X86MCInstLower.cpp revision a20e1e7ef596842127794372244fd5c646f71296
1//===-- X86MCInstLower.cpp - Convert X86 MachineInstr to an MCInst --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains code to lower X86 MachineInstrs to their corresponding
11// MCInst records.
12//
13//===----------------------------------------------------------------------===//
14
15#include "X86MCInstLower.h"
16#include "X86AsmPrinter.h"
17#include "X86COFFMachineModuleInfo.h"
18#include "InstPrinter/X86ATTInstPrinter.h"
19#include "llvm/Type.h"
20#include "llvm/CodeGen/MachineModuleInfoImpls.h"
21#include "llvm/MC/MCAsmInfo.h"
22#include "llvm/MC/MCContext.h"
23#include "llvm/MC/MCExpr.h"
24#include "llvm/MC/MCInst.h"
25#include "llvm/MC/MCStreamer.h"
26#include "llvm/MC/MCSymbol.h"
27#include "llvm/Target/Mangler.h"
28#include "llvm/Support/FormattedStream.h"
29#include "llvm/ADT/SmallString.h"
30using namespace llvm;
31
32X86MCInstLower::X86MCInstLower(Mangler *mang, const MachineFunction &mf,
33                               X86AsmPrinter &asmprinter)
34: Ctx(mf.getContext()), Mang(mang), MF(mf), TM(mf.getTarget()),
35  MAI(*TM.getMCAsmInfo()), AsmPrinter(asmprinter) {}
36
37MachineModuleInfoMachO &X86MCInstLower::getMachOMMI() const {
38  return MF.getMMI().getObjFileInfo<MachineModuleInfoMachO>();
39}
40
41
42/// GetSymbolFromOperand - Lower an MO_GlobalAddress or MO_ExternalSymbol
43/// operand to an MCSymbol.
44MCSymbol *X86MCInstLower::
45GetSymbolFromOperand(const MachineOperand &MO) const {
46  assert((MO.isGlobal() || MO.isSymbol()) && "Isn't a symbol reference");
47
48  SmallString<128> Name;
49
50  if (!MO.isGlobal()) {
51    assert(MO.isSymbol());
52    Name += MAI.getGlobalPrefix();
53    Name += MO.getSymbolName();
54  } else {
55    const GlobalValue *GV = MO.getGlobal();
56    bool isImplicitlyPrivate = false;
57    if (MO.getTargetFlags() == X86II::MO_DARWIN_STUB ||
58        MO.getTargetFlags() == X86II::MO_DARWIN_NONLAZY ||
59        MO.getTargetFlags() == X86II::MO_DARWIN_NONLAZY_PIC_BASE ||
60        MO.getTargetFlags() == X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE)
61      isImplicitlyPrivate = true;
62
63    Mang->getNameWithPrefix(Name, GV, isImplicitlyPrivate);
64  }
65
66  // If the target flags on the operand changes the name of the symbol, do that
67  // before we return the symbol.
68  switch (MO.getTargetFlags()) {
69  default: break;
70  case X86II::MO_DLLIMPORT: {
71    // Handle dllimport linkage.
72    const char *Prefix = "__imp_";
73    Name.insert(Name.begin(), Prefix, Prefix+strlen(Prefix));
74    break;
75  }
76  case X86II::MO_DARWIN_NONLAZY:
77  case X86II::MO_DARWIN_NONLAZY_PIC_BASE: {
78    Name += "$non_lazy_ptr";
79    MCSymbol *Sym = Ctx.GetOrCreateSymbol(Name.str());
80
81    MachineModuleInfoImpl::StubValueTy &StubSym =
82      getMachOMMI().getGVStubEntry(Sym);
83    if (StubSym.getPointer() == 0) {
84      assert(MO.isGlobal() && "Extern symbol not handled yet");
85      StubSym =
86        MachineModuleInfoImpl::
87        StubValueTy(Mang->getSymbol(MO.getGlobal()),
88                    !MO.getGlobal()->hasInternalLinkage());
89    }
90    return Sym;
91  }
92  case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: {
93    Name += "$non_lazy_ptr";
94    MCSymbol *Sym = Ctx.GetOrCreateSymbol(Name.str());
95    MachineModuleInfoImpl::StubValueTy &StubSym =
96      getMachOMMI().getHiddenGVStubEntry(Sym);
97    if (StubSym.getPointer() == 0) {
98      assert(MO.isGlobal() && "Extern symbol not handled yet");
99      StubSym =
100        MachineModuleInfoImpl::
101        StubValueTy(Mang->getSymbol(MO.getGlobal()),
102                    !MO.getGlobal()->hasInternalLinkage());
103    }
104    return Sym;
105  }
106  case X86II::MO_DARWIN_STUB: {
107    Name += "$stub";
108    MCSymbol *Sym = Ctx.GetOrCreateSymbol(Name.str());
109    MachineModuleInfoImpl::StubValueTy &StubSym =
110      getMachOMMI().getFnStubEntry(Sym);
111    if (StubSym.getPointer())
112      return Sym;
113
114    if (MO.isGlobal()) {
115      StubSym =
116        MachineModuleInfoImpl::
117        StubValueTy(Mang->getSymbol(MO.getGlobal()),
118                    !MO.getGlobal()->hasInternalLinkage());
119    } else {
120      Name.erase(Name.end()-5, Name.end());
121      StubSym =
122        MachineModuleInfoImpl::
123        StubValueTy(Ctx.GetOrCreateSymbol(Name.str()), false);
124    }
125    return Sym;
126  }
127  }
128
129  return Ctx.GetOrCreateSymbol(Name.str());
130}
131
132MCOperand X86MCInstLower::LowerSymbolOperand(const MachineOperand &MO,
133                                             MCSymbol *Sym) const {
134  // FIXME: We would like an efficient form for this, so we don't have to do a
135  // lot of extra uniquing.
