ARMISelLowering.cpp revision fc8475bde993cc0fa6101427e73e8a9cf7d1c3a4
1//===-- ARMISelLowering.cpp - ARM DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that ARM uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "arm-isel"
16#include "ARM.h"
17#include "ARMAddressingModes.h"
18#include "ARMCallingConv.h"
19#include "ARMConstantPoolValue.h"
20#include "ARMISelLowering.h"
21#include "ARMMachineFunctionInfo.h"
22#include "ARMPerfectShuffle.h"
23#include "ARMRegisterInfo.h"
24#include "ARMSubtarget.h"
25#include "ARMTargetMachine.h"
26#include "ARMTargetObjectFile.h"
27#include "llvm/CallingConv.h"
28#include "llvm/Constants.h"
29#include "llvm/Function.h"
30#include "llvm/GlobalValue.h"
31#include "llvm/Instruction.h"
32#include "llvm/Instructions.h"
33#include "llvm/Intrinsics.h"
34#include "llvm/Type.h"
35#include "llvm/CodeGen/CallingConvLower.h"
36#include "llvm/CodeGen/IntrinsicLowering.h"
37#include "llvm/CodeGen/MachineBasicBlock.h"
38#include "llvm/CodeGen/MachineFrameInfo.h"
39#include "llvm/CodeGen/MachineFunction.h"
40#include "llvm/CodeGen/MachineInstrBuilder.h"
41#include "llvm/CodeGen/MachineRegisterInfo.h"
42#include "llvm/CodeGen/PseudoSourceValue.h"
43#include "llvm/CodeGen/SelectionDAG.h"
44#include "llvm/MC/MCSectionMachO.h"
45#include "llvm/Target/TargetOptions.h"
46#include "llvm/ADT/VectorExtras.h"
47#include "llvm/ADT/StringExtras.h"
48#include "llvm/ADT/Statistic.h"
49#include "llvm/Support/CommandLine.h"
50#include "llvm/Support/ErrorHandling.h"
51#include "llvm/Support/MathExtras.h"
52#include "llvm/Support/raw_ostream.h"
53#include <sstream>
54using namespace llvm;
55
56STATISTIC(NumTailCalls, "Number of tail calls");
57STATISTIC(NumMovwMovt, "Number of GAs materialized with movw + movt");
58
59// This option should go away when tail calls fully work.
60static cl::opt<bool>
61EnableARMTailCalls("arm-tail-calls", cl::Hidden,
62  cl::desc("Generate tail calls (TEMPORARY OPTION)."),
63  cl::init(false));
64
65cl::opt<bool>
66EnableARMLongCalls("arm-long-calls", cl::Hidden,
67  cl::desc("Generate calls via indirect call instructions"),
68  cl::init(false));
69
70static cl::opt<bool>
71ARMInterworking("arm-interworking", cl::Hidden,
72  cl::desc("Enable / disable ARM interworking (for debugging only)"),
73  cl::init(true));
74
75void ARMTargetLowering::addTypeForNEON(EVT VT, EVT PromotedLdStVT,
76                                       EVT PromotedBitwiseVT) {
77  if (VT != PromotedLdStVT) {
78    setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote);
79    AddPromotedToType (ISD::LOAD, VT.getSimpleVT(),
80                       PromotedLdStVT.getSimpleVT());
81
82    setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote);
83    AddPromotedToType (ISD::STORE, VT.getSimpleVT(),
84                       PromotedLdStVT.getSimpleVT());
85  }
86
87  EVT ElemTy = VT.getVectorElementType();
88  if (ElemTy != MVT::i64 && ElemTy != MVT::f64)
89    setOperationAction(ISD::VSETCC, VT.getSimpleVT(), Custom);
90  setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT.getSimpleVT(), Custom);
91  if (ElemTy != MVT::i32) {
92    setOperationAction(ISD::SINT_TO_FP, VT.getSimpleVT(), Expand);
93    setOperationAction(ISD::UINT_TO_FP, VT.getSimpleVT(), Expand);
94    setOperationAction(ISD::FP_TO_SINT, VT.getSimpleVT(), Expand);
95    setOperationAction(ISD::FP_TO_UINT, VT.getSimpleVT(), Expand);
96  }
97  setOperationAction(ISD::BUILD_VECTOR, VT.getSimpleVT(), Custom);
98  setOperationAction(ISD::VECTOR_SHUFFLE, VT.getSimpleVT(), Custom);
99  setOperationAction(ISD::CONCAT_VECTORS, VT.getSimpleVT(), Legal);
100  setOperationAction(ISD::EXTRACT_SUBVECTOR, VT.getSimpleVT(), Legal);
101  setOperationAction(ISD::SELECT, VT.getSimpleVT(), Expand);
102  setOperationAction(ISD::SELECT_CC, VT.getSimpleVT(), Expand);
103  if (VT.isInteger()) {
104    setOperationAction(ISD::SHL, VT.getSimpleVT(), Custom);
105    setOperationAction(ISD::SRA, VT.getSimpleVT(), Custom);
106    setOperationAction(ISD::SRL, VT.getSimpleVT(), Custom);
107    setLoadExtAction(ISD::SEXTLOAD, VT.getSimpleVT(), Expand);
108    setLoadExtAction(ISD::ZEXTLOAD, VT.getSimpleVT(), Expand);
109    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
110         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
111      setTruncStoreAction(VT.getSimpleVT(),
112                          (MVT::SimpleValueType)InnerVT, Expand);
113  }
114  setLoadExtAction(ISD::EXTLOAD, VT.getSimpleVT(), Expand);
115
116  // Promote all bit-wise operations.
117  if (VT.isInteger() && VT != PromotedBitwiseVT) {
118    setOperationAction(ISD::AND, VT.getSimpleVT(), Promote);
119    AddPromotedToType (ISD::AND, VT.getSimpleVT(),
120                       PromotedBitwiseVT.getSimpleVT());
121    setOperationAction(ISD::OR,  VT.getSimpleVT(), Promote);
122    AddPromotedToType (ISD::OR,  VT.getSimpleVT(),
123                       PromotedBitwiseVT.getSimpleVT());
124    setOperationAction(ISD::XOR, VT.getSimpleVT(), Promote);
125    AddPromotedToType (ISD::XOR, VT.getSimpleVT(),
126                       PromotedBitwiseVT.getSimpleVT());
127  }
128
129  // Neon does not support vector divide/remainder operations.
130  setOperationAction(ISD::SDIV, VT.getSimpleVT(), Expand);
131  setOperationAction(ISD::UDIV, VT.getSimpleVT(), Expand);
132  setOperationAction(ISD::FDIV, VT.getSimpleVT(), Expand);
133  setOperationAction(ISD::SREM, VT.getSimpleVT(), Expand);
134  setOperationAction(ISD::UREM, VT.getSimpleVT(), Expand);
135  setOperationAction(ISD::FREM, VT.getSimpleVT(), Expand);
136}
137
138void ARMTargetLowering::addDRTypeForNEON(EVT VT) {
139  addRegisterClass(VT, ARM::DPRRegisterClass);
140  addTypeForNEON(VT, MVT::f64, MVT::v2i32);
141}
142
143void ARMTargetLowering::addQRTypeForNEON(EVT VT) {
144  addRegisterClass(VT, ARM::QPRRegisterClass);
145  addTypeForNEON(VT, MVT::v2f64, MVT::v4i32);
146}
147
148static TargetLoweringObjectFile *createTLOF(TargetMachine &TM) {
149  if (TM.getSubtarget<ARMSubtarget>().isTargetDarwin())
150    return new TargetLoweringObjectFileMachO();
151
152  return new ARMElfTargetObjectFile();
153}
154
155ARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
156    : TargetLowering(TM, createTLOF(TM)) {
157  Subtarget = &TM.getSubtarget<ARMSubtarget>();
158  RegInfo = TM.getRegisterInfo();
159  Itins = TM.getInstrItineraryData();
160
161  if (Subtarget->isTargetDarwin()) {
162    // Uses VFP for Thumb libfuncs if available.
163    if (Subtarget->isThumb() && Subtarget->hasVFP2()) {
164      // Single-precision floating-point arithmetic.
165      setLibcallName(RTLIB::ADD_F32, "__addsf3vfp");
166      setLibcallName(RTLIB::SUB_F32, "__subsf3vfp");
167      setLibcallName(RTLIB::MUL_F32, "__mulsf3vfp");
168      setLibcallName(RTLIB::DIV_F32, "__divsf3vfp");
169
170      // Double-precision floating-point arithmetic.
171      setLibcallName(RTLIB::ADD_F64, "__adddf3vfp");
172      setLibcallName(RTLIB::SUB_F64, "__subdf3vfp");
173      setLibcallName(RTLIB::MUL_F64, "__muldf3vfp");
174      setLibcallName(RTLIB::DIV_F64, "__divdf3vfp");
175
176      // Single-precision comparisons.
177      setLibcallName(RTLIB::OEQ_F32, "__eqsf2vfp");
178      setLibcallName(RTLIB::UNE_F32, "__nesf2vfp");
179      setLibcallName(RTLIB::OLT_F32, "__ltsf2vfp");
180      setLibcallName(RTLIB::OLE_F32, "__lesf2vfp");
181      setLibcallName(RTLIB::OGE_F32, "__gesf2vfp");
182      setLibcallName(RTLIB::OGT_F32, "__gtsf2vfp");
183      setLibcallName(RTLIB::UO_F32,  "__unordsf2vfp");
184      setLibcallName(RTLIB::O_F32,   "__unordsf2vfp");
185
186      setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
187      setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETNE);
188      setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
189      setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
190      setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
191      setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
192      setCmpLibcallCC(RTLIB::UO_F32,  ISD::SETNE);
193      setCmpLibcallCC(RTLIB::O_F32,   ISD::SETEQ);
194
195      // Double-precision comparisons.
196      setLibcallName(RTLIB::OEQ_F64, "__eqdf2vfp");
197      setLibcallName(RTLIB::UNE_F64, "__nedf2vfp");
198      setLibcallName(RTLIB::OLT_F64, "__ltdf2vfp");
199      setLibcallName(RTLIB::OLE_F64, "__ledf2vfp");
200      setLibcallName(RTLIB::OGE_F64, "__gedf2vfp");
201      setLibcallName(RTLIB::OGT_F64, "__gtdf2vfp");
202      setLibcallName(RTLIB::UO_F64,  "__unorddf2vfp");
203      setLibcallName(RTLIB::O_F64,   "__unorddf2vfp");
204
205      setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
206      setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETNE);
207      setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
208      setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
209      setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
210      setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
211      setCmpLibcallCC(RTLIB::UO_F64,  ISD::SETNE);
212      setCmpLibcallCC(RTLIB::O_F64,   ISD::SETEQ);
213
214      // Floating-point to integer conversions.
215      // i64 conversions are done via library routines even when generating VFP
216      // instructions, so use the same ones.
217      setLibcallName(RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp");
218      setLibcallName(RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp");
219      setLibcallName(RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp");
220      setLibcallName(RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp");
221
222      // Conversions between floating types.
223      setLibcallName(RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp");
224      setLibcallName(RTLIB::FPEXT_F32_F64,   "__extendsfdf2vfp");
225
226      // Integer to floating-point conversions.
227      // i64 conversions are done via library routines even when generating VFP
228      // instructions, so use the same ones.
229      // FIXME: There appears to be some naming inconsistency in ARM libgcc:
230      // e.g., __floatunsidf vs. __floatunssidfvfp.
231      setLibcallName(RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp");
232      setLibcallName(RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp");
233      setLibcallName(RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp");
234      setLibcallName(RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp");
235    }
236  }
237
238  // These libcalls are not available in 32-bit.
239  setLibcallName(RTLIB::SHL_I128, 0);
240  setLibcallName(RTLIB::SRL_I128, 0);
241  setLibcallName(RTLIB::SRA_I128, 0);
242
243  if (Subtarget->isAAPCS_ABI()) {
244    // Double-precision floating-point arithmetic helper functions
245    // RTABI chapter 4.1.2, Table 2
246    setLibcallName(RTLIB::ADD_F64, "__aeabi_dadd");
247    setLibcallName(RTLIB::DIV_F64, "__aeabi_ddiv");
248    setLibcallName(RTLIB::MUL_F64, "__aeabi_dmul");
249    setLibcallName(RTLIB::SUB_F64, "__aeabi_dsub");
250    setLibcallCallingConv(RTLIB::ADD_F64, CallingConv::ARM_AAPCS);
251    setLibcallCallingConv(RTLIB::DIV_F64, CallingConv::ARM_AAPCS);
252    setLibcallCallingConv(RTLIB::MUL_F64, CallingConv::ARM_AAPCS);
253    setLibcallCallingConv(RTLIB::SUB_F64, CallingConv::ARM_AAPCS);
254
255    // Double-precision floating-point comparison helper functions
256    // RTABI chapter 4.1.2, Table 3
257    setLibcallName(RTLIB::OEQ_F64, "__aeabi_dcmpeq");
258    setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
259    setLibcallName(RTLIB::UNE_F64, "__aeabi_dcmpeq");
260    setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETEQ);
261    setLibcallName(RTLIB::OLT_F64, "__aeabi_dcmplt");
262    setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
263    setLibcallName(RTLIB::OLE_F64, "__aeabi_dcmple");
264    setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
265    setLibcallName(RTLIB::OGE_F64, "__aeabi_dcmpge");
266    setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
267    setLibcallName(RTLIB::OGT_F64, "__aeabi_dcmpgt");
268    setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
269    setLibcallName(RTLIB::UO_F64,  "__aeabi_dcmpun");
270    setCmpLibcallCC(RTLIB::UO_F64,  ISD::SETNE);
271    setLibcallName(RTLIB::O_F64,   "__aeabi_dcmpun");
272    setCmpLibcallCC(RTLIB::O_F64,   ISD::SETEQ);
273    setLibcallCallingConv(RTLIB::OEQ_F64, CallingConv::ARM_AAPCS);
274    setLibcallCallingConv(RTLIB::UNE_F64, CallingConv::ARM_AAPCS);
275    setLibcallCallingConv(RTLIB::OLT_F64, CallingConv::ARM_AAPCS);
276    setLibcallCallingConv(RTLIB::OLE_F64, CallingConv::ARM_AAPCS);
277    setLibcallCallingConv(RTLIB::OGE_F64, CallingConv::ARM_AAPCS);
278    setLibcallCallingConv(RTLIB::OGT_F64, CallingConv::ARM_AAPCS);
279    setLibcallCallingConv(RTLIB::UO_F64, CallingConv::ARM_AAPCS);
280    setLibcallCallingConv(RTLIB::O_F64, CallingConv::ARM_AAPCS);
281
282    // Single-precision floating-point arithmetic helper functions
283    // RTABI chapter 4.1.2, Table 4
284    setLibcallName(RTLIB::ADD_F32, "__aeabi_fadd");
285    setLibcallName(RTLIB::DIV_F32, "__aeabi_fdiv");
286    setLibcallName(RTLIB::MUL_F32, "__aeabi_fmul");
287    setLibcallName(RTLIB::SUB_F32, "__aeabi_fsub");
288    setLibcallCallingConv(RTLIB::ADD_F32, CallingConv::ARM_AAPCS);
289    setLibcallCallingConv(RTLIB::DIV_F32, CallingConv::ARM_AAPCS);
290    setLibcallCallingConv(RTLIB::MUL_F32, CallingConv::ARM_AAPCS);
291    setLibcallCallingConv(RTLIB::SUB_F32, CallingConv::ARM_AAPCS);
292
293    // Single-precision floating-point comparison helper functions
294    // RTABI chapter 4.1.2, Table 5
295    setLibcallName(RTLIB::OEQ_F32, "__aeabi_fcmpeq");
296    setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
297    setLibcallName(RTLIB::UNE_F32, "__aeabi_fcmpeq");
298    setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETEQ);
299    setLibcallName(RTLIB::OLT_F32, "__aeabi_fcmplt");
300    setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
301    setLibcallName(RTLIB::OLE_F32, "__aeabi_fcmple");
302    setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
303    setLibcallName(RTLIB::OGE_F32, "__aeabi_fcmpge");
304    setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
305    setLibcallName(RTLIB::OGT_F32, "__aeabi_fcmpgt");
306    setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
307    setLibcallName(RTLIB::UO_F32,  "__aeabi_fcmpun");
308    setCmpLibcallCC(RTLIB::UO_F32,  ISD::SETNE);
309    setLibcallName(RTLIB::O_F32,   "__aeabi_fcmpun");
310    setCmpLibcallCC(RTLIB::O_F32,   ISD::SETEQ);
311    setLibcallCallingConv(RTLIB::OEQ_F32, CallingConv::ARM_AAPCS);
312    setLibcallCallingConv(RTLIB::UNE_F32, CallingConv::ARM_AAPCS);
313    setLibcallCallingConv(RTLIB::OLT_F32, CallingConv::ARM_AAPCS);
314    setLibcallCallingConv(RTLIB::OLE_F32, CallingConv::ARM_AAPCS);
315    setLibcallCallingConv(RTLIB::OGE_F32, CallingConv::ARM_AAPCS);
316    setLibcallCallingConv(RTLIB::OGT_F32, CallingConv::ARM_AAPCS);
317    setLibcallCallingConv(RTLIB::UO_F32, CallingConv::ARM_AAPCS);
318    setLibcallCallingConv(RTLIB::O_F32, CallingConv::ARM_AAPCS);
319
320    // Floating-point to integer conversions.
321    // RTABI chapter 4.1.2, Table 6
322    setLibcallName(RTLIB::FPTOSINT_F64_I32, "__aeabi_d2iz");
323    setLibcallName(RTLIB::FPTOUINT_F64_I32, "__aeabi_d2uiz");
324    setLibcallName(RTLIB::FPTOSINT_F64_I64, "__aeabi_d2lz");
325    setLibcallName(RTLIB::FPTOUINT_F64_I64, "__aeabi_d2ulz");
326    setLibcallName(RTLIB::FPTOSINT_F32_I32, "__aeabi_f2iz");
327    setLibcallName(RTLIB::FPTOUINT_F32_I32, "__aeabi_f2uiz");
328    setLibcallName(RTLIB::FPTOSINT_F32_I64, "__aeabi_f2lz");
329    setLibcallName(RTLIB::FPTOUINT_F32_I64, "__aeabi_f2ulz");
330    setLibcallCallingConv(RTLIB::FPTOSINT_F64_I32, CallingConv::ARM_AAPCS);
331    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I32, CallingConv::ARM_AAPCS);
332    setLibcallCallingConv(RTLIB::FPTOSINT_F64_I64, CallingConv::ARM_AAPCS);
333    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::ARM_AAPCS);
334    setLibcallCallingConv(RTLIB::FPTOSINT_F32_I32, CallingConv::ARM_AAPCS);
335    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I32, CallingConv::ARM_AAPCS);
336    setLibcallCallingConv(RTLIB::FPTOSINT_F32_I64, CallingConv::ARM_AAPCS);
337    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::ARM_AAPCS);
338
339    // Conversions between floating types.
340    // RTABI chapter 4.1.2, Table 7
341    setLibcallName(RTLIB::FPROUND_F64_F32, "__aeabi_d2f");
342    setLibcallName(RTLIB::FPEXT_F32_F64,   "__aeabi_f2d");
343    setLibcallCallingConv(RTLIB::FPROUND_F64_F32, CallingConv::ARM_AAPCS);
344    setLibcallCallingConv(RTLIB::FPEXT_F32_F64, CallingConv::ARM_AAPCS);
345
346    // Integer to floating-point conversions.
347    // RTABI chapter 4.1.2, Table 8
348    setLibcallName(RTLIB::SINTTOFP_I32_F64, "__aeabi_i2d");
349    setLibcallName(RTLIB::UINTTOFP_I32_F64, "__aeabi_ui2d");
350    setLibcallName(RTLIB::SINTTOFP_I64_F64, "__aeabi_l2d");
351    setLibcallName(RTLIB::UINTTOFP_I64_F64, "__aeabi_ul2d");
352    setLibcallName(RTLIB::SINTTOFP_I32_F32, "__aeabi_i2f");
353    setLibcallName(RTLIB::UINTTOFP_I32_F32, "__aeabi_ui2f");
354    setLibcallName(RTLIB::SINTTOFP_I64_F32, "__aeabi_l2f");
355    setLibcallName(RTLIB::UINTTOFP_I64_F32, "__aeabi_ul2f");
356    setLibcallCallingConv(RTLIB::SINTTOFP_I32_F64, CallingConv::ARM_AAPCS);
357    setLibcallCallingConv(RTLIB::UINTTOFP_I32_F64, CallingConv::ARM_AAPCS);
358    setLibcallCallingConv(RTLIB::SINTTOFP_I64_F64, CallingConv::ARM_AAPCS);
359    setLibcallCallingConv(RTLIB::UINTTOFP_I64_F64, CallingConv::ARM_AAPCS);
360    setLibcallCallingConv(RTLIB::SINTTOFP_I32_F32, CallingConv::ARM_AAPCS);
361    setLibcallCallingConv(RTLIB::UINTTOFP_I32_F32, CallingConv::ARM_AAPCS);
362    setLibcallCallingConv(RTLIB::SINTTOFP_I64_F32, CallingConv::ARM_AAPCS);
363    setLibcallCallingConv(RTLIB::UINTTOFP_I64_F32, CallingConv::ARM_AAPCS);
364
365    // Long long helper functions
366    // RTABI chapter 4.2, Table 9
367    setLibcallName(RTLIB::MUL_I64,  "__aeabi_lmul");
368    setLibcallName(RTLIB::SDIV_I64, "__aeabi_ldivmod");
369    setLibcallName(RTLIB::UDIV_I64, "__aeabi_uldivmod");
370    setLibcallName(RTLIB::SHL_I64, "__aeabi_llsl");
371    setLibcallName(RTLIB::SRL_I64, "__aeabi_llsr");
372    setLibcallName(RTLIB::SRA_I64, "__aeabi_lasr");
373    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::ARM_AAPCS);
374    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::ARM_AAPCS);
375    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::ARM_AAPCS);
376    setLibcallCallingConv(RTLIB::SHL_I64, CallingConv::ARM_AAPCS);
377    setLibcallCallingConv(RTLIB::SRL_I64, CallingConv::ARM_AAPCS);
378    setLibcallCallingConv(RTLIB::SRA_I64, CallingConv::ARM_AAPCS);
379
380    // Integer division functions
381    // RTABI chapter 4.3.1
382    setLibcallName(RTLIB::SDIV_I8,  "__aeabi_idiv");
383    setLibcallName(RTLIB::SDIV_I16, "__aeabi_idiv");
384    setLibcallName(RTLIB::SDIV_I32, "__aeabi_idiv");
385    setLibcallName(RTLIB::UDIV_I8,  "__aeabi_uidiv");
386    setLibcallName(RTLIB::UDIV_I16, "__aeabi_uidiv");
387    setLibcallName(RTLIB::UDIV_I32, "__aeabi_uidiv");
388    setLibcallCallingConv(RTLIB::SDIV_I8, CallingConv::ARM_AAPCS);
389    setLibcallCallingConv(RTLIB::SDIV_I16, CallingConv::ARM_AAPCS);
390    setLibcallCallingConv(RTLIB::SDIV_I32, CallingConv::ARM_AAPCS);
391    setLibcallCallingConv(RTLIB::UDIV_I8, CallingConv::ARM_AAPCS);
392    setLibcallCallingConv(RTLIB::UDIV_I16, CallingConv::ARM_AAPCS);
393    setLibcallCallingConv(RTLIB::UDIV_I32, CallingConv::ARM_AAPCS);
394  }
395
396  if (Subtarget->isThumb1Only())
397    addRegisterClass(MVT::i32, ARM::tGPRRegisterClass);
398  else
399    addRegisterClass(MVT::i32, ARM::GPRRegisterClass);
400  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
401    addRegisterClass(MVT::f32, ARM::SPRRegisterClass);
402    if (!Subtarget->isFPOnlySP())
403      addRegisterClass(MVT::f64, ARM::DPRRegisterClass);
404
405    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
406  }
407
408  if (Subtarget->hasNEON()) {
409    addDRTypeForNEON(MVT::v2f32);
410    addDRTypeForNEON(MVT::v8i8);
411    addDRTypeForNEON(MVT::v4i16);
412    addDRTypeForNEON(MVT::v2i32);
413    addDRTypeForNEON(MVT::v1i64);
414
415    addQRTypeForNEON(MVT::v4f32);
416    addQRTypeForNEON(MVT::v2f64);
417    addQRTypeForNEON(MVT::v16i8);
418    addQRTypeForNEON(MVT::v8i16);
419    addQRTypeForNEON(MVT::v4i32);
420    addQRTypeForNEON(MVT::v2i64);
421
422    // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
423    // neither Neon nor VFP support any arithmetic operations on it.
424    setOperationAction(ISD::FADD, MVT::v2f64, Expand);
425    setOperationAction(ISD::FSUB, MVT::v2f64, Expand);
426    setOperationAction(ISD::FMUL, MVT::v2f64, Expand);
427    setOperationAction(ISD::FDIV, MVT::v2f64, Expand);
428    setOperationAction(ISD::FREM, MVT::v2f64, Expand);
429    setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand);
430    setOperationAction(ISD::VSETCC, MVT::v2f64, Expand);
431    setOperationAction(ISD::FNEG, MVT::v2f64, Expand);
432    setOperationAction(ISD::FABS, MVT::v2f64, Expand);
433    setOperationAction(ISD::FSQRT, MVT::v2f64, Expand);
434    setOperationAction(ISD::FSIN, MVT::v2f64, Expand);
435    setOperationAction(ISD::FCOS, MVT::v2f64, Expand);
436    setOperationAction(ISD::FPOWI, MVT::v2f64, Expand);
437    setOperationAction(ISD::FPOW, MVT::v2f64, Expand);
438    setOperationAction(ISD::FLOG, MVT::v2f64, Expand);
439    setOperationAction(ISD::FLOG2, MVT::v2f64, Expand);
440    setOperationAction(ISD::FLOG10, MVT::v2f64, Expand);
441    setOperationAction(ISD::FEXP, MVT::v2f64, Expand);
442    setOperationAction(ISD::FEXP2, MVT::v2f64, Expand);
443    setOperationAction(ISD::FCEIL, MVT::v2f64, Expand);
444    setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand);
445    setOperationAction(ISD::FRINT, MVT::v2f64, Expand);
446    setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand);
447    setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand);
448
449    setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand);
450
451    // Neon does not support some operations on v1i64 and v2i64 types.
452    setOperationAction(ISD::MUL, MVT::v1i64, Expand);
453    // Custom handling for some quad-vector types to detect VMULL.
454    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
455    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
456    setOperationAction(ISD::MUL, MVT::v2i64, Custom);
457    setOperationAction(ISD::VSETCC, MVT::v1i64, Expand);
458    setOperationAction(ISD::VSETCC, MVT::v2i64, Expand);
459
460    setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
461    setTargetDAGCombine(ISD::SHL);
462    setTargetDAGCombine(ISD::SRL);
463    setTargetDAGCombine(ISD::SRA);
464    setTargetDAGCombine(ISD::SIGN_EXTEND);
465    setTargetDAGCombine(ISD::ZERO_EXTEND);
466    setTargetDAGCombine(ISD::ANY_EXTEND);
467    setTargetDAGCombine(ISD::SELECT_CC);
468    setTargetDAGCombine(ISD::BUILD_VECTOR);
469    setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
470    setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
471    setTargetDAGCombine(ISD::STORE);
472  }
473
474  computeRegisterProperties();
475
476  // ARM does not have f32 extending load.
477  setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
478
479  // ARM does not have i1 sign extending load.
480  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
481
482  // ARM supports all 4 flavors of integer indexed load / store.
483  if (!Subtarget->isThumb1Only()) {
484    for (unsigned im = (unsigned)ISD::PRE_INC;
485         im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
486      setIndexedLoadAction(im,  MVT::i1,  Legal);
487      setIndexedLoadAction(im,  MVT::i8,  Legal);
488      setIndexedLoadAction(im,  MVT::i16, Legal);
489      setIndexedLoadAction(im,  MVT::i32, Legal);
490      setIndexedStoreAction(im, MVT::i1,  Legal);
491      setIndexedStoreAction(im, MVT::i8,  Legal);
492      setIndexedStoreAction(im, MVT::i16, Legal);
493      setIndexedStoreAction(im, MVT::i32, Legal);
494    }
495  }
496
497  // i64 operation support.
498  if (Subtarget->isThumb1Only()) {
499    setOperationAction(ISD::MUL,     MVT::i64, Expand);
500    setOperationAction(ISD::MULHU,   MVT::i32, Expand);
501    setOperationAction(ISD::MULHS,   MVT::i32, Expand);
502    setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
503    setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
504  } else {
505    setOperationAction(ISD::MUL,     MVT::i64, Expand);
506    setOperationAction(ISD::MULHU,   MVT::i32, Expand);
507    if (!Subtarget->hasV6Ops())
508      setOperationAction(ISD::MULHS, MVT::i32, Expand);
509  }
510  setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
511  setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
512  setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
513  setOperationAction(ISD::SRL,       MVT::i64, Custom);
514  setOperationAction(ISD::SRA,       MVT::i64, Custom);
515
516  // ARM does not have ROTL.
517  setOperationAction(ISD::ROTL,  MVT::i32, Expand);
518  setOperationAction(ISD::CTTZ,  MVT::i32, Custom);
519  setOperationAction(ISD::CTPOP, MVT::i32, Expand);
520  if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only())
521    setOperationAction(ISD::CTLZ, MVT::i32, Expand);
522
523  // Only ARMv6 has BSWAP.
524  if (!Subtarget->hasV6Ops())
525    setOperationAction(ISD::BSWAP, MVT::i32, Expand);
526
527  // These are expanded into libcalls.
528  if (!Subtarget->hasDivide() || !Subtarget->isThumb2()) {
529    // v7M has a hardware divider
530    setOperationAction(ISD::SDIV,  MVT::i32, Expand);
531    setOperationAction(ISD::UDIV,  MVT::i32, Expand);
532  }
533  setOperationAction(ISD::SREM,  MVT::i32, Expand);
534  setOperationAction(ISD::UREM,  MVT::i32, Expand);
535  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
536  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
537
538  setOperationAction(ISD::GlobalAddress, MVT::i32,   Custom);
539  setOperationAction(ISD::ConstantPool,  MVT::i32,   Custom);
540  setOperationAction(ISD::GLOBAL_OFFSET_TABLE, MVT::i32, Custom);
541  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
542  setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
543
544  setOperationAction(ISD::TRAP, MVT::Other, Legal);
545
546  // Use the default implementation.
547  setOperationAction(ISD::VASTART,            MVT::Other, Custom);
548  setOperationAction(ISD::VAARG,              MVT::Other, Expand);
549  setOperationAction(ISD::VACOPY,             MVT::Other, Expand);
550  setOperationAction(ISD::VAEND,              MVT::Other, Expand);
551  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
552  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
553  setOperationAction(ISD::EHSELECTION,        MVT::i32,   Expand);
554  // FIXME: Shouldn't need this, since no register is used, but the legalizer
555  // doesn't yet know how to not do that for SjLj.
556  setExceptionSelectorRegister(ARM::R0);
557  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
558  // ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use
559  // the default expansion.
560  if (Subtarget->hasDataBarrier() ||
561      (Subtarget->hasV6Ops() && !Subtarget->isThumb())) {
562    // membarrier needs custom lowering; the rest are legal and handled
563    // normally.
564    setOperationAction(ISD::MEMBARRIER, MVT::Other, Custom);
565  } else {
566    // Set them all for expansion, which will force libcalls.
567    setOperationAction(ISD::MEMBARRIER, MVT::Other, Expand);
568    setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i8,  Expand);
569    setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i16, Expand);
570    setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i32, Expand);
571    setOperationAction(ISD::ATOMIC_SWAP,      MVT::i8,  Expand);
572    setOperationAction(ISD::ATOMIC_SWAP,      MVT::i16, Expand);
573    setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Expand);
574    setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i8,  Expand);
575    setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i16, Expand);
576    setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Expand);
577    setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i8,  Expand);
578    setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i16, Expand);
579    setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Expand);
580    setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i8,  Expand);
581    setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i16, Expand);
582    setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Expand);
583    setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i8,  Expand);
584    setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i16, Expand);
585    setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Expand);
586    setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i8,  Expand);
587    setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i16, Expand);
588    setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Expand);
589    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i8,  Expand);
590    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i16, Expand);
591    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand);
592    // Since the libcalls include locking, fold in the fences
593    setShouldFoldAtomicFences(true);
594  }
595  // 64-bit versions are always libcalls (for now)
596  setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i64, Expand);
597  setOperationAction(ISD::ATOMIC_SWAP,      MVT::i64, Expand);
598  setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i64, Expand);
599  setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i64, Expand);
600  setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i64, Expand);
601  setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i64, Expand);
602  setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i64, Expand);
603  setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Expand);
604
605  setOperationAction(ISD::PREFETCH,         MVT::Other, Custom);
606
607  // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
608  if (!Subtarget->hasV6Ops()) {
609    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
610    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
611  }
612  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
613
614  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
615    // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
616    // iff target supports vfp2.
617    setOperationAction(ISD::BITCAST, MVT::i64, Custom);
618    setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
619  }
620
621  // We want to custom lower some of our intrinsics.
