cpu-all.h revision 6a9ef1773bf874dea493ff3861782a1e577b67dd
1/*
2 * defines common to all virtual CPUs
3 *
4 *  Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19#ifndef CPU_ALL_H
20#define CPU_ALL_H
21
22#include "qemu-common.h"
23#include "cpu-common.h"
24
25/* some important defines:
26 *
27 * WORDS_ALIGNED : if defined, the host cpu can only make word aligned
28 * memory accesses.
29 *
30 * HOST_WORDS_BIGENDIAN : if defined, the host cpu is big endian and
31 * otherwise little endian.
32 *
33 * (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet))
34 *
35 * TARGET_WORDS_BIGENDIAN : same for target cpu
36 */
37
38#include "softfloat.h"
39
40#if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
41#define BSWAP_NEEDED
42#endif
43
44#ifdef BSWAP_NEEDED
45
46static inline uint16_t tswap16(uint16_t s)
47{
48    return bswap16(s);
49}
50
51static inline uint32_t tswap32(uint32_t s)
52{
53    return bswap32(s);
54}
55
56static inline uint64_t tswap64(uint64_t s)
57{
58    return bswap64(s);
59}
60
61static inline void tswap16s(uint16_t *s)
62{
63    *s = bswap16(*s);
64}
65
66static inline void tswap32s(uint32_t *s)
67{
68    *s = bswap32(*s);
69}
70
71static inline void tswap64s(uint64_t *s)
72{
73    *s = bswap64(*s);
74}
75
76#else
77
78static inline uint16_t tswap16(uint16_t s)
79{
80    return s;
81}
82
83static inline uint32_t tswap32(uint32_t s)
84{
85    return s;
86}
87
88static inline uint64_t tswap64(uint64_t s)
89{
90    return s;
91}
92
93static inline void tswap16s(uint16_t *s)
94{
95}
96
97static inline void tswap32s(uint32_t *s)
98{
99}
100
101static inline void tswap64s(uint64_t *s)
102{
103}
104
105#endif
106
107#if TARGET_LONG_SIZE == 4
108#define tswapl(s) tswap32(s)
109#define tswapls(s) tswap32s((uint32_t *)(s))
110#define bswaptls(s) bswap32s(s)
111#else
112#define tswapl(s) tswap64(s)
113#define tswapls(s) tswap64s((uint64_t *)(s))
114#define bswaptls(s) bswap64s(s)
115#endif
116
117typedef union {
118    float32 f;
119    uint32_t l;
120} CPU_FloatU;
121
122/* NOTE: arm FPA is horrible as double 32 bit words are stored in big
123   endian ! */
124typedef union {
125    float64 d;
126#if defined(HOST_WORDS_BIGENDIAN) \
127    || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
128    struct {
129        uint32_t upper;
130        uint32_t lower;
131    } l;
132#else
133    struct {
134        uint32_t lower;
135        uint32_t upper;
136    } l;
137#endif
138    uint64_t ll;
139} CPU_DoubleU;
140
141#ifdef TARGET_SPARC
142typedef union {
143    float128 q;
144#if defined(HOST_WORDS_BIGENDIAN) \
145    || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
146    struct {
147        uint32_t upmost;
148        uint32_t upper;
149        uint32_t lower;
150        uint32_t lowest;
151    } l;
152    struct {
153        uint64_t upper;
154        uint64_t lower;
155    } ll;
156#else
157    struct {
158        uint32_t lowest;
159        uint32_t lower;
160        uint32_t upper;
161        uint32_t upmost;
162    } l;
163    struct {
164        uint64_t lower;
165        uint64_t upper;
166    } ll;
167#endif
168} CPU_QuadU;
169#endif
170
171/* CPU memory access without any memory or io remapping */
172
173/*
174 * the generic syntax for the memory accesses is:
175 *
176 * load: ld{type}{sign}{size}{endian}_{access_type}(ptr)
177 *
178 * store: st{type}{size}{endian}_{access_type}(ptr, val)
179 *
180 * type is:
181 * (empty): integer access