136  const MCExpr *Expr = 0;
137  MCSymbolRefExpr::VariantKind RefKind = MCSymbolRefExpr::VK_None;
138
139  switch (MO.getTargetFlags()) {
140  default: llvm_unreachable("Unknown target flag on GV operand");
141  case X86II::MO_NO_FLAG:    // No flag.
142  // These affect the name of the symbol, not any suffix.
143  case X86II::MO_DARWIN_NONLAZY:
144  case X86II::MO_DLLIMPORT:
145  case X86II::MO_DARWIN_STUB:
146    break;
147
148  case X86II::MO_TLVP:      RefKind = MCSymbolRefExpr::VK_TLVP; break;
149  case X86II::MO_TLVP_PIC_BASE:
150    Expr = MCSymbolRefExpr::Create(Sym, MCSymbolRefExpr::VK_TLVP, Ctx);
151    // Subtract the pic base.
152    Expr = MCBinaryExpr::CreateSub(Expr,
153                                  MCSymbolRefExpr::Create(MF.getPICBaseSymbol(),
154                                                           Ctx),
155                                   Ctx);
156    break;
157  case X86II::MO_SECREL:    RefKind = MCSymbolRefExpr::VK_SECREL; break;
158  case X86II::MO_TLSGD:     RefKind = MCSymbolRefExpr::VK_TLSGD; break;
159  case X86II::MO_TLSLD:     RefKind = MCSymbolRefExpr::VK_TLSLD; break;
160  case X86II::MO_TLSLDM:    RefKind = MCSymbolRefExpr::VK_TLSLDM; break;
161  case X86II::MO_GOTTPOFF:  RefKind = MCSymbolRefExpr::VK_GOTTPOFF; break;
162  case X86II::MO_INDNTPOFF: RefKind = MCSymbolRefExpr::VK_INDNTPOFF; break;
163  case X86II::MO_TPOFF:     RefKind = MCSymbolRefExpr::VK_TPOFF; break;
164  case X86II::MO_DTPOFF:    RefKind = MCSymbolRefExpr::VK_DTPOFF; break;
165  case X86II::MO_NTPOFF:    RefKind = MCSymbolRefExpr::VK_NTPOFF; break;
166  case X86II::MO_GOTNTPOFF: RefKind = MCSymbolRefExpr::VK_GOTNTPOFF; break;
167  case X86II::MO_GOTPCREL:  RefKind = MCSymbolRefExpr::VK_GOTPCREL; break;
168  case X86II::MO_GOT:       RefKind = MCSymbolRefExpr::VK_GOT; break;
169  case X86II::MO_GOTOFF:    RefKind = MCSymbolRefExpr::VK_GOTOFF; break;
170  case X86II::MO_PLT:       RefKind = MCSymbolRefExpr::VK_PLT; break;
171  case X86II::MO_PIC_BASE_OFFSET:
172  case X86II::MO_DARWIN_NONLAZY_PIC_BASE:
173  case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE:
174    Expr = MCSymbolRefExpr::Create(Sym, Ctx);
175    // Subtract the pic base.
176    Expr = MCBinaryExpr::CreateSub(Expr,
177                            MCSymbolRefExpr::Create(MF.getPICBaseSymbol(), Ctx),
178                                   Ctx);
179    if (MO.isJTI() && MAI.hasSetDirective()) {
180      // If .set directive is supported, use it to reduce the number of
181      // relocations the assembler will generate for differences between
182      // local labels. This is only safe when the symbols are in the same
183      // section so we are restricting it to jumptable references.
184      MCSymbol *Label = Ctx.CreateTempSymbol();
185      AsmPrinter.OutStreamer.EmitAssignment(Label, Expr);
186      Expr = MCSymbolRefExpr::Create(Label, Ctx);
187    }
188    break;
189  }
190
191  if (Expr == 0)
192    Expr = MCSymbolRefExpr::Create(Sym, RefKind, Ctx);
193
194  if (!MO.isJTI() && MO.getOffset())
195    Expr = MCBinaryExpr::CreateAdd(Expr,
196                                   MCConstantExpr::Create(MO.getOffset(), Ctx),
197                                   Ctx);
198  return MCOperand::CreateExpr(Expr);
199}
200
201
202
203static void lower_subreg32(MCInst *MI, unsigned OpNo) {
204  // Convert registers in the addr mode according to subreg32.
