DCE.cpp revision c8b25d40cbec063b1ca99cc1adf794399c6d05c0
1//===- DCE.cpp - Code to perform dead code elimination --------------------===//
2//
3// This file implements dead code elimination and basic block merging.
4//
5// Specifically, this:
6//   * removes definitions with no uses (including unused constants)
7//   * removes basic blocks with no predecessors
8//   * merges a basic block into its predecessor if there is only one and the
9//     predecessor only has one successor.
10//   * Eliminates PHI nodes for basic blocks with a single predecessor
11//   * Eliminates a basic block that only contains an unconditional branch
12//
13// TODO: This should REALLY be worklist driven instead of iterative.  Right now,
14// we scan linearly through values, removing unused ones as we go.  The problem
15// is that this may cause other earlier values to become unused.  To make sure
16// that we get them all, we iterate until things stop changing.  Instead, when
17// removing a value, recheck all of its operands to see if they are now unused.
18// Piece of cake, and more efficient as well.
19//
20// Note, this is not trivial, because we have to worry about invalidating
21// iterators.  :(
22//
23//===----------------------------------------------------------------------===//
24
25#include "llvm/Optimizations/DCE.h"
26#include "llvm/Tools/STLExtras.h"
27#include "llvm/Module.h"
28#include "llvm/Method.h"
29#include "llvm/BasicBlock.h"
30#include "llvm/iTerminators.h"
31#include "llvm/iOther.h"
32#include "llvm/Assembly/Writer.h"
33#include "llvm/CFG.h"
34#include <algorithm>
35
36using namespace cfg;
37
38struct ConstPoolDCE {
39  enum { EndOffs = 0 };
40  static bool isDCEable(const Value *) { return true; }
41};
42
43struct BasicBlockDCE {
44  enum { EndOffs = 1 };
45  static bool isDCEable(const Instruction *I) {
46    return !I->hasSideEffects();
47  }
48};
49
50
51template<class ValueSubclass, class ItemParentType, class DCEController>
52static bool RemoveUnusedDefs(ValueHolder<ValueSubclass, ItemParentType> &Vals,
53			     DCEController DCEControl) {
54  bool Changed = false;
55  typedef ValueHolder<ValueSubclass, ItemParentType> Container;
56
57  int Offset = DCEController::EndOffs;
58  for (Container::iterator DI = Vals.begin(); DI != Vals.end()-Offset; ) {
59    // Look for un"used" definitions...
60    if ((*DI)->use_empty() && DCEController::isDCEable(*DI)) {
61      // Bye bye
62      //cerr << "Removing: " << *DI;
63      delete Vals.remove(DI);
64      Changed = true;
65    } else {
66      ++DI;
67    }
68  }
69  return Changed;
70}
71
72// RemoveSingularPHIs - This removes PHI nodes from basic blocks that have only
73// a single predecessor.  This means that the PHI node must only have a single
74// RHS value and can be eliminated.
75//
76// This routine is very simple because we know that PHI nodes must be the first
77// things in a basic block, if they are present.
78//
79static bool RemoveSingularPHIs(BasicBlock *BB) {
80  pred_iterator PI(pred_begin(BB));
81  if (PI == pred_end(BB) || ++PI != pred_end(BB))
82    return false;   // More than one predecessor...
83
84  Instruction *I = BB->front();
85  if (!I->isPHINode()) return false;  // No PHI nodes
86
87  //cerr << "Killing PHIs from " << BB;
88  //cerr << "Pred #0 = " << *pred_begin(BB);
89
90  //cerr << "Method == " << BB->getParent();
91
92  do {
93    PHINode *PN = (PHINode*)I;
94    assert(PN->getNumOperands() == 2 && "PHI node should only have one value!");
95    Value *V = PN->getOperand(0);
96
97    PN->replaceAllUsesWith(V);      // Replace PHI node with its single value.
98    delete BB->getInstList().remove(BB->begin());
99
100    I = BB->front();
101  } while (I->isPHINode());
102
103  return true;  // Yes, we nuked at least one phi node
104}
105
106bool opt::DoRemoveUnusedConstants(SymTabValue *S) {
107  bool Changed = false;
108  ConstantPool &CP = S->getConstantPool();
109  for (ConstantPool::plane_iterator PI = CP.begin(); PI != CP.end(); ++PI)
110    Changed |= RemoveUnusedDefs(**PI, ConstPoolDCE());
111  return Changed;
112}
113
114static void ReplaceUsesWithConstant(Instruction *I) {
115  // Get the method level constant pool
116  ConstantPool &CP = I->getParent()->getParent()->getConstantPool();
117
118  ConstPoolVal *CPV = 0;
119  ConstantPool::PlaneType *P;
120  if (!CP.getPlane(I->getType(), P)) {  // Does plane exist?
