X86AsmBackend.cpp revision 4e02f23de24375294005f88b5254a3775d39fcb2
1//===-- X86AsmBackend.cpp - X86 Assembler Backend -------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#include "MCTargetDesc/X86BaseInfo.h"
11#include "MCTargetDesc/X86FixupKinds.h"
12#include "llvm/MC/MCAsmBackend.h"
13#include "llvm/MC/MCAssembler.h"
14#include "llvm/MC/MCELFObjectWriter.h"
15#include "llvm/MC/MCExpr.h"
16#include "llvm/MC/MCFixupKindInfo.h"
17#include "llvm/MC/MCMachObjectWriter.h"
18#include "llvm/MC/MCObjectWriter.h"
19#include "llvm/MC/MCSectionCOFF.h"
20#include "llvm/MC/MCSectionELF.h"
21#include "llvm/MC/MCSectionMachO.h"
22#include "llvm/Object/MachOFormat.h"
23#include "llvm/Support/CommandLine.h"
24#include "llvm/Support/ELF.h"
25#include "llvm/Support/ErrorHandling.h"
26#include "llvm/Support/TargetRegistry.h"
27#include "llvm/Support/raw_ostream.h"
28using namespace llvm;
29
30// Option to allow disabling arithmetic relaxation to workaround PR9807, which
31// is useful when running bitwise comparison experiments on Darwin. We should be
32// able to remove this once PR9807 is resolved.
33static cl::opt<bool>
34MCDisableArithRelaxation("mc-x86-disable-arith-relaxation",
35         cl::desc("Disable relaxation of arithmetic instruction for X86"));
36
37static unsigned getFixupKindLog2Size(unsigned Kind) {
38  switch (Kind) {
39  default: llvm_unreachable("invalid fixup kind!");
40  case FK_PCRel_1:
41  case FK_SecRel_1:
42  case FK_Data_1: return 0;
43  case FK_PCRel_2:
44  case FK_SecRel_2:
45  case FK_Data_2: return 1;
46  case FK_PCRel_4:
47  case X86::reloc_riprel_4byte:
48  case X86::reloc_riprel_4byte_movq_load:
49  case X86::reloc_signed_4byte:
50  case X86::reloc_global_offset_table:
51  case FK_SecRel_4:
52  case FK_Data_4: return 2;
53  case FK_PCRel_8:
54  case FK_SecRel_8:
55  case FK_Data_8: return 3;
56  }
57}
58
59namespace {
60
61class X86ELFObjectWriter : public MCELFObjectTargetWriter {
62public:
63  X86ELFObjectWriter(bool is64Bit, uint8_t OSABI, uint16_t EMachine,
64                     bool HasRelocationAddend, bool foobar)
65    : MCELFObjectTargetWriter(is64Bit, OSABI, EMachine, HasRelocationAddend) {}
66};
67
68class X86AsmBackend : public MCAsmBackend {
69public:
70  X86AsmBackend(const Target &T)
71    : MCAsmBackend() {}
72
73  unsigned getNumFixupKinds() const {
74    return X86::NumTargetFixupKinds;
75  }
76
77  const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const {
78    const static MCFixupKindInfo Infos[X86::NumTargetFixupKinds] = {
79      { "reloc_riprel_4byte", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel },
80      { "reloc_riprel_4byte_movq_load", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel},
81      { "reloc_signed_4byte", 0, 4 * 8, 0},
82      { "reloc_global_offset_table", 0, 4 * 8, 0}
83    };
84
85    if (Kind < FirstTargetFixupKind)
86      return MCAsmBackend::getFixupKindInfo(Kind);
87
88    assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
89           "Invalid kind!");
90    return Infos[Kind - FirstTargetFixupKind];
91  }
92
93  void applyFixup(const MCFixup &Fixup, char *Data, unsigned DataSize,
94                  uint64_t Value) const {
95    unsigned Size = 1 << getFixupKindLog2Size(Fixup.getKind());
96
97    assert(Fixup.getOffset() + Size <= DataSize &&
98           "Invalid fixup offset!");
99
100    // Check that uppper bits are either all zeros or all ones.
