DeadArgumentElimination.cpp revision 110c8350394df3222307fbebe608ff9ed88ea487
1//===-- DeadArgumentElimination.cpp - Eliminate dead arguments ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass deletes dead arguments from internal functions.  Dead argument
11// elimination removes arguments which are directly dead, as well as arguments
12// only passed into function calls as dead arguments of other functions.  This
13// pass also deletes dead arguments in a similar way.
14//
15// This pass is often useful as a cleanup pass to run after aggressive
16// interprocedural passes, which add possibly-dead arguments.
17//
18//===----------------------------------------------------------------------===//
19
20#define DEBUG_TYPE "deadargelim"
21#include "llvm/Transforms/IPO.h"
22#include "llvm/CallingConv.h"
23#include "llvm/Constant.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Instructions.h"
26#include "llvm/IntrinsicInst.h"
27#include "llvm/Module.h"
28#include "llvm/Pass.h"
29#include "llvm/ParameterAttributes.h"
30#include "llvm/Support/CallSite.h"
31#include "llvm/Support/Debug.h"
32#include "llvm/ADT/Statistic.h"
33#include "llvm/Support/Compiler.h"
34#include <set>
35using namespace llvm;
36
37STATISTIC(NumArgumentsEliminated, "Number of unread args removed");
38STATISTIC(NumRetValsEliminated  , "Number of unused return values removed");
39
40namespace {
41  /// DAE - The dead argument elimination pass.
42  ///
43  class VISIBILITY_HIDDEN DAE : public ModulePass {
44    /// Liveness enum - During our initial pass over the program, we determine
45    /// that things are either definately alive, definately dead, or in need of
46    /// interprocedural analysis (MaybeLive).
47    ///
48    enum Liveness { Live, MaybeLive, Dead };
49
50    /// LiveArguments, MaybeLiveArguments, DeadArguments - These sets contain
51    /// all of the arguments in the program.  The Dead set contains arguments
52    /// which are completely dead (never used in the function).  The MaybeLive
53    /// set contains arguments which are only passed into other function calls,
54    /// thus may be live and may be dead.  The Live set contains arguments which
55    /// are known to be alive.
56    ///
57    std::set<Argument*> DeadArguments, MaybeLiveArguments, LiveArguments;
58
59    /// DeadRetVal, MaybeLiveRetVal, LifeRetVal - These sets contain all of the
60    /// functions in the program.  The Dead set contains functions whose return
61    /// value is known to be dead.  The MaybeLive set contains functions whose
62    /// return values are only used by return instructions, and the Live set
63    /// contains functions whose return values are used, functions that are
64    /// external, and functions that already return void.
65    ///
66    std::set<Function*> DeadRetVal, MaybeLiveRetVal, LiveRetVal;
67
68    /// InstructionsToInspect - As we mark arguments and return values
69    /// MaybeLive, we keep track of which instructions could make the values
70    /// live here.  Once the entire program has had the return value and
71    /// arguments analyzed, this set is scanned to promote the MaybeLive objects
72    /// to be Live if they really are used.
73    std::vector<Instruction*> InstructionsToInspect;
74
75    /// CallSites - Keep track of the call sites of functions that have
76    /// MaybeLive arguments or return values.
77    std::multimap<Function*, CallSite> CallSites;
78
79  public:
80    static char ID; // Pass identification, replacement for typeid
81    DAE() : ModulePass((intptr_t)&ID) {}
82    bool runOnModule(Module &M);
83
84    virtual bool ShouldHackArguments() const { return false; }
85
86  private:
87    Liveness getArgumentLiveness(const Argument &A);
88    bool isMaybeLiveArgumentNowLive(Argument *Arg);
89
90    bool DeleteDeadVarargs(Function &Fn);
91    void SurveyFunction(Function &Fn);
92
93    void MarkArgumentLive(Argument *Arg);
94    void MarkRetValLive(Function *F);
95    void MarkReturnInstArgumentLive(ReturnInst *RI);
96
97    void RemoveDeadArgumentsFromFunction(Function *F);
98  };
99  char DAE::ID = 0;
100  RegisterPass<DAE> X("deadargelim", "Dead Argument Elimination");
101
102  /// DAH - DeadArgumentHacking pass - Same as dead argument elimination, but
103  /// deletes arguments to functions which are external.  This is only for use
104  /// by bugpoint.
