PPCISelLowering.h revision 5b8f82e35b51bf007de07a7ca9347d804084ddf8
1//===-- PPCISelLowering.h - PPC32 DAG Lowering Interface --------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that PPC uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H
16#define LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H
17
18#include "llvm/Target/TargetLowering.h"
19#include "llvm/CodeGen/SelectionDAG.h"
20#include "PPC.h"
21#include "PPCSubtarget.h"
22
23namespace llvm {
24  namespace PPCISD {
25    enum NodeType {
26      // Start the numbering where the builtin ops and target ops leave off.
27      FIRST_NUMBER = ISD::BUILTIN_OP_END+PPC::INSTRUCTION_LIST_END,
28
29      /// FSEL - Traditional three-operand fsel node.
30      ///
31      FSEL,
32
33      /// FCFID - The FCFID instruction, taking an f64 operand and producing
34      /// and f64 value containing the FP representation of the integer that
35      /// was temporarily in the f64 operand.
36      FCFID,
37
38      /// FCTI[D,W]Z - The FCTIDZ and FCTIWZ instructions, taking an f32 or f64
39      /// operand, producing an f64 value containing the integer representation
40      /// of that FP value.
41      FCTIDZ, FCTIWZ,
42
43      /// STFIWX - The STFIWX instruction.  The first operand is an input token
44      /// chain, then an f64 value to store, then an address to store it to,
45      /// then a SRCVALUE for the address.
46      STFIWX,
47
48      // VMADDFP, VNMSUBFP - The VMADDFP and VNMSUBFP instructions, taking
49      // three v4f32 operands and producing a v4f32 result.
50      VMADDFP, VNMSUBFP,
51
52      /// VPERM - The PPC VPERM Instruction.
53      ///
54      VPERM,
55
56      /// Hi/Lo - These represent the high and low 16-bit parts of a global
57      /// address respectively.  These nodes have two operands, the first of
58      /// which must be a TargetGlobalAddress, and the second of which must be a
59      /// Constant.  Selected naively, these turn into 'lis G+C' and 'li G+C',
60      /// though these are usually folded into other nodes.
61      Hi, Lo,
62
63      /// OPRC, CHAIN = DYNALLOC(CHAIN, NEGSIZE, FRAME_INDEX)
64      /// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to
65      /// compute an allocation on the stack.
66      DYNALLOC,
67
68      /// GlobalBaseReg - On Darwin, this node represents the result of the mflr
69      /// at function entry, used for PIC code.
70      GlobalBaseReg,
71
72      /// These nodes represent the 32-bit PPC shifts that operate on 6-bit
73      /// shift amounts.  These nodes are generated by the multi-precision shift
74      /// code.
75      SRL, SRA, SHL,
76
77      /// EXTSW_32 - This is the EXTSW instruction for use with "32-bit"
78      /// registers.
79      EXTSW_32,
80
81      /// STD_32 - This is the STD instruction for use with "32-bit" registers.
82      STD_32,
83
84      /// CALL - A direct function call.
85      CALL_Macho, CALL_ELF,
86
87      /// CHAIN,FLAG = MTCTR(VAL, CHAIN[, INFLAG]) - Directly corresponds to a
88      /// MTCTR instruction.
89      MTCTR,
90
91      /// CHAIN,FLAG = BCTRL(CHAIN, INFLAG) - Directly corresponds to a
92      /// BCTRL instruction.
93      BCTRL_Macho, BCTRL_ELF,
94
95      /// Return with a flag operand, matched by 'blr'
96      RET_FLAG,
97
98      /// R32 = MFCR(CRREG, INFLAG) - Represents the MFCR/MFOCRF instructions.
99      /// This copies the bits corresponding to the specified CRREG into the
100      /// resultant GPR.  Bits corresponding to other CR regs are undefined.
101      MFCR,
102
103      /// RESVEC = VCMP(LHS, RHS, OPC) - Represents one of the altivec VCMP*
104      /// instructions.  For lack of better number, we use the opcode number
105      /// encoding for the OPC field to identify the compare.  For example, 838
106      /// is VCMPGTSH.