101    // Specifically ignore overflow/underflow as long as the leakage is
102    // limited to the lower bits. This is to remain compatible with
103    // other assemblers.
104    assert(isIntN(Size * 8 + 1, Value) &&
105           "Value does not fit in the Fixup field");
106
107    for (unsigned i = 0; i != Size; ++i)
108      Data[Fixup.getOffset() + i] = uint8_t(Value >> (i * 8));
109  }
110
111  bool mayNeedRelaxation(const MCInst &Inst) const;
112
113  bool fixupNeedsRelaxation(const MCFixup &Fixup,
114                            uint64_t Value,
115                            const MCInstFragment *DF,
116                            const MCAsmLayout &Layout) const;
117
118  void relaxInstruction(const MCInst &Inst, MCInst &Res) const;
119
120  bool writeNopData(uint64_t Count, MCObjectWriter *OW) const;
121};
122} // end anonymous namespace
123
124static unsigned getRelaxedOpcodeBranch(unsigned Op) {
125  switch (Op) {
126  default:
127    return Op;
128
129  case X86::JAE_1: return X86::JAE_4;
130  case X86::JA_1:  return X86::JA_4;
131  case X86::JBE_1: return X86::JBE_4;
132  case X86::JB_1:  return X86::JB_4;
133  case X86::JE_1:  return X86::JE_4;
134  case X86::JGE_1: return X86::JGE_4;
135  case X86::JG_1:  return X86::JG_4;
136  case X86::JLE_1: return X86::JLE_4;
137  case X86::JL_1:  return X86::JL_4;
138  case X86::JMP_1: return X86::JMP_4;
139  case X86::JNE_1: return X86::JNE_4;
140  case X86::JNO_1: return X86::JNO_4;
141  case X86::JNP_1: return X86::JNP_4;
142  case X86::JNS_1: return X86::JNS_4;
143  case X86::JO_1:  return X86::JO_4;
144  case X86::JP_1:  return X86::JP_4;
145  case X86::JS_1:  return X86::JS_4;
146  }
147}
148
149static unsigned getRelaxedOpcodeArith(unsigned Op) {
150  switch (Op) {
151  default:
152    return Op;
153
154    // IMUL
155  case X86::IMUL16rri8: return X86::IMUL16rri;
156  case X86::IMUL16rmi8: return X86::IMUL16rmi;
157  case X86::IMUL32rri8: return X86::IMUL32rri;
158  case X86::IMUL32rmi8: return X86::IMUL32rmi;
159  case X86::IMUL64rri8: return X86::IMUL64rri32;
160  case X86::IMUL64rmi8: return X86::IMUL64rmi32;
161
162    // AND
163  case X86::AND16ri8: return X86::AND16ri;
164  case X86::AND16mi8: return X86::AND16mi;
165  case X86::AND32ri8: return X86::AND32ri;
166  case X86::AND32mi8: return X86::AND32mi;
167  case X86::AND64ri8: return X86::AND64ri32;
168  case X86::AND64mi8: return X86::AND64mi32;
169
170    // OR
171  case X86::OR16ri8: return X86::OR16ri;
172  case X86::OR16mi8: return X86::OR16mi;
173  case X86::OR32ri8: return X86::OR32ri;
174  case X86::OR32mi8: return X86::OR32mi;
175  case X86::OR64ri8: return X86::OR64ri32;
176  case X86::OR64mi8: return X86::OR64mi32;
177
178    // XOR
179  case X86::XOR16ri8: return X86::XOR16ri;
180  case X86::XOR16mi8: return X86::XOR16mi;
181  case X86::XOR32ri8: return X86::XOR32ri;
182  case X86::XOR32mi8: return X86::XOR32mi;
183  case X86::XOR64ri8: return X86::XOR64ri32;
184  case X86::XOR64mi8: return X86::XOR64mi32;
185
186    // ADD
187  case X86::ADD16ri8: return X86::ADD16ri;
188  case X86::ADD16mi8: return X86::ADD16mi;
189  case X86::ADD32ri8: return X86::ADD32ri;
190  case X86::ADD32mi8: return X86::ADD32mi;
191  case X86::ADD64ri8: return X86::ADD64ri32;