105  struct DAH : public DAE {
106    static char ID;
107    virtual bool ShouldHackArguments() const { return true; }
108  };
109  char DAH::ID = 0;
110  RegisterPass<DAH> Y("deadarghaX0r",
111                      "Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)");
112}
113
114/// createDeadArgEliminationPass - This pass removes arguments from functions
115/// which are not used by the body of the function.
116///
117ModulePass *llvm::createDeadArgEliminationPass() { return new DAE(); }
118ModulePass *llvm::createDeadArgHackingPass() { return new DAH(); }
119
120/// DeleteDeadVarargs - If this is an function that takes a ... list, and if
121/// llvm.vastart is never called, the varargs list is dead for the function.
122bool DAE::DeleteDeadVarargs(Function &Fn) {
123  assert(Fn.getFunctionType()->isVarArg() && "Function isn't varargs!");
124  if (Fn.isDeclaration() || !Fn.hasInternalLinkage()) return false;
125
126  // Ensure that the function is only directly called.
127  for (Value::use_iterator I = Fn.use_begin(), E = Fn.use_end(); I != E; ++I) {
128    // If this use is anything other than a call site, give up.
129    CallSite CS = CallSite::get(*I);
130    Instruction *TheCall = CS.getInstruction();
131    if (!TheCall) return false;   // Not a direct call site?
132
133    // The addr of this function is passed to the call.
134    if (I.getOperandNo() != 0) return false;
135  }
136
137  // Okay, we know we can transform this function if safe.  Scan its body
138  // looking for calls to llvm.vastart.
139  for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
140    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
141      if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
142        if (II->getIntrinsicID() == Intrinsic::vastart)
143          return false;
144      }
145    }
146  }
147
148  // If we get here, there are no calls to llvm.vastart in the function body,
149  // remove the "..." and adjust all the calls.
150
151  // Start by computing a new prototype for the function, which is the same as
152  // the old function, but has fewer arguments.
153  const FunctionType *FTy = Fn.getFunctionType();
154  std::vector<const Type*> Params(FTy->param_begin(), FTy->param_end());
155  FunctionType *NFTy = FunctionType::get(FTy->getReturnType(), Params, false);
156  unsigned NumArgs = Params.size();
157
158  // Create the new function body and insert it into the module...
159  Function *NF = new Function(NFTy, Fn.getLinkage());
160  NF->setCallingConv(Fn.getCallingConv());
161  NF->setParamAttrs(Fn.getParamAttrs());
162  Fn.getParent()->getFunctionList().insert(&Fn, NF);
163  NF->takeName(&Fn);
164
165  // Loop over all of the callers of the function, transforming the call sites
166  // to pass in a smaller number of arguments into the new function.
167  //
168  std::vector<Value*> Args;
169  while (!Fn.use_empty()) {
170    CallSite CS = CallSite::get(Fn.use_back());
171    Instruction *Call = CS.getInstruction();
172
173    // Pass all the same arguments.
174    Args.assign(CS.arg_begin(), CS.arg_begin()+NumArgs);
175
176    Instruction *New;
177    if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
178      New = new InvokeInst(NF, II->getNormalDest(), II->getUnwindDest(),
179                           Args.begin(), Args.end(), "", Call);
180      cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
181      cast<InvokeInst>(New)->setParamAttrs(CS.getParamAttrs());
182    } else {
183      New = new CallInst(NF, Args.begin(), Args.end(), "", Call);
184      cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
185      cast<CallInst>(New)->setParamAttrs(CS.getParamAttrs());
186      if (cast<CallInst>(Call)->isTailCall())
187        cast<CallInst>(New)->setTailCall();
188    }
189    Args.clear();
190
191    if (!Call->use_empty())
192      Call->replaceAllUsesWith(New);
193
194    New->takeName(Call);
195
196    // Finally, remove the old call from the program, reducing the use-count of
197    // F.
