)
5340      .addImm(MI->getOperand(3).getImm()).addReg(MI->getOperand(4).getReg());
5341
5342    //  copy0MBB:
5343    //   %FalseValue = ...
5344    //   # fallthrough to sinkMBB
5345    BB = copy0MBB;
5346
5347    // Update machine-CFG edges
5348    BB->addSuccessor(sinkMBB);
5349
5350    //  sinkMBB:
5351    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
5352    //  ...
5353    BB = sinkMBB;
5354    BuildMI(*BB, BB->begin(), dl,
5355            TII->get(ARM::PHI), MI->getOperand(0).getReg())
5356      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
5357      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
5358
5359    MI->eraseFromParent();   // The pseudo instruction is gone now.
5360    return BB;
5361  }
5362
5363  case ARM::BCCi64:
5364  case ARM::BCCZi64: {
5365    // If there is an unconditional branch to the other successor, remove it.
5366    BB->erase(llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
5367
5368    // Compare both parts that make up the double comparison separately for
5369    // equality.
5370    bool RHSisZero = MI->getOpcode() == ARM::BCCZi64;
5371
5372    unsigned LHS1 = MI->getOperand(1).getReg();
5373    unsigned LHS2 = MI->getOperand(2).getReg();
5374    if (RHSisZero) {
5375      AddDefaultPred(BuildMI(BB, dl,
5376                             TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
5377                     .addReg(LHS1).addImm(0));
5378      BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
5379        .addReg(LHS2).addImm(0)
5380        .addImm(ARMCC::EQ).addReg(ARM::CPSR);
5381    } else {
5382      unsigned RHS1 = MI->getOperand(3).getReg();
5383      unsigned RHS2 = MI->getOperand(4).getReg();
5384      AddDefaultPred(BuildMI(BB, dl,
5385                             TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
5386                     .addReg(LHS1).addReg(RHS1));
5387      BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
5388        .addReg(LHS2).addReg(RHS2)
5389        .addImm(ARMCC::EQ).addReg(ARM::CPSR);
5390    }
5391
5392    MachineBasicBlock *destMBB = MI->getOperand(RHSisZero ? 3 : 5).getMBB();
5393    MachineBasicBlock *exitMBB = OtherSucc(BB, destMBB);
5394    if (MI->getOperand(0).getImm() == ARMCC::NE)
5395      std::swap(destMBB, exitMBB);
5396
5397    BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5398      .addMBB(destMBB).addImm(ARMCC::EQ).addReg(ARM::CPSR);
5399    BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2B : ARM::B))
5400      .addMBB(exitMBB);
5401
5402    MI->eraseFromParent();   // The pseudo instruction is gone now.
5403    return BB;
5404  }
5405  }
5406}
5407
5408//===----------------------------------------------------------------------===//
5409//                           ARM Optimization Hooks
5410//===----------------------------------------------------------------------===//
5411
5412static
5413SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
5414                            TargetLowering::DAGCombinerInfo &DCI) {
5415  SelectionDAG &DAG = DCI.DAG;
5416  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5417  EVT VT = N->getValueType(0);
5418  unsigned Opc = N->getOpcode();
5419  bool isSlctCC = Slct.getOpcode() == ISD::SELECT_CC;
5420  SDValue LHS = isSlctCC ? Slct.getOperand(2) : Slct.getOperand(1);
5421  SDValue RHS = isSlctCC ? Slct.getOperand(3) : Slct.getOperand(2);
5422  ISD::CondCode CC = ISD::SETCC_INVALID;
5423
5424  if (isSlctCC) {
5425    CC = cast<CondCodeSDNode>(Slct.getOperand(4))->get();
5426  } else {
5427    SDValue CCOp = Slct.getOperand(0);
5428    if (CCOp.getOpcode() == ISD::SETCC)
5429      CC = cast<CondCodeSDNode>(CCOp.getOperand(2))->get();
5430  }
5431
5432  bool DoXform = false;
5433  bool InvCC = false;
5434  assert ((Opc == ISD::ADD || (Opc == ISD::SUB && Slct == N->getOperand(1))) &&
5435          "Bad input!");
5436
5437  if (LHS.getOpcode() == ISD::Constant &&
5438      cast<ConstantSDNode>(LHS)->isNullValue()) {
5439    DoXform = true;
5440  } else if (CC != ISD::SETCC_INVALID &&
5441             RHS.getOpcode() == ISD::Constant &&
5442             cast<ConstantSDNode>(RHS)->isNullValue()) {
5443    std::swap(LHS, RHS);
5444    SDValue Op0 = Slct.getOperand(0);
5445    EVT OpVT = isSlctCC ? Op0.getValueType() :
5446                          Op0.getOperand(0).getValueType();
5447    bool isInt = OpVT.isInteger();
5448    CC = ISD::getSetCCInverse(CC, isInt);
5449
5450    if (!TLI.isCondCodeLegal(CC, OpVT))
5451      return SDValue();         // Inverse operator isn't legal.
5452
5453    DoXform = true;
5454    InvCC = true;
5455  }
5456
5457  if (DoXform) {
5458    SDValue Result = DAG.getNode(Opc, RHS.getDebugLoc(), VT, OtherOp, RHS);
5459    if (isSlctCC)
5460      return DAG.getSelectCC(N->getDebugLoc(), OtherOp, Result,
5461                             Slct.getOperand(0), Slct.getOperand(1), CC);
5462    SDValue CCOp = Slct.getOperand(0);
5463    if (InvCC)
5464      CCOp = DAG.getSetCC(Slct.getDebugLoc(), CCOp.getValueType(),
5465                          CCOp.getOperand(0), CCOp.getOperand(1), CC);
5466    return DAG.getNode(ISD::SELECT, N->getDebugLoc(), VT,
5467                       CCOp, OtherOp, Result);
5468  }
5469  return SDValue();
5470}
5471
5472/// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
5473/// operands N0 and N1.  This is a helper for PerformADDCombine that is
5474/// called with the default operands, and if that fails, with commuted
5475/// operands.
5476static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
5477                                         TargetLowering::DAGCombinerInfo &DCI) {
5478  // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
5479  if (N0.getOpcode() == ISD::SELECT && N0.getNode()->hasOneUse()) {
5480    SDValue Result = combineSelectAndUse(N, N0, N1, DCI);
5481    if (Result.getNode()) return Result;
5482  }
5483  return SDValue();
5484}
5485
5486/// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
5487///
5488static SDValue PerformADDCombine(SDNode *N,
5489                                 TargetLowering::DAGCombinerInfo &DCI) {
5490  SDValue N0 = N->getOperand(0);
5491  SDValue N1 = N->getOperand(1);
5492
5493  // First try with the default operand order.
5494  SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI);
5495  if (Result.getNode())
5496    return Result;
5497
5498  // If that didn't work, try again with the operands commuted.
5499  return PerformADDCombineWithOperands(N, N1, N0, DCI);
5500}
5501
5502/// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
5503///
5504static SDValue PerformSUBCombine(SDNode *N,
5505                                 TargetLowering::DAGCombinerInfo &DCI) {
5506  SDValue N0 = N->getOperand(0);
5507  SDValue N1 = N->getOperand(1);
5508
5509  // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
5510  if (N1.getOpcode() == ISD::SELECT && N1.getNode()->hasOneUse()) {
5511    SDValue Result = combineSelectAndUse(N, N1, N0, DCI);
5512    if (Result.getNode()) return Result;
5513  }
5514
5515  return SDValue();
5516}
5517
5518/// PerformVMULCombine
5519/// Distribute (A + B) * C to (A * C) + (B * C) to take advantage of the
5520/// special multiplier accumulator forwarding.
5521///   vmul d3, d0, d2
5522///   vmla d3, d1, d2
5523/// is faster than
5524///   vadd d3, d0, d1
5525///   vmul d3, d3, d2
5526static SDValue PerformVMULCombine(SDNode *N,
5527                                  TargetLowering::DAGCombinerInfo &DCI,
5528                                  const ARMSubtarget *Subtarget) {
5529  if (!Subtarget->hasVMLxForwarding())
5530    return SDValue();
5531
5532  SelectionDAG &DAG = DCI.DAG;
5533  SDValue N0 = N->getOperand(0);
5534  SDValue N1 = N->getOperand(1);
5535  unsigned Opcode = N0.getOpcode();
5536  if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
5537      Opcode != ISD::FADD && Opcode != ISD::FSUB) {
5538    Opcode = N0.getOpcode();
5539    if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
5540        Opcode != ISD::FADD && Opcode != ISD::FSUB)
5541      return SDValue();
5542    std::swap(N0, N1);
5543  }
5544
5545  EVT VT = N->getValueType(0);
5546  DebugLoc DL = N->getDebugLoc();
5547  SDValue N00 = N0->getOperand(0);
5548  SDValue N01 = N0->getOperand(1);
5549  return DAG.getNode(Opcode, DL, VT,
5550                     DAG.getNode(ISD::MUL, DL, VT, N00, N1),
5551                     DAG.getNode(ISD::MUL, DL, VT, N01, N1));
5552}
5553
5554static SDValue PerformMULCombine(SDNode *N,
5555                                 TargetLowering::DAGCombinerInfo &DCI,
5556                                 const ARMSubtarget *Subtarget) {
5557  SelectionDAG &DAG = DCI.DAG;
5558
5559  if (Subtarget->isThumb1Only())
5560    return SDValue();
5561
5562  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
5563    return SDValue();
5564
5565  EVT VT = N->getValueType(0);
5566  if (VT.is64BitVector() || VT.is128BitVector())
5567    return PerformVMULCombine(N, DCI, Subtarget);
5568  if (VT != MVT::i32)
5569    return SDValue();
5570
5571  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
5572  if (!C)
5573    return SDValue();
5574
5575  uint64_t MulAmt = C->getZExtValue();
5576  unsigned ShiftAmt = CountTrailingZeros_64(MulAmt);
5577  ShiftAmt = ShiftAmt & (32 - 1);
5578  SDValue V = N->getOperand(0);
5579  DebugLoc DL = N->getDebugLoc();
5580
5581  SDValue Res;
5582  MulAmt >>= ShiftAmt;
5583  if (isPowerOf2_32(MulAmt - 1)) {
5584    // (mul x, 2^N + 1) => (add (shl x, N), x)
5585    Res = DAG.getNode(ISD::ADD, DL, VT,
5586                      V, DAG.getNode(ISD::SHL, DL, VT,
5587                                     V, DAG.getConstant(Log2_32(MulAmt-1),
5588                                                        MVT::i32)));
5589  } else if (isPowerOf2_32(MulAmt + 1)) {
5590    // (mul x, 2^N - 1) => (sub (shl x, N), x)
5591    Res = DAG.getNode(ISD::SUB, DL, VT,
5592                      DAG.getNode(ISD::SHL, DL, VT,
5593                                  V, DAG.getConstant(Log2_32(MulAmt+1),
5594                                                     MVT::i32)),
5595                                                     V);
5596  } else
5597    return SDValue();
5598
5599  if (ShiftAmt != 0)
5600    Res = DAG.getNode(ISD::SHL, DL, VT, Res,
5601                      DAG.getConstant(ShiftAmt, MVT::i32));
5602
5603  // Do not add new nodes to DAG combiner worklist.
