assembler-mips.h revision 7f4d5bd8c03935e2c0cd412e561b8fc5a6a880ae
1// Copyright (c) 1994-2006 Sun Microsystems Inc.
2// All Rights Reserved.
3//
4// Redistribution and use in source and binary forms, with or without
5// modification, are permitted provided that the following conditions are
6// met:
7//
8// - Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10//
11// - Redistribution in binary form must reproduce the above copyright
12// notice, this list of conditions and the following disclaimer in the
13// documentation and/or other materials provided with the distribution.
14//
15// - Neither the name of Sun Microsystems or the names of contributors may
16// be used to endorse or promote products derived from this software without
17// specific prior written permission.
18//
19// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
20// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
26// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
27// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31// The original source code covered by the above license above has been
32// modified significantly by Google Inc.
33// Copyright 2010 the V8 project authors. All rights reserved.
34
35
36#ifndef V8_MIPS_ASSEMBLER_MIPS_H_
37#define V8_MIPS_ASSEMBLER_MIPS_H_
38
39#include <stdio.h>
40#include "assembler.h"
41#include "constants-mips.h"
42#include "serialize.h"
43
44using namespace assembler::mips;
45
46namespace v8 {
47namespace internal {
48
49// CPU Registers.
50//
51// 1) We would prefer to use an enum, but enum values are assignment-
52// compatible with int, which has caused code-generation bugs.
53//
54// 2) We would prefer to use a class instead of a struct but we don't like
55// the register initialization to depend on the particular initialization
56// order (which appears to be different on OS X, Linux, and Windows for the
57// installed versions of C++ we tried). Using a struct permits C-style
58// "initialization". Also, the Register objects cannot be const as this
59// forces initialization stubs in MSVC, making us dependent on initialization
60// order.
61//
62// 3) By not using an enum, we are possibly preventing the compiler from
63// doing certain constant folds, which may significantly reduce the
64// code generated for some assembly instructions (because they boil down
65// to a few constants). If this is a problem, we could change the code
66// such that we use an enum in optimized mode, and the struct in debug
67// mode. This way we get the compile-time error checking in debug mode
68// and best performance in optimized code.
69
70
71// -----------------------------------------------------------------------------
72// Implementation of Register and FPURegister
73
74// Core register.
75struct Register {
76  bool is_valid() const  { return 0 <= code_ && code_ < kNumRegisters; }
77  bool is(Register reg) const  { return code_ == reg.code_; }
78  int code() const  {
79    ASSERT(is_valid());
80    return code_;
81  }
82  int bit() const  {
83    ASSERT(is_valid());
84    return 1 << code_;
85  }
86
87  // Unfortunately we can't make this private in a struct.
88  int code_;
89};
90
91extern const Register no_reg;
92
93extern const Register zero_reg;
94extern const Register at;
95extern const Register v0;
96extern const Register v1;
97extern const Register a0;
98extern const Register a1;
99extern const Register a2;
100extern const Register a3;
101extern const Register t0;
102extern const Register t1;
103extern const Register t2;
104extern const Register t3;
105extern const Register t4;
106extern const Register t5;
107extern const Register t6;
108extern const Register t7;
109extern const Register s0;
110extern const Register s1;
111extern const Register s2;
112extern const Register s3;
113extern const Register s4;
114extern const Register s5;
115extern const Register s6;
116extern const Register s7;
117extern const Register t8;
118extern const Register t9;
119extern const Register k0;
120extern const Register k1;
121extern const Register gp;
122extern const Register sp;
123extern const Register s8_fp;
124extern const Register ra;
125
126int ToNumber(Register reg);
127
128Register ToRegister(int num);
129
130// Coprocessor register.
131struct FPURegister {
132  bool is_valid() const  { return 0 <= code_ && code_ < kNumFPURegister ; }
133  bool is(FPURegister creg) const  { return code_ == creg.code_; }
134  int code() const  {
135    ASSERT(is_valid());
136    return code_;
137  }
138  int bit() const  {
139    ASSERT(is_valid());
140    return 1 << code_;
141  }
142
143  // Unfortunately we can't make this private in a struct.