182 *   f    : float access
183 *
184 * sign is:
185 * (empty): for floats or 32 bit size
186 *   u    : unsigned
187 *   s    : signed
188 *
189 * size is:
190 *   b: 8 bits
191 *   w: 16 bits
192 *   l: 32 bits
193 *   q: 64 bits
194 *
195 * endian is:
196 * (empty): target cpu endianness or 8 bit access
197 *   r    : reversed target cpu endianness (not implemented yet)
198 *   be   : big endian (not implemented yet)
199 *   le   : little endian (not implemented yet)
200 *
201 * access_type is:
202 *   raw    : host memory access
203 *   user   : user mode access using soft MMU
204 *   kernel : kernel mode access using soft MMU
205 */
206static inline int ldub_p(const void *ptr)
207{
208    return *(uint8_t *)ptr;
209}
210
211static inline int ldsb_p(const void *ptr)
212{
213    return *(int8_t *)ptr;
214}
215
216static inline void stb_p(void *ptr, int v)
217{
218    *(uint8_t *)ptr = v;
219}
220
221/* NOTE: on arm, putting 2 in /proc/sys/debug/alignment so that the
222   kernel handles unaligned load/stores may give better results, but
223   it is a system wide setting : bad */
224#if defined(HOST_WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
225
226/* conservative code for little endian unaligned accesses */
227static inline int lduw_le_p(const void *ptr)
228{
229#ifdef _ARCH_PPC
230    int val;
231    __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
232    return val;
233#else
234    const uint8_t *p = ptr;
235    return p[0] | (p[1] << 8);
236#endif
237}
238
239static inline int ldsw_le_p(const void *ptr)
240{
241#ifdef _ARCH_PPC
242    int val;
243    __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
244    return (int16_t)val;
245#else
246    const uint8_t *p = ptr;
247    return (int16_t)(p[0] | (p[1] << 8));
248#endif
249}
250
251static inline int ldl_le_p(const void *ptr)
252{
253#ifdef _ARCH_PPC
254    int val;
255    __asm__ __volatile__ ("lwbrx %0,0,%1" : "=r" (val) : "r" (ptr));
256    return val;
257#else
258    const uint8_t *p = ptr;
259    return p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24);
260#endif
261}
262
263static inline uint64_t ldq_le_p(const void *ptr)
264{
265    const uint8_t *p = ptr;
266    uint32_t v1, v2;
267    v1 = ldl_le_p(p);
268    v2 = ldl_le_p(p + 4);
269    return v1 | ((uint64_t)v2 << 32);
270}
271
272static inline void stw_le_p(void *ptr, int v)
273{
274#ifdef _ARCH_PPC
275    __asm__ __volatile__ ("sthbrx %1,0,%2" : "=m" (*(uint16_t *)ptr) : "r" (v), "r" (ptr));
276#else
277    uint8_t *p = ptr;
278    p[0] = v;
279    p[1] = v >> 8;
280#endif
281}
282
283static inline void stl_le_p(void *ptr, int v)
284{
285#ifdef _ARCH_PPC
286    __asm__ __volatile__ ("stwbrx %1,0,%2" : "=m" (*(uint32_t *)ptr) : "r" (v), "r" (ptr));
287#else
288    uint8_t *p = ptr;
289    p[0] = v;
290    p[1] = v >> 8;
291    p[2] = v >> 16;
292    p[3] = v >> 24;
293#endif
294}
295
296static inline void stq_le_p(void *ptr, uint64_t v)
297{
298    uint8_t *p = ptr;
299    stl_le_p(p, (uint32_t)v);
300    stl_le_p(p + 4, v >> 32);
301}
302
303/* float access */
304
305static inline float32 ldfl_le_p(const void *ptr)
306{
307    union {
308        float32 f;
309        uint32_t i;
310    } u;
311    u.i = ldl_le_p(ptr);
312    return u.f;
313}
314
315static inline void stfl_le_p(void *ptr, float32 v)
316{
317    union {
318        float32 f;
319        uint32_t i;
320    } u;
321    u.f = v;
322    stl_le_p(ptr, u.i);