192  case X86::ADD64mi8: return X86::ADD64mi32;
193
194    // SUB
195  case X86::SUB16ri8: return X86::SUB16ri;
196  case X86::SUB16mi8: return X86::SUB16mi;
197  case X86::SUB32ri8: return X86::SUB32ri;
198  case X86::SUB32mi8: return X86::SUB32mi;
199  case X86::SUB64ri8: return X86::SUB64ri32;
200  case X86::SUB64mi8: return X86::SUB64mi32;
201
202    // CMP
203  case X86::CMP16ri8: return X86::CMP16ri;
204  case X86::CMP16mi8: return X86::CMP16mi;
205  case X86::CMP32ri8: return X86::CMP32ri;
206  case X86::CMP32mi8: return X86::CMP32mi;
207  case X86::CMP64ri8: return X86::CMP64ri32;
208  case X86::CMP64mi8: return X86::CMP64mi32;
209
210    // PUSH
211  case X86::PUSHi8: return X86::PUSHi32;
212  case X86::PUSHi16: return X86::PUSHi32;
213  case X86::PUSH64i8: return X86::PUSH64i32;
214  case X86::PUSH64i16: return X86::PUSH64i32;
215  }
216}
217
218static unsigned getRelaxedOpcode(unsigned Op) {
219  unsigned R = getRelaxedOpcodeArith(Op);
220  if (R != Op)
221    return R;
222  return getRelaxedOpcodeBranch(Op);
223}
224
225bool X86AsmBackend::mayNeedRelaxation(const MCInst &Inst) const {
226  // Branches can always be relaxed.
227  if (getRelaxedOpcodeBranch(Inst.getOpcode()) != Inst.getOpcode())
228    return true;
229
230  if (MCDisableArithRelaxation)
231    return false;
232
233  // Check if this instruction is ever relaxable.
234  if (getRelaxedOpcodeArith(Inst.getOpcode()) == Inst.getOpcode())
235    return false;
236
237
238  // Check if it has an expression and is not RIP relative.
239  bool hasExp = false;
240  bool hasRIP = false;
241  for (unsigned i = 0; i < Inst.getNumOperands(); ++i) {
242    const MCOperand &Op = Inst.getOperand(i);
243    if (Op.isExpr())
244      hasExp = true;
245
246    if (Op.isReg() && Op.getReg() == X86::RIP)
247      hasRIP = true;
248  }
249
250  // FIXME: Why exactly do we need the !hasRIP? Is it just a limitation on
251  // how we do relaxations?
252  return hasExp && !hasRIP;
253}
254
255bool X86AsmBackend::fixupNeedsRelaxation(const MCFixup &Fixup,
256                                         uint64_t Value,
257                                         const MCInstFragment *DF,
258                                         const MCAsmLayout &Layout) const {
259  // Relax if the value is too big for a (signed) i8.
260  return int64_t(Value) != int64_t(int8_t(Value));
261}
262
263// FIXME: Can tblgen help at all here to verify there aren't other instructions
264// we can relax?
265void X86AsmBackend::relaxInstruction(const MCInst &Inst, MCInst &Res) const {
266  // The only relaxations X86 does is from a 1byte pcrel to a 4byte pcrel.
267  unsigned RelaxedOp = getRelaxedOpcode(Inst.getOpcode());
268
269  if (RelaxedOp == Inst.getOpcode()) {
270    SmallString<256> Tmp;
271    raw_svector_ostream OS(Tmp);
272    Inst.dump_pretty(OS);
273    OS << "\n";
274    report_fatal_error("unexpected instruction to relax: " + OS.str());
275  }
276
277  Res = Inst;
278  Res.setOpcode(RelaxedOp);
279}
280
281/// writeNopData - Write optimal nops to the output file for the \arg Count
282/// bytes.  This returns the number of bytes written.  It may return 0 if
283/// the \arg Count is more than the maximum optimal nops.