622  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
623  if (Subtarget->isTargetDarwin()) {
624    setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
625    setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
626    setOperationAction(ISD::EH_SJLJ_DISPATCHSETUP, MVT::Other, Custom);
627  }
628
629  setOperationAction(ISD::SETCC,     MVT::i32, Expand);
630  setOperationAction(ISD::SETCC,     MVT::f32, Expand);
631  setOperationAction(ISD::SETCC,     MVT::f64, Expand);
632  setOperationAction(ISD::SELECT,    MVT::i32, Custom);
633  setOperationAction(ISD::SELECT,    MVT::f32, Custom);
634  setOperationAction(ISD::SELECT,    MVT::f64, Custom);
635  setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
636  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
637  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
638
639  setOperationAction(ISD::BRCOND,    MVT::Other, Expand);
640  setOperationAction(ISD::BR_CC,     MVT::i32,   Custom);
641  setOperationAction(ISD::BR_CC,     MVT::f32,   Custom);
642  setOperationAction(ISD::BR_CC,     MVT::f64,   Custom);
643  setOperationAction(ISD::BR_JT,     MVT::Other, Custom);
644
645  // We don't support sin/cos/fmod/copysign/pow
646  setOperationAction(ISD::FSIN,      MVT::f64, Expand);
647  setOperationAction(ISD::FSIN,      MVT::f32, Expand);
648  setOperationAction(ISD::FCOS,      MVT::f32, Expand);
649  setOperationAction(ISD::FCOS,      MVT::f64, Expand);
650  setOperationAction(ISD::FREM,      MVT::f64, Expand);
651  setOperationAction(ISD::FREM,      MVT::f32, Expand);
652  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
653    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
654    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
655  }
656  setOperationAction(ISD::FPOW,      MVT::f64, Expand);
657  setOperationAction(ISD::FPOW,      MVT::f32, Expand);
658
659  // Various VFP goodness
660  if (!UseSoftFloat && !Subtarget->isThumb1Only()) {
661    // int <-> fp are custom expanded into bit_convert + ARMISD ops.
662    if (Subtarget->hasVFP2()) {
663      setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
664      setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
665      setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
666      setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
667    }
668    // Special handling for half-precision FP.
669    if (!Subtarget->hasFP16()) {
670      setOperationAction(ISD::FP16_TO_FP32, MVT::f32, Expand);
671      setOperationAction(ISD::FP32_TO_FP16, MVT::i32, Expand);
672    }
673  }
674
675  // We have target-specific dag combine patterns for the following nodes:
676  // ARMISD::VMOVRRD  - No need to call setTargetDAGCombine
677  setTargetDAGCombine(ISD::ADD);
678  setTargetDAGCombine(ISD::SUB);
679  setTargetDAGCombine(ISD::MUL);
680
681  if (Subtarget->hasV6T2Ops() || Subtarget->hasNEON())
682    setTargetDAGCombine(ISD::OR);
683  if (Subtarget->hasNEON())
684    setTargetDAGCombine(ISD::AND);
685
686  setStackPointerRegisterToSaveRestore(ARM::SP);
687
688  if (UseSoftFloat || Subtarget->isThumb1Only() || !Subtarget->hasVFP2())
689    setSchedulingPreference(Sched::RegPressure);
690  else
691    setSchedulingPreference(Sched::Hybrid);
692
693  //// temporary - rewrite interface to use type
694  maxStoresPerMemcpy = maxStoresPerMemcpyOptSize = 1;
695
696  // On ARM arguments smaller than 4 bytes are extended, so all arguments
697  // are at least 4 bytes aligned.
698  setMinStackArgumentAlignment(4);
699
700  benefitFromCodePlacementOpt = true;
701}
702
703std::pair<const TargetRegisterClass*, uint8_t>
704ARMTargetLowering::findRepresentativeClass(EVT VT) const{
705  const TargetRegisterClass *RRC = 0;
706  uint8_t Cost = 1;
707  switch (VT.getSimpleVT().SimpleTy) {
708  default:
709    return TargetLowering::findRepresentativeClass(VT);
710  // Use DPR as representative register class for all floating point
711  // and vector types. Since there are 32 SPR registers and 32 DPR registers so
712  // the cost is 1 for both f32 and f64.
713  case MVT::f32: case MVT::f64: case MVT::v8i8: case MVT::v4i16:
714  case MVT::v2i32: case MVT::v1i64: case MVT::v2f32:
715    RRC = ARM::DPRRegisterClass;
716    break;
717  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
718  case MVT::v4f32: case MVT::v2f64:
719    RRC = ARM::DPRRegisterClass;
720    Cost = 2;
721    break;
722  case MVT::v4i64:
723    RRC = ARM::DPRRegisterClass;
724    Cost = 4;
725    break;
726  case MVT::v8i64:
727    RRC = ARM::DPRRegisterClass;
728    Cost = 8;
729    break;
730  }
731  return std::make_pair(RRC, Cost);
732}
733
734const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
735  switch (Opcode) {
736  default: return 0;
737  case ARMISD::Wrapper:       return "ARMISD::Wrapper";
738  case ARMISD::WrapperPIC:    return "ARMISD::WrapperPIC";
739  case ARMISD::WrapperJT:     return "ARMISD::WrapperJT";
740  case ARMISD::CALL:          return "ARMISD::CALL";
741  case ARMISD::CALL_PRED:     return "ARMISD::CALL_PRED";
742  case ARMISD::CALL_NOLINK:   return "ARMISD::CALL_NOLINK";
743  case ARMISD::tCALL:         return "ARMISD::tCALL";
744  case ARMISD::BRCOND:        return "ARMISD::BRCOND";
745  case ARMISD::BR_JT:         return "ARMISD::BR_JT";
746  case ARMISD::BR2_JT:        return "ARMISD::BR2_JT";
747  case ARMISD::RET_FLAG:      return "ARMISD::RET_FLAG";
748  case ARMISD::PIC_ADD:       return "ARMISD::PIC_ADD";
749  case ARMISD::CMP:           return "ARMISD::CMP";
750  case ARMISD::CMPZ:          return "ARMISD::CMPZ";
751  case ARMISD::CMPFP:         return "ARMISD::CMPFP";
752  case ARMISD::CMPFPw0:       return "ARMISD::CMPFPw0";
753  case ARMISD::BCC_i64:       return "ARMISD::BCC_i64";
754  case ARMISD::FMSTAT:        return "ARMISD::FMSTAT";
755  case ARMISD::CMOV:          return "ARMISD::CMOV";
756  case ARMISD::CNEG:          return "ARMISD::CNEG";
757
758  case ARMISD::RBIT:          return "ARMISD::RBIT";
759
760  case ARMISD::FTOSI:         return "ARMISD::FTOSI";
761  case ARMISD::FTOUI:         return "ARMISD::FTOUI";
762  case ARMISD::SITOF:         return "ARMISD::SITOF";
763  case ARMISD::UITOF:         return "ARMISD::UITOF";
764
765  case ARMISD::SRL_FLAG:      return "ARMISD::SRL_FLAG";
766  case ARMISD::SRA_FLAG:      return "ARMISD::SRA_FLAG";
767  case ARMISD::RRX:           return "ARMISD::RRX";
768
769  case ARMISD::VMOVRRD:       return "ARMISD::VMOVRRD";
770  case ARMISD::VMOVDRR:       return "ARMISD::VMOVDRR";
771
772  case ARMISD::EH_SJLJ_SETJMP: return "ARMISD::EH_SJLJ_SETJMP";
773  case ARMISD::EH_SJLJ_LONGJMP:return "ARMISD::EH_SJLJ_LONGJMP";
774  case ARMISD::EH_SJLJ_DISPATCHSETUP:return "ARMISD::EH_SJLJ_DISPATCHSETUP";
775
776  case ARMISD::TC_RETURN:     return "ARMISD::TC_RETURN";
777
778  case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER";
779
780  case ARMISD::DYN_ALLOC:     return "ARMISD::DYN_ALLOC";
781
782  case ARMISD::MEMBARRIER:    return "ARMISD::MEMBARRIER";
783  case ARMISD::MEMBARRIER_MCR: return "ARMISD::MEMBARRIER_MCR";
784
785  case ARMISD::PRELOAD:       return "ARMISD::PRELOAD";
786
787  case ARMISD::VCEQ:          return "ARMISD::VCEQ";
788  case ARMISD::VCEQZ:         return "ARMISD::VCEQZ";
789  case ARMISD::VCGE:          return "ARMISD::VCGE";
790  case ARMISD::VCGEZ:         return "ARMISD::VCGEZ";
791  case ARMISD::VCLEZ:         return "ARMISD::VCLEZ";
792  case ARMISD::VCGEU:         return "ARMISD::VCGEU";
793  case ARMISD::VCGT:          return "ARMISD::VCGT";
794  case ARMISD::VCGTZ:         return "ARMISD::VCGTZ";
795  case ARMISD::VCLTZ:         return "ARMISD::VCLTZ";
796  case ARMISD::VCGTU:         return "ARMISD::VCGTU";
797  case ARMISD::VTST:          return "ARMISD::VTST";
798
799  case ARMISD::VSHL:          return "ARMISD::VSHL";
800  case ARMISD::VSHRs:         return "ARMISD::VSHRs";
801  case ARMISD::VSHRu:         return "ARMISD::VSHRu";
802  case ARMISD::VSHLLs:        return "ARMISD::VSHLLs";
803  case ARMISD::VSHLLu:        return "ARMISD::VSHLLu";
804  case ARMISD::VSHLLi:        return "ARMISD::VSHLLi";
805  case ARMISD::VSHRN:         return "ARMISD::VSHRN";
806  case ARMISD::VRSHRs:        return "ARMISD::VRSHRs";
807  case ARMISD::VRSHRu:        return "ARMISD::VRSHRu";
808  case ARMISD::VRSHRN:        return "ARMISD::VRSHRN";
809  case ARMISD::VQSHLs:        return "ARMISD::VQSHLs";
810  case ARMISD::VQSHLu:        return "ARMISD::VQSHLu";
811  case ARMISD::VQSHLsu:       return "ARMISD::VQSHLsu";
812  case ARMISD::VQSHRNs:       return "ARMISD::VQSHRNs";
813  case ARMISD::VQSHRNu:       return "ARMISD::VQSHRNu";
814  case ARMISD::VQSHRNsu:      return "ARMISD::VQSHRNsu";
815  case ARMISD::VQRSHRNs:      return "ARMISD::VQRSHRNs";
816  case ARMISD::VQRSHRNu:      return "ARMISD::VQRSHRNu";
817  case ARMISD::VQRSHRNsu:     return "ARMISD::VQRSHRNsu";
818  case ARMISD::VGETLANEu:     return "ARMISD::VGETLANEu";
819  case ARMISD::VGETLANEs:     return "ARMISD::VGETLANEs";
820  case ARMISD::VMOVIMM:       return "ARMISD::VMOVIMM";
821  case ARMISD::VMVNIMM:       return "ARMISD::VMVNIMM";
822  case ARMISD::VDUP:          return "ARMISD::VDUP";
823  case ARMISD::VDUPLANE:      return "ARMISD::VDUPLANE";
824  case ARMISD::VEXT:          return "ARMISD::VEXT";
825  case ARMISD::VREV64:        return "ARMISD::VREV64";
826  case ARMISD::VREV32:        return "ARMISD::VREV32";
827  case ARMISD::VREV16:        return "ARMISD::VREV16";
828  case ARMISD::VZIP:          return "ARMISD::VZIP";
829  case ARMISD::VUZP:          return "ARMISD::VUZP";
830  case ARMISD::VTRN:          return "ARMISD::VTRN";
831  case ARMISD::VMULLs:        return "ARMISD::VMULLs";
832  case ARMISD::VMULLu:        return "ARMISD::VMULLu";
833  case ARMISD::BUILD_VECTOR:  return "ARMISD::BUILD_VECTOR";
834  case ARMISD::FMAX:          return "ARMISD::FMAX";
835  case ARMISD::FMIN:          return "ARMISD::FMIN";
836  case ARMISD::BFI:           return "ARMISD::BFI";
837  case ARMISD::VORRIMM:       return "ARMISD::VORRIMM";
838  case ARMISD::VBICIMM:       return "ARMISD::VBICIMM";
839  case ARMISD::VLD2DUP:       return "ARMISD::VLD2DUP";
840  case ARMISD::VLD3DUP:       return "ARMISD::VLD3DUP";
841  case ARMISD::VLD4DUP:       return "ARMISD::VLD4DUP";
842  }
843}
844
845/// getRegClassFor - Return the register class that should be used for the
846/// specified value type.
847TargetRegisterClass *ARMTargetLowering::getRegClassFor(EVT VT) const {
848  // Map v4i64 to QQ registers but do not make the type legal. Similarly map
849  // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
850  // load / store 4 to 8 consecutive D registers.
851  if (Subtarget->hasNEON()) {
852    if (VT == MVT::v4i64)
853      return ARM::QQPRRegisterClass;
854    else if (VT == MVT::v8i64)
855      return ARM::QQQQPRRegisterClass;
856  }
857  return TargetLowering::getRegClassFor(VT);
858}
859
860// Create a fast isel object.
861FastISel *
862ARMTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
863  return ARM::createFastISel(funcInfo);
864}
865
866/// getFunctionAlignment - Return the Log2 alignment of this function.
867unsigned ARMTargetLowering::getFunctionAlignment(const Function *F) const {
868  return getTargetMachine().getSubtarget<ARMSubtarget>().isThumb() ? 1 : 2;
869}
870
871/// getMaximalGlobalOffset - Returns the maximal possible offset which can
872/// be used for loads / stores from the global.
873unsigned ARMTargetLowering::getMaximalGlobalOffset() const {
874  return (Subtarget->isThumb1Only() ? 127 : 4095);
875}
876
877Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const {
878  unsigned NumVals = N->getNumValues();
879  if (!NumVals)
880    return Sched::RegPressure;
881
882  for (unsigned i = 0; i != NumVals; ++i) {
883    EVT VT = N->getValueType(i);
884    if (VT == MVT::Glue || VT == MVT::Other)
885      continue;
886    if (VT.isFloatingPoint() || VT.isVector())
887      return Sched::Latency;
888  }
889
890  if (!N->isMachineOpcode())
891    return Sched::RegPressure;
892
893  // Load are scheduled for latency even if there instruction itinerary
894  // is not available.
895  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
896  const TargetInstrDesc &TID = TII->get(N->getMachineOpcode());
897
898  if (TID.getNumDefs() == 0)
899    return Sched::RegPressure;
900  if (!Itins->isEmpty() &&
901      Itins->getOperandCycle(TID.getSchedClass(), 0) > 2)
902    return Sched::Latency;
903
904  return Sched::RegPressure;
905}
906
907// FIXME: Move to RegInfo
908unsigned
909ARMTargetLowering::getRegPressureLimit(const TargetRegisterClass *RC,
910                                       MachineFunction &MF) const {
911  const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
912
913  switch (RC->getID()) {
914  default:
915    return 0;
916  case ARM::tGPRRegClassID:
917    return TFI->hasFP(MF) ? 4 : 5;
918  case ARM::GPRRegClassID: {
919    unsigned FP = TFI->hasFP(MF) ? 1 : 0;
920    return 10 - FP - (Subtarget->isR9Reserved() ? 1 : 0);
921  }
922  case ARM::SPRRegClassID:  // Currently not used as 'rep' register class.
923  case ARM::DPRRegClassID:
924    return 32 - 10;
925  }
926}
927
928//===----------------------------------------------------------------------===//
929// Lowering Code
930//===----------------------------------------------------------------------===//
931
932/// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
933static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
934  switch (CC) {
935  default: llvm_unreachable("Unknown condition code!");
936  case ISD::SETNE:  return ARMCC::NE;
937  case ISD::SETEQ:  return ARMCC::EQ;
938  case ISD::SETGT:  return ARMCC::GT;
939  case ISD::SETGE:  return ARMCC::GE;
940  case ISD::SETLT:  return ARMCC::LT;
941  case ISD::SETLE:  return ARMCC::LE;
942  case ISD::SETUGT: return ARMCC::HI;
943  case ISD::SETUGE: return ARMCC::HS;
944  case ISD::SETULT: return ARMCC::LO;
945  case ISD::SETULE: return ARMCC::LS;
946  }
947}
948
949/// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
950static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
951                        ARMCC::CondCodes &CondCode2) {
952  CondCode2 = ARMCC::AL;
953  switch (CC) {
954  default: llvm_unreachable("Unknown FP condition!");
955  case ISD::SETEQ:
956  case ISD::SETOEQ: CondCode = ARMCC::EQ; break;
957  case ISD::SETGT:
958  case ISD::SETOGT: CondCode = ARMCC::GT; break;
959  case ISD::SETGE:
960  case ISD::SETOGE: CondCode = ARMCC::GE; break;
961  case ISD::SETOLT: CondCode = ARMCC::MI; break;
962  case ISD::SETOLE: CondCode = ARMCC::LS; break;
963  case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break;
964  case ISD::SETO:   CondCode = ARMCC::VC; break;
965  case ISD::SETUO:  CondCode = ARMCC::VS; break;
966  case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break;
967  case ISD::SETUGT: CondCode = ARMCC::HI; break;
968  case ISD::SETUGE: CondCode = ARMCC::PL; break;
969  case ISD::SETLT:
970  case ISD::SETULT: CondCode = ARMCC::LT; break;
971  case ISD::SETLE:
972  case ISD::SETULE: CondCode = ARMCC::LE; break;
973  case ISD::SETNE:
974  case ISD::SETUNE: CondCode = ARMCC::NE; break;
975  }
976}
977
978//===----------------------------------------------------------------------===//
979//                      Calling Convention Implementation
980//===----------------------------------------------------------------------===//
981
982#include "ARMGenCallingConv.inc"
983
984/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
985/// given CallingConvention value.
986CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC,
987                                                 bool Return,
988                                                 bool isVarArg) const {
989  switch (CC) {
990  default:
991    llvm_unreachable("Unsupported calling convention");
992  case CallingConv::Fast:
993    if (Subtarget->hasVFP2() && !isVarArg) {
994      if (!Subtarget->isAAPCS_ABI())
995        return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
996      // For AAPCS ABI targets, just use VFP variant of the calling convention.
997      return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
998    }
999    // Fallthrough
1000  case CallingConv::C: {
1001    // Use target triple & subtarget features to do actual dispatch.
1002    if (!Subtarget->isAAPCS_ABI())
1003      return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
1004    else if (Subtarget->hasVFP2() &&
1005             FloatABIType == FloatABI::Hard && !isVarArg)
1006      return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1007    return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
1008  }
1009  case CallingConv::ARM_AAPCS_VFP:
1010    return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1011  case CallingConv::ARM_AAPCS:
1012    return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
1013  case CallingConv::ARM_APCS:
1014    return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
1015  }
1016}
1017
1018/// LowerCallResult - Lower the result values of a call into the
1019/// appropriate copies out of appropriate physical registers.
1020SDValue
1021ARMTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1022                                   CallingConv::ID CallConv, bool isVarArg,
1023                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1024                                   DebugLoc dl, SelectionDAG &DAG,
1025                                   SmallVectorImpl<SDValue> &InVals) const {
1026
1027  // Assign locations to each value returned by this call.
1028  SmallVector<CCValAssign, 16> RVLocs;
1029  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1030                 RVLocs, *DAG.getContext());
1031  CCInfo.AnalyzeCallResult(Ins,
1032                           CCAssignFnForNode(CallConv, /* Return*/ true,
1033                                             isVarArg));
1034
1035  // Copy all of the result registers out of their specified physreg.
1036  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1037    CCValAssign VA = RVLocs[i];
1038
1039    SDValue Val;
1040    if (VA.needsCustom()) {
1041      // Handle f64 or half of a v2f64.
1042      SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1043                                      InFlag);
1044      Chain = Lo.getValue(1);
1045      InFlag = Lo.getValue(2);
1046      VA = RVLocs[++i]; // skip ahead to next loc
1047      SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1048                                      InFlag);
1049      Chain = Hi.getValue(1);
1050      InFlag = Hi.getValue(2);
1051      Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1052
1053      if (VA.getLocVT() == MVT::v2f64) {
1054        SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
1055        Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1056                          DAG.getConstant(0, MVT::i32));
1057
1058        VA = RVLocs[++i]; // skip ahead to next loc
1059        Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1060        Chain = Lo.getValue(1);
1061        InFlag = Lo.getValue(2);
1062        VA = RVLocs[++i]; // skip ahead to next loc
1063        Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1064        Chain = Hi.getValue(1);
1065        InFlag = Hi.getValue(2);
1066        Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1067        Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1068                          DAG.getConstant(1, MVT::i32));
1069      }
1070    } else {
1071      Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
1072                               InFlag);
1073      Chain = Val.getValue(1);
1074      InFlag = Val.getValue(2);
1075    }
1076
1077    switch (VA.getLocInfo()) {
1078    default: llvm_unreachable("Unknown loc info!");
1079    case CCValAssign::Full: break;
1080    case CCValAssign::BCvt:
1081      Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val);
1082      break;
1083    }
1084
1085    InVals.push_back(Val);
1086  }
1087
1088  return Chain;
1089}
1090
1091/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1092/// by "Src" to address "Dst" of size "Size".  Alignment information is
1093/// specified by the specific parameter attribute.  The copy will be passed as
1094/// a byval function parameter.
1095/// Sometimes what we are copying is the end of a larger object, the part that
1096/// does not fit in registers.
1097static SDValue
1098CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1099                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1100                          DebugLoc dl) {
1101  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1102  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1103                       /*isVolatile=*/false, /*AlwaysInline=*/false,
1104                       MachinePointerInfo(0), MachinePointerInfo(0));
1105}
1106
1107/// LowerMemOpCallTo - Store the argument to the stack.
1108SDValue
1109ARMTargetLowering::LowerMemOpCallTo(SDValue Chain,
1110                                    SDValue StackPtr, SDValue Arg,
1111                                    DebugLoc dl, SelectionDAG &DAG,
1112                                    const CCValAssign &VA,
1113                                    ISD::ArgFlagsTy Flags) const {
1114  unsigned LocMemOffset = VA.getLocMemOffset();
1115  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1116  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1117  if (Flags.isByVal())
1118    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
1119
1120  return DAG.getStore(Chain, dl, Arg, PtrOff,
1121                      MachinePointerInfo::getStack(LocMemOffset),
1122                      false, false, 0);
1123}
1124
1125void ARMTargetLowering::PassF64ArgInRegs(DebugLoc dl, SelectionDAG &DAG,
1126                                         SDValue Chain, SDValue &Arg,
1127                                         RegsToPassVector &RegsToPass,
1128                                         CCValAssign &VA, CCValAssign &NextVA,
1129                                         SDValue &StackPtr,
1130                                         SmallVector<SDValue, 8> &MemOpChains,
1131                                         ISD::ArgFlagsTy Flags) const {
1132
1133  SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
1134                              DAG.getVTList(MVT::i32, MVT::i32), Arg);
1135  RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd));
1136
1137  if (NextVA.isRegLoc())
1138    RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1)));
1139  else {
1140    assert(NextVA.isMemLoc());
1141    if (StackPtr.getNode() == 0)
1142      StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
1143
1144    MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1),
1145                                           dl, DAG, NextVA,
1146                                           Flags));
1147  }
1148}
1149
1150/// LowerCall - Lowering a call into a callseq_start <-
1151/// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
1152/// nodes.
1153SDValue
1154ARMTargetLowering::LowerCall(SDValue Chain, SDValue Callee,
1155                             CallingConv::ID CallConv, bool isVarArg,
1156                             bool &isTailCall,
1157                             const SmallVectorImpl<ISD::OutputArg> &Outs,
1158                             const SmallVectorImpl<SDValue> &OutVals,
1159                             const SmallVectorImpl<ISD::InputArg> &Ins,
1160                             DebugLoc dl, SelectionDAG &DAG,
1161                             SmallVectorImpl<SDValue> &InVals) const {
1162  MachineFunction &MF = DAG.getMachineFunction();
1163  bool IsStructRet    = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
1164  bool IsSibCall = false;
1165  // Temporarily disable tail calls so things don't break.
1166  if (!EnableARMTailCalls)
1167    isTailCall = false;
1168  if (isTailCall) {
1169    // Check if it's really possible to do a tail call.
1170    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1171                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
1172                                                   Outs, OutVals, Ins, DAG);
1173    // We don't support GuaranteedTailCallOpt for ARM, only automatically
1174    // detected sibcalls.
1175    if (isTailCall) {
1176      ++NumTailCalls;
1177      IsSibCall = true;
1178    }
1179  }
1180
1181  // Analyze operands of the call, assigning locations to each operand.
1182  SmallVector<CCValAssign, 16> ArgLocs;
1183  CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs,
1184                 *DAG.getContext());
1185  CCInfo.AnalyzeCallOperands(Outs,
1186                             CCAssignFnForNode(CallConv, /* Return*/ false,
1187                                               isVarArg));
1188
1189  // Get a count of how many bytes are to be pushed on the stack.
1190  unsigned NumBytes = CCInfo.getNextStackOffset();
1191
1192  // For tail calls, memory operands are available in our caller's stack.
1193  if (IsSibCall)
1194    NumBytes = 0;
1195
1196  // Adjust the stack pointer for the new arguments...
1197  // These operations are automatically eliminated by the prolog/epilog pass
1198  if (!IsSibCall)
1199    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
1200
1201  SDValue StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
1202
1203  RegsToPassVector RegsToPass;
1204  SmallVector<SDValue, 8> MemOpChains;
1205
1206  // Walk the register/memloc assignments, inserting copies/loads.  In the case
1207  // of tail call optimization, arguments are handled later.
1208  for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
1209       i != e;
1210       ++i, ++realArgIdx) {
1211    CCValAssign &VA = ArgLocs[i];
1212    SDValue Arg = OutVals[realArgIdx];
1213    ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
1214
1215    // Promote the value if needed.
1216    switch (VA.getLocInfo()) {
1217    default: llvm_unreachable("Unknown loc info!");
1218    case CCValAssign::Full: break;
1219    case CCValAssign::SExt:
1220      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
1221      break;
1222    case CCValAssign::ZExt:
1223      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
1224      break;
1225    case CCValAssign::AExt:
1226      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
1227      break;
1228    case CCValAssign::BCvt:
1229      Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
1230      break;
1231    }
1232
1233    // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
1234    if (VA.needsCustom()) {
1235      if (VA.getLocVT() == MVT::v2f64) {
1236        SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1237                                  DAG.getConstant(0, MVT::i32));
1238        SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1239                                  DAG.getConstant(1, MVT::i32));
1240
1241        PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass,
1242                         VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1243
1244        VA = ArgLocs[++i]; // skip ahead to next loc
1245        if (VA.isRegLoc()) {
1246          PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass,
1247                           VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1248        } else {
1249          assert(VA.isMemLoc());
1250
1251          MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Op1,
1252                                                 dl, DAG, VA, Flags));
1253        }
1254      } else {
1255        PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
1256                         StackPtr, MemOpChains, Flags);
1257      }
1258    } else if (VA.isRegLoc()) {
1259      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1260    } else if (!IsSibCall) {
1261      assert(VA.isMemLoc());
1262
1263      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
1264                                             dl, DAG, VA, Flags));
1265    }
1266  }
1267
1268  if (!MemOpChains.empty())
1269    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1270                        &MemOpChains[0], MemOpChains.size());
1271
1272  // Build a sequence of copy-to-reg nodes chained together with token chain
1273  // and flag operands which copy the outgoing args into the appropriate regs.
1274  SDValue InFlag;
1275  // Tail call byval lowering might overwrite argument registers so in case of
1276  // tail call optimization the copies to registers are lowered later.
1277  if (!isTailCall)
1278    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1279      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1280                               RegsToPass[i].second, InFlag);
1281      InFlag = Chain.getValue(1);
1282    }
1283
1284  // For tail calls lower the arguments to the 'real' stack slot.
1285  if (isTailCall) {
1286    // Force all the incoming stack arguments to be loaded from the stack
1287    // before any new outgoing arguments are stored to the stack, because the
1288    // outgoing stack slots may alias the incoming argument stack slots, and
1289    // the alias isn't otherwise explicit. This is slightly more conservative
1290    // than necessary, because it means that each store effectively depends
1291    // on every argument instead of just those arguments it would clobber.
1292
1293    // Do not flag preceeding copytoreg stuff together with the following stuff.
1294    InFlag = SDValue();
1295    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1296      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1297                               RegsToPass[i].second, InFlag);
1298      InFlag = Chain.getValue(1);
1299    }
1300    InFlag =SDValue();
1301  }
1302
1303  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
1304  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
1305  // node so that legalize doesn't hack it.
1306  bool isDirect = false;
1307  bool isARMFunc = false;
1308  bool isLocalARMFunc = false;
1309  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1310
1311  if (EnableARMLongCalls) {
1312    assert (getTargetMachine().getRelocationModel() == Reloc::Static
1313            && "long-calls with non-static relocation model!");
1314    // Handle a global address or an external symbol. If it's not one of
1315    // those, the target's already in a register, so we don't need to do
1316    // anything extra.
1317    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1318      const GlobalValue *GV = G->getGlobal();
1319      // Create a constant pool entry for the callee address
1320      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1321      ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV,
1322                                                           ARMPCLabelIndex,
1323                                                           ARMCP::CPValue, 0);
1324      // Get the address of the callee into a register
1325      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1326      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1327      Callee = DAG.getLoad(getPointerTy(), dl,
1328                           DAG.getEntryNode(), CPAddr,
1329                           MachinePointerInfo::getConstantPool(),
1330                           false, false, 0);
1331    } else if (ExternalSymbolSDNode *S=dyn_cast<ExternalSymbolSDNode>(Callee)) {
1332      const char *Sym = S->getSymbol();
1333
1334      // Create a constant pool entry for the callee address
1335      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1336      ARMConstantPoolValue *CPV = new ARMConstantPoolValue(*DAG.getContext(),
1337                                                       Sym, ARMPCLabelIndex, 0);
1338      // Get the address of the callee into a register
1339      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1340      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1341      Callee = DAG.getLoad(getPointerTy(), dl,
1342                           DAG.getEntryNode(), CPAddr,
1343                           MachinePointerInfo::getConstantPool(),
1344                           false, false, 0);
1345    }
1346  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1347    const GlobalValue *GV = G->getGlobal();
1348    isDirect = true;
1349    bool isExt = GV->isDeclaration() || GV->isWeakForLinker();
1350    bool isStub = (isExt && Subtarget->isTargetDarwin()) &&
1351                   getTargetMachine().getRelocationModel() != Reloc::Static;
1352    isARMFunc = !Subtarget->isThumb() || isStub;
1353    // ARM call to a local ARM function is predicable.
1354    isLocalARMFunc = !Subtarget->isThumb() && (!isExt || !ARMInterworking);
1355    // tBX takes a register source operand.
1356    if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
1357      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1358      ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV,
1359                                                           ARMPCLabelIndex,
1360                                                           ARMCP::CPValue, 4);
1361      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1362      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1363      Callee = DAG.getLoad(getPointerTy(), dl,
1364                           DAG.getEntryNode(), CPAddr,
1365                           MachinePointerInfo::getConstantPool(),
1366                           false, false, 0);
1367      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1368      Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
1369                           getPointerTy(), Callee, PICLabel);
1370    } else {
1371      // On ELF targets for PIC code, direct calls should go through the PLT
1372      unsigned OpFlags = 0;
1373      if (Subtarget->isTargetELF() &&
1374                  getTargetMachine().getRelocationModel() == Reloc::PIC_)
1375        OpFlags = ARMII::MO_PLT;
1376      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
1377    }
1378  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1379    isDirect = true;
1380    bool isStub = Subtarget->isTargetDarwin() &&
1381                  getTargetMachine().getRelocationModel() != Reloc::Static;
1382    isARMFunc = !Subtarget->isThumb() || isStub;
1383    // tBX takes a register source operand.
1384    const char *Sym = S->getSymbol();
1385    if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
1386      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1387      ARMConstantPoolValue *CPV = new ARMConstantPoolValue(*DAG.getContext(),
1388                                                       Sym, ARMPCLabelIndex, 4);
1389      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1390      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1391      Callee = DAG.getLoad(getPointerTy(), dl,
1392                           DAG.getEntryNode(), CPAddr,
1393                           MachinePointerInfo::getConstantPool(),
1394                           false, false, 0);
1395      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1396      Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
1397                           getPointerTy(), Callee, PICLabel);
1398    } else {
1399      unsigned OpFlags = 0;
1400      // On ELF targets for PIC code, direct calls should go through the PLT
1401      if (Subtarget->isTargetELF() &&
1402                  getTargetMachine().getRelocationModel() == Reloc::PIC_)
1403        OpFlags = ARMII::MO_PLT;
1404      Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlags);
1405    }
1406  }
1407
1408  // FIXME: handle tail calls differently.
1409  unsigned CallOpc;
1410  if (Subtarget->isThumb()) {
1411    if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps())
1412      CallOpc = ARMISD::CALL_NOLINK;
1413    else
1414      CallOpc = isARMFunc ? ARMISD::CALL : ARMISD::tCALL;
1415  } else {
1416    CallOpc = (isDirect || Subtarget->hasV5TOps())
1417      ? (isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL)
1418      : ARMISD::CALL_NOLINK;
1419  }
1420
1421  std::vector<SDValue> Ops;
1422  Ops.push_back(Chain);
1423  Ops.push_back(Callee);
1424
1425  // Add argument registers to the end of the list so that they are known live
1426  // into the call.
1427  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1428    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1429                                  RegsToPass[i].second.getValueType()));
1430
1431  if (InFlag.getNode())
1432    Ops.push_back(InFlag);
1433
1434  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1435  if (isTailCall)
1436    return DAG.getNode(ARMISD::TC_RETURN, dl, NodeTys, &Ops[0], Ops.size());
1437
1438  // Returns a chain and a flag for retval copy to use.
1439  Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size());
1440  InFlag = Chain.getValue(1);
1441
1442  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
1443                             DAG.getIntPtrConstant(0, true), InFlag);
1444  if (!Ins.empty())
1445    InFlag = Chain.getValue(1);
1446
1447  // Handle result values, copying them out of physregs into vregs that we
1448  // return.
1449  return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins,
1450                         dl, DAG, InVals);
1451}
1452
1453/// MatchingStackOffset - Return true if the given stack call argument is
1454/// already available in the same position (relatively) of the caller's
1455/// incoming argument stack.