323}
324
325static inline float64 ldfq_le_p(const void *ptr)
326{
327    CPU_DoubleU u;
328    u.l.lower = ldl_le_p(ptr);
329    u.l.upper = ldl_le_p(ptr + 4);
330    return u.d;
331}
332
333static inline void stfq_le_p(void *ptr, float64 v)
334{
335    CPU_DoubleU u;
336    u.d = v;
337    stl_le_p(ptr, u.l.lower);
338    stl_le_p(ptr + 4, u.l.upper);
339}
340
341#else
342
343static inline int lduw_le_p(const void *ptr)
344{
345    return *(uint16_t *)ptr;
346}
347
348static inline int ldsw_le_p(const void *ptr)
349{
350    return *(int16_t *)ptr;
351}
352
353static inline int ldl_le_p(const void *ptr)
354{
355    return *(uint32_t *)ptr;
356}
357
358static inline uint64_t ldq_le_p(const void *ptr)
359{
360    return *(uint64_t *)ptr;
361}
362
363static inline void stw_le_p(void *ptr, int v)
364{
365    *(uint16_t *)ptr = v;
366}
367
368static inline void stl_le_p(void *ptr, int v)
369{
370    *(uint32_t *)ptr = v;
371}
372
373static inline void stq_le_p(void *ptr, uint64_t v)
374{
375    *(uint64_t *)ptr = v;
376}
377
378/* float access */
379
380static inline float32 ldfl_le_p(const void *ptr)
381{
382    return *(float32 *)ptr;
383}
384
385static inline float64 ldfq_le_p(const void *ptr)
386{
387    return *(float64 *)ptr;
388}
389
390static inline void stfl_le_p(void *ptr, float32 v)
391{
392    *(float32 *)ptr = v;
393}
394
395static inline void stfq_le_p(void *ptr, float64 v)
396{
397    *(float64 *)ptr = v;
398}
399#endif
400
401#if !defined(HOST_WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
402
403static inline int lduw_be_p(const void *ptr)
404{
405#if defined(__i386__)
406    int val;
407    asm volatile ("movzwl %1, %0\n"
408                  "xchgb %b0, %h0\n"
409                  : "=q" (val)
410                  : "m" (*(uint16_t *)ptr));
411    return val;
412#else
413    const uint8_t *b = ptr;
414    return ((b[0] << 8) | b[1]);
415#endif
416}
417
418static inline int ldsw_be_p(const void *ptr)
419{
420#if defined(__i386__)
421    int val;
422    asm volatile ("movzwl %1, %0\n"
423                  "xchgb %b0, %h0\n"
424                  : "=q" (val)
425                  : "m" (*(uint16_t *)ptr));
426    return (int16_t)val;
427#else
428    const uint8_t *b = ptr;
429    return (int16_t)((b[0] << 8) | b[1]);
430#endif
431}
432
433static inline int ldl_be_p(const void *ptr)
434{
435#if defined(__i386__) || defined(__x86_64__)
436    int val;
437    asm volatile ("movl %1, %0\n"
438                  "bswap %0\n"
439                  : "=r" (val)
440                  : "m" (*(uint32_t *)ptr));
441    return val;
442#else
443    const uint8_t *b = ptr;
444    return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
445#endif
446}
447
448static inline uint64_t ldq_be_p(const void *ptr)
449{
450    uint32_t a,b;
451    a = ldl_be_p(ptr);
452    b = ldl_be_p((uint8_t *)ptr + 4);
453    return (((uint64_t)a<<32)|b);
454}
455
456static inline void stw_be_p(void *ptr, int v)
457{
458#if defined(__i386__)
459    asm volatile ("xchgb %b0, %h0\n"
460                  "movw %w0, %1\n"
461                  : "=q" (v)
462                  : "m" (*(uint16_t *)ptr), "0" (v));
463#else
464    uint8_t *d = (uint8_t *) ptr;
465    d[0] = v >> 8;
466    d[1] = v;
467#endif
468}
469
470static inline void stl_be_p(void *ptr, int v)
471{
472#if defined(__i386__) || defined(__x86_64__)
473    asm volatile ("bswap %0\n"
474                  "movl %0, %1\n"
