1/*
2 * QEMU KVM support
3 *
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
6 *
7 * Authors:
8 *  Anthony Liguori   <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
12 *
13 */
14
15#include <sys/types.h>
16#include <sys/ioctl.h>
17#include <sys/mman.h>
18
19#undef __user
20#define __xuser  /* nothing */
21#include <linux/kvm.h>
22
23#include "qemu-common.h"
24#include "sysemu.h"
25#include "kvm.h"
26#include "cpu.h"
27#include "gdbstub.h"
28
29#ifdef CONFIG_KVM_GS_RESTORE
30#include "kvm-gs-restore.h"
31#endif
32
33//#define DEBUG_KVM
34
35#ifdef DEBUG_KVM
36#define dprintf(fmt, ...) \
37    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
38#else
39#define dprintf(fmt, ...) \
40    do { } while (0)
41#endif
42
43#ifdef KVM_CAP_EXT_CPUID
44
45static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
46{
47    struct kvm_cpuid2 *cpuid;
48    int r, size;
49
50    size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
51    cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
52    cpuid->nent = max;
53    r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
54    if (r == 0 && cpuid->nent >= max) {
55        r = -E2BIG;
56    }
57    if (r < 0) {
58        if (r == -E2BIG) {
59            qemu_free(cpuid);
60            return NULL;
61        } else {
62            fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
63                    strerror(-r));
64            exit(1);
65        }
66    }
67    return cpuid;
68}
69
70uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function, int reg)
71{
72    struct kvm_cpuid2 *cpuid;
73    int i, max;
74    uint32_t ret = 0;
75    uint32_t cpuid_1_edx;
76
77    if (!kvm_check_extension(env->kvm_state, KVM_CAP_EXT_CPUID)) {
78        return -1U;
79    }
80
81    max = 1;
82    while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) {
83        max *= 2;
84    }
85
86    for (i = 0; i < cpuid->nent; ++i) {
87        if (cpuid->entries[i].function == function) {
88            switch (reg) {
89            case R_EAX:
90                ret = cpuid->entries[i].eax;
91                break;
92            case R_EBX:
93                ret = cpuid->entries[i].ebx;
94                break;
95            case R_ECX:
96                ret = cpuid->entries[i].ecx;
97                break;
98            case R_EDX:
99                ret = cpuid->entries[i].edx;
100                if (function == 0x80000001) {
101                    /* On Intel, kvm returns cpuid according to the Intel spec,
102                     * so add missing bits according to the AMD spec:
103                     */
104                    cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, R_EDX);
105                    ret |= cpuid_1_edx & 0xdfeff7ff;
106                }
107                break;
108            }
109        }
110    }
111
112    qemu_free(cpuid);
113
114    return ret;
115}
116
117#else
118
119uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function, int reg)
120{
121    return -1U;
122}
123
124#endif
125
126#ifndef KVM_MP_STATE_RUNNABLE
127#define KVM_MP_STATE_RUNNABLE 0
128#endif
129
130int kvm_arch_init_vcpu(CPUState *env)
131{
132    struct {
133        struct kvm_cpuid2 cpuid;
134        struct kvm_cpuid_entry2 entries[100];
135    } __attribute__((packed)) cpuid_data;
136    uint32_t limit, i, j, cpuid_i;
137    uint32_t unused;
138
139    env->mp_state = KVM_MP_STATE_RUNNABLE;
140
141    cpuid_i = 0;
142
143    cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
144
145    for (i = 0; i <= limit; i++) {
146        struct kvm_cpuid_entry2 *c = &cpuid_data.entries[cpuid_i++];
147
148        switch (i) {
149        case 2: {
150            /* Keep reading function 2 till all the input is received */
151            int times;
152
153            c->function = i;
154            c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