144  int code_;
145};
146
147extern const FPURegister no_creg;
148
149extern const FPURegister f0;
150extern const FPURegister f1;
151extern const FPURegister f2;
152extern const FPURegister f3;
153extern const FPURegister f4;
154extern const FPURegister f5;
155extern const FPURegister f6;
156extern const FPURegister f7;
157extern const FPURegister f8;
158extern const FPURegister f9;
159extern const FPURegister f10;
160extern const FPURegister f11;
161extern const FPURegister f12;  // arg
162extern const FPURegister f13;
163extern const FPURegister f14;  // arg
164extern const FPURegister f15;
165extern const FPURegister f16;
166extern const FPURegister f17;
167extern const FPURegister f18;
168extern const FPURegister f19;
169extern const FPURegister f20;
170extern const FPURegister f21;
171extern const FPURegister f22;
172extern const FPURegister f23;
173extern const FPURegister f24;
174extern const FPURegister f25;
175extern const FPURegister f26;
176extern const FPURegister f27;
177extern const FPURegister f28;
178extern const FPURegister f29;
179extern const FPURegister f30;
180extern const FPURegister f31;
181
182
183// Returns the equivalent of !cc.
184// Negation of the default no_condition (-1) results in a non-default
185// no_condition value (-2). As long as tests for no_condition check
186// for condition < 0, this will work as expected.
187inline Condition NegateCondition(Condition cc);
188
189inline Condition ReverseCondition(Condition cc) {
190  switch (cc) {
191    case Uless:
192      return Ugreater;
193    case Ugreater:
194      return Uless;
195    case Ugreater_equal:
196      return Uless_equal;
197    case Uless_equal:
198      return Ugreater_equal;
199    case less:
200      return greater;
201    case greater:
202      return less;
203    case greater_equal:
204      return less_equal;
205    case less_equal:
206      return greater_equal;
207    default:
208      return cc;
209  };
210}
211
212
213enum Hint {
214  no_hint = 0
215};
216
217inline Hint NegateHint(Hint hint) {
218  return no_hint;
219}
220
221
222// -----------------------------------------------------------------------------
223// Machine instruction Operands.
224
225// Class Operand represents a shifter operand in data processing instructions.
226class Operand BASE_EMBEDDED {
227 public:
228  // Immediate.
229  INLINE(explicit Operand(int32_t immediate,
230         RelocInfo::Mode rmode = RelocInfo::NONE));
231  INLINE(explicit Operand(const ExternalReference& f));
232  INLINE(explicit Operand(const char* s));
233  INLINE(explicit Operand(Object** opp));
234  INLINE(explicit Operand(Context** cpp));
235  explicit Operand(Handle<Object> handle);
236  INLINE(explicit Operand(Smi* value));
237
238  // Register.
239  INLINE(explicit Operand(Register rm));
240
241  // Return true if this is a register operand.
242  INLINE(bool is_reg() const);
243
244  Register rm() const { return rm_; }
245
246 private:
247  Register rm_;
248  int32_t imm32_;  // Valid if rm_ == no_reg
249  RelocInfo::Mode rmode_;
250
251  friend class Assembler;
252  friend class MacroAssembler;
253};
254
255
256// On MIPS we have only one adressing mode with base_reg + offset.
257// Class MemOperand represents a memory operand in load and store instructions.
258class MemOperand : public Operand {
259 public:
260
261  explicit MemOperand(Register rn, int16_t offset = 0);
262
263 private:
264  int16_t offset_;
265
266  friend class Assembler;
267};
268
269
270class Assembler : public Malloced {
271 public:
272  // Create an assembler. Instructions and relocation information are emitted
273  // into a buffer, with the instructions starting from the beginning and the
274  // relocation information starting from the end of the buffer. See CodeDesc
275  // for a detailed comment on the layout (globals.h).