284bool X86AsmBackend::writeNopData(uint64_t Count, MCObjectWriter *OW) const {
285  static const uint8_t Nops[10][10] = {
286    // nop
287    {0x90},
288    // xchg %ax,%ax
289    {0x66, 0x90},
290    // nopl (%[re]ax)
291    {0x0f, 0x1f, 0x00},
292    // nopl 0(%[re]ax)
293    {0x0f, 0x1f, 0x40, 0x00},
294    // nopl 0(%[re]ax,%[re]ax,1)
295    {0x0f, 0x1f, 0x44, 0x00, 0x00},
296    // nopw 0(%[re]ax,%[re]ax,1)
297    {0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00},
298    // nopl 0L(%[re]ax)
299    {0x0f, 0x1f, 0x80, 0x00, 0x00, 0x00, 0x00},
300    // nopl 0L(%[re]ax,%[re]ax,1)
301    {0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
302    // nopw 0L(%[re]ax,%[re]ax,1)
303    {0x66, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
304    // nopw %cs:0L(%[re]ax,%[re]ax,1)
305    {0x66, 0x2e, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
306  };
307
308  // Write an optimal sequence for the first 15 bytes.
309  const uint64_t OptimalCount = (Count < 16) ? Count : 15;
310  const uint64_t Prefixes = OptimalCount <= 10 ? 0 : OptimalCount - 10;
311  for (uint64_t i = 0, e = Prefixes; i != e; i++)
312    OW->Write8(0x66);
313  const uint64_t Rest = OptimalCount - Prefixes;
314  for (uint64_t i = 0, e = Rest; i != e; i++)
315    OW->Write8(Nops[Rest - 1][i]);
316
317  // Finish with single byte nops.
318  for (uint64_t i = OptimalCount, e = Count; i != e; ++i)
319   OW->Write8(0x90);
320
321  return true;
322}
323
324/* *** */
325
326namespace {
327class ELFX86AsmBackend : public X86AsmBackend {
328public:
329  uint8_t OSABI;
330  ELFX86AsmBackend(const Target &T, uint8_t _OSABI)
331    : X86AsmBackend(T), OSABI(_OSABI) {
332    HasReliableSymbolDifference = true;
333  }
334
335  virtual bool doesSectionRequireSymbols(const MCSection &Section) const {
336    const MCSectionELF &ES = static_cast<const MCSectionELF&>(Section);
337    return ES.getFlags() & ELF::SHF_MERGE;
338  }
339};
340
341class ELFX86_32AsmBackend : public ELFX86AsmBackend {
342public:
343  ELFX86_32AsmBackend(const Target &T, uint8_t OSABI)
344    : ELFX86AsmBackend(T, OSABI) {}
345
346  MCObjectWriter *createObjectWriter(raw_ostream &OS) const {
347    return createX86ELFObjectWriter(OS, /*Is64Bit*/ false, OSABI);
348  }
349};
350
351class ELFX86_64AsmBackend : public ELFX86AsmBackend {
352public:
353  ELFX86_64AsmBackend(const Target &T, uint8_t OSABI)
354    : ELFX86AsmBackend(T, OSABI) {}
355
356  MCObjectWriter *createObjectWriter(raw_ostream &OS) const {
357    return createX86ELFObjectWriter(OS, /*Is64Bit*/ true, OSABI);
358  }
359};
360
361class WindowsX86AsmBackend : public X86AsmBackend {
362  bool Is64Bit;
363
364public:
365  WindowsX86AsmBackend(const Target &T, bool is64Bit)
366    : X86AsmBackend(T)
367    , Is64Bit(is64Bit) {
368  }
369
370  MCObjectWriter *createObjectWriter(raw_ostream &OS) const {
371    return createX86WinCOFFObjectWriter(OS, Is64Bit);
372  }
373};
374
375class DarwinX86AsmBackend : public X86AsmBackend {
376public:
377  DarwinX86AsmBackend(const Target &T)
378    : X86AsmBackend(T) { }
379};
380
381class DarwinX86_32AsmBackend : public DarwinX86AsmBackend {
382public:
383  DarwinX86_32AsmBackend(const Target &T)
384    : DarwinX86AsmBackend(T) {}
385