155                       KVM_CPUID_FLAG_STATE_READ_NEXT;
156            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
157            times = c->eax & 0xff;
158
159            for (j = 1; j < times; ++j) {
160                c = &cpuid_data.entries[cpuid_i++];
161                c->function = i;
162                c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
163                cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
164            }
165            break;
166        }
167        case 4:
168        case 0xb:
169        case 0xd:
170            for (j = 0; ; j++) {
171                c->function = i;
172                c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
173                c->index = j;
174                cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
175
176                if (i == 4 && c->eax == 0)
177                    break;
178                if (i == 0xb && !(c->ecx & 0xff00))
179                    break;
180                if (i == 0xd && c->eax == 0)
181                    break;
182
183                c = &cpuid_data.entries[cpuid_i++];
184            }
185            break;
186        default:
187            c->function = i;
188            c->flags = 0;
189            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
190            break;
191        }
192    }
193    cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
194
195    for (i = 0x80000000; i <= limit; i++) {
196        struct kvm_cpuid_entry2 *c = &cpuid_data.entries[cpuid_i++];
197
198        c->function = i;
199        c->flags = 0;
200        cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
201    }
202
203    cpuid_data.cpuid.nent = cpuid_i;
204
205    return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
206}
207
208static int kvm_has_msr_star(CPUState *env)
209{
210    static int has_msr_star;
211    int ret;
212
213    /* first time */
214    if (has_msr_star == 0) {
215        struct kvm_msr_list msr_list, *kvm_msr_list;
216
217        has_msr_star = -1;
218
219        /* Obtain MSR list from KVM.  These are the MSRs that we must
220         * save/restore */
221        msr_list.nmsrs = 0;
222        ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, &msr_list);
223        if (ret < 0)
224            return 0;
225
226        kvm_msr_list = qemu_mallocz(sizeof(msr_list) +
227                                    msr_list.nmsrs * sizeof(msr_list.indices[0]));
228
229        kvm_msr_list->nmsrs = msr_list.nmsrs;
230        ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
231        if (ret >= 0) {
232            int i;
233
234            for (i = 0; i < kvm_msr_list->nmsrs; i++) {
235                if (kvm_msr_list->indices[i] == MSR_STAR) {
236                    has_msr_star = 1;
237                    break;
238                }
239            }
240        }
241
242        free(kvm_msr_list);
243    }
244
245    if (has_msr_star == 1)
246        return 1;
247    return 0;
248}
249
250int kvm_arch_init(KVMState *s, int smp_cpus)
251{
252    int ret;
253
254    /* create vm86 tss.  KVM uses vm86 mode to emulate 16-bit code
255     * directly.  In order to use vm86 mode, a TSS is needed.  Since this
256     * must be part of guest physical memory, we need to allocate it.  Older
257     * versions of KVM just assumed that it would be at the end of physical
258     * memory but that doesn't work with more than 4GB of memory.  We simply
259     * refuse to work with those older versions of KVM. */
260    ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_SET_TSS_ADDR);
261    if (ret <= 0) {
262        fprintf(stderr, "kvm does not support KVM_CAP_SET_TSS_ADDR\n");
263        return ret;
264    }
265
266    /* this address is 3 pages before the bios, and the bios should present
267     * as unavaible memory.  FIXME, need to ensure the e820 map deals with
268     * this?