121    // Yes, is it empty?
122    if (!P->empty()) CPV = P->front();
123  }
124
125  if (CPV == 0) { // We don't have an existing constant to reuse.  Just add one.
126    CPV = ConstPoolVal::getNullConstant(I->getType());  // Create a new constant
127
128    // Add the new value to the constant pool...
129    CP.insert(CPV);
130  }
131
132  // Make all users of this instruction reference the constant instead
133  I->replaceAllUsesWith(CPV);
134}
135
136// PropogatePredecessors - This gets "Succ" ready to have the predecessors from
137// "BB".  This is a little tricky because "Succ" has PHI nodes, which need to
138// have extra slots added to them to hold the merge edges from BB's
139// predecessors.
140//
141// Assumption: BB is the single predecessor of Succ.
142//
143static void PropogatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
144  assert(Succ->front()->isPHINode() && "Only works on PHId BBs!");
145
146  // If there is more than one predecessor, and there are PHI nodes in
147  // the successor, then we need to add incoming edges for the PHI nodes
148  //
149  const vector<BasicBlock*> BBPreds(pred_begin(BB), pred_end(BB));
150
151  BasicBlock::iterator I = Succ->begin();
152  do {                     // Loop over all of the PHI nodes in the successor BB
153    PHINode *PN = (PHINode*)*I;
154    Value *OldVal = PN->removeIncomingValue(BB);
155    assert(OldVal && "No entry in PHI for Pred BB!");
156
157    for (vector<BasicBlock*>::const_iterator PredI = BBPreds.begin(),
158	   End = BBPreds.end(); PredI != End; ++PredI) {
159      // Add an incoming value for each of the new incoming values...
160      PN->addIncoming(OldVal, *PredI);
161    }
162
163    ++I;
164  } while ((*I)->isPHINode());
165}
166
167
168// SimplifyCFG - This function is used to do simplification of a CFG.  For
169// example, it adjusts branches to branches to eliminate the extra hop, it
170// eliminates unreachable basic blocks, and does other "peephole" optimization
171// of the CFG.  It returns true if a modification was made, and returns an
172// iterator that designates the first element remaining after the block that
173// was deleted.
174//
175// WARNING:  The entry node of a method may not be simplified.
176//
177bool opt::SimplifyCFG(Method::iterator &BBIt) {
178  assert(*BBIt && (*BBIt)->getParent() && "Block not embedded in method!");
179  BasicBlock *BB = *BBIt;
180  Method *M = BB->getParent();
181  assert(BB->getTerminator() && "Degenerate basic block encountered!");
182  assert(BB->getParent()->front() != BB && "Can't Simplify entry block!");
183
184  // Remove basic blocks that have no predecessors... which are unreachable.
185  if (pred_begin(BB) == pred_end(BB) &&
186      !BB->hasConstantPoolReferences()) {
187    //cerr << "Removing BB: \n" << BB;
188
189    // Loop through all of our successors and make sure they know that one
190    // of their predecessors is going away.
191    for_each(succ_begin(BB), succ_end(BB),
192	     std::bind2nd(std::mem_fun(&BasicBlock::removePredecessor), BB));
193
194    while (!BB->empty()) {
195      Instruction *I = BB->back();
196      // If this instruction is used, replace uses with an arbitrary
197      // constant value.  Because control flow can't get here, we don't care
198      // what we replace the value with.  Note that since this block is
199      // unreachable, and all values contained within it must dominate their
200      // uses, that all uses will eventually be removed.
201      if (!I->use_empty()) ReplaceUsesWithConstant(I);
202
203      // Remove the instruction from the basic block
204      delete BB->getInstList().pop_back();
205    }
206    delete M->getBasicBlocks().remove(BBIt);
207    return true;
208  }
209
210  // Check to see if this block has no instructions and only a single
211  // successor.  If so, replace block references with successor.
212  succ_iterator SI(succ_begin(BB));
213  if (SI != succ_end(BB) && ++SI == succ_end(BB)) {  // One succ?
