InstCombine.h revision 687140c818ba4b896329a83324714140b6580ef8
1//===- InstCombine.h - Main InstCombine pass definition -------------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9 10#ifndef INSTCOMBINE_INSTCOMBINE_H 11#define INSTCOMBINE_INSTCOMBINE_H 12 13#include "InstCombineWorklist.h" 14#include "llvm/Pass.h" 15#include "llvm/Analysis/ValueTracking.h" 16#include "llvm/Support/IRBuilder.h" 17#include "llvm/Support/InstVisitor.h" 18#include "llvm/Support/TargetFolder.h" 19 20namespace llvm { 21 class CallSite; 22 class TargetData; 23 class DbgDeclareInst; 24 class MemIntrinsic; 25 class MemSetInst; 26 27/// SelectPatternFlavor - We can match a variety of different patterns for 28/// select operations. 29enum SelectPatternFlavor { 30 SPF_UNKNOWN = 0, 31 SPF_SMIN, SPF_UMIN, 32 SPF_SMAX, SPF_UMAX 33 //SPF_ABS - TODO. 34}; 35 36/// getComplexity: Assign a complexity or rank value to LLVM Values... 37/// 0 -> undef, 1 -> Const, 2 -> Other, 3 -> Arg, 3 -> Unary, 4 -> OtherInst 38static inline unsigned getComplexity(Value *V) { 39 if (isa<Instruction>(V)) { 40 if (BinaryOperator::isNeg(V) || 41 BinaryOperator::isFNeg(V) || 42 BinaryOperator::isNot(V)) 43 return 3; 44 return 4; 45 } 46 if (isa<Argument>(V)) return 3; 47 return isa<Constant>(V) ? (isa<UndefValue>(V) ? 0 : 1) : 2; 48} 49 50 51/// InstCombineIRInserter - This is an IRBuilder insertion helper that works 52/// just like the normal insertion helper, but also adds any new instructions 53/// to the instcombine worklist. 54class LLVM_LIBRARY_VISIBILITY InstCombineIRInserter 55 : public IRBuilderDefaultInserter<true> { 56 InstCombineWorklist &Worklist; 57public: 58 InstCombineIRInserter(InstCombineWorklist &WL) : Worklist(WL) {} 59 60 void InsertHelper(Instruction *I, const Twine &Name, 61 BasicBlock *BB, BasicBlock::iterator InsertPt) const { 62 IRBuilderDefaultInserter<true>::InsertHelper(I, Name, BB, InsertPt); 63 Worklist.Add(I); 64 } 65}; 66 67/// InstCombiner - The -instcombine pass. 68class LLVM_LIBRARY_VISIBILITY InstCombiner 69 : public FunctionPass, 70 public InstVisitor<InstCombiner, Instruction*> { 71 TargetData *TD; 72 bool MustPreserveLCSSA; 73 bool MadeIRChange; 74public: 75 /// Worklist - All of the instructions that need to be simplified. 76 InstCombineWorklist Worklist; 77 78 /// Builder - This is an IRBuilder that automatically inserts new 79 /// instructions into the worklist when they are created. 80 typedef IRBuilder<true, TargetFolder, InstCombineIRInserter> BuilderTy; 81 BuilderTy *Builder; 82 83 static char ID; // Pass identification, replacement for typeid 84 InstCombiner() : FunctionPass(ID), TD(0), Builder(0) { 85 initializeInstCombinerPass(*PassRegistry::getPassRegistry()); 86 } 87 88public: 89 virtual bool runOnFunction(Function &F); 90 91 bool DoOneIteration(Function &F, unsigned ItNum); 92 93 virtual void getAnalysisUsage(AnalysisUsage &AU) const; 94 95 TargetData *getTargetData() const { return TD; } 96 97 // Visitation implementation - Implement instruction combining for different 98 // instruction types. The semantics are as follows: 99 // Return Value: 100 // null - No change was made 101 // I - Change was made, I is still valid, I may be dead though 102 // otherwise - Change was made, replace I with returned instruction 103 // 104 Instruction *visitAdd(BinaryOperator &I); 105 Instruction *visitFAdd(BinaryOperator &I); 106 Value *OptimizePointerDifference(Value *LHS, Value *RHS, const Type *Ty); 107 Instruction *visitSub(BinaryOperator &I); 108 Instruction *visitFSub(BinaryOperator &I); 109 Instruction *visitMul(BinaryOperator &I); 110 Instruction *visitFMul(BinaryOperator &I); 111 Instruction *visitURem(BinaryOperator &I); 112 Instruction *visitSRem(BinaryOperator &I); 113 Instruction *visitFRem(BinaryOperator &I); 114 bool SimplifyDivRemOfSelect(BinaryOperator &I); 115 Instruction *commonRemTransforms(BinaryOperator &I); 116 Instruction *commonIRemTransforms(BinaryOperator &I); 117 Instruction *commonDivTransforms(BinaryOperator &I); 118 Instruction *commonIDivTransforms(BinaryOperator &I); 119 Instruction *visitUDiv(BinaryOperator &I); 120 Instruction *visitSDiv(BinaryOperator &I); 121 Instruction *visitFDiv(BinaryOperator &I); 122 Value *FoldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS); 123 Value *FoldAndOfFCmps(FCmpInst *LHS, FCmpInst *RHS); 124 Instruction *visitAnd(BinaryOperator &I); 125 Value *FoldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS); 126 Value *FoldOrOfFCmps(FCmpInst *LHS, FCmpInst *RHS); 127 Instruction *FoldOrWithConstants(BinaryOperator &I, Value *Op, 128 Value *A, Value *B, Value *C); 129 Instruction *visitOr (BinaryOperator &I); 130 Instruction *visitXor(BinaryOperator &I); 131 Instruction *visitShl(BinaryOperator &I); 132 Instruction *visitAShr(BinaryOperator &I); 133 Instruction *visitLShr(BinaryOperator &I); 134 Instruction *commonShiftTransforms(BinaryOperator &I); 135 Instruction *FoldFCmp_IntToFP_Cst(FCmpInst &I, Instruction *LHSI, 136 Constant *RHSC); 137 Instruction *FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, 138 GlobalVariable *GV, CmpInst &ICI, 139 ConstantInt *AndCst = 0); 140 Instruction *visitFCmpInst(FCmpInst &I); 141 Instruction *visitICmpInst(ICmpInst &I); 142 Instruction *visitICmpInstWithCastAndCast(ICmpInst &ICI); 143 Instruction *visitICmpInstWithInstAndIntCst(ICmpInst &ICI, 144 Instruction *LHS, 145 ConstantInt *RHS); 146 Instruction *FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI, 147 ConstantInt *DivRHS); 148 Instruction *FoldICmpAddOpCst(ICmpInst &ICI, Value *X, ConstantInt *CI, 149 ICmpInst::Predicate Pred, Value *TheAdd); 150 Instruction *FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS, 151 ICmpInst::Predicate Cond, Instruction &I); 152 Instruction *FoldShiftByConstant(Value *Op0, ConstantInt *Op1, 153 BinaryOperator &I); 154 Instruction *commonCastTransforms(CastInst &CI); 155 Instruction *commonPointerCastTransforms(CastInst &CI); 156 Instruction *visitTrunc(TruncInst &CI); 157 Instruction *visitZExt(ZExtInst &CI); 158 Instruction *visitSExt(SExtInst &CI); 159 Instruction *visitFPTrunc(FPTruncInst &CI); 160 Instruction *visitFPExt(CastInst &CI); 161 Instruction *visitFPToUI(FPToUIInst &FI); 162 Instruction *visitFPToSI(FPToSIInst &FI); 163 Instruction *visitUIToFP(CastInst &CI); 164 Instruction *visitSIToFP(CastInst &CI); 165 Instruction *visitPtrToInt(PtrToIntInst &CI); 166 Instruction *visitIntToPtr(IntToPtrInst &CI); 167 Instruction *visitBitCast(BitCastInst &CI); 168 Instruction *FoldSelectOpOp(SelectInst &SI, Instruction *TI, 169 Instruction *FI); 170 Instruction *FoldSelectIntoOp(SelectInst &SI, Value*, Value*); 171 Instruction *FoldSPFofSPF(Instruction *Inner, SelectPatternFlavor SPF1, 172 Value *A, Value *B, Instruction &Outer, 173 SelectPatternFlavor SPF2, Value *C); 174 Instruction *visitSelectInst(SelectInst &SI); 175 Instruction *visitSelectInstWithICmp(SelectInst &SI, ICmpInst *ICI); 176 Instruction *visitCallInst(CallInst &CI); 177 Instruction *visitInvokeInst(InvokeInst &II); 178 179 Instruction *SliceUpIllegalIntegerPHI(PHINode &PN); 180 Instruction *visitPHINode(PHINode &PN); 181 Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP); 182 Instruction *visitAllocaInst(AllocaInst &AI); 183 Instruction *visitMalloc(Instruction &FI); 184 Instruction *visitFree(CallInst &FI); 185 Instruction *visitLoadInst(LoadInst &LI); 186 Instruction *visitStoreInst(StoreInst &SI); 187 Instruction *visitBranchInst(BranchInst &BI); 188 Instruction *visitSwitchInst(SwitchInst &SI); 189 Instruction *visitInsertElementInst(InsertElementInst &IE); 190 Instruction *visitExtractElementInst(ExtractElementInst &EI); 191 Instruction *visitShuffleVectorInst(ShuffleVectorInst &SVI); 192 Instruction *visitExtractValueInst(ExtractValueInst &EV); 193 194 // visitInstruction - Specify what to return for unhandled instructions... 