269     */
270    return kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, 0xfffbd000);
271}
272
273static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
274{
275    lhs->selector = rhs->selector;
276    lhs->base = rhs->base;
277    lhs->limit = rhs->limit;
278    lhs->type = 3;
279    lhs->present = 1;
280    lhs->dpl = 3;
281    lhs->db = 0;
282    lhs->s = 1;
283    lhs->l = 0;
284    lhs->g = 0;
285    lhs->avl = 0;
286    lhs->unusable = 0;
287}
288
289static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
290{
291    unsigned flags = rhs->flags;
292    lhs->selector = rhs->selector;
293    lhs->base = rhs->base;
294    lhs->limit = rhs->limit;
295    lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
296    lhs->present = (flags & DESC_P_MASK) != 0;
297    lhs->dpl = rhs->selector & 3;
298    lhs->db = (flags >> DESC_B_SHIFT) & 1;
299    lhs->s = (flags & DESC_S_MASK) != 0;
300    lhs->l = (flags >> DESC_L_SHIFT) & 1;
301    lhs->g = (flags & DESC_G_MASK) != 0;
302    lhs->avl = (flags & DESC_AVL_MASK) != 0;
303    lhs->unusable = 0;
304}
305
306static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
307{
308    lhs->selector = rhs->selector;
309    lhs->base = rhs->base;
310    lhs->limit = rhs->limit;
311    lhs->flags =
312	(rhs->type << DESC_TYPE_SHIFT)
313	| (rhs->present * DESC_P_MASK)
314	| (rhs->dpl << DESC_DPL_SHIFT)
315	| (rhs->db << DESC_B_SHIFT)
316	| (rhs->s * DESC_S_MASK)
317	| (rhs->l << DESC_L_SHIFT)
318	| (rhs->g * DESC_G_MASK)
319	| (rhs->avl * DESC_AVL_MASK);
320}
321
322static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
323{
324    if (set)
325        *kvm_reg = *qemu_reg;
326    else
327        *qemu_reg = *kvm_reg;
328}
329
330static int kvm_getput_regs(CPUState *env, int set)
331{
332    struct kvm_regs regs;
333    int ret = 0;
334
335    if (!set) {
336        ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
337        if (ret < 0)
338            return ret;
339    }
340
341    kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
342    kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
343    kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
344    kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
345    kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
346    kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
347    kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
348    kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
349#ifdef TARGET_X86_64
350    kvm_getput_reg(&regs.r8, &env->regs[8], set);
351    kvm_getput_reg(&regs.r9, &env->regs[9], set);
352    kvm_getput_reg(&regs.r10, &env->regs[10], set);
353    kvm_getput_reg(&regs.r11, &env->regs[11], set);
354    kvm_getput_reg(&regs.r12, &env->regs[12], set);
355    kvm_getput_reg(&regs.r13, &env->regs[13], set);
356    kvm_getput_reg(&regs.r14, &env->regs[14], set);
357    kvm_getput_reg(&regs.r15, &env->regs[15], set);
358#endif
359
360    kvm_getput_reg(&regs.rflags, &env->eflags, set);
361    kvm_getput_reg(&regs.rip, &env->eip, set);
362
363    if (set)
364        ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
365
366    return ret;
367}
368
369static int kvm_put_fpu(CPUState *env)
370{
371    struct kvm_fpu fpu;
372    int i;
373
374    memset(&fpu, 0, sizeof fpu);
375    fpu.fsw = env->fpus & ~(7 << 11);
376    fpu.fsw |= (env->fpstt & 7) << 11;
377    fpu.fcw = env->fpuc;
378    for (i = 0; i < 8; ++i)
379	fpu.ftwx |= (!env->fptags[i]) << i;
380    memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
381    memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
382    fpu.mxcsr = env->mxcsr;
383
384    return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
385}
386
387static int kvm_put_sregs(CPUState *env)
388{
389    struct kvm_sregs sregs;
390
391    memcpy(sregs.interrupt_bitmap,
392           env->interrupt_bitmap,
393           sizeof(sregs.interrupt_bitmap));
394
395    if ((env->eflags & VM_MASK)) {
396	    set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
397	    set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
398	    set_v8086_seg(&sregs.es, &env->segs[R_ES]);