1456static
1457bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
1458                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
1459                         const ARMInstrInfo *TII) {
1460  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
1461  int FI = INT_MAX;
1462  if (Arg.getOpcode() == ISD::CopyFromReg) {
1463    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
1464    if (!TargetRegisterInfo::isVirtualRegister(VR))
1465      return false;
1466    MachineInstr *Def = MRI->getVRegDef(VR);
1467    if (!Def)
1468      return false;
1469    if (!Flags.isByVal()) {
1470      if (!TII->isLoadFromStackSlot(Def, FI))
1471        return false;
1472    } else {
1473      return false;
1474    }
1475  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
1476    if (Flags.isByVal())
1477      // ByVal argument is passed in as a pointer but it's now being
1478      // dereferenced. e.g.
1479      // define @foo(%struct.X* %A) {
1480      //   tail call @bar(%struct.X* byval %A)
1481      // }
1482      return false;
1483    SDValue Ptr = Ld->getBasePtr();
1484    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
1485    if (!FINode)
1486      return false;
1487    FI = FINode->getIndex();
1488  } else
1489    return false;
1490
1491  assert(FI != INT_MAX);
1492  if (!MFI->isFixedObjectIndex(FI))
1493    return false;
1494  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
1495}
1496
1497/// IsEligibleForTailCallOptimization - Check whether the call is eligible
1498/// for tail call optimization. Targets which want to do tail call
1499/// optimization should implement this function.
1500bool
1501ARMTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
1502                                                     CallingConv::ID CalleeCC,
1503                                                     bool isVarArg,
1504                                                     bool isCalleeStructRet,
1505                                                     bool isCallerStructRet,
1506                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
1507                                    const SmallVectorImpl<SDValue> &OutVals,
1508                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1509                                                     SelectionDAG& DAG) const {
1510  const Function *CallerF = DAG.getMachineFunction().getFunction();
1511  CallingConv::ID CallerCC = CallerF->getCallingConv();
1512  bool CCMatch = CallerCC == CalleeCC;
1513
1514  // Look for obvious safe cases to perform tail call optimization that do not
1515  // require ABI changes. This is what gcc calls sibcall.
1516
1517  // Do not sibcall optimize vararg calls unless the call site is not passing
1518  // any arguments.
1519  if (isVarArg && !Outs.empty())
1520    return false;
1521
1522  // Also avoid sibcall optimization if either caller or callee uses struct
1523  // return semantics.
1524  if (isCalleeStructRet || isCallerStructRet)
1525    return false;
1526
1527  // FIXME: Completely disable sibcall for Thumb1 since Thumb1RegisterInfo::
1528  // emitEpilogue is not ready for them.
1529  // Doing this is tricky, since the LDM/POP instruction on Thumb doesn't take
1530  // LR.  This means if we need to reload LR, it takes an extra instructions,
1531  // which outweighs the value of the tail call; but here we don't know yet
1532  // whether LR is going to be used.  Probably the right approach is to
1533  // generate the tail call here and turn it back into CALL/RET in
1534  // emitEpilogue if LR is used.
1535
1536  // Thumb1 PIC calls to external symbols use BX, so they can be tail calls,
1537  // but we need to make sure there are enough registers; the only valid
1538  // registers are the 4 used for parameters.  We don't currently do this
1539  // case.
1540  if (Subtarget->isThumb1Only())
1541    return false;
1542
1543  // If the calling conventions do not match, then we'd better make sure the
1544  // results are returned in the same way as what the caller expects.
1545  if (!CCMatch) {
1546    SmallVector<CCValAssign, 16> RVLocs1;
1547    CCState CCInfo1(CalleeCC, false, getTargetMachine(),
1548                    RVLocs1, *DAG.getContext());
1549    CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForNode(CalleeCC, true, isVarArg));
1550
1551    SmallVector<CCValAssign, 16> RVLocs2;
1552    CCState CCInfo2(CallerCC, false, getTargetMachine(),
1553                    RVLocs2, *DAG.getContext());
1554    CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForNode(CallerCC, true, isVarArg));
1555
1556    if (RVLocs1.size() != RVLocs2.size())
1557      return false;
1558    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
1559      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
1560        return false;
1561      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
1562        return false;
1563      if (RVLocs1[i].isRegLoc()) {
1564        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
1565          return false;
1566      } else {
1567        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
1568          return false;
1569      }
1570    }
1571  }
1572
1573  // If the callee takes no arguments then go on to check the results of the
1574  // call.
1575  if (!Outs.empty()) {
1576    // Check if stack adjustment is needed. For now, do not do this if any
1577    // argument is passed on the stack.
1578    SmallVector<CCValAssign, 16> ArgLocs;
1579    CCState CCInfo(CalleeCC, isVarArg, getTargetMachine(),
1580                   ArgLocs, *DAG.getContext());
1581    CCInfo.AnalyzeCallOperands(Outs,
1582                               CCAssignFnForNode(CalleeCC, false, isVarArg));
1583    if (CCInfo.getNextStackOffset()) {
1584      MachineFunction &MF = DAG.getMachineFunction();
1585
1586      // Check if the arguments are already laid out in the right way as
1587      // the caller's fixed stack objects.
1588      MachineFrameInfo *MFI = MF.getFrameInfo();
1589      const MachineRegisterInfo *MRI = &MF.getRegInfo();
1590      const ARMInstrInfo *TII =
1591        ((ARMTargetMachine&)getTargetMachine()).getInstrInfo();
1592      for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
1593           i != e;
1594           ++i, ++realArgIdx) {
1595        CCValAssign &VA = ArgLocs[i];
1596        EVT RegVT = VA.getLocVT();
1597        SDValue Arg = OutVals[realArgIdx];
1598        ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
1599        if (VA.getLocInfo() == CCValAssign::Indirect)
1600          return false;
1601        if (VA.needsCustom()) {
1602          // f64 and vector types are split into multiple registers or
1603          // register/stack-slot combinations.  The types will not match
1604          // the registers; give up on memory f64 refs until we figure
1605          // out what to do about this.
1606          if (!VA.isRegLoc())
1607            return false;
1608          if (!ArgLocs[++i].isRegLoc())
1609            return false;
1610          if (RegVT == MVT::v2f64) {
1611            if (!ArgLocs[++i].isRegLoc())
1612              return false;
1613            if (!ArgLocs[++i].isRegLoc())
1614              return false;
1615          }
1616        } else if (!VA.isRegLoc()) {
1617          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
1618                                   MFI, MRI, TII))
1619            return false;
1620        }
1621      }
1622    }
1623  }
1624
1625  return true;
1626}
1627
1628SDValue
1629ARMTargetLowering::LowerReturn(SDValue Chain,
1630                               CallingConv::ID CallConv, bool isVarArg,
1631                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1632                               const SmallVectorImpl<SDValue> &OutVals,
1633                               DebugLoc dl, SelectionDAG &DAG) const {
1634
1635  // CCValAssign - represent the assignment of the return value to a location.
1636  SmallVector<CCValAssign, 16> RVLocs;
1637
1638  // CCState - Info about the registers and stack slots.
1639  CCState CCInfo(CallConv, isVarArg, getTargetMachine(), RVLocs,
1640                 *DAG.getContext());
1641
1642  // Analyze outgoing return values.
1643  CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv, /* Return */ true,
1644                                               isVarArg));
1645
1646  // If this is the first return lowered for this function, add
1647  // the regs to the liveout set for the function.
1648  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
1649    for (unsigned i = 0; i != RVLocs.size(); ++i)
1650      if (RVLocs[i].isRegLoc())
1651        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
1652  }
1653
1654  SDValue Flag;
1655
1656  // Copy the result values into the output registers.
1657  for (unsigned i = 0, realRVLocIdx = 0;
1658       i != RVLocs.size();
1659       ++i, ++realRVLocIdx) {
1660    CCValAssign &VA = RVLocs[i];
1661    assert(VA.isRegLoc() && "Can only return in registers!");
1662
1663    SDValue Arg = OutVals[realRVLocIdx];
1664
1665    switch (VA.getLocInfo()) {
1666    default: llvm_unreachable("Unknown loc info!");
1667    case CCValAssign::Full: break;
1668    case CCValAssign::BCvt:
1669      Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
1670      break;
1671    }
1672
1673    if (VA.needsCustom()) {
1674      if (VA.getLocVT() == MVT::v2f64) {
1675        // Extract the first half and return it in two registers.
1676        SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1677                                   DAG.getConstant(0, MVT::i32));
1678        SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl,
1679                                       DAG.getVTList(MVT::i32, MVT::i32), Half);
1680
1681        Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), HalfGPRs, Flag);
1682        Flag = Chain.getValue(1);
1683        VA = RVLocs[++i]; // skip ahead to next loc
1684        Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
1685                                 HalfGPRs.getValue(1), Flag);
1686        Flag = Chain.getValue(1);
1687        VA = RVLocs[++i]; // skip ahead to next loc
1688
1689        // Extract the 2nd half and fall through to handle it as an f64 value.
1690        Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1691                          DAG.getConstant(1, MVT::i32));
1692      }
1693      // Legalize ret f64 -> ret 2 x i32.  We always have fmrrd if f64 is
1694      // available.
1695      SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
1696                                  DAG.getVTList(MVT::i32, MVT::i32), &Arg, 1);
1697      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd, Flag);
1698      Flag = Chain.getValue(1);
1699      VA = RVLocs[++i]; // skip ahead to next loc
1700      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd.getValue(1),
1701                               Flag);
1702    } else
1703      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
1704
1705    // Guarantee that all emitted copies are
1706    // stuck together, avoiding something bad.
1707    Flag = Chain.getValue(1);
1708  }
1709
1710  SDValue result;
1711  if (Flag.getNode())
1712    result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain, Flag);
1713  else // Return Void
1714    result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain);
1715
1716  return result;
1717}
1718
1719bool ARMTargetLowering::isUsedByReturnOnly(SDNode *N) const {
1720  if (N->getNumValues() != 1)
1721    return false;
1722  if (!N->hasNUsesOfValue(1, 0))
1723    return false;
1724
1725  unsigned NumCopies = 0;
1726  SDNode* Copies[2];
1727  SDNode *Use = *N->use_begin();
1728  if (Use->getOpcode() == ISD::CopyToReg) {
1729    Copies[NumCopies++] = Use;
1730  } else if (Use->getOpcode() == ARMISD::VMOVRRD) {
1731    // f64 returned in a pair of GPRs.
1732    for (SDNode::use_iterator UI = Use->use_begin(), UE = Use->use_end();
1733         UI != UE; ++UI) {
1734      if (UI->getOpcode() != ISD::CopyToReg)
1735        return false;
1736      Copies[UI.getUse().getResNo()] = *UI;
1737      ++NumCopies;
1738    }
1739  } else if (Use->getOpcode() == ISD::BITCAST) {
1740    // f32 returned in a single GPR.
1741    if (!Use->hasNUsesOfValue(1, 0))
1742      return false;
1743    Use = *Use->use_begin();
1744    if (Use->getOpcode() != ISD::CopyToReg || !Use->hasNUsesOfValue(1, 0))
1745      return false;
1746    Copies[NumCopies++] = Use;
1747  } else {
1748    return false;
1749  }
1750
1751  if (NumCopies != 1 && NumCopies != 2)
1752    return false;
1753
1754  bool HasRet = false;
1755  for (unsigned i = 0; i < NumCopies; ++i) {
1756    SDNode *Copy = Copies[i];
1757    for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1758         UI != UE; ++UI) {
1759      if (UI->getOpcode() == ISD::CopyToReg) {
1760        SDNode *Use = *UI;
1761        if (Use == Copies[0] || Use == Copies[1])
1762          continue;
1763        return false;
1764      }
1765      if (UI->getOpcode() != ARMISD::RET_FLAG)
1766        return false;
1767      HasRet = true;
1768    }
1769  }
1770
1771  return HasRet;
1772}
1773
1774// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
1775// their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
1776// one of the above mentioned nodes. It has to be wrapped because otherwise
1777// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
1778// be used to form addressing mode. These wrapped nodes will be selected
1779// into MOVi.
1780static SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
1781  EVT PtrVT = Op.getValueType();
1782  // FIXME there is no actual debug info here
1783  DebugLoc dl = Op.getDebugLoc();
1784  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1785  SDValue Res;
1786  if (CP->isMachineConstantPoolEntry())
1787    Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
1788                                    CP->getAlignment());
1789  else
1790    Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
1791                                    CP->getAlignment());
1792  return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
1793}
1794
1795unsigned ARMTargetLowering::getJumpTableEncoding() const {
1796  return MachineJumpTableInfo::EK_Inline;
1797}
1798
1799SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op,
1800                                             SelectionDAG &DAG) const {
1801  MachineFunction &MF = DAG.getMachineFunction();
1802  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1803  unsigned ARMPCLabelIndex = 0;
1804  DebugLoc DL = Op.getDebugLoc();
1805  EVT PtrVT = getPointerTy();
1806  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1807  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
1808  SDValue CPAddr;
1809  if (RelocM == Reloc::Static) {
1810    CPAddr = DAG.getTargetConstantPool(BA, PtrVT, 4);
1811  } else {
1812    unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
1813    ARMPCLabelIndex = AFI->createPICLabelUId();
1814    ARMConstantPoolValue *CPV = new ARMConstantPoolValue(BA, ARMPCLabelIndex,
1815                                                         ARMCP::CPBlockAddress,
1816                                                         PCAdj);
1817    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1818  }
1819  CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr);
1820  SDValue Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), CPAddr,
1821                               MachinePointerInfo::getConstantPool(),
1822                               false, false, 0);
1823  if (RelocM == Reloc::Static)
1824    return Result;
1825  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1826  return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel);
1827}
1828
1829// Lower ISD::GlobalTLSAddress using the "general dynamic" model
1830SDValue
1831ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
1832                                                 SelectionDAG &DAG) const {
1833  DebugLoc dl = GA->getDebugLoc();
1834  EVT PtrVT = getPointerTy();
1835  unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
1836  MachineFunction &MF = DAG.getMachineFunction();
1837  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1838  unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1839  ARMConstantPoolValue *CPV =
1840    new ARMConstantPoolValue(GA->getGlobal(), ARMPCLabelIndex,
1841                             ARMCP::CPValue, PCAdj, ARMCP::TLSGD, true);
1842  SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1843  Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
1844  Argument = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Argument,
1845                         MachinePointerInfo::getConstantPool(),
1846                         false, false, 0);
1847  SDValue Chain = Argument.getValue(1);
1848
1849  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1850  Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);
1851
1852  // call __tls_get_addr.
1853  ArgListTy Args;
1854  ArgListEntry Entry;
1855  Entry.Node = Argument;
1856  Entry.Ty = (const Type *) Type::getInt32Ty(*DAG.getContext());
1857  Args.push_back(Entry);
1858  // FIXME: is there useful debug info available here?
1859  std::pair<SDValue, SDValue> CallResult =
1860    LowerCallTo(Chain, (const Type *) Type::getInt32Ty(*DAG.getContext()),
1861                false, false, false, false,
1862                0, CallingConv::C, false, /*isReturnValueUsed=*/true,
1863                DAG.getExternalSymbol("__tls_get_addr", PtrVT), Args, DAG, dl);
1864  return CallResult.first;
1865}
1866
1867// Lower ISD::GlobalTLSAddress using the "initial exec" or
1868// "local exec" model.
1869SDValue
1870ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
1871                                        SelectionDAG &DAG) const {
1872  const GlobalValue *GV = GA->getGlobal();
1873  DebugLoc dl = GA->getDebugLoc();
1874  SDValue Offset;
1875  SDValue Chain = DAG.getEntryNode();
1876  EVT PtrVT = getPointerTy();
1877  // Get the Thread Pointer
1878  SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
1879
1880  if (GV->isDeclaration()) {
1881    MachineFunction &MF = DAG.getMachineFunction();
1882    ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1883    unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1884    // Initial exec model.
1885    unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
1886    ARMConstantPoolValue *CPV =
1887      new ARMConstantPoolValue(GA->getGlobal(), ARMPCLabelIndex,
1888                               ARMCP::CPValue, PCAdj, ARMCP::GOTTPOFF, true);
1889    Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1890    Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
1891    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
1892                         MachinePointerInfo::getConstantPool(),
1893                         false, false, 0);
1894    Chain = Offset.getValue(1);
1895
1896    SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1897    Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
1898
1899    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
1900                         MachinePointerInfo::getConstantPool(),
1901                         false, false, 0);
1902  } else {
1903    // local exec model
1904    ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV, ARMCP::TPOFF);
1905    Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1906    Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
1907    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
1908                         MachinePointerInfo::getConstantPool(),
1909                         false, false, 0);
1910  }
1911
1912  // The address of the thread local variable is the add of the thread
1913  // pointer with the offset of the variable.
1914  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
1915}
1916
1917SDValue
1918ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
1919  // TODO: implement the "local dynamic" model
1920  assert(Subtarget->isTargetELF() &&
1921         "TLS not implemented for non-ELF targets");
1922  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
1923  // If the relocation model is PIC, use the "General Dynamic" TLS Model,
1924  // otherwise use the "Local Exec" TLS Model
1925  if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
1926    return LowerToTLSGeneralDynamicModel(GA, DAG);
1927  else
1928    return LowerToTLSExecModels(GA, DAG);
1929}
1930
1931SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
1932                                                 SelectionDAG &DAG) const {
1933  EVT PtrVT = getPointerTy();
1934  DebugLoc dl = Op.getDebugLoc();
1935  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
1936  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
1937  if (RelocM == Reloc::PIC_) {
1938    bool UseGOTOFF = GV->hasLocalLinkage() || GV->hasHiddenVisibility();
1939    ARMConstantPoolValue *CPV =
1940      new ARMConstantPoolValue(GV, UseGOTOFF ? ARMCP::GOTOFF : ARMCP::GOT);
1941    SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1942    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1943    SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
1944                                 CPAddr,
1945                                 MachinePointerInfo::getConstantPool(),
1946                                 false, false, 0);
1947    SDValue Chain = Result.getValue(1);
1948    SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
1949    Result = DAG.getNode(ISD::ADD, dl, PtrVT, Result, GOT);
1950    if (!UseGOTOFF)
1951      Result = DAG.getLoad(PtrVT, dl, Chain, Result,
1952                           MachinePointerInfo::getGOT(), false, false, 0);
1953    return Result;
1954  }
1955
1956  // If we have T2 ops, we can materialize the address directly via movt/movw
1957  // pair. This is always cheaper.
1958  if (Subtarget->useMovt()) {
1959    ++NumMovwMovt;
1960    // FIXME: Once remat is capable of dealing with instructions with register
1961    // operands, expand this into two nodes.
1962    return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
1963                       DAG.getTargetGlobalAddress(GV, dl, PtrVT));
1964  } else {
1965    SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
1966    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1967    return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
1968                       MachinePointerInfo::getConstantPool(),
1969                       false, false, 0);
1970  }
1971}
1972
1973SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
1974                                                    SelectionDAG &DAG) const {
1975  EVT PtrVT = getPointerTy();
1976  DebugLoc dl = Op.getDebugLoc();
1977  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
1978  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
1979  MachineFunction &MF = DAG.getMachineFunction();
1980  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1981
1982  if (Subtarget->useMovt()) {
1983    ++NumMovwMovt;
1984    // FIXME: Once remat is capable of dealing with instructions with register
1985    // operands, expand this into two nodes.
1986    if (RelocM != Reloc::PIC_)
1987      return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
1988                                 DAG.getTargetGlobalAddress(GV, dl, PtrVT));
1989
1990    // FIXME: Not a constant pool!
1991    unsigned PICLabelIndex = AFI->createPICLabelUId();
1992    SDValue PICLabel = DAG.getConstant(PICLabelIndex, MVT::i32);
1993    SDValue Result = DAG.getNode(ARMISD::WrapperPIC, dl, PtrVT,
1994                                 DAG.getTargetGlobalAddress(GV, dl, PtrVT),
1995                                 PICLabel);
1996    Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
1997    if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
1998      Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
1999                           MachinePointerInfo::getGOT(), false, false, 0);
2000    return Result;
2001  }
2002
2003  unsigned ARMPCLabelIndex = 0;
2004  SDValue CPAddr;
2005  if (RelocM == Reloc::Static) {
2006    CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
2007  } else {
2008    ARMPCLabelIndex = AFI->createPICLabelUId();
2009    unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : (Subtarget->isThumb()?4:8);
2010    ARMConstantPoolValue *CPV =
2011      new ARMConstantPoolValue(GV, ARMPCLabelIndex, ARMCP::CPValue, PCAdj);
2012    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2013  }
2014  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2015
2016  SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2017                               MachinePointerInfo::getConstantPool(),
2018                               false, false, 0);
2019  SDValue Chain = Result.getValue(1);
2020
2021  if (RelocM == Reloc::PIC_) {
2022    SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2023    Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2024  }
2025
2026  if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
2027    Result = DAG.getLoad(PtrVT, dl, Chain, Result, MachinePointerInfo::getGOT(),
2028                         false, false, 0);
2029
2030  return Result;
2031}
2032
2033SDValue ARMTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op,
2034                                                    SelectionDAG &DAG) const {
2035  assert(Subtarget->isTargetELF() &&
2036         "GLOBAL OFFSET TABLE not implemented for non-ELF targets");
2037  MachineFunction &MF = DAG.getMachineFunction();
2038  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2039  unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2040  EVT PtrVT = getPointerTy();
2041  DebugLoc dl = Op.getDebugLoc();
2042  unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
2043  ARMConstantPoolValue *CPV = new ARMConstantPoolValue(*DAG.getContext(),
2044                                                       "_GLOBAL_OFFSET_TABLE_",
2045                                                       ARMPCLabelIndex, PCAdj);
2046  SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2047  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2048  SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2049                               MachinePointerInfo::getConstantPool(),
2050                               false, false, 0);
2051  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2052  return DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2053}
2054
2055SDValue
2056ARMTargetLowering::LowerEH_SJLJ_DISPATCHSETUP(SDValue Op, SelectionDAG &DAG)
2057  const {
2058  DebugLoc dl = Op.getDebugLoc();
2059  return DAG.getNode(ARMISD::EH_SJLJ_DISPATCHSETUP, dl, MVT::Other,
2060                     Op.getOperand(0), Op.getOperand(1));
2061}
2062
2063SDValue
2064ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const {
2065  DebugLoc dl = Op.getDebugLoc();
2066  SDValue Val = DAG.getConstant(0, MVT::i32);
2067  return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl, MVT::i32, Op.getOperand(0),
2068                     Op.getOperand(1), Val);
2069}
2070
2071SDValue
2072ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const {
2073  DebugLoc dl = Op.getDebugLoc();
2074  return DAG.getNode(ARMISD::EH_SJLJ_LONGJMP, dl, MVT::Other, Op.getOperand(0),
2075                     Op.getOperand(1), DAG.getConstant(0, MVT::i32));
2076}
2077
2078SDValue
2079ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG,
2080                                          const ARMSubtarget *Subtarget) const {
2081  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2082  DebugLoc dl = Op.getDebugLoc();
2083  switch (IntNo) {
2084  default: return SDValue();    // Don't custom lower most intrinsics.
2085  case Intrinsic::arm_thread_pointer: {
2086    EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2087    return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
2088  }
2089  case Intrinsic::eh_sjlj_lsda: {
2090    MachineFunction &MF = DAG.getMachineFunction();
2091    ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2092    unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2093    EVT PtrVT = getPointerTy();
2094    DebugLoc dl = Op.getDebugLoc();
2095    Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2096    SDValue CPAddr;
2097    unsigned PCAdj = (RelocM != Reloc::PIC_)
2098      ? 0 : (Subtarget->isThumb() ? 4 : 8);
2099    ARMConstantPoolValue *CPV =
2100      new ARMConstantPoolValue(MF.getFunction(), ARMPCLabelIndex,
2101                               ARMCP::CPLSDA, PCAdj);
2102    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2103    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2104    SDValue Result =
2105      DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2106                  MachinePointerInfo::getConstantPool(),
2107                  false, false, 0);
2108
2109    if (RelocM == Reloc::PIC_) {
2110      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2111      Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2112    }
2113    return Result;
2114  }
2115  }
2116}
2117
2118static SDValue LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG,
2119                               const ARMSubtarget *Subtarget) {
2120  DebugLoc dl = Op.getDebugLoc();
2121  if (!Subtarget->hasDataBarrier()) {
2122    // Some ARMv6 cpus can support data barriers with an mcr instruction.
2123    // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
2124    // here.
2125    assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&
2126           "Unexpected ISD::MEMBARRIER encountered. Should be libcall!");
2127    return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
2128                       DAG.getConstant(0, MVT::i32));
2129  }
2130
2131  SDValue Op5 = Op.getOperand(5);
2132  bool isDeviceBarrier = cast<ConstantSDNode>(Op5)->getZExtValue() != 0;
2133  unsigned isLL = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
2134  unsigned isLS = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
2135  bool isOnlyStoreBarrier = (isLL == 0 && isLS == 0);
2136
2137  ARM_MB::MemBOpt DMBOpt;
2138  if (isDeviceBarrier)
2139    DMBOpt = isOnlyStoreBarrier ? ARM_MB::ST : ARM_MB::SY;
2140  else
2141    DMBOpt = isOnlyStoreBarrier ? ARM_MB::ISHST : ARM_MB::ISH;
2142  return DAG.getNode(ARMISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0),
2143                     DAG.getConstant(DMBOpt, MVT::i32));
2144}
2145
2146static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG,
2147                             const ARMSubtarget *Subtarget) {
2148  // ARM pre v5TE and Thumb1 does not have preload instructions.
2149  if (!(Subtarget->isThumb2() ||
2150        (!Subtarget->isThumb1Only() && Subtarget->hasV5TEOps())))
2151    // Just preserve the chain.
2152    return Op.getOperand(0);
2153
2154  DebugLoc dl = Op.getDebugLoc();
2155  unsigned isRead = ~cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() & 1;
2156  if (!isRead &&
2157      (!Subtarget->hasV7Ops() || !Subtarget->hasMPExtension()))
2158    // ARMv7 with MP extension has PLDW.
2159    return Op.getOperand(0);
2160
2161  if (Subtarget->isThumb())
2162    // Invert the bits.
2163    isRead = ~isRead & 1;
2164  unsigned isData = Subtarget->isThumb() ? 0 : 1;
2165
2166  // Currently there is no intrinsic that matches pli.
2167  return DAG.getNode(ARMISD::PRELOAD, dl, MVT::Other, Op.getOperand(0),
2168                     Op.getOperand(1), DAG.getConstant(isRead, MVT::i32),
2169                     DAG.getConstant(isData, MVT::i32));
2170}
2171
2172static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) {
2173  MachineFunction &MF = DAG.getMachineFunction();
2174  ARMFunctionInfo *FuncInfo = MF.getInfo<ARMFunctionInfo>();
2175
2176  // vastart just stores the address of the VarArgsFrameIndex slot into the
2177  // memory location argument.
2178  DebugLoc dl = Op.getDebugLoc();
2179  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2180  SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2181  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2182  return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
2183                      MachinePointerInfo(SV), false, false, 0);
2184}
2185
2186SDValue
2187ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA, CCValAssign &NextVA,
2188                                        SDValue &Root, SelectionDAG &DAG,
2189                                        DebugLoc dl) const {
2190  MachineFunction &MF = DAG.getMachineFunction();
2191  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2192
2193  TargetRegisterClass *RC;
2194  if (AFI->isThumb1OnlyFunction())
2195    RC = ARM::tGPRRegisterClass;
2196  else
2197    RC = ARM::GPRRegisterClass;
2198
2199  // Transform the arguments stored in physical registers into virtual ones.
2200  unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2201  SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
2202
2203  SDValue ArgValue2;
2204  if (NextVA.isMemLoc()) {
2205    MachineFrameInfo *MFI = MF.getFrameInfo();
2206    int FI = MFI->CreateFixedObject(4, NextVA.getLocMemOffset(), true);
2207
2208    // Create load node to retrieve arguments from the stack.
2209    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2210    ArgValue2 = DAG.getLoad(MVT::i32, dl, Root, FIN,
2211                            MachinePointerInfo::getFixedStack(FI),
2212                            false, false, 0);
2213  } else {
2214    Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
2215    ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
2216  }
2217
2218  return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2);
2219}
2220
2221SDValue
2222ARMTargetLowering::LowerFormalArguments(SDValue Chain,
2223                                        CallingConv::ID CallConv, bool isVarArg,
2224                                        const SmallVectorImpl<ISD::InputArg>
2225                                          &Ins,
2226                                        DebugLoc dl, SelectionDAG &DAG,
2227                                        SmallVectorImpl<SDValue> &InVals)
2228                                          const {
2229
2230  MachineFunction &MF = DAG.getMachineFunction();
2231  MachineFrameInfo *MFI = MF.getFrameInfo();
2232
2233  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2234
2235  // Assign locations to all of the incoming arguments.
2236  SmallVector<CCValAssign, 16> ArgLocs;
2237  CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs,
2238                 *DAG.getContext());
2239  CCInfo.AnalyzeFormalArguments(Ins,
2240                                CCAssignFnForNode(CallConv, /* Return*/ false,
2241                                                  isVarArg));
2242
2243  SmallVector<SDValue, 16> ArgValues;
2244
2245  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2246    CCValAssign &VA = ArgLocs[i];
2247
2248    // Arguments stored in registers.
2249    if (VA.isRegLoc()) {
2250      EVT RegVT = VA.getLocVT();
2251
2252      SDValue ArgValue;
2253      if (VA.needsCustom()) {
2254        // f64 and vector types are split up into multiple registers or
2255        // combinations of registers and stack slots.
2256        if (VA.getLocVT() == MVT::v2f64) {
2257          SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i],
2258                                                   Chain, DAG, dl);
2259          VA = ArgLocs[++i]; // skip ahead to next loc
2260          SDValue ArgValue2;
2261          if (VA.isMemLoc()) {
2262            int FI = MFI->CreateFixedObject(8, VA.getLocMemOffset(), true);
2263            SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2264            ArgValue2 = DAG.getLoad(MVT::f64, dl, Chain, FIN,
2265                                    MachinePointerInfo::getFixedStack(FI),
2266                                    false, false, 0);
2267          } else {
2268            ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i],
2269                                             Chain, DAG, dl);
2270          }
2271          ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
2272          ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
2273                                 ArgValue, ArgValue1, DAG.getIntPtrConstant(0));
2274          ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
2275                                 ArgValue, ArgValue2, DAG.getIntPtrConstant(1));
2276        } else
2277          ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
2278
2279      } else {
2280        TargetRegisterClass *RC;
2281
2282        if (RegVT == MVT::f32)
2283          RC = ARM::SPRRegisterClass;
2284        else if (RegVT == MVT::f64)
2285          RC = ARM::DPRRegisterClass;
2286        else if (RegVT == MVT::v2f64)
2287          RC = ARM::QPRRegisterClass;
2288        else if (RegVT == MVT::i32)
2289          RC = (AFI->isThumb1OnlyFunction() ?
2290                ARM::tGPRRegisterClass : ARM::GPRRegisterClass);
2291        else
2292          llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
2293
2294        // Transform the arguments in physical registers into virtual ones.
2295        unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2296        ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
2297      }
2298
2299      // If this is an 8 or 16-bit value, it is really passed promoted
2300      // to 32 bits.  Insert an assert[sz]ext to capture this, then
2301      // truncate to the right size.
2302      switch (VA.getLocInfo()) {
2303      default: llvm_unreachable("Unknown loc info!");
2304      case CCValAssign::Full: break;
2305      case CCValAssign::BCvt:
2306        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
2307        break;
2308      case CCValAssign::SExt:
2309        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
2310                               DAG.getValueType(VA.getValVT()));
2311        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
2312        break;
2313      case CCValAssign::ZExt:
2314        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
2315                               DAG.getValueType(VA.getValVT()));
2316        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
2317        break;
2318      }
2319
2320      InVals.push_back(ArgValue);
2321
2322    } else { // VA.isRegLoc()
2323
2324      // sanity check
2325      assert(VA.isMemLoc());
2326      assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered");
2327
2328      unsigned ArgSize = VA.getLocVT().getSizeInBits()/8;
2329      int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(), true);
2330
2331      // Create load nodes to retrieve arguments from the stack.
2332      SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2333      InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
2334                                   MachinePointerInfo::getFixedStack(FI),
2335                                   false, false, 0));
2336    }
2337  }
2338
2339  // varargs
2340  if (isVarArg) {
2341    static const unsigned GPRArgRegs[] = {
2342      ARM::R0, ARM::R1, ARM::R2, ARM::R3
2343    };
2344
2345    unsigned NumGPRs = CCInfo.getFirstUnallocated
2346      (GPRArgRegs, sizeof(GPRArgRegs) / sizeof(GPRArgRegs[0]));
2347
2348    unsigned Align = MF.getTarget().getFrameLowering()->getStackAlignment();
2349    unsigned VARegSize = (4 - NumGPRs) * 4;
2350    unsigned VARegSaveSize = (VARegSize + Align - 1) & ~(Align - 1);
2351    unsigned ArgOffset = CCInfo.getNextStackOffset();
2352    if (VARegSaveSize) {
2353      // If this function is vararg, store any remaining integer argument regs
2354      // to their spots on the stack so that they may be loaded by deferencing
2355      // the result of va_next.
2356      AFI->setVarArgsRegSaveSize(VARegSaveSize);
2357      AFI->setVarArgsFrameIndex(
2358        MFI->CreateFixedObject(VARegSaveSize,
2359                               ArgOffset + VARegSaveSize - VARegSize,
2360                               false));
2361      SDValue FIN = DAG.getFrameIndex(AFI->getVarArgsFrameIndex(),
2362                                      getPointerTy());
2363
2364      SmallVector<SDValue, 4> MemOps;
2365      for (; NumGPRs < 4; ++NumGPRs) {
2366        TargetRegisterClass *RC;
2367        if (AFI->isThumb1OnlyFunction())
2368          RC = ARM::tGPRRegisterClass;
2369        else
2370          RC = ARM::GPRRegisterClass;
2371
2372        unsigned VReg = MF.addLiveIn(GPRArgRegs[NumGPRs], RC);
2373        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
2374        SDValue Store =
2375          DAG.getStore(Val.getValue(1), dl, Val, FIN,
2376               MachinePointerInfo::getFixedStack(AFI->getVarArgsFrameIndex()),
2377                       false, false, 0);
2378        MemOps.push_back(Store);
2379        FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN,
2380                          DAG.getConstant(4, getPointerTy()));
2381      }
2382      if (!MemOps.empty())
2383        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2384                            &MemOps[0], MemOps.size());
2385    } else
2386      // This will point to the next argument passed via stack.