107      VCMP,
108
109      /// RESVEC, OUTFLAG = VCMPo(LHS, RHS, OPC) - Represents one of the
110      /// altivec VCMP*o instructions.  For lack of better number, we use the
111      /// opcode number encoding for the OPC field to identify the compare.  For
112      /// example, 838 is VCMPGTSH.
113      VCMPo,
114
115      /// CHAIN = COND_BRANCH CHAIN, CRRC, OPC, DESTBB [, INFLAG] - This
116      /// corresponds to the COND_BRANCH pseudo instruction.  CRRC is the
117      /// condition register to branch on, OPC is the branch opcode to use (e.g.
118      /// PPC::BLE), DESTBB is the destination block to branch to, and INFLAG is
119      /// an optional input flag argument.
120      COND_BRANCH,
121
122      /// CHAIN = STBRX CHAIN, GPRC, Ptr, SRCVALUE, Type - This is a
123      /// byte-swapping store instruction.  It byte-swaps the low "Type" bits of
124      /// the GPRC input, then stores it through Ptr.  Type can be either i16 or
125      /// i32.
126      STBRX,
127
128      /// GPRC, CHAIN = LBRX CHAIN, Ptr, SRCVALUE, Type - This is a
129      /// byte-swapping load instruction.  It loads "Type" bits, byte swaps it,
130      /// then puts it in the bottom bits of the GPRC.  TYPE can be either i16
131      /// or i32.
132      LBRX,
133
134      // The following 5 instructions are used only as part of the
135      // long double-to-int conversion sequence.
136
137      /// OUTFLAG = MFFS F8RC - This moves the FPSCR (not modelled) into the
138      /// register.
139      MFFS,
140
141      /// OUTFLAG = MTFSB0 INFLAG - This clears a bit in the FPSCR.
142      MTFSB0,
143
144      /// OUTFLAG = MTFSB1 INFLAG - This sets a bit in the FPSCR.
145      MTFSB1,
146
147      /// F8RC, OUTFLAG = FADDRTZ F8RC, F8RC, INFLAG - This is an FADD done with
148      /// rounding towards zero.  It has flags added so it won't move past the
149      /// FPSCR-setting instructions.
150      FADDRTZ,
151
152      /// MTFSF = F8RC, INFLAG - This moves the register into the FPSCR.
153      MTFSF
154    };
155  }
156
157  /// Define some predicates that are used for node matching.
158  namespace PPC {
159    /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
160    /// VPKUHUM instruction.
161    bool isVPKUHUMShuffleMask(SDNode *N, bool isUnary);
162
163    /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
164    /// VPKUWUM instruction.
165    bool isVPKUWUMShuffleMask(SDNode *N, bool isUnary);
166
167    /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
168    /// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
169    bool isVMRGLShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary);
170
171    /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
172    /// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
173    bool isVMRGHShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary);
174
175    /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
176    /// amount, otherwise return -1.
177    int isVSLDOIShuffleMask(SDNode *N, bool isUnary);
178
179    /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
180    /// specifies a splat of a single element that is suitable for input to
181    /// VSPLTB/VSPLTH/VSPLTW.
182    bool isSplatShuffleMask(SDNode *N, unsigned EltSize);
183
184    /// isAllNegativeZeroVector - Returns true if all elements of build_vector
185    /// are -0.0.
186    bool isAllNegativeZeroVector(SDNode *N);
187
188    /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
189    /// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
190    unsigned getVSPLTImmediate(SDNode *N, unsigned EltSize);
191
192    /// get_VSPLTI_elt - If this is a build_vector of constants which can be
193    /// formed by using a vspltis[bhw] instruction of the specified element
194    /// size, return the constant being splatted.  The ByteSize field indicates
195    /// the number of bytes of each element [124] -> [bhw].