214    Instruction *I = BB->front();
215    if (I->isTerminator()) {   // Terminator is the only instruction!
216      BasicBlock *Succ = *succ_begin(BB); // There is exactly one successor
217      //cerr << "Killing Trivial BB: \n" << BB;
218
219      if (Succ != BB) {   // Arg, don't hurt infinite loops!
220	if (Succ->front()->isPHINode()) {
221	  // If our successor has PHI nodes, then we need to update them to
222	  // include entries for BB's predecessors, not for BB itself.
223	  //
224	  PropogatePredecessorsForPHIs(BB, Succ);
225	}
226
227	BB->replaceAllUsesWith(Succ);
228	BB = M->getBasicBlocks().remove(BBIt);
229
230	if (BB->hasName() && !Succ->hasName())  // Transfer name if we can
231	  Succ->setName(BB->getName());
232	delete BB;                              // Delete basic block
233
234	//cerr << "Method after removal: \n" << M;
235	return true;
236      }
237    }
238  }
239
240  // Merge basic blocks into their predecessor if there is only one pred,
241  // and if there is only one successor of the predecessor.
242  pred_iterator PI(pred_begin(BB));
243  if (PI != pred_end(BB) && *PI != BB &&    // Not empty?  Not same BB?
244      ++PI == pred_end(BB) && !BB->hasConstantPoolReferences()) {
245    BasicBlock *Pred = *pred_begin(BB);
246    TerminatorInst *Term = Pred->getTerminator();
247    assert(Term != 0 && "malformed basic block without terminator!");
248
249    // Does the predecessor block only have a single successor?
250    succ_iterator SI(succ_begin(Pred));
251    if (++SI == succ_end(Pred)) {
252      //cerr << "Merging: " << BB << "into: " << Pred;
253
254      // Delete the unconditianal branch from the predecessor...
255      BasicBlock::iterator DI = Pred->end();
256      assert(Pred->getTerminator() &&
257	     "Degenerate basic block encountered!");  // Empty bb???
258      delete Pred->getInstList().remove(--DI);        // Destroy uncond branch
259
260      // Move all definitions in the succecessor to the predecessor...
261      while (!BB->empty()) {
262	DI = BB->begin();
263	Instruction *Def = BB->getInstList().remove(DI); // Remove from front
264	Pred->getInstList().push_back(Def);              // Add to end...
265      }
266
267      // Remove basic block from the method... and advance iterator to the
268      // next valid block...
269      BB = M->getBasicBlocks().remove(BBIt);
270
271      // Make all PHI nodes that refered to BB now refer to Pred as their
272      // source...
273      BB->replaceAllUsesWith(Pred);
274
275      // Inherit predecessors name if it exists...
276      if (BB->hasName() && !Pred->hasName()) Pred->setName(BB->getName());
277
278      delete BB; // You ARE the weakest link... goodbye
279      return true;
280    }
281  }
282
283  return false;
284}
285
286static bool DoDCEPass(Method *M) {
287  Method::iterator BBIt, BBEnd = M->end();
288  if (M->begin() == BBEnd) return false;  // Nothing to do
289  bool Changed = false;
290
291  // Loop through now and remove instructions that have no uses...
292  for (BBIt = M->begin(); BBIt != BBEnd; ++BBIt) {
293    Changed |= RemoveUnusedDefs((*BBIt)->getInstList(), BasicBlockDCE());
294    Changed |= RemoveSingularPHIs(*BBIt);
295  }
296
297  // Loop over all of the basic blocks (except the first one) and remove them
298  // if they are unneeded...
299  //
300  for (BBIt = M->begin(), ++BBIt; BBIt != M->end(); ) {
301    if (opt::SimplifyCFG(BBIt)) {
302      Changed = true;
303    } else {
304      ++BBIt;
305    }
306  }
307
308  // Remove unused constants
309  return Changed | opt::DoRemoveUnusedConstants(M);
310}
311
312
313// It is possible that we may require multiple passes over the code to fully
314// eliminate dead code.  Iterate until we are done.
315//
316bool opt::DoDeadCodeElimination(Method *M) {
317  bool Changed = false;
318  while (DoDCEPass(M)) Changed = true;
319  return Changed;
320}
321
322bool opt::DoDeadCodeElimination(Module *C) {
323  bool Val = C->reduceApply(DoDeadCodeElimination);
324
325  while (DoRemoveUnusedConstants(C)) Val = true;
326  return Val;
327}
328