2387      AFI->setVarArgsFrameIndex(MFI->CreateFixedObject(4, ArgOffset, true));
2388  }
2389
2390  return Chain;
2391}
2392
2393/// isFloatingPointZero - Return true if this is +0.0.
2394static bool isFloatingPointZero(SDValue Op) {
2395  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
2396    return CFP->getValueAPF().isPosZero();
2397  else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
2398    // Maybe this has already been legalized into the constant pool?
2399    if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
2400      SDValue WrapperOp = Op.getOperand(1).getOperand(0);
2401      if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
2402        if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
2403          return CFP->getValueAPF().isPosZero();
2404    }
2405  }
2406  return false;
2407}
2408
2409/// Returns appropriate ARM CMP (cmp) and corresponding condition code for
2410/// the given operands.
2411SDValue
2412ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
2413                             SDValue &ARMcc, SelectionDAG &DAG,
2414                             DebugLoc dl) const {
2415  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
2416    unsigned C = RHSC->getZExtValue();
2417    if (!isLegalICmpImmediate(C)) {
2418      // Constant does not fit, try adjusting it by one?
2419      switch (CC) {
2420      default: break;
2421      case ISD::SETLT:
2422      case ISD::SETGE:
2423        if (C != 0x80000000 && isLegalICmpImmediate(C-1)) {
2424          CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
2425          RHS = DAG.getConstant(C-1, MVT::i32);
2426        }
2427        break;
2428      case ISD::SETULT:
2429      case ISD::SETUGE:
2430        if (C != 0 && isLegalICmpImmediate(C-1)) {
2431          CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
2432          RHS = DAG.getConstant(C-1, MVT::i32);
2433        }
2434        break;
2435      case ISD::SETLE:
2436      case ISD::SETGT:
2437        if (C != 0x7fffffff && isLegalICmpImmediate(C+1)) {
2438          CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
2439          RHS = DAG.getConstant(C+1, MVT::i32);
2440        }
2441        break;
2442      case ISD::SETULE:
2443      case ISD::SETUGT:
2444        if (C != 0xffffffff && isLegalICmpImmediate(C+1)) {
2445          CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
2446          RHS = DAG.getConstant(C+1, MVT::i32);
2447        }
2448        break;
2449      }
2450    }
2451  }
2452
2453  ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
2454  ARMISD::NodeType CompareType;
2455  switch (CondCode) {
2456  default:
2457    CompareType = ARMISD::CMP;
2458    break;
2459  case ARMCC::EQ:
2460  case ARMCC::NE:
2461    // Uses only Z Flag
2462    CompareType = ARMISD::CMPZ;
2463    break;
2464  }
2465  ARMcc = DAG.getConstant(CondCode, MVT::i32);
2466  return DAG.getNode(CompareType, dl, MVT::Glue, LHS, RHS);
2467}
2468
2469/// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
2470SDValue
2471ARMTargetLowering::getVFPCmp(SDValue LHS, SDValue RHS, SelectionDAG &DAG,
2472                             DebugLoc dl) const {
2473  SDValue Cmp;
2474  if (!isFloatingPointZero(RHS))
2475    Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Glue, LHS, RHS);
2476  else
2477    Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Glue, LHS);
2478  return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Glue, Cmp);
2479}
2480
2481SDValue ARMTargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
2482  SDValue Cond = Op.getOperand(0);
2483  SDValue SelectTrue = Op.getOperand(1);
2484  SDValue SelectFalse = Op.getOperand(2);
2485  DebugLoc dl = Op.getDebugLoc();
2486
2487  // Convert:
2488  //
2489  //   (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond)
2490  //   (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond)
2491  //
2492  if (Cond.getOpcode() == ARMISD::CMOV && Cond.hasOneUse()) {
2493    const ConstantSDNode *CMOVTrue =
2494      dyn_cast<ConstantSDNode>(Cond.getOperand(0));
2495    const ConstantSDNode *CMOVFalse =
2496      dyn_cast<ConstantSDNode>(Cond.getOperand(1));
2497
2498    if (CMOVTrue && CMOVFalse) {
2499      unsigned CMOVTrueVal = CMOVTrue->getZExtValue();
2500      unsigned CMOVFalseVal = CMOVFalse->getZExtValue();
2501
2502      SDValue True;
2503      SDValue False;
2504      if (CMOVTrueVal == 1 && CMOVFalseVal == 0) {
2505        True = SelectTrue;
2506        False = SelectFalse;
2507      } else if (CMOVTrueVal == 0 && CMOVFalseVal == 1) {
2508        True = SelectFalse;
2509        False = SelectTrue;
2510      }
2511
2512      if (True.getNode() && False.getNode()) {
2513        EVT VT = Cond.getValueType();
2514        SDValue ARMcc = Cond.getOperand(2);
2515        SDValue CCR = Cond.getOperand(3);
2516        SDValue Cmp = Cond.getOperand(4);
2517        return DAG.getNode(ARMISD::CMOV, dl, VT, True, False, ARMcc, CCR, Cmp);
2518      }
2519    }
2520  }
2521
2522  return DAG.getSelectCC(dl, Cond,
2523                         DAG.getConstant(0, Cond.getValueType()),
2524                         SelectTrue, SelectFalse, ISD::SETNE);
2525}
2526
2527SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
2528  EVT VT = Op.getValueType();
2529  SDValue LHS = Op.getOperand(0);
2530  SDValue RHS = Op.getOperand(1);
2531  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2532  SDValue TrueVal = Op.getOperand(2);
2533  SDValue FalseVal = Op.getOperand(3);
2534  DebugLoc dl = Op.getDebugLoc();
2535
2536  if (LHS.getValueType() == MVT::i32) {
2537    SDValue ARMcc;
2538    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2539    SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
2540    return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, CCR,Cmp);
2541  }
2542
2543  ARMCC::CondCodes CondCode, CondCode2;
2544  FPCCToARMCC(CC, CondCode, CondCode2);
2545
2546  SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
2547  SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
2548  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2549  SDValue Result = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal,
2550                               ARMcc, CCR, Cmp);
2551  if (CondCode2 != ARMCC::AL) {
2552    SDValue ARMcc2 = DAG.getConstant(CondCode2, MVT::i32);
2553    // FIXME: Needs another CMP because flag can have but one use.
2554    SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl);
2555    Result = DAG.getNode(ARMISD::CMOV, dl, VT,
2556                         Result, TrueVal, ARMcc2, CCR, Cmp2);
2557  }
2558  return Result;
2559}
2560
2561/// canChangeToInt - Given the fp compare operand, return true if it is suitable
2562/// to morph to an integer compare sequence.
2563static bool canChangeToInt(SDValue Op, bool &SeenZero,
2564                           const ARMSubtarget *Subtarget) {
2565  SDNode *N = Op.getNode();
2566  if (!N->hasOneUse())
2567    // Otherwise it requires moving the value from fp to integer registers.
2568    return false;
2569  if (!N->getNumValues())
2570    return false;
2571  EVT VT = Op.getValueType();
2572  if (VT != MVT::f32 && !Subtarget->isFPBrccSlow())
2573    // f32 case is generally profitable. f64 case only makes sense when vcmpe +
2574    // vmrs are very slow, e.g. cortex-a8.
2575    return false;
2576
2577  if (isFloatingPointZero(Op)) {
2578    SeenZero = true;
2579    return true;
2580  }
2581  return ISD::isNormalLoad(N);
2582}
2583
2584static SDValue bitcastf32Toi32(SDValue Op, SelectionDAG &DAG) {
2585  if (isFloatingPointZero(Op))
2586    return DAG.getConstant(0, MVT::i32);
2587
2588  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op))
2589    return DAG.getLoad(MVT::i32, Op.getDebugLoc(),
2590                       Ld->getChain(), Ld->getBasePtr(), Ld->getPointerInfo(),
2591                       Ld->isVolatile(), Ld->isNonTemporal(),
2592                       Ld->getAlignment());
2593
2594  llvm_unreachable("Unknown VFP cmp argument!");
2595}
2596
2597static void expandf64Toi32(SDValue Op, SelectionDAG &DAG,
2598                           SDValue &RetVal1, SDValue &RetVal2) {
2599  if (isFloatingPointZero(Op)) {
2600    RetVal1 = DAG.getConstant(0, MVT::i32);
2601    RetVal2 = DAG.getConstant(0, MVT::i32);
2602    return;
2603  }
2604
2605  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) {
2606    SDValue Ptr = Ld->getBasePtr();
2607    RetVal1 = DAG.getLoad(MVT::i32, Op.getDebugLoc(),
2608                          Ld->getChain(), Ptr,
2609                          Ld->getPointerInfo(),
2610                          Ld->isVolatile(), Ld->isNonTemporal(),
2611                          Ld->getAlignment());
2612
2613    EVT PtrType = Ptr.getValueType();
2614    unsigned NewAlign = MinAlign(Ld->getAlignment(), 4);
2615    SDValue NewPtr = DAG.getNode(ISD::ADD, Op.getDebugLoc(),
2616                                 PtrType, Ptr, DAG.getConstant(4, PtrType));
2617    RetVal2 = DAG.getLoad(MVT::i32, Op.getDebugLoc(),
2618                          Ld->getChain(), NewPtr,
2619                          Ld->getPointerInfo().getWithOffset(4),
2620                          Ld->isVolatile(), Ld->isNonTemporal(),
2621                          NewAlign);
2622    return;
2623  }
2624
2625  llvm_unreachable("Unknown VFP cmp argument!");
2626}
2627
2628/// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some
2629/// f32 and even f64 comparisons to integer ones.
2630SDValue
2631ARMTargetLowering::OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const {
2632  SDValue Chain = Op.getOperand(0);
2633  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
2634  SDValue LHS = Op.getOperand(2);
2635  SDValue RHS = Op.getOperand(3);
2636  SDValue Dest = Op.getOperand(4);
2637  DebugLoc dl = Op.getDebugLoc();
2638
2639  bool SeenZero = false;
2640  if (canChangeToInt(LHS, SeenZero, Subtarget) &&
2641      canChangeToInt(RHS, SeenZero, Subtarget) &&
2642      // If one of the operand is zero, it's safe to ignore the NaN case since
2643      // we only care about equality comparisons.
2644      (SeenZero || (DAG.isKnownNeverNaN(LHS) && DAG.isKnownNeverNaN(RHS)))) {
2645    // If unsafe fp math optimization is enabled and there are no othter uses of
2646    // the CMP operands, and the condition code is EQ oe NE, we can optimize it
2647    // to an integer comparison.
2648    if (CC == ISD::SETOEQ)
2649      CC = ISD::SETEQ;
2650    else if (CC == ISD::SETUNE)
2651      CC = ISD::SETNE;
2652
2653    SDValue ARMcc;
2654    if (LHS.getValueType() == MVT::f32) {
2655      LHS = bitcastf32Toi32(LHS, DAG);
2656      RHS = bitcastf32Toi32(RHS, DAG);
2657      SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
2658      SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2659      return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
2660                         Chain, Dest, ARMcc, CCR, Cmp);
2661    }
2662
2663    SDValue LHS1, LHS2;
2664    SDValue RHS1, RHS2;
2665    expandf64Toi32(LHS, DAG, LHS1, LHS2);
2666    expandf64Toi32(RHS, DAG, RHS1, RHS2);
2667    ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
2668    ARMcc = DAG.getConstant(CondCode, MVT::i32);
2669    SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
2670    SDValue Ops[] = { Chain, ARMcc, LHS1, LHS2, RHS1, RHS2, Dest };
2671    return DAG.getNode(ARMISD::BCC_i64, dl, VTList, Ops, 7);
2672  }
2673
2674  return SDValue();
2675}
2676
2677SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
2678  SDValue Chain = Op.getOperand(0);
2679  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
2680  SDValue LHS = Op.getOperand(2);
2681  SDValue RHS = Op.getOperand(3);
2682  SDValue Dest = Op.getOperand(4);
2683  DebugLoc dl = Op.getDebugLoc();
2684
2685  if (LHS.getValueType() == MVT::i32) {
2686    SDValue ARMcc;
2687    SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
2688    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2689    return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
2690                       Chain, Dest, ARMcc, CCR, Cmp);
2691  }
2692
2693  assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
2694
2695  if (UnsafeFPMath &&
2696      (CC == ISD::SETEQ || CC == ISD::SETOEQ ||
2697       CC == ISD::SETNE || CC == ISD::SETUNE)) {
2698    SDValue Result = OptimizeVFPBrcond(Op, DAG);
2699    if (Result.getNode())
2700      return Result;
2701  }
2702
2703  ARMCC::CondCodes CondCode, CondCode2;
2704  FPCCToARMCC(CC, CondCode, CondCode2);
2705
2706  SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
2707  SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
2708  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2709  SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
2710  SDValue Ops[] = { Chain, Dest, ARMcc, CCR, Cmp };
2711  SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
2712  if (CondCode2 != ARMCC::AL) {
2713    ARMcc = DAG.getConstant(CondCode2, MVT::i32);
2714    SDValue Ops[] = { Res, Dest, ARMcc, CCR, Res.getValue(1) };
2715    Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
2716  }
2717  return Res;
2718}
2719
2720SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
2721  SDValue Chain = Op.getOperand(0);
2722  SDValue Table = Op.getOperand(1);
2723  SDValue Index = Op.getOperand(2);
2724  DebugLoc dl = Op.getDebugLoc();
2725
2726  EVT PTy = getPointerTy();
2727  JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
2728  ARMFunctionInfo *AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
2729  SDValue UId = DAG.getConstant(AFI->createJumpTableUId(), PTy);
2730  SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
2731  Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI, UId);
2732  Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, PTy));
2733  SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
2734  if (Subtarget->isThumb2()) {
2735    // Thumb2 uses a two-level jump. That is, it jumps into the jump table
2736    // which does another jump to the destination. This also makes it easier
2737    // to translate it to TBB / TBH later.
2738    // FIXME: This might not work if the function is extremely large.
2739    return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain,
2740                       Addr, Op.getOperand(2), JTI, UId);
2741  }
2742  if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2743    Addr = DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr,
2744                       MachinePointerInfo::getJumpTable(),
2745                       false, false, 0);
2746    Chain = Addr.getValue(1);
2747    Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, Table);
2748    return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
2749  } else {
2750    Addr = DAG.getLoad(PTy, dl, Chain, Addr,
2751                       MachinePointerInfo::getJumpTable(), false, false, 0);
2752    Chain = Addr.getValue(1);
2753    return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
2754  }
2755}
2756
2757static SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
2758  DebugLoc dl = Op.getDebugLoc();
2759  unsigned Opc;
2760
2761  switch (Op.getOpcode()) {
2762  default:
2763    assert(0 && "Invalid opcode!");
2764  case ISD::FP_TO_SINT:
2765    Opc = ARMISD::FTOSI;
2766    break;
2767  case ISD::FP_TO_UINT:
2768    Opc = ARMISD::FTOUI;
2769    break;
2770  }
2771  Op = DAG.getNode(Opc, dl, MVT::f32, Op.getOperand(0));
2772  return DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
2773}
2774
2775static SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
2776  EVT VT = Op.getValueType();
2777  DebugLoc dl = Op.getDebugLoc();
2778  unsigned Opc;
2779
2780  switch (Op.getOpcode()) {
2781  default:
2782    assert(0 && "Invalid opcode!");
2783  case ISD::SINT_TO_FP:
2784    Opc = ARMISD::SITOF;
2785    break;
2786  case ISD::UINT_TO_FP:
2787    Opc = ARMISD::UITOF;
2788    break;
2789  }
2790
2791  Op = DAG.getNode(ISD::BITCAST, dl, MVT::f32, Op.getOperand(0));
2792  return DAG.getNode(Opc, dl, VT, Op);
2793}
2794
2795SDValue ARMTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
2796  // Implement fcopysign with a fabs and a conditional fneg.
2797  SDValue Tmp0 = Op.getOperand(0);
2798  SDValue Tmp1 = Op.getOperand(1);
2799  DebugLoc dl = Op.getDebugLoc();
2800  EVT VT = Op.getValueType();
2801  EVT SrcVT = Tmp1.getValueType();
2802  SDValue AbsVal = DAG.getNode(ISD::FABS, dl, VT, Tmp0);
2803  SDValue ARMcc = DAG.getConstant(ARMCC::LT, MVT::i32);
2804  SDValue FP0 = DAG.getConstantFP(0.0, SrcVT);
2805  SDValue Cmp = getVFPCmp(Tmp1, FP0, DAG, dl);
2806  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2807  return DAG.getNode(ARMISD::CNEG, dl, VT, AbsVal, AbsVal, ARMcc, CCR, Cmp);
2808}
2809
2810SDValue ARMTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{
2811  MachineFunction &MF = DAG.getMachineFunction();
2812  MachineFrameInfo *MFI = MF.getFrameInfo();
2813  MFI->setReturnAddressIsTaken(true);
2814
2815  EVT VT = Op.getValueType();
2816  DebugLoc dl = Op.getDebugLoc();
2817  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2818  if (Depth) {
2819    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
2820    SDValue Offset = DAG.getConstant(4, MVT::i32);
2821    return DAG.getLoad(VT, dl, DAG.getEntryNode(),
2822                       DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
2823                       MachinePointerInfo(), false, false, 0);
2824  }
2825
2826  // Return LR, which contains the return address. Mark it an implicit live-in.
2827  unsigned Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32));
2828  return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
2829}
2830
2831SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
2832  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2833  MFI->setFrameAddressIsTaken(true);
2834
2835  EVT VT = Op.getValueType();
2836  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
2837  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2838  unsigned FrameReg = (Subtarget->isThumb() || Subtarget->isTargetDarwin())
2839    ? ARM::R7 : ARM::R11;
2840  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
2841  while (Depth--)
2842    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
2843                            MachinePointerInfo(),
2844                            false, false, 0);
2845  return FrameAddr;
2846}
2847
2848/// ExpandBITCAST - If the target supports VFP, this function is called to
2849/// expand a bit convert where either the source or destination type is i64 to
2850/// use a VMOVDRR or VMOVRRD node.  This should not be done when the non-i64
2851/// operand type is illegal (e.g., v2f32 for a target that doesn't support
2852/// vectors), since the legalizer won't know what to do with that.
2853static SDValue ExpandBITCAST(SDNode *N, SelectionDAG &DAG) {
2854  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2855  DebugLoc dl = N->getDebugLoc();
2856  SDValue Op = N->getOperand(0);
2857
2858  // This function is only supposed to be called for i64 types, either as the
2859  // source or destination of the bit convert.
2860  EVT SrcVT = Op.getValueType();
2861  EVT DstVT = N->getValueType(0);
2862  assert((SrcVT == MVT::i64 || DstVT == MVT::i64) &&
2863         "ExpandBITCAST called for non-i64 type");
2864
2865  // Turn i64->f64 into VMOVDRR.
2866  if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) {
2867    SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
2868                             DAG.getConstant(0, MVT::i32));
2869    SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
2870                             DAG.getConstant(1, MVT::i32));
2871    return DAG.getNode(ISD::BITCAST, dl, DstVT,
2872                       DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi));
2873  }
2874
2875  // Turn f64->i64 into VMOVRRD.
2876  if (DstVT == MVT::i64 && TLI.isTypeLegal(SrcVT)) {
2877    SDValue Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
2878                              DAG.getVTList(MVT::i32, MVT::i32), &Op, 1);
2879    // Merge the pieces into a single i64 value.
2880    return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1));
2881  }
2882
2883  return SDValue();
2884}
2885
2886/// getZeroVector - Returns a vector of specified type with all zero elements.
2887/// Zero vectors are used to represent vector negation and in those cases
2888/// will be implemented with the NEON VNEG instruction.  However, VNEG does
2889/// not support i64 elements, so sometimes the zero vectors will need to be
2890/// explicitly constructed.  Regardless, use a canonical VMOV to create the
2891/// zero vector.
2892static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
2893  assert(VT.isVector() && "Expected a vector type");
2894  // The canonical modified immediate encoding of a zero vector is....0!
2895  SDValue EncodedVal = DAG.getTargetConstant(0, MVT::i32);
2896  EVT VmovVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
2897  SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, EncodedVal);
2898  return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
2899}
2900
2901/// LowerShiftRightParts - Lower SRA_PARTS, which returns two
2902/// i32 values and take a 2 x i32 value to shift plus a shift amount.
2903SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op,
2904                                                SelectionDAG &DAG) const {
2905  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
2906  EVT VT = Op.getValueType();
2907  unsigned VTBits = VT.getSizeInBits();
2908  DebugLoc dl = Op.getDebugLoc();
2909  SDValue ShOpLo = Op.getOperand(0);
2910  SDValue ShOpHi = Op.getOperand(1);
2911  SDValue ShAmt  = Op.getOperand(2);
2912  SDValue ARMcc;
2913  unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
2914
2915  assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
2916
2917  SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
2918                                 DAG.getConstant(VTBits, MVT::i32), ShAmt);
2919  SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
2920  SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
2921                                   DAG.getConstant(VTBits, MVT::i32));
2922  SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
2923  SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2924  SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
2925
2926  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2927  SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
2928                          ARMcc, DAG, dl);
2929  SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
2930  SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc,
2931                           CCR, Cmp);
2932
2933  SDValue Ops[2] = { Lo, Hi };
2934  return DAG.getMergeValues(Ops, 2, dl);
2935}
2936
2937/// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
2938/// i32 values and take a 2 x i32 value to shift plus a shift amount.
2939SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op,
2940                                               SelectionDAG &DAG) const {
2941  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
2942  EVT VT = Op.getValueType();
2943  unsigned VTBits = VT.getSizeInBits();
2944  DebugLoc dl = Op.getDebugLoc();
2945  SDValue ShOpLo = Op.getOperand(0);
2946  SDValue ShOpHi = Op.getOperand(1);
2947  SDValue ShAmt  = Op.getOperand(2);
2948  SDValue ARMcc;
2949
2950  assert(Op.getOpcode() == ISD::SHL_PARTS);
2951  SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
2952                                 DAG.getConstant(VTBits, MVT::i32), ShAmt);
2953  SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
2954  SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
2955                                   DAG.getConstant(VTBits, MVT::i32));
2956  SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
2957  SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
2958
2959  SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2960  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2961  SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
2962                          ARMcc, DAG, dl);
2963  SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
2964  SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, Tmp3, ARMcc,
2965                           CCR, Cmp);
2966
2967  SDValue Ops[2] = { Lo, Hi };
2968  return DAG.getMergeValues(Ops, 2, dl);
2969}
2970
2971SDValue ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
2972                                            SelectionDAG &DAG) const {
2973  // The rounding mode is in bits 23:22 of the FPSCR.
2974  // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
2975  // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
2976  // so that the shift + and get folded into a bitfield extract.
2977  DebugLoc dl = Op.getDebugLoc();
2978  SDValue FPSCR = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::i32,
2979                              DAG.getConstant(Intrinsic::arm_get_fpscr,
2980                                              MVT::i32));
2981  SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPSCR,
2982                                  DAG.getConstant(1U << 22, MVT::i32));
2983  SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds,
2984                              DAG.getConstant(22, MVT::i32));
2985  return DAG.getNode(ISD::AND, dl, MVT::i32, RMODE,
2986                     DAG.getConstant(3, MVT::i32));
2987}
2988
2989static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG,
2990                         const ARMSubtarget *ST) {
2991  EVT VT = N->getValueType(0);
2992  DebugLoc dl = N->getDebugLoc();
2993
2994  if (!ST->hasV6T2Ops())
2995    return SDValue();
2996
2997  SDValue rbit = DAG.getNode(ARMISD::RBIT, dl, VT, N->getOperand(0));
2998  return DAG.getNode(ISD::CTLZ, dl, VT, rbit);
2999}
3000
3001static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
3002                          const ARMSubtarget *ST) {
3003  EVT VT = N->getValueType(0);
3004  DebugLoc dl = N->getDebugLoc();
3005
3006  if (!VT.isVector())
3007    return SDValue();
3008
3009  // Lower vector shifts on NEON to use VSHL.
3010  assert(ST->hasNEON() && "unexpected vector shift");
3011
3012  // Left shifts translate directly to the vshiftu intrinsic.
3013  if (N->getOpcode() == ISD::SHL)
3014    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
3015                       DAG.getConstant(Intrinsic::arm_neon_vshiftu, MVT::i32),
3016                       N->getOperand(0), N->getOperand(1));
3017
3018  assert((N->getOpcode() == ISD::SRA ||
3019          N->getOpcode() == ISD::SRL) && "unexpected vector shift opcode");
3020
3021  // NEON uses the same intrinsics for both left and right shifts.  For
3022  // right shifts, the shift amounts are negative, so negate the vector of
3023  // shift amounts.
3024  EVT ShiftVT = N->getOperand(1).getValueType();
3025  SDValue NegatedCount = DAG.getNode(ISD::SUB, dl, ShiftVT,
3026                                     getZeroVector(ShiftVT, DAG, dl),
3027                                     N->getOperand(1));
3028  Intrinsic::ID vshiftInt = (N->getOpcode() == ISD::SRA ?
3029                             Intrinsic::arm_neon_vshifts :
3030                             Intrinsic::arm_neon_vshiftu);
3031  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
3032                     DAG.getConstant(vshiftInt, MVT::i32),
3033                     N->getOperand(0), NegatedCount);
3034}
3035
3036static SDValue Expand64BitShift(SDNode *N, SelectionDAG &DAG,
3037                                const ARMSubtarget *ST) {
3038  EVT VT = N->getValueType(0);
3039  DebugLoc dl = N->getDebugLoc();
3040
3041  // We can get here for a node like i32 = ISD::SHL i32, i64
3042  if (VT != MVT::i64)
3043    return SDValue();
3044
3045  assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) &&
3046         "Unknown shift to lower!");
3047
3048  // We only lower SRA, SRL of 1 here, all others use generic lowering.
3049  if (!isa<ConstantSDNode>(N->getOperand(1)) ||
3050      cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 1)
3051    return SDValue();
3052
3053  // If we are in thumb mode, we don't have RRX.
3054  if (ST->isThumb1Only()) return SDValue();
3055
3056  // Okay, we have a 64-bit SRA or SRL of 1.  Lower this to an RRX expr.
3057  SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
3058                           DAG.getConstant(0, MVT::i32));
3059  SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
3060                           DAG.getConstant(1, MVT::i32));
3061
3062  // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
3063  // captures the result into a carry flag.
3064  unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
3065  Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Glue), &Hi, 1);
3066
3067  // The low part is an ARMISD::RRX operand, which shifts the carry in.
3068  Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));
3069
3070  // Merge the pieces into a single i64 value.
3071 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
3072}
3073
3074static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
3075  SDValue TmpOp0, TmpOp1;
3076  bool Invert = false;
3077  bool Swap = false;
3078  unsigned Opc = 0;
3079
3080  SDValue Op0 = Op.getOperand(0);
3081  SDValue Op1 = Op.getOperand(1);
3082  SDValue CC = Op.getOperand(2);
3083  EVT VT = Op.getValueType();
3084  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
3085  DebugLoc dl = Op.getDebugLoc();
3086
3087  if (Op.getOperand(1).getValueType().isFloatingPoint()) {
3088    switch (SetCCOpcode) {
3089    default: llvm_unreachable("Illegal FP comparison"); break;
3090    case ISD::SETUNE:
3091    case ISD::SETNE:  Invert = true; // Fallthrough
3092    case ISD::SETOEQ:
3093    case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
3094    case ISD::SETOLT:
3095    case ISD::SETLT: Swap = true; // Fallthrough
3096    case ISD::SETOGT:
3097    case ISD::SETGT:  Opc = ARMISD::VCGT; break;
3098    case ISD::SETOLE:
3099    case ISD::SETLE:  Swap = true; // Fallthrough
3100    case ISD::SETOGE:
3101    case ISD::SETGE: Opc = ARMISD::VCGE; break;
3102    case ISD::SETUGE: Swap = true; // Fallthrough
3103    case ISD::SETULE: Invert = true; Opc = ARMISD::VCGT; break;
3104    case ISD::SETUGT: Swap = true; // Fallthrough
3105    case ISD::SETULT: Invert = true; Opc = ARMISD::VCGE; break;
3106    case ISD::SETUEQ: Invert = true; // Fallthrough
3107    case ISD::SETONE:
3108      // Expand this to (OLT | OGT).
3109      TmpOp0 = Op0;
3110      TmpOp1 = Op1;
3111      Opc = ISD::OR;
3112      Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
3113      Op1 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp0, TmpOp1);
3114      break;
3115    case ISD::SETUO: Invert = true; // Fallthrough
3116    case ISD::SETO:
3117      // Expand this to (OLT | OGE).
3118      TmpOp0 = Op0;
3119      TmpOp1 = Op1;
3120      Opc = ISD::OR;
3121      Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
3122      Op1 = DAG.getNode(ARMISD::VCGE, dl, VT, TmpOp0, TmpOp1);
3123      break;
3124    }
3125  } else {
3126    // Integer comparisons.
3127    switch (SetCCOpcode) {
3128    default: llvm_unreachable("Illegal integer comparison"); break;
3129    case ISD::SETNE:  Invert = true;
3130    case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
3131    case ISD::SETLT:  Swap = true;
3132    case ISD::SETGT:  Opc = ARMISD::VCGT; break;
3133    case ISD::SETLE:  Swap = true;
3134    case ISD::SETGE:  Opc = ARMISD::VCGE; break;
3135    case ISD::SETULT: Swap = true;
3136    case ISD::SETUGT: Opc = ARMISD::VCGTU; break;
3137    case ISD::SETULE: Swap = true;
3138    case ISD::SETUGE: Opc = ARMISD::VCGEU; break;
3139    }
3140
3141    // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
3142    if (Opc == ARMISD::VCEQ) {
3143
3144      SDValue AndOp;
3145      if (ISD::isBuildVectorAllZeros(Op1.getNode()))
3146        AndOp = Op0;
3147      else if (ISD::isBuildVectorAllZeros(Op0.getNode()))
3148        AndOp = Op1;
3149
3150      // Ignore bitconvert.
3151      if (AndOp.getNode() && AndOp.getOpcode() == ISD::BITCAST)
3152        AndOp = AndOp.getOperand(0);
3153
3154      if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) {
3155        Opc = ARMISD::VTST;
3156        Op0 = DAG.getNode(ISD::BITCAST, dl, VT, AndOp.getOperand(0));
3157        Op1 = DAG.getNode(ISD::BITCAST, dl, VT, AndOp.getOperand(1));
3158        Invert = !Invert;
3159      }
3160    }
3161  }
3162
3163  if (Swap)
3164    std::swap(Op0, Op1);
3165
3166  // If one of the operands is a constant vector zero, attempt to fold the
3167  // comparison to a specialized compare-against-zero form.
3168  SDValue SingleOp;
3169  if (ISD::isBuildVectorAllZeros(Op1.getNode()))
3170    SingleOp = Op0;
3171  else if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
3172    if (Opc == ARMISD::VCGE)
3173      Opc = ARMISD::VCLEZ;
3174    else if (Opc == ARMISD::VCGT)
3175      Opc = ARMISD::VCLTZ;
3176    SingleOp = Op1;
3177  }
3178
3179  SDValue Result;
3180  if (SingleOp.getNode()) {
3181    switch (Opc) {
3182    case ARMISD::VCEQ:
3183      Result = DAG.getNode(ARMISD::VCEQZ, dl, VT, SingleOp); break;
3184    case ARMISD::VCGE:
3185      Result = DAG.getNode(ARMISD::VCGEZ, dl, VT, SingleOp); break;
3186    case ARMISD::VCLEZ:
3187      Result = DAG.getNode(ARMISD::VCLEZ, dl, VT, SingleOp); break;
3188    case ARMISD::VCGT:
3189      Result = DAG.getNode(ARMISD::VCGTZ, dl, VT, SingleOp); break;
3190    case ARMISD::VCLTZ:
3191      Result = DAG.getNode(ARMISD::VCLTZ, dl, VT, SingleOp); break;
3192    default:
3193      Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
3194    }
3195  } else {
3196     Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
3197  }
3198
3199  if (Invert)
3200    Result = DAG.getNOT(dl, Result, VT);
3201
3202  return Result;
3203}
3204
3205/// isNEONModifiedImm - Check if the specified splat value corresponds to a
3206/// valid vector constant for a NEON instruction with a "modified immediate"
3207/// operand (e.g., VMOV).  If so, return the encoded value.
3208static SDValue isNEONModifiedImm(uint64_t SplatBits, uint64_t SplatUndef,
3209                                 unsigned SplatBitSize, SelectionDAG &DAG,
3210                                 EVT &VT, bool is128Bits, NEONModImmType type) {
3211  unsigned OpCmode, Imm;
3212
3213  // SplatBitSize is set to the smallest size that splats the vector, so a
3214  // zero vector will always have SplatBitSize == 8.  However, NEON modified
3215  // immediate instructions others than VMOV do not support the 8-bit encoding
3216  // of a zero vector, and the default encoding of zero is supposed to be the
3217  // 32-bit version.
3218  if (SplatBits == 0)
3219    SplatBitSize = 32;
3220
3221  switch (SplatBitSize) {
3222  case 8:
3223    if (type != VMOVModImm)
3224      return SDValue();
3225    // Any 1-byte value is OK.  Op=0, Cmode=1110.