5604  DCI.CombineTo(N, Res, false);
5605  return SDValue();
5606}
5607
5608static SDValue PerformANDCombine(SDNode *N,
5609                                TargetLowering::DAGCombinerInfo &DCI) {
5610
5611  // Attempt to use immediate-form VBIC
5612  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
5613  DebugLoc dl = N->getDebugLoc();
5614  EVT VT = N->getValueType(0);
5615  SelectionDAG &DAG = DCI.DAG;
5616
5617  if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
5618    return SDValue();
5619
5620  APInt SplatBits, SplatUndef;
5621  unsigned SplatBitSize;
5622  bool HasAnyUndefs;
5623  if (BVN &&
5624      BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
5625    if (SplatBitSize <= 64) {
5626      EVT VbicVT;
5627      SDValue Val = isNEONModifiedImm((~SplatBits).getZExtValue(),
5628                                      SplatUndef.getZExtValue(), SplatBitSize,
5629                                      DAG, VbicVT, VT.is128BitVector(),
5630                                      OtherModImm);
5631      if (Val.getNode()) {
5632        SDValue Input =
5633          DAG.getNode(ISD::BITCAST, dl, VbicVT, N->getOperand(0));
5634        SDValue Vbic = DAG.getNode(ARMISD::VBICIMM, dl, VbicVT, Input, Val);
5635        return DAG.getNode(ISD::BITCAST, dl, VT, Vbic);
5636      }
5637    }
5638  }
5639
5640  return SDValue();
5641}
5642
5643/// PerformORCombine - Target-specific dag combine xforms for ISD::OR
5644static SDValue PerformORCombine(SDNode *N,
5645                                TargetLowering::DAGCombinerInfo &DCI,
5646                                const ARMSubtarget *Subtarget) {
5647  // Attempt to use immediate-form VORR
5648  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
5649  DebugLoc dl = N->getDebugLoc();
5650  EVT VT = N->getValueType(0);
5651  SelectionDAG &DAG = DCI.DAG;
5652
5653  if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
5654    return SDValue();
5655
5656  APInt SplatBits, SplatUndef;
5657  unsigned SplatBitSize;
5658  bool HasAnyUndefs;
5659  if (BVN && Subtarget->hasNEON() &&
5660      BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
5661    if (SplatBitSize <= 64) {
5662      EVT VorrVT;
5663      SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
5664                                      SplatUndef.getZExtValue(), SplatBitSize,
5665                                      DAG, VorrVT, VT.is128BitVector(),
5666                                      OtherModImm);
5667      if (Val.getNode()) {
5668        SDValue Input =
5669          DAG.getNode(ISD::BITCAST, dl, VorrVT, N->getOperand(0));
5670        SDValue Vorr = DAG.getNode(ARMISD::VORRIMM, dl, VorrVT, Input, Val);
5671        return DAG.getNode(ISD::BITCAST, dl, VT, Vorr);
5672      }
5673    }
5674  }
5675
5676  SDValue N0 = N->getOperand(0);
5677  if (N0.getOpcode() != ISD::AND)
5678    return SDValue();
5679  SDValue N1 = N->getOperand(1);
5680
5681  // (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant.
5682  if (Subtarget->hasNEON() && N1.getOpcode() == ISD::AND && VT.isVector() &&
5683      DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
5684    APInt SplatUndef;
5685    unsigned SplatBitSize;
5686    bool HasAnyUndefs;
5687
5688    BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(1));
5689    APInt SplatBits0;
5690    if (BVN0 && BVN0->isConstantSplat(SplatBits0, SplatUndef, SplatBitSize,
5691                                  HasAnyUndefs) && !HasAnyUndefs) {
5692      BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(1));
5693      APInt SplatBits1;
5694      if (BVN1 && BVN1->isConstantSplat(SplatBits1, SplatUndef, SplatBitSize,
5695                                    HasAnyUndefs) && !HasAnyUndefs &&
5696          SplatBits0 == ~SplatBits1) {
5697        // Canonicalize the vector type to make instruction selection simpler.
5698        EVT CanonicalVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
5699        SDValue Result = DAG.getNode(ARMISD::VBSL, dl, CanonicalVT,
5700                                     N0->getOperand(1), N0->getOperand(0),
5701                                     N1->getOperand(0));
5702        return DAG.getNode(ISD::BITCAST, dl, VT, Result);
5703      }
5704    }
5705  }
5706
5707  // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when
5708  // reasonable.
5709
5710  // BFI is only available on V6T2+
5711  if (Subtarget->isThumb1Only() || !Subtarget->hasV6T2Ops())
5712    return SDValue();
5713
5714  DebugLoc DL = N->getDebugLoc();
5715  // 1) or (and A, mask), val => ARMbfi A, val, mask
5716  //      iff (val & mask) == val
5717  //
5718  // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
5719  //  2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2)
5720  //          && mask == ~mask2
5721  //  2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2)
5722  //          && ~mask == mask2
5723  //  (i.e., copy a bitfield value into another bitfield of the same width)
5724
5725  if (VT != MVT::i32)
5726    return SDValue();
5727
5728  SDValue N00 = N0.getOperand(0);
5729
5730  // The value and the mask need to be constants so we can verify this is
5731  // actually a bitfield set. If the mask is 0xffff, we can do better
5732  // via a movt instruction, so don't use BFI in that case.
5733  SDValue MaskOp = N0.getOperand(1);
5734  ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(MaskOp);
5735  if (!MaskC)
5736    return SDValue();
5737  unsigned Mask = MaskC->getZExtValue();
5738  if (Mask == 0xffff)
5739    return SDValue();
5740  SDValue Res;
5741  // Case (1): or (and A, mask), val => ARMbfi A, val, mask
5742  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
5743  if (N1C) {
5744    unsigned Val = N1C->getZExtValue();
5745    if ((Val & ~Mask) != Val)
5746      return SDValue();
5747
5748    if (ARM::isBitFieldInvertedMask(Mask)) {
5749      Val >>= CountTrailingZeros_32(~Mask);
5750
5751      Res = DAG.getNode(ARMISD::BFI, DL, VT, N00,
5752                        DAG.getConstant(Val, MVT::i32),
5753                        DAG.getConstant(Mask, MVT::i32));
5754
5755      // Do not add new nodes to DAG combiner worklist.
5756      DCI.CombineTo(N, Res, false);
5757      return SDValue();
5758    }
5759  } else if (N1.getOpcode() == ISD::AND) {
5760    // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
5761    ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
5762    if (!N11C)
5763      return SDValue();
5764    unsigned Mask2 = N11C->getZExtValue();
5765
5766    // Mask and ~Mask2 (or reverse) must be equivalent for the BFI pattern
5767    // as is to match.
5768    if (ARM::isBitFieldInvertedMask(Mask) &&
5769        (Mask == ~Mask2)) {
5770      // The pack halfword instruction works better for masks that fit it,
5771      // so use that when it's available.
5772      if (Subtarget->hasT2ExtractPack() &&
5773          (Mask == 0xffff || Mask == 0xffff0000))
5774        return SDValue();
5775      // 2a
5776      unsigned amt = CountTrailingZeros_32(Mask2);
5777      Res = DAG.getNode(ISD::SRL, DL, VT, N1.getOperand(0),
5778                        DAG.getConstant(amt, MVT::i32));
5779      Res = DAG.getNode(ARMISD::BFI, DL, VT, N00, Res,
5780                        DAG.getConstant(Mask, MVT::i32));
5781      // Do not add new nodes to DAG combiner worklist.
5782      DCI.CombineTo(N, Res, false);
5783      return SDValue();
5784    } else if (ARM::isBitFieldInvertedMask(~Mask) &&
5785               (~Mask == Mask2)) {
5786      // The pack halfword instruction works better for masks that fit it,
5787      // so use that when it's available.
5788      if (Subtarget->hasT2ExtractPack() &&
5789          (Mask2 == 0xffff || Mask2 == 0xffff0000))
5790        return SDValue();
5791      // 2b
5792      unsigned lsb = CountTrailingZeros_32(Mask);
5793      Res = DAG.getNode(ISD::SRL, DL, VT, N00,
5794                        DAG.getConstant(lsb, MVT::i32));
5795      Res = DAG.getNode(ARMISD::BFI, DL, VT, N1.getOperand(0), Res,
5796                        DAG.getConstant(Mask2, MVT::i32));
5797      // Do not add new nodes to DAG combiner worklist.
5798      DCI.CombineTo(N, Res, false);
5799      return SDValue();
5800    }
5801  }
5802
5803  if (DAG.MaskedValueIsZero(N1, MaskC->getAPIntValue()) &&
5804      N00.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N00.getOperand(1)) &&
5805      ARM::isBitFieldInvertedMask(~Mask)) {
5806    // Case (3): or (and (shl A, #shamt), mask), B => ARMbfi B, A, ~mask
5807    // where lsb(mask) == #shamt and masked bits of B are known zero.
5808    SDValue ShAmt = N00.getOperand(1);
5809    unsigned ShAmtC = cast<ConstantSDNode>(ShAmt)->getZExtValue();
5810    unsigned LSB = CountTrailingZeros_32(Mask);
5811    if (ShAmtC != LSB)
5812      return SDValue();
5813
5814    Res = DAG.getNode(ARMISD::BFI, DL, VT, N1, N00.getOperand(0),
5815                      DAG.getConstant(~Mask, MVT::i32));
5816
5817    // Do not add new nodes to DAG combiner worklist.
5818    DCI.CombineTo(N, Res, false);
5819  }
5820
5821  return SDValue();
5822}
5823
5824/// PerformBFICombine - (bfi A, (and B, C1), C2) -> (bfi A, B, C2) iff
5825/// C1 & C2 == C1.
5826static SDValue PerformBFICombine(SDNode *N,
5827                                 TargetLowering::DAGCombinerInfo &DCI) {
5828  SDValue N1 = N->getOperand(1);
5829  if (N1.getOpcode() == ISD::AND) {
5830    ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
5831    if (!N11C)
5832      return SDValue();
5833    unsigned Mask = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
5834    unsigned Mask2 = N11C->getZExtValue();
5835    if ((Mask & Mask2) == Mask2)
5836      return DCI.DAG.getNode(ARMISD::BFI, N->getDebugLoc(), N->getValueType(0),
5837                             N->getOperand(0), N1.getOperand(0),
5838                             N->getOperand(2));
5839  }
5840  return SDValue();
5841}
5842
5843/// PerformVMOVRRDCombine - Target-specific dag combine xforms for
5844/// ARMISD::VMOVRRD.
5845static SDValue PerformVMOVRRDCombine(SDNode *N,
5846                                     TargetLowering::DAGCombinerInfo &DCI) {
5847  // vmovrrd(vmovdrr x, y) -> x,y
5848  SDValue InDouble = N->getOperand(0);
5849  if (InDouble.getOpcode() == ARMISD::VMOVDRR)
5850    return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
5851
5852  // vmovrrd(load f64) -> (load i32), (load i32)
5853  SDNode *InNode = InDouble.getNode();
5854  if (ISD::isNormalLoad(InNode) && InNode->hasOneUse() &&
5855      InNode->getValueType(0) == MVT::f64 &&
5856      InNode->getOperand(1).getOpcode() == ISD::FrameIndex &&
5857      !cast<LoadSDNode>(InNode)->isVolatile()) {
5858    // TODO: Should this be done for non-FrameIndex operands?
5859    LoadSDNode *LD = cast<LoadSDNode>(InNode);
5860
5861    SelectionDAG &DAG = DCI.DAG;
5862    DebugLoc DL = LD->getDebugLoc();
5863    SDValue BasePtr = LD->getBasePtr();
5864    SDValue NewLD1 = DAG.getLoad(MVT::i32, DL, LD->getChain(), BasePtr,
5865                                 LD->getPointerInfo(), LD->isVolatile(),
5866                                 LD->isNonTemporal(), LD->getAlignment());
5867
5868    SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
5869                                    DAG.getConstant(4, MVT::i32));
5870    SDValue NewLD2 = DAG.getLoad(MVT::i32, DL, NewLD1.getValue(1), OffsetPtr,
5871                                 LD->getPointerInfo(), LD->isVolatile(),
5872                                 LD->isNonTemporal(),
5873                                 std::min(4U, LD->getAlignment() / 2));
5874
5875    DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewLD2.getValue(1));
5876    SDValue Result = DCI.CombineTo(N, NewLD1, NewLD2);
5877    DCI.RemoveFromWorklist(LD);
5878    DAG.DeleteNode(LD);
5879    return Result;
5880  }
5881
5882  return SDValue();
5883}
5884
5885/// PerformVMOVDRRCombine - Target-specific dag combine xforms for
5886/// ARMISD::VMOVDRR.  This is also used for BUILD_VECTORs with 2 operands.
5887static SDValue PerformVMOVDRRCombine(SDNode *N, SelectionDAG &DAG) {
5888  // N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X)
5889  SDValue Op0 = N->getOperand(0);
5890  SDValue Op1 = N->getOperand(1);
5891  if (Op0.getOpcode() == ISD::BITCAST)
5892    Op0 = Op0.getOperand(0);
5893  if (Op1.getOpcode() == ISD::BITCAST)
5894    Op1 = Op1.getOperand(0);
5895  if (Op0.getOpcode() == ARMISD::VMOVRRD &&
5896      Op0.getNode() == Op1.getNode() &&
5897      Op0.getResNo() == 0 && Op1.getResNo() == 1)
5898    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(),
5899                       N->getValueType(0), Op0.getOperand(0));
5900  return SDValue();
5901}
5902
5903/// PerformSTORECombine - Target-specific dag combine xforms for
5904/// ISD::STORE.