198    Call->eraseFromParent();
199  }
200
201  // Since we have now created the new function, splice the body of the old
202  // function right into the new function, leaving the old rotting hulk of the
203  // function empty.
204  NF->getBasicBlockList().splice(NF->begin(), Fn.getBasicBlockList());
205
206  // Loop over the argument list, transfering uses of the old arguments over to
207  // the new arguments, also transfering over the names as well.  While we're at
208  // it, remove the dead arguments from the DeadArguments list.
209  //
210  for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end(),
211       I2 = NF->arg_begin(); I != E; ++I, ++I2) {
212    // Move the name and users over to the new version.
213    I->replaceAllUsesWith(I2);
214    I2->takeName(I);
215  }
216
217  // Finally, nuke the old function.
218  Fn.eraseFromParent();
219  return true;
220}
221
222
223static inline bool CallPassesValueThoughVararg(Instruction *Call,
224                                               const Value *Arg) {
225  CallSite CS = CallSite::get(Call);
226  const Type *CalledValueTy = CS.getCalledValue()->getType();
227  const Type *FTy = cast<PointerType>(CalledValueTy)->getElementType();
228  unsigned NumFixedArgs = cast<FunctionType>(FTy)->getNumParams();
229  for (CallSite::arg_iterator AI = CS.arg_begin()+NumFixedArgs;
230       AI != CS.arg_end(); ++AI)
231    if (AI->get() == Arg)
232      return true;
233  return false;
234}
235
236// getArgumentLiveness - Inspect an argument, determining if is known Live
237// (used in a computation), MaybeLive (only passed as an argument to a call), or
238// Dead (not used).
239DAE::Liveness DAE::getArgumentLiveness(const Argument &A) {
240  const Function *F = A.getParent();
241
242  // If this is the return value of a struct function, it's not really dead.
243  if (F->isStructReturn() && &*(F->arg_begin()) == &A)
244    return Live;
245
246  if (A.use_empty())  // First check, directly dead?
247    return Dead;
248
249  // Scan through all of the uses, looking for non-argument passing uses.
250  for (Value::use_const_iterator I = A.use_begin(), E = A.use_end(); I!=E;++I) {
251    // Return instructions do not immediately effect liveness.
252    if (isa<ReturnInst>(*I))
253      continue;
254
255    CallSite CS = CallSite::get(const_cast<User*>(*I));
256    if (!CS.getInstruction()) {
257      // If its used by something that is not a call or invoke, it's alive!
258      return Live;
259    }
260    // If it's an indirect call, mark it alive...
261    Function *Callee = CS.getCalledFunction();
262    if (!Callee) return Live;
263
264    // Check to see if it's passed through a va_arg area: if so, we cannot
265    // remove it.
266    if (CallPassesValueThoughVararg(CS.getInstruction(), &A))
267      return Live;   // If passed through va_arg area, we cannot remove it
268  }
269
270  return MaybeLive;  // It must be used, but only as argument to a function
271}
272
273
274// SurveyFunction - This performs the initial survey of the specified function,
275// checking out whether or not it uses any of its incoming arguments or whether
276// any callers use the return value.  This fills in the
277// (Dead|MaybeLive|Live)(Arguments|RetVal) sets.
278//
279// We consider arguments of non-internal functions to be intrinsically alive as
280// well as arguments to functions which have their "address taken".