475                  : "=r" (v)
476                  : "m" (*(uint32_t *)ptr), "0" (v));
477#else
478    uint8_t *d = (uint8_t *) ptr;
479    d[0] = v >> 24;
480    d[1] = v >> 16;
481    d[2] = v >> 8;
482    d[3] = v;
483#endif
484}
485
486static inline void stq_be_p(void *ptr, uint64_t v)
487{
488    stl_be_p(ptr, v >> 32);
489    stl_be_p((uint8_t *)ptr + 4, v);
490}
491
492/* float access */
493
494static inline float32 ldfl_be_p(const void *ptr)
495{
496    union {
497        float32 f;
498        uint32_t i;
499    } u;
500    u.i = ldl_be_p(ptr);
501    return u.f;
502}
503
504static inline void stfl_be_p(void *ptr, float32 v)
505{
506    union {
507        float32 f;
508        uint32_t i;
509    } u;
510    u.f = v;
511    stl_be_p(ptr, u.i);
512}
513
514static inline float64 ldfq_be_p(const void *ptr)
515{
516    CPU_DoubleU u;
517    u.l.upper = ldl_be_p(ptr);
518    u.l.lower = ldl_be_p((uint8_t *)ptr + 4);
519    return u.d;
520}
521
522static inline void stfq_be_p(void *ptr, float64 v)
523{
524    CPU_DoubleU u;
525    u.d = v;
526    stl_be_p(ptr, u.l.upper);
527    stl_be_p((uint8_t *)ptr + 4, u.l.lower);
528}
529
530#else
531
532static inline int lduw_be_p(const void *ptr)
533{
534    return *(uint16_t *)ptr;
535}
536
537static inline int ldsw_be_p(const void *ptr)
538{
539    return *(int16_t *)ptr;
540}
541
542static inline int ldl_be_p(const void *ptr)
543{
544    return *(uint32_t *)ptr;
545}
546
547static inline uint64_t ldq_be_p(const void *ptr)
548{
549    return *(uint64_t *)ptr;
550}
551
552static inline void stw_be_p(void *ptr, int v)
553{
554    *(uint16_t *)ptr = v;
555}
556
557static inline void stl_be_p(void *ptr, int v)
558{
559    *(uint32_t *)ptr = v;
560}
561
562static inline void stq_be_p(void *ptr, uint64_t v)
563{
564    *(uint64_t *)ptr = v;
565}
566
567/* float access */
568
569static inline float32 ldfl_be_p(const void *ptr)
570{
571    return *(float32 *)ptr;
572}
573
574static inline float64 ldfq_be_p(const void *ptr)
575{
576    return *(float64 *)ptr;
577}
578
579static inline void stfl_be_p(void *ptr, float32 v)
580{
581    *(float32 *)ptr = v;
582}
583
584static inline void stfq_be_p(void *ptr, float64 v)
585{
586    *(float64 *)ptr = v;
587}
588
589#endif
590
591/* target CPU memory access functions */
592#if defined(TARGET_WORDS_BIGENDIAN)
593#define lduw_p(p) lduw_be_p(p)
594#define ldsw_p(p) ldsw_be_p(p)
595#define ldl_p(p) ldl_be_p(p)
596#define ldq_p(p) ldq_be_p(p)
597#define ldfl_p(p) ldfl_be_p(p)
598#define ldfq_p(p) ldfq_be_p(p)
599#define stw_p(p, v) stw_be_p(p, v)
600#define stl_p(p, v) stl_be_p(p, v)
601#define stq_p(p, v) stq_be_p(p, v)
602#define stfl_p(p, v) stfl_be_p(p, v)
603#define stfq_p(p, v) stfq_be_p(p, v)
604#else
605#define lduw_p(p) lduw_le_p(p)
606#define ldsw_p(p) ldsw_le_p(p)
607#define ldl_p(p) ldl_le_p(p)
608#define ldq_p(p) ldq_le_p(p)
609#define ldfl_p(p) ldfl_le_p(p)
610#define ldfq_p(p) ldfq_le_p(p)
611#define stw_p(p, v) stw_le_p(p, v)
612#define stl_p(p, v) stl_le_p(p, v)
613#define stq_p(p, v) stq_le_p(p, v)
614#define stfl_p(p, v) stfl_le_p(p, v)
615#define stfq_p(p, v) stfq_le_p(p, v)
616#endif
617
618/* MMU memory access macros */
619
620#if defined(CONFIG_USER_ONLY)
621#include <assert.h>
622#include "qemu-types.h"
623
624/* On some host systems the guest address space is reserved on the host.
625 * This allows the guest address space to be offset to a convenient location.