5905static SDValue PerformSTORECombine(SDNode *N,
5906                                   TargetLowering::DAGCombinerInfo &DCI) {
5907  // Bitcast an i64 store extracted from a vector to f64.
5908  // Otherwise, the i64 value will be legalized to a pair of i32 values.
5909  StoreSDNode *St = cast<StoreSDNode>(N);
5910  SDValue StVal = St->getValue();
5911  if (!ISD::isNormalStore(St) || St->isVolatile())
5912    return SDValue();
5913
5914  if (StVal.getNode()->getOpcode() == ARMISD::VMOVDRR &&
5915      StVal.getNode()->hasOneUse() && !St->isVolatile()) {
5916    SelectionDAG  &DAG = DCI.DAG;
5917    DebugLoc DL = St->getDebugLoc();
5918    SDValue BasePtr = St->getBasePtr();
5919    SDValue NewST1 = DAG.getStore(St->getChain(), DL,
5920                                  StVal.getNode()->getOperand(0), BasePtr,
5921                                  St->getPointerInfo(), St->isVolatile(),
5922                                  St->isNonTemporal(), St->getAlignment());
5923
5924    SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
5925                                    DAG.getConstant(4, MVT::i32));
5926    return DAG.getStore(NewST1.getValue(0), DL, StVal.getNode()->getOperand(1),
5927                        OffsetPtr, St->getPointerInfo(), St->isVolatile(),
5928                        St->isNonTemporal(),
5929                        std::min(4U, St->getAlignment() / 2));
5930  }
5931
5932  if (StVal.getValueType() != MVT::i64 ||
5933      StVal.getNode()->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
5934    return SDValue();
5935
5936  SelectionDAG &DAG = DCI.DAG;
5937  DebugLoc dl = StVal.getDebugLoc();
5938  SDValue IntVec = StVal.getOperand(0);
5939  EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
5940                                 IntVec.getValueType().getVectorNumElements());
5941  SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, IntVec);
5942  SDValue ExtElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
5943                               Vec, StVal.getOperand(1));
5944  dl = N->getDebugLoc();
5945  SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ExtElt);
5946  // Make the DAGCombiner fold the bitcasts.
5947  DCI.AddToWorklist(Vec.getNode());
5948  DCI.AddToWorklist(ExtElt.getNode());
5949  DCI.AddToWorklist(V.getNode());
5950  return DAG.getStore(St->getChain(), dl, V, St->getBasePtr(),
5951                      St->getPointerInfo(), St->isVolatile(),
5952                      St->isNonTemporal(), St->getAlignment(),
5953                      St->getTBAAInfo());
5954}
5955
5956/// hasNormalLoadOperand - Check if any of the operands of a BUILD_VECTOR node
5957/// are normal, non-volatile loads.  If so, it is profitable to bitcast an
5958/// i64 vector to have f64 elements, since the value can then be loaded
5959/// directly into a VFP register.
5960static bool hasNormalLoadOperand(SDNode *N) {
5961  unsigned NumElts = N->getValueType(0).getVectorNumElements();
5962  for (unsigned i = 0; i < NumElts; ++i) {
5963    SDNode *Elt = N->getOperand(i).getNode();
5964    if (ISD::isNormalLoad(Elt) && !cast<LoadSDNode>(Elt)->isVolatile())
5965      return true;
5966  }
5967  return false;
5968}
5969
5970/// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for
5971/// ISD::BUILD_VECTOR.
5972static SDValue PerformBUILD_VECTORCombine(SDNode *N,
5973                                          TargetLowering::DAGCombinerInfo &DCI){
5974  // build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X):
5975  // VMOVRRD is introduced when legalizing i64 types.  It forces the i64 value
5976  // into a pair of GPRs, which is fine when the value is used as a scalar,
5977  // but if the i64 value is converted to a vector, we need to undo the VMOVRRD.
5978  SelectionDAG &DAG = DCI.DAG;
5979  if (N->getNumOperands() == 2) {
5980    SDValue RV = PerformVMOVDRRCombine(N, DAG);
5981    if (RV.getNode())
5982      return RV;
5983  }
5984
5985  // Load i64 elements as f64 values so that type legalization does not split
5986  // them up into i32 values.
5987  EVT VT = N->getValueType(0);
5988  if (VT.getVectorElementType() != MVT::i64 || !hasNormalLoadOperand(N))
5989    return SDValue();
5990  DebugLoc dl = N->getDebugLoc();
5991  SmallVector<SDValue, 8> Ops;
5992  unsigned NumElts = VT.getVectorNumElements();
5993  for (unsigned i = 0; i < NumElts; ++i) {
5994    SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(i));
5995    Ops.push_back(V);
5996    // Make the DAGCombiner fold the bitcast.
5997    DCI.AddToWorklist(V.getNode());
5998  }
5999  EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, NumElts);
6000  SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, FloatVT, Ops.data(), NumElts);
6001  return DAG.getNode(ISD::BITCAST, dl, VT, BV);
6002}
6003
6004/// PerformInsertEltCombine - Target-specific dag combine xforms for
6005/// ISD::INSERT_VECTOR_ELT.
6006static SDValue PerformInsertEltCombine(SDNode *N,
6007                                       TargetLowering::DAGCombinerInfo &DCI) {
6008  // Bitcast an i64 load inserted into a vector to f64.
6009  // Otherwise, the i64 value will be legalized to a pair of i32 values.
6010  EVT VT = N->getValueType(0);
6011  SDNode *Elt = N->getOperand(1).getNode();
6012  if (VT.getVectorElementType() != MVT::i64 ||
6013      !ISD::isNormalLoad(Elt) || cast<LoadSDNode>(Elt)->isVolatile())
6014    return SDValue();
6015
6016  SelectionDAG &DAG = DCI.DAG;
6017  DebugLoc dl = N->getDebugLoc();
6018  EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
6019                                 VT.getVectorNumElements());
6020  SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, N->getOperand(0));
6021  SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(1));
6022  // Make the DAGCombiner fold the bitcasts.
6023  DCI.AddToWorklist(Vec.getNode());
6024  DCI.AddToWorklist(V.getNode());
6025  SDValue InsElt = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, FloatVT,
6026                               Vec, V, N->getOperand(2));
6027  return DAG.getNode(ISD::BITCAST, dl, VT, InsElt);
6028}
6029
6030/// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for
6031/// ISD::VECTOR_SHUFFLE.
6032static SDValue PerformVECTOR_SHUFFLECombine(SDNode *N, SelectionDAG &DAG) {
6033  // The LLVM shufflevector instruction does not require the shuffle mask
6034  // length to match the operand vector length, but ISD::VECTOR_SHUFFLE does
6035  // have that requirement.  When translating to ISD::VECTOR_SHUFFLE, if the
6036  // operands do not match the mask length, they are extended by concatenating
6037  // them with undef vectors.  That is probably the right thing for other
6038  // targets, but for NEON it is better to concatenate two double-register
6039  // size vector operands into a single quad-register size vector.  Do that
6040  // transformation here:
6041  //   shuffle(concat(v1, undef), concat(v2, undef)) ->
6042  //   shuffle(concat(v1, v2), undef)
6043  SDValue Op0 = N->getOperand(0);
6044  SDValue Op1 = N->getOperand(1);
6045  if (Op0.getOpcode() != ISD::CONCAT_VECTORS ||
6046      Op1.getOpcode() != ISD::CONCAT_VECTORS ||
6047      Op0.getNumOperands() != 2 ||
6048      Op1.getNumOperands() != 2)
6049    return SDValue();
6050  SDValue Concat0Op1 = Op0.getOperand(1);
6051  SDValue Concat1Op1 = Op1.getOperand(1);
6052  if (Concat0Op1.getOpcode() != ISD::UNDEF ||
6053      Concat1Op1.getOpcode() != ISD::UNDEF)
6054    return SDValue();
6055  // Skip the transformation if any of the types are illegal.
6056  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6057  EVT VT = N->getValueType(0);
6058  if (!TLI.isTypeLegal(VT) ||
6059      !TLI.isTypeLegal(Concat0Op1.getValueType()) ||
6060      !TLI.isTypeLegal(Concat1Op1.getValueType()))
6061    return SDValue();
6062
6063  SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, N->getDebugLoc(), VT,
6064                                  Op0.getOperand(0), Op1.getOperand(0));
6065  // Translate the shuffle mask.
6066  SmallVector<int, 16> NewMask;
6067  unsigned NumElts = VT.getVectorNumElements();
6068  unsigned HalfElts = NumElts/2;
6069  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
6070  for (unsigned n = 0; n < NumElts; ++n) {
6071    int MaskElt = SVN->getMaskElt(n);
6072    int NewElt = -1;
6073    if (MaskElt < (int)HalfElts)
6074      NewElt = MaskElt;
6075    else if (MaskElt >= (int)NumElts && MaskElt < (int)(NumElts + HalfElts))
6076      NewElt = HalfElts + MaskElt - NumElts;
6077    NewMask.push_back(NewElt);
6078  }
6079  return DAG.getVectorShuffle(VT, N->getDebugLoc(), NewConcat,
6080                              DAG.getUNDEF(VT), NewMask.data());
6081}
6082
6083/// CombineBaseUpdate - Target-specific DAG combine function for VLDDUP and
6084/// NEON load/store intrinsics to merge base address updates.
6085static SDValue CombineBaseUpdate(SDNode *N,
6086                                 TargetLowering::DAGCombinerInfo &DCI) {
6087  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
6088    return SDValue();
6089
6090  SelectionDAG &DAG = DCI.DAG;
6091  bool isIntrinsic = (N->getOpcode() == ISD::INTRINSIC_VOID ||
6092                      N->getOpcode() == ISD::INTRINSIC_W_CHAIN);
6093  unsigned AddrOpIdx = (isIntrinsic ? 2 : 1);
6094  SDValue Addr = N->getOperand(AddrOpIdx);
6095
6096  // Search for a use of the address operand that is an increment.
6097  for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
6098         UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
6099    SDNode *User = *UI;
6100    if (User->getOpcode() != ISD::ADD ||
6101        UI.getUse().getResNo() != Addr.getResNo())
6102      continue;
6103
6104    // Check that the add is independent of the load/store.  Otherwise, folding
6105    // it would create a cycle.
6106    if (User->isPredecessorOf(N) || N->isPredecessorOf(User))
6107      continue;
6108
6109    // Find the new opcode for the updating load/store.