281//
282void DAE::SurveyFunction(Function &F) {
283  bool FunctionIntrinsicallyLive = false;
284  Liveness RetValLiveness = F.getReturnType() == Type::VoidTy ? Live : Dead;
285
286  if (!F.hasInternalLinkage() &&
287      (!ShouldHackArguments() || F.isIntrinsic()))
288    FunctionIntrinsicallyLive = true;
289  else
290    for (Value::use_iterator I = F.use_begin(), E = F.use_end(); I != E; ++I) {
291      // If this use is anything other than a call site, the function is alive.
292      CallSite CS = CallSite::get(*I);
293      Instruction *TheCall = CS.getInstruction();
294      if (!TheCall) {   // Not a direct call site?
295        FunctionIntrinsicallyLive = true;
296        break;
297      }
298
299      // Check to see if the return value is used...
300      if (RetValLiveness != Live)
301        for (Value::use_iterator I = TheCall->use_begin(),
302               E = TheCall->use_end(); I != E; ++I)
303          if (isa<ReturnInst>(cast<Instruction>(*I))) {
304            RetValLiveness = MaybeLive;
305          } else if (isa<CallInst>(cast<Instruction>(*I)) ||
306                     isa<InvokeInst>(cast<Instruction>(*I))) {
307            if (CallPassesValueThoughVararg(cast<Instruction>(*I), TheCall) ||
308                !CallSite::get(cast<Instruction>(*I)).getCalledFunction()) {
309              RetValLiveness = Live;
310              break;
311            } else {
312              RetValLiveness = MaybeLive;
313            }
314          } else {
315            RetValLiveness = Live;
316            break;
317          }
318
319      // If the function is PASSED IN as an argument, its address has been taken
320      for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end();
321           AI != E; ++AI)
322        if (AI->get() == &F) {
323          FunctionIntrinsicallyLive = true;
324          break;
325        }
326      if (FunctionIntrinsicallyLive) break;
327    }
328
329  if (FunctionIntrinsicallyLive) {
330    DOUT << "  Intrinsically live fn: " << F.getName() << "\n";
331    for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
332         AI != E; ++AI)
333      LiveArguments.insert(AI);
334    LiveRetVal.insert(&F);
335    return;
336  }
337
338  switch (RetValLiveness) {
339  case Live:      LiveRetVal.insert(&F); break;
340  case MaybeLive: MaybeLiveRetVal.insert(&F); break;
341  case Dead:      DeadRetVal.insert(&F); break;
342  }
343
344  DOUT << "  Inspecting args for fn: " << F.getName() << "\n";
345
346  // If it is not intrinsically alive, we know that all users of the
347  // function are call sites.  Mark all of the arguments live which are
348  // directly used, and keep track of all of the call sites of this function
349  // if there are any arguments we assume that are dead.
350  //
351  bool AnyMaybeLiveArgs = false;
352  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
353       AI != E; ++AI)
354    switch (getArgumentLiveness(*AI)) {
355    case Live:
356      DOUT << "    Arg live by use: " << AI->getName() << "\n";
357      LiveArguments.insert(AI);
358      break;
359    case Dead:
360      DOUT << "    Arg definitely dead: " << AI->getName() <<"\n";
361      DeadArguments.insert(AI);
362      break;
363    case MaybeLive:
364      DOUT << "    Arg only passed to calls: " << AI->getName() << "\n";
365      AnyMaybeLiveArgs = true;
366      MaybeLiveArguments.insert(AI);
367      break;
368    }
369
370  // If there are any "MaybeLive" arguments, we need to check callees of
371  // this function when/if they become alive.  Record which functions are
372  // callees...
373  if (AnyMaybeLiveArgs || RetValLiveness == MaybeLive)
374    for (Value::use_iterator I = F.use_begin(), E = F.use_end();
375         I != E; ++I) {
376      if (AnyMaybeLiveArgs)
377        CallSites.insert(std::make_pair(&F, CallSite::get(*I)));
378
379      if (RetValLiveness == MaybeLive)
380        for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
381             UI != E; ++UI)
382          InstructionsToInspect.push_back(cast<Instruction>(*UI));
383    }
384}
385
386// isMaybeLiveArgumentNowLive - Check to see if Arg is alive.  At this point, we
387// know that the only uses of Arg are to be passed in as an argument to a
388// function call or return.  Check to see if the formal argument passed in is in
389// the LiveArguments set.  If so, return true.