626 */
627#if defined(CONFIG_USE_GUEST_BASE)
628extern unsigned long guest_base;
629extern int have_guest_base;
630#define GUEST_BASE guest_base
631#else
632#define GUEST_BASE 0ul
633#endif
634
635/* All direct uses of g2h and h2g need to go away for usermode softmmu.  */
636#define g2h(x) ((void *)((unsigned long)(x) + GUEST_BASE))
637#define h2g(x) ({ \
638    unsigned long __ret = (unsigned long)(x) - GUEST_BASE; \
639    /* Check if given address fits target address space */ \
640    assert(__ret == (abi_ulong)__ret); \
641    (abi_ulong)__ret; \
642})
643#define h2g_valid(x) ({ \
644    unsigned long __guest = (unsigned long)(x) - GUEST_BASE; \
645    (__guest == (abi_ulong)__guest); \
646})
647
648#define saddr(x) g2h(x)
649#define laddr(x) g2h(x)
650
651#else /* !CONFIG_USER_ONLY */
652/* NOTE: we use double casts if pointers and target_ulong have
653   different sizes */
654#define saddr(x) (uint8_t *)(long)(x)
655#define laddr(x) (uint8_t *)(long)(x)
656#endif
657
658#define ldub_raw(p) ldub_p(laddr((p)))
659#define ldsb_raw(p) ldsb_p(laddr((p)))
660#define lduw_raw(p) lduw_p(laddr((p)))
661#define ldsw_raw(p) ldsw_p(laddr((p)))
662#define ldl_raw(p) ldl_p(laddr((p)))
663#define ldq_raw(p) ldq_p(laddr((p)))
664#define ldfl_raw(p) ldfl_p(laddr((p)))
665#define ldfq_raw(p) ldfq_p(laddr((p)))
666#define stb_raw(p, v) stb_p(saddr((p)), v)
667#define stw_raw(p, v) stw_p(saddr((p)), v)
668#define stl_raw(p, v) stl_p(saddr((p)), v)
669#define stq_raw(p, v) stq_p(saddr((p)), v)
670#define stfl_raw(p, v) stfl_p(saddr((p)), v)
671#define stfq_raw(p, v) stfq_p(saddr((p)), v)
672
673
674#if defined(CONFIG_USER_ONLY)
675
676/* if user mode, no other memory access functions */
677#define ldub(p) ldub_raw(p)
678#define ldsb(p) ldsb_raw(p)
679#define lduw(p) lduw_raw(p)
680#define ldsw(p) ldsw_raw(p)
681#define ldl(p) ldl_raw(p)
682#define ldq(p) ldq_raw(p)
683#define ldfl(p) ldfl_raw(p)
684#define ldfq(p) ldfq_raw(p)
685#define stb(p, v) stb_raw(p, v)
686#define stw(p, v) stw_raw(p, v)
687#define stl(p, v) stl_raw(p, v)
688#define stq(p, v) stq_raw(p, v)
689#define stfl(p, v) stfl_raw(p, v)
690#define stfq(p, v) stfq_raw(p, v)
691
692#define ldub_code(p) ldub_raw(p)
693#define ldsb_code(p) ldsb_raw(p)
694#define lduw_code(p) lduw_raw(p)
695#define ldsw_code(p) ldsw_raw(p)
696#define ldl_code(p) ldl_raw(p)
697#define ldq_code(p) ldq_raw(p)
698
699#define ldub_kernel(p) ldub_raw(p)
700#define ldsb_kernel(p) ldsb_raw(p)
701#define lduw_kernel(p) lduw_raw(p)
702#define ldsw_kernel(p) ldsw_raw(p)
703#define ldl_kernel(p) ldl_raw(p)
704#define ldq_kernel(p) ldq_raw(p)
705#define ldfl_kernel(p) ldfl_raw(p)
706#define ldfq_kernel(p) ldfq_raw(p)
707#define stb_kernel(p, v) stb_raw(p, v)
708#define stw_kernel(p, v) stw_raw(p, v)
709#define stl_kernel(p, v) stl_raw(p, v)
710#define stq_kernel(p, v) stq_raw(p, v)
711#define stfl_kernel(p, v) stfl_raw(p, v)
712#define stfq_kernel(p, vt) stfq_raw(p, v)
713
714#endif /* defined(CONFIG_USER_ONLY) */
715
716/* page related stuff */
717
718#define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
719#define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
720#define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
721
722/* ??? These should be the larger of unsigned long and target_ulong.  */
723extern unsigned long qemu_real_host_page_size;
724extern unsigned long qemu_host_page_bits;
725extern unsigned long qemu_host_page_size;
726extern unsigned long qemu_host_page_mask;
727
728#define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)
729
730/* same as PROT_xxx */
731#define PAGE_READ      0x0001
732#define PAGE_WRITE     0x0002
733#define PAGE_EXEC      0x0004
734#define PAGE_BITS      (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
735#define PAGE_VALID     0x0008