195 Instruction *visitInstruction(Instruction &I) { return 0; } 196 197private: 198 bool ShouldChangeType(const Type *From, const Type *To) const; 199 Value *dyn_castNegVal(Value *V) const; 200 Value *dyn_castFNegVal(Value *V) const; 201 const Type *FindElementAtOffset(const Type *Ty, int64_t Offset, 202 SmallVectorImpl<Value*> &NewIndices); 203 Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI); 204 205 /// ShouldOptimizeCast - Return true if the cast from "V to Ty" actually 206 /// results in any code being generated and is interesting to optimize out. If 207 /// the cast can be eliminated by some other simple transformation, we prefer 208 /// to do the simplification first. 209 bool ShouldOptimizeCast(Instruction::CastOps opcode,const Value *V, 210 const Type *Ty); 211 212 Instruction *visitCallSite(CallSite CS); 213 Instruction *tryOptimizeCall(CallInst *CI, const TargetData *TD); 214 bool transformConstExprCastCall(CallSite CS); 215 Instruction *transformCallThroughTrampoline(CallSite CS); 216 Instruction *transformZExtICmp(ICmpInst *ICI, Instruction &CI, 217 bool DoXform = true); 218 bool WillNotOverflowSignedAdd(Value *LHS, Value *RHS); 219 DbgDeclareInst *hasOneUsePlusDeclare(Value *V); 220 Value *EmitGEPOffset(User *GEP); 221 222public: 223 // InsertNewInstBefore - insert an instruction New before instruction Old 224 // in the program. Add the new instruction to the worklist. 225 // 226 Instruction *InsertNewInstBefore(Instruction *New, Instruction &Old) { 227 assert(New && New->getParent() == 0 && 228 "New instruction already inserted into a basic block!"); 229 BasicBlock *BB = Old.getParent(); 230 BB->getInstList().insert(&Old, New); // Insert inst 231 Worklist.Add(New); 232 return New; 233 } 234 235 // ReplaceInstUsesWith - This method is to be used when an instruction is 236 // found to be dead, replacable with another preexisting expression. Here 237 // we add all uses of I to the worklist, replace all uses of I with the new 238 // value, then return I, so that the inst combiner will know that I was 239 // modified. 240 // 241 Instruction *ReplaceInstUsesWith(Instruction &I, Value *V) { 242 Worklist.AddUsersToWorkList(I); // Add all modified instrs to worklist. 243 244 // If we are replacing the instruction with itself, this must be in a 245 // segment of unreachable code, so just clobber the instruction. 246 if (&I == V) 247 V = UndefValue::get(I.getType()); 248 249 I.replaceAllUsesWith(V); 250 return &I; 251 } 252 253 // EraseInstFromFunction - When dealing with an instruction that has side 254 // effects or produces a void value, we can't rely on DCE to delete the 255 // instruction. Instead, visit methods should return the value returned by 256 // this function. 257 Instruction *EraseInstFromFunction(Instruction &I) { 258 DEBUG(errs() << "IC: ERASE " << I << '\n'); 259 260 assert(I.use_empty() && "Cannot erase instruction that is used!"); 261 // Make sure that we reprocess all operands now that we reduced their 262 // use counts. 