276  //
277  // If the provided buffer is NULL, the assembler allocates and grows its own
278  // buffer, and buffer_size determines the initial buffer size. The buffer is
279  // owned by the assembler and deallocated upon destruction of the assembler.
280  //
281  // If the provided buffer is not NULL, the assembler uses the provided buffer
282  // for code generation and assumes its size to be buffer_size. If the buffer
283  // is too small, a fatal error occurs. No deallocation of the buffer is done
284  // upon destruction of the assembler.
285  Assembler(void* buffer, int buffer_size);
286  ~Assembler();
287
288  // GetCode emits any pending (non-emitted) code and fills the descriptor
289  // desc. GetCode() is idempotent; it returns the same result if no other
290  // Assembler functions are invoked in between GetCode() calls.
291  void GetCode(CodeDesc* desc);
292
293  // Label operations & relative jumps (PPUM Appendix D).
294  //
295  // Takes a branch opcode (cc) and a label (L) and generates
296  // either a backward branch or a forward branch and links it
297  // to the label fixup chain. Usage:
298  //
299  // Label L;    // unbound label
300  // j(cc, &L);  // forward branch to unbound label
301  // bind(&L);   // bind label to the current pc
302  // j(cc, &L);  // backward branch to bound label
303  // bind(&L);   // illegal: a label may be bound only once
304  //
305  // Note: The same Label can be used for forward and backward branches
306  // but it may be bound only once.
307  void bind(Label* L);  // binds an unbound label L to the current code position
308
309  // Returns the branch offset to the given label from the current code position
310  // Links the label to the current position if it is still unbound
311  // Manages the jump elimination optimization if the second parameter is true.
312  int32_t branch_offset(Label* L, bool jump_elimination_allowed);
313  int32_t shifted_branch_offset(Label* L, bool jump_elimination_allowed) {
314    int32_t o = branch_offset(L, jump_elimination_allowed);
315    ASSERT((o & 3) == 0);   // Assert the offset is aligned.
316    return o >> 2;
317  }
318
319  // Puts a labels target address at the given position.
320  // The high 8 bits are set to zero.
321  void label_at_put(Label* L, int at_offset);
322
323  // Size of an instruction.
324  static const int kInstrSize = sizeof(Instr);
325
326  // Difference between address of current opcode and target address offset.
327  static const int kBranchPCOffset = 4;
328
329  // Read/Modify the code target address in the branch/call instruction at pc.
330  static Address target_address_at(Address pc);
331  static void set_target_address_at(Address pc, Address target);
332
333  // This sets the branch destination (which gets loaded at the call address).
334  // This is for calls and branches within generated code.
335  inline static void set_target_at(Address instruction_payload,
336                                   Address target) {
337    set_target_address_at(instruction_payload, target);
338  }
339
340  // This sets the branch destination.
341  // This is for calls and branches to runtime code.
342  inline static void set_external_target_at(Address instruction_payload,
343                                            Address target) {
344    set_target_address_at(instruction_payload, target);
345  }
346
347  static const int kCallTargetSize = 3 * kPointerSize;
348  static const int kExternalTargetSize = 3 * kPointerSize;
349
350  // Distance between the instruction referring to the address of the call
351  // target and the return address.
352  static const int kCallTargetAddressOffset = 4 * kInstrSize;
353
354  // Distance between start of patched return sequence and the emitted address
355  // to jump to.
356  static const int kPatchReturnSequenceAddressOffset = kInstrSize;
357
358  // Distance between start of patched debug break slot and the emitted address
359  // to jump to.
360  static const int kPatchDebugBreakSlotAddressOffset = kInstrSize;
361
362  // ---------------------------------------------------------------------------
363  // Code generation.