390//
391bool DAE::isMaybeLiveArgumentNowLive(Argument *Arg) {
392  for (Value::use_iterator I = Arg->use_begin(), E = Arg->use_end(); I!=E; ++I){
393    if (isa<ReturnInst>(*I)) {
394      if (LiveRetVal.count(Arg->getParent())) return true;
395      continue;
396    }
397
398    CallSite CS = CallSite::get(*I);
399
400    // We know that this can only be used for direct calls...
401    Function *Callee = CS.getCalledFunction();
402
403    // Loop over all of the arguments (because Arg may be passed into the call
404    // multiple times) and check to see if any are now alive...
405    CallSite::arg_iterator CSAI = CS.arg_begin();
406    for (Function::arg_iterator AI = Callee->arg_begin(), E = Callee->arg_end();
407         AI != E; ++AI, ++CSAI)
408      // If this is the argument we are looking for, check to see if it's alive
409      if (*CSAI == Arg && LiveArguments.count(AI))
410        return true;
411  }
412  return false;
413}
414
415/// MarkArgumentLive - The MaybeLive argument 'Arg' is now known to be alive.
416/// Mark it live in the specified sets and recursively mark arguments in callers
417/// live that are needed to pass in a value.
418///
419void DAE::MarkArgumentLive(Argument *Arg) {
420  std::set<Argument*>::iterator It = MaybeLiveArguments.lower_bound(Arg);
421  if (It == MaybeLiveArguments.end() || *It != Arg) return;
422
423  DOUT << "  MaybeLive argument now live: " << Arg->getName() <<"\n";
424  MaybeLiveArguments.erase(It);
425  LiveArguments.insert(Arg);
426
427  // Loop over all of the call sites of the function, making any arguments
428  // passed in to provide a value for this argument live as necessary.
429  //
430  Function *Fn = Arg->getParent();
431  unsigned ArgNo = std::distance(Fn->arg_begin(), Function::arg_iterator(Arg));
432
433  std::multimap<Function*, CallSite>::iterator I = CallSites.lower_bound(Fn);
434  for (; I != CallSites.end() && I->first == Fn; ++I) {
435    CallSite CS = I->second;
436    Value *ArgVal = *(CS.arg_begin()+ArgNo);
437    if (Argument *ActualArg = dyn_cast<Argument>(ArgVal)) {
438      MarkArgumentLive(ActualArg);
439    } else {
440      // If the value passed in at this call site is a return value computed by
441      // some other call site, make sure to mark the return value at the other
442      // call site as being needed.
443      CallSite ArgCS = CallSite::get(ArgVal);
444      if (ArgCS.getInstruction())
445        if (Function *Fn = ArgCS.getCalledFunction())
446          MarkRetValLive(Fn);
447    }
448  }
449}
450
451/// MarkArgumentLive - The MaybeLive return value for the specified function is
452/// now known to be alive.  Propagate this fact to the return instructions which
453/// produce it.
454void DAE::MarkRetValLive(Function *F) {
455  assert(F && "Shame shame, we can't have null pointers here!");
456
457  // Check to see if we already knew it was live
458  std::set<Function*>::iterator I = MaybeLiveRetVal.lower_bound(F);
459  if (I == MaybeLiveRetVal.end() || *I != F) return;  // It's already alive!
460
461  DOUT << "  MaybeLive retval now live: " << F->getName() << "\n";
462
463  MaybeLiveRetVal.erase(I);
464  LiveRetVal.insert(F);        // It is now known to be live!
465
466  // Loop over all of the functions, noticing that the return value is now live.
