X86MCInstLower.cpp revision 79aa3417eb6f58d668aadfedf075240a41d35a26
1//===-- X86MCInstLower.cpp - Convert X86 MachineInstr to an MCInst --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains code to lower X86 MachineInstrs to their corresponding
11// MCInst records.
12//
13//===----------------------------------------------------------------------===//
14
15#include "X86MCInstLower.h"
16#include "X86AsmPrinter.h"
17#include "X86COFFMachineModuleInfo.h"
18#include "InstPrinter/X86ATTInstPrinter.h"
19#include "llvm/Type.h"
20#include "llvm/CodeGen/MachineModuleInfoImpls.h"
21#include "llvm/MC/MCAsmInfo.h"
22#include "llvm/MC/MCContext.h"
23#include "llvm/MC/MCExpr.h"
24#include "llvm/MC/MCInst.h"
25#include "llvm/MC/MCStreamer.h"
26#include "llvm/MC/MCSymbol.h"
27#include "llvm/Target/Mangler.h"
28#include "llvm/Support/FormattedStream.h"
29#include "llvm/ADT/SmallString.h"
30using namespace llvm;
31
32X86MCInstLower::X86MCInstLower(Mangler *mang, const MachineFunction &mf,
33                               X86AsmPrinter &asmprinter)
34: Ctx(mf.getContext()), Mang(mang), MF(mf), TM(mf.getTarget()),
35  MAI(*TM.getMCAsmInfo()), AsmPrinter(asmprinter) {}
36
37MachineModuleInfoMachO &X86MCInstLower::getMachOMMI() const {
38  return MF.getMMI().getObjFileInfo<MachineModuleInfoMachO>();
39}
40
41
42/// GetSymbolFromOperand - Lower an MO_GlobalAddress or MO_ExternalSymbol
43/// operand to an MCSymbol.
44MCSymbol *X86MCInstLower::
45GetSymbolFromOperand(const MachineOperand &MO) const {
46  assert((MO.isGlobal() || MO.isSymbol()) && "Isn't a symbol reference");
47
48  SmallString<128> Name;
49
50  if (!MO.isGlobal()) {
51    assert(MO.isSymbol());
52    Name += MAI.getGlobalPrefix();
53    Name += MO.getSymbolName();
54  } else {
55    const GlobalValue *GV = MO.getGlobal();
56    bool isImplicitlyPrivate = false;
57    if (MO.getTargetFlags() == X86II::MO_DARWIN_STUB ||
58        MO.getTargetFlags() == X86II::MO_DARWIN_NONLAZY ||
59        MO.getTargetFlags() == X86II::MO_DARWIN_NONLAZY_PIC_BASE ||
60        MO.getTargetFlags() == X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE)
61      isImplicitlyPrivate = true;
62
63    Mang->getNameWithPrefix(Name, GV, isImplicitlyPrivate);
64  }
65
66  // If the target flags on the operand changes the name of the symbol, do that
67  // before we return the symbol.
68  switch (MO.getTargetFlags()) {
69  default: break;
70  case X86II::MO_DLLIMPORT: {
71    // Handle dllimport linkage.
72    const char *Prefix = "__imp_";
73    Name.insert(Name.begin(), Prefix, Prefix+strlen(Prefix));
74    break;
75  }
76  case X86II::MO_DARWIN_NONLAZY:
77  case X86II::MO_DARWIN_NONLAZY_PIC_BASE: {
78    Name += "$non_lazy_ptr";
79    MCSymbol *Sym = Ctx.GetOrCreateSymbol(Name.str());
80
81    MachineModuleInfoImpl::StubValueTy &StubSym =
82      getMachOMMI().getGVStubEntry(Sym);
83    if (StubSym.getPointer() == 0) {
84      assert(MO.isGlobal() && "Extern symbol not handled yet");
85      StubSym =
86        MachineModuleInfoImpl::
87        StubValueTy(Mang->getSymbol(MO.getGlobal()),
88                    !MO.getGlobal()->hasInternalLinkage());
89    }
90    return Sym;
91  }
92  case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: {
93    Name += "$non_lazy_ptr";
94    MCSymbol *Sym = Ctx.GetOrCreateSymbol(Name.str());
95    MachineModuleInfoImpl::StubValueTy &StubSym =
96      getMachOMMI().getHiddenGVStubEntry(Sym);
97    if (StubSym.getPointer() == 0) {
98      assert(MO.isGlobal() && "Extern symbol not handled yet");
99      StubSym =
100        MachineModuleInfoImpl::
101        StubValueTy(Mang->getSymbol(MO.getGlobal()),
102                    !MO.getGlobal()->hasInternalLinkage());
103    }
104    return Sym;
105  }
106  case X86II::MO_DARWIN_STUB: {
107    Name += "$stub";
108    MCSymbol *Sym = Ctx.GetOrCreateSymbol(Name.str());
109    MachineModuleInfoImpl::StubValueTy &StubSym =
110      getMachOMMI().getFnStubEntry(Sym);
111    if (StubSym.getPointer())
112      return Sym;
113
114    if (MO.isGlobal()) {
115      StubSym =
116        MachineModuleInfoImpl::
117        StubValueTy(Mang->getSymbol(MO.getGlobal()),
118                    !MO.getGlobal()->hasInternalLinkage());
119    } else {
120      Name.erase(Name.end()-5, Name.end());
121      StubSym =
122        MachineModuleInfoImpl::
123        StubValueTy(Ctx.GetOrCreateSymbol(Name.str()), false);
124    }
125    return Sym;
126  }
127  }
128
129  return Ctx.GetOrCreateSymbol(Name.str());
130}
131
132MCOperand X86MCInstLower::LowerSymbolOperand(const MachineOperand &MO,
133                                             MCSymbol *Sym) const {
134  // FIXME: We would like an efficient form for this, so we don't have to do a
135  // lot of extra uniquing.