364
365  void nop() { sll(zero_reg, zero_reg, 0); }
366
367
368  //------- Branch and jump  instructions --------
369  // We don't use likely variant of instructions.
370  void b(int16_t offset);
371  void b(Label* L) { b(branch_offset(L, false)>>2); }
372  void bal(int16_t offset);
373  void bal(Label* L) { bal(branch_offset(L, false)>>2); }
374
375  void beq(Register rs, Register rt, int16_t offset);
376  void beq(Register rs, Register rt, Label* L) {
377    beq(rs, rt, branch_offset(L, false) >> 2);
378  }
379  void bgez(Register rs, int16_t offset);
380  void bgezal(Register rs, int16_t offset);
381  void bgtz(Register rs, int16_t offset);
382  void blez(Register rs, int16_t offset);
383  void bltz(Register rs, int16_t offset);
384  void bltzal(Register rs, int16_t offset);
385  void bne(Register rs, Register rt, int16_t offset);
386  void bne(Register rs, Register rt, Label* L) {
387    bne(rs, rt, branch_offset(L, false)>>2);
388  }
389
390  // Never use the int16_t b(l)cond version with a branch offset
391  // instead of using the Label* version. See Twiki for infos.
392
393  // Jump targets must be in the current 256 MB-aligned region. ie 28 bits.
394  void j(int32_t target);
395  void jal(int32_t target);
396  void jalr(Register rs, Register rd = ra);
397  void jr(Register target);
398
399
400  //-------Data-processing-instructions---------
401
402  // Arithmetic.
403  void add(Register rd, Register rs, Register rt);
404  void addu(Register rd, Register rs, Register rt);
405  void sub(Register rd, Register rs, Register rt);
406  void subu(Register rd, Register rs, Register rt);
407  void mult(Register rs, Register rt);
408  void multu(Register rs, Register rt);
409  void div(Register rs, Register rt);
410  void divu(Register rs, Register rt);
411  void mul(Register rd, Register rs, Register rt);
412
413  void addi(Register rd, Register rs, int32_t j);
414  void addiu(Register rd, Register rs, int32_t j);
415
416  // Logical.
417  void and_(Register rd, Register rs, Register rt);
418  void or_(Register rd, Register rs, Register rt);
419  void xor_(Register rd, Register rs, Register rt);
420  void nor(Register rd, Register rs, Register rt);
421
422  void andi(Register rd, Register rs, int32_t j);
423  void ori(Register rd, Register rs, int32_t j);
424  void xori(Register rd, Register rs, int32_t j);
425  void lui(Register rd, int32_t j);
426
427  // Shifts.
428  void sll(Register rd, Register rt, uint16_t sa);
429  void sllv(Register rd, Register rt, Register rs);
430  void srl(Register rd, Register rt, uint16_t sa);
431  void srlv(Register rd, Register rt, Register rs);
432  void sra(Register rt, Register rd, uint16_t sa);
433  void srav(Register rt, Register rd, Register rs);
434
435
436  //------------Memory-instructions-------------
437
438  void lb(Register rd, const MemOperand& rs);
439  void lbu(Register rd, const MemOperand& rs);
440  void lw(Register rd, const MemOperand& rs);
441  void sb(Register rd, const MemOperand& rs);
442  void sw(Register rd, const MemOperand& rs);
443
444
445  //-------------Misc-instructions--------------
446
447  // Break / Trap instructions.
448  void break_(uint32_t code);
449  void tge(Register rs, Register rt, uint16_t code);
450  void tgeu(Register rs, Register rt, uint16_t code);
451  void tlt(Register rs, Register rt, uint16_t code);
452  void tltu(Register rs, Register rt, uint16_t code);
453  void teq(Register rs, Register rt, uint16_t code);
454  void tne(Register rs, Register rt, uint16_t code);
455
456  // Move from HI/LO register.
457  void mfhi(Register rd);
458  void mflo(Register rd);
459
460  // Set on less than.