467  for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
468    if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
469      MarkReturnInstArgumentLive(RI);
470}
471
472void DAE::MarkReturnInstArgumentLive(ReturnInst *RI) {
473  Value *Op = RI->getOperand(0);
474  if (Argument *A = dyn_cast<Argument>(Op)) {
475    MarkArgumentLive(A);
476  } else if (CallInst *CI = dyn_cast<CallInst>(Op)) {
477    if (Function *F = CI->getCalledFunction())
478      MarkRetValLive(F);
479  } else if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
480    if (Function *F = II->getCalledFunction())
481      MarkRetValLive(F);
482  }
483}
484
485// RemoveDeadArgumentsFromFunction - We know that F has dead arguments, as
486// specified by the DeadArguments list.  Transform the function and all of the
487// callees of the function to not have these arguments.
488//
489void DAE::RemoveDeadArgumentsFromFunction(Function *F) {
490  // Start by computing a new prototype for the function, which is the same as
491  // the old function, but has fewer arguments.
492  const FunctionType *FTy = F->getFunctionType();
493  std::vector<const Type*> Params;
494
495  // Set up to build a new list of parameter attributes
496  ParamAttrsVector ParamAttrsVec;
497  const ParamAttrsList *PAL = F->getParamAttrs();
498
499  // The existing function return attributes.
500  uint16_t RAttrs = PAL ? PAL->getParamAttrs(0) : 0;
501
502  // Make the function return void if the return value is dead.
503  const Type *RetTy = FTy->getReturnType();
504  if (DeadRetVal.count(F)) {
505    RetTy = Type::VoidTy;
506    RAttrs &= ~ParamAttr::VoidTypeIncompatible;
507    DeadRetVal.erase(F);
508  }
509
510  if (RAttrs)
511    ParamAttrsVec.push_back(ParamAttrsWithIndex::get(0, RAttrs));
512
513  // Construct the new parameter list from non-dead arguments. Also construct
514  // a new set of parameter attributes to correspond.
515  unsigned index = 1;
516  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
517       ++I, ++index)
518    if (!DeadArguments.count(I)) {
519      Params.push_back(I->getType());
520      uint16_t Attrs = PAL ? PAL->getParamAttrs(index) : 0;
521      if (Attrs)
522        ParamAttrsVec.push_back(ParamAttrsWithIndex::get(Params.size(), Attrs));
523    }
524
525  // Reconstruct the ParamAttrsList based on the vector we constructed.
526  PAL = ParamAttrsList::get(ParamAttrsVec);
527
528  // Work around LLVM bug PR56: the CWriter cannot emit varargs functions which
529  // have zero fixed arguments.
530  //
531  bool ExtraArgHack = false;
532  if (Params.empty() && FTy->isVarArg()) {
533    ExtraArgHack = true;
534    Params.push_back(Type::Int32Ty);
535  }
536
537  // Create the new function type based on the recomputed parameters.
538  FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg());
539
540  // Create the new function body and insert it into the module...
541  Function *NF = new Function(NFTy, F->getLinkage());
542  NF->setCallingConv(F->getCallingConv());
543  NF->setParamAttrs(PAL);
544  F->getParent()->getFunctionList().insert(F, NF);
545  NF->takeName(F);
546
547  // Loop over all of the callers of the function, transforming the call sites
548  // to pass in a smaller number of arguments into the new function.
549  //
550  std::vector<Value*> Args;
551  while (!F->use_empty()) {
552    CallSite CS = CallSite::get(F->use_back());
553    Instruction *Call = CS.getInstruction();
554    ParamAttrsVec.clear();
555    PAL = CS.getParamAttrs();
556
557    // The call return attributes.
558    uint16_t RAttrs = PAL ? PAL->getParamAttrs(0) : 0;
559    // Adjust in case the function was changed to return void.
560    if (NF->getReturnType() == Type::VoidTy)
561      RAttrs &= ~ParamAttr::VoidTypeIncompatible;
562    if (RAttrs)
563      ParamAttrsVec.push_back(ParamAttrsWithIndex::get(0, RAttrs));
564
565    // Loop over the operands, deleting dead ones...