205  unsigned Reg = MI->getOperand(OpNo).getReg();
206  if (Reg != 0)
207    MI->getOperand(OpNo).setReg(getX86SubSuperRegister(Reg, MVT::i32));
208}
209
210static void lower_lea64_32mem(MCInst *MI, unsigned OpNo) {
211  // Convert registers in the addr mode according to subreg64.
212  for (unsigned i = 0; i != 4; ++i) {
213    if (!MI->getOperand(OpNo+i).isReg()) continue;
214
215    unsigned Reg = MI->getOperand(OpNo+i).getReg();
216    if (Reg == 0) continue;
217
218    MI->getOperand(OpNo+i).setReg(getX86SubSuperRegister(Reg, MVT::i64));
219  }
220}
221
222/// LowerSubReg32_Op0 - Things like MOVZX16rr8 -> MOVZX32rr8.
223static void LowerSubReg32_Op0(MCInst &OutMI, unsigned NewOpc) {
224  OutMI.setOpcode(NewOpc);
225  lower_subreg32(&OutMI, 0);
226}
227/// LowerUnaryToTwoAddr - R = setb   -> R = sbb R, R
228static void LowerUnaryToTwoAddr(MCInst &OutMI, unsigned NewOpc) {
229  OutMI.setOpcode(NewOpc);
230  OutMI.addOperand(OutMI.getOperand(0));
231  OutMI.addOperand(OutMI.getOperand(0));
232}
233
234/// \brief Simplify FOO $imm, %{al,ax,eax,rax} to FOO $imm, for instruction with
235/// a short fixed-register form.
236static void SimplifyShortImmForm(MCInst &Inst, unsigned Opcode) {
237  unsigned ImmOp = Inst.getNumOperands() - 1;
238  assert(Inst.getOperand(0).isReg() &&
239         (Inst.getOperand(ImmOp).isImm() || Inst.getOperand(ImmOp).isExpr()) &&
240         ((Inst.getNumOperands() == 3 && Inst.getOperand(1).isReg() &&
241           Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) ||
242          Inst.getNumOperands() == 2) && "Unexpected instruction!");
243
244  // Check whether the destination register can be fixed.
245  unsigned Reg = Inst.getOperand(0).getReg();
246  if (Reg != X86::AL && Reg != X86::AX && Reg != X86::EAX && Reg != X86::RAX)
247    return;
248
249  // If so, rewrite the instruction.
250  MCOperand Saved = Inst.getOperand(ImmOp);
251  Inst = MCInst();
252  Inst.setOpcode(Opcode);
253  Inst.addOperand(Saved);
254}
255
256/// \brief Simplify things like MOV32rm to MOV32o32a.
257static void SimplifyShortMoveForm(X86AsmPrinter &Printer, MCInst &Inst,
258                                  unsigned Opcode) {
259  // Don't make these simplifications in 64-bit mode; other assemblers don't
260  // perform them because they make the code larger.
261  if (Printer.getSubtarget().is64Bit())
262    return;
263
264  bool IsStore = Inst.getOperand(0).isReg() && Inst.getOperand(1).isReg();
265  unsigned AddrBase = IsStore;
266  unsigned RegOp = IsStore ? 0 : 5;
267  unsigned AddrOp = AddrBase + 3;
268  assert(Inst.getNumOperands() == 6 && Inst.getOperand(RegOp).isReg() &&
269         Inst.getOperand(AddrBase + 0).isReg() && // base
270         Inst.getOperand(AddrBase + 1).isImm() && // scale
271         Inst.getOperand(AddrBase + 2).isReg() && // index register
272         (Inst.getOperand(AddrOp).isExpr() ||     // address
273          Inst.getOperand(AddrOp).isImm())&&
274         Inst.getOperand(AddrBase + 4).isReg() && // segment
275         "Unexpected instruction!");
276
277  // Check whether the destination register can be fixed.
278  unsigned Reg = Inst.getOperand(RegOp).getReg();
279  if (Reg != X86::AL && Reg != X86::AX && Reg != X86::EAX && Reg != X86::RAX)
280    return;
281
282  // Check whether this is an absolute address.
283  // FIXME: We know TLVP symbol refs aren't, but there should be a better way
284  // to do this here.
285  bool Absolute = true;
286  if (Inst.getOperand(AddrOp).isExpr()) {
287    const MCExpr *MCE = Inst.getOperand(AddrOp).getExpr();
288    if (const MCSymbolRefExpr *SRE = dyn_cast<MCSymbolRefExpr>(MCE))
289      if (SRE->getKind() == MCSymbolRefExpr::VK_TLVP)
290        Absolute = false;
291  }
292
293  if (Absolute &&
294      (Inst.getOperand(AddrBase + 0).getReg() != 0 ||
295       Inst.getOperand(AddrBase + 2).getReg() != 0 ||
296       Inst.getOperand(AddrBase + 4).getReg() != 0 ||
297       Inst.getOperand(AddrBase + 1).getImm() != 1))
298    return;
299
300  // If so, rewrite the instruction.