461  void slt(Register rd, Register rs, Register rt);
462  void sltu(Register rd, Register rs, Register rt);
463  void slti(Register rd, Register rs, int32_t j);
464  void sltiu(Register rd, Register rs, int32_t j);
465
466
467  //--------Coprocessor-instructions----------------
468
469  // Load, store, and move.
470  void lwc1(FPURegister fd, const MemOperand& src);
471  void ldc1(FPURegister fd, const MemOperand& src);
472
473  void swc1(FPURegister fs, const MemOperand& dst);
474  void sdc1(FPURegister fs, const MemOperand& dst);
475
476  // When paired with MTC1 to write a value to a 64-bit FPR, the MTC1 must be
477  // executed first, followed by the MTHC1.
478  void mtc1(FPURegister fs, Register rt);
479  void mthc1(FPURegister fs, Register rt);
480  void mfc1(FPURegister fs, Register rt);
481  void mfhc1(FPURegister fs, Register rt);
482
483  // Conversion.
484  void cvt_w_s(FPURegister fd, FPURegister fs);
485  void cvt_w_d(FPURegister fd, FPURegister fs);
486
487  void cvt_l_s(FPURegister fd, FPURegister fs);
488  void cvt_l_d(FPURegister fd, FPURegister fs);
489
490  void cvt_s_w(FPURegister fd, FPURegister fs);
491  void cvt_s_l(FPURegister fd, FPURegister fs);
492  void cvt_s_d(FPURegister fd, FPURegister fs);
493
494  void cvt_d_w(FPURegister fd, FPURegister fs);
495  void cvt_d_l(FPURegister fd, FPURegister fs);
496  void cvt_d_s(FPURegister fd, FPURegister fs);
497
498  // Conditions and branches.
499  void c(FPUCondition cond, SecondaryField fmt,
500         FPURegister ft, FPURegister fs, uint16_t cc = 0);
501
502  void bc1f(int16_t offset, uint16_t cc = 0);
503  void bc1f(Label* L, uint16_t cc = 0) { bc1f(branch_offset(L, false)>>2, cc); }
504  void bc1t(int16_t offset, uint16_t cc = 0);
505  void bc1t(Label* L, uint16_t cc = 0) { bc1t(branch_offset(L, false)>>2, cc); }
506
507
508  // Check the code size generated from label to here.
509  int InstructionsGeneratedSince(Label* l) {
510    return (pc_offset() - l->pos()) / kInstrSize;
511  }
512
513  // Debugging.
514
515  // Mark address of the ExitJSFrame code.
516  void RecordJSReturn();
517
518  // Record a comment relocation entry that can be used by a disassembler.
519  // Use --debug_code to enable.
520  void RecordComment(const char* msg);
521
522  void RecordPosition(int pos);
523  void RecordStatementPosition(int pos);
524  bool WriteRecordedPositions();
525
526  int32_t pc_offset() const { return pc_ - buffer_; }
527  int32_t current_position() const { return current_position_; }
528  int32_t current_statement_position() const {
529    return current_statement_position_;
530  }
531
532  // Check if there is less than kGap bytes available in the buffer.
533  // If this is the case, we need to grow the buffer before emitting
534  // an instruction or relocation information.
535  inline bool overflow() const { return pc_ >= reloc_info_writer.pos() - kGap; }
536
537  // Get the number of bytes available in the buffer.
538  inline int available_space() const { return reloc_info_writer.pos() - pc_; }
539
540 protected:
541  int32_t buffer_space() const { return reloc_info_writer.pos() - pc_; }
542
543  // Read/patch instructions.
544  static Instr instr_at(byte* pc) { return *reinterpret_cast<Instr*>(pc); }
545  void instr_at_put(byte* pc, Instr instr) {
546    *reinterpret_cast<Instr*>(pc) = instr;
547  }
548  Instr instr_at(int pos) { return *reinterpret_cast<Instr*>(buffer_ + pos); }
549  void instr_at_put(int pos, Instr instr) {
550    *reinterpret_cast<Instr*>(buffer_ + pos) = instr;
551  }
552
553  // Check if an instruction is a branch of some kind.