6110    bool isLoad = true;
6111    bool isLaneOp = false;
6112    unsigned NewOpc = 0;
6113    unsigned NumVecs = 0;
6114    if (isIntrinsic) {
6115      unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
6116      switch (IntNo) {
6117      default: assert(0 && "unexpected intrinsic for Neon base update");
6118      case Intrinsic::arm_neon_vld1:     NewOpc = ARMISD::VLD1_UPD;
6119        NumVecs = 1; break;
6120      case Intrinsic::arm_neon_vld2:     NewOpc = ARMISD::VLD2_UPD;
6121        NumVecs = 2; break;
6122      case Intrinsic::arm_neon_vld3:     NewOpc = ARMISD::VLD3_UPD;
6123        NumVecs = 3; break;
6124      case Intrinsic::arm_neon_vld4:     NewOpc = ARMISD::VLD4_UPD;
6125        NumVecs = 4; break;
6126      case Intrinsic::arm_neon_vld2lane: NewOpc = ARMISD::VLD2LN_UPD;
6127        NumVecs = 2; isLaneOp = true; break;
6128      case Intrinsic::arm_neon_vld3lane: NewOpc = ARMISD::VLD3LN_UPD;
6129        NumVecs = 3; isLaneOp = true; break;
6130      case Intrinsic::arm_neon_vld4lane: NewOpc = ARMISD::VLD4LN_UPD;
6131        NumVecs = 4; isLaneOp = true; break;
6132      case Intrinsic::arm_neon_vst1:     NewOpc = ARMISD::VST1_UPD;
6133        NumVecs = 1; isLoad = false; break;
6134      case Intrinsic::arm_neon_vst2:     NewOpc = ARMISD::VST2_UPD;
6135        NumVecs = 2; isLoad = false; break;
6136      case Intrinsic::arm_neon_vst3:     NewOpc = ARMISD::VST3_UPD;
6137        NumVecs = 3; isLoad = false; break;
6138      case Intrinsic::arm_neon_vst4:     NewOpc = ARMISD::VST4_UPD;
6139        NumVecs = 4; isLoad = false; break;
6140      case Intrinsic::arm_neon_vst2lane: NewOpc = ARMISD::VST2LN_UPD;
6141        NumVecs = 2; isLoad = false; isLaneOp = true; break;
6142      case Intrinsic::arm_neon_vst3lane: NewOpc = ARMISD::VST3LN_UPD;
6143        NumVecs = 3; isLoad = false; isLaneOp = true; break;
6144      case Intrinsic::arm_neon_vst4lane: NewOpc = ARMISD::VST4LN_UPD;
6145        NumVecs = 4; isLoad = false; isLaneOp = true; break;
6146      }
6147    } else {
6148      isLaneOp = true;
6149      switch (N->getOpcode()) {
6150      default: assert(0 && "unexpected opcode for Neon base update");
6151      case ARMISD::VLD2DUP: NewOpc = ARMISD::VLD2DUP_UPD; NumVecs = 2; break;
6152      case ARMISD::VLD3DUP: NewOpc = ARMISD::VLD3DUP_UPD; NumVecs = 3; break;
6153      case ARMISD::VLD4DUP: NewOpc = ARMISD::VLD4DUP_UPD; NumVecs = 4; break;
6154      }
6155    }
6156
6157    // Find the size of memory referenced by the load/store.
6158    EVT VecTy;
6159    if (isLoad)
6160      VecTy = N->getValueType(0);
6161    else
6162      VecTy = N->getOperand(AddrOpIdx+1).getValueType();
6163    unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
6164    if (isLaneOp)
6165      NumBytes /= VecTy.getVectorNumElements();
6166
6167    // If the increment is a constant, it must match the memory ref size.
6168    SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
6169    if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
6170      uint64_t IncVal = CInc->getZExtValue();
6171      if (IncVal != NumBytes)
6172        continue;
6173    } else if (NumBytes >= 3 * 16) {
6174      // VLD3/4 and VST3/4 for 128-bit vectors are implemented with two
6175      // separate instructions that make it harder to use a non-constant update.
6176      continue;
6177    }
6178
6179    // Create the new updating load/store node.
6180    EVT Tys[6];
6181    unsigned NumResultVecs = (isLoad ? NumVecs : 0);
6182    unsigned n;
6183    for (n = 0; n < NumResultVecs; ++n)
6184      Tys[n] = VecTy;
6185    Tys[n++] = MVT::i32;
6186    Tys[n] = MVT::Other;
6187    SDVTList SDTys = DAG.getVTList(Tys, NumResultVecs+2);
6188    SmallVector<SDValue, 8> Ops;
6189    Ops.push_back(N->getOperand(0)); // incoming chain
6190    Ops.push_back(N->getOperand(AddrOpIdx));
6191    Ops.push_back(Inc);
6192    for (unsigned i = AddrOpIdx + 1; i < N->getNumOperands(); ++i) {
6193      Ops.push_back(N->getOperand(i));
6194    }
6195    MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N);
6196    SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, N->getDebugLoc(), SDTys,
6197                                           Ops.data(), Ops.size(),
6198                                           MemInt->getMemoryVT(),
6199                                           MemInt->getMemOperand());
6200
6201    // Update the uses.
6202    std::vector<SDValue> NewResults;
6203    for (unsigned i = 0; i < NumResultVecs; ++i) {
6204      NewResults.push_back(SDValue(UpdN.getNode(), i));
6205    }
6206    NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs+1)); // chain
6207    DCI.CombineTo(N, NewResults);
6208    DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
6209
6210    break;
6211  }
6212  return SDValue();
6213}
6214
6215/// CombineVLDDUP - For a VDUPLANE node N, check if its source operand is a
6216/// vldN-lane (N > 1) intrinsic, and if all the other uses of that intrinsic
6217/// are also VDUPLANEs.  If so, combine them to a vldN-dup operation and
6218/// return true.
6219static bool CombineVLDDUP(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
6220  SelectionDAG &DAG = DCI.DAG;
6221  EVT VT = N->getValueType(0);
6222  // vldN-dup instructions only support 64-bit vectors for N > 1.
6223  if (!VT.is64BitVector())
6224    return false;
6225
6226  // Check if the VDUPLANE operand is a vldN-dup intrinsic.
6227  SDNode *VLD = N->getOperand(0).getNode();
6228  if (VLD->getOpcode() != ISD::INTRINSIC_W_CHAIN)
6229    return false;
6230  unsigned NumVecs = 0;
6231  unsigned NewOpc = 0;
6232  unsigned IntNo = cast<ConstantSDNode>(VLD->getOperand(1))->getZExtValue();
6233  if (IntNo == Intrinsic::arm_neon_vld2lane) {
6234    NumVecs = 2;
6235    NewOpc = ARMISD::VLD2DUP;
6236  } else if (IntNo == Intrinsic::arm_neon_vld3lane) {
6237    NumVecs = 3;
6238    NewOpc = ARMISD::VLD3DUP;
6239  } else if (IntNo == Intrinsic::arm_neon_vld4lane) {
6240    NumVecs = 4;
6241    NewOpc = ARMISD::VLD4DUP;
6242  } else {
6243    return false;
6244  }
6245
6246  // First check that all the vldN-lane uses are VDUPLANEs and that the lane
6247  // numbers match the load.
6248  unsigned VLDLaneNo =
6249    cast<ConstantSDNode>(VLD->getOperand(NumVecs+3))->getZExtValue();
6250  for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
6251       UI != UE; ++UI) {
6252    // Ignore uses of the chain result.
6253    if (UI.getUse().getResNo() == NumVecs)
6254      continue;
6255    SDNode *User = *UI;
6256    if (User->getOpcode() != ARMISD::VDUPLANE ||
6257        VLDLaneNo != cast<ConstantSDNode>(User->getOperand(1))->getZExtValue())
6258      return false;
6259  }
6260
6261  // Create the vldN-dup node.
6262  EVT Tys[5];
6263  unsigned n;
6264  for (n = 0; n < NumVecs; ++n)
6265    Tys[n] = VT;
6266  Tys[n] = MVT::Other;
6267  SDVTList SDTys = DAG.getVTList(Tys, NumVecs+1);
6268  SDValue Ops[] = { VLD->getOperand(0), VLD->getOperand(2) };
6269  MemIntrinsicSDNode *VLDMemInt = cast<MemIntrinsicSDNode>(VLD);
6270  SDValue VLDDup = DAG.getMemIntrinsicNode(NewOpc, VLD->getDebugLoc(), SDTys,
6271                                           Ops, 2, VLDMemInt->getMemoryVT(),
6272                                           VLDMemInt->getMemOperand());
6273
6274  // Update the uses.
6275  for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
6276       UI != UE; ++UI) {
6277    unsigned ResNo = UI.getUse().getResNo();
6278    // Ignore uses of the chain result.
6279    if (ResNo == NumVecs)
6280      continue;
6281    SDNode *User = *UI;
6282    DCI.CombineTo(User, SDValue(VLDDup.getNode(), ResNo));
6283  }
6284
6285  // Now the vldN-lane intrinsic is dead except for its chain result.
6286  // Update uses of the chain.
6287  std::vector<SDValue> VLDDupResults;
6288  for (unsigned n = 0; n < NumVecs; ++n)
6289    VLDDupResults.push_back(SDValue(VLDDup.getNode(), n));
6290  VLDDupResults.push_back(SDValue(VLDDup.getNode(), NumVecs));
6291  DCI.CombineTo(VLD, VLDDupResults);
6292
6293  return true;
6294}
6295
6296/// PerformVDUPLANECombine - Target-specific dag combine xforms for
6297/// ARMISD::VDUPLANE.
6298static SDValue PerformVDUPLANECombine(SDNode *N,
6299                                      TargetLowering::DAGCombinerInfo &DCI) {
6300  SDValue Op = N->getOperand(0);
6301
6302  // If the source is a vldN-lane (N > 1) intrinsic, and all the other uses
6303  // of that intrinsic are also VDUPLANEs, combine them to a vldN-dup operation.
6304  if (CombineVLDDUP(N, DCI))
6305    return SDValue(N, 0);
6306
6307  // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is
6308  // redundant.  Ignore bit_converts for now; element sizes are checked below.
6309  while (Op.getOpcode() == ISD::BITCAST)
6310    Op = Op.getOperand(0);
6311  if (Op.getOpcode() != ARMISD::VMOVIMM && Op.getOpcode() != ARMISD::VMVNIMM)
6312    return SDValue();
6313
6314  // Make sure the VMOV element size is not bigger than the VDUPLANE elements.
6315  unsigned EltSize = Op.getValueType().getVectorElementType().getSizeInBits();
6316  // The canonical VMOV for a zero vector uses a 32-bit element size.
6317  unsigned Imm = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6318  unsigned EltBits;
6319  if (ARM_AM::decodeNEONModImm(Imm, EltBits) == 0)
6320    EltSize = 8;
6321  EVT VT = N->getValueType(0);
6322  if (EltSize > VT.getVectorElementType().getSizeInBits())
6323    return SDValue();
6324
6325  return DCI.DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
6326}
6327
6328/// getVShiftImm - Check if this is a valid build_vector for the immediate
6329/// operand of a vector shift operation, where all the elements of the
6330/// build_vector must have the same constant integer value.
6331static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
6332  // Ignore bit_converts.
6333  while (Op.getOpcode() == ISD::BITCAST)
6334    Op = Op.getOperand(0);
6335  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
6336  APInt SplatBits, SplatUndef;
6337  unsigned SplatBitSize;
6338  bool HasAnyUndefs;
6339  if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
6340                                      HasAnyUndefs, ElementBits) ||
6341      SplatBitSize > ElementBits)
6342    return false;
6343  Cnt = SplatBits.getSExtValue();
6344  return true;
6345}
6346
6347/// isVShiftLImm - Check if this is a valid build_vector for the immediate
6348/// operand of a vector shift left operation.  That value must be in the range:
6349///   0 <= Value < ElementBits for a left shift; or
6350///   0 <= Value <= ElementBits for a long left shift.
6351static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
6352  assert(VT.isVector() && "vector shift count is not a vector type");
6353  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
6354  if (! getVShiftImm(Op, ElementBits, Cnt))
6355    return false;
6356  return (Cnt >= 0 && (isLong ? Cnt-1 : Cnt) < ElementBits);
6357}
6358
6359/// isVShiftRImm - Check if this is a valid build_vector for the immediate
6360/// operand of a vector shift right operation.  For a shift opcode, the value
6361/// is positive, but for an intrinsic the value count must be negative. The
6362/// absolute value must be in the range:
6363///   1 <= |Value| <= ElementBits for a right shift; or
6364///   1 <= |Value| <= ElementBits/2 for a narrow right shift.
6365static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
6366                         int64_t &Cnt) {
6367  assert(VT.isVector() && "vector shift count is not a vector type");
6368  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
6369  if (! getVShiftImm(Op, ElementBits, Cnt))
6370    return false;
6371  if (isIntrinsic)
6372    Cnt = -Cnt;
6373  return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits/2 : ElementBits));
6374}
6375
6376/// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
6377static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
6378  unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
6379  switch (IntNo) {
6380  default:
6381    // Don't do anything for most intrinsics.
6382    break;
6383
6384  // Vector shifts: check for immediate versions and lower them.
6385  // Note: This is done during DAG combining instead of DAG legalizing because
6386  // the build_vectors for 64-bit vector element shift counts are generally
6387  // not legal, and it is hard to see their values after they get legalized to
6388  // loads from a constant pool.