301  MCOperand Saved = Inst.getOperand(AddrOp);
302  Inst = MCInst();
303  Inst.setOpcode(Opcode);
304  Inst.addOperand(Saved);
305}
306
307void X86MCInstLower::Lower(const MachineInstr *MI, MCInst &OutMI) const {
308  OutMI.setOpcode(MI->getOpcode());
309
310  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
311    const MachineOperand &MO = MI->getOperand(i);
312
313    MCOperand MCOp;
314    switch (MO.getType()) {
315    default:
316      MI->dump();
317      llvm_unreachable("unknown operand type");
318    case MachineOperand::MO_Register:
319      // Ignore all implicit register operands.
320      if (MO.isImplicit()) continue;
321      MCOp = MCOperand::CreateReg(MO.getReg());
322      break;
323    case MachineOperand::MO_Immediate:
324      MCOp = MCOperand::CreateImm(MO.getImm());
325      break;
326    case MachineOperand::MO_MachineBasicBlock:
327      MCOp = MCOperand::CreateExpr(MCSymbolRefExpr::Create(
328                       MO.getMBB()->getSymbol(), Ctx));
329      break;
330    case MachineOperand::MO_GlobalAddress:
331    case MachineOperand::MO_ExternalSymbol:
332      MCOp = LowerSymbolOperand(MO, GetSymbolFromOperand(MO));
333      break;
334    case MachineOperand::MO_JumpTableIndex:
335      MCOp = LowerSymbolOperand(MO, AsmPrinter.GetJTISymbol(MO.getIndex()));
336      break;
337    case MachineOperand::MO_ConstantPoolIndex:
338      MCOp = LowerSymbolOperand(MO, AsmPrinter.GetCPISymbol(MO.getIndex()));
339      break;
340    case MachineOperand::MO_BlockAddress:
341      MCOp = LowerSymbolOperand(MO,
342                     AsmPrinter.GetBlockAddressSymbol(MO.getBlockAddress()));
343      break;
344    case MachineOperand::MO_RegisterMask:
345      // Ignore call clobbers.
346      continue;
347    }
348
349    OutMI.addOperand(MCOp);
350  }
351
352  // Handle a few special cases to eliminate operand modifiers.
353ReSimplify:
354  switch (OutMI.getOpcode()) {
355  case X86::LEA64_32r: // Handle 'subreg rewriting' for the lea64_32mem operand.
356    lower_lea64_32mem(&OutMI, 1);
357    // FALL THROUGH.
358  case X86::LEA64r:
359  case X86::LEA16r:
360  case X86::LEA32r:
361    // LEA should have a segment register, but it must be empty.
362    assert(OutMI.getNumOperands() == 1+X86::AddrNumOperands &&
363           "Unexpected # of LEA operands");
364    assert(OutMI.getOperand(1+X86::AddrSegmentReg).getReg() == 0 &&
365           "LEA has segment specified!");
366    break;
367  case X86::MOVZX64rr32:  LowerSubReg32_Op0(OutMI, X86::MOV32rr); break;
368  case X86::MOVZX64rm32:  LowerSubReg32_Op0(OutMI, X86::MOV32rm); break;
369  case X86::MOV64ri64i32: LowerSubReg32_Op0(OutMI, X86::MOV32ri); break;
370  case X86::MOVZX64rr8:   LowerSubReg32_Op0(OutMI, X86::MOVZX32rr8); break;
371  case X86::MOVZX64rm8:   LowerSubReg32_Op0(OutMI, X86::MOVZX32rm8); break;
372  case X86::MOVZX64rr16:  LowerSubReg32_Op0(OutMI, X86::MOVZX32rr16); break;
373  case X86::MOVZX64rm16:  LowerSubReg32_Op0(OutMI, X86::MOVZX32rm16); break;
374  case X86::SETB_C8r:     LowerUnaryToTwoAddr(OutMI, X86::SBB8rr); break;
375  case X86::SETB_C16r:    LowerUnaryToTwoAddr(OutMI, X86::SBB16rr); break;
376  case X86::SETB_C32r:    LowerUnaryToTwoAddr(OutMI, X86::SBB32rr); break;
377  case X86::SETB_C64r:    LowerUnaryToTwoAddr(OutMI, X86::SBB64rr); break;
378  case X86::MOV8r0:       LowerUnaryToTwoAddr(OutMI, X86::XOR8rr); break;
379  case X86::MOV32r0:      LowerUnaryToTwoAddr(OutMI, X86::XOR32rr); break;
380  case X86::V_SETALLONES:  LowerUnaryToTwoAddr(OutMI, X86::PCMPEQDrr); break;
381  case X86::AVX_SET0PSY:   LowerUnaryToTwoAddr(OutMI, X86::VXORPSYrr); break;
382  case X86::AVX_SET0PDY:   LowerUnaryToTwoAddr(OutMI, X86::VXORPDYrr); break;
383  case X86::AVX_SETALLONES:  LowerUnaryToTwoAddr(OutMI, X86::VPCMPEQDrr); break;
384  case X86::AVX2_SETALLONES: LowerUnaryToTwoAddr(OutMI, X86::VPCMPEQDYrr);break;
385  case X86::AVX2_SET0:     LowerUnaryToTwoAddr(OutMI, X86::VPXORYrr); break;
386
387  case X86::MOV16r0:
388    LowerSubReg32_Op0(OutMI, X86::MOV32r0);   // MOV16r0 -> MOV32r0
389    LowerUnaryToTwoAddr(OutMI, X86::XOR32rr); // MOV32r0 -> XOR32rr
390    break;
391  case X86::MOV64r0:
392    LowerSubReg32_Op0(OutMI, X86::MOV32r0);   // MOV64r0 -> MOV32r0
393    LowerUnaryToTwoAddr(OutMI, X86::XOR32rr); // MOV32r0 -> XOR32rr
394    break;
395
396  // TAILJMPr64, CALL64r, CALL64pcrel32 - These instructions have register
397  // inputs modeled as normal uses instead of implicit uses.  As such, truncate
398  // off all but the first operand (the callee).  FIXME: Change isel.