196    SDOperand get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG);
197  }
198
199  class PPCTargetLowering : public TargetLowering {
200    int VarArgsFrameIndex;            // FrameIndex for start of varargs area.
201    int VarArgsStackOffset;           // StackOffset for start of stack
202                                      // arguments.
203    unsigned VarArgsNumGPR;           // Index of the first unused integer
204                                      // register for parameter passing.
205    unsigned VarArgsNumFPR;           // Index of the first unused double
206                                      // register for parameter passing.
207    int ReturnAddrIndex;              // FrameIndex for return slot.
208    const PPCSubtarget &PPCSubTarget;
209  public:
210    explicit PPCTargetLowering(PPCTargetMachine &TM);
211
212    /// getTargetNodeName() - This method returns the name of a target specific
213    /// DAG node.
214    virtual const char *getTargetNodeName(unsigned Opcode) const;
215
216    /// getSetCCResultType - Return the ISD::SETCC ValueType
217    virtual MVT::ValueType getSetCCResultType(const SDOperand &) const;
218
219    /// getPreIndexedAddressParts - returns true by value, base pointer and
220    /// offset pointer and addressing mode by reference if the node's address
221    /// can be legally represented as pre-indexed load / store address.
222    virtual bool getPreIndexedAddressParts(SDNode *N, SDOperand &Base,
223                                           SDOperand &Offset,
224                                           ISD::MemIndexedMode &AM,
225                                           SelectionDAG &DAG);
226
227    /// SelectAddressRegReg - Given the specified addressed, check to see if it
228    /// can be represented as an indexed [r+r] operation.  Returns false if it
229    /// can be more efficiently represented with [r+imm].
230    bool SelectAddressRegReg(SDOperand N, SDOperand &Base, SDOperand &Index,
231                             SelectionDAG &DAG);
232
233    /// SelectAddressRegImm - Returns true if the address N can be represented
234    /// by a base register plus a signed 16-bit displacement [r+imm], and if it
235    /// is not better represented as reg+reg.
236    bool SelectAddressRegImm(SDOperand N, SDOperand &Disp, SDOperand &Base,
237                             SelectionDAG &DAG);
238
239    /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
240    /// represented as an indexed [r+r] operation.
241    bool SelectAddressRegRegOnly(SDOperand N, SDOperand &Base, SDOperand &Index,
242                                 SelectionDAG &DAG);
243
244    /// SelectAddressRegImmShift - Returns true if the address N can be
245    /// represented by a base register plus a signed 14-bit displacement
246    /// [r+imm*4].  Suitable for use by STD and friends.
247    bool SelectAddressRegImmShift(SDOperand N, SDOperand &Disp, SDOperand &Base,
248                                  SelectionDAG &DAG);
249
250
251    /// LowerOperation - Provide custom lowering hooks for some operations.
252    ///
253    virtual SDOperand LowerOperation(SDOperand Op, SelectionDAG &DAG);
254
255    virtual SDNode *ExpandOperationResult(SDNode *N, SelectionDAG &DAG);
256
257    virtual SDOperand PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
258
259    virtual void computeMaskedBitsForTargetNode(const SDOperand Op,
260                                                const APInt &Mask,
261                                                APInt &KnownZero,
262                                                APInt &KnownOne,
263                                                const SelectionDAG &DAG,
264                                                unsigned Depth = 0) const;
265
266    virtual MachineBasicBlock *EmitInstrWithCustomInserter(MachineInstr *MI,
267                                                        MachineBasicBlock *MBB);
268
269    ConstraintType getConstraintType(const std::string &Constraint) const;
270    std::pair<unsigned, const TargetRegisterClass*>
271      getRegForInlineAsmConstraint(const std::string &Constraint,
272                                   MVT::ValueType VT) const;
273
274    /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
275    /// function arguments in the caller parameter area.  This is the actual
276    /// alignment, not its logarithm.
277    unsigned getByValTypeAlignment(const Type *Ty) const;
278
279    /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
280    /// vector.  If it is invalid, don't add anything to Ops.