6389  case Intrinsic::arm_neon_vshifts:
6390  case Intrinsic::arm_neon_vshiftu:
6391  case Intrinsic::arm_neon_vshiftls:
6392  case Intrinsic::arm_neon_vshiftlu:
6393  case Intrinsic::arm_neon_vshiftn:
6394  case Intrinsic::arm_neon_vrshifts:
6395  case Intrinsic::arm_neon_vrshiftu:
6396  case Intrinsic::arm_neon_vrshiftn:
6397  case Intrinsic::arm_neon_vqshifts:
6398  case Intrinsic::arm_neon_vqshiftu:
6399  case Intrinsic::arm_neon_vqshiftsu:
6400  case Intrinsic::arm_neon_vqshiftns:
6401  case Intrinsic::arm_neon_vqshiftnu:
6402  case Intrinsic::arm_neon_vqshiftnsu:
6403  case Intrinsic::arm_neon_vqrshiftns:
6404  case Intrinsic::arm_neon_vqrshiftnu:
6405  case Intrinsic::arm_neon_vqrshiftnsu: {
6406    EVT VT = N->getOperand(1).getValueType();
6407    int64_t Cnt;
6408    unsigned VShiftOpc = 0;
6409
6410    switch (IntNo) {
6411    case Intrinsic::arm_neon_vshifts:
6412    case Intrinsic::arm_neon_vshiftu:
6413      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) {
6414        VShiftOpc = ARMISD::VSHL;
6415        break;
6416      }
6417      if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) {
6418        VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ?
6419                     ARMISD::VSHRs : ARMISD::VSHRu);
6420        break;
6421      }
6422      return SDValue();
6423
6424    case Intrinsic::arm_neon_vshiftls:
6425    case Intrinsic::arm_neon_vshiftlu:
6426      if (isVShiftLImm(N->getOperand(2), VT, true, Cnt))
6427        break;
6428      llvm_unreachable("invalid shift count for vshll intrinsic");
6429
6430    case Intrinsic::arm_neon_vrshifts:
6431    case Intrinsic::arm_neon_vrshiftu:
6432      if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt))
6433        break;
6434      return SDValue();
6435
6436    case Intrinsic::arm_neon_vqshifts:
6437    case Intrinsic::arm_neon_vqshiftu:
6438      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
6439        break;
6440      return SDValue();
6441
6442    case Intrinsic::arm_neon_vqshiftsu:
6443      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
6444        break;
6445      llvm_unreachable("invalid shift count for vqshlu intrinsic");
6446
6447    case Intrinsic::arm_neon_vshiftn:
6448    case Intrinsic::arm_neon_vrshiftn:
6449    case Intrinsic::arm_neon_vqshiftns:
6450    case Intrinsic::arm_neon_vqshiftnu:
6451    case Intrinsic::arm_neon_vqshiftnsu:
6452    case Intrinsic::arm_neon_vqrshiftns:
6453    case Intrinsic::arm_neon_vqrshiftnu:
6454    case Intrinsic::arm_neon_vqrshiftnsu:
6455      // Narrowing shifts require an immediate right shift.
6456      if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt))
6457        break;
6458      llvm_unreachable("invalid shift count for narrowing vector shift "
6459                       "intrinsic");
6460
6461    default:
6462      llvm_unreachable("unhandled vector shift");
6463    }
6464
6465    switch (IntNo) {
6466    case Intrinsic::arm_neon_vshifts:
6467    case Intrinsic::arm_neon_vshiftu:
6468      // Opcode already set above.
6469      break;
6470    case Intrinsic::arm_neon_vshiftls:
6471    case Intrinsic::arm_neon_vshiftlu:
6472      if (Cnt == VT.getVectorElementType().getSizeInBits())
6473        VShiftOpc = ARMISD::VSHLLi;
6474      else
6475        VShiftOpc = (IntNo == Intrinsic::arm_neon_vshiftls ?
6476                     ARMISD::VSHLLs : ARMISD::VSHLLu);
6477      break;
6478    case Intrinsic::arm_neon_vshiftn:
6479      VShiftOpc = ARMISD::VSHRN; break;
6480    case Intrinsic::arm_neon_vrshifts:
6481      VShiftOpc = ARMISD::VRSHRs; break;
6482    case Intrinsic::arm_neon_vrshiftu:
6483      VShiftOpc = ARMISD::VRSHRu; break;
6484    case Intrinsic::arm_neon_vrshiftn:
6485      VShiftOpc = ARMISD::VRSHRN; break;
6486    case Intrinsic::arm_neon_vqshifts:
6487      VShiftOpc = ARMISD::VQSHLs; break;
6488    case Intrinsic::arm_neon_vqshiftu:
6489      VShiftOpc = ARMISD::VQSHLu; break;
6490    case Intrinsic::arm_neon_vqshiftsu:
6491      VShiftOpc = ARMISD::VQSHLsu; break;
6492    case Intrinsic::arm_neon_vqshiftns:
6493      VShiftOpc = ARMISD::VQSHRNs; break;
6494    case Intrinsic::arm_neon_vqshiftnu:
6495      VShiftOpc = ARMISD::VQSHRNu; break;
6496    case Intrinsic::arm_neon_vqshiftnsu:
6497      VShiftOpc = ARMISD::VQSHRNsu; break;
6498    case Intrinsic::arm_neon_vqrshiftns:
6499      VShiftOpc = ARMISD::VQRSHRNs; break;
6500    case Intrinsic::arm_neon_vqrshiftnu:
6501      VShiftOpc = ARMISD::VQRSHRNu; break;
6502    case Intrinsic::arm_neon_vqrshiftnsu:
6503      VShiftOpc = ARMISD::VQRSHRNsu; break;
6504    }
6505
6506    return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
6507                       N->getOperand(1), DAG.getConstant(Cnt, MVT::i32));
6508  }
6509
6510  case Intrinsic::arm_neon_vshiftins: {
6511    EVT VT = N->getOperand(1).getValueType();
6512    int64_t Cnt;
6513    unsigned VShiftOpc = 0;
6514
6515    if (isVShiftLImm(N->getOperand(3), VT, false, Cnt))
6516      VShiftOpc = ARMISD::VSLI;
6517    else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt))
6518      VShiftOpc = ARMISD::VSRI;
6519    else {
6520      llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
6521    }
6522
6523    return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
6524                       N->getOperand(1), N->getOperand(2),
6525                       DAG.getConstant(Cnt, MVT::i32));
6526  }
6527
6528  case Intrinsic::arm_neon_vqrshifts:
6529  case Intrinsic::arm_neon_vqrshiftu:
6530    // No immediate versions of these to check for.
6531    break;
6532  }
6533
6534  return SDValue();
6535}
6536
6537/// PerformShiftCombine - Checks for immediate versions of vector shifts and
6538/// lowers them.  As with the vector shift intrinsics, this is done during DAG
6539/// combining instead of DAG legalizing because the build_vectors for 64-bit
6540/// vector element shift counts are generally not legal, and it is hard to see
6541/// their values after they get legalized to loads from a constant pool.
6542static SDValue PerformShiftCombine(SDNode *N, SelectionDAG &DAG,
6543                                   const ARMSubtarget *ST) {
6544  EVT VT = N->getValueType(0);
6545
6546  // Nothing to be done for scalar shifts.
6547  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6548  if (!VT.isVector() || !TLI.isTypeLegal(VT))
6549    return SDValue();
6550
6551  assert(ST->hasNEON() && "unexpected vector shift");
6552  int64_t Cnt;
6553
6554  switch (N->getOpcode()) {
6555  default: llvm_unreachable("unexpected shift opcode");
6556
6557  case ISD::SHL:
6558    if (isVShiftLImm(N->getOperand(1), VT, false, Cnt))
6559      return DAG.getNode(ARMISD::VSHL, N->getDebugLoc(), VT, N->getOperand(0),
6560                         DAG.getConstant(Cnt, MVT::i32));
6561    break;
6562
6563  case ISD::SRA:
6564  case ISD::SRL:
6565    if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
6566      unsigned VShiftOpc = (N->getOpcode() == ISD::SRA ?
6567                            ARMISD::VSHRs : ARMISD::VSHRu);
6568      return DAG.getNode(VShiftOpc, N->getDebugLoc(), VT, N->getOperand(0),
6569                         DAG.getConstant(Cnt, MVT::i32));
6570    }
6571  }
6572  return SDValue();
6573}
6574
6575/// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
6576/// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
6577static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG,
6578                                    const ARMSubtarget *ST) {
6579  SDValue N0 = N->getOperand(0);
6580
6581  // Check for sign- and zero-extensions of vector extract operations of 8-
6582  // and 16-bit vector elements.  NEON supports these directly.  They are
6583  // handled during DAG combining because type legalization will promote them
6584  // to 32-bit types and it is messy to recognize the operations after that.
6585  if (ST->hasNEON() && N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
6586    SDValue Vec = N0.getOperand(0);
6587    SDValue Lane = N0.getOperand(1);
6588    EVT VT = N->getValueType(0);
6589    EVT EltVT = N0.getValueType();
6590    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6591
6592    if (VT == MVT::i32 &&
6593        (EltVT == MVT::i8 || EltVT == MVT::i16) &&
6594        TLI.isTypeLegal(Vec.getValueType()) &&
6595        isa<ConstantSDNode>(Lane)) {
6596
6597      unsigned Opc = 0;
6598      switch (N->getOpcode()) {
6599      default: llvm_unreachable("unexpected opcode");
6600      case ISD::SIGN_EXTEND:
6601        Opc = ARMISD::VGETLANEs;
6602        break;
6603      case ISD::ZERO_EXTEND:
6604      case ISD::ANY_EXTEND:
6605        Opc = ARMISD::VGETLANEu;
6606        break;
6607      }
6608      return DAG.getNode(Opc, N->getDebugLoc(), VT, Vec, Lane);
6609    }
6610  }
6611
6612  return SDValue();
6613}
6614
6615/// PerformSELECT_CCCombine - Target-specific DAG combining for ISD::SELECT_CC
6616/// to match f32 max/min patterns to use NEON vmax/vmin instructions.
6617static SDValue PerformSELECT_CCCombine(SDNode *N, SelectionDAG &DAG,
6618                                       const ARMSubtarget *ST) {
6619  // If the target supports NEON, try to use vmax/vmin instructions for f32
6620  // selects like "x < y ? x : y".  Unless the NoNaNsFPMath option is set,
6621  // be careful about NaNs:  NEON's vmax/vmin return NaN if either operand is
6622  // a NaN; only do the transformation when it matches that behavior.
6623
6624  // For now only do this when using NEON for FP operations; if using VFP, it
6625  // is not obvious that the benefit outweighs the cost of switching to the
6626  // NEON pipeline.
6627  if (!ST->hasNEON() || !ST->useNEONForSinglePrecisionFP() ||
6628      N->getValueType(0) != MVT::f32)
6629    return SDValue();
6630
6631  SDValue CondLHS = N->getOperand(0);
6632  SDValue CondRHS = N->getOperand(1);
6633  SDValue LHS = N->getOperand(2);
6634  SDValue RHS = N->getOperand(3);
6635  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
6636
6637  unsigned Opcode = 0;
6638  bool IsReversed;
6639  if (DAG.isEqualTo(LHS, CondLHS) && DAG.isEqualTo(RHS, CondRHS)) {
6640    IsReversed = false; // x CC y ? x : y
6641  } else if (DAG.isEqualTo(LHS, CondRHS) && DAG.isEqualTo(RHS, CondLHS)) {
6642    IsReversed = true ; // x CC y ? y : x
6643  } else {
6644    return SDValue();
6645  }
6646
6647  bool IsUnordered;
6648  switch (CC) {
6649  default: break;
6650  case ISD::SETOLT:
6651  case ISD::SETOLE:
6652  case ISD::SETLT:
6653  case ISD::SETLE:
6654  case ISD::SETULT:
6655  case ISD::SETULE:
6656    // If LHS is NaN, an ordered comparison will be false and the result will
6657    // be the RHS, but vmin(NaN, RHS) = NaN.  Avoid this by checking that LHS
6658    // != NaN.  Likewise, for unordered comparisons, check for RHS != NaN.
6659    IsUnordered = (CC == ISD::SETULT || CC == ISD::SETULE);
6660    if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
6661      break;
6662    // For less-than-or-equal comparisons, "+0 <= -0" will be true but vmin
6663    // will return -0, so vmin can only be used for unsafe math or if one of
6664    // the operands is known to be nonzero.