3226    assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
3227    OpCmode = 0xe;
3228    Imm = SplatBits;
3229    VT = is128Bits ? MVT::v16i8 : MVT::v8i8;
3230    break;
3231
3232  case 16:
3233    // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
3234    VT = is128Bits ? MVT::v8i16 : MVT::v4i16;
3235    if ((SplatBits & ~0xff) == 0) {
3236      // Value = 0x00nn: Op=x, Cmode=100x.
3237      OpCmode = 0x8;
3238      Imm = SplatBits;
3239      break;
3240    }
3241    if ((SplatBits & ~0xff00) == 0) {
3242      // Value = 0xnn00: Op=x, Cmode=101x.
3243      OpCmode = 0xa;
3244      Imm = SplatBits >> 8;
3245      break;
3246    }
3247    return SDValue();
3248
3249  case 32:
3250    // NEON's 32-bit VMOV supports splat values where:
3251    // * only one byte is nonzero, or
3252    // * the least significant byte is 0xff and the second byte is nonzero, or
3253    // * the least significant 2 bytes are 0xff and the third is nonzero.
3254    VT = is128Bits ? MVT::v4i32 : MVT::v2i32;
3255    if ((SplatBits & ~0xff) == 0) {
3256      // Value = 0x000000nn: Op=x, Cmode=000x.
3257      OpCmode = 0;
3258      Imm = SplatBits;
3259      break;
3260    }
3261    if ((SplatBits & ~0xff00) == 0) {
3262      // Value = 0x0000nn00: Op=x, Cmode=001x.
3263      OpCmode = 0x2;
3264      Imm = SplatBits >> 8;
3265      break;
3266    }
3267    if ((SplatBits & ~0xff0000) == 0) {
3268      // Value = 0x00nn0000: Op=x, Cmode=010x.
3269      OpCmode = 0x4;
3270      Imm = SplatBits >> 16;
3271      break;
3272    }
3273    if ((SplatBits & ~0xff000000) == 0) {
3274      // Value = 0xnn000000: Op=x, Cmode=011x.
3275      OpCmode = 0x6;
3276      Imm = SplatBits >> 24;
3277      break;
3278    }
3279
3280    // cmode == 0b1100 and cmode == 0b1101 are not supported for VORR or VBIC
3281    if (type == OtherModImm) return SDValue();
3282
3283    if ((SplatBits & ~0xffff) == 0 &&
3284        ((SplatBits | SplatUndef) & 0xff) == 0xff) {
3285      // Value = 0x0000nnff: Op=x, Cmode=1100.
3286      OpCmode = 0xc;
3287      Imm = SplatBits >> 8;
3288      SplatBits |= 0xff;
3289      break;
3290    }
3291
3292    if ((SplatBits & ~0xffffff) == 0 &&
3293        ((SplatBits | SplatUndef) & 0xffff) == 0xffff) {
3294      // Value = 0x00nnffff: Op=x, Cmode=1101.
3295      OpCmode = 0xd;
3296      Imm = SplatBits >> 16;
3297      SplatBits |= 0xffff;
3298      break;
3299    }
3300
3301    // Note: there are a few 32-bit splat values (specifically: 00ffff00,
3302    // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
3303    // VMOV.I32.  A (very) minor optimization would be to replicate the value
3304    // and fall through here to test for a valid 64-bit splat.  But, then the
3305    // caller would also need to check and handle the change in size.
3306    return SDValue();
3307
3308  case 64: {
3309    if (type != VMOVModImm)
3310      return SDValue();
3311    // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
3312    uint64_t BitMask = 0xff;
3313    uint64_t Val = 0;
3314    unsigned ImmMask = 1;
3315    Imm = 0;
3316    for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
3317      if (((SplatBits | SplatUndef) & BitMask) == BitMask) {
3318        Val |= BitMask;
3319        Imm |= ImmMask;
3320      } else if ((SplatBits & BitMask) != 0) {
3321        return SDValue();
3322      }
3323      BitMask <<= 8;
3324      ImmMask <<= 1;
3325    }
3326    // Op=1, Cmode=1110.
3327    OpCmode = 0x1e;
3328    SplatBits = Val;
3329    VT = is128Bits ? MVT::v2i64 : MVT::v1i64;
3330    break;
3331  }
3332
3333  default:
3334    llvm_unreachable("unexpected size for isNEONModifiedImm");
3335    return SDValue();
3336  }
3337
3338  unsigned EncodedVal = ARM_AM::createNEONModImm(OpCmode, Imm);
3339  return DAG.getTargetConstant(EncodedVal, MVT::i32);
3340}
3341
3342static bool isVEXTMask(const SmallVectorImpl<int> &M, EVT VT,
3343                       bool &ReverseVEXT, unsigned &Imm) {
3344  unsigned NumElts = VT.getVectorNumElements();
3345  ReverseVEXT = false;
3346
3347  // Assume that the first shuffle index is not UNDEF.  Fail if it is.
3348  if (M[0] < 0)
3349    return false;
3350
3351  Imm = M[0];
3352
3353  // If this is a VEXT shuffle, the immediate value is the index of the first
3354  // element.  The other shuffle indices must be the successive elements after
3355  // the first one.
3356  unsigned ExpectedElt = Imm;
3357  for (unsigned i = 1; i < NumElts; ++i) {
3358    // Increment the expected index.  If it wraps around, it may still be
3359    // a VEXT but the source vectors must be swapped.
3360    ExpectedElt += 1;
3361    if (ExpectedElt == NumElts * 2) {
3362      ExpectedElt = 0;
3363      ReverseVEXT = true;
3364    }
3365
3366    if (M[i] < 0) continue; // ignore UNDEF indices
3367    if (ExpectedElt != static_cast<unsigned>(M[i]))
3368      return false;
3369  }
3370
3371  // Adjust the index value if the source operands will be swapped.
3372  if (ReverseVEXT)
3373    Imm -= NumElts;
3374
3375  return true;
3376}
3377
3378/// isVREVMask - Check if a vector shuffle corresponds to a VREV
3379/// instruction with the specified blocksize.  (The order of the elements
3380/// within each block of the vector is reversed.)
3381static bool isVREVMask(const SmallVectorImpl<int> &M, EVT VT,
3382                       unsigned BlockSize) {
3383  assert((BlockSize==16 || BlockSize==32 || BlockSize==64) &&
3384         "Only possible block sizes for VREV are: 16, 32, 64");
3385
3386  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3387  if (EltSz == 64)
3388    return false;
3389
3390  unsigned NumElts = VT.getVectorNumElements();
3391  unsigned BlockElts = M[0] + 1;
3392  // If the first shuffle index is UNDEF, be optimistic.
3393  if (M[0] < 0)
3394    BlockElts = BlockSize / EltSz;
3395
3396  if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
3397    return false;
3398
3399  for (unsigned i = 0; i < NumElts; ++i) {
3400    if (M[i] < 0) continue; // ignore UNDEF indices
3401    if ((unsigned) M[i] != (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts))
3402      return false;
3403  }
3404
3405  return true;
3406}
3407
3408static bool isVTRNMask(const SmallVectorImpl<int> &M, EVT VT,
3409                       unsigned &WhichResult) {
3410  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3411  if (EltSz == 64)
3412    return false;
3413
3414  unsigned NumElts = VT.getVectorNumElements();
3415  WhichResult = (M[0] == 0 ? 0 : 1);
3416  for (unsigned i = 0; i < NumElts; i += 2) {
3417    if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) ||
3418        (M[i+1] >= 0 && (unsigned) M[i+1] != i + NumElts + WhichResult))
3419      return false;
3420  }
3421  return true;
3422}
3423
3424/// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
3425/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
3426/// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
3427static bool isVTRN_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
3428                                unsigned &WhichResult) {
3429  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3430  if (EltSz == 64)
3431    return false;
3432
3433  unsigned NumElts = VT.getVectorNumElements();
3434  WhichResult = (M[0] == 0 ? 0 : 1);
3435  for (unsigned i = 0; i < NumElts; i += 2) {
3436    if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) ||
3437        (M[i+1] >= 0 && (unsigned) M[i+1] != i + WhichResult))
3438      return false;
3439  }
3440  return true;
3441}
3442
3443static bool isVUZPMask(const SmallVectorImpl<int> &M, EVT VT,
3444                       unsigned &WhichResult) {
3445  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3446  if (EltSz == 64)
3447    return false;
3448
3449  unsigned NumElts = VT.getVectorNumElements();
3450  WhichResult = (M[0] == 0 ? 0 : 1);
3451  for (unsigned i = 0; i != NumElts; ++i) {
3452    if (M[i] < 0) continue; // ignore UNDEF indices
3453    if ((unsigned) M[i] != 2 * i + WhichResult)
3454      return false;
3455  }
3456
3457  // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3458  if (VT.is64BitVector() && EltSz == 32)
3459    return false;
3460
3461  return true;
3462}
3463
3464/// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
3465/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
3466/// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
3467static bool isVUZP_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
3468                                unsigned &WhichResult) {
3469  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3470  if (EltSz == 64)
3471    return false;
3472
3473  unsigned Half = VT.getVectorNumElements() / 2;
3474  WhichResult = (M[0] == 0 ? 0 : 1);
3475  for (unsigned j = 0; j != 2; ++j) {
3476    unsigned Idx = WhichResult;
3477    for (unsigned i = 0; i != Half; ++i) {
3478      int MIdx = M[i + j * Half];
3479      if (MIdx >= 0 && (unsigned) MIdx != Idx)
3480        return false;
3481      Idx += 2;
3482    }
3483  }
3484
3485  // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3486  if (VT.is64BitVector() && EltSz == 32)
3487    return false;
3488
3489  return true;
3490}
3491
3492static bool isVZIPMask(const SmallVectorImpl<int> &M, EVT VT,
3493                       unsigned &WhichResult) {
3494  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3495  if (EltSz == 64)
3496    return false;
3497
3498  unsigned NumElts = VT.getVectorNumElements();
3499  WhichResult = (M[0] == 0 ? 0 : 1);
3500  unsigned Idx = WhichResult * NumElts / 2;
3501  for (unsigned i = 0; i != NumElts; i += 2) {
3502    if ((M[i] >= 0 && (unsigned) M[i] != Idx) ||
3503        (M[i+1] >= 0 && (unsigned) M[i+1] != Idx + NumElts))
3504      return false;
3505    Idx += 1;
3506  }
3507
3508  // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3509  if (VT.is64BitVector() && EltSz == 32)
3510    return false;
3511
3512  return true;
3513}
3514
3515/// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
3516/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
3517/// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
3518static bool isVZIP_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
3519                                unsigned &WhichResult) {
3520  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3521  if (EltSz == 64)
3522    return false;
3523
3524  unsigned NumElts = VT.getVectorNumElements();
3525  WhichResult = (M[0] == 0 ? 0 : 1);
3526  unsigned Idx = WhichResult * NumElts / 2;
3527  for (unsigned i = 0; i != NumElts; i += 2) {
3528    if ((M[i] >= 0 && (unsigned) M[i] != Idx) ||
3529        (M[i+1] >= 0 && (unsigned) M[i+1] != Idx))
3530      return false;
3531    Idx += 1;
3532  }
3533
3534  // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3535  if (VT.is64BitVector() && EltSz == 32)
3536    return false;
3537
3538  return true;
3539}
3540
3541// If N is an integer constant that can be moved into a register in one
3542// instruction, return an SDValue of such a constant (will become a MOV
3543// instruction).  Otherwise return null.
3544static SDValue IsSingleInstrConstant(SDValue N, SelectionDAG &DAG,
3545                                     const ARMSubtarget *ST, DebugLoc dl) {
3546  uint64_t Val;
3547  if (!isa<ConstantSDNode>(N))
3548    return SDValue();
3549  Val = cast<ConstantSDNode>(N)->getZExtValue();
3550
3551  if (ST->isThumb1Only()) {
3552    if (Val <= 255 || ~Val <= 255)
3553      return DAG.getConstant(Val, MVT::i32);
3554  } else {
3555    if (ARM_AM::getSOImmVal(Val) != -1 || ARM_AM::getSOImmVal(~Val) != -1)
3556      return DAG.getConstant(Val, MVT::i32);
3557  }
3558  return SDValue();
3559}
3560
3561// If this is a case we can't handle, return null and let the default
3562// expansion code take care of it.
3563SDValue ARMTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
3564                                             const ARMSubtarget *ST) const {
3565  BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
3566  DebugLoc dl = Op.getDebugLoc();
3567  EVT VT = Op.getValueType();
3568
3569  APInt SplatBits, SplatUndef;
3570  unsigned SplatBitSize;
3571  bool HasAnyUndefs;
3572  if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
3573    if (SplatBitSize <= 64) {
3574      // Check if an immediate VMOV works.
3575      EVT VmovVT;
3576      SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
3577                                      SplatUndef.getZExtValue(), SplatBitSize,
3578                                      DAG, VmovVT, VT.is128BitVector(),
3579                                      VMOVModImm);
3580      if (Val.getNode()) {
3581        SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, Val);
3582        return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
3583      }
3584
3585      // Try an immediate VMVN.
3586      uint64_t NegatedImm = (SplatBits.getZExtValue() ^
3587                             ((1LL << SplatBitSize) - 1));
3588      Val = isNEONModifiedImm(NegatedImm,
3589                                      SplatUndef.getZExtValue(), SplatBitSize,
3590                                      DAG, VmovVT, VT.is128BitVector(),
3591                                      VMVNModImm);
3592      if (Val.getNode()) {
3593        SDValue Vmov = DAG.getNode(ARMISD::VMVNIMM, dl, VmovVT, Val);
3594        return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
3595      }
3596    }
3597  }
3598
3599  // Scan through the operands to see if only one value is used.
3600  unsigned NumElts = VT.getVectorNumElements();
3601  bool isOnlyLowElement = true;
3602  bool usesOnlyOneValue = true;
3603  bool isConstant = true;
3604  SDValue Value;
3605  for (unsigned i = 0; i < NumElts; ++i) {
3606    SDValue V = Op.getOperand(i);
3607    if (V.getOpcode() == ISD::UNDEF)
3608      continue;
3609    if (i > 0)
3610      isOnlyLowElement = false;
3611    if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
3612      isConstant = false;
3613
3614    if (!Value.getNode())
3615      Value = V;
3616    else if (V != Value)
3617      usesOnlyOneValue = false;
3618  }
3619
3620  if (!Value.getNode())
3621    return DAG.getUNDEF(VT);
3622
3623  if (isOnlyLowElement)
3624    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
3625
3626  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
3627
3628  // Use VDUP for non-constant splats.  For f32 constant splats, reduce to
3629  // i32 and try again.
3630  if (usesOnlyOneValue && EltSize <= 32) {
3631    if (!isConstant)
3632      return DAG.getNode(ARMISD::VDUP, dl, VT, Value);
3633    if (VT.getVectorElementType().isFloatingPoint()) {
3634      SmallVector<SDValue, 8> Ops;
3635      for (unsigned i = 0; i < NumElts; ++i)
3636        Ops.push_back(DAG.getNode(ISD::BITCAST, dl, MVT::i32,
3637                                  Op.getOperand(i)));
3638      EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
3639      SDValue Val = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, &Ops[0], NumElts);
3640      Val = LowerBUILD_VECTOR(Val, DAG, ST);
3641      if (Val.getNode())
3642        return DAG.getNode(ISD::BITCAST, dl, VT, Val);
3643    }
3644    SDValue Val = IsSingleInstrConstant(Value, DAG, ST, dl);
3645    if (Val.getNode())
3646      return DAG.getNode(ARMISD::VDUP, dl, VT, Val);
3647  }
3648
3649  // If all elements are constants and the case above didn't get hit, fall back
3650  // to the default expansion, which will generate a load from the constant
3651  // pool.
3652  if (isConstant)
3653    return SDValue();
3654
3655  // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
3656  if (NumElts >= 4) {
3657    SDValue shuffle = ReconstructShuffle(Op, DAG);
3658    if (shuffle != SDValue())
3659      return shuffle;
3660  }
3661
3662  // Vectors with 32- or 64-bit elements can be built by directly assigning
3663  // the subregisters.  Lower it to an ARMISD::BUILD_VECTOR so the operands
3664  // will be legalized.
3665  if (EltSize >= 32) {
3666    // Do the expansion with floating-point types, since that is what the VFP
3667    // registers are defined to use, and since i64 is not legal.
3668    EVT EltVT = EVT::getFloatingPointVT(EltSize);
3669    EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
3670    SmallVector<SDValue, 8> Ops;
3671    for (unsigned i = 0; i < NumElts; ++i)
3672      Ops.push_back(DAG.getNode(ISD::BITCAST, dl, EltVT, Op.getOperand(i)));
3673    SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts);
3674    return DAG.getNode(ISD::BITCAST, dl, VT, Val);
3675  }
3676
3677  return SDValue();
3678}
3679
3680// Gather data to see if the operation can be modelled as a
3681// shuffle in combination with VEXTs.
3682SDValue ARMTargetLowering::ReconstructShuffle(SDValue Op,
3683                                              SelectionDAG &DAG) const {
3684  DebugLoc dl = Op.getDebugLoc();
3685  EVT VT = Op.getValueType();
3686  unsigned NumElts = VT.getVectorNumElements();
3687
3688  SmallVector<SDValue, 2> SourceVecs;
3689  SmallVector<unsigned, 2> MinElts;
3690  SmallVector<unsigned, 2> MaxElts;
3691
3692  for (unsigned i = 0; i < NumElts; ++i) {
3693    SDValue V = Op.getOperand(i);
3694    if (V.getOpcode() == ISD::UNDEF)
3695      continue;
3696    else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) {
3697      // A shuffle can only come from building a vector from various
3698      // elements of other vectors.
3699      return SDValue();
3700    }
3701
3702    // Record this extraction against the appropriate vector if possible...
3703    SDValue SourceVec = V.getOperand(0);
3704    unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
3705    bool FoundSource = false;
3706    for (unsigned j = 0; j < SourceVecs.size(); ++j) {
3707      if (SourceVecs[j] == SourceVec) {
3708        if (MinElts[j] > EltNo)
3709          MinElts[j] = EltNo;
3710        if (MaxElts[j] < EltNo)
3711          MaxElts[j] = EltNo;
3712        FoundSource = true;
3713        break;
3714      }
3715    }
3716
3717    // Or record a new source if not...
3718    if (!FoundSource) {
3719      SourceVecs.push_back(SourceVec);
3720      MinElts.push_back(EltNo);
3721      MaxElts.push_back(EltNo);
3722    }
3723  }
3724
3725  // Currently only do something sane when at most two source vectors
3726  // involved.
3727  if (SourceVecs.size() > 2)
3728    return SDValue();
3729
3730  SDValue ShuffleSrcs[2] = {DAG.getUNDEF(VT), DAG.getUNDEF(VT) };
3731  int VEXTOffsets[2] = {0, 0};
3732
3733  // This loop extracts the usage patterns of the source vectors
3734  // and prepares appropriate SDValues for a shuffle if possible.
3735  for (unsigned i = 0; i < SourceVecs.size(); ++i) {
3736    if (SourceVecs[i].getValueType() == VT) {
3737      // No VEXT necessary
3738      ShuffleSrcs[i] = SourceVecs[i];
3739      VEXTOffsets[i] = 0;
3740      continue;
3741    } else if (SourceVecs[i].getValueType().getVectorNumElements() < NumElts) {
3742      // It probably isn't worth padding out a smaller vector just to
3743      // break it down again in a shuffle.
3744      return SDValue();
3745    }
3746
3747    // Since only 64-bit and 128-bit vectors are legal on ARM and
3748    // we've eliminated the other cases...
3749    assert(SourceVecs[i].getValueType().getVectorNumElements() == 2*NumElts &&
3750           "unexpected vector sizes in ReconstructShuffle");
3751
3752    if (MaxElts[i] - MinElts[i] >= NumElts) {
3753      // Span too large for a VEXT to cope
3754      return SDValue();
3755    }
3756
3757    if (MinElts[i] >= NumElts) {
3758      // The extraction can just take the second half
3759      VEXTOffsets[i] = NumElts;
3760      ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
3761                                   SourceVecs[i],
3762                                   DAG.getIntPtrConstant(NumElts));
3763    } else if (MaxElts[i] < NumElts) {
3764      // The extraction can just take the first half
3765      VEXTOffsets[i] = 0;
3766      ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
3767                                   SourceVecs[i],
3768                                   DAG.getIntPtrConstant(0));
3769    } else {
3770      // An actual VEXT is needed
3771      VEXTOffsets[i] = MinElts[i];
3772      SDValue VEXTSrc1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
3773                                     SourceVecs[i],
3774                                     DAG.getIntPtrConstant(0));
3775      SDValue VEXTSrc2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
3776                                     SourceVecs[i],
3777                                     DAG.getIntPtrConstant(NumElts));
3778      ShuffleSrcs[i] = DAG.getNode(ARMISD::VEXT, dl, VT, VEXTSrc1, VEXTSrc2,
3779                                   DAG.getConstant(VEXTOffsets[i], MVT::i32));
3780    }
3781  }
3782
3783  SmallVector<int, 8> Mask;
3784
3785  for (unsigned i = 0; i < NumElts; ++i) {
3786    SDValue Entry = Op.getOperand(i);
3787    if (Entry.getOpcode() == ISD::UNDEF) {
3788      Mask.push_back(-1);
3789      continue;
3790    }
3791
3792    SDValue ExtractVec = Entry.getOperand(0);
3793    int ExtractElt = cast<ConstantSDNode>(Op.getOperand(i)
3794                                          .getOperand(1))->getSExtValue();
3795    if (ExtractVec == SourceVecs[0]) {
3796      Mask.push_back(ExtractElt - VEXTOffsets[0]);
3797    } else {
3798      Mask.push_back(ExtractElt + NumElts - VEXTOffsets[1]);
3799    }
3800  }
3801
3802  // Final check before we try to produce nonsense...
3803  if (isShuffleMaskLegal(Mask, VT))
3804    return DAG.getVectorShuffle(VT, dl, ShuffleSrcs[0], ShuffleSrcs[1],
3805                                &Mask[0]);
3806
3807  return SDValue();
3808}
3809
3810/// isShuffleMaskLegal - Targets can use this to indicate that they only
3811/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
3812/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
3813/// are assumed to be legal.
3814bool
3815ARMTargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
3816                                      EVT VT) const {
3817  if (VT.getVectorNumElements() == 4 &&
3818      (VT.is128BitVector() || VT.is64BitVector())) {
3819    unsigned PFIndexes[4];
3820    for (unsigned i = 0; i != 4; ++i) {
3821      if (M[i] < 0)
3822        PFIndexes[i] = 8;
3823      else
3824        PFIndexes[i] = M[i];
3825    }
3826
3827    // Compute the index in the perfect shuffle table.
3828    unsigned PFTableIndex =
3829      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
3830    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
3831    unsigned Cost = (PFEntry >> 30);
3832
3833    if (Cost <= 4)
3834      return true;
3835  }
3836
3837  bool ReverseVEXT;
3838  unsigned Imm, WhichResult;
3839
3840  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
3841  return (EltSize >= 32 ||
3842          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
3843          isVREVMask(M, VT, 64) ||
3844          isVREVMask(M, VT, 32) ||
3845          isVREVMask(M, VT, 16) ||
3846          isVEXTMask(M, VT, ReverseVEXT, Imm) ||
3847          isVTRNMask(M, VT, WhichResult) ||
3848          isVUZPMask(M, VT, WhichResult) ||
3849          isVZIPMask(M, VT, WhichResult) ||
3850          isVTRN_v_undef_Mask(M, VT, WhichResult) ||
3851          isVUZP_v_undef_Mask(M, VT, WhichResult) ||
3852          isVZIP_v_undef_Mask(M, VT, WhichResult));
3853}
3854
3855/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
3856/// the specified operations to build the shuffle.
3857static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
3858                                      SDValue RHS, SelectionDAG &DAG,
3859                                      DebugLoc dl) {
3860  unsigned OpNum = (PFEntry >> 26) & 0x0F;
3861  unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
3862  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
3863
3864  enum {
3865    OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
3866    OP_VREV,
3867    OP_VDUP0,
3868    OP_VDUP1,
3869    OP_VDUP2,
3870    OP_VDUP3,
3871    OP_VEXT1,
3872    OP_VEXT2,
3873    OP_VEXT3,
3874    OP_VUZPL, // VUZP, left result
3875    OP_VUZPR, // VUZP, right result
3876    OP_VZIPL, // VZIP, left result
3877    OP_VZIPR, // VZIP, right result
3878    OP_VTRNL, // VTRN, left result
3879    OP_VTRNR  // VTRN, right result
3880  };
3881
3882  if (OpNum == OP_COPY) {
3883    if (LHSID == (1*9+2)*9+3) return LHS;
3884    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
3885    return RHS;
3886  }
3887
3888  SDValue OpLHS, OpRHS;
3889  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
3890  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
3891  EVT VT = OpLHS.getValueType();
3892
3893  switch (OpNum) {
3894  default: llvm_unreachable("Unknown shuffle opcode!");
3895  case OP_VREV:
3896    return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS);
3897  case OP_VDUP0:
3898  case OP_VDUP1:
3899  case OP_VDUP2:
3900  case OP_VDUP3:
3901    return DAG.getNode(ARMISD::VDUPLANE, dl, VT,
3902                       OpLHS, DAG.getConstant(OpNum-OP_VDUP0, MVT::i32));
3903  case OP_VEXT1:
3904  case OP_VEXT2:
3905  case OP_VEXT3:
3906    return DAG.getNode(ARMISD::VEXT, dl, VT,
3907                       OpLHS, OpRHS,
3908                       DAG.getConstant(OpNum-OP_VEXT1+1, MVT::i32));
3909  case OP_VUZPL:
3910  case OP_VUZPR:
3911    return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
3912                       OpLHS, OpRHS).getValue(OpNum-OP_VUZPL);
3913  case OP_VZIPL:
3914  case OP_VZIPR:
3915    return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
3916                       OpLHS, OpRHS).getValue(OpNum-OP_VZIPL);
3917  case OP_VTRNL:
3918  case OP_VTRNR:
3919    return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
3920                       OpLHS, OpRHS).getValue(OpNum-OP_VTRNL);
3921  }
3922}
3923
3924static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
3925  SDValue V1 = Op.getOperand(0);
3926  SDValue V2 = Op.getOperand(1);
3927  DebugLoc dl = Op.getDebugLoc();
3928  EVT VT = Op.getValueType();
3929  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
3930  SmallVector<int, 8> ShuffleMask;
3931
3932  // Convert shuffles that are directly supported on NEON to target-specific
3933  // DAG nodes, instead of keeping them as shuffles and matching them again
3934  // during code selection.  This is more efficient and avoids the possibility
3935  // of inconsistencies between legalization and selection.
3936  // FIXME: floating-point vectors should be canonicalized to integer vectors
3937  // of the same time so that they get CSEd properly.
3938  SVN->getMask(ShuffleMask);
3939
3940  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
3941  if (EltSize <= 32) {
3942    if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0], VT)) {
3943      int Lane = SVN->getSplatIndex();
3944      // If this is undef splat, generate it via "just" vdup, if possible.
3945      if (Lane == -1) Lane = 0;
3946
3947      if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
3948        return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
3949      }
3950      return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1,
3951                         DAG.getConstant(Lane, MVT::i32));
3952    }
3953
3954    bool ReverseVEXT;
3955    unsigned Imm;
3956    if (isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) {
3957      if (ReverseVEXT)
3958        std::swap(V1, V2);
3959      return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2,
3960                         DAG.getConstant(Imm, MVT::i32));
3961    }
3962
3963    if (isVREVMask(ShuffleMask, VT, 64))
3964      return DAG.getNode(ARMISD::VREV64, dl, VT, V1);
3965    if (isVREVMask(ShuffleMask, VT, 32))
3966      return DAG.getNode(ARMISD::VREV32, dl, VT, V1);
3967    if (isVREVMask(ShuffleMask, VT, 16))
3968      return DAG.getNode(ARMISD::VREV16, dl, VT, V1);
3969
3970    // Check for Neon shuffles that modify both input vectors in place.
3971    // If both results are used, i.e., if there are two shuffles with the same
3972    // source operands and with masks corresponding to both results of one of
3973    // these operations, DAG memoization will ensure that a single node is
3974    // used for both shuffles.
3975    unsigned WhichResult;
3976    if (isVTRNMask(ShuffleMask, VT, WhichResult))
3977      return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
3978                         V1, V2).getValue(WhichResult);
3979    if (isVUZPMask(ShuffleMask, VT, WhichResult))
3980      return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
3981                         V1, V2).getValue(WhichResult);
3982    if (isVZIPMask(ShuffleMask, VT, WhichResult))
3983      return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
3984                         V1, V2).getValue(WhichResult);
3985
3986    if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult))
3987      return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
3988                         V1, V1).getValue(WhichResult);
3989    if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult))
3990      return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
3991                         V1, V1).getValue(WhichResult);
3992    if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult))
3993      return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
3994                         V1, V1).getValue(WhichResult);
3995  }
3996
3997  // If the shuffle is not directly supported and it has 4 elements, use
3998  // the PerfectShuffle-generated table to synthesize it from other shuffles.
3999  unsigned NumElts = VT.getVectorNumElements();
4000  if (NumElts == 4) {
4001    unsigned PFIndexes[4];
4002    for (unsigned i = 0; i != 4; ++i) {
4003      if (ShuffleMask[i] < 0)
4004        PFIndexes[i] = 8;
4005      else
4006        PFIndexes[i] = ShuffleMask[i];
4007    }
4008
4009    // Compute the index in the perfect shuffle table.
4010    unsigned PFTableIndex =
4011      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
4012    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
4013    unsigned Cost = (PFEntry >> 30);
4014
4015    if (Cost <= 4)
4016      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
4017  }
4018
4019  // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs.
4020  if (EltSize >= 32) {
4021    // Do the expansion with floating-point types, since that is what the VFP
4022    // registers are defined to use, and since i64 is not legal.
4023    EVT EltVT = EVT::getFloatingPointVT(EltSize);
4024    EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
4025    V1 = DAG.getNode(ISD::BITCAST, dl, VecVT, V1);
4026    V2 = DAG.getNode(ISD::BITCAST, dl, VecVT, V2);
4027    SmallVector<SDValue, 8> Ops;
4028    for (unsigned i = 0; i < NumElts; ++i) {
4029      if (ShuffleMask[i] < 0)
4030        Ops.push_back(DAG.getUNDEF(EltVT));
4031      else
4032        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
4033                                  ShuffleMask[i] < (int)NumElts ? V1 : V2,
4034                                  DAG.getConstant(ShuffleMask[i] & (NumElts-1),
4035                                                  MVT::i32)));
4036    }
4037    SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts);
4038    return DAG.getNode(ISD::BITCAST, dl, VT, Val);
4039  }
4040
4041  return SDValue();
4042}
4043
4044static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4045  // EXTRACT_VECTOR_ELT is legal only for immediate indexes.
4046  SDValue Lane = Op.getOperand(1);
4047  if (!isa<ConstantSDNode>(Lane))
4048    return SDValue();
4049
4050  SDValue Vec = Op.getOperand(0);
4051  if (Op.getValueType() == MVT::i32 &&
4052      Vec.getValueType().getVectorElementType().getSizeInBits() < 32) {
4053    DebugLoc dl = Op.getDebugLoc();
4054    return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
4055  }
4056
4057  return Op;
4058}
4059
4060static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
4061  // The only time a CONCAT_VECTORS operation can have legal types is when
4062  // two 64-bit vectors are concatenated to a 128-bit vector.
4063  assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 &&
4064         "unexpected CONCAT_VECTORS");
4065  DebugLoc dl = Op.getDebugLoc();
4066  SDValue Val = DAG.getUNDEF(MVT::v2f64);
4067  SDValue Op0 = Op.getOperand(0);
4068  SDValue Op1 = Op.getOperand(1);
4069  if (Op0.getOpcode() != ISD::UNDEF)
4070    Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
4071                      DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op0),
4072                      DAG.getIntPtrConstant(0));
4073  if (Op1.getOpcode() != ISD::UNDEF)
4074    Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
4075                      DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op1),
4076                      DAG.getIntPtrConstant(1));
4077  return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Val);
4078}
4079
4080/// isExtendedBUILD_VECTOR - Check if N is a constant BUILD_VECTOR where each
4081/// element has been zero/sign-extended, depending on the isSigned parameter,
4082/// from an integer type half its size.
4083static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
4084                                   bool isSigned) {
4085  // A v2i64 BUILD_VECTOR will have been legalized to a BITCAST from v4i32.
4086  EVT VT = N->getValueType(0);
4087  if (VT == MVT::v2i64 && N->getOpcode() == ISD::BITCAST) {
4088    SDNode *BVN = N->getOperand(0).getNode();
4089    if (BVN->getValueType(0) != MVT::v4i32 ||
4090        BVN->getOpcode() != ISD::BUILD_VECTOR)
4091      return false;
4092    unsigned LoElt = DAG.getTargetLoweringInfo().isBigEndian() ? 1 : 0;
4093    unsigned HiElt = 1 - LoElt;
4094    ConstantSDNode *Lo0 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt));
4095    ConstantSDNode *Hi0 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt));
4096    ConstantSDNode *Lo1 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt+2));
4097    ConstantSDNode *Hi1 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt+2));
4098    if (!Lo0 || !Hi0 || !Lo1 || !Hi1)
4099      return false;
4100    if (isSigned) {
4101      if (Hi0->getSExtValue() == Lo0->getSExtValue() >> 32 &&
4102          Hi1->getSExtValue() == Lo1->getSExtValue() >> 32)
4103        return true;
4104    } else {
4105      if (Hi0->isNullValue() && Hi1->isNullValue())
4106        return true;
4107    }
4108    return false;
4109  }
4110
4111  if (N->getOpcode() != ISD::BUILD_VECTOR)
4112    return false;
4113
4114  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
4115    SDNode *Elt = N->getOperand(i).getNode();
4116    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
4117      unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4118      unsigned HalfSize = EltSize / 2;
4119      if (isSigned) {
4120        int64_t SExtVal = C->getSExtValue();
4121        if ((SExtVal >> HalfSize) != (SExtVal >> EltSize))
4122          return false;
4123      } else {
4124        if ((C->getZExtValue() >> HalfSize) != 0)
4125          return false;
4126      }
4127      continue;
4128    }
4129    return false;
4130  }
4131
4132  return true;
4133}
4134
4135/// isSignExtended - Check if a node is a vector value that is sign-extended
4136/// or a constant BUILD_VECTOR with sign-extended elements.
