ARMJITInfo.cpp revision dac237e18209b697a8ba122d0ddd9cad4dfba1f8
1//===-- ARMJITInfo.cpp - Implement the JIT interfaces for the ARM target --===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the JIT interfaces for the ARM target.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "jit"
15#include "ARMJITInfo.h"
16#include "ARMInstrInfo.h"
17#include "ARMConstantPoolValue.h"
18#include "ARMRelocations.h"
19#include "ARMSubtarget.h"
20#include "llvm/Function.h"
21#include "llvm/CodeGen/JITCodeEmitter.h"
22#include "llvm/Config/alloca.h"
23#include "llvm/Support/Debug.h"
24#include "llvm/Support/ErrorHandling.h"
25#include "llvm/Support/Streams.h"
26#include "llvm/System/Memory.h"
27#include <cstdlib>
28using namespace llvm;
29
30void ARMJITInfo::replaceMachineCodeForFunction(void *Old, void *New) {
31  llvm_report_error("ARMJITInfo::replaceMachineCodeForFunction");
32}
33
34/// JITCompilerFunction - This contains the address of the JIT function used to
35/// compile a function lazily.
36static TargetJITInfo::JITCompilerFn JITCompilerFunction;
37
38// Get the ASMPREFIX for the current host.  This is often '_'.
39#ifndef __USER_LABEL_PREFIX__
40#define __USER_LABEL_PREFIX__
41#endif
42#define GETASMPREFIX2(X) #X
43#define GETASMPREFIX(X) GETASMPREFIX2(X)
44#define ASMPREFIX GETASMPREFIX(__USER_LABEL_PREFIX__)
45
46// CompilationCallback stub - We can't use a C function with inline assembly in
47// it, because we the prolog/epilog inserted by GCC won't work for us (we need
48// to preserve more context and manipulate the stack directly).  Instead,
49// write our own wrapper, which does things our way, so we have complete
50// control over register saving and restoring.
51extern "C" {
52#if defined(__arm__)
53  void ARMCompilationCallback(void);
54  asm(
55    ".text\n"
56    ".align 2\n"
57    ".globl " ASMPREFIX "ARMCompilationCallback\n"
58    ASMPREFIX "ARMCompilationCallback:\n"
59    // Save caller saved registers since they may contain stuff
60    // for the real target function right now. We have to act as if this
61    // whole compilation callback doesn't exist as far as the caller is
62    // concerned, so we can't just preserve the callee saved regs.
63    "stmdb sp!, {r0, r1, r2, r3, lr}\n"
64#ifndef __SOFTFP__
65    "fstmfdd sp!, {d0, d1, d2, d3, d4, d5, d6, d7}\n"
66#endif
67    // The LR contains the address of the stub function on entry.
68    // pass it as the argument to the C part of the callback
69    "mov  r0, lr\n"
70    "sub  sp, sp, #4\n"
71    // Call the C portion of the callback
72    "bl   " ASMPREFIX "ARMCompilationCallbackC\n"
73    "add  sp, sp, #4\n"
74    // Restoring the LR to the return address of the function that invoked
75    // the stub and de-allocating the stack space for it requires us to
76    // swap the two saved LR values on the stack, as they're backwards
77    // for what we need since the pop instruction has a pre-determined
78    // order for the registers.
79    //      +--------+
80    //   0  | LR     | Original return address
81    //      +--------+
82    //   1  | LR     | Stub address (start of stub)
83    // 2-5  | R3..R0 | Saved registers (we need to preserve all regs)
84    // 6-20 | D0..D7 | Saved VFP registers
85    //      +--------+
86    //
87#ifndef __SOFTFP__
88    // Restore VFP caller-saved registers.
89    "fldmfdd sp!, {d0, d1, d2, d3, d4, d5, d6, d7}\n"
90#endif
91    //
92    //      We need to exchange the values in slots 0 and 1 so we can
93    //      return to the address in slot 1 with the address in slot 0
94    //      restored to the LR.
95    "ldr  r0, [sp,#20]\n"
96    "ldr  r1, [sp,#16]\n"
97    "str  r1, [sp,#20]\n"
98    "str  r0, [sp,#16]\n"
99    // Return to the (newly modified) stub to invoke the real function.
100    // The above twiddling of the saved return addresses allows us to
101    // deallocate everything, including the LR the stub saved, all in one
102    // pop instruction.
103    "ldmia  sp!, {r0, r1, r2, r3, lr, pc}\n"
104      );
105#else  // Not an ARM host
106  void ARMCompilationCallback() {
107    LLVM_UNREACHABLE("Cannot call ARMCompilationCallback() on a non-ARM arch!\n");
108  }
109#endif
110}
111
112/// ARMCompilationCallbackC - This is the target-specific function invoked
113/// by the function stub when we did not know the real target of a call.
114/// This function must locate the start of the stub or call site and pass
115/// it into the JIT compiler function.