399	    set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
400	    set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
401	    set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
402    } else {
403	    set_seg(&sregs.cs, &env->segs[R_CS]);
404	    set_seg(&sregs.ds, &env->segs[R_DS]);
405	    set_seg(&sregs.es, &env->segs[R_ES]);
406	    set_seg(&sregs.fs, &env->segs[R_FS]);
407	    set_seg(&sregs.gs, &env->segs[R_GS]);
408	    set_seg(&sregs.ss, &env->segs[R_SS]);
409
410	    if (env->cr[0] & CR0_PE_MASK) {
411		/* force ss cpl to cs cpl */
412		sregs.ss.selector = (sregs.ss.selector & ~3) |
413			(sregs.cs.selector & 3);
414		sregs.ss.dpl = sregs.ss.selector & 3;
415	    }
416    }
417
418    set_seg(&sregs.tr, &env->tr);
419    set_seg(&sregs.ldt, &env->ldt);
420
421    sregs.idt.limit = env->idt.limit;
422    sregs.idt.base = env->idt.base;
423    sregs.gdt.limit = env->gdt.limit;
424    sregs.gdt.base = env->gdt.base;
425
426    sregs.cr0 = env->cr[0];
427    sregs.cr2 = env->cr[2];
428    sregs.cr3 = env->cr[3];
429    sregs.cr4 = env->cr[4];
430
431    sregs.cr8 = cpu_get_apic_tpr(env);
432    sregs.apic_base = cpu_get_apic_base(env);
433
434    sregs.efer = env->efer;
435
436    return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
437}
438
439static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
440                              uint32_t index, uint64_t value)
441{
442    entry->index = index;
443    entry->data = value;
444}
445
446static int kvm_put_msrs(CPUState *env)
447{
448    struct {
449        struct kvm_msrs info;
450        struct kvm_msr_entry entries[100];
451    } msr_data;
452    struct kvm_msr_entry *msrs = msr_data.entries;
453    int n = 0;
454
455    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
456    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
457    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
458    if (kvm_has_msr_star(env))
459	kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
460    kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
461#ifdef TARGET_X86_64
462    /* FIXME if lm capable */
463    kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
464    kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
465    kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
466    kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
467#endif
468    msr_data.info.nmsrs = n;
469
470    return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
471
472}
473
474
475static int kvm_get_fpu(CPUState *env)
476{
477    struct kvm_fpu fpu;
478    int i, ret;
479
480    ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
481    if (ret < 0)
482        return ret;
483
484    env->fpstt = (fpu.fsw >> 11) & 7;
485    env->fpus = fpu.fsw;
486    env->fpuc = fpu.fcw;
487    for (i = 0; i < 8; ++i)
488	env->fptags[i] = !((fpu.ftwx >> i) & 1);
489    memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
490    memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
491    env->mxcsr = fpu.mxcsr;
492
493    return 0;
494}
495
496static int kvm_get_sregs(CPUState *env)
497{
498    struct kvm_sregs sregs;
499    uint32_t hflags;
500    int ret;
501
502    ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
503    if (ret < 0)
504        return ret;
505
506    memcpy(env->interrupt_bitmap,
507           sregs.interrupt_bitmap,
508           sizeof(sregs.interrupt_bitmap));
509
510    get_seg(&env->segs[R_CS], &sregs.cs);
511    get_seg(&env->segs[R_DS], &sregs.ds);
512    get_seg(&env->segs[R_ES], &sregs.es);
513    get_seg(&env->segs[R_FS], &sregs.fs);
514    get_seg(&env->segs[R_GS], &sregs.gs);
515    get_seg(&env->segs[R_SS], &sregs.ss);
516
517    get_seg(&env->tr, &sregs.tr);
518    get_seg(&env->ldt, &sregs.ldt);
519
520    env->idt.limit = sregs.idt.limit;
521    env->idt.base = sregs.idt.base;
522    env->gdt.limit = sregs.gdt.limit;
523    env->gdt.base = sregs.gdt.base;
524
525    env->cr[0] = sregs.cr0;
526    env->cr[2] = sregs.cr2;
527    env->cr[3] = sregs.cr3;
528    env->cr[4] = sregs.cr4;
529
530    cpu_set_apic_base(env, sregs.apic_base);
531