136  const MCExpr *Expr = 0;
137  MCSymbolRefExpr::VariantKind RefKind = MCSymbolRefExpr::VK_None;
138
139  switch (MO.getTargetFlags()) {
140  default: llvm_unreachable("Unknown target flag on GV operand");
141  case X86II::MO_NO_FLAG:    // No flag.
142  // These affect the name of the symbol, not any suffix.
143  case X86II::MO_DARWIN_NONLAZY:
144  case X86II::MO_DLLIMPORT:
145  case X86II::MO_DARWIN_STUB:
146    break;
147
148  case X86II::MO_TLVP:      RefKind = MCSymbolRefExpr::VK_TLVP; break;
149  case X86II::MO_TLVP_PIC_BASE:
150    Expr = MCSymbolRefExpr::Create(Sym, MCSymbolRefExpr::VK_TLVP, Ctx);
151    // Subtract the pic base.
152    Expr = MCBinaryExpr::CreateSub(Expr,
153                                  MCSymbolRefExpr::Create(MF.getPICBaseSymbol(),
154                                                           Ctx),
155                                   Ctx);
156    break;
157  case X86II::MO_SECREL:    RefKind = MCSymbolRefExpr::VK_SECREL; break;
158  case X86II::MO_TLSGD:     RefKind = MCSymbolRefExpr::VK_TLSGD; break;
159  case X86II::MO_GOTTPOFF:  RefKind = MCSymbolRefExpr::VK_GOTTPOFF; break;
160  case X86II::MO_INDNTPOFF: RefKind = MCSymbolRefExpr::VK_INDNTPOFF; break;
161  case X86II::MO_TPOFF:     RefKind = MCSymbolRefExpr::VK_TPOFF; break;
162  case X86II::MO_NTPOFF:    RefKind = MCSymbolRefExpr::VK_NTPOFF; break;
163  case X86II::MO_GOTPCREL:  RefKind = MCSymbolRefExpr::VK_GOTPCREL; break;
164  case X86II::MO_GOT:       RefKind = MCSymbolRefExpr::VK_GOT; break;
165  case X86II::MO_GOTOFF:    RefKind = MCSymbolRefExpr::VK_GOTOFF; break;
166  case X86II::MO_PLT:       RefKind = MCSymbolRefExpr::VK_PLT; break;
167  case X86II::MO_PIC_BASE_OFFSET:
168  case X86II::MO_DARWIN_NONLAZY_PIC_BASE:
169  case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE:
170    Expr = MCSymbolRefExpr::Create(Sym, Ctx);
171    // Subtract the pic base.
172    Expr = MCBinaryExpr::CreateSub(Expr,
173                            MCSymbolRefExpr::Create(MF.getPICBaseSymbol(), Ctx),
174                                   Ctx);
175    if (MO.isJTI() && MAI.hasSetDirective()) {
176      // If .set directive is supported, use it to reduce the number of
177      // relocations the assembler will generate for differences between
178      // local labels. This is only safe when the symbols are in the same
179      // section so we are restricting it to jumptable references.
180      MCSymbol *Label = Ctx.CreateTempSymbol();
181      AsmPrinter.OutStreamer.EmitAssignment(Label, Expr);
182      Expr = MCSymbolRefExpr::Create(Label, Ctx);
183    }
184    break;
185  }
186
187  if (Expr == 0)
188    Expr = MCSymbolRefExpr::Create(Sym, RefKind, Ctx);
189
190  if (!MO.isJTI() && MO.getOffset())
191    Expr = MCBinaryExpr::CreateAdd(Expr,
192                                   MCConstantExpr::Create(MO.getOffset(), Ctx),
193                                   Ctx);
194  return MCOperand::CreateExpr(Expr);
195}
196
197
198
199static void lower_subreg32(MCInst *MI, unsigned OpNo) {
200  // Convert registers in the addr mode according to subreg32.