116extern "C" void ARMCompilationCallbackC(intptr_t StubAddr) {
117  // Get the address of the compiled code for this function.
118  intptr_t NewVal = (intptr_t)JITCompilerFunction((void*)StubAddr);
119
120  // Rewrite the call target... so that we don't end up here every time we
121  // execute the call. We're replacing the first two instructions of the
122  // stub with:
123  //   ldr pc, [pc,#-4]
124  //   <addr>
125  if (!sys::Memory::setRangeWritable((void*)StubAddr, 8)) {
126    LLVM_UNREACHABLE("ERROR: Unable to mark stub writable");
127  }
128  *(intptr_t *)StubAddr = 0xe51ff004;  // ldr pc, [pc, #-4]
129  *(intptr_t *)(StubAddr+4) = NewVal;
130  if (!sys::Memory::setRangeExecutable((void*)StubAddr, 8)) {
131    LLVM_UNREACHABLE("ERROR: Unable to mark stub executable");
132  }
133}
134
135TargetJITInfo::LazyResolverFn
136ARMJITInfo::getLazyResolverFunction(JITCompilerFn F) {
137  JITCompilerFunction = F;
138  return ARMCompilationCallback;
139}
140
141void *ARMJITInfo::emitGlobalValueIndirectSym(const GlobalValue *GV, void *Ptr,
142                                             JITCodeEmitter &JCE) {
143  JCE.startGVStub(GV, 4, 4);
144  JCE.emitWordLE((intptr_t)Ptr);
145  void *PtrAddr = JCE.finishGVStub(GV);
146  addIndirectSymAddr(Ptr, (intptr_t)PtrAddr);
147  return PtrAddr;
148}
149
150void *ARMJITInfo::emitFunctionStub(const Function* F, void *Fn,
151                                   JITCodeEmitter &JCE) {
152  // If this is just a call to an external function, emit a branch instead of a
153  // call.  The code is the same except for one bit of the last instruction.
154  if (Fn != (void*)(intptr_t)ARMCompilationCallback) {
155    // Branch to the corresponding function addr.
156    if (IsPIC) {
157      // The stub is 8-byte size and 4-aligned.
158      intptr_t LazyPtr = getIndirectSymAddr(Fn);
159      if (!LazyPtr) {
160        // In PIC mode, the function stub is loading a lazy-ptr.
161        LazyPtr= (intptr_t)emitGlobalValueIndirectSym((GlobalValue*)F, Fn, JCE);
162        if (F)
163          DOUT << "JIT: Indirect symbol emitted at [" << LazyPtr << "] for GV '"
164               << F->getName() << "'\n";
165        else
166          DOUT << "JIT: Stub emitted at [" << LazyPtr
167               << "] for external function at '" << Fn << "'\n";
168      }
169      JCE.startGVStub(F, 16, 4);
170      intptr_t Addr = (intptr_t)JCE.getCurrentPCValue();
171      JCE.emitWordLE(0xe59fc004);            // ldr pc, [pc, #+4]
172      JCE.emitWordLE(0xe08fc00c);            // L_func$scv: add ip, pc, ip
173      JCE.emitWordLE(0xe59cf000);            // ldr pc, [ip]
174      JCE.emitWordLE(LazyPtr - (Addr+4+8));  // func - (L_func$scv+8)
175      sys::Memory::InvalidateInstructionCache((void*)Addr, 16);
176    } else {
177      // The stub is 8-byte size and 4-aligned.
178      JCE.startGVStub(F, 8, 4);
179      intptr_t Addr = (intptr_t)JCE.getCurrentPCValue();
180      JCE.emitWordLE(0xe51ff004);    // ldr pc, [pc, #-4]
181      JCE.emitWordLE((intptr_t)Fn);  // addr of function
182      sys::Memory::InvalidateInstructionCache((void*)Addr, 8);
183    }
184  } else {
185    // The compilation callback will overwrite the first two words of this
186    // stub with indirect branch instructions targeting the compiled code.
187    // This stub sets the return address to restart the stub, so that
188    // the new branch will be invoked when we come back.
189    //
190    // Branch and link to the compilation callback.
191    // The stub is 16-byte size and 4-byte aligned.
192    JCE.startGVStub(F, 16, 4);
193    intptr_t Addr = (intptr_t)JCE.getCurrentPCValue();
194    // Save LR so the callback can determine which stub called it.
195    // The compilation callback is responsible for popping this prior
196    // to returning.
197    JCE.emitWordLE(0xe92d4000); // push {lr}
198    // Set the return address to go back to the start of this stub.
199    JCE.emitWordLE(0xe24fe00c); // sub lr, pc, #12
200    // Invoke the compilation callback.
201    JCE.emitWordLE(0xe51ff004); // ldr pc, [pc, #-4]
202    // The address of the compilation callback.