566    CallSite::arg_iterator AI = CS.arg_begin();
567    index = 1;
568    for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
569         I != E; ++I, ++AI, ++index)
570      if (!DeadArguments.count(I)) {    // Remove operands for dead arguments
571        Args.push_back(*AI);
572        uint16_t Attrs = PAL ? PAL->getParamAttrs(index) : 0;
573        if (Attrs)
574          ParamAttrsVec.push_back(ParamAttrsWithIndex::get(Args.size(), Attrs));
575      }
576
577    // Reconstruct the ParamAttrsList based on the vector we constructed.
578    PAL = ParamAttrsList::get(ParamAttrsVec);
579
580    if (ExtraArgHack)
581      Args.push_back(UndefValue::get(Type::Int32Ty));
582
583    // Push any varargs arguments on the list
584    for (; AI != CS.arg_end(); ++AI)
585      Args.push_back(*AI);
586
587    Instruction *New;
588    if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
589      New = new InvokeInst(NF, II->getNormalDest(), II->getUnwindDest(),
590                           Args.begin(), Args.end(), "", Call);
591      cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
592      cast<InvokeInst>(New)->setParamAttrs(PAL);
593    } else {
594      New = new CallInst(NF, Args.begin(), Args.end(), "", Call);
595      cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
596      cast<CallInst>(New)->setParamAttrs(PAL);
597      if (cast<CallInst>(Call)->isTailCall())
598        cast<CallInst>(New)->setTailCall();
599    }
600    Args.clear();
601
602    if (!Call->use_empty()) {
603      if (New->getType() == Type::VoidTy)
604        Call->replaceAllUsesWith(Constant::getNullValue(Call->getType()));
605      else {
606        Call->replaceAllUsesWith(New);
607        New->takeName(Call);
608      }
609    }
610
611    // Finally, remove the old call from the program, reducing the use-count of
612    // F.
613    Call->getParent()->getInstList().erase(Call);
614  }
615
616  // Since we have now created the new function, splice the body of the old
617  // function right into the new function, leaving the old rotting hulk of the
618  // function empty.
619  NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
620
621  // Loop over the argument list, transfering uses of the old arguments over to
622  // the new arguments, also transfering over the names as well.  While we're at
623  // it, remove the dead arguments from the DeadArguments list.
624  //
625  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
626         I2 = NF->arg_begin();
627       I != E; ++I)
628    if (!DeadArguments.count(I)) {
629      // If this is a live argument, move the name and users over to the new
630      // version.
631      I->replaceAllUsesWith(I2);
632      I2->takeName(I);
633      ++I2;
634    } else {
635      // If this argument is dead, replace any uses of it with null constants
636      // (these are guaranteed to only be operands to call instructions which
637      // will later be simplified).
638      I->replaceAllUsesWith(Constant::getNullValue(I->getType()));
639      DeadArguments.erase(I);
640    }
641
642  // If we change the return value of the function we must rewrite any return
643  // instructions.  Check this now.
644  if (F->getReturnType() != NF->getReturnType())
645    for (Function::iterator BB = NF->begin(), E = NF->end(); BB != E; ++BB)
646      if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
647        new ReturnInst(0, RI);
648        BB->getInstList().erase(RI);
649      }
650
651  // Now that the old function is dead, delete it.
652  F->getParent()->getFunctionList().erase(F);
653}
654
655bool DAE::runOnModule(Module &M) {
656  bool Changed = false;
657  // First pass: Do a simple check to see if any functions can have their "..."
658  // removed.  We can do this if they never call va_start.  This loop cannot be
659  // fused with the next loop, because deleting a function invalidates
660  // information computed while surveying other functions.
661  DOUT << "DAE - Deleting dead varargs\n";
662  for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
663    Function &F = *I++;
664    if (F.getFunctionType()->isVarArg())
665      Changed |= DeleteDeadVarargs(F);
666  }
667
668  // Second phase:loop through the module, determining which arguments are live.