263 if (I.getNumOperands() < 8) { 264 for (User::op_iterator i = I.op_begin(), e = I.op_end(); i != e; ++i) 265 if (Instruction *Op = dyn_cast<Instruction>(*i)) 266 Worklist.Add(Op); 267 } 268 Worklist.Remove(&I); 269 I.eraseFromParent(); 270 MadeIRChange = true; 271 return 0; // Don't do anything with FI 272 } 273 274 void ComputeMaskedBits(Value *V, const APInt &Mask, APInt &KnownZero, 275 APInt &KnownOne, unsigned Depth = 0) const { 276 return llvm::ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth); 277 } 278 279 bool MaskedValueIsZero(Value *V, const APInt &Mask, 280 unsigned Depth = 0) const { 281 return llvm::MaskedValueIsZero(V, Mask, TD, Depth); 282 } 283 unsigned ComputeNumSignBits(Value *Op, unsigned Depth = 0) const { 284 return llvm::ComputeNumSignBits(Op, TD, Depth); 285 } 286 287private: 288 289 /// SimplifyAssociativeOrCommutative - This performs a few simplifications for 290 /// operators which are associative or commutative. 291 bool SimplifyAssociativeOrCommutative(BinaryOperator &I); 292 293 /// SimplifyUsingDistributiveLaws - This tries to simplify binary operations 294 /// which some other binary operation distributes over either by factorizing 295 /// out common terms (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this 296 /// results in simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is 297 /// a win). Returns the simplified value, or null if it didn't simplify. 298 Value *SimplifyUsingDistributiveLaws(BinaryOperator &I); 299 300 /// SimplifyDemandedUseBits - Attempts to replace V with a simpler value 301 /// based on the demanded bits. 302 Value *SimplifyDemandedUseBits(Value *V, APInt DemandedMask, 303 APInt& KnownZero, APInt& KnownOne, 304 unsigned Depth); 305 bool SimplifyDemandedBits(Use &U, APInt DemandedMask, 306 APInt& KnownZero, APInt& KnownOne, 307 unsigned Depth=0); 308 309 /// SimplifyDemandedInstructionBits - Inst is an integer instruction that 310 /// SimplifyDemandedBits knows about. See if the instruction has any 311 /// properties that allow us to simplify its operands. 312 bool SimplifyDemandedInstructionBits(Instruction &Inst); 313 314 Value *SimplifyDemandedVectorElts(Value *V, APInt DemandedElts, 315 APInt& UndefElts, unsigned Depth = 0); 316 317 // FoldOpIntoPhi - Given a binary operator, cast instruction, or select 318 // which has a PHI node as operand #0, see if we can fold the instruction 319 // into the PHI (which is only possible if all operands to the PHI are 320 // constants). 321 // 322 // If AllowAggressive is true, FoldOpIntoPhi will allow certain transforms 323 // that would normally be unprofitable because they strongly encourage jump 324 // threading. 325 Instruction *FoldOpIntoPhi(Instruction &I, bool AllowAggressive = false); 326 327 // FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary" 328 // operator and they all are only used by the PHI, PHI together their 329 // inputs, and do the operation once, to the result of the PHI. 330 Instruction *FoldPHIArgOpIntoPHI(PHINode &PN); 331 Instruction *FoldPHIArgBinOpIntoPHI(PHINode &PN); 332 Instruction *FoldPHIArgGEPIntoPHI(PHINode &PN); 333 Instruction *FoldPHIArgLoadIntoPHI(PHINode &PN); 334 335 336 Instruction *OptAndOp(Instruction *Op, ConstantInt *OpRHS, 337 ConstantInt *AndRHS, BinaryOperator &TheAnd); 338 339 Value *FoldLogicalPlusAnd(Value *LHS, Value *RHS, ConstantInt *Mask, 340 bool isSub, Instruction &I); 341 Value *InsertRangeTest(Value *V, Constant *Lo, Constant *Hi, 342 bool isSigned, bool Inside); 343 Instruction *PromoteCastOfAllocation(BitCastInst &CI, AllocaInst &AI); 344 Instruction *MatchBSwap(BinaryOperator &I); 345 bool SimplifyStoreAtEndOfBlock(StoreInst &SI); 346 Instruction *SimplifyMemTransfer(MemIntrinsic *MI); 347 Instruction *SimplifyMemSet(MemSetInst *MI); 348 349 350 Value *EvaluateInDifferentType(Value *V, const Type *Ty, bool isSigned); 351}; 352 353 354 355} // end namespace llvm. 356 357#endif 358