736/* original state of the write flag (used when tracking self-modifying
737   code */
738#define PAGE_WRITE_ORG 0x0010
739#define PAGE_RESERVED  0x0020
740
741void page_dump(FILE *f);
742int walk_memory_regions(void *,
743    int (*fn)(void *, unsigned long, unsigned long, unsigned long));
744int page_get_flags(target_ulong address);
745void page_set_flags(target_ulong start, target_ulong end, int flags);
746int page_check_range(target_ulong start, target_ulong len, int flags);
747
748void cpu_exec_init_all(unsigned long tb_size);
749CPUState *cpu_copy(CPUState *env);
750CPUState *qemu_get_cpu(int cpu);
751
752void cpu_dump_state(CPUState *env, FILE *f,
753                    int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
754                    int flags);
755void cpu_dump_statistics (CPUState *env, FILE *f,
756                          int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
757                          int flags);
758
759void QEMU_NORETURN cpu_abort(CPUState *env, const char *fmt, ...)
760    __attribute__ ((__format__ (__printf__, 2, 3)));
761extern CPUState *first_cpu;
762extern CPUState *cpu_single_env;
763
764#define CPU_INTERRUPT_HARD   0x02 /* hardware interrupt pending */
765#define CPU_INTERRUPT_EXITTB 0x04 /* exit the current TB (use for x86 a20 case) */
766#define CPU_INTERRUPT_TIMER  0x08 /* internal timer exception pending */
767#define CPU_INTERRUPT_FIQ    0x10 /* Fast interrupt pending.  */
768#define CPU_INTERRUPT_HALT   0x20 /* CPU halt wanted */
769#define CPU_INTERRUPT_SMI    0x40 /* (x86 only) SMI interrupt pending */
770#define CPU_INTERRUPT_DEBUG  0x80 /* Debug event occured.  */
771#define CPU_INTERRUPT_VIRQ   0x100 /* virtual interrupt pending.  */
772#define CPU_INTERRUPT_NMI    0x200 /* NMI pending. */
773#define CPU_INTERRUPT_INIT   0x400 /* INIT pending. */
774#define CPU_INTERRUPT_SIPI   0x800 /* SIPI pending. */
775#define CPU_INTERRUPT_MCE    0x1000 /* (x86 only) MCE pending. */
776
777void cpu_interrupt(CPUState *s, int mask);
778void cpu_reset_interrupt(CPUState *env, int mask);
779
780void cpu_exit(CPUState *s);
781
782int qemu_cpu_has_work(CPUState *env);
783
784/* Breakpoint/watchpoint flags */
785#define BP_MEM_READ           0x01
786#define BP_MEM_WRITE          0x02
787#define BP_MEM_ACCESS         (BP_MEM_READ | BP_MEM_WRITE)
788#define BP_STOP_BEFORE_ACCESS 0x04
789#define BP_WATCHPOINT_HIT     0x08
790#define BP_GDB                0x10
791#define BP_CPU                0x20
792
793int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
794                          CPUBreakpoint **breakpoint);
795int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags);
796void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint);
797void cpu_breakpoint_remove_all(CPUState *env, int mask);
798int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
799                          int flags, CPUWatchpoint **watchpoint);
800int cpu_watchpoint_remove(CPUState *env, target_ulong addr,
801                          target_ulong len, int flags);
802void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint);
803void cpu_watchpoint_remove_all(CPUState *env, int mask);
804
805#define SSTEP_ENABLE  0x1  /* Enable simulated HW single stepping */
806#define SSTEP_NOIRQ   0x2  /* Do not use IRQ while single stepping */
807#define SSTEP_NOTIMER 0x4  /* Do not Timers while single stepping */
808
809void cpu_single_step(CPUState *env, int enabled);
810void cpu_reset(CPUState *s);
811
812/* Return the physical page corresponding to a virtual one. Use it
813   only for debugging because no protection checks are done. Return -1
814   if no page found. */
815target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr);
816
817#define CPU_LOG_TB_OUT_ASM (1 << 0)
818#define CPU_LOG_TB_IN_ASM  (1 << 1)
819#define CPU_LOG_TB_OP      (1 << 2)