201  unsigned Reg = MI->getOperand(OpNo).getReg();
202  if (Reg != 0)
203    MI->getOperand(OpNo).setReg(getX86SubSuperRegister(Reg, MVT::i32));
204}
205
206static void lower_lea64_32mem(MCInst *MI, unsigned OpNo) {
207  // Convert registers in the addr mode according to subreg64.
208  for (unsigned i = 0; i != 4; ++i) {
209    if (!MI->getOperand(OpNo+i).isReg()) continue;
210
211    unsigned Reg = MI->getOperand(OpNo+i).getReg();
212    if (Reg == 0) continue;
213
214    MI->getOperand(OpNo+i).setReg(getX86SubSuperRegister(Reg, MVT::i64));
215  }
216}
217
218/// LowerSubReg32_Op0 - Things like MOVZX16rr8 -> MOVZX32rr8.
219static void LowerSubReg32_Op0(MCInst &OutMI, unsigned NewOpc) {
220  OutMI.setOpcode(NewOpc);
221  lower_subreg32(&OutMI, 0);
222}
223/// LowerUnaryToTwoAddr - R = setb   -> R = sbb R, R
224static void LowerUnaryToTwoAddr(MCInst &OutMI, unsigned NewOpc) {
225  OutMI.setOpcode(NewOpc);
226  OutMI.addOperand(OutMI.getOperand(0));
227  OutMI.addOperand(OutMI.getOperand(0));
228}
229
230/// \brief Simplify FOO $imm, %{al,ax,eax,rax} to FOO $imm, for instruction with
231/// a short fixed-register form.
232static void SimplifyShortImmForm(MCInst &Inst, unsigned Opcode) {
233  unsigned ImmOp = Inst.getNumOperands() - 1;
234  assert(Inst.getOperand(0).isReg() &&
235         (Inst.getOperand(ImmOp).isImm() || Inst.getOperand(ImmOp).isExpr()) &&
236         ((Inst.getNumOperands() == 3 && Inst.getOperand(1).isReg() &&
237           Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) ||
238          Inst.getNumOperands() == 2) && "Unexpected instruction!");
239
240  // Check whether the destination register can be fixed.
241  unsigned Reg = Inst.getOperand(0).getReg();
242  if (Reg != X86::AL && Reg != X86::AX && Reg != X86::EAX && Reg != X86::RAX)
243    return;
244
245  // If so, rewrite the instruction.
246  MCOperand Saved = Inst.getOperand(ImmOp);
247  Inst = MCInst();
248  Inst.setOpcode(Opcode);
249  Inst.addOperand(Saved);
250}
251
252/// \brief Simplify things like MOV32rm to MOV32o32a.
253static void SimplifyShortMoveForm(X86AsmPrinter &Printer, MCInst &Inst,
254                                  unsigned Opcode) {
255  // Don't make these simplifications in 64-bit mode; other assemblers don't
256  // perform them because they make the code larger.
257  if (Printer.getSubtarget().is64Bit())
258    return;
259
260  bool IsStore = Inst.getOperand(0).isReg() && Inst.getOperand(1).isReg();
261  unsigned AddrBase = IsStore;
262  unsigned RegOp = IsStore ? 0 : 5;
263  unsigned AddrOp = AddrBase + 3;
264  assert(Inst.getNumOperands() == 6 && Inst.getOperand(RegOp).isReg() &&
265         Inst.getOperand(AddrBase + 0).isReg() && // base
266         Inst.getOperand(AddrBase + 1).isImm() && // scale
267         Inst.getOperand(AddrBase + 2).isReg() && // index register
268         (Inst.getOperand(AddrOp).isExpr() ||     // address
269          Inst.getOperand(AddrOp).isImm())&&
270         Inst.getOperand(AddrBase + 4).isReg() && // segment
271         "Unexpected instruction!");
272
273  // Check whether the destination register can be fixed.
274  unsigned Reg = Inst.getOperand(RegOp).getReg();
275  if (Reg != X86::AL && Reg != X86::AX && Reg != X86::EAX && Reg != X86::RAX)
276    return;
277
278  // Check whether this is an absolute address.
279  // FIXME: We know TLVP symbol refs aren't, but there should be a better way
280  // to do this here.
281  bool Absolute = true;
282  if (Inst.getOperand(AddrOp).isExpr()) {
283    const MCExpr *MCE = Inst.getOperand(AddrOp).getExpr();
284    if (const MCSymbolRefExpr *SRE = dyn_cast<MCSymbolRefExpr>(MCE))
285      if (SRE->getKind() == MCSymbolRefExpr::VK_TLVP)
286        Absolute = false;
287  }
288
289  if (Absolute &&
290      (Inst.getOperand(AddrBase + 0).getReg() != 0 ||
291       Inst.getOperand(AddrBase + 2).getReg() != 0 ||
292       Inst.getOperand(AddrBase + 4).getReg() != 0 ||
293       Inst.getOperand(AddrBase + 1).getImm() != 1))
294    return;
295
296  // If so, rewrite the instruction.