281    virtual void LowerAsmOperandForConstraint(SDOperand Op,
282                                              char ConstraintLetter,
283                                              std::vector<SDOperand> &Ops,
284                                              SelectionDAG &DAG);
285
286    /// isLegalAddressingMode - Return true if the addressing mode represented
287    /// by AM is legal for this target, for a load/store of the specified type.
288    virtual bool isLegalAddressingMode(const AddrMode &AM, const Type *Ty)const;
289
290    /// isLegalAddressImmediate - Return true if the integer value can be used
291    /// as the offset of the target addressing mode for load / store of the
292    /// given type.
293    virtual bool isLegalAddressImmediate(int64_t V, const Type *Ty) const;
294
295    /// isLegalAddressImmediate - Return true if the GlobalValue can be used as
296    /// the offset of the target addressing mode.
297    virtual bool isLegalAddressImmediate(GlobalValue *GV) const;
298
299    SDOperand LowerRETURNADDR(SDOperand Op, SelectionDAG &DAG);
300    SDOperand LowerFRAMEADDR(SDOperand Op, SelectionDAG &DAG);
301    SDOperand LowerConstantPool(SDOperand Op, SelectionDAG &DAG);
302    SDOperand LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG);
303    SDOperand LowerGlobalTLSAddress(SDOperand Op, SelectionDAG &DAG);
304    SDOperand LowerJumpTable(SDOperand Op, SelectionDAG &DAG);
305    SDOperand LowerSETCC(SDOperand Op, SelectionDAG &DAG);
306    SDOperand LowerVASTART(SDOperand Op, SelectionDAG &DAG,
307                           int VarArgsFrameIndex, int VarArgsStackOffset,
308                           unsigned VarArgsNumGPR, unsigned VarArgsNumFPR,
309                           const PPCSubtarget &Subtarget);
310    SDOperand LowerVAARG(SDOperand Op, SelectionDAG &DAG, int VarArgsFrameIndex,
311                         int VarArgsStackOffset, unsigned VarArgsNumGPR,
312                         unsigned VarArgsNumFPR, const PPCSubtarget &Subtarget);
313    SDOperand LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG,
314                                    int &VarArgsFrameIndex,
315                                    int &VarArgsStackOffset,
316                                    unsigned &VarArgsNumGPR,
317                                    unsigned &VarArgsNumFPR,
318                                    const PPCSubtarget &Subtarget);
319    SDOperand LowerCALL(SDOperand Op, SelectionDAG &DAG,
320                        const PPCSubtarget &Subtarget);
321    SDOperand LowerRET(SDOperand Op, SelectionDAG &DAG, TargetMachine &TM);
322    SDOperand LowerSTACKRESTORE(SDOperand Op, SelectionDAG &DAG,
323                                const PPCSubtarget &Subtarget);
324    SDOperand LowerDYNAMIC_STACKALLOC(SDOperand Op, SelectionDAG &DAG,
325                                      const PPCSubtarget &Subtarget);
326    SDOperand LowerSELECT_CC(SDOperand Op, SelectionDAG &DAG);
327    SDOperand LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG);
328    SDOperand LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG);
329    SDOperand LowerFP_ROUND_INREG(SDOperand Op, SelectionDAG &DAG);
330    SDOperand LowerFLT_ROUNDS_(SDOperand Op, SelectionDAG &DAG);
331    SDOperand LowerSHL_PARTS(SDOperand Op, SelectionDAG &DAG);
332    SDOperand LowerSRL_PARTS(SDOperand Op, SelectionDAG &DAG);
333    SDOperand LowerSRA_PARTS(SDOperand Op, SelectionDAG &DAG);
334    SDOperand LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG);
335    SDOperand LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG);
336    SDOperand LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG);
337    SDOperand LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG);
338    SDOperand LowerMUL(SDOperand Op, SelectionDAG &DAG);
339  };
340}
341
342#endif   // LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H
343