532    env->efer = sregs.efer;
533    //cpu_set_apic_tpr(env, sregs.cr8);
534
535#define HFLAG_COPY_MASK ~( \
536			HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
537			HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
538			HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
539			HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
540
541
542
543    hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
544    hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
545    hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
546	    (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
547    hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
548    hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
549	    (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
550
551    if (env->efer & MSR_EFER_LMA) {
552        hflags |= HF_LMA_MASK;
553    }
554
555    if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
556        hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
557    } else {
558        hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
559		(DESC_B_SHIFT - HF_CS32_SHIFT);
560        hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
561		(DESC_B_SHIFT - HF_SS32_SHIFT);
562        if (!(env->cr[0] & CR0_PE_MASK) ||
563                   (env->eflags & VM_MASK) ||
564                   !(hflags & HF_CS32_MASK)) {
565                hflags |= HF_ADDSEG_MASK;
566            } else {
567                hflags |= ((env->segs[R_DS].base |
568                                env->segs[R_ES].base |
569                                env->segs[R_SS].base) != 0) <<
570                    HF_ADDSEG_SHIFT;
571            }
572    }
573    env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
574
575    return 0;
576}
577
578static int kvm_get_msrs(CPUState *env)
579{
580    struct {
581        struct kvm_msrs info;
582        struct kvm_msr_entry entries[100];
583    } msr_data;
584    struct kvm_msr_entry *msrs = msr_data.entries;
585    int ret, i, n;
586
587    n = 0;
588    msrs[n++].index = MSR_IA32_SYSENTER_CS;
589    msrs[n++].index = MSR_IA32_SYSENTER_ESP;
590    msrs[n++].index = MSR_IA32_SYSENTER_EIP;
591    if (kvm_has_msr_star(env))
592	msrs[n++].index = MSR_STAR;
593    msrs[n++].index = MSR_IA32_TSC;
594#ifdef TARGET_X86_64
595    /* FIXME lm_capable_kernel */
596    msrs[n++].index = MSR_CSTAR;
597    msrs[n++].index = MSR_KERNELGSBASE;
598    msrs[n++].index = MSR_FMASK;
599    msrs[n++].index = MSR_LSTAR;
600#endif
601    msr_data.info.nmsrs = n;
602    ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
603    if (ret < 0)
604        return ret;
605
606    for (i = 0; i < ret; i++) {
607        switch (msrs[i].index) {
608        case MSR_IA32_SYSENTER_CS:
609            env->sysenter_cs = msrs[i].data;
610            break;
611        case MSR_IA32_SYSENTER_ESP:
612            env->sysenter_esp = msrs[i].data;
613            break;
614        case MSR_IA32_SYSENTER_EIP:
615            env->sysenter_eip = msrs[i].data;
616            break;
617        case MSR_STAR:
618            env->star = msrs[i].data;
619            break;
620#ifdef TARGET_X86_64
621        case MSR_CSTAR:
622            env->cstar = msrs[i].data;
623            break;
624        case MSR_KERNELGSBASE:
625            env->kernelgsbase = msrs[i].data;
626            break;
627        case MSR_FMASK:
628            env->fmask = msrs[i].data;
629            break;
630        case MSR_LSTAR:
631            env->lstar = msrs[i].data;
632            break;
633#endif
634        case MSR_IA32_TSC:
635            env->tsc = msrs[i].data;
636            break;
637        }
638    }
639
640    return 0;
641}
642
643int kvm_arch_put_registers(CPUState *env)
644{
645    int ret;
646
647    ret = kvm_getput_regs(env, 1);
648    if (ret < 0)
649        return ret;
650
651    ret = kvm_put_fpu(env);
652    if (ret < 0)
653        return ret;
654
655    ret = kvm_put_sregs(env);
656    if (ret < 0)
657        return ret;
658
659    ret = kvm_put_msrs(env);
660    if (ret < 0)
661        return ret;
662
663    ret = kvm_put_mp_state(env);