297  MCOperand Saved = Inst.getOperand(AddrOp);
298  Inst = MCInst();
299  Inst.setOpcode(Opcode);
300  Inst.addOperand(Saved);
301}
302
303void X86MCInstLower::Lower(const MachineInstr *MI, MCInst &OutMI) const {
304  OutMI.setOpcode(MI->getOpcode());
305
306  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
307    const MachineOperand &MO = MI->getOperand(i);
308
309    MCOperand MCOp;
310    switch (MO.getType()) {
311    default:
312      MI->dump();
313      llvm_unreachable("unknown operand type");
314    case MachineOperand::MO_Register:
315      // Ignore all implicit register operands.
316      if (MO.isImplicit()) continue;
317      MCOp = MCOperand::CreateReg(MO.getReg());
318      break;
319    case MachineOperand::MO_Immediate:
320      MCOp = MCOperand::CreateImm(MO.getImm());
321      break;
322    case MachineOperand::MO_MachineBasicBlock:
323      MCOp = MCOperand::CreateExpr(MCSymbolRefExpr::Create(
324                       MO.getMBB()->getSymbol(), Ctx));
325      break;
326    case MachineOperand::MO_GlobalAddress:
327    case MachineOperand::MO_ExternalSymbol:
328      MCOp = LowerSymbolOperand(MO, GetSymbolFromOperand(MO));
329      break;
330    case MachineOperand::MO_JumpTableIndex:
331      MCOp = LowerSymbolOperand(MO, AsmPrinter.GetJTISymbol(MO.getIndex()));
332      break;
333    case MachineOperand::MO_ConstantPoolIndex:
334      MCOp = LowerSymbolOperand(MO, AsmPrinter.GetCPISymbol(MO.getIndex()));
335      break;
336    case MachineOperand::MO_BlockAddress:
337      MCOp = LowerSymbolOperand(MO,
338                     AsmPrinter.GetBlockAddressSymbol(MO.getBlockAddress()));
339      break;
340    case MachineOperand::MO_RegisterMask:
341      // Ignore call clobbers.
342      continue;
343    }
344
345    OutMI.addOperand(MCOp);
346  }
347
348  // Handle a few special cases to eliminate operand modifiers.
349ReSimplify:
350  switch (OutMI.getOpcode()) {
351  case X86::LEA64_32r: // Handle 'subreg rewriting' for the lea64_32mem operand.
352    lower_lea64_32mem(&OutMI, 1);
353    // FALL THROUGH.
354  case X86::LEA64r:
355  case X86::LEA16r:
356  case X86::LEA32r:
357    // LEA should have a segment register, but it must be empty.
358    assert(OutMI.getNumOperands() == 1+X86::AddrNumOperands &&
359           "Unexpected # of LEA operands");
360    assert(OutMI.getOperand(1+X86::AddrSegmentReg).getReg() == 0 &&
361           "LEA has segment specified!");
362    break;
363  case X86::MOVZX64rr32:  LowerSubReg32_Op0(OutMI, X86::MOV32rr); break;
364  case X86::MOVZX64rm32:  LowerSubReg32_Op0(OutMI, X86::MOV32rm); break;
365  case X86::MOV64ri64i32: LowerSubReg32_Op0(OutMI, X86::MOV32ri); break;
366  case X86::MOVZX64rr8:   LowerSubReg32_Op0(OutMI, X86::MOVZX32rr8); break;
367  case X86::MOVZX64rm8:   LowerSubReg32_Op0(OutMI, X86::MOVZX32rm8); break;
368  case X86::MOVZX64rr16:  LowerSubReg32_Op0(OutMI, X86::MOVZX32rr16); break;
369  case X86::MOVZX64rm16:  LowerSubReg32_Op0(OutMI, X86::MOVZX32rm16); break;
370  case X86::SETB_C8r:     LowerUnaryToTwoAddr(OutMI, X86::SBB8rr); break;
371  case X86::SETB_C16r:    LowerUnaryToTwoAddr(OutMI, X86::SBB16rr); break;
372  case X86::SETB_C32r:    LowerUnaryToTwoAddr(OutMI, X86::SBB32rr); break;
373  case X86::SETB_C64r:    LowerUnaryToTwoAddr(OutMI, X86::SBB64rr); break;
374  case X86::MOV8r0:       LowerUnaryToTwoAddr(OutMI, X86::XOR8rr); break;
375  case X86::MOV32r0:      LowerUnaryToTwoAddr(OutMI, X86::XOR32rr); break;
376  case X86::V_SETALLONES:  LowerUnaryToTwoAddr(OutMI, X86::PCMPEQDrr); break;
377  case X86::AVX_SET0PSY:   LowerUnaryToTwoAddr(OutMI, X86::VXORPSYrr); break;
378  case X86::AVX_SET0PDY:   LowerUnaryToTwoAddr(OutMI, X86::VXORPDYrr); break;
379  case X86::AVX_SETALLONES:  LowerUnaryToTwoAddr(OutMI, X86::VPCMPEQDrr); break;
380  case X86::AVX2_SETALLONES: LowerUnaryToTwoAddr(OutMI, X86::VPCMPEQDYrr);break;
381  case X86::AVX2_SET0:     LowerUnaryToTwoAddr(OutMI, X86::VPXORYrr); break;
382
383  case X86::MOV16r0:
384    LowerSubReg32_Op0(OutMI, X86::MOV32r0);   // MOV16r0 -> MOV32r0
385    LowerUnaryToTwoAddr(OutMI, X86::XOR32rr); // MOV32r0 -> XOR32rr
386    break;
387  case X86::MOV64r0:
388    LowerSubReg32_Op0(OutMI, X86::MOV32r0);   // MOV64r0 -> MOV32r0
389    LowerUnaryToTwoAddr(OutMI, X86::XOR32rr); // MOV32r0 -> XOR32rr
390    break;
391
392  // TAILJMPr64, CALL64r, CALL64pcrel32 - These instructions have register
393  // inputs modeled as normal uses instead of implicit uses.  As such, truncate
394  // off all but the first operand (the callee).  FIXME: Change isel.