399  case X86::TAILJMPr64:
400  case X86::CALL64r:
401  case X86::CALL64pcrel32: {
402    unsigned Opcode = OutMI.getOpcode();
403    MCOperand Saved = OutMI.getOperand(0);
404    OutMI = MCInst();
405    OutMI.setOpcode(Opcode);
406    OutMI.addOperand(Saved);
407    break;
408  }
409
410  case X86::EH_RETURN:
411  case X86::EH_RETURN64: {
412    OutMI = MCInst();
413    OutMI.setOpcode(X86::RET);
414    break;
415  }
416
417  // TAILJMPd, TAILJMPd64 - Lower to the correct jump instructions.
418  case X86::TAILJMPr:
419  case X86::TAILJMPd:
420  case X86::TAILJMPd64: {
421    unsigned Opcode;
422    switch (OutMI.getOpcode()) {
423    default: llvm_unreachable("Invalid opcode");
424    case X86::TAILJMPr: Opcode = X86::JMP32r; break;
425    case X86::TAILJMPd:
426    case X86::TAILJMPd64: Opcode = X86::JMP_1; break;
427    }
428
429    MCOperand Saved = OutMI.getOperand(0);
430    OutMI = MCInst();
431    OutMI.setOpcode(Opcode);
432    OutMI.addOperand(Saved);
433    break;
434  }
435
436  // These are pseudo-ops for OR to help with the OR->ADD transformation.  We do
437  // this with an ugly goto in case the resultant OR uses EAX and needs the
438  // short form.
439  case X86::ADD16rr_DB:   OutMI.setOpcode(X86::OR16rr); goto ReSimplify;
440  case X86::ADD32rr_DB:   OutMI.setOpcode(X86::OR32rr); goto ReSimplify;
441  case X86::ADD64rr_DB:   OutMI.setOpcode(X86::OR64rr); goto ReSimplify;
442  case X86::ADD16ri_DB:   OutMI.setOpcode(X86::OR16ri); goto ReSimplify;
443  case X86::ADD32ri_DB:   OutMI.setOpcode(X86::OR32ri); goto ReSimplify;
444  case X86::ADD64ri32_DB: OutMI.setOpcode(X86::OR64ri32); goto ReSimplify;
445  case X86::ADD16ri8_DB:  OutMI.setOpcode(X86::OR16ri8); goto ReSimplify;
446  case X86::ADD32ri8_DB:  OutMI.setOpcode(X86::OR32ri8); goto ReSimplify;
447  case X86::ADD64ri8_DB:  OutMI.setOpcode(X86::OR64ri8); goto ReSimplify;
448
449  // The assembler backend wants to see branches in their small form and relax
450  // them to their large form.  The JIT can only handle the large form because
451  // it does not do relaxation.  For now, translate the large form to the
452  // small one here.
453  case X86::JMP_4: OutMI.setOpcode(X86::JMP_1); break;
454  case X86::JO_4:  OutMI.setOpcode(X86::JO_1); break;
455  case X86::JNO_4: OutMI.setOpcode(X86::JNO_1); break;
456  case X86::JB_4:  OutMI.setOpcode(X86::JB_1); break;
457  case X86::JAE_4: OutMI.setOpcode(X86::JAE_1); break;
458  case X86::JE_4:  OutMI.setOpcode(X86::JE_1); break;
459  case X86::JNE_4: OutMI.setOpcode(X86::JNE_1); break;
460  case X86::JBE_4: OutMI.setOpcode(X86::JBE_1); break;
461  case X86::JA_4:  OutMI.setOpcode(X86::JA_1); break;
462  case X86::JS_4:  OutMI.setOpcode(X86::JS_1); break;
463  case X86::JNS_4: OutMI.setOpcode(X86::JNS_1); break;
464  case X86::JP_4:  OutMI.setOpcode(X86::JP_1); break;
465  case X86::JNP_4: OutMI.setOpcode(X86::JNP_1); break;
466  case X86::JL_4:  OutMI.setOpcode(X86::JL_1); break;
467  case X86::JGE_4: OutMI.setOpcode(X86::JGE_1); break;
468  case X86::JLE_4: OutMI.setOpcode(X86::JLE_1); break;
469  case X86::JG_4:  OutMI.setOpcode(X86::JG_1); break;
470
471  // Atomic load and store require a separate pseudo-inst because Acquire
472  // implies mayStore and Release implies mayLoad; fix these to regular MOV
473  // instructions here
474  case X86::ACQUIRE_MOV8rm:  OutMI.setOpcode(X86::MOV8rm); goto ReSimplify;
475  case X86::ACQUIRE_MOV16rm: OutMI.setOpcode(X86::MOV16rm); goto ReSimplify;
476  case X86::ACQUIRE_MOV32rm: OutMI.setOpcode(X86::MOV32rm); goto ReSimplify;
477  case X86::ACQUIRE_MOV64rm: OutMI.setOpcode(X86::MOV64rm); goto ReSimplify;
478  case X86::RELEASE_MOV8mr:  OutMI.setOpcode(X86::MOV8mr); goto ReSimplify;
479  case X86::RELEASE_MOV16mr: OutMI.setOpcode(X86::MOV16mr); goto ReSimplify;
480  case X86::RELEASE_MOV32mr: OutMI.setOpcode(X86::MOV32mr); goto ReSimplify;
481  case X86::RELEASE_MOV64mr: OutMI.setOpcode(X86::MOV64mr); goto ReSimplify;
482
483  // We don't currently select the correct instruction form for instructions
484  // which have a short %eax, etc. form. Handle this by custom lowering, for
485  // now.