386  MCObjectWriter *createObjectWriter(raw_ostream &OS) const {
387    return createX86MachObjectWriter(OS, /*Is64Bit=*/false,
388                                     object::mach::CTM_i386,
389                                     object::mach::CSX86_ALL);
390  }
391};
392
393class DarwinX86_64AsmBackend : public DarwinX86AsmBackend {
394public:
395  DarwinX86_64AsmBackend(const Target &T)
396    : DarwinX86AsmBackend(T) {
397    HasReliableSymbolDifference = true;
398  }
399
400  MCObjectWriter *createObjectWriter(raw_ostream &OS) const {
401    return createX86MachObjectWriter(OS, /*Is64Bit=*/true,
402                                     object::mach::CTM_x86_64,
403                                     object::mach::CSX86_ALL);
404  }
405
406  virtual bool doesSectionRequireSymbols(const MCSection &Section) const {
407    // Temporary labels in the string literals sections require symbols. The
408    // issue is that the x86_64 relocation format does not allow symbol +
409    // offset, and so the linker does not have enough information to resolve the
410    // access to the appropriate atom unless an external relocation is used. For
411    // non-cstring sections, we expect the compiler to use a non-temporary label
412    // for anything that could have an addend pointing outside the symbol.
413    //
414    // See <rdar://problem/4765733>.
415    const MCSectionMachO &SMO = static_cast<const MCSectionMachO&>(Section);
416    return SMO.getType() == MCSectionMachO::S_CSTRING_LITERALS;
417  }
418
419  virtual bool isSectionAtomizable(const MCSection &Section) const {
420    const MCSectionMachO &SMO = static_cast<const MCSectionMachO&>(Section);
421    // Fixed sized data sections are uniqued, they cannot be diced into atoms.
422    switch (SMO.getType()) {
423    default:
424      return true;
425
426    case MCSectionMachO::S_4BYTE_LITERALS:
427    case MCSectionMachO::S_8BYTE_LITERALS:
428    case MCSectionMachO::S_16BYTE_LITERALS:
429    case MCSectionMachO::S_LITERAL_POINTERS:
430    case MCSectionMachO::S_NON_LAZY_SYMBOL_POINTERS:
431    case MCSectionMachO::S_LAZY_SYMBOL_POINTERS:
432    case MCSectionMachO::S_MOD_INIT_FUNC_POINTERS:
433    case MCSectionMachO::S_MOD_TERM_FUNC_POINTERS:
434    case MCSectionMachO::S_INTERPOSING:
435      return false;
436    }
437  }
438};
439
440} // end anonymous namespace
441
442MCAsmBackend *llvm::createX86_32AsmBackend(const Target &T, StringRef TT) {
443  Triple TheTriple(TT);
444
445  if (TheTriple.isOSDarwin() || TheTriple.getEnvironment() == Triple::MachO)
446    return new DarwinX86_32AsmBackend(T);
447
448  if (TheTriple.isOSWindows())
449    return new WindowsX86AsmBackend(T, false);
450
451  uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());
452  return new ELFX86_32AsmBackend(T, OSABI);
453}
454
455MCAsmBackend *llvm::createX86_64AsmBackend(const Target &T, StringRef TT) {
456  Triple TheTriple(TT);
457
458  if (TheTriple.isOSDarwin() || TheTriple.getEnvironment() == Triple::MachO)
459    return new DarwinX86_64AsmBackend(T);
460
461  if (TheTriple.isOSWindows())
462    return new WindowsX86AsmBackend(T, true);
463
464  uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());
465  return new ELFX86_64AsmBackend(T, OSABI);
466}
467