395  case X86::TAILJMPr64:
396  case X86::CALL64r:
397  case X86::CALL64pcrel32: {
398    unsigned Opcode = OutMI.getOpcode();
399    MCOperand Saved = OutMI.getOperand(0);
400    OutMI = MCInst();
401    OutMI.setOpcode(Opcode);
402    OutMI.addOperand(Saved);
403    break;
404  }
405
406  case X86::EH_RETURN:
407  case X86::EH_RETURN64: {
408    OutMI = MCInst();
409    OutMI.setOpcode(X86::RET);
410    break;
411  }
412
413  // TAILJMPd, TAILJMPd64 - Lower to the correct jump instructions.
414  case X86::TAILJMPr:
415  case X86::TAILJMPd:
416  case X86::TAILJMPd64: {
417    unsigned Opcode;
418    switch (OutMI.getOpcode()) {
419    default: llvm_unreachable("Invalid opcode");
420    case X86::TAILJMPr: Opcode = X86::JMP32r; break;
421    case X86::TAILJMPd:
422    case X86::TAILJMPd64: Opcode = X86::JMP_1; break;
423    }
424
425    MCOperand Saved = OutMI.getOperand(0);
426    OutMI = MCInst();
427    OutMI.setOpcode(Opcode);
428    OutMI.addOperand(Saved);
429    break;
430  }
431
432  // These are pseudo-ops for OR to help with the OR->ADD transformation.  We do
433  // this with an ugly goto in case the resultant OR uses EAX and needs the
434  // short form.
435  case X86::ADD16rr_DB:   OutMI.setOpcode(X86::OR16rr); goto ReSimplify;
436  case X86::ADD32rr_DB:   OutMI.setOpcode(X86::OR32rr); goto ReSimplify;
437  case X86::ADD64rr_DB:   OutMI.setOpcode(X86::OR64rr); goto ReSimplify;
438  case X86::ADD16ri_DB:   OutMI.setOpcode(X86::OR16ri); goto ReSimplify;
439  case X86::ADD32ri_DB:   OutMI.setOpcode(X86::OR32ri); goto ReSimplify;
440  case X86::ADD64ri32_DB: OutMI.setOpcode(X86::OR64ri32); goto ReSimplify;
441  case X86::ADD16ri8_DB:  OutMI.setOpcode(X86::OR16ri8); goto ReSimplify;
442  case X86::ADD32ri8_DB:  OutMI.setOpcode(X86::OR32ri8); goto ReSimplify;
443  case X86::ADD64ri8_DB:  OutMI.setOpcode(X86::OR64ri8); goto ReSimplify;
444
445  // The assembler backend wants to see branches in their small form and relax
446  // them to their large form.  The JIT can only handle the large form because
447  // it does not do relaxation.  For now, translate the large form to the
448  // small one here.