486  //
487  // Note, we are currently not handling the following instructions:
488  // MOV64ao8, MOV64o8a
489  // XCHG16ar, XCHG32ar, XCHG64ar
490  case X86::MOV8mr_NOREX:
491  case X86::MOV8mr:     SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV8ao8); break;
492  case X86::MOV8rm_NOREX:
493  case X86::MOV8rm:     SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV8o8a); break;
494  case X86::MOV16mr:    SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV16ao16); break;
495  case X86::MOV16rm:    SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV16o16a); break;
496  case X86::MOV32mr:    SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV32ao32); break;
497  case X86::MOV32rm:    SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV32o32a); break;
498
499  case X86::ADC8ri:     SimplifyShortImmForm(OutMI, X86::ADC8i8);    break;
500  case X86::ADC16ri:    SimplifyShortImmForm(OutMI, X86::ADC16i16);  break;
501  case X86::ADC32ri:    SimplifyShortImmForm(OutMI, X86::ADC32i32);  break;
502  case X86::ADC64ri32:  SimplifyShortImmForm(OutMI, X86::ADC64i32);  break;
503  case X86::ADD8ri:     SimplifyShortImmForm(OutMI, X86::ADD8i8);    break;
504  case X86::ADD16ri:    SimplifyShortImmForm(OutMI, X86::ADD16i16);  break;
505  case X86::ADD32ri:    SimplifyShortImmForm(OutMI, X86::ADD32i32);  break;
506  case X86::ADD64ri32:  SimplifyShortImmForm(OutMI, X86::ADD64i32);  break;
507  case X86::AND8ri:     SimplifyShortImmForm(OutMI, X86::AND8i8);    break;
508  case X86::AND16ri:    SimplifyShortImmForm(OutMI, X86::AND16i16);  break;
509  case X86::AND32ri:    SimplifyShortImmForm(OutMI, X86::AND32i32);  break;
510  case X86::AND64ri32:  SimplifyShortImmForm(OutMI, X86::AND64i32);  break;
511  case X86::CMP8ri:     SimplifyShortImmForm(OutMI, X86::CMP8i8);    break;
512  case X86::CMP16ri:    SimplifyShortImmForm(OutMI, X86::CMP16i16);  break;
513  case X86::CMP32ri:    SimplifyShortImmForm(OutMI, X86::CMP32i32);  break;
514  case X86::CMP64ri32:  SimplifyShortImmForm(OutMI, X86::CMP64i32);  break;
515  case X86::OR8ri:      SimplifyShortImmForm(OutMI, X86::OR8i8);     break;
516  case X86::OR16ri:     SimplifyShortImmForm(OutMI, X86::OR16i16);   break;
517  case X86::OR32ri:     SimplifyShortImmForm(OutMI, X86::OR32i32);   break;
518  case X86::OR64ri32:   SimplifyShortImmForm(OutMI, X86::OR64i32);   break;
519  case X86::SBB8ri:     SimplifyShortImmForm(OutMI, X86::SBB8i8);    break;
520  case X86::SBB16ri:    SimplifyShortImmForm(OutMI, X86::SBB16i16);  break;
521  case X86::SBB32ri:    SimplifyShortImmForm(OutMI, X86::SBB32i32);  break;
522  case X86::SBB64ri32:  SimplifyShortImmForm(OutMI, X86::SBB64i32);  break;
523  case X86::SUB8ri:     SimplifyShortImmForm(OutMI, X86::SUB8i8);    break;
524  case X86::SUB16ri:    SimplifyShortImmForm(OutMI, X86::SUB16i16);  break;
525  case X86::SUB32ri:    SimplifyShortImmForm(OutMI, X86::SUB32i32);  break;
526  case X86::SUB64ri32:  SimplifyShortImmForm(OutMI, X86::SUB64i32);  break;
527  case X86::TEST8ri:    SimplifyShortImmForm(OutMI, X86::TEST8i8);   break;
528  case X86::TEST16ri:   SimplifyShortImmForm(OutMI, X86::TEST16i16); break;
529  case X86::TEST32ri:   SimplifyShortImmForm(OutMI, X86::TEST32i32); break;
530  case X86::TEST64ri32: SimplifyShortImmForm(OutMI, X86::TEST64i32); break;
531  case X86::XOR8ri:     SimplifyShortImmForm(OutMI, X86::XOR8i8);    break;
532  case X86::XOR16ri:    SimplifyShortImmForm(OutMI, X86::XOR16i16);  break;
533  case X86::XOR32ri:    SimplifyShortImmForm(OutMI, X86::XOR32i32);  break;
534  case X86::XOR64ri32:  SimplifyShortImmForm(OutMI, X86::XOR64i32);  break;
535
536  case X86::MORESTACK_RET:
537    OutMI.setOpcode(X86::RET);
538    break;
539
540  case X86::MORESTACK_RET_RESTORE_R10: {
541    MCInst retInst;
542
543    OutMI.setOpcode(X86::MOV64rr);
544    OutMI.addOperand(MCOperand::CreateReg(X86::R10));
545    OutMI.addOperand(MCOperand::CreateReg(X86::RAX));
546
547    retInst.setOpcode(X86::RET);