820#define CPU_LOG_TB_OP_OPT  (1 << 3)
821#define CPU_LOG_INT        (1 << 4)
822#define CPU_LOG_EXEC       (1 << 5)
823#define CPU_LOG_PCALL      (1 << 6)
824#define CPU_LOG_IOPORT     (1 << 7)
825#define CPU_LOG_TB_CPU     (1 << 8)
826#define CPU_LOG_RESET      (1 << 9)
827
828/* define log items */
829typedef struct CPULogItem {
830    int mask;
831    const char *name;
832    const char *help;
833} CPULogItem;
834
835extern const CPULogItem cpu_log_items[];
836
837void cpu_set_log(int log_flags);
838void cpu_set_log_filename(const char *filename);
839int cpu_str_to_log_mask(const char *str);
840
841/* IO ports API */
842#include "ioport.h"
843
844/* memory API */
845
846extern int phys_ram_fd;
847extern uint8_t *phys_ram_dirty;
848extern ram_addr_t ram_size;
849extern ram_addr_t last_ram_offset;
850
851/* physical memory access */
852
853/* MMIO pages are identified by a combination of an IO device index and
854   3 flags.  The ROMD code stores the page ram offset in iotlb entry,
855   so only a limited number of ids are avaiable.  */
856
857#define IO_MEM_NB_ENTRIES  (1 << (TARGET_PAGE_BITS  - IO_MEM_SHIFT))
858
859/* Flags stored in the low bits of the TLB virtual address.  These are
860   defined so that fast path ram access is all zeros.  */
861/* Zero if TLB entry is valid.  */
862#define TLB_INVALID_MASK   (1 << 3)
863/* Set if TLB entry references a clean RAM page.  The iotlb entry will
864   contain the page physical address.  */
865#define TLB_NOTDIRTY    (1 << 4)
866/* Set if TLB entry is an IO callback.  */
867#define TLB_MMIO        (1 << 5)
868
869int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
870                        uint8_t *buf, int len, int is_write);
871
872#define VGA_DIRTY_FLAG       0x01
873#define CODE_DIRTY_FLAG      0x02
874#define MIGRATION_DIRTY_FLAG 0x08
875
876/* read dirty bit (return 0 or 1) */
877static inline int cpu_physical_memory_is_dirty(ram_addr_t addr)
878{
879    return phys_ram_dirty[addr >> TARGET_PAGE_BITS] == 0xff;
880}
881
882static inline int cpu_physical_memory_get_dirty(ram_addr_t addr,
883                                                int dirty_flags)
884{
885    return phys_ram_dirty[addr >> TARGET_PAGE_BITS] & dirty_flags;
886}
887
888static inline void cpu_physical_memory_set_dirty(ram_addr_t addr)
889{
890    phys_ram_dirty[addr >> TARGET_PAGE_BITS] = 0xff;
891}
892
893void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
894                                     int dirty_flags);
895void cpu_tlb_update_dirty(CPUState *env);
896
897int cpu_physical_memory_set_dirty_tracking(int enable);
898
899int cpu_physical_memory_get_dirty_tracking(void);
900
901int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
902                                   target_phys_addr_t end_addr);
903
904void dump_exec_info(FILE *f,
905                    int (*cpu_fprintf)(FILE *f, const char *fmt, ...));
906
907/* Coalesced MMIO regions are areas where write operations can be reordered.
908 * This usually implies that write operations are side-effect free.  This allows
909 * batching which can make a major impact on performance when using
910 * virtualization.
911 */
912void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size);
913
914void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size);
915
916void qemu_flush_coalesced_mmio_buffer(void);
917
918
919/* profiling */
920#ifdef CONFIG_PROFILER
921static inline int64_t profile_getclock(void)
922{
923    return cpu_get_real_ticks();
924}
925
926extern int64_t qemu_time, qemu_time_start;
927extern int64_t tlb_flush_time;
928extern int64_t dev_time;
929#endif
930
931void cpu_inject_x86_mce(CPUState *cenv, int bank, uint64_t status,
932                        uint64_t mcg_status, uint64_t addr, uint64_t misc);
933
934#endif /* CPU_ALL_H */
935