449  case X86::JMP_4: OutMI.setOpcode(X86::JMP_1); break;
450  case X86::JO_4:  OutMI.setOpcode(X86::JO_1); break;
451  case X86::JNO_4: OutMI.setOpcode(X86::JNO_1); break;
452  case X86::JB_4:  OutMI.setOpcode(X86::JB_1); break;
453  case X86::JAE_4: OutMI.setOpcode(X86::JAE_1); break;
454  case X86::JE_4:  OutMI.setOpcode(X86::JE_1); break;
455  case X86::JNE_4: OutMI.setOpcode(X86::JNE_1); break;
456  case X86::JBE_4: OutMI.setOpcode(X86::JBE_1); break;
457  case X86::JA_4:  OutMI.setOpcode(X86::JA_1); break;
458  case X86::JS_4:  OutMI.setOpcode(X86::JS_1); break;
459  case X86::JNS_4: OutMI.setOpcode(X86::JNS_1); break;
460  case X86::JP_4:  OutMI.setOpcode(X86::JP_1); break;
461  case X86::JNP_4: OutMI.setOpcode(X86::JNP_1); break;
462  case X86::JL_4:  OutMI.setOpcode(X86::JL_1); break;
463  case X86::JGE_4: OutMI.setOpcode(X86::JGE_1); break;
464  case X86::JLE_4: OutMI.setOpcode(X86::JLE_1); break;
465  case X86::JG_4:  OutMI.setOpcode(X86::JG_1); break;
466
467  // Atomic load and store require a separate pseudo-inst because Acquire
468  // implies mayStore and Release implies mayLoad; fix these to regular MOV
469  // instructions here
470  case X86::ACQUIRE_MOV8rm:  OutMI.setOpcode(X86::MOV8rm); goto ReSimplify;
471  case X86::ACQUIRE_MOV16rm: OutMI.setOpcode(X86::MOV16rm); goto ReSimplify;
472  case X86::ACQUIRE_MOV32rm: OutMI.setOpcode(X86::MOV32rm); goto ReSimplify;
473  case X86::ACQUIRE_MOV64rm: OutMI.setOpcode(X86::MOV64rm); goto ReSimplify;
474  case X86::RELEASE_MOV8mr:  OutMI.setOpcode(X86::MOV8mr); goto ReSimplify;
475  case X86::RELEASE_MOV16mr: OutMI.setOpcode(X86::MOV16mr); goto ReSimplify;
476  case X86::RELEASE_MOV32mr: OutMI.setOpcode(X86::MOV32mr); goto ReSimplify;
477  case X86::RELEASE_MOV64mr: OutMI.setOpcode(X86::MOV64mr); goto ReSimplify;
478
479  // We don't currently select the correct instruction form for instructions
480  // which have a short %eax, etc. form. Handle this by custom lowering, for
481  // now.
482  //
483  // Note, we are currently not handling the following instructions:
484  // MOV64ao8, MOV64o8a
485  // XCHG16ar, XCHG32ar, XCHG64ar
486  case X86::MOV8mr_NOREX:
487  case X86::MOV8mr:     SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV8ao8); break;
488  case X86::MOV8rm_NOREX:
489  case X86::MOV8rm:     SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV8o8a); break;
490  case X86::MOV16mr:    SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV16ao16); break;
491  case X86::MOV16rm:    SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV16o16a); break;
492  case X86::MOV32mr:    SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV32ao32); break;
493  case X86::MOV32rm:    SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV32o32a); break;
494
495  case X86::ADC8ri:     SimplifyShortImmForm(OutMI, X86::ADC8i8);    break;
496  case X86::ADC16ri:    SimplifyShortImmForm(OutMI, X86::ADC16i16);  break;
497  case X86::ADC32ri:    SimplifyShortImmForm(OutMI, X86::ADC32i32);  break;
498  case X86::ADC64ri32:  SimplifyShortImmForm(OutMI, X86::ADC64i32);  break;
499  case X86::ADD8ri:     SimplifyShortImmForm(OutMI, X86::ADD8i8);    break;
500  case X86::ADD16ri:    SimplifyShortImmForm(OutMI, X86::ADD16i16);  break;
501  case X86::ADD32ri:    SimplifyShortImmForm(OutMI, X86::ADD32i32);  break;
502  case X86::ADD64ri32:  SimplifyShortImmForm(OutMI, X86::ADD64i32);  break;
503  case X86::AND8ri:     SimplifyShortImmForm(OutMI, X86::AND8i8);    break;
504  case X86::AND16ri:    SimplifyShortImmForm(OutMI, X86::AND16i16);  break;
505  case X86::AND32ri:    SimplifyShortImmForm(OutMI, X86::AND32i32);  break;
506  case X86::AND64ri32:  SimplifyShortImmForm(OutMI, X86::AND64i32);  break;
507  case X86::CMP8ri:     SimplifyShortImmForm(OutMI, X86::CMP8i8);    break;
508  case X86::CMP16ri:    SimplifyShortImmForm(OutMI, X86::CMP16i16);  break;
509  case X86::CMP32ri:    SimplifyShortImmForm(OutMI, X86::CMP32i32);  break;
510  case X86::CMP64ri32:  SimplifyShortImmForm(OutMI, X86::CMP64i32);  break;
511  case X86::OR8ri:      SimplifyShortImmForm(OutMI, X86::OR8i8);     break;
512  case X86::OR16ri:     SimplifyShortImmForm(OutMI, X86::OR16i16);   break;
513  case X86::OR32ri:     SimplifyShortImmForm(OutMI, X86::OR32i32);   break;
514  case X86::OR64ri32:   SimplifyShortImmForm(OutMI, X86::OR64i32);   break;
515  case X86::SBB8ri:     SimplifyShortImmForm(OutMI, X86::SBB8i8);    break;
516  case X86::SBB16ri:    SimplifyShortImmForm(OutMI, X86::SBB16i16);  break;