203    JCE.emitWordLE((intptr_t)ARMCompilationCallback);
204    sys::Memory::InvalidateInstructionCache((void*)Addr, 16);
205  }
206
207  return JCE.finishGVStub(F);
208}
209
210intptr_t ARMJITInfo::resolveRelocDestAddr(MachineRelocation *MR) const {
211  ARM::RelocationType RT = (ARM::RelocationType)MR->getRelocationType();
212  switch (RT) {
213  default:
214    return (intptr_t)(MR->getResultPointer());
215  case ARM::reloc_arm_pic_jt:
216    // Destination address - jump table base.
217    return (intptr_t)(MR->getResultPointer()) - MR->getConstantVal();
218  case ARM::reloc_arm_jt_base:
219    // Jump table base address.
220    return getJumpTableBaseAddr(MR->getJumpTableIndex());
221  case ARM::reloc_arm_cp_entry:
222  case ARM::reloc_arm_vfp_cp_entry:
223    // Constant pool entry address.
224    return getConstantPoolEntryAddr(MR->getConstantPoolIndex());
225  case ARM::reloc_arm_machine_cp_entry: {
226    ARMConstantPoolValue *ACPV = (ARMConstantPoolValue*)MR->getConstantVal();
227    assert((!ACPV->hasModifier() && !ACPV->mustAddCurrentAddress()) &&
228           "Can't handle this machine constant pool entry yet!");
229    intptr_t Addr = (intptr_t)(MR->getResultPointer());
230    Addr -= getPCLabelAddr(ACPV->getLabelId()) + ACPV->getPCAdjustment();
231    return Addr;
232  }
233  }
234}
235
236/// relocate - Before the JIT can run a block of code that has been emitted,
237/// it must rewrite the code to contain the actual addresses of any
238/// referenced global symbols.
239void ARMJITInfo::relocate(void *Function, MachineRelocation *MR,
240                          unsigned NumRelocs, unsigned char* GOTBase) {
241  for (unsigned i = 0; i != NumRelocs; ++i, ++MR) {
242    void *RelocPos = (char*)Function + MR->getMachineCodeOffset();
243    intptr_t ResultPtr = resolveRelocDestAddr(MR);
244    switch ((ARM::RelocationType)MR->getRelocationType()) {
245    case ARM::reloc_arm_cp_entry:
246    case ARM::reloc_arm_vfp_cp_entry:
247    case ARM::reloc_arm_relative: {
248      // It is necessary to calculate the correct PC relative value. We
249      // subtract the base addr from the target addr to form a byte offset.
250      ResultPtr = ResultPtr - (intptr_t)RelocPos - 8;
251      // If the result is positive, set bit U(23) to 1.
252      if (ResultPtr >= 0)
253        *((intptr_t*)RelocPos) |= 1 << ARMII::U_BitShift;
254      else {
255        // Otherwise, obtain the absolute value and set bit U(23) to 0.
256        *((intptr_t*)RelocPos) &= ~(1 << ARMII::U_BitShift);
257        ResultPtr = - ResultPtr;
258      }
259      // Set the immed value calculated.
260      // VFP immediate offset is multiplied by 4.
261      if (MR->getRelocationType() == ARM::reloc_arm_vfp_cp_entry)
262        ResultPtr = ResultPtr >> 2;
263      *((intptr_t*)RelocPos) |= ResultPtr;
264      // Set register Rn to PC.
265      *((intptr_t*)RelocPos) |=
266        ARMRegisterInfo::getRegisterNumbering(ARM::PC) << ARMII::RegRnShift;
267      break;
268    }
269    case ARM::reloc_arm_pic_jt:
270    case ARM::reloc_arm_machine_cp_entry:
271    case ARM::reloc_arm_absolute: {
272      // These addresses have already been resolved.
273      *((intptr_t*)RelocPos) |= (intptr_t)ResultPtr;
274      break;
275    }
276    case ARM::reloc_arm_branch: {
277      // It is necessary to calculate the correct value of signed_immed_24
278      // field. We subtract the base addr from the target addr to form a
279      // byte offset, which must be inside the range -33554432 and +33554428.
280      // Then, we set the signed_immed_24 field of the instruction to bits
281      // [25:2] of the byte offset. More details ARM-ARM p. A4-11.
282      ResultPtr = ResultPtr - (intptr_t)RelocPos - 8;
283      ResultPtr = (ResultPtr & 0x03FFFFFC) >> 2;
284      assert(ResultPtr >= -33554432 && ResultPtr <= 33554428);
285      *((intptr_t*)RelocPos) |= ResultPtr;
286      break;
287    }
288    case ARM::reloc_arm_jt_base: {
289      // JT base - (instruction addr + 8)
290      ResultPtr = ResultPtr - (intptr_t)RelocPos - 8;
291      *((intptr_t*)RelocPos) |= ResultPtr;
292      break;
293    }
294    }
295  }
296}
297