554  bool is_branch(Instr instr);
555
556  // Decode branch instruction at pos and return branch target pos.
557  int target_at(int32_t pos);
558
559  // Patch branch instruction at pos to branch to given branch target pos.
560  void target_at_put(int32_t pos, int32_t target_pos);
561
562  // Say if we need to relocate with this mode.
563  bool MustUseAt(RelocInfo::Mode rmode);
564
565  // Record reloc info for current pc_.
566  void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0);
567
568 private:
569  // Code buffer:
570  // The buffer into which code and relocation info are generated.
571  byte* buffer_;
572  int buffer_size_;
573  // True if the assembler owns the buffer, false if buffer is external.
574  bool own_buffer_;
575
576  // Buffer size and constant pool distance are checked together at regular
577  // intervals of kBufferCheckInterval emitted bytes.
578  static const int kBufferCheckInterval = 1*KB/2;
579
580  // Code generation.
581  // The relocation writer's position is at least kGap bytes below the end of
582  // the generated instructions. This is so that multi-instruction sequences do
583  // not have to check for overflow. The same is true for writes of large
584  // relocation info entries.
585  static const int kGap = 32;
586  byte* pc_;  // The program counter - moves forward.
587
588  // Relocation information generation.
589  // Each relocation is encoded as a variable size value.
590  static const int kMaxRelocSize = RelocInfoWriter::kMaxSize;
591  RelocInfoWriter reloc_info_writer;
592
593  // The bound position, before this we cannot do instruction elimination.
594  int last_bound_pos_;
595
596  // Source position information.
597  int current_position_;
598  int current_statement_position_;
599  int written_position_;
600  int written_statement_position_;
601
602  // Code emission.
603  inline void CheckBuffer();
604  void GrowBuffer();
605  inline void emit(Instr x);
606
607  // Instruction generation.
608  // We have 3 different kind of encoding layout on MIPS.
609  // However due to many different types of objects encoded in the same fields
610  // we have quite a few aliases for each mode.
611  // Using the same structure to refer to Register and FPURegister would spare a
612  // few aliases, but mixing both does not look clean to me.
613  // Anyway we could surely implement this differently.
614
615  void GenInstrRegister(Opcode opcode,
616                        Register rs,
617                        Register rt,
618                        Register rd,
619                        uint16_t sa = 0,
620                        SecondaryField func = NULLSF);
621
622  void GenInstrRegister(Opcode opcode,
623                        SecondaryField fmt,
624                        FPURegister ft,
625                        FPURegister fs,
626                        FPURegister fd,
627                        SecondaryField func = NULLSF);
628
629  void GenInstrRegister(Opcode opcode,
630                        SecondaryField fmt,
631                        Register rt,
632                        FPURegister fs,
633                        FPURegister fd,
634                        SecondaryField func = NULLSF);
635
636
637  void GenInstrImmediate(Opcode opcode,
638                         Register rs,
639                         Register rt,
640                         int32_t  j);
641  void GenInstrImmediate(Opcode opcode,
642                         Register rs,
643                         SecondaryField SF,
644                         int32_t  j);
645  void GenInstrImmediate(Opcode opcode,
646                         Register r1,
647                         FPURegister r2,
648                         int32_t  j);
649
650
651  void GenInstrJump(Opcode opcode,
652                     uint32_t address);
653
654
655  // Labels.
656  void print(Label* L);
657  void bind_to(Label* L, int pos);
658  void link_to(Label* L, Label* appendix);
659  void next(Label* L);
660
661  friend class RegExpMacroAssemblerMIPS;
662  friend class RelocInfo;
663};
664
665} }  // namespace v8::internal
666
667#endif  // V8_ARM_ASSEMBLER_MIPS_H_
668
669