517  case X86::SBB32ri:    SimplifyShortImmForm(OutMI, X86::SBB32i32);  break;
518  case X86::SBB64ri32:  SimplifyShortImmForm(OutMI, X86::SBB64i32);  break;
519  case X86::SUB8ri:     SimplifyShortImmForm(OutMI, X86::SUB8i8);    break;
520  case X86::SUB16ri:    SimplifyShortImmForm(OutMI, X86::SUB16i16);  break;
521  case X86::SUB32ri:    SimplifyShortImmForm(OutMI, X86::SUB32i32);  break;
522  case X86::SUB64ri32:  SimplifyShortImmForm(OutMI, X86::SUB64i32);  break;
523  case X86::TEST8ri:    SimplifyShortImmForm(OutMI, X86::TEST8i8);   break;
524  case X86::TEST16ri:   SimplifyShortImmForm(OutMI, X86::TEST16i16); break;
525  case X86::TEST32ri:   SimplifyShortImmForm(OutMI, X86::TEST32i32); break;
526  case X86::TEST64ri32: SimplifyShortImmForm(OutMI, X86::TEST64i32); break;
527  case X86::XOR8ri:     SimplifyShortImmForm(OutMI, X86::XOR8i8);    break;
528  case X86::XOR16ri:    SimplifyShortImmForm(OutMI, X86::XOR16i16);  break;
529  case X86::XOR32ri:    SimplifyShortImmForm(OutMI, X86::XOR32i32);  break;
530  case X86::XOR64ri32:  SimplifyShortImmForm(OutMI, X86::XOR64i32);  break;
531
532  case X86::MORESTACK_RET:
533    OutMI.setOpcode(X86::RET);
534    break;
535
536  case X86::MORESTACK_RET_RESTORE_R10: {
537    MCInst retInst;
538
539    OutMI.setOpcode(X86::MOV64rr);
540    OutMI.addOperand(MCOperand::CreateReg(X86::R10));
541    OutMI.addOperand(MCOperand::CreateReg(X86::RAX));
542
543    retInst.setOpcode(X86::RET);
544    AsmPrinter.OutStreamer.EmitInstruction(retInst);
545    break;
546  }
547  }
548}
549
550static void LowerTlsAddr(MCStreamer &OutStreamer,
551                         X86MCInstLower &MCInstLowering,
552                         const MachineInstr &MI) {
553  bool is64Bits = MI.getOpcode() == X86::TLS_addr64;
554  MCContext &context = OutStreamer.getContext();
555
556  if (is64Bits) {
557    MCInst prefix;
558    prefix.setOpcode(X86::DATA16_PREFIX);
559    OutStreamer.EmitInstruction(prefix);
560  }
561  MCSymbol *sym = MCInstLowering.GetSymbolFromOperand(MI.getOperand(3));
562  const MCSymbolRefExpr *symRef =
563    MCSymbolRefExpr::Create(sym, MCSymbolRefExpr::VK_TLSGD, context);
564
565  MCInst LEA;
566  if (is64Bits) {
567    LEA.setOpcode(X86::LEA64r);
568    LEA.addOperand(MCOperand::CreateReg(X86::RDI)); // dest
569    LEA.addOperand(MCOperand::CreateReg(X86::RIP)); // base
570    LEA.addOperand(MCOperand::CreateImm(1));        // scale
571    LEA.addOperand(MCOperand::CreateReg(0));        // index
572    LEA.addOperand(MCOperand::CreateExpr(symRef));  // disp
573    LEA.addOperand(MCOperand::CreateReg(0));        // seg
574  } else {
575    LEA.setOpcode(X86::LEA32r);
576    LEA.addOperand(MCOperand::CreateReg(X86::EAX)); // dest
577    LEA.addOperand(MCOperand::CreateReg(0));        // base
578    LEA.addOperand(MCOperand::CreateImm(1));        // scale
579    LEA.addOperand(MCOperand::CreateReg(X86::EBX)); // index
580    LEA.addOperand(MCOperand::CreateExpr(symRef));  // disp
581    LEA.addOperand(MCOperand::CreateReg(0));        // seg
582  }
583  OutStreamer.EmitInstruction(LEA);
584
585  if (is64Bits) {
586    MCInst prefix;
587    prefix.setOpcode(X86::DATA16_PREFIX);
588    OutStreamer.EmitInstruction(prefix);
589    prefix.setOpcode(X86::DATA16_PREFIX);
590    OutStreamer.EmitInstruction(prefix);
591    prefix.setOpcode(X86::REX64_PREFIX);
592    OutStreamer.EmitInstruction(prefix);
593  }
594
595  MCInst call;
596  if (is64Bits)
597    call.setOpcode(X86::CALL64pcrel32);
598  else
599    call.setOpcode(X86::CALLpcrel32);
600  StringRef name = is64Bits ? "__tls_get_addr" : "___tls_get_addr";
601  MCSymbol *tlsGetAddr = context.GetOrCreateSymbol(name);
602  const MCSymbolRefExpr *tlsRef =
603    MCSymbolRefExpr::Create(tlsGetAddr,
604                            MCSymbolRefExpr::VK_PLT,
605                            context);
606
607  call.addOperand(MCOperand::CreateExpr(tlsRef));
608  OutStreamer.EmitInstruction(call);
609}
610
611void X86AsmPrinter::EmitInstruction(const MachineInstr *MI) {
612  OutStreamer.EmitCodeRegion();
613
614  X86MCInstLower MCInstLowering(Mang, *MF, *this);
615  switch (MI->getOpcode()) {
616  case TargetOpcode::DBG_VALUE:
617    if (isVerbose() && OutStreamer.hasRawTextSupport()) {
618      std::string TmpStr;
619      raw_string_ostream OS(TmpStr);
620      PrintDebugValueComment(MI, OS);
621      OutStreamer.EmitRawText(StringRef(OS.str()));
622    }
623    return;
624
625  // Emit nothing here but a comment if we can.