4137static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
4138  if (N->getOpcode() == ISD::SIGN_EXTEND || ISD::isSEXTLoad(N))
4139    return true;
4140  if (isExtendedBUILD_VECTOR(N, DAG, true))
4141    return true;
4142  return false;
4143}
4144
4145/// isZeroExtended - Check if a node is a vector value that is zero-extended
4146/// or a constant BUILD_VECTOR with zero-extended elements.
4147static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
4148  if (N->getOpcode() == ISD::ZERO_EXTEND || ISD::isZEXTLoad(N))
4149    return true;
4150  if (isExtendedBUILD_VECTOR(N, DAG, false))
4151    return true;
4152  return false;
4153}
4154
4155/// SkipExtension - For a node that is a SIGN_EXTEND, ZERO_EXTEND, extending
4156/// load, or BUILD_VECTOR with extended elements, return the unextended value.
4157static SDValue SkipExtension(SDNode *N, SelectionDAG &DAG) {
4158  if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
4159    return N->getOperand(0);
4160  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N))
4161    return DAG.getLoad(LD->getMemoryVT(), N->getDebugLoc(), LD->getChain(),
4162                       LD->getBasePtr(), LD->getPointerInfo(), LD->isVolatile(),
4163                       LD->isNonTemporal(), LD->getAlignment());
4164  // Otherwise, the value must be a BUILD_VECTOR.  For v2i64, it will
4165  // have been legalized as a BITCAST from v4i32.
4166  if (N->getOpcode() == ISD::BITCAST) {
4167    SDNode *BVN = N->getOperand(0).getNode();
4168    assert(BVN->getOpcode() == ISD::BUILD_VECTOR &&
4169           BVN->getValueType(0) == MVT::v4i32 && "expected v4i32 BUILD_VECTOR");
4170    unsigned LowElt = DAG.getTargetLoweringInfo().isBigEndian() ? 1 : 0;
4171    return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(), MVT::v2i32,
4172                       BVN->getOperand(LowElt), BVN->getOperand(LowElt+2));
4173  }
4174  // Construct a new BUILD_VECTOR with elements truncated to half the size.
4175  assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
4176  EVT VT = N->getValueType(0);
4177  unsigned EltSize = VT.getVectorElementType().getSizeInBits() / 2;
4178  unsigned NumElts = VT.getVectorNumElements();
4179  MVT TruncVT = MVT::getIntegerVT(EltSize);
4180  SmallVector<SDValue, 8> Ops;
4181  for (unsigned i = 0; i != NumElts; ++i) {
4182    ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
4183    const APInt &CInt = C->getAPIntValue();
4184    Ops.push_back(DAG.getConstant(CInt.trunc(EltSize), TruncVT));
4185  }
4186  return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(),
4187                     MVT::getVectorVT(TruncVT, NumElts), Ops.data(), NumElts);
4188}
4189
4190static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
4191  // Multiplications are only custom-lowered for 128-bit vectors so that
4192  // VMULL can be detected.  Otherwise v2i64 multiplications are not legal.
4193  EVT VT = Op.getValueType();
4194  assert(VT.is128BitVector() && "unexpected type for custom-lowering ISD::MUL");
4195  SDNode *N0 = Op.getOperand(0).getNode();
4196  SDNode *N1 = Op.getOperand(1).getNode();
4197  unsigned NewOpc = 0;
4198  if (isSignExtended(N0, DAG) && isSignExtended(N1, DAG))
4199    NewOpc = ARMISD::VMULLs;
4200  else if (isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG))
4201    NewOpc = ARMISD::VMULLu;
4202  else if (VT == MVT::v2i64)
4203    // Fall through to expand this.  It is not legal.
4204    return SDValue();
4205  else
4206    // Other vector multiplications are legal.
4207    return Op;
4208
4209  // Legalize to a VMULL instruction.
4210  DebugLoc DL = Op.getDebugLoc();
4211  SDValue Op0 = SkipExtension(N0, DAG);
4212  SDValue Op1 = SkipExtension(N1, DAG);
4213
4214  assert(Op0.getValueType().is64BitVector() &&
4215         Op1.getValueType().is64BitVector() &&
4216         "unexpected types for extended operands to VMULL");
4217  return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
4218}
4219
4220SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
4221  switch (Op.getOpcode()) {
4222  default: llvm_unreachable("Don't know how to custom lower this!");
4223  case ISD::ConstantPool:  return LowerConstantPool(Op, DAG);
4224  case ISD::BlockAddress:  return LowerBlockAddress(Op, DAG);
4225  case ISD::GlobalAddress:
4226    return Subtarget->isTargetDarwin() ? LowerGlobalAddressDarwin(Op, DAG) :
4227      LowerGlobalAddressELF(Op, DAG);
4228  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
4229  case ISD::SELECT:        return LowerSELECT(Op, DAG);
4230  case ISD::SELECT_CC:     return LowerSELECT_CC(Op, DAG);
4231  case ISD::BR_CC:         return LowerBR_CC(Op, DAG);
4232  case ISD::BR_JT:         return LowerBR_JT(Op, DAG);
4233  case ISD::VASTART:       return LowerVASTART(Op, DAG);
4234  case ISD::MEMBARRIER:    return LowerMEMBARRIER(Op, DAG, Subtarget);
4235  case ISD::PREFETCH:      return LowerPREFETCH(Op, DAG, Subtarget);
4236  case ISD::SINT_TO_FP:
4237  case ISD::UINT_TO_FP:    return LowerINT_TO_FP(Op, DAG);
4238  case ISD::FP_TO_SINT:
4239  case ISD::FP_TO_UINT:    return LowerFP_TO_INT(Op, DAG);
4240  case ISD::FCOPYSIGN:     return LowerFCOPYSIGN(Op, DAG);
4241  case ISD::RETURNADDR:    return LowerRETURNADDR(Op, DAG);
4242  case ISD::FRAMEADDR:     return LowerFRAMEADDR(Op, DAG);
4243  case ISD::GLOBAL_OFFSET_TABLE: return LowerGLOBAL_OFFSET_TABLE(Op, DAG);
4244  case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG);
4245  case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG);
4246  case ISD::EH_SJLJ_DISPATCHSETUP: return LowerEH_SJLJ_DISPATCHSETUP(Op, DAG);
4247  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG,
4248                                                               Subtarget);
4249  case ISD::BITCAST:   return ExpandBITCAST(Op.getNode(), DAG);
4250  case ISD::SHL:
4251  case ISD::SRL:
4252  case ISD::SRA:           return LowerShift(Op.getNode(), DAG, Subtarget);
4253  case ISD::SHL_PARTS:     return LowerShiftLeftParts(Op, DAG);
4254  case ISD::SRL_PARTS:
4255  case ISD::SRA_PARTS:     return LowerShiftRightParts(Op, DAG);
4256  case ISD::CTTZ:          return LowerCTTZ(Op.getNode(), DAG, Subtarget);
4257  case ISD::VSETCC:        return LowerVSETCC(Op, DAG);
4258  case ISD::BUILD_VECTOR:  return LowerBUILD_VECTOR(Op, DAG, Subtarget);
4259  case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
4260  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
4261  case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
4262  case ISD::FLT_ROUNDS_:   return LowerFLT_ROUNDS_(Op, DAG);
4263  case ISD::MUL:           return LowerMUL(Op, DAG);
4264  }
4265  return SDValue();
4266}
4267
4268/// ReplaceNodeResults - Replace the results of node with an illegal result
4269/// type with new values built out of custom code.
4270void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
4271                                           SmallVectorImpl<SDValue>&Results,
4272                                           SelectionDAG &DAG) const {
4273  SDValue Res;
4274  switch (N->getOpcode()) {
4275  default:
4276    llvm_unreachable("Don't know how to custom expand this!");
4277    break;
4278  case ISD::BITCAST:
4279    Res = ExpandBITCAST(N, DAG);
4280    break;
4281  case ISD::SRL:
4282  case ISD::SRA:
4283    Res = Expand64BitShift(N, DAG, Subtarget);
4284    break;
4285  }
4286  if (Res.getNode())
4287    Results.push_back(Res);
4288}
4289
4290//===----------------------------------------------------------------------===//
4291//                           ARM Scheduler Hooks
4292//===----------------------------------------------------------------------===//
4293
4294MachineBasicBlock *
4295ARMTargetLowering::EmitAtomicCmpSwap(MachineInstr *MI,
4296                                     MachineBasicBlock *BB,
4297                                     unsigned Size) const {
4298  unsigned dest    = MI->getOperand(0).getReg();
4299  unsigned ptr     = MI->getOperand(1).getReg();
4300  unsigned oldval  = MI->getOperand(2).getReg();
4301  unsigned newval  = MI->getOperand(3).getReg();
4302  unsigned scratch = BB->getParent()->getRegInfo()
4303    .createVirtualRegister(ARM::GPRRegisterClass);
4304  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4305  DebugLoc dl = MI->getDebugLoc();
4306  bool isThumb2 = Subtarget->isThumb2();
4307
4308  unsigned ldrOpc, strOpc;
4309  switch (Size) {
4310  default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
4311  case 1:
4312    ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
4313    strOpc = isThumb2 ? ARM::t2LDREXB : ARM::STREXB;
4314    break;
4315  case 2:
4316    ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
4317    strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
4318    break;
4319  case 4:
4320    ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
4321    strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
4322    break;
4323  }
4324
4325  MachineFunction *MF = BB->getParent();
4326  const BasicBlock *LLVM_BB = BB->getBasicBlock();
4327  MachineFunction::iterator It = BB;
4328  ++It; // insert the new blocks after the current block
4329
4330  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
4331  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
4332  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
4333  MF->insert(It, loop1MBB);
4334  MF->insert(It, loop2MBB);
4335  MF->insert(It, exitMBB);
4336
4337  // Transfer the remainder of BB and its successor edges to exitMBB.
4338  exitMBB->splice(exitMBB->begin(), BB,
4339                  llvm::next(MachineBasicBlock::iterator(MI)),
4340                  BB->end());
4341  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
4342
4343  //  thisMBB:
4344  //   ...
4345  //   fallthrough --> loop1MBB
4346  BB->addSuccessor(loop1MBB);
4347
4348  // loop1MBB:
4349  //   ldrex dest, [ptr]
4350  //   cmp dest, oldval
4351  //   bne exitMBB
4352  BB = loop1MBB;
4353  AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr));
4354  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
4355                 .addReg(dest).addReg(oldval));
4356  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
4357    .addMBB(exitMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
4358  BB->addSuccessor(loop2MBB);
4359  BB->addSuccessor(exitMBB);
4360
4361  // loop2MBB:
4362  //   strex scratch, newval, [ptr]
4363  //   cmp scratch, #0
4364  //   bne loop1MBB
4365  BB = loop2MBB;
4366  AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(newval)
4367                 .addReg(ptr));
4368  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
4369                 .addReg(scratch).addImm(0));
4370  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
4371    .addMBB(loop1MBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
4372  BB->addSuccessor(loop1MBB);
4373  BB->addSuccessor(exitMBB);
4374
4375  //  exitMBB:
4376  //   ...
4377  BB = exitMBB;
4378
4379  MI->eraseFromParent();   // The instruction is gone now.
4380
4381  return BB;
4382}
4383
4384MachineBasicBlock *
4385ARMTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
4386                                    unsigned Size, unsigned BinOpcode) const {
4387  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
4388  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4389
4390  const BasicBlock *LLVM_BB = BB->getBasicBlock();
4391  MachineFunction *MF = BB->getParent();
4392  MachineFunction::iterator It = BB;
4393  ++It;
4394
4395  unsigned dest = MI->getOperand(0).getReg();
4396  unsigned ptr = MI->getOperand(1).getReg();
4397  unsigned incr = MI->getOperand(2).getReg();
4398  DebugLoc dl = MI->getDebugLoc();
4399
4400  bool isThumb2 = Subtarget->isThumb2();
4401  unsigned ldrOpc, strOpc;
4402  switch (Size) {
4403  default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
4404  case 1:
4405    ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
4406    strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
4407    break;
4408  case 2:
4409    ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
4410    strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
4411    break;
4412  case 4:
4413    ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
4414    strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
4415    break;
4416  }
4417
4418  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
4419  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
4420  MF->insert(It, loopMBB);
4421  MF->insert(It, exitMBB);
4422
4423  // Transfer the remainder of BB and its successor edges to exitMBB.
4424  exitMBB->splice(exitMBB->begin(), BB,
4425                  llvm::next(MachineBasicBlock::iterator(MI)),
4426                  BB->end());
4427  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
4428
4429  MachineRegisterInfo &RegInfo = MF->getRegInfo();
4430  unsigned scratch = RegInfo.createVirtualRegister(ARM::GPRRegisterClass);
4431  unsigned scratch2 = (!BinOpcode) ? incr :
4432    RegInfo.createVirtualRegister(ARM::GPRRegisterClass);
4433
4434  //  thisMBB:
4435  //   ...
4436  //   fallthrough --> loopMBB
4437  BB->addSuccessor(loopMBB);
4438
4439  //  loopMBB:
4440  //   ldrex dest, ptr
4441  //   <binop> scratch2, dest, incr
4442  //   strex scratch, scratch2, ptr
4443  //   cmp scratch, #0
4444  //   bne- loopMBB
4445  //   fallthrough --> exitMBB
4446  BB = loopMBB;
4447  AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr));
4448  if (BinOpcode) {
4449    // operand order needs to go the other way for NAND
4450    if (BinOpcode == ARM::BICrr || BinOpcode == ARM::t2BICrr)
4451      AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
4452                     addReg(incr).addReg(dest)).addReg(0);
4453    else
4454      AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
4455                     addReg(dest).addReg(incr)).addReg(0);
4456  }
4457
4458  AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(scratch2)
4459                 .addReg(ptr));
4460  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
4461                 .addReg(scratch).addImm(0));
4462  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
4463    .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
4464
4465  BB->addSuccessor(loopMBB);
4466  BB->addSuccessor(exitMBB);
4467
4468  //  exitMBB:
4469  //   ...
4470  BB = exitMBB;
4471
4472  MI->eraseFromParent();   // The instruction is gone now.
4473
4474  return BB;
4475}
4476
4477static
4478MachineBasicBlock *OtherSucc(MachineBasicBlock *MBB, MachineBasicBlock *Succ) {
4479  for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
4480       E = MBB->succ_end(); I != E; ++I)
4481    if (*I != Succ)
4482      return *I;
4483  llvm_unreachable("Expecting a BB with two successors!");
4484}
4485
4486MachineBasicBlock *
4487ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
4488                                               MachineBasicBlock *BB) const {
4489  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4490  DebugLoc dl = MI->getDebugLoc();
4491  bool isThumb2 = Subtarget->isThumb2();
4492  switch (MI->getOpcode()) {
4493  default:
4494    MI->dump();
4495    llvm_unreachable("Unexpected instr type to insert");
4496
4497  case ARM::ATOMIC_LOAD_ADD_I8:
4498     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
4499  case ARM::ATOMIC_LOAD_ADD_I16:
4500     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
4501  case ARM::ATOMIC_LOAD_ADD_I32:
4502     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
4503
4504  case ARM::ATOMIC_LOAD_AND_I8:
4505     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
4506  case ARM::ATOMIC_LOAD_AND_I16:
4507     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
4508  case ARM::ATOMIC_LOAD_AND_I32:
4509     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
4510
4511  case ARM::ATOMIC_LOAD_OR_I8:
4512     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
4513  case ARM::ATOMIC_LOAD_OR_I16:
4514     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
4515  case ARM::ATOMIC_LOAD_OR_I32:
4516     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
4517
4518  case ARM::ATOMIC_LOAD_XOR_I8:
4519     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
4520  case ARM::ATOMIC_LOAD_XOR_I16:
4521     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
4522  case ARM::ATOMIC_LOAD_XOR_I32:
4523     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
4524
4525  case ARM::ATOMIC_LOAD_NAND_I8:
4526     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
4527  case ARM::ATOMIC_LOAD_NAND_I16:
4528     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
4529  case ARM::ATOMIC_LOAD_NAND_I32:
4530     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
4531
4532  case ARM::ATOMIC_LOAD_SUB_I8:
4533     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
4534  case ARM::ATOMIC_LOAD_SUB_I16:
4535     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
4536  case ARM::ATOMIC_LOAD_SUB_I32:
4537     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
4538
4539  case ARM::ATOMIC_SWAP_I8:  return EmitAtomicBinary(MI, BB, 1, 0);
4540  case ARM::ATOMIC_SWAP_I16: return EmitAtomicBinary(MI, BB, 2, 0);
4541  case ARM::ATOMIC_SWAP_I32: return EmitAtomicBinary(MI, BB, 4, 0);
4542
4543  case ARM::ATOMIC_CMP_SWAP_I8:  return EmitAtomicCmpSwap(MI, BB, 1);
4544  case ARM::ATOMIC_CMP_SWAP_I16: return EmitAtomicCmpSwap(MI, BB, 2);
4545  case ARM::ATOMIC_CMP_SWAP_I32: return EmitAtomicCmpSwap(MI, BB, 4);
4546
4547  case ARM::tMOVCCr_pseudo: {
4548    // To "insert" a SELECT_CC instruction, we actually have to insert the
4549    // diamond control-flow pattern.  The incoming instruction knows the
4550    // destination vreg to set, the condition code register to branch on, the
4551    // true/false values to select between, and a branch opcode to use.
4552    const BasicBlock *LLVM_BB = BB->getBasicBlock();
4553    MachineFunction::iterator It = BB;
4554    ++It;
4555
4556    //  thisMBB:
4557    //  ...
4558    //   TrueVal = ...
4559    //   cmpTY ccX, r1, r2
4560    //   bCC copy1MBB
4561    //   fallthrough --> copy0MBB
4562    MachineBasicBlock *thisMBB  = BB;
4563    MachineFunction *F = BB->getParent();
4564    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
4565    MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
4566    F->insert(It, copy0MBB);
4567    F->insert(It, sinkMBB);
4568
4569    // Transfer the remainder of BB and its successor edges to sinkMBB.
4570    sinkMBB->splice(sinkMBB->begin(), BB,
4571                    llvm::next(MachineBasicBlock::iterator(MI)),
4572                    BB->end());
4573    sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
4574
4575    BB->addSuccessor(copy0MBB);
4576    BB->addSuccessor(sinkMBB);
4577
4578    BuildMI(BB, dl, TII->get(ARM::tBcc)).addMBB(sinkMBB)
4579      .addImm(MI->getOperand(3).getImm()).addReg(MI->getOperand(4).getReg());
4580
4581    //  copy0MBB:
4582    //   %FalseValue = ...
4583    //   # fallthrough to sinkMBB
4584    BB = copy0MBB;
4585
4586    // Update machine-CFG edges
4587    BB->addSuccessor(sinkMBB);
4588
4589    //  sinkMBB:
4590    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
4591    //  ...
4592    BB = sinkMBB;
4593    BuildMI(*BB, BB->begin(), dl,
4594            TII->get(ARM::PHI), MI->getOperand(0).getReg())
4595      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
4596      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
4597
4598    MI->eraseFromParent();   // The pseudo instruction is gone now.
4599    return BB;
4600  }
4601
4602  case ARM::BCCi64:
4603  case ARM::BCCZi64: {
4604    // If there is an unconditional branch to the other successor, remove it.
4605    BB->erase(llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
4606
4607    // Compare both parts that make up the double comparison separately for
4608    // equality.
4609    bool RHSisZero = MI->getOpcode() == ARM::BCCZi64;
4610
4611    unsigned LHS1 = MI->getOperand(1).getReg();
4612    unsigned LHS2 = MI->getOperand(2).getReg();
4613    if (RHSisZero) {
4614      AddDefaultPred(BuildMI(BB, dl,
4615                             TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
4616                     .addReg(LHS1).addImm(0));
4617      BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
4618        .addReg(LHS2).addImm(0)
4619        .addImm(ARMCC::EQ).addReg(ARM::CPSR);
4620    } else {
4621      unsigned RHS1 = MI->getOperand(3).getReg();
4622      unsigned RHS2 = MI->getOperand(4).getReg();
4623      AddDefaultPred(BuildMI(BB, dl,
4624                             TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
4625                     .addReg(LHS1).addReg(RHS1));
4626      BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
4627        .addReg(LHS2).addReg(RHS2)
4628        .addImm(ARMCC::EQ).addReg(ARM::CPSR);
4629    }
4630
4631    MachineBasicBlock *destMBB = MI->getOperand(RHSisZero ? 3 : 5).getMBB();
4632    MachineBasicBlock *exitMBB = OtherSucc(BB, destMBB);
4633    if (MI->getOperand(0).getImm() == ARMCC::NE)
4634      std::swap(destMBB, exitMBB);
4635
4636    BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
4637      .addMBB(destMBB).addImm(ARMCC::EQ).addReg(ARM::CPSR);
4638    BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2B : ARM::B))
4639      .addMBB(exitMBB);
4640
4641    MI->eraseFromParent();   // The pseudo instruction is gone now.
4642    return BB;
4643  }
4644  }
4645}
4646
4647//===----------------------------------------------------------------------===//
4648//                           ARM Optimization Hooks
4649//===----------------------------------------------------------------------===//
4650
4651static
4652SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
4653                            TargetLowering::DAGCombinerInfo &DCI) {
4654  SelectionDAG &DAG = DCI.DAG;
4655  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4656  EVT VT = N->getValueType(0);
4657  unsigned Opc = N->getOpcode();
4658  bool isSlctCC = Slct.getOpcode() == ISD::SELECT_CC;
4659  SDValue LHS = isSlctCC ? Slct.getOperand(2) : Slct.getOperand(1);
4660  SDValue RHS = isSlctCC ? Slct.getOperand(3) : Slct.getOperand(2);
4661  ISD::CondCode CC = ISD::SETCC_INVALID;
4662
4663  if (isSlctCC) {
4664    CC = cast<CondCodeSDNode>(Slct.getOperand(4))->get();
4665  } else {
4666    SDValue CCOp = Slct.getOperand(0);
4667    if (CCOp.getOpcode() == ISD::SETCC)
4668      CC = cast<CondCodeSDNode>(CCOp.getOperand(2))->get();
4669  }
4670
4671  bool DoXform = false;
4672  bool InvCC = false;
4673  assert ((Opc == ISD::ADD || (Opc == ISD::SUB && Slct == N->getOperand(1))) &&
4674          "Bad input!");
4675
4676  if (LHS.getOpcode() == ISD::Constant &&
4677      cast<ConstantSDNode>(LHS)->isNullValue()) {
4678    DoXform = true;
4679  } else if (CC != ISD::SETCC_INVALID &&
4680             RHS.getOpcode() == ISD::Constant &&
4681             cast<ConstantSDNode>(RHS)->isNullValue()) {
4682    std::swap(LHS, RHS);
4683    SDValue Op0 = Slct.getOperand(0);
4684    EVT OpVT = isSlctCC ? Op0.getValueType() :
4685                          Op0.getOperand(0).getValueType();
4686    bool isInt = OpVT.isInteger();
4687    CC = ISD::getSetCCInverse(CC, isInt);
4688
4689    if (!TLI.isCondCodeLegal(CC, OpVT))
4690      return SDValue();         // Inverse operator isn't legal.
4691
4692    DoXform = true;
4693    InvCC = true;
4694  }
4695
4696  if (DoXform) {
4697    SDValue Result = DAG.getNode(Opc, RHS.getDebugLoc(), VT, OtherOp, RHS);
4698    if (isSlctCC)
4699      return DAG.getSelectCC(N->getDebugLoc(), OtherOp, Result,
4700                             Slct.getOperand(0), Slct.getOperand(1), CC);
4701    SDValue CCOp = Slct.getOperand(0);
4702    if (InvCC)
4703      CCOp = DAG.getSetCC(Slct.getDebugLoc(), CCOp.getValueType(),
4704                          CCOp.getOperand(0), CCOp.getOperand(1), CC);
4705    return DAG.getNode(ISD::SELECT, N->getDebugLoc(), VT,
4706                       CCOp, OtherOp, Result);
4707  }
4708  return SDValue();
4709}
4710
4711/// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
4712/// operands N0 and N1.  This is a helper for PerformADDCombine that is
4713/// called with the default operands, and if that fails, with commuted
4714/// operands.
4715static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
4716                                         TargetLowering::DAGCombinerInfo &DCI) {
4717  // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
4718  if (N0.getOpcode() == ISD::SELECT && N0.getNode()->hasOneUse()) {
4719    SDValue Result = combineSelectAndUse(N, N0, N1, DCI);
4720    if (Result.getNode()) return Result;
4721  }
4722  return SDValue();
4723}
4724
4725/// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
4726///
4727static SDValue PerformADDCombine(SDNode *N,
4728                                 TargetLowering::DAGCombinerInfo &DCI) {
4729  SDValue N0 = N->getOperand(0);
4730  SDValue N1 = N->getOperand(1);
4731
4732  // First try with the default operand order.
4733  SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI);
4734  if (Result.getNode())
4735    return Result;
4736
4737  // If that didn't work, try again with the operands commuted.
4738  return PerformADDCombineWithOperands(N, N1, N0, DCI);
4739}
4740
4741/// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
4742///
4743static SDValue PerformSUBCombine(SDNode *N,
4744                                 TargetLowering::DAGCombinerInfo &DCI) {
4745  SDValue N0 = N->getOperand(0);
4746  SDValue N1 = N->getOperand(1);
4747
4748  // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
4749  if (N1.getOpcode() == ISD::SELECT && N1.getNode()->hasOneUse()) {
4750    SDValue Result = combineSelectAndUse(N, N1, N0, DCI);
4751    if (Result.getNode()) return Result;
4752  }
4753
4754  return SDValue();
4755}
4756
4757static SDValue PerformMULCombine(SDNode *N,
4758                                 TargetLowering::DAGCombinerInfo &DCI,
4759                                 const ARMSubtarget *Subtarget) {
4760  SelectionDAG &DAG = DCI.DAG;
4761
4762  if (Subtarget->isThumb1Only())
4763    return SDValue();
4764
4765  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
4766    return SDValue();
4767
4768  EVT VT = N->getValueType(0);
4769  if (VT != MVT::i32)
4770    return SDValue();
4771
4772  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
4773  if (!C)
4774    return SDValue();
4775
4776  uint64_t MulAmt = C->getZExtValue();
4777  unsigned ShiftAmt = CountTrailingZeros_64(MulAmt);
4778  ShiftAmt = ShiftAmt & (32 - 1);
4779  SDValue V = N->getOperand(0);
4780  DebugLoc DL = N->getDebugLoc();
4781
4782  SDValue Res;
4783  MulAmt >>= ShiftAmt;
4784  if (isPowerOf2_32(MulAmt - 1)) {
4785    // (mul x, 2^N + 1) => (add (shl x, N), x)
4786    Res = DAG.getNode(ISD::ADD, DL, VT,
4787                      V, DAG.getNode(ISD::SHL, DL, VT,
4788                                     V, DAG.getConstant(Log2_32(MulAmt-1),
4789                                                        MVT::i32)));
4790  } else if (isPowerOf2_32(MulAmt + 1)) {
4791    // (mul x, 2^N - 1) => (sub (shl x, N), x)
4792    Res = DAG.getNode(ISD::SUB, DL, VT,
4793                      DAG.getNode(ISD::SHL, DL, VT,
4794                                  V, DAG.getConstant(Log2_32(MulAmt+1),
4795                                                     MVT::i32)),
4796                                                     V);
4797  } else
4798    return SDValue();
4799
4800  if (ShiftAmt != 0)
4801    Res = DAG.getNode(ISD::SHL, DL, VT, Res,
4802                      DAG.getConstant(ShiftAmt, MVT::i32));
4803
4804  // Do not add new nodes to DAG combiner worklist.
4805  DCI.CombineTo(N, Res, false);
4806  return SDValue();
4807}
4808
4809static SDValue PerformANDCombine(SDNode *N,
4810                                TargetLowering::DAGCombinerInfo &DCI) {
4811  // Attempt to use immediate-form VBIC
4812  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
4813  DebugLoc dl = N->getDebugLoc();
4814  EVT VT = N->getValueType(0);
4815  SelectionDAG &DAG = DCI.DAG;
4816
4817  APInt SplatBits, SplatUndef;
4818  unsigned SplatBitSize;
4819  bool HasAnyUndefs;
4820  if (BVN &&
4821      BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
4822    if (SplatBitSize <= 64) {
4823      EVT VbicVT;
4824      SDValue Val = isNEONModifiedImm((~SplatBits).getZExtValue(),
4825                                      SplatUndef.getZExtValue(), SplatBitSize,
4826                                      DAG, VbicVT, VT.is128BitVector(),
4827                                      OtherModImm);
4828      if (Val.getNode()) {
4829        SDValue Input =
4830          DAG.getNode(ISD::BITCAST, dl, VbicVT, N->getOperand(0));
4831        SDValue Vbic = DAG.getNode(ARMISD::VBICIMM, dl, VbicVT, Input, Val);
4832        return DAG.getNode(ISD::BITCAST, dl, VT, Vbic);
4833      }
4834    }
4835  }
4836
4837  return SDValue();
4838}
4839
4840/// PerformORCombine - Target-specific dag combine xforms for ISD::OR
4841static SDValue PerformORCombine(SDNode *N,
4842                                TargetLowering::DAGCombinerInfo &DCI,
4843                                const ARMSubtarget *Subtarget) {
4844  // Attempt to use immediate-form VORR
4845  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
4846  DebugLoc dl = N->getDebugLoc();
4847  EVT VT = N->getValueType(0);
4848  SelectionDAG &DAG = DCI.DAG;
4849
4850  APInt SplatBits, SplatUndef;
4851  unsigned SplatBitSize;
4852  bool HasAnyUndefs;
4853  if (BVN && Subtarget->hasNEON() &&
4854      BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
4855    if (SplatBitSize <= 64) {
4856      EVT VorrVT;
4857      SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
4858                                      SplatUndef.getZExtValue(), SplatBitSize,
4859                                      DAG, VorrVT, VT.is128BitVector(),
4860                                      OtherModImm);
4861      if (Val.getNode()) {
4862        SDValue Input =
4863          DAG.getNode(ISD::BITCAST, dl, VorrVT, N->getOperand(0));
4864        SDValue Vorr = DAG.getNode(ARMISD::VORRIMM, dl, VorrVT, Input, Val);
4865        return DAG.getNode(ISD::BITCAST, dl, VT, Vorr);
4866      }
4867    }
4868  }
4869
4870  // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when
4871  // reasonable.
4872
4873  // BFI is only available on V6T2+
4874  if (Subtarget->isThumb1Only() || !Subtarget->hasV6T2Ops())
4875    return SDValue();
4876
4877  SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
4878  DebugLoc DL = N->getDebugLoc();
4879  // 1) or (and A, mask), val => ARMbfi A, val, mask
4880  //      iff (val & mask) == val
4881  //
4882  // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
4883  //  2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2)
4884  //          && CountPopulation_32(mask) == CountPopulation_32(~mask2)
4885  //  2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2)
4886  //          && CountPopulation_32(mask) == CountPopulation_32(~mask2)
4887  //  (i.e., copy a bitfield value into another bitfield of the same width)
4888  if (N0.getOpcode() != ISD::AND)
4889    return SDValue();
4890
4891  if (VT != MVT::i32)
4892    return SDValue();
4893
4894  SDValue N00 = N0.getOperand(0);
4895
4896  // The value and the mask need to be constants so we can verify this is
4897  // actually a bitfield set. If the mask is 0xffff, we can do better
4898  // via a movt instruction, so don't use BFI in that case.
4899  SDValue MaskOp = N0.getOperand(1);
4900  ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(MaskOp);
4901  if (!MaskC)
4902    return SDValue();
4903  unsigned Mask = MaskC->getZExtValue();
4904  if (Mask == 0xffff)
4905    return SDValue();
4906  SDValue Res;
4907  // Case (1): or (and A, mask), val => ARMbfi A, val, mask
4908  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
4909  if (N1C) {
4910    unsigned Val = N1C->getZExtValue();
4911    if ((Val & ~Mask) != Val)
4912      return SDValue();
4913
4914    if (ARM::isBitFieldInvertedMask(Mask)) {
4915      Val >>= CountTrailingZeros_32(~Mask);
4916
4917      Res = DAG.getNode(ARMISD::BFI, DL, VT, N00,
4918                        DAG.getConstant(Val, MVT::i32),
4919                        DAG.getConstant(Mask, MVT::i32));
4920
4921      // Do not add new nodes to DAG combiner worklist.
4922      DCI.CombineTo(N, Res, false);
4923      return SDValue();
4924    }
4925  } else if (N1.getOpcode() == ISD::AND) {
4926    // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
4927    ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
4928    if (!N11C)
4929      return SDValue();
4930    unsigned Mask2 = N11C->getZExtValue();
4931
4932    if (ARM::isBitFieldInvertedMask(Mask) &&
4933        ARM::isBitFieldInvertedMask(~Mask2) &&
4934        (CountPopulation_32(Mask) == CountPopulation_32(~Mask2))) {
4935      // The pack halfword instruction works better for masks that fit it,
4936      // so use that when it's available.