6665    if ((CC == ISD::SETLE || CC == ISD::SETOLE || CC == ISD::SETULE) &&
6666        !UnsafeFPMath &&
6667        !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
6668      break;
6669    Opcode = IsReversed ? ARMISD::FMAX : ARMISD::FMIN;
6670    break;
6671
6672  case ISD::SETOGT:
6673  case ISD::SETOGE:
6674  case ISD::SETGT:
6675  case ISD::SETGE:
6676  case ISD::SETUGT:
6677  case ISD::SETUGE:
6678    // If LHS is NaN, an ordered comparison will be false and the result will
6679    // be the RHS, but vmax(NaN, RHS) = NaN.  Avoid this by checking that LHS
6680    // != NaN.  Likewise, for unordered comparisons, check for RHS != NaN.
6681    IsUnordered = (CC == ISD::SETUGT || CC == ISD::SETUGE);
6682    if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
6683      break;
6684    // For greater-than-or-equal comparisons, "-0 >= +0" will be true but vmax
6685    // will return +0, so vmax can only be used for unsafe math or if one of
6686    // the operands is known to be nonzero.
6687    if ((CC == ISD::SETGE || CC == ISD::SETOGE || CC == ISD::SETUGE) &&
6688        !UnsafeFPMath &&
6689        !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
6690      break;
6691    Opcode = IsReversed ? ARMISD::FMIN : ARMISD::FMAX;
6692    break;
6693  }
6694
6695  if (!Opcode)
6696    return SDValue();
6697  return DAG.getNode(Opcode, N->getDebugLoc(), N->getValueType(0), LHS, RHS);
6698}
6699
6700SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
6701                                             DAGCombinerInfo &DCI) const {
6702  switch (N->getOpcode()) {
6703  default: break;
6704  case ISD::ADD:        return PerformADDCombine(N, DCI);
6705  case ISD::SUB:        return PerformSUBCombine(N, DCI);
6706  case ISD::MUL:        return PerformMULCombine(N, DCI, Subtarget);
6707  case ISD::OR:         return PerformORCombine(N, DCI, Subtarget);
6708  case ISD::AND:        return PerformANDCombine(N, DCI);
6709  case ARMISD::BFI:     return PerformBFICombine(N, DCI);
6710  case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI);
6711  case ARMISD::VMOVDRR: return PerformVMOVDRRCombine(N, DCI.DAG);
6712  case ISD::STORE:      return PerformSTORECombine(N, DCI);
6713  case ISD::BUILD_VECTOR: return PerformBUILD_VECTORCombine(N, DCI);
6714  case ISD::INSERT_VECTOR_ELT: return PerformInsertEltCombine(N, DCI);
6715  case ISD::VECTOR_SHUFFLE: return PerformVECTOR_SHUFFLECombine(N, DCI.DAG);
6716  case ARMISD::VDUPLANE: return PerformVDUPLANECombine(N, DCI);
6717  case ISD::INTRINSIC_WO_CHAIN: return PerformIntrinsicCombine(N, DCI.DAG);
6718  case ISD::SHL:
6719  case ISD::SRA:
6720  case ISD::SRL:        return PerformShiftCombine(N, DCI.DAG, Subtarget);
6721  case ISD::SIGN_EXTEND:
6722  case ISD::ZERO_EXTEND:
6723  case ISD::ANY_EXTEND: return PerformExtendCombine(N, DCI.DAG, Subtarget);
6724  case ISD::SELECT_CC:  return PerformSELECT_CCCombine(N, DCI.DAG, Subtarget);
6725  case ARMISD::VLD2DUP:
6726  case ARMISD::VLD3DUP:
6727  case ARMISD::VLD4DUP:
6728    return CombineBaseUpdate(N, DCI);
6729  case ISD::INTRINSIC_VOID:
6730  case ISD::INTRINSIC_W_CHAIN:
6731    switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
6732    case Intrinsic::arm_neon_vld1:
6733    case Intrinsic::arm_neon_vld2:
6734    case Intrinsic::arm_neon_vld3:
6735    case Intrinsic::arm_neon_vld4:
6736    case Intrinsic::arm_neon_vld2lane:
6737    case Intrinsic::arm_neon_vld3lane:
6738    case Intrinsic::arm_neon_vld4lane:
6739    case Intrinsic::arm_neon_vst1:
6740    case Intrinsic::arm_neon_vst2:
6741    case Intrinsic::arm_neon_vst3:
6742    case Intrinsic::arm_neon_vst4:
6743    case Intrinsic::arm_neon_vst2lane:
6744    case Intrinsic::arm_neon_vst3lane:
6745    case Intrinsic::arm_neon_vst4lane:
6746      return CombineBaseUpdate(N, DCI);
6747    default: break;
6748    }
6749    break;
6750  }
6751  return SDValue();
6752}
6753
6754bool ARMTargetLowering::isDesirableToTransformToIntegerOp(unsigned Opc,
6755                                                          EVT VT) const {
6756  return (VT == MVT::f32) && (Opc == ISD::LOAD || Opc == ISD::STORE);
6757}
6758
6759bool ARMTargetLowering::allowsUnalignedMemoryAccesses(EVT VT) const {
6760  if (!Subtarget->allowsUnalignedMem())
6761    return false;
6762
6763  switch (VT.getSimpleVT().SimpleTy) {
6764  default:
6765    return false;
6766  case MVT::i8:
6767  case MVT::i16:
6768  case MVT::i32:
6769    return true;
6770  // FIXME: VLD1 etc with standard alignment is legal.
6771  }
6772}
6773
6774static bool isLegalT1AddressImmediate(int64_t V, EVT VT) {
6775  if (V < 0)
6776    return false;
6777
6778  unsigned Scale = 1;
6779  switch (VT.getSimpleVT().SimpleTy) {
6780  default: return false;
6781  case MVT::i1:
6782  case MVT::i8:
6783    // Scale == 1;
6784    break;
6785  case MVT::i16:
6786    // Scale == 2;
6787    Scale = 2;
6788    break;
6789  case MVT::i32:
6790    // Scale == 4;
6791    Scale = 4;
6792    break;
6793  }
6794
6795  if ((V & (Scale - 1)) != 0)
6796    return false;
6797  V /= Scale;
6798  return V == (V & ((1LL << 5) - 1));
6799}
6800
6801static bool isLegalT2AddressImmediate(int64_t V, EVT VT,
6802                                      const ARMSubtarget *Subtarget) {
6803  bool isNeg = false;
6804  if (V < 0) {
6805    isNeg = true;
6806    V = - V;
6807  }
6808
6809  switch (VT.getSimpleVT().SimpleTy) {
6810  default: return false;
6811  case MVT::i1:
6812  case MVT::i8:
6813  case MVT::i16:
6814  case MVT::i32:
6815    // + imm12 or - imm8
6816    if (isNeg)
6817      return V == (V & ((1LL << 8) - 1));
6818    return V == (V & ((1LL << 12) - 1));
6819  case MVT::f32:
6820  case MVT::f64:
6821    // Same as ARM mode. FIXME: NEON?
6822    if (!Subtarget->hasVFP2())
6823      return false;
6824    if ((V & 3) != 0)
6825      return false;
6826    V >>= 2;
6827    return V == (V & ((1LL << 8) - 1));
6828  }
6829}
6830
6831/// isLegalAddressImmediate - Return true if the integer value can be used
6832/// as the offset of the target addressing mode for load / store of the
6833/// given type.
6834static bool isLegalAddressImmediate(int64_t V, EVT VT,
6835                                    const ARMSubtarget *Subtarget) {
6836  if (V == 0)
6837    return true;
6838
6839  if (!VT.isSimple())
6840    return false;
6841
6842  if (Subtarget->isThumb1Only())
6843    return isLegalT1AddressImmediate(V, VT);
6844  else if (Subtarget->isThumb2())
6845    return isLegalT2AddressImmediate(V, VT, Subtarget);
6846
6847  // ARM mode.
6848  if (V < 0)
6849    V = - V;
6850  switch (VT.getSimpleVT().SimpleTy) {
6851  default: return false;
6852  case MVT::i1:
6853  case MVT::i8:
6854  case MVT::i32:
6855    // +- imm12
6856    return V == (V & ((1LL << 12) - 1));
6857  case MVT::i16:
6858    // +- imm8
6859    return V == (V & ((1LL << 8) - 1));
6860  case MVT::f32:
6861  case MVT::f64:
6862    if (!Subtarget->hasVFP2()) // FIXME: NEON?
6863      return false;
6864    if ((V & 3) != 0)
6865      return false;
6866    V >>= 2;
6867    return V == (V & ((1LL << 8) - 1));
6868  }
6869}
6870
6871bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM,
6872                                                      EVT VT) const {
6873  int Scale = AM.Scale;
6874  if (Scale < 0)
6875    return false;
6876
6877  switch (VT.getSimpleVT().SimpleTy) {
6878  default: return false;
6879  case MVT::i1:
6880  case MVT::i8:
6881  case MVT::i16:
6882  case MVT::i32:
6883    if (Scale == 1)
6884      return true;
6885    // r + r << imm
6886    Scale = Scale & ~1;
6887    return Scale == 2 || Scale == 4 || Scale == 8;
6888  case MVT::i64:
6889    // r + r
6890    if (((unsigned)AM.HasBaseReg + Scale) <= 2)
6891      return true;
6892    return false;
6893  case MVT::isVoid:
6894    // Note, we allow "void" uses (basically, uses that aren't loads or
6895    // stores), because arm allows folding a scale into many arithmetic
6896    // operations.  This should be made more precise and revisited later.
6897
6898    // Allow r << imm, but the imm has to be a multiple of two.
6899    if (Scale & 1) return false;
6900    return isPowerOf2_32(Scale);
6901  }
6902}
6903
6904/// isLegalAddressingMode - Return true if the addressing mode represented
6905/// by AM is legal for this target, for a load/store of the specified type.
6906bool ARMTargetLowering::isLegalAddressingMode(const AddrMode &AM,
6907                                              const Type *Ty) const {
6908  EVT VT = getValueType(Ty, true);
6909  if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget))
6910    return false;
6911
6912  // Can never fold addr of global into load/store.
6913  if (AM.BaseGV)
6914    return false;
6915
6916  switch (AM.Scale) {
6917  case 0:  // no scale reg, must be "r+i" or "r", or "i".
6918    break;
6919  case 1:
6920    if (Subtarget->isThumb1Only())
6921      return false;
6922    // FALL THROUGH.
6923  default:
6924    // ARM doesn't support any R+R*scale+imm addr modes.
6925    if (AM.BaseOffs)
6926      return false;
6927
6928    if (!VT.isSimple())
6929      return false;
6930
6931    if (Subtarget->isThumb2())
6932      return isLegalT2ScaledAddressingMode(AM, VT);
6933
6934    int Scale = AM.Scale;
6935    switch (VT.getSimpleVT().SimpleTy) {
6936    default: return false;
6937    case MVT::i1:
6938    case MVT::i8:
6939    case MVT::i32:
6940      if (Scale < 0) Scale = -Scale;
6941      if (Scale == 1)
6942        return true;
6943      // r + r << imm
6944      return isPowerOf2_32(Scale & ~1);
6945    case MVT::i16:
6946    case MVT::i64:
6947      // r + r
6948      if (((unsigned)AM.HasBaseReg + Scale) <= 2)
6949        return true;
6950      return false;
6951
6952    case MVT::isVoid:
6953      // Note, we allow "void" uses (basically, uses that aren't loads or
6954      // stores), because arm allows folding a scale into many arithmetic
6955      // operations.  This should be made more precise and revisited later.
6956
6957      // Allow r << imm, but the imm has to be a multiple of two.
6958      if (Scale & 1) return false;
6959      return isPowerOf2_32(Scale);
6960    }
6961    break;
6962  }
6963  return true;
6964}
6965
6966/// isLegalICmpImmediate - Return true if the specified immediate is legal
6967/// icmp immediate, that is the target has icmp instructions which can compare
6968/// a register against the immediate without having to materialize the
6969/// immediate into a register.
6970bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
6971  if (!Subtarget->isThumb())
6972    return ARM_AM::getSOImmVal(Imm) != -1;
6973  if (Subtarget->isThumb2())
6974    return ARM_AM::getT2SOImmVal(Imm) != -1;
6975  return Imm >= 0 && Imm <= 255;
6976}
6977
6978/// isLegalAddImmediate - Return true if the specified immediate is legal
6979/// add immediate, that is the target has add instructions which can add
6980/// a register with the immediate without having to materialize the
6981/// immediate into a register.