548    AsmPrinter.OutStreamer.EmitInstruction(retInst);
549    break;
550  }
551  }
552}
553
554static void LowerTlsAddr(MCStreamer &OutStreamer,
555                         X86MCInstLower &MCInstLowering,
556                         const MachineInstr &MI) {
557
558  bool is64Bits = MI.getOpcode() == X86::TLS_addr64 ||
559                  MI.getOpcode() == X86::TLS_base_addr64;
560
561  bool needsPadding = MI.getOpcode() == X86::TLS_addr64;
562
563  MCContext &context = OutStreamer.getContext();
564
565  if (needsPadding) {
566    MCInst prefix;
567    prefix.setOpcode(X86::DATA16_PREFIX);
568    OutStreamer.EmitInstruction(prefix);
569  }
570
571  MCSymbolRefExpr::VariantKind SRVK;
572  switch (MI.getOpcode()) {
573    case X86::TLS_addr32:
574    case X86::TLS_addr64:
575      SRVK = MCSymbolRefExpr::VK_TLSGD;
576      break;
577    case X86::TLS_base_addr32:
578      SRVK = MCSymbolRefExpr::VK_TLSLDM;
579      break;
580    case X86::TLS_base_addr64:
581      SRVK = MCSymbolRefExpr::VK_TLSLD;
582      break;
583    default:
584      llvm_unreachable("unexpected opcode");
585  }
586
587  MCSymbol *sym = MCInstLowering.GetSymbolFromOperand(MI.getOperand(3));
588  const MCSymbolRefExpr *symRef = MCSymbolRefExpr::Create(sym, SRVK, context);
589
590  MCInst LEA;
591  if (is64Bits) {
592    LEA.setOpcode(X86::LEA64r);
593    LEA.addOperand(MCOperand::CreateReg(X86::RDI)); // dest
594    LEA.addOperand(MCOperand::CreateReg(X86::RIP)); // base
595    LEA.addOperand(MCOperand::CreateImm(1));        // scale
596    LEA.addOperand(MCOperand::CreateReg(0));        // index
597    LEA.addOperand(MCOperand::CreateExpr(symRef));  // disp
598    LEA.addOperand(MCOperand::CreateReg(0));        // seg
599  } else if (SRVK == MCSymbolRefExpr::VK_TLSLDM) {
600    LEA.setOpcode(X86::LEA32r);
601    LEA.addOperand(MCOperand::CreateReg(X86::EAX)); // dest
602    LEA.addOperand(MCOperand::CreateReg(X86::EBX)); // base
603    LEA.addOperand(MCOperand::CreateImm(1));        // scale
604    LEA.addOperand(MCOperand::CreateReg(0));        // index
605    LEA.addOperand(MCOperand::CreateExpr(symRef));  // disp
606    LEA.addOperand(MCOperand::CreateReg(0));        // seg
607  } else {
608    LEA.setOpcode(X86::LEA32r);
609    LEA.addOperand(MCOperand::CreateReg(X86::EAX)); // dest
610    LEA.addOperand(MCOperand::CreateReg(0));        // base
611    LEA.addOperand(MCOperand::CreateImm(1));        // scale
612    LEA.addOperand(MCOperand::CreateReg(X86::EBX)); // index
613    LEA.addOperand(MCOperand::CreateExpr(symRef));  // disp
614    LEA.addOperand(MCOperand::CreateReg(0));        // seg
615  }
616  OutStreamer.EmitInstruction(LEA);
617
618  if (needsPadding) {
619    MCInst prefix;
620    prefix.setOpcode(X86::DATA16_PREFIX);
621    OutStreamer.EmitInstruction(prefix);
622    prefix.setOpcode(X86::DATA16_PREFIX);
623    OutStreamer.EmitInstruction(prefix);
624    prefix.setOpcode(X86::REX64_PREFIX);
625    OutStreamer.EmitInstruction(prefix);
626  }
627
628  MCInst call;
629  if (is64Bits)
630    call.setOpcode(X86::CALL64pcrel32);
631  else
632    call.setOpcode(X86::CALLpcrel32);
633  StringRef name = is64Bits ? "__tls_get_addr" : "___tls_get_addr";
634  MCSymbol *tlsGetAddr = context.GetOrCreateSymbol(name);
635  const MCSymbolRefExpr *tlsRef =
636    MCSymbolRefExpr::Create(tlsGetAddr,
637                            MCSymbolRefExpr::VK_PLT,
638                            context);
639
640  call.addOperand(MCOperand::CreateExpr(tlsRef));
641  OutStreamer.EmitInstruction(call);
642}
643
644void X86AsmPrinter::EmitInstruction(const MachineInstr *MI) {
645  X86MCInstLower MCInstLowering(Mang, *MF, *this);
646  switch (MI->getOpcode()) {
647  case TargetOpcode::DBG_VALUE:
648    if (isVerbose() && OutStreamer.hasRawTextSupport()) {
649      std::string TmpStr;
650      raw_string_ostream OS(TmpStr);
651      PrintDebugValueComment(MI, OS);
652      OutStreamer.EmitRawText(StringRef(OS.str()));
653    }
654    return;
655
656  // Emit nothing here but a comment if we can.