4937      if (Subtarget->hasT2ExtractPack() &&
4938          (Mask == 0xffff || Mask == 0xffff0000))
4939        return SDValue();
4940      // 2a
4941      unsigned lsb = CountTrailingZeros_32(Mask2);
4942      Res = DAG.getNode(ISD::SRL, DL, VT, N1.getOperand(0),
4943                        DAG.getConstant(lsb, MVT::i32));
4944      Res = DAG.getNode(ARMISD::BFI, DL, VT, N00, Res,
4945                        DAG.getConstant(Mask, MVT::i32));
4946      // Do not add new nodes to DAG combiner worklist.
4947      DCI.CombineTo(N, Res, false);
4948      return SDValue();
4949    } else if (ARM::isBitFieldInvertedMask(~Mask) &&
4950               ARM::isBitFieldInvertedMask(Mask2) &&
4951               (CountPopulation_32(~Mask) == CountPopulation_32(Mask2))) {
4952      // The pack halfword instruction works better for masks that fit it,
4953      // so use that when it's available.
4954      if (Subtarget->hasT2ExtractPack() &&
4955          (Mask2 == 0xffff || Mask2 == 0xffff0000))
4956        return SDValue();
4957      // 2b
4958      unsigned lsb = CountTrailingZeros_32(Mask);
4959      Res = DAG.getNode(ISD::SRL, DL, VT, N00,
4960                        DAG.getConstant(lsb, MVT::i32));
4961      Res = DAG.getNode(ARMISD::BFI, DL, VT, N1.getOperand(0), Res,
4962                                DAG.getConstant(Mask2, MVT::i32));
4963      // Do not add new nodes to DAG combiner worklist.
4964      DCI.CombineTo(N, Res, false);
4965      return SDValue();
4966    }
4967  }
4968
4969  if (DAG.MaskedValueIsZero(N1, MaskC->getAPIntValue()) &&
4970      N00.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N00.getOperand(1)) &&
4971      ARM::isBitFieldInvertedMask(~Mask)) {
4972    // Case (3): or (and (shl A, #shamt), mask), B => ARMbfi B, A, ~mask
4973    // where lsb(mask) == #shamt and masked bits of B are known zero.
4974    SDValue ShAmt = N00.getOperand(1);
4975    unsigned ShAmtC = cast<ConstantSDNode>(ShAmt)->getZExtValue();
4976    unsigned LSB = CountTrailingZeros_32(Mask);
4977    if (ShAmtC != LSB)
4978      return SDValue();
4979
4980    Res = DAG.getNode(ARMISD::BFI, DL, VT, N1, N00.getOperand(0),
4981                      DAG.getConstant(~Mask, MVT::i32));
4982
4983    // Do not add new nodes to DAG combiner worklist.
4984    DCI.CombineTo(N, Res, false);
4985  }
4986
4987  return SDValue();
4988}
4989
4990/// PerformBFICombine - (bfi A, (and B, C1), C2) -> (bfi A, B, C2) iff
4991/// C1 & C2 == C1.
4992static SDValue PerformBFICombine(SDNode *N,
4993                                 TargetLowering::DAGCombinerInfo &DCI) {
4994  SDValue N1 = N->getOperand(1);
4995  if (N1.getOpcode() == ISD::AND) {
4996    ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
4997    if (!N11C)
4998      return SDValue();
4999    unsigned Mask = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
5000    unsigned Mask2 = N11C->getZExtValue();
5001    if ((Mask & Mask2) == Mask2)
5002      return DCI.DAG.getNode(ARMISD::BFI, N->getDebugLoc(), N->getValueType(0),
5003                             N->getOperand(0), N1.getOperand(0),
5004                             N->getOperand(2));
5005  }
5006  return SDValue();
5007}
5008
5009/// PerformVMOVRRDCombine - Target-specific dag combine xforms for
5010/// ARMISD::VMOVRRD.
5011static SDValue PerformVMOVRRDCombine(SDNode *N,
5012                                     TargetLowering::DAGCombinerInfo &DCI) {
5013  // vmovrrd(vmovdrr x, y) -> x,y
5014  SDValue InDouble = N->getOperand(0);
5015  if (InDouble.getOpcode() == ARMISD::VMOVDRR)
5016    return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
5017  return SDValue();
5018}
5019
5020/// PerformVMOVDRRCombine - Target-specific dag combine xforms for
5021/// ARMISD::VMOVDRR.  This is also used for BUILD_VECTORs with 2 operands.
5022static SDValue PerformVMOVDRRCombine(SDNode *N, SelectionDAG &DAG) {
5023  // N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X)
5024  SDValue Op0 = N->getOperand(0);
5025  SDValue Op1 = N->getOperand(1);
5026  if (Op0.getOpcode() == ISD::BITCAST)
5027    Op0 = Op0.getOperand(0);
5028  if (Op1.getOpcode() == ISD::BITCAST)
5029    Op1 = Op1.getOperand(0);
5030  if (Op0.getOpcode() == ARMISD::VMOVRRD &&
5031      Op0.getNode() == Op1.getNode() &&
5032      Op0.getResNo() == 0 && Op1.getResNo() == 1)
5033    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(),
5034                       N->getValueType(0), Op0.getOperand(0));
5035  return SDValue();
5036}
5037
5038/// PerformSTORECombine - Target-specific dag combine xforms for
5039/// ISD::STORE.
5040static SDValue PerformSTORECombine(SDNode *N,
5041                                   TargetLowering::DAGCombinerInfo &DCI) {
5042  // Bitcast an i64 store extracted from a vector to f64.
5043  // Otherwise, the i64 value will be legalized to a pair of i32 values.
5044  StoreSDNode *St = cast<StoreSDNode>(N);
5045  SDValue StVal = St->getValue();
5046  if (!ISD::isNormalStore(St) || St->isVolatile() ||
5047      StVal.getValueType() != MVT::i64 ||
5048      StVal.getNode()->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
5049    return SDValue();
5050
5051  SelectionDAG &DAG = DCI.DAG;
5052  DebugLoc dl = StVal.getDebugLoc();
5053  SDValue IntVec = StVal.getOperand(0);
5054  EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
5055                                 IntVec.getValueType().getVectorNumElements());
5056  SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, IntVec);
5057  SDValue ExtElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
5058                               Vec, StVal.getOperand(1));
5059  dl = N->getDebugLoc();
5060  SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ExtElt);
5061  // Make the DAGCombiner fold the bitcasts.
5062  DCI.AddToWorklist(Vec.getNode());
5063  DCI.AddToWorklist(ExtElt.getNode());
5064  DCI.AddToWorklist(V.getNode());
5065  return DAG.getStore(St->getChain(), dl, V, St->getBasePtr(),
5066                      St->getPointerInfo(), St->isVolatile(),
5067                      St->isNonTemporal(), St->getAlignment(),
5068                      St->getTBAAInfo());
5069}
5070
5071/// hasNormalLoadOperand - Check if any of the operands of a BUILD_VECTOR node
5072/// are normal, non-volatile loads.  If so, it is profitable to bitcast an
5073/// i64 vector to have f64 elements, since the value can then be loaded
5074/// directly into a VFP register.
5075static bool hasNormalLoadOperand(SDNode *N) {
5076  unsigned NumElts = N->getValueType(0).getVectorNumElements();
5077  for (unsigned i = 0; i < NumElts; ++i) {
5078    SDNode *Elt = N->getOperand(i).getNode();
5079    if (ISD::isNormalLoad(Elt) && !cast<LoadSDNode>(Elt)->isVolatile())
5080      return true;
5081  }
5082  return false;
5083}
5084
5085/// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for
5086/// ISD::BUILD_VECTOR.
5087static SDValue PerformBUILD_VECTORCombine(SDNode *N,
5088                                          TargetLowering::DAGCombinerInfo &DCI){
5089  // build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X):
5090  // VMOVRRD is introduced when legalizing i64 types.  It forces the i64 value
5091  // into a pair of GPRs, which is fine when the value is used as a scalar,
5092  // but if the i64 value is converted to a vector, we need to undo the VMOVRRD.
5093  SelectionDAG &DAG = DCI.DAG;
5094  if (N->getNumOperands() == 2) {
5095    SDValue RV = PerformVMOVDRRCombine(N, DAG);
5096    if (RV.getNode())
5097      return RV;
5098  }
5099
5100  // Load i64 elements as f64 values so that type legalization does not split
5101  // them up into i32 values.
5102  EVT VT = N->getValueType(0);
5103  if (VT.getVectorElementType() != MVT::i64 || !hasNormalLoadOperand(N))
5104    return SDValue();
5105  DebugLoc dl = N->getDebugLoc();
5106  SmallVector<SDValue, 8> Ops;
5107  unsigned NumElts = VT.getVectorNumElements();
5108  for (unsigned i = 0; i < NumElts; ++i) {
5109    SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(i));
5110    Ops.push_back(V);
5111    // Make the DAGCombiner fold the bitcast.
5112    DCI.AddToWorklist(V.getNode());
5113  }
5114  EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, NumElts);
5115  SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, FloatVT, Ops.data(), NumElts);
5116  return DAG.getNode(ISD::BITCAST, dl, VT, BV);
5117}
5118
5119/// PerformInsertEltCombine - Target-specific dag combine xforms for
5120/// ISD::INSERT_VECTOR_ELT.
5121static SDValue PerformInsertEltCombine(SDNode *N,
5122                                       TargetLowering::DAGCombinerInfo &DCI) {
5123  // Bitcast an i64 load inserted into a vector to f64.
5124  // Otherwise, the i64 value will be legalized to a pair of i32 values.
5125  EVT VT = N->getValueType(0);
5126  SDNode *Elt = N->getOperand(1).getNode();
5127  if (VT.getVectorElementType() != MVT::i64 ||
5128      !ISD::isNormalLoad(Elt) || cast<LoadSDNode>(Elt)->isVolatile())
5129    return SDValue();
5130
5131  SelectionDAG &DAG = DCI.DAG;
5132  DebugLoc dl = N->getDebugLoc();
5133  EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
5134                                 VT.getVectorNumElements());
5135  SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, N->getOperand(0));
5136  SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(1));
5137  // Make the DAGCombiner fold the bitcasts.
5138  DCI.AddToWorklist(Vec.getNode());
5139  DCI.AddToWorklist(V.getNode());
5140  SDValue InsElt = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, FloatVT,
5141                               Vec, V, N->getOperand(2));
5142  return DAG.getNode(ISD::BITCAST, dl, VT, InsElt);
5143}
5144
5145/// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for
5146/// ISD::VECTOR_SHUFFLE.
5147static SDValue PerformVECTOR_SHUFFLECombine(SDNode *N, SelectionDAG &DAG) {
5148  // The LLVM shufflevector instruction does not require the shuffle mask
5149  // length to match the operand vector length, but ISD::VECTOR_SHUFFLE does
5150  // have that requirement.  When translating to ISD::VECTOR_SHUFFLE, if the
5151  // operands do not match the mask length, they are extended by concatenating
5152  // them with undef vectors.  That is probably the right thing for other
5153  // targets, but for NEON it is better to concatenate two double-register
5154  // size vector operands into a single quad-register size vector.  Do that
5155  // transformation here:
5156  //   shuffle(concat(v1, undef), concat(v2, undef)) ->
5157  //   shuffle(concat(v1, v2), undef)
5158  SDValue Op0 = N->getOperand(0);
5159  SDValue Op1 = N->getOperand(1);
5160  if (Op0.getOpcode() != ISD::CONCAT_VECTORS ||
5161      Op1.getOpcode() != ISD::CONCAT_VECTORS ||
5162      Op0.getNumOperands() != 2 ||
5163      Op1.getNumOperands() != 2)
5164    return SDValue();
5165  SDValue Concat0Op1 = Op0.getOperand(1);
5166  SDValue Concat1Op1 = Op1.getOperand(1);
5167  if (Concat0Op1.getOpcode() != ISD::UNDEF ||
5168      Concat1Op1.getOpcode() != ISD::UNDEF)
5169    return SDValue();
5170  // Skip the transformation if any of the types are illegal.
5171  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5172  EVT VT = N->getValueType(0);
5173  if (!TLI.isTypeLegal(VT) ||
5174      !TLI.isTypeLegal(Concat0Op1.getValueType()) ||
5175      !TLI.isTypeLegal(Concat1Op1.getValueType()))
5176    return SDValue();
5177
5178  SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, N->getDebugLoc(), VT,
5179                                  Op0.getOperand(0), Op1.getOperand(0));
5180  // Translate the shuffle mask.
5181  SmallVector<int, 16> NewMask;
5182  unsigned NumElts = VT.getVectorNumElements();
5183  unsigned HalfElts = NumElts/2;
5184  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
5185  for (unsigned n = 0; n < NumElts; ++n) {
5186    int MaskElt = SVN->getMaskElt(n);
5187    int NewElt = -1;
5188    if (MaskElt < (int)HalfElts)
5189      NewElt = MaskElt;
5190    else if (MaskElt >= (int)NumElts && MaskElt < (int)(NumElts + HalfElts))
5191      NewElt = HalfElts + MaskElt - NumElts;
5192    NewMask.push_back(NewElt);
5193  }
5194  return DAG.getVectorShuffle(VT, N->getDebugLoc(), NewConcat,
5195                              DAG.getUNDEF(VT), NewMask.data());
5196}
5197
5198/// CombineVLDDUP - For a VDUPLANE node N, check if its source operand is a
5199/// vldN-lane (N > 1) intrinsic, and if all the other uses of that intrinsic
5200/// are also VDUPLANEs.  If so, combine them to a vldN-dup operation and
5201/// return true.
5202static bool CombineVLDDUP(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
5203  SelectionDAG &DAG = DCI.DAG;
5204  EVT VT = N->getValueType(0);
5205  // vldN-dup instructions only support 64-bit vectors for N > 1.
5206  if (!VT.is64BitVector())
5207    return false;
5208
5209  // Check if the VDUPLANE operand is a vldN-dup intrinsic.
5210  SDNode *VLD = N->getOperand(0).getNode();
5211  if (VLD->getOpcode() != ISD::INTRINSIC_W_CHAIN)
5212    return false;
5213  unsigned NumVecs = 0;
5214  unsigned NewOpc = 0;
5215  unsigned IntNo = cast<ConstantSDNode>(VLD->getOperand(1))->getZExtValue();
5216  if (IntNo == Intrinsic::arm_neon_vld2lane) {
5217    NumVecs = 2;
5218    NewOpc = ARMISD::VLD2DUP;
5219  } else if (IntNo == Intrinsic::arm_neon_vld3lane) {
5220    NumVecs = 3;
5221    NewOpc = ARMISD::VLD3DUP;
5222  } else if (IntNo == Intrinsic::arm_neon_vld4lane) {
5223    NumVecs = 4;
5224    NewOpc = ARMISD::VLD4DUP;
5225  } else {
5226    return false;
5227  }
5228
5229  // First check that all the vldN-lane uses are VDUPLANEs and that the lane
5230  // numbers match the load.
5231  unsigned VLDLaneNo =
5232    cast<ConstantSDNode>(VLD->getOperand(NumVecs+3))->getZExtValue();
5233  for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
5234       UI != UE; ++UI) {
5235    // Ignore uses of the chain result.
5236    if (UI.getUse().getResNo() == NumVecs)
5237      continue;
5238    SDNode *User = *UI;
5239    if (User->getOpcode() != ARMISD::VDUPLANE ||
5240        VLDLaneNo != cast<ConstantSDNode>(User->getOperand(1))->getZExtValue())
5241      return false;
5242  }
5243
5244  // Create the vldN-dup node.
5245  EVT Tys[5];
5246  unsigned n;
5247  for (n = 0; n < NumVecs; ++n)
5248    Tys[n] = VT;
5249  Tys[n] = MVT::Other;
5250  SDVTList SDTys = DAG.getVTList(Tys, NumVecs+1);
5251  SDValue Ops[] = { VLD->getOperand(0), VLD->getOperand(2) };
5252  MemIntrinsicSDNode *VLDMemInt = cast<MemIntrinsicSDNode>(VLD);
5253  SDValue VLDDup = DAG.getMemIntrinsicNode(NewOpc, VLD->getDebugLoc(), SDTys,
5254                                           Ops, 2, VLDMemInt->getMemoryVT(),
5255                                           VLDMemInt->getMemOperand());
5256
5257  // Update the uses.
5258  for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
5259       UI != UE; ++UI) {
5260    unsigned ResNo = UI.getUse().getResNo();
5261    // Ignore uses of the chain result.
5262    if (ResNo == NumVecs)
5263      continue;
5264    SDNode *User = *UI;
5265    DCI.CombineTo(User, SDValue(VLDDup.getNode(), ResNo));
5266  }
5267
5268  // Now the vldN-lane intrinsic is dead except for its chain result.
5269  // Update uses of the chain.
5270  std::vector<SDValue> VLDDupResults;
5271  for (unsigned n = 0; n < NumVecs; ++n)
5272    VLDDupResults.push_back(SDValue(VLDDup.getNode(), n));
5273  VLDDupResults.push_back(SDValue(VLDDup.getNode(), NumVecs));
5274  DCI.CombineTo(VLD, VLDDupResults);
5275
5276  return true;
5277}
5278
5279/// PerformVDUPLANECombine - Target-specific dag combine xforms for
5280/// ARMISD::VDUPLANE.
5281static SDValue PerformVDUPLANECombine(SDNode *N,
5282                                      TargetLowering::DAGCombinerInfo &DCI) {
5283  SDValue Op = N->getOperand(0);
5284
5285  // If the source is a vldN-lane (N > 1) intrinsic, and all the other uses
5286  // of that intrinsic are also VDUPLANEs, combine them to a vldN-dup operation.
5287  if (CombineVLDDUP(N, DCI))
5288    return SDValue(N, 0);
5289
5290  // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is
5291  // redundant.  Ignore bit_converts for now; element sizes are checked below.
5292  while (Op.getOpcode() == ISD::BITCAST)
5293    Op = Op.getOperand(0);
5294  if (Op.getOpcode() != ARMISD::VMOVIMM && Op.getOpcode() != ARMISD::VMVNIMM)
5295    return SDValue();
5296
5297  // Make sure the VMOV element size is not bigger than the VDUPLANE elements.
5298  unsigned EltSize = Op.getValueType().getVectorElementType().getSizeInBits();
5299  // The canonical VMOV for a zero vector uses a 32-bit element size.
5300  unsigned Imm = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5301  unsigned EltBits;
5302  if (ARM_AM::decodeNEONModImm(Imm, EltBits) == 0)
5303    EltSize = 8;
5304  EVT VT = N->getValueType(0);
5305  if (EltSize > VT.getVectorElementType().getSizeInBits())
5306    return SDValue();
5307
5308  return DCI.DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
5309}
5310
5311/// getVShiftImm - Check if this is a valid build_vector for the immediate
5312/// operand of a vector shift operation, where all the elements of the
5313/// build_vector must have the same constant integer value.
5314static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
5315  // Ignore bit_converts.
5316  while (Op.getOpcode() == ISD::BITCAST)
5317    Op = Op.getOperand(0);
5318  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
5319  APInt SplatBits, SplatUndef;
5320  unsigned SplatBitSize;
5321  bool HasAnyUndefs;
5322  if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
5323                                      HasAnyUndefs, ElementBits) ||
5324      SplatBitSize > ElementBits)
5325    return false;
5326  Cnt = SplatBits.getSExtValue();
5327  return true;
5328}
5329
5330/// isVShiftLImm - Check if this is a valid build_vector for the immediate
5331/// operand of a vector shift left operation.  That value must be in the range:
5332///   0 <= Value < ElementBits for a left shift; or
5333///   0 <= Value <= ElementBits for a long left shift.
5334static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
5335  assert(VT.isVector() && "vector shift count is not a vector type");
5336  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
5337  if (! getVShiftImm(Op, ElementBits, Cnt))
5338    return false;
5339  return (Cnt >= 0 && (isLong ? Cnt-1 : Cnt) < ElementBits);
5340}
5341
5342/// isVShiftRImm - Check if this is a valid build_vector for the immediate
5343/// operand of a vector shift right operation.  For a shift opcode, the value
5344/// is positive, but for an intrinsic the value count must be negative. The
5345/// absolute value must be in the range:
5346///   1 <= |Value| <= ElementBits for a right shift; or
5347///   1 <= |Value| <= ElementBits/2 for a narrow right shift.
5348static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
5349                         int64_t &Cnt) {
5350  assert(VT.isVector() && "vector shift count is not a vector type");
5351  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
5352  if (! getVShiftImm(Op, ElementBits, Cnt))
5353    return false;
5354  if (isIntrinsic)
5355    Cnt = -Cnt;
5356  return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits/2 : ElementBits));
5357}
5358
5359/// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
5360static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
5361  unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
5362  switch (IntNo) {
5363  default:
5364    // Don't do anything for most intrinsics.
5365    break;
5366
5367  // Vector shifts: check for immediate versions and lower them.
5368  // Note: This is done during DAG combining instead of DAG legalizing because
5369  // the build_vectors for 64-bit vector element shift counts are generally
5370  // not legal, and it is hard to see their values after they get legalized to
5371  // loads from a constant pool.
5372  case Intrinsic::arm_neon_vshifts:
5373  case Intrinsic::arm_neon_vshiftu:
5374  case Intrinsic::arm_neon_vshiftls:
5375  case Intrinsic::arm_neon_vshiftlu:
5376  case Intrinsic::arm_neon_vshiftn:
5377  case Intrinsic::arm_neon_vrshifts:
5378  case Intrinsic::arm_neon_vrshiftu:
5379  case Intrinsic::arm_neon_vrshiftn:
5380  case Intrinsic::arm_neon_vqshifts:
5381  case Intrinsic::arm_neon_vqshiftu:
5382  case Intrinsic::arm_neon_vqshiftsu:
5383  case Intrinsic::arm_neon_vqshiftns:
5384  case Intrinsic::arm_neon_vqshiftnu:
5385  case Intrinsic::arm_neon_vqshiftnsu:
5386  case Intrinsic::arm_neon_vqrshiftns:
5387  case Intrinsic::arm_neon_vqrshiftnu:
5388  case Intrinsic::arm_neon_vqrshiftnsu: {
5389    EVT VT = N->getOperand(1).getValueType();
5390    int64_t Cnt;
5391    unsigned VShiftOpc = 0;
5392
5393    switch (IntNo) {
5394    case Intrinsic::arm_neon_vshifts:
5395    case Intrinsic::arm_neon_vshiftu:
5396      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) {
5397        VShiftOpc = ARMISD::VSHL;
5398        break;
5399      }
5400      if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) {
5401        VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ?
5402                     ARMISD::VSHRs : ARMISD::VSHRu);
5403        break;
5404      }
5405      return SDValue();
5406
5407    case Intrinsic::arm_neon_vshiftls:
5408    case Intrinsic::arm_neon_vshiftlu:
5409      if (isVShiftLImm(N->getOperand(2), VT, true, Cnt))
5410        break;
5411      llvm_unreachable("invalid shift count for vshll intrinsic");
5412
5413    case Intrinsic::arm_neon_vrshifts:
5414    case Intrinsic::arm_neon_vrshiftu:
5415      if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt))
5416        break;
5417      return SDValue();
5418
5419    case Intrinsic::arm_neon_vqshifts:
5420    case Intrinsic::arm_neon_vqshiftu:
5421      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
5422        break;
5423      return SDValue();
5424
5425    case Intrinsic::arm_neon_vqshiftsu:
5426      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
5427        break;
5428      llvm_unreachable("invalid shift count for vqshlu intrinsic");
5429
5430    case Intrinsic::arm_neon_vshiftn:
5431    case Intrinsic::arm_neon_vrshiftn:
5432    case Intrinsic::arm_neon_vqshiftns:
5433    case Intrinsic::arm_neon_vqshiftnu:
5434    case Intrinsic::arm_neon_vqshiftnsu:
5435    case Intrinsic::arm_neon_vqrshiftns:
5436    case Intrinsic::arm_neon_vqrshiftnu:
5437    case Intrinsic::arm_neon_vqrshiftnsu:
5438      // Narrowing shifts require an immediate right shift.
5439      if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt))
5440        break;
5441      llvm_unreachable("invalid shift count for narrowing vector shift "
5442                       "intrinsic");
5443
5444    default:
5445      llvm_unreachable("unhandled vector shift");
5446    }
5447
5448    switch (IntNo) {
5449    case Intrinsic::arm_neon_vshifts:
5450    case Intrinsic::arm_neon_vshiftu:
5451      // Opcode already set above.
5452      break;
5453    case Intrinsic::arm_neon_vshiftls:
5454    case Intrinsic::arm_neon_vshiftlu:
5455      if (Cnt == VT.getVectorElementType().getSizeInBits())
5456        VShiftOpc = ARMISD::VSHLLi;
5457      else
5458        VShiftOpc = (IntNo == Intrinsic::arm_neon_vshiftls ?
5459                     ARMISD::VSHLLs : ARMISD::VSHLLu);
5460      break;
5461    case Intrinsic::arm_neon_vshiftn:
5462      VShiftOpc = ARMISD::VSHRN; break;
5463    case Intrinsic::arm_neon_vrshifts:
5464      VShiftOpc = ARMISD::VRSHRs; break;
5465    case Intrinsic::arm_neon_vrshiftu:
5466      VShiftOpc = ARMISD::VRSHRu; break;
5467    case Intrinsic::arm_neon_vrshiftn:
5468      VShiftOpc = ARMISD::VRSHRN; break;
5469    case Intrinsic::arm_neon_vqshifts:
5470      VShiftOpc = ARMISD::VQSHLs; break;
5471    case Intrinsic::arm_neon_vqshiftu:
5472      VShiftOpc = ARMISD::VQSHLu; break;
5473    case Intrinsic::arm_neon_vqshiftsu:
5474      VShiftOpc = ARMISD::VQSHLsu; break;
5475    case Intrinsic::arm_neon_vqshiftns:
5476      VShiftOpc = ARMISD::VQSHRNs; break;
5477    case Intrinsic::arm_neon_vqshiftnu:
5478      VShiftOpc = ARMISD::VQSHRNu; break;
5479    case Intrinsic::arm_neon_vqshiftnsu:
5480      VShiftOpc = ARMISD::VQSHRNsu; break;
5481    case Intrinsic::arm_neon_vqrshiftns:
5482      VShiftOpc = ARMISD::VQRSHRNs; break;
5483    case Intrinsic::arm_neon_vqrshiftnu:
5484      VShiftOpc = ARMISD::VQRSHRNu; break;
5485    case Intrinsic::arm_neon_vqrshiftnsu:
5486      VShiftOpc = ARMISD::VQRSHRNsu; break;
5487    }
5488
5489    return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
5490                       N->getOperand(1), DAG.getConstant(Cnt, MVT::i32));
5491  }
5492
5493  case Intrinsic::arm_neon_vshiftins: {
5494    EVT VT = N->getOperand(1).getValueType();
5495    int64_t Cnt;
5496    unsigned VShiftOpc = 0;
5497
5498    if (isVShiftLImm(N->getOperand(3), VT, false, Cnt))
5499      VShiftOpc = ARMISD::VSLI;
5500    else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt))
5501      VShiftOpc = ARMISD::VSRI;
5502    else {
5503      llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
5504    }
5505
5506    return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
5507                       N->getOperand(1), N->getOperand(2),
5508                       DAG.getConstant(Cnt, MVT::i32));
5509  }
5510
5511  case Intrinsic::arm_neon_vqrshifts:
5512  case Intrinsic::arm_neon_vqrshiftu:
5513    // No immediate versions of these to check for.
5514    break;
5515  }
5516
5517  return SDValue();
5518}
5519
5520/// PerformShiftCombine - Checks for immediate versions of vector shifts and
5521/// lowers them.  As with the vector shift intrinsics, this is done during DAG
5522/// combining instead of DAG legalizing because the build_vectors for 64-bit
5523/// vector element shift counts are generally not legal, and it is hard to see
5524/// their values after they get legalized to loads from a constant pool.
5525static SDValue PerformShiftCombine(SDNode *N, SelectionDAG &DAG,
5526                                   const ARMSubtarget *ST) {
5527  EVT VT = N->getValueType(0);
5528
5529  // Nothing to be done for scalar shifts.
5530  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5531  if (!VT.isVector() || !TLI.isTypeLegal(VT))
5532    return SDValue();
5533
5534  assert(ST->hasNEON() && "unexpected vector shift");
5535  int64_t Cnt;
5536
5537  switch (N->getOpcode()) {
5538  default: llvm_unreachable("unexpected shift opcode");
5539
5540  case ISD::SHL:
5541    if (isVShiftLImm(N->getOperand(1), VT, false, Cnt))
5542      return DAG.getNode(ARMISD::VSHL, N->getDebugLoc(), VT, N->getOperand(0),
5543                         DAG.getConstant(Cnt, MVT::i32));
5544    break;
5545
5546  case ISD::SRA:
5547  case ISD::SRL:
5548    if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
5549      unsigned VShiftOpc = (N->getOpcode() == ISD::SRA ?
5550                            ARMISD::VSHRs : ARMISD::VSHRu);
5551      return DAG.getNode(VShiftOpc, N->getDebugLoc(), VT, N->getOperand(0),
5552                         DAG.getConstant(Cnt, MVT::i32));
5553    }
5554  }
5555  return SDValue();
5556}
5557
5558/// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
5559/// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
5560static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG,
5561                                    const ARMSubtarget *ST) {
5562  SDValue N0 = N->getOperand(0);
5563
5564  // Check for sign- and zero-extensions of vector extract operations of 8-
5565  // and 16-bit vector elements.  NEON supports these directly.  They are
5566  // handled during DAG combining because type legalization will promote them
5567  // to 32-bit types and it is messy to recognize the operations after that.
5568  if (ST->hasNEON() && N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
5569    SDValue Vec = N0.getOperand(0);
5570    SDValue Lane = N0.getOperand(1);
5571    EVT VT = N->getValueType(0);
5572    EVT EltVT = N0.getValueType();
5573    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5574
5575    if (VT == MVT::i32 &&
5576        (EltVT == MVT::i8 || EltVT == MVT::i16) &&
5577        TLI.isTypeLegal(Vec.getValueType()) &&
5578        isa<ConstantSDNode>(Lane)) {
5579
5580      unsigned Opc = 0;
5581      switch (N->getOpcode()) {
5582      default: llvm_unreachable("unexpected opcode");
5583      case ISD::SIGN_EXTEND:
5584        Opc = ARMISD::VGETLANEs;
5585        break;
5586      case ISD::ZERO_EXTEND:
5587      case ISD::ANY_EXTEND:
5588        Opc = ARMISD::VGETLANEu;
5589        break;
5590      }
5591      return DAG.getNode(Opc, N->getDebugLoc(), VT, Vec, Lane);
5592    }
5593  }
5594
5595  return SDValue();
5596}
5597
5598/// PerformSELECT_CCCombine - Target-specific DAG combining for ISD::SELECT_CC
5599/// to match f32 max/min patterns to use NEON vmax/vmin instructions.
5600static SDValue PerformSELECT_CCCombine(SDNode *N, SelectionDAG &DAG,
5601                                       const ARMSubtarget *ST) {
5602  // If the target supports NEON, try to use vmax/vmin instructions for f32
5603  // selects like "x < y ? x : y".  Unless the NoNaNsFPMath option is set,
5604  // be careful about NaNs:  NEON's vmax/vmin return NaN if either operand is
5605  // a NaN; only do the transformation when it matches that behavior.
5606
5607  // For now only do this when using NEON for FP operations; if using VFP, it
5608  // is not obvious that the benefit outweighs the cost of switching to the
5609  // NEON pipeline.
5610  if (!ST->hasNEON() || !ST->useNEONForSinglePrecisionFP() ||
5611      N->getValueType(0) != MVT::f32)
5612    return SDValue();
5613
5614  SDValue CondLHS = N->getOperand(0);
5615  SDValue CondRHS = N->getOperand(1);
5616  SDValue LHS = N->getOperand(2);
5617  SDValue RHS = N->getOperand(3);
5618  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
5619
5620  unsigned Opcode = 0;
5621  bool IsReversed;
5622  if (DAG.isEqualTo(LHS, CondLHS) && DAG.isEqualTo(RHS, CondRHS)) {
5623    IsReversed = false; // x CC y ? x : y
5624  } else if (DAG.isEqualTo(LHS, CondRHS) && DAG.isEqualTo(RHS, CondLHS)) {
5625    IsReversed = true ; // x CC y ? y : x
5626  } else {
5627    return SDValue();
5628  }
5629
5630  bool IsUnordered;
5631  switch (CC) {
5632  default: break;
5633  case ISD::SETOLT:
5634  case ISD::SETOLE:
5635  case ISD::SETLT:
5636  case ISD::SETLE:
5637  case ISD::SETULT:
5638  case ISD::SETULE:
5639    // If LHS is NaN, an ordered comparison will be false and the result will
5640    // be the RHS, but vmin(NaN, RHS) = NaN.  Avoid this by checking that LHS
5641    // != NaN.  Likewise, for unordered comparisons, check for RHS != NaN.
5642    IsUnordered = (CC == ISD::SETULT || CC == ISD::SETULE);
5643    if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
5644      break;
5645    // For less-than-or-equal comparisons, "+0 <= -0" will be true but vmin
5646    // will return -0, so vmin can only be used for unsafe math or if one of
5647    // the operands is known to be nonzero.
5648    if ((CC == ISD::SETLE || CC == ISD::SETOLE || CC == ISD::SETULE) &&
5649        !UnsafeFPMath &&
5650        !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
5651      break;
5652    Opcode = IsReversed ? ARMISD::FMAX : ARMISD::FMIN;
5653    break;
5654
5655  case ISD::SETOGT:
5656  case ISD::SETOGE:
5657  case ISD::SETGT:
5658  case ISD::SETGE:
5659  case ISD::SETUGT:
5660  case ISD::SETUGE:
5661    // If LHS is NaN, an ordered comparison will be false and the result will
5662    // be the RHS, but vmax(NaN, RHS) = NaN.  Avoid this by checking that LHS
5663    // != NaN.  Likewise, for unordered comparisons, check for RHS != NaN.