6982bool ARMTargetLowering::isLegalAddImmediate(int64_t Imm) const {
6983  return ARM_AM::getSOImmVal(Imm) != -1;
6984}
6985
6986static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT,
6987                                      bool isSEXTLoad, SDValue &Base,
6988                                      SDValue &Offset, bool &isInc,
6989                                      SelectionDAG &DAG) {
6990  if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
6991    return false;
6992
6993  if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
6994    // AddressingMode 3
6995    Base = Ptr->getOperand(0);
6996    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
6997      int RHSC = (int)RHS->getZExtValue();
6998      if (RHSC < 0 && RHSC > -256) {
6999        assert(Ptr->getOpcode() == ISD::ADD);
7000        isInc = false;
7001        Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
7002        return true;
7003      }
7004    }
7005    isInc = (Ptr->getOpcode() == ISD::ADD);
7006    Offset = Ptr->getOperand(1);
7007    return true;
7008  } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
7009    // AddressingMode 2
7010    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
7011      int RHSC = (int)RHS->getZExtValue();
7012      if (RHSC < 0 && RHSC > -0x1000) {
7013        assert(Ptr->getOpcode() == ISD::ADD);
7014        isInc = false;
7015        Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
7016        Base = Ptr->getOperand(0);
7017        return true;
7018      }
7019    }
7020
7021    if (Ptr->getOpcode() == ISD::ADD) {
7022      isInc = true;
7023      ARM_AM::ShiftOpc ShOpcVal= ARM_AM::getShiftOpcForNode(Ptr->getOperand(0));
7024      if (ShOpcVal != ARM_AM::no_shift) {
7025        Base = Ptr->getOperand(1);
7026        Offset = Ptr->getOperand(0);
7027      } else {
7028        Base = Ptr->getOperand(0);
7029        Offset = Ptr->getOperand(1);
7030      }
7031      return true;
7032    }
7033
7034    isInc = (Ptr->getOpcode() == ISD::ADD);
7035    Base = Ptr->getOperand(0);
7036    Offset = Ptr->getOperand(1);
7037    return true;
7038  }
7039
7040  // FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
7041  return false;
7042}
7043
7044static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT,
7045                                     bool isSEXTLoad, SDValue &Base,
7046                                     SDValue &Offset, bool &isInc,
7047                                     SelectionDAG &DAG) {
7048  if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
7049    return false;
7050
7051  Base = Ptr->getOperand(0);
7052  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
7053    int RHSC = (int)RHS->getZExtValue();
7054    if (RHSC < 0 && RHSC > -0x100) { // 8 bits.
7055      assert(Ptr->getOpcode() == ISD::ADD);
7056      isInc = false;
7057      Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
7058      return true;
7059    } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero.
7060      isInc = Ptr->getOpcode() == ISD::ADD;
7061      Offset = DAG.getConstant(RHSC, RHS->getValueType(0));
7062      return true;
7063    }
7064  }
7065
7066  return false;
7067}
7068
7069/// getPreIndexedAddressParts - returns true by value, base pointer and
7070/// offset pointer and addressing mode by reference if the node's address
7071/// can be legally represented as pre-indexed load / store address.
7072bool
7073ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
7074                                             SDValue &Offset,
7075                                             ISD::MemIndexedMode &AM,
7076                                             SelectionDAG &DAG) const {
7077  if (Subtarget->isThumb1Only())
7078    return false;
7079
7080  EVT VT;
7081  SDValue Ptr;
7082  bool isSEXTLoad = false;
7083  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
7084    Ptr = LD->getBasePtr();
7085    VT  = LD->getMemoryVT();
7086    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
7087  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
7088    Ptr = ST->getBasePtr();
7089    VT  = ST->getMemoryVT();
7090  } else
7091    return false;
7092
7093  bool isInc;
7094  bool isLegal = false;
7095  if (Subtarget->isThumb2())
7096    isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
7097                                       Offset, isInc, DAG);
7098  else
7099    isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
7100                                        Offset, isInc, DAG);
7101  if (!isLegal)
7102    return false;
7103
7104  AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
7105  return true;
7106}
7107
7108/// getPostIndexedAddressParts - returns true by value, base pointer and
7109/// offset pointer and addressing mode by reference if this node can be
7110/// combined with a load / store to form a post-indexed load / store.
7111bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
7112                                                   SDValue &Base,
7113                                                   SDValue &Offset,
7114                                                   ISD::MemIndexedMode &AM,
7115                                                   SelectionDAG &DAG) const {
7116  if (Subtarget->isThumb1Only())
7117    return false;
7118
7119  EVT VT;
7120  SDValue Ptr;
7121  bool isSEXTLoad = false;
7122  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
7123    VT  = LD->getMemoryVT();
7124    Ptr = LD->getBasePtr();
7125    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
7126  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
7127    VT  = ST->getMemoryVT();
7128    Ptr = ST->getBasePtr();
7129  } else
7130    return false;
7131
7132  bool isInc;
7133  bool isLegal = false;
7134  if (Subtarget->isThumb2())
7135    isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
7136                                       isInc, DAG);
7137  else
7138    isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
7139                                        isInc, DAG);
7140  if (!isLegal)
7141    return false;
7142
7143  if (Ptr != Base) {
7144    // Swap base ptr and offset to catch more post-index load / store when
7145    // it's legal. In Thumb2 mode, offset must be an immediate.
7146    if (Ptr == Offset && Op->getOpcode() == ISD::ADD &&
7147        !Subtarget->isThumb2())
7148      std::swap(Base, Offset);
7149
7150    // Post-indexed load / store update the base pointer.
7151    if (Ptr != Base)
7152      return false;
7153  }
7154
7155  AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
7156  return true;
7157}
7158
7159void ARMTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
7160                                                       const APInt &Mask,
7161                                                       APInt &KnownZero,
7162                                                       APInt &KnownOne,
7163                                                       const SelectionDAG &DAG,
7164                                                       unsigned Depth) const {
7165  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
7166  switch (Op.getOpcode()) {
7167  default: break;
7168  case ARMISD::CMOV: {
7169    // Bits are known zero/one if known on the LHS and RHS.
7170    DAG.ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
7171    if (KnownZero == 0 && KnownOne == 0) return;
7172
7173    APInt KnownZeroRHS, KnownOneRHS;
7174    DAG.ComputeMaskedBits(Op.getOperand(1), Mask,
7175                          KnownZeroRHS, KnownOneRHS, Depth+1);
7176    KnownZero &= KnownZeroRHS;
7177    KnownOne  &= KnownOneRHS;
7178    return;
7179  }
7180  }
7181}
7182
7183//===----------------------------------------------------------------------===//
7184//                           ARM Inline Assembly Support
7185//===----------------------------------------------------------------------===//
7186
7187bool ARMTargetLowering::ExpandInlineAsm(CallInst *CI) const {
7188  // Looking for "rev" which is V6+.
7189  if (!Subtarget->hasV6Ops())
7190    return false;
7191
7192  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
7193  std::string AsmStr = IA->getAsmString();
7194  SmallVector<StringRef, 4> AsmPieces;
7195  SplitString(AsmStr, AsmPieces, ";\n");
7196
7197  switch (AsmPieces.size()) {
7198  default: return false;
7199  case 1:
7200    AsmStr = AsmPieces[0];
7201    AsmPieces.clear();
7202    SplitString(AsmStr, AsmPieces, " \t,");
7203
7204    // rev $0, $1
7205    if (AsmPieces.size() == 3 &&
7206        AsmPieces[0] == "rev" && AsmPieces[1] == "$0" && AsmPieces[2] == "$1" &&
7207        IA->getConstraintString().compare(0, 4, "=l,l") == 0) {
7208      const IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
7209      if (Ty && Ty->getBitWidth() == 32)
7210        return IntrinsicLowering::LowerToByteSwap(CI);
7211    }
7212    break;
7213  }
7214
7215  return false;
7216}
7217
7218/// getConstraintType - Given a constraint letter, return the type of
7219/// constraint it is for this target.
7220ARMTargetLowering::ConstraintType
7221ARMTargetLowering::getConstraintType(const std::string &Constraint) const {
7222  if (Constraint.size() == 1) {
7223    switch (Constraint[0]) {
7224    default:  break;
7225    case 'l': return C_RegisterClass;
7226    case 'w': return C_RegisterClass;
7227    }
7228  }
7229  return TargetLowering::getConstraintType(Constraint);
7230}
7231
7232/// Examine constraint type and operand type and determine a weight value.
7233/// This object must already have been set up with the operand type
7234/// and the current alternative constraint selected.
7235TargetLowering::ConstraintWeight
7236ARMTargetLowering::getSingleConstraintMatchWeight(
7237    AsmOperandInfo &info, const char *constraint) const {
7238  ConstraintWeight weight = CW_Invalid;
7239  Value *CallOperandVal = info.CallOperandVal;
7240    // If we don't have a value, we can't do a match,
7241    // but allow it at the lowest weight.
7242  if (CallOperandVal == NULL)
7243    return CW_Default;
7244  const Type *type = CallOperandVal->getType();
7245  // Look at the constraint type.
7246  switch (*constraint) {
7247  default:
7248    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
7249    break;
7250  case 'l':
7251    if (type->isIntegerTy()) {
7252      if (Subtarget->isThumb())
7253        weight = CW_SpecificReg;
7254      else
7255        weight = CW_Register;
7256    }
7257    break;
7258  case 'w':
7259    if (type->isFloatingPointTy())
7260      weight = CW_Register;
7261    break;
7262  }
7263  return weight;
7264}
7265
7266std::pair<unsigned, const TargetRegisterClass*>
7267ARMTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
7268                                                EVT VT) const {
7269  if (Constraint.size() == 1) {
7270    // GCC ARM Constraint Letters
7271    switch (Constraint[0]) {
7272    case 'l':
7273      if (Subtarget->isThumb())
7274        return std::make_pair(0U, ARM::tGPRRegisterClass);
7275      else
7276        return std::make_pair(0U, ARM::GPRRegisterClass);
7277    case 'r':
7278      return std::make_pair(0U, ARM::GPRRegisterClass);
7279    case 'w':
7280      if (VT == MVT::f32)
7281        return std::make_pair(0U, ARM::SPRRegisterClass);
7282      if (VT.getSizeInBits() == 64)
7283        return std::make_pair(0U, ARM::DPRRegisterClass);
7284      if (VT.getSizeInBits() == 128)
7285        return std::make_pair(0U, ARM::QPRRegisterClass);
7286      break;
7287    }
7288  }
7289  if (StringRef("{cc}").equals_lower(Constraint))
7290    return std::make_pair(unsigned(ARM::CPSR), ARM::CCRRegisterClass);
7291
7292  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
7293}
7294
7295std::vector<unsigned> ARMTargetLowering::
7296getRegClassForInlineAsmConstraint(const std::string &Constraint,
7297                                  EVT VT) const {
7298  if (Constraint.size() != 1)
7299    return std::vector<unsigned>();
7300
7301  switch (Constraint[0]) {      // GCC ARM Constraint Letters
7302  default: break;
7303  case 'l':
7304    return make_vector<unsigned>(ARM::R0, ARM::R1, ARM::R2, ARM::R3,
7305                                 ARM::R4, ARM::R5, ARM::R6, ARM::R7,
7306                                 0);
7307  case 'r':
7308    return make_vector<unsigned>(ARM::R0, ARM::R1, ARM::R2, ARM::R3,
7309                                 ARM::R4, ARM::R5, ARM::R6, ARM::R7,
7310                                 ARM::R8, ARM::R9, ARM::R10, ARM::R11,
7311                                 ARM::R12, ARM::LR, 0);
7312  case 'w':
7313    if (VT == MVT::f32)
7314      return make_vector<unsigned>(ARM::S0, ARM::S1, ARM::S2, ARM::S3,
7315                                   ARM::S4, ARM::S5, ARM::S6, ARM::S7,
7316                                   ARM::S8, ARM::S9, ARM::S10, ARM::S11,
7317                                   ARM::S12,ARM::S13,ARM::S14,ARM::S15,
7318                                   ARM::S16,ARM::S17,ARM::S18,ARM::S19,
7319                                   ARM::S20,ARM::S21,ARM::S22,ARM::S23,
7320                                   ARM::S24,ARM::S25,ARM::S26,ARM::S27,
7321                                   ARM::S28,ARM::S29,ARM::S30,ARM::S31, 0);
7322    if (VT.getSizeInBits() == 64)
7323      return make_vector<unsigned>(ARM::D0, ARM::D1, ARM::D2, ARM::D3,
7324                                   ARM::D4, ARM::D5, ARM::D6, ARM::D7,
7325                                   ARM::D8, ARM::D9, ARM::D10,ARM::D11,
7326                                   ARM::D12,ARM::D13,ARM::D14,ARM::D15, 0);
7327    if (VT.getSizeInBits() == 128)
7328      return make_vector<unsigned>(ARM::Q0, ARM::Q1, ARM::Q2, ARM::Q3,
7329                                   ARM::Q4, ARM::Q5, ARM::Q6, ARM::Q7, 0);
7330      break;
7331  }
7332
7333  return std::vector<unsigned>();
7334}
7335
7336/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
7337/// vector.  If it is invalid, don't add anything to Ops.