669  // We assume all arguments are dead unless proven otherwise (allowing us to
670  // determine that dead arguments passed into recursive functions are dead).
671  //
672  DOUT << "DAE - Determining liveness\n";
673  for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
674    SurveyFunction(*I);
675
676  // Loop over the instructions to inspect, propagating liveness among arguments
677  // and return values which are MaybeLive.
678  while (!InstructionsToInspect.empty()) {
679    Instruction *I = InstructionsToInspect.back();
680    InstructionsToInspect.pop_back();
681
682    if (ReturnInst *RI = dyn_cast<ReturnInst>(I)) {
683      // For return instructions, we just have to check to see if the return
684      // value for the current function is known now to be alive.  If so, any
685      // arguments used by it are now alive, and any call instruction return
686      // value is alive as well.
687      if (LiveRetVal.count(RI->getParent()->getParent()))
688        MarkReturnInstArgumentLive(RI);
689
690    } else {
691      CallSite CS = CallSite::get(I);
692      assert(CS.getInstruction() && "Unknown instruction for the I2I list!");
693
694      Function *Callee = CS.getCalledFunction();
695
696      // If we found a call or invoke instruction on this list, that means that
697      // an argument of the function is a call instruction.  If the argument is
698      // live, then the return value of the called instruction is now live.
699      //
700      CallSite::arg_iterator AI = CS.arg_begin();  // ActualIterator
701      for (Function::arg_iterator FI = Callee->arg_begin(),
702             E = Callee->arg_end(); FI != E; ++AI, ++FI) {
703        // If this argument is another call...
704        CallSite ArgCS = CallSite::get(*AI);
705        if (ArgCS.getInstruction() && LiveArguments.count(FI))
706          if (Function *Callee = ArgCS.getCalledFunction())
707            MarkRetValLive(Callee);
708      }
709    }
710  }
711
712  // Now we loop over all of the MaybeLive arguments, promoting them to be live
713  // arguments if one of the calls that uses the arguments to the calls they are
714  // passed into requires them to be live.  Of course this could make other
715  // arguments live, so process callers recursively.
716  //
717  // Because elements can be removed from the MaybeLiveArguments set, copy it to
718  // a temporary vector.
719  //
720  std::vector<Argument*> TmpArgList(MaybeLiveArguments.begin(),
721                                    MaybeLiveArguments.end());
722  for (unsigned i = 0, e = TmpArgList.size(); i != e; ++i) {
723    Argument *MLA = TmpArgList[i];
724    if (MaybeLiveArguments.count(MLA) &&
725        isMaybeLiveArgumentNowLive(MLA))
726      MarkArgumentLive(MLA);
727  }
728
729  // Recover memory early...
730  CallSites.clear();
731
732  // At this point, we know that all arguments in DeadArguments and
733  // MaybeLiveArguments are dead.  If the two sets are empty, there is nothing
734  // to do.
735  if (MaybeLiveArguments.empty() && DeadArguments.empty() &&
736      MaybeLiveRetVal.empty() && DeadRetVal.empty())
737    return Changed;
738
739  // Otherwise, compact into one set, and start eliminating the arguments from
740  // the functions.
741  DeadArguments.insert(MaybeLiveArguments.begin(), MaybeLiveArguments.end());
742  MaybeLiveArguments.clear();
743  DeadRetVal.insert(MaybeLiveRetVal.begin(), MaybeLiveRetVal.end());
744  MaybeLiveRetVal.clear();
745
746  LiveArguments.clear();
747  LiveRetVal.clear();
748
749  NumArgumentsEliminated += DeadArguments.size();
750  NumRetValsEliminated   += DeadRetVal.size();
751  while (!DeadArguments.empty())
752    RemoveDeadArgumentsFromFunction((*DeadArguments.begin())->getParent());
753
754  while (!DeadRetVal.empty())
755    RemoveDeadArgumentsFromFunction(*DeadRetVal.begin());
756  return true;
757}
758