5664    IsUnordered = (CC == ISD::SETUGT || CC == ISD::SETUGE);
5665    if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
5666      break;
5667    // For greater-than-or-equal comparisons, "-0 >= +0" will be true but vmax
5668    // will return +0, so vmax can only be used for unsafe math or if one of
5669    // the operands is known to be nonzero.
5670    if ((CC == ISD::SETGE || CC == ISD::SETOGE || CC == ISD::SETUGE) &&
5671        !UnsafeFPMath &&
5672        !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
5673      break;
5674    Opcode = IsReversed ? ARMISD::FMIN : ARMISD::FMAX;
5675    break;
5676  }
5677
5678  if (!Opcode)
5679    return SDValue();
5680  return DAG.getNode(Opcode, N->getDebugLoc(), N->getValueType(0), LHS, RHS);
5681}
5682
5683SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
5684                                             DAGCombinerInfo &DCI) const {
5685  switch (N->getOpcode()) {
5686  default: break;
5687  case ISD::ADD:        return PerformADDCombine(N, DCI);
5688  case ISD::SUB:        return PerformSUBCombine(N, DCI);
5689  case ISD::MUL:        return PerformMULCombine(N, DCI, Subtarget);
5690  case ISD::OR:         return PerformORCombine(N, DCI, Subtarget);
5691  case ISD::AND:        return PerformANDCombine(N, DCI);
5692  case ARMISD::BFI:     return PerformBFICombine(N, DCI);
5693  case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI);
5694  case ARMISD::VMOVDRR: return PerformVMOVDRRCombine(N, DCI.DAG);
5695  case ISD::STORE:      return PerformSTORECombine(N, DCI);
5696  case ISD::BUILD_VECTOR: return PerformBUILD_VECTORCombine(N, DCI);
5697  case ISD::INSERT_VECTOR_ELT: return PerformInsertEltCombine(N, DCI);
5698  case ISD::VECTOR_SHUFFLE: return PerformVECTOR_SHUFFLECombine(N, DCI.DAG);
5699  case ARMISD::VDUPLANE: return PerformVDUPLANECombine(N, DCI);
5700  case ISD::INTRINSIC_WO_CHAIN: return PerformIntrinsicCombine(N, DCI.DAG);
5701  case ISD::SHL:
5702  case ISD::SRA:
5703  case ISD::SRL:        return PerformShiftCombine(N, DCI.DAG, Subtarget);
5704  case ISD::SIGN_EXTEND:
5705  case ISD::ZERO_EXTEND:
5706  case ISD::ANY_EXTEND: return PerformExtendCombine(N, DCI.DAG, Subtarget);
5707  case ISD::SELECT_CC:  return PerformSELECT_CCCombine(N, DCI.DAG, Subtarget);
5708  }
5709  return SDValue();
5710}
5711
5712bool ARMTargetLowering::allowsUnalignedMemoryAccesses(EVT VT) const {
5713  if (!Subtarget->allowsUnalignedMem())
5714    return false;
5715
5716  switch (VT.getSimpleVT().SimpleTy) {
5717  default:
5718    return false;
5719  case MVT::i8:
5720  case MVT::i16:
5721  case MVT::i32:
5722    return true;
5723  // FIXME: VLD1 etc with standard alignment is legal.
5724  }
5725}
5726
5727static bool isLegalT1AddressImmediate(int64_t V, EVT VT) {
5728  if (V < 0)
5729    return false;
5730
5731  unsigned Scale = 1;
5732  switch (VT.getSimpleVT().SimpleTy) {
5733  default: return false;
5734  case MVT::i1:
5735  case MVT::i8:
5736    // Scale == 1;
5737    break;
5738  case MVT::i16:
5739    // Scale == 2;
5740    Scale = 2;
5741    break;
5742  case MVT::i32:
5743    // Scale == 4;
5744    Scale = 4;
5745    break;
5746  }
5747
5748  if ((V & (Scale - 1)) != 0)
5749    return false;
5750  V /= Scale;
5751  return V == (V & ((1LL << 5) - 1));
5752}
5753
5754static bool isLegalT2AddressImmediate(int64_t V, EVT VT,
5755                                      const ARMSubtarget *Subtarget) {
5756  bool isNeg = false;
5757  if (V < 0) {
5758    isNeg = true;
5759    V = - V;
5760  }
5761
5762  switch (VT.getSimpleVT().SimpleTy) {
5763  default: return false;
5764  case MVT::i1:
5765  case MVT::i8:
5766  case MVT::i16:
5767  case MVT::i32:
5768    // + imm12 or - imm8
5769    if (isNeg)
5770      return V == (V & ((1LL << 8) - 1));
5771    return V == (V & ((1LL << 12) - 1));
5772  case MVT::f32:
5773  case MVT::f64:
5774    // Same as ARM mode. FIXME: NEON?
5775    if (!Subtarget->hasVFP2())
5776      return false;
5777    if ((V & 3) != 0)
5778      return false;
5779    V >>= 2;
5780    return V == (V & ((1LL << 8) - 1));
5781  }
5782}
5783
5784/// isLegalAddressImmediate - Return true if the integer value can be used
5785/// as the offset of the target addressing mode for load / store of the
5786/// given type.
5787static bool isLegalAddressImmediate(int64_t V, EVT VT,
5788                                    const ARMSubtarget *Subtarget) {
5789  if (V == 0)
5790    return true;
5791
5792  if (!VT.isSimple())
5793    return false;
5794
5795  if (Subtarget->isThumb1Only())
5796    return isLegalT1AddressImmediate(V, VT);
5797  else if (Subtarget->isThumb2())
5798    return isLegalT2AddressImmediate(V, VT, Subtarget);
5799
5800  // ARM mode.
5801  if (V < 0)
5802    V = - V;
5803  switch (VT.getSimpleVT().SimpleTy) {
5804  default: return false;
5805  case MVT::i1:
5806  case MVT::i8:
5807  case MVT::i32:
5808    // +- imm12
5809    return V == (V & ((1LL << 12) - 1));
5810  case MVT::i16:
5811    // +- imm8
5812    return V == (V & ((1LL << 8) - 1));
5813  case MVT::f32:
5814  case MVT::f64:
5815    if (!Subtarget->hasVFP2()) // FIXME: NEON?
5816      return false;
5817    if ((V & 3) != 0)
5818      return false;
5819    V >>= 2;
5820    return V == (V & ((1LL << 8) - 1));
5821  }
5822}
5823
5824bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM,
5825                                                      EVT VT) const {
5826  int Scale = AM.Scale;
5827  if (Scale < 0)
5828    return false;
5829
5830  switch (VT.getSimpleVT().SimpleTy) {
5831  default: return false;
5832  case MVT::i1:
5833  case MVT::i8:
5834  case MVT::i16:
5835  case MVT::i32:
5836    if (Scale == 1)
5837      return true;
5838    // r + r << imm
5839    Scale = Scale & ~1;
5840    return Scale == 2 || Scale == 4 || Scale == 8;
5841  case MVT::i64:
5842    // r + r
5843    if (((unsigned)AM.HasBaseReg + Scale) <= 2)
5844      return true;
5845    return false;
5846  case MVT::isVoid:
5847    // Note, we allow "void" uses (basically, uses that aren't loads or
5848    // stores), because arm allows folding a scale into many arithmetic
5849    // operations.  This should be made more precise and revisited later.
5850
5851    // Allow r << imm, but the imm has to be a multiple of two.
5852    if (Scale & 1) return false;
5853    return isPowerOf2_32(Scale);
5854  }
5855}
5856
5857/// isLegalAddressingMode - Return true if the addressing mode represented
5858/// by AM is legal for this target, for a load/store of the specified type.
5859bool ARMTargetLowering::isLegalAddressingMode(const AddrMode &AM,
5860                                              const Type *Ty) const {
5861  EVT VT = getValueType(Ty, true);
5862  if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget))
5863    return false;
5864
5865  // Can never fold addr of global into load/store.
5866  if (AM.BaseGV)
5867    return false;
5868
5869  switch (AM.Scale) {
5870  case 0:  // no scale reg, must be "r+i" or "r", or "i".
5871    break;
5872  case 1:
5873    if (Subtarget->isThumb1Only())
5874      return false;
5875    // FALL THROUGH.
5876  default:
5877    // ARM doesn't support any R+R*scale+imm addr modes.
5878    if (AM.BaseOffs)
5879      return false;
5880
5881    if (!VT.isSimple())
5882      return false;
5883
5884    if (Subtarget->isThumb2())
5885      return isLegalT2ScaledAddressingMode(AM, VT);
5886
5887    int Scale = AM.Scale;
5888    switch (VT.getSimpleVT().SimpleTy) {
5889    default: return false;
5890    case MVT::i1:
5891    case MVT::i8:
5892    case MVT::i32:
5893      if (Scale < 0) Scale = -Scale;
5894      if (Scale == 1)
5895        return true;
5896      // r + r << imm
5897      return isPowerOf2_32(Scale & ~1);
5898    case MVT::i16:
5899    case MVT::i64:
5900      // r + r
5901      if (((unsigned)AM.HasBaseReg + Scale) <= 2)
5902        return true;
5903      return false;
5904
5905    case MVT::isVoid:
5906      // Note, we allow "void" uses (basically, uses that aren't loads or
5907      // stores), because arm allows folding a scale into many arithmetic
5908      // operations.  This should be made more precise and revisited later.
5909
5910      // Allow r << imm, but the imm has to be a multiple of two.
5911      if (Scale & 1) return false;
5912      return isPowerOf2_32(Scale);
5913    }
5914    break;
5915  }
5916  return true;
5917}
5918
5919/// isLegalICmpImmediate - Return true if the specified immediate is legal
5920/// icmp immediate, that is the target has icmp instructions which can compare
5921/// a register against the immediate without having to materialize the
5922/// immediate into a register.
5923bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
5924  if (!Subtarget->isThumb())
5925    return ARM_AM::getSOImmVal(Imm) != -1;
5926  if (Subtarget->isThumb2())
5927    return ARM_AM::getT2SOImmVal(Imm) != -1;
5928  return Imm >= 0 && Imm <= 255;
5929}
5930
5931static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT,
5932                                      bool isSEXTLoad, SDValue &Base,
5933                                      SDValue &Offset, bool &isInc,
5934                                      SelectionDAG &DAG) {
5935  if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
5936    return false;
5937
5938  if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
5939    // AddressingMode 3
5940    Base = Ptr->getOperand(0);
5941    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
5942      int RHSC = (int)RHS->getZExtValue();
5943      if (RHSC < 0 && RHSC > -256) {
5944        assert(Ptr->getOpcode() == ISD::ADD);
5945        isInc = false;
5946        Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
5947        return true;
5948      }
5949    }
5950    isInc = (Ptr->getOpcode() == ISD::ADD);
5951    Offset = Ptr->getOperand(1);
5952    return true;
5953  } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
5954    // AddressingMode 2
5955    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
5956      int RHSC = (int)RHS->getZExtValue();
5957      if (RHSC < 0 && RHSC > -0x1000) {
5958        assert(Ptr->getOpcode() == ISD::ADD);
5959        isInc = false;
5960        Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
5961        Base = Ptr->getOperand(0);
5962        return true;
5963      }
5964    }
5965
5966    if (Ptr->getOpcode() == ISD::ADD) {
5967      isInc = true;
5968      ARM_AM::ShiftOpc ShOpcVal= ARM_AM::getShiftOpcForNode(Ptr->getOperand(0));
5969      if (ShOpcVal != ARM_AM::no_shift) {
5970        Base = Ptr->getOperand(1);
5971        Offset = Ptr->getOperand(0);
5972      } else {
5973        Base = Ptr->getOperand(0);
5974        Offset = Ptr->getOperand(1);
5975      }
5976      return true;
5977    }
5978
5979    isInc = (Ptr->getOpcode() == ISD::ADD);
5980    Base = Ptr->getOperand(0);
5981    Offset = Ptr->getOperand(1);
5982    return true;
5983  }
5984
5985  // FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
5986  return false;
5987}
5988
5989static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT,
5990                                     bool isSEXTLoad, SDValue &Base,
5991                                     SDValue &Offset, bool &isInc,
5992                                     SelectionDAG &DAG) {
5993  if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
5994    return false;
5995
5996  Base = Ptr->getOperand(0);
5997  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
5998    int RHSC = (int)RHS->getZExtValue();
5999    if (RHSC < 0 && RHSC > -0x100) { // 8 bits.
6000      assert(Ptr->getOpcode() == ISD::ADD);
6001      isInc = false;
6002      Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
6003      return true;
6004    } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero.
6005      isInc = Ptr->getOpcode() == ISD::ADD;
6006      Offset = DAG.getConstant(RHSC, RHS->getValueType(0));
6007      return true;
6008    }
6009  }
6010
6011  return false;
6012}
6013
6014/// getPreIndexedAddressParts - returns true by value, base pointer and
6015/// offset pointer and addressing mode by reference if the node's address
6016/// can be legally represented as pre-indexed load / store address.
6017bool
6018ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
6019                                             SDValue &Offset,
6020                                             ISD::MemIndexedMode &AM,
6021                                             SelectionDAG &DAG) const {
6022  if (Subtarget->isThumb1Only())
6023    return false;
6024
6025  EVT VT;
6026  SDValue Ptr;
6027  bool isSEXTLoad = false;
6028  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
6029    Ptr = LD->getBasePtr();
6030    VT  = LD->getMemoryVT();
6031    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
6032  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
6033    Ptr = ST->getBasePtr();
6034    VT  = ST->getMemoryVT();
6035  } else
6036    return false;
6037
6038  bool isInc;
6039  bool isLegal = false;
6040  if (Subtarget->isThumb2())
6041    isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
6042                                       Offset, isInc, DAG);
6043  else
6044    isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
6045                                        Offset, isInc, DAG);
6046  if (!isLegal)
6047    return false;
6048
6049  AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
6050  return true;
6051}
6052
6053/// getPostIndexedAddressParts - returns true by value, base pointer and
6054/// offset pointer and addressing mode by reference if this node can be
6055/// combined with a load / store to form a post-indexed load / store.
6056bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
6057                                                   SDValue &Base,
6058                                                   SDValue &Offset,
6059                                                   ISD::MemIndexedMode &AM,
6060                                                   SelectionDAG &DAG) const {
6061  if (Subtarget->isThumb1Only())
6062    return false;
6063
6064  EVT VT;
6065  SDValue Ptr;
6066  bool isSEXTLoad = false;
6067  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
6068    VT  = LD->getMemoryVT();
6069    Ptr = LD->getBasePtr();
6070    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
6071  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
6072    VT  = ST->getMemoryVT();
6073    Ptr = ST->getBasePtr();
6074  } else
6075    return false;
6076
6077  bool isInc;
6078  bool isLegal = false;
6079  if (Subtarget->isThumb2())
6080    isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
6081                                       isInc, DAG);
6082  else
6083    isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
6084                                        isInc, DAG);
6085  if (!isLegal)
6086    return false;
6087
6088  if (Ptr != Base) {
6089    // Swap base ptr and offset to catch more post-index load / store when
6090    // it's legal. In Thumb2 mode, offset must be an immediate.
6091    if (Ptr == Offset && Op->getOpcode() == ISD::ADD &&
6092        !Subtarget->isThumb2())
6093      std::swap(Base, Offset);
6094
6095    // Post-indexed load / store update the base pointer.
6096    if (Ptr != Base)
6097      return false;
6098  }
6099
6100  AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
6101  return true;
6102}
6103
6104void ARMTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
6105                                                       const APInt &Mask,
6106                                                       APInt &KnownZero,
6107                                                       APInt &KnownOne,
6108                                                       const SelectionDAG &DAG,
6109                                                       unsigned Depth) const {
6110  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
6111  switch (Op.getOpcode()) {
6112  default: break;
6113  case ARMISD::CMOV: {
6114    // Bits are known zero/one if known on the LHS and RHS.
6115    DAG.ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
6116    if (KnownZero == 0 && KnownOne == 0) return;
6117
6118    APInt KnownZeroRHS, KnownOneRHS;
6119    DAG.ComputeMaskedBits(Op.getOperand(1), Mask,
6120                          KnownZeroRHS, KnownOneRHS, Depth+1);
6121    KnownZero &= KnownZeroRHS;
6122    KnownOne  &= KnownOneRHS;
6123    return;
6124  }
6125  }
6126}
6127
6128//===----------------------------------------------------------------------===//
6129//                           ARM Inline Assembly Support
6130//===----------------------------------------------------------------------===//
6131
6132bool ARMTargetLowering::ExpandInlineAsm(CallInst *CI) const {
6133  // Looking for "rev" which is V6+.
6134  if (!Subtarget->hasV6Ops())
6135    return false;
6136
6137  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
6138  std::string AsmStr = IA->getAsmString();
6139  SmallVector<StringRef, 4> AsmPieces;
6140  SplitString(AsmStr, AsmPieces, ";\n");
6141
6142  switch (AsmPieces.size()) {
6143  default: return false;
6144  case 1:
6145    AsmStr = AsmPieces[0];
6146    AsmPieces.clear();
6147    SplitString(AsmStr, AsmPieces, " \t,");
6148
6149    // rev $0, $1
6150    if (AsmPieces.size() == 3 &&
6151        AsmPieces[0] == "rev" && AsmPieces[1] == "$0" && AsmPieces[2] == "$1" &&
6152        IA->getConstraintString().compare(0, 4, "=l,l") == 0) {
6153      const IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
6154      if (Ty && Ty->getBitWidth() == 32)
6155        return IntrinsicLowering::LowerToByteSwap(CI);
6156    }
6157    break;
6158  }
6159
6160  return false;
6161}
6162
6163/// getConstraintType - Given a constraint letter, return the type of
6164/// constraint it is for this target.
6165ARMTargetLowering::ConstraintType
6166ARMTargetLowering::getConstraintType(const std::string &Constraint) const {
6167  if (Constraint.size() == 1) {
6168    switch (Constraint[0]) {
6169    default:  break;
6170    case 'l': return C_RegisterClass;
6171    case 'w': return C_RegisterClass;
6172    }
6173  }
6174  return TargetLowering::getConstraintType(Constraint);
6175}
6176
6177/// Examine constraint type and operand type and determine a weight value.
6178/// This object must already have been set up with the operand type
6179/// and the current alternative constraint selected.
6180TargetLowering::ConstraintWeight
6181ARMTargetLowering::getSingleConstraintMatchWeight(
6182    AsmOperandInfo &info, const char *constraint) const {
6183  ConstraintWeight weight = CW_Invalid;
6184  Value *CallOperandVal = info.CallOperandVal;
6185    // If we don't have a value, we can't do a match,
6186    // but allow it at the lowest weight.
6187  if (CallOperandVal == NULL)
6188    return CW_Default;
6189  const Type *type = CallOperandVal->getType();
6190  // Look at the constraint type.
6191  switch (*constraint) {
6192  default:
6193    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
6194    break;
6195  case 'l':
6196    if (type->isIntegerTy()) {
6197      if (Subtarget->isThumb())
6198        weight = CW_SpecificReg;
6199      else
6200        weight = CW_Register;
6201    }
6202    break;
6203  case 'w':
6204    if (type->isFloatingPointTy())
6205      weight = CW_Register;
6206    break;
6207  }
6208  return weight;
6209}
6210
6211std::pair<unsigned, const TargetRegisterClass*>
6212ARMTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
6213                                                EVT VT) const {
6214  if (Constraint.size() == 1) {
6215    // GCC ARM Constraint Letters
6216    switch (Constraint[0]) {
6217    case 'l':
6218      if (Subtarget->isThumb())
6219        return std::make_pair(0U, ARM::tGPRRegisterClass);
6220      else
6221        return std::make_pair(0U, ARM::GPRRegisterClass);
6222    case 'r':
6223      return std::make_pair(0U, ARM::GPRRegisterClass);
6224    case 'w':
6225      if (VT == MVT::f32)
6226        return std::make_pair(0U, ARM::SPRRegisterClass);
6227      if (VT.getSizeInBits() == 64)
6228        return std::make_pair(0U, ARM::DPRRegisterClass);
6229      if (VT.getSizeInBits() == 128)
6230        return std::make_pair(0U, ARM::QPRRegisterClass);
6231      break;
6232    }
6233  }
6234  if (StringRef("{cc}").equals_lower(Constraint))
6235    return std::make_pair(unsigned(ARM::CPSR), ARM::CCRRegisterClass);
6236
6237  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
6238}
6239
6240std::vector<unsigned> ARMTargetLowering::
6241getRegClassForInlineAsmConstraint(const std::string &Constraint,
6242                                  EVT VT) const {
6243  if (Constraint.size() != 1)
6244    return std::vector<unsigned>();
6245
6246  switch (Constraint[0]) {      // GCC ARM Constraint Letters
6247  default: break;
6248  case 'l':
6249    return make_vector<unsigned>(ARM::R0, ARM::R1, ARM::R2, ARM::R3,
6250                                 ARM::R4, ARM::R5, ARM::R6, ARM::R7,
6251                                 0);
6252  case 'r':
6253    return make_vector<unsigned>(ARM::R0, ARM::R1, ARM::R2, ARM::R3,
6254                                 ARM::R4, ARM::R5, ARM::R6, ARM::R7,
6255                                 ARM::R8, ARM::R9, ARM::R10, ARM::R11,
6256                                 ARM::R12, ARM::LR, 0);
6257  case 'w':
6258    if (VT == MVT::f32)
6259      return make_vector<unsigned>(ARM::S0, ARM::S1, ARM::S2, ARM::S3,
6260                                   ARM::S4, ARM::S5, ARM::S6, ARM::S7,
6261                                   ARM::S8, ARM::S9, ARM::S10, ARM::S11,
6262                                   ARM::S12,ARM::S13,ARM::S14,ARM::S15,
6263                                   ARM::S16,ARM::S17,ARM::S18,ARM::S19,
6264                                   ARM::S20,ARM::S21,ARM::S22,ARM::S23,
6265                                   ARM::S24,ARM::S25,ARM::S26,ARM::S27,
6266                                   ARM::S28,ARM::S29,ARM::S30,ARM::S31, 0);
6267    if (VT.getSizeInBits() == 64)
6268      return make_vector<unsigned>(ARM::D0, ARM::D1, ARM::D2, ARM::D3,
6269                                   ARM::D4, ARM::D5, ARM::D6, ARM::D7,
6270                                   ARM::D8, ARM::D9, ARM::D10,ARM::D11,
6271                                   ARM::D12,ARM::D13,ARM::D14,ARM::D15, 0);
6272    if (VT.getSizeInBits() == 128)
6273      return make_vector<unsigned>(ARM::Q0, ARM::Q1, ARM::Q2, ARM::Q3,
6274                                   ARM::Q4, ARM::Q5, ARM::Q6, ARM::Q7, 0);
6275      break;
6276  }
6277
6278  return std::vector<unsigned>();
6279}
6280
6281/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
6282/// vector.  If it is invalid, don't add anything to Ops.
6283void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
6284                                                     char Constraint,
6285                                                     std::vector<SDValue>&Ops,
6286                                                     SelectionDAG &DAG) const {
6287  SDValue Result(0, 0);
6288
6289  switch (Constraint) {
6290  default: break;
6291  case 'I': case 'J': case 'K': case 'L':
6292  case 'M': case 'N': case 'O':
6293    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
6294    if (!C)
6295      return;
6296
6297    int64_t CVal64 = C->getSExtValue();
6298    int CVal = (int) CVal64;
6299    // None of these constraints allow values larger than 32 bits.  Check
6300    // that the value fits in an int.
6301    if (CVal != CVal64)
6302      return;
6303
6304    switch (Constraint) {
6305      case 'I':
6306        if (Subtarget->isThumb1Only()) {
6307          // This must be a constant between 0 and 255, for ADD
6308          // immediates.
6309          if (CVal >= 0 && CVal <= 255)
6310            break;
6311        } else if (Subtarget->isThumb2()) {
6312          // A constant that can be used as an immediate value in a
6313          // data-processing instruction.
6314          if (ARM_AM::getT2SOImmVal(CVal) != -1)
6315            break;
6316        } else {
6317          // A constant that can be used as an immediate value in a
6318          // data-processing instruction.
6319          if (ARM_AM::getSOImmVal(CVal) != -1)
6320            break;
6321        }
6322        return;
6323
6324      case 'J':
6325        if (Subtarget->isThumb()) {  // FIXME thumb2
6326          // This must be a constant between -255 and -1, for negated ADD
6327          // immediates. This can be used in GCC with an "n" modifier that
6328          // prints the negated value, for use with SUB instructions. It is
6329          // not useful otherwise but is implemented for compatibility.
6330          if (CVal >= -255 && CVal <= -1)
6331            break;
6332        } else {
6333          // This must be a constant between -4095 and 4095. It is not clear
6334          // what this constraint is intended for. Implemented for
6335          // compatibility with GCC.
6336          if (CVal >= -4095 && CVal <= 4095)
6337            break;
6338        }
6339        return;
6340
6341      case 'K':
6342        if (Subtarget->isThumb1Only()) {
6343          // A 32-bit value where only one byte has a nonzero value. Exclude
6344          // zero to match GCC. This constraint is used by GCC internally for
6345          // constants that can be loaded with a move/shift combination.
6346          // It is not useful otherwise but is implemented for compatibility.
6347          if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal))
6348            break;
6349        } else if (Subtarget->isThumb2()) {
6350          // A constant whose bitwise inverse can be used as an immediate
6351          // value in a data-processing instruction. This can be used in GCC
6352          // with a "B" modifier that prints the inverted value, for use with
6353          // BIC and MVN instructions. It is not useful otherwise but is
6354          // implemented for compatibility.
6355          if (ARM_AM::getT2SOImmVal(~CVal) != -1)
6356            break;
6357        } else {
6358          // A constant whose bitwise inverse can be used as an immediate
6359          // value in a data-processing instruction. This can be used in GCC
6360          // with a "B" modifier that prints the inverted value, for use with
6361          // BIC and MVN instructions. It is not useful otherwise but is
6362          // implemented for compatibility.
6363          if (ARM_AM::getSOImmVal(~CVal) != -1)
6364            break;
6365        }
6366        return;
6367
6368      case 'L':
6369        if (Subtarget->isThumb1Only()) {
6370          // This must be a constant between -7 and 7,
6371          // for 3-operand ADD/SUB immediate instructions.
6372          if (CVal >= -7 && CVal < 7)
6373            break;
6374        } else if (Subtarget->isThumb2()) {
6375          // A constant whose negation can be used as an immediate value in a
6376          // data-processing instruction. This can be used in GCC with an "n"
6377          // modifier that prints the negated value, for use with SUB
6378          // instructions. It is not useful otherwise but is implemented for
6379          // compatibility.
6380          if (ARM_AM::getT2SOImmVal(-CVal) != -1)
6381            break;
6382        } else {
6383          // A constant whose negation can be used as an immediate value in a
6384          // data-processing instruction. This can be used in GCC with an "n"
6385          // modifier that prints the negated value, for use with SUB
6386          // instructions. It is not useful otherwise but is implemented for
6387          // compatibility.
6388          if (ARM_AM::getSOImmVal(-CVal) != -1)
6389            break;
6390        }
6391        return;
6392
6393      case 'M':
6394        if (Subtarget->isThumb()) { // FIXME thumb2
6395          // This must be a multiple of 4 between 0 and 1020, for
6396          // ADD sp + immediate.
6397          if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
6398            break;
6399        } else {
6400          // A power of two or a constant between 0 and 32.  This is used in
6401          // GCC for the shift amount on shifted register operands, but it is
6402          // useful in general for any shift amounts.
6403          if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0))
6404            break;
6405        }
6406        return;
6407
6408      case 'N':
6409        if (Subtarget->isThumb()) {  // FIXME thumb2
6410          // This must be a constant between 0 and 31, for shift amounts.
6411          if (CVal >= 0 && CVal <= 31)
6412            break;
6413        }
6414        return;
6415
6416      case 'O':
6417        if (Subtarget->isThumb()) {  // FIXME thumb2
6418          // This must be a multiple of 4 between -508 and 508, for
6419          // ADD/SUB sp = sp + immediate.
6420          if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
6421            break;
6422        }
6423        return;
6424    }
6425    Result = DAG.getTargetConstant(CVal, Op.getValueType());
6426    break;
6427  }
6428
6429  if (Result.getNode()) {
6430    Ops.push_back(Result);
6431    return;
6432  }
6433  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
6434}
6435
6436bool
6437ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
6438  // The ARM target isn't yet aware of offsets.
6439  return false;
6440}
6441
6442int ARM::getVFPf32Imm(const APFloat &FPImm) {
6443  APInt Imm = FPImm.bitcastToAPInt();
6444  uint32_t Sign = Imm.lshr(31).getZExtValue() & 1;
6445  int32_t Exp = (Imm.lshr(23).getSExtValue() & 0xff) - 127;  // -126 to 127
6446  int64_t Mantissa = Imm.getZExtValue() & 0x7fffff;  // 23 bits
6447
6448  // We can handle 4 bits of mantissa.
6449  // mantissa = (16+UInt(e:f:g:h))/16.
6450  if (Mantissa & 0x7ffff)
6451    return -1;
6452  Mantissa >>= 19;
6453  if ((Mantissa & 0xf) != Mantissa)
6454    return -1;
6455
6456  // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
6457  if (Exp < -3 || Exp > 4)
6458    return -1;
6459  Exp = ((Exp+3) & 0x7) ^ 4;
6460
6461  return ((int)Sign << 7) | (Exp << 4) | Mantissa;
6462}
6463
6464int ARM::getVFPf64Imm(const APFloat &FPImm) {
6465  APInt Imm = FPImm.bitcastToAPInt();
6466  uint64_t Sign = Imm.lshr(63).getZExtValue() & 1;
6467  int64_t Exp = (Imm.lshr(52).getSExtValue() & 0x7ff) - 1023;   // -1022 to 1023
6468  uint64_t Mantissa = Imm.getZExtValue() & 0xfffffffffffffLL;
6469
6470  // We can handle 4 bits of mantissa.
6471  // mantissa = (16+UInt(e:f:g:h))/16.
6472  if (Mantissa & 0xffffffffffffLL)
6473    return -1;
6474  Mantissa >>= 48;
6475  if ((Mantissa & 0xf) != Mantissa)
6476    return -1;
6477
6478  // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
6479  if (Exp < -3 || Exp > 4)
6480    return -1;
6481  Exp = ((Exp+3) & 0x7) ^ 4;
6482
6483  return ((int)Sign << 7) | (Exp << 4) | Mantissa;
6484}
6485
6486bool ARM::isBitFieldInvertedMask(unsigned v) {
6487  if (v == 0xffffffff)
6488    return 0;
6489  // there can be 1's on either or both "outsides", all the "inside"
6490  // bits must be 0's
6491  unsigned int lsb = 0, msb = 31;
6492  while (v & (1 << msb)) --msb;
6493  while (v & (1 << lsb)) ++lsb;
6494  for (unsigned int i = lsb; i <= msb; ++i) {
6495    if (v & (1 << i))
6496      return 0;
6497  }
6498  return 1;
6499}
6500
6501/// isFPImmLegal - Returns true if the target can instruction select the
6502/// specified FP immediate natively. If false, the legalizer will
6503/// materialize the FP immediate as a load from a constant pool.
6504bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
6505  if (!Subtarget->hasVFP3())
6506    return false;
6507  if (VT == MVT::f32)
6508    return ARM::getVFPf32Imm(Imm) != -1;
6509  if (VT == MVT::f64)
6510    return ARM::getVFPf64Imm(Imm) != -1;
6511  return false;
6512}
6513
6514/// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
6515/// MemIntrinsicNodes.  The associated MachineMemOperands record the alignment
6516/// specified in the intrinsic calls.
6517bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
6518                                           const CallInst &I,
6519                                           unsigned Intrinsic) const {
6520  switch (Intrinsic) {
6521  case Intrinsic::arm_neon_vld1:
6522  case Intrinsic::arm_neon_vld2:
6523  case Intrinsic::arm_neon_vld3:
6524  case Intrinsic::arm_neon_vld4:
6525  case Intrinsic::arm_neon_vld2lane:
6526  case Intrinsic::arm_neon_vld3lane:
6527  case Intrinsic::arm_neon_vld4lane: {
6528    Info.opc = ISD::INTRINSIC_W_CHAIN;
6529    // Conservatively set memVT to the entire set of vectors loaded.
6530    uint64_t NumElts = getTargetData()->getTypeAllocSize(I.getType()) / 8;
6531    Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
6532    Info.ptrVal = I.getArgOperand(0);
6533    Info.offset = 0;
6534    Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
6535    Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
6536    Info.vol = false; // volatile loads with NEON intrinsics not supported
6537    Info.readMem = true;
6538    Info.writeMem = false;
6539    return true;
6540  }
6541  case Intrinsic::arm_neon_vst1:
6542  case Intrinsic::arm_neon_vst2:
6543  case Intrinsic::arm_neon_vst3:
6544  case Intrinsic::arm_neon_vst4:
6545  case Intrinsic::arm_neon_vst2lane:
6546  case Intrinsic::arm_neon_vst3lane:
6547  case Intrinsic::arm_neon_vst4lane: {
6548    Info.opc = ISD::INTRINSIC_VOID;
6549    // Conservatively set memVT to the entire set of vectors stored.
6550    unsigned NumElts = 0;
6551    for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
6552      const Type *ArgTy = I.getArgOperand(ArgI)->getType();
6553      if (!ArgTy->isVectorTy())
6554        break;
6555      NumElts += getTargetData()->getTypeAllocSize(ArgTy) / 8;
6556    }
6557    Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
6558    Info.ptrVal = I.getArgOperand(0);
6559    Info.offset = 0;
6560    Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
6561    Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
6562    Info.vol = false; // volatile stores with NEON intrinsics not supported
6563    Info.readMem = false;
6564    Info.writeMem = true;
6565    return true;
6566  }
6567  default:
6568    break;
6569  }
6570
6571  return false;
6572}
6573