7338void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
7339                                                     char Constraint,
7340                                                     std::vector<SDValue>&Ops,
7341                                                     SelectionDAG &DAG) const {
7342  SDValue Result(0, 0);
7343
7344  switch (Constraint) {
7345  default: break;
7346  case 'I': case 'J': case 'K': case 'L':
7347  case 'M': case 'N': case 'O':
7348    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
7349    if (!C)
7350      return;
7351
7352    int64_t CVal64 = C->getSExtValue();
7353    int CVal = (int) CVal64;
7354    // None of these constraints allow values larger than 32 bits.  Check
7355    // that the value fits in an int.
7356    if (CVal != CVal64)
7357      return;
7358
7359    switch (Constraint) {
7360      case 'I':
7361        if (Subtarget->isThumb1Only()) {
7362          // This must be a constant between 0 and 255, for ADD
7363          // immediates.
7364          if (CVal >= 0 && CVal <= 255)
7365            break;
7366        } else if (Subtarget->isThumb2()) {
7367          // A constant that can be used as an immediate value in a
7368          // data-processing instruction.
7369          if (ARM_AM::getT2SOImmVal(CVal) != -1)
7370            break;
7371        } else {
7372          // A constant that can be used as an immediate value in a
7373          // data-processing instruction.
7374          if (ARM_AM::getSOImmVal(CVal) != -1)
7375            break;
7376        }
7377        return;
7378
7379      case 'J':
7380        if (Subtarget->isThumb()) {  // FIXME thumb2
7381          // This must be a constant between -255 and -1, for negated ADD
7382          // immediates. This can be used in GCC with an "n" modifier that
7383          // prints the negated value, for use with SUB instructions. It is
7384          // not useful otherwise but is implemented for compatibility.
7385          if (CVal >= -255 && CVal <= -1)
7386            break;
7387        } else {
7388          // This must be a constant between -4095 and 4095. It is not clear
7389          // what this constraint is intended for. Implemented for
7390          // compatibility with GCC.
7391          if (CVal >= -4095 && CVal <= 4095)
7392            break;
7393        }
7394        return;
7395
7396      case 'K':
7397        if (Subtarget->isThumb1Only()) {
7398          // A 32-bit value where only one byte has a nonzero value. Exclude
7399          // zero to match GCC. This constraint is used by GCC internally for
7400          // constants that can be loaded with a move/shift combination.
7401          // It is not useful otherwise but is implemented for compatibility.
7402          if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal))
7403            break;
7404        } else if (Subtarget->isThumb2()) {
7405          // A constant whose bitwise inverse can be used as an immediate
7406          // value in a data-processing instruction. This can be used in GCC
7407          // with a "B" modifier that prints the inverted value, for use with
7408          // BIC and MVN instructions. It is not useful otherwise but is
7409          // implemented for compatibility.
7410          if (ARM_AM::getT2SOImmVal(~CVal) != -1)
7411            break;
7412        } else {
7413          // A constant whose bitwise inverse can be used as an immediate
7414          // value in a data-processing instruction. This can be used in GCC
7415          // with a "B" modifier that prints the inverted value, for use with
7416          // BIC and MVN instructions. It is not useful otherwise but is
7417          // implemented for compatibility.
7418          if (ARM_AM::getSOImmVal(~CVal) != -1)
7419            break;
7420        }
7421        return;
7422
7423      case 'L':
7424        if (Subtarget->isThumb1Only()) {
7425          // This must be a constant between -7 and 7,
7426          // for 3-operand ADD/SUB immediate instructions.
7427          if (CVal >= -7 && CVal < 7)
7428            break;
7429        } else if (Subtarget->isThumb2()) {
7430          // A constant whose negation can be used as an immediate value in a
7431          // data-processing instruction. This can be used in GCC with an "n"
7432          // modifier that prints the negated value, for use with SUB
7433          // instructions. It is not useful otherwise but is implemented for
7434          // compatibility.
7435          if (ARM_AM::getT2SOImmVal(-CVal) != -1)
7436            break;
7437        } else {
7438          // A constant whose negation can be used as an immediate value in a
7439          // data-processing instruction. This can be used in GCC with an "n"
7440          // modifier that prints the negated value, for use with SUB
7441          // instructions. It is not useful otherwise but is implemented for
7442          // compatibility.
7443          if (ARM_AM::getSOImmVal(-CVal) != -1)
7444            break;
7445        }
7446        return;
7447
7448      case 'M':
7449        if (Subtarget->isThumb()) { // FIXME thumb2
7450          // This must be a multiple of 4 between 0 and 1020, for
7451          // ADD sp + immediate.
7452          if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
7453            break;
7454        } else {
7455          // A power of two or a constant between 0 and 32.  This is used in
7456          // GCC for the shift amount on shifted register operands, but it is
7457          // useful in general for any shift amounts.
7458          if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0))
7459            break;
7460        }
7461        return;
7462
7463      case 'N':
7464        if (Subtarget->isThumb()) {  // FIXME thumb2
7465          // This must be a constant between 0 and 31, for shift amounts.
7466          if (CVal >= 0 && CVal <= 31)
7467            break;
7468        }
7469        return;
7470
7471      case 'O':
7472        if (Subtarget->isThumb()) {  // FIXME thumb2
7473          // This must be a multiple of 4 between -508 and 508, for
7474          // ADD/SUB sp = sp + immediate.
7475          if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
7476            break;
7477        }
7478        return;
7479    }
7480    Result = DAG.getTargetConstant(CVal, Op.getValueType());
7481    break;
7482  }
7483
7484  if (Result.getNode()) {
7485    Ops.push_back(Result);
7486    return;
7487  }
7488  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
7489}
7490
7491bool
7492ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
7493  // The ARM target isn't yet aware of offsets.
7494  return false;
7495}
7496
7497int ARM::getVFPf32Imm(const APFloat &FPImm) {
7498  APInt Imm = FPImm.bitcastToAPInt();
7499  uint32_t Sign = Imm.lshr(31).getZExtValue() & 1;
7500  int32_t Exp = (Imm.lshr(23).getSExtValue() & 0xff) - 127;  // -126 to 127
7501  int64_t Mantissa = Imm.getZExtValue() & 0x7fffff;  // 23 bits
7502
7503  // We can handle 4 bits of mantissa.
7504  // mantissa = (16+UInt(e:f:g:h))/16.
7505  if (Mantissa & 0x7ffff)
7506    return -1;
7507  Mantissa >>= 19;
7508  if ((Mantissa & 0xf) != Mantissa)
7509    return -1;
7510
7511  // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
7512  if (Exp < -3 || Exp > 4)
7513    return -1;
7514  Exp = ((Exp+3) & 0x7) ^ 4;
7515
7516  return ((int)Sign << 7) | (Exp << 4) | Mantissa;
7517}
7518
7519int ARM::getVFPf64Imm(const APFloat &FPImm) {
7520  APInt Imm = FPImm.bitcastToAPInt();
7521  uint64_t Sign = Imm.lshr(63).getZExtValue() & 1;
7522  int64_t Exp = (Imm.lshr(52).getSExtValue() & 0x7ff) - 1023;   // -1022 to 1023
7523  uint64_t Mantissa = Imm.getZExtValue() & 0xfffffffffffffLL;
7524
7525  // We can handle 4 bits of mantissa.
7526  // mantissa = (16+UInt(e:f:g:h))/16.
7527  if (Mantissa & 0xffffffffffffLL)
7528    return -1;
7529  Mantissa >>= 48;
7530  if ((Mantissa & 0xf) != Mantissa)
7531    return -1;
7532
7533  // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
7534  if (Exp < -3 || Exp > 4)
7535    return -1;
7536  Exp = ((Exp+3) & 0x7) ^ 4;
7537
7538  return ((int)Sign << 7) | (Exp << 4) | Mantissa;
7539}
7540
7541bool ARM::isBitFieldInvertedMask(unsigned v) {
7542  if (v == 0xffffffff)
7543    return 0;
7544  // there can be 1's on either or both "outsides", all the "inside"
7545  // bits must be 0's
7546  unsigned int lsb = 0, msb = 31;
7547  while (v & (1 << msb)) --msb;
7548  while (v & (1 << lsb)) ++lsb;
7549  for (unsigned int i = lsb; i <= msb; ++i) {
7550    if (v & (1 << i))
7551      return 0;
7552  }
7553  return 1;
7554}
7555
7556/// isFPImmLegal - Returns true if the target can instruction select the
7557/// specified FP immediate natively. If false, the legalizer will
7558/// materialize the FP immediate as a load from a constant pool.
7559bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
7560  if (!Subtarget->hasVFP3())
7561    return false;
7562  if (VT == MVT::f32)
7563    return ARM::getVFPf32Imm(Imm) != -1;
7564  if (VT == MVT::f64)
7565    return ARM::getVFPf64Imm(Imm) != -1;
7566  return false;
7567}
7568
7569/// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
7570/// MemIntrinsicNodes.  The associated MachineMemOperands record the alignment
7571/// specified in the intrinsic calls.
7572bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
7573                                           const CallInst &I,
7574                                           unsigned Intrinsic) const {
7575  switch (Intrinsic) {
7576  case Intrinsic::arm_neon_vld1:
7577  case Intrinsic::arm_neon_vld2:
7578  case Intrinsic::arm_neon_vld3:
7579  case Intrinsic::arm_neon_vld4:
7580  case Intrinsic::arm_neon_vld2lane:
7581  case Intrinsic::arm_neon_vld3lane:
7582  case Intrinsic::arm_neon_vld4lane: {
7583    Info.opc = ISD::INTRINSIC_W_CHAIN;
7584    // Conservatively set memVT to the entire set of vectors loaded.
7585    uint64_t NumElts = getTargetData()->getTypeAllocSize(I.getType()) / 8;
7586    Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
7587    Info.ptrVal = I.getArgOperand(0);
7588    Info.offset = 0;
7589    Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
7590    Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
7591    Info.vol = false; // volatile loads with NEON intrinsics not supported
7592    Info.readMem = true;
7593    Info.writeMem = false;
7594    return true;
7595  }
7596  case Intrinsic::arm_neon_vst1:
7597  case Intrinsic::arm_neon_vst2:
7598  case Intrinsic::arm_neon_vst3:
7599  case Intrinsic::arm_neon_vst4:
7600  case Intrinsic::arm_neon_vst2lane:
7601  case Intrinsic::arm_neon_vst3lane:
7602  case Intrinsic::arm_neon_vst4lane: {
7603    Info.opc = ISD::INTRINSIC_VOID;
7604    // Conservatively set memVT to the entire set of vectors stored.
7605    unsigned NumElts = 0;
7606    for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
7607      const Type *ArgTy = I.getArgOperand(ArgI)->getType();
7608      if (!ArgTy->isVectorTy())
7609        break;
7610      NumElts += getTargetData()->getTypeAllocSize(ArgTy) / 8;
7611    }
7612    Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
7613    Info.ptrVal = I.getArgOperand(0);
7614    Info.offset = 0;
7615    Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
7616    Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
7617    Info.vol = false; // volatile stores with NEON intrinsics not supported
7618    Info.readMem = false;
7619    Info.writeMem = true;
7620    return true;
7621  }
7622  default:
7623    break;
7624  }
7625
7626  return false;
7627}
7628