664    if (ret < 0)
665        return ret;
666
667    ret = kvm_get_mp_state(env);
668    if (ret < 0)
669        return ret;
670
671    return 0;
672}
673
674int kvm_arch_get_registers(CPUState *env)
675{
676    int ret;
677
678    ret = kvm_getput_regs(env, 0);
679    if (ret < 0)
680        return ret;
681
682    ret = kvm_get_fpu(env);
683    if (ret < 0)
684        return ret;
685
686    ret = kvm_get_sregs(env);
687    if (ret < 0)
688        return ret;
689
690    ret = kvm_get_msrs(env);
691    if (ret < 0)
692        return ret;
693
694    return 0;
695}
696
697int kvm_arch_vcpu_run(CPUState *env)
698{
699#ifdef CONFIG_KVM_GS_RESTORE
700    if (gs_need_restore  != KVM_GS_RESTORE_NO)
701        return no_gs_ioctl(env->kvm_fd, KVM_RUN, 0);
702    else
703#endif
704        return kvm_vcpu_ioctl(env, KVM_RUN, 0);
705}
706
707int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
708{
709    /* Try to inject an interrupt if the guest can accept it */
710    if (run->ready_for_interrupt_injection &&
711        (env->interrupt_request & CPU_INTERRUPT_HARD) &&
712        (env->eflags & IF_MASK)) {
713        int irq;
714
715        env->interrupt_request &= ~CPU_INTERRUPT_HARD;
716        irq = cpu_get_pic_interrupt(env);
717        if (irq >= 0) {
718            struct kvm_interrupt intr;
719            intr.irq = irq;
720            /* FIXME: errors */
721            dprintf("injected interrupt %d\n", irq);
722            kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
723        }
724    }
725
726    /* If we have an interrupt but the guest is not ready to receive an
727     * interrupt, request an interrupt window exit.  This will
728     * cause a return to userspace as soon as the guest is ready to
729     * receive interrupts. */
730    if ((env->interrupt_request & CPU_INTERRUPT_HARD))
731        run->request_interrupt_window = 1;
732    else
733        run->request_interrupt_window = 0;
734
735    dprintf("setting tpr\n");
736    run->cr8 = cpu_get_apic_tpr(env);
737
738#ifdef CONFIG_KVM_GS_RESTORE
739    gs_base_pre_run();
740#endif
741
742    return 0;
743}
744
745int kvm_arch_post_run(CPUState *env, struct kvm_run *run)
746{
747#ifdef CONFIG_KVM_GS_RESTORE
748    gs_base_post_run();
749#endif
750    if (run->if_flag)
751        env->eflags |= IF_MASK;
752    else
753        env->eflags &= ~IF_MASK;
754
755    cpu_set_apic_tpr(env, run->cr8);
756    cpu_set_apic_base(env, run->apic_base);
757
758    return 0;
759}
760
761static int kvm_handle_halt(CPUState *env)
762{
763    if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
764          (env->eflags & IF_MASK)) &&
765        !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
766        env->halted = 1;
767        env->exception_index = EXCP_HLT;
768        return 0;
769    }
770
771    return 1;
772}
773
774int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
775{
776    int ret = 0;
777
778    switch (run->exit_reason) {
779    case KVM_EXIT_HLT:
780        dprintf("handle_hlt\n");
781        ret = kvm_handle_halt(env);
782        break;
783    }
784
785    return ret;
786}
787
788#ifdef KVM_CAP_SET_GUEST_DEBUG
789int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
790{
791    const static uint8_t int3 = 0xcc;
792
793    if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
794        cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1))
795        return -EINVAL;
796    return 0;
797}
798
799int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
800{
801    uint8_t int3;
802
803    if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
804        cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1))
805        return -EINVAL;
806    return 0;
807}
808
809static struct {
810    target_ulong addr;
811    int len;
812    int type;
813} hw_breakpoint[4];
814
815static int nb_hw_breakpoint;
816
817static int find_hw_breakpoint(target_ulong addr, int len, int type)
818{
819    int n;
820
821    for (n = 0; n < nb_hw_breakpoint; n++)
822        if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
823            (hw_breakpoint[n].len == len || len == -1))
824            return n;