626  case X86::Int_MemBarrier:
627    if (OutStreamer.hasRawTextSupport())
628      OutStreamer.EmitRawText(StringRef("\t#MEMBARRIER"));
629    return;
630
631
632  case X86::EH_RETURN:
633  case X86::EH_RETURN64: {
634    // Lower these as normal, but add some comments.
635    unsigned Reg = MI->getOperand(0).getReg();
636    OutStreamer.AddComment(StringRef("eh_return, addr: %") +
637                           X86ATTInstPrinter::getRegisterName(Reg));
638    break;
639  }
640  case X86::TAILJMPr:
641  case X86::TAILJMPd:
642  case X86::TAILJMPd64:
643    // Lower these as normal, but add some comments.
644    OutStreamer.AddComment("TAILCALL");
645    break;
646
647  case X86::TLS_addr32:
648  case X86::TLS_addr64:
649    return LowerTlsAddr(OutStreamer, MCInstLowering, *MI);
650
651  case X86::MOVPC32r: {
652    MCInst TmpInst;
653    // This is a pseudo op for a two instruction sequence with a label, which
654    // looks like:
655    //     call "L1$pb"
656    // "L1$pb":
657    //     popl %esi
658
659    // Emit the call.
660    MCSymbol *PICBase = MF->getPICBaseSymbol();
661    TmpInst.setOpcode(X86::CALLpcrel32);
662    // FIXME: We would like an efficient form for this, so we don't have to do a
663    // lot of extra uniquing.
664    TmpInst.addOperand(MCOperand::CreateExpr(MCSymbolRefExpr::Create(PICBase,
665                                                                 OutContext)));
666    OutStreamer.EmitInstruction(TmpInst);
667
668    // Emit the label.
669    OutStreamer.EmitLabel(PICBase);
670
671    // popl $reg
672    TmpInst.setOpcode(X86::POP32r);
673    TmpInst.getOperand(0) = MCOperand::CreateReg(MI->getOperand(0).getReg());
674    OutStreamer.EmitInstruction(TmpInst);
675    return;
676  }
677
678  case X86::ADD32ri: {
679    // Lower the MO_GOT_ABSOLUTE_ADDRESS form of ADD32ri.
680    if (MI->getOperand(2).getTargetFlags() != X86II::MO_GOT_ABSOLUTE_ADDRESS)
681      break;
682
683    // Okay, we have something like:
684    //  EAX = ADD32ri EAX, MO_GOT_ABSOLUTE_ADDRESS(@MYGLOBAL)
685
686    // For this, we want to print something like:
687    //   MYGLOBAL + (. - PICBASE)
688    // However, we can't generate a ".", so just emit a new label here and refer
689    // to it.
690    MCSymbol *DotSym = OutContext.CreateTempSymbol();
691    OutStreamer.EmitLabel(DotSym);
692
693    // Now that we have emitted the label, lower the complex operand expression.
694    MCSymbol *OpSym = MCInstLowering.GetSymbolFromOperand(MI->getOperand(2));
695
696    const MCExpr *DotExpr = MCSymbolRefExpr::Create(DotSym, OutContext);
697    const MCExpr *PICBase =
698      MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), OutContext);
699    DotExpr = MCBinaryExpr::CreateSub(DotExpr, PICBase, OutContext);
700
701    DotExpr = MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(OpSym,OutContext),
702                                      DotExpr, OutContext);
703
704    MCInst TmpInst;
705    TmpInst.setOpcode(X86::ADD32ri);
706    TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
707    TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(1).getReg()));
708    TmpInst.addOperand(MCOperand::CreateExpr(DotExpr));
709    OutStreamer.EmitInstruction(TmpInst);
710    return;
711  }
712  }
713
714  MCInst TmpInst;
715  MCInstLowering.Lower(MI, TmpInst);
716  OutStreamer.EmitInstruction(TmpInst);
717}
718
719