657  case X86::Int_MemBarrier:
658    if (OutStreamer.hasRawTextSupport())
659      OutStreamer.EmitRawText(StringRef("\t#MEMBARRIER"));
660    return;
661
662
663  case X86::EH_RETURN:
664  case X86::EH_RETURN64: {
665    // Lower these as normal, but add some comments.
666    unsigned Reg = MI->getOperand(0).getReg();
667    OutStreamer.AddComment(StringRef("eh_return, addr: %") +
668                           X86ATTInstPrinter::getRegisterName(Reg));
669    break;
670  }
671  case X86::TAILJMPr:
672  case X86::TAILJMPd:
673  case X86::TAILJMPd64:
674    // Lower these as normal, but add some comments.
675    OutStreamer.AddComment("TAILCALL");
676    break;
677
678  case X86::TLS_addr32:
679  case X86::TLS_addr64:
680  case X86::TLS_base_addr32:
681  case X86::TLS_base_addr64:
682    return LowerTlsAddr(OutStreamer, MCInstLowering, *MI);
683
684  case X86::MOVPC32r: {
685    MCInst TmpInst;
686    // This is a pseudo op for a two instruction sequence with a label, which
687    // looks like:
688    //     call "L1$pb"
689    // "L1$pb":
690    //     popl %esi
691
692    // Emit the call.
693    MCSymbol *PICBase = MF->getPICBaseSymbol();
694    TmpInst.setOpcode(X86::CALLpcrel32);
695    // FIXME: We would like an efficient form for this, so we don't have to do a
696    // lot of extra uniquing.
697    TmpInst.addOperand(MCOperand::CreateExpr(MCSymbolRefExpr::Create(PICBase,
698                                                                 OutContext)));
699    OutStreamer.EmitInstruction(TmpInst);
700
701    // Emit the label.
702    OutStreamer.EmitLabel(PICBase);
703
704    // popl $reg
705    TmpInst.setOpcode(X86::POP32r);
706    TmpInst.getOperand(0) = MCOperand::CreateReg(MI->getOperand(0).getReg());
707    OutStreamer.EmitInstruction(TmpInst);
708    return;
709  }
710
711  case X86::ADD32ri: {
712    // Lower the MO_GOT_ABSOLUTE_ADDRESS form of ADD32ri.
713    if (MI->getOperand(2).getTargetFlags() != X86II::MO_GOT_ABSOLUTE_ADDRESS)
714      break;
715
716    // Okay, we have something like:
717    //  EAX = ADD32ri EAX, MO_GOT_ABSOLUTE_ADDRESS(@MYGLOBAL)
718
719    // For this, we want to print something like:
720    //   MYGLOBAL + (. - PICBASE)
721    // However, we can't generate a ".", so just emit a new label here and refer
722    // to it.
723    MCSymbol *DotSym = OutContext.CreateTempSymbol();
724    OutStreamer.EmitLabel(DotSym);
725
726    // Now that we have emitted the label, lower the complex operand expression.
727    MCSymbol *OpSym = MCInstLowering.GetSymbolFromOperand(MI->getOperand(2));
728
729    const MCExpr *DotExpr = MCSymbolRefExpr::Create(DotSym, OutContext);
730    const MCExpr *PICBase =
731      MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), OutContext);
732    DotExpr = MCBinaryExpr::CreateSub(DotExpr, PICBase, OutContext);
733
734    DotExpr = MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(OpSym,OutContext),
735                                      DotExpr, OutContext);
736
737    MCInst TmpInst;
738    TmpInst.setOpcode(X86::ADD32ri);
739    TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
740    TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(1).getReg()));
741    TmpInst.addOperand(MCOperand::CreateExpr(DotExpr));
742    OutStreamer.EmitInstruction(TmpInst);
743    return;
744  }
745  }
746
747  MCInst TmpInst;
748  MCInstLowering.Lower(MI, TmpInst);
749  OutStreamer.EmitInstruction(TmpInst);
750}
751