825    return -1;
826}
827
828int kvm_arch_insert_hw_breakpoint(target_ulong addr,
829                                  target_ulong len, int type)
830{
831    switch (type) {
832    case GDB_BREAKPOINT_HW:
833        len = 1;
834        break;
835    case GDB_WATCHPOINT_WRITE:
836    case GDB_WATCHPOINT_ACCESS:
837        switch (len) {
838        case 1:
839            break;
840        case 2:
841        case 4:
842        case 8:
843            if (addr & (len - 1))
844                return -EINVAL;
845            break;
846        default:
847            return -EINVAL;
848        }
849        break;
850    default:
851        return -ENOSYS;
852    }
853
854    if (nb_hw_breakpoint == 4)
855        return -ENOBUFS;
856
857    if (find_hw_breakpoint(addr, len, type) >= 0)
858        return -EEXIST;
859
860    hw_breakpoint[nb_hw_breakpoint].addr = addr;
861    hw_breakpoint[nb_hw_breakpoint].len = len;
862    hw_breakpoint[nb_hw_breakpoint].type = type;
863    nb_hw_breakpoint++;
864
865    return 0;
866}
867
868int kvm_arch_remove_hw_breakpoint(target_ulong addr,
869                                  target_ulong len, int type)
870{
871    int n;
872
873    n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
874    if (n < 0)
875        return -ENOENT;
876
877    nb_hw_breakpoint--;
878    hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
879
880    return 0;
881}
882
883void kvm_arch_remove_all_hw_breakpoints(void)
884{
885    nb_hw_breakpoint = 0;
886}
887
888static CPUWatchpoint hw_watchpoint;
889
890int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
891{
892    int handle = 0;
893    int n;
894
895    if (arch_info->exception == 1) {
896        if (arch_info->dr6 & (1 << 14)) {
897            if (cpu_single_env->singlestep_enabled)
898                handle = 1;
899        } else {
900            for (n = 0; n < 4; n++)
901                if (arch_info->dr6 & (1 << n))
902                    switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
903                    case 0x0:
904                        handle = 1;
905                        break;
906                    case 0x1:
907                        handle = 1;
908                        cpu_single_env->watchpoint_hit = &hw_watchpoint;
909                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
910                        hw_watchpoint.flags = BP_MEM_WRITE;
911                        break;
912                    case 0x3:
913                        handle = 1;
914                        cpu_single_env->watchpoint_hit = &hw_watchpoint;
915                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
916                        hw_watchpoint.flags = BP_MEM_ACCESS;
917                        break;
918                    }
919        }
920    } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc))
921        handle = 1;
922
923    if (!handle)
924        kvm_update_guest_debug(cpu_single_env,
925                        (arch_info->exception == 1) ?
926                        KVM_GUESTDBG_INJECT_DB : KVM_GUESTDBG_INJECT_BP);
927
928    return handle;
929}
930
931void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
932{
933    const uint8_t type_code[] = {
934        [GDB_BREAKPOINT_HW] = 0x0,
935        [GDB_WATCHPOINT_WRITE] = 0x1,
936        [GDB_WATCHPOINT_ACCESS] = 0x3
937    };
938    const uint8_t len_code[] = {
939        [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
940    };
941    int n;
942
943    if (kvm_sw_breakpoints_active(env))
944        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
945
946    if (nb_hw_breakpoint > 0) {
947        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
948        dbg->arch.debugreg[7] = 0x0600;
949        for (n = 0; n < nb_hw_breakpoint; n++) {
950            dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
951            dbg->arch.debugreg[7] |= (2 << (n * 2)) |
952                (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
953                (len_code[hw_breakpoint[n].len] << (18 + n*4));
954        }
955    }
956}
957#endif /* KVM_CAP_SET_GUEST_DEBUG */
958