sensors.h revision b01a043df41e987321f6c01930ac306befb1d3dc
1/*
2 * Copyright (C) 2008 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ANDROID_SENSORS_INTERFACE_H
18#define ANDROID_SENSORS_INTERFACE_H
19
20#include <stdint.h>
21#include <sys/cdefs.h>
22#include <sys/types.h>
23
24#include <hardware/hardware.h>
25#include <cutils/native_handle.h>
26
27__BEGIN_DECLS
28
29/**
30 * The id of this module
31 */
32#define SENSORS_HARDWARE_MODULE_ID "sensors"
33
34/**
35 * Name of the sensors device to open
36 */
37#define SENSORS_HARDWARE_CONTROL    "control"
38#define SENSORS_HARDWARE_DATA       "data"
39
40/**
41 * Handles must be higher than SENSORS_HANDLE_BASE and must be unique.
42 * A Handle identifies a given sensors. The handle is used to activate
43 * and/or deactivate sensors.
44 * In this version of the API there can only be 256 handles.
45 */
46#define SENSORS_HANDLE_BASE             0
47#define SENSORS_HANDLE_BITS             8
48#define SENSORS_HANDLE_COUNT            (1<<SENSORS_HANDLE_BITS)
49
50
51/**
52 * Sensor types
53 */
54#define SENSOR_TYPE_ACCELEROMETER       1
55#define SENSOR_TYPE_MAGNETIC_FIELD      2
56#define SENSOR_TYPE_ORIENTATION         3
57#define SENSOR_TYPE_GYROSCOPE           4
58#define SENSOR_TYPE_LIGHT               5
59#define SENSOR_TYPE_PRESSURE            6
60#define SENSOR_TYPE_TEMPERATURE         7
61#define SENSOR_TYPE_PROXIMITY           8
62#define SENSOR_TYPE_GRAVITY             9
63#define SENSOR_TYPE_LINEAR_ACCELERATION 10
64#define SENSOR_TYPE_ROTATION_VECTOR     11
65
66/**
67 * Values returned by the accelerometer in various locations in the universe.
68 * all values are in SI units (m/s^2)
69 */
70
71#define GRAVITY_SUN             (275.0f)
72#define GRAVITY_MERCURY         (3.70f)
73#define GRAVITY_VENUS           (8.87f)
74#define GRAVITY_EARTH           (9.80665f)
75#define GRAVITY_MOON            (1.6f)
76#define GRAVITY_MARS            (3.71f)
77#define GRAVITY_JUPITER         (23.12f)
78#define GRAVITY_SATURN          (8.96f)
79#define GRAVITY_URANUS          (8.69f)
80#define GRAVITY_NEPTUNE         (11.0f)
81#define GRAVITY_PLUTO           (0.6f)
82#define GRAVITY_DEATH_STAR_I    (0.000000353036145f)
83#define GRAVITY_THE_ISLAND      (4.815162342f)
84
85/** Maximum magnetic field on Earth's surface */
86#define MAGNETIC_FIELD_EARTH_MAX    (60.0f)
87
88/** Minimum magnetic field on Earth's surface */
89#define MAGNETIC_FIELD_EARTH_MIN    (30.0f)
90
91
92/**
93 * status of each sensor
94 */
95
96#define SENSOR_STATUS_UNRELIABLE        0
97#define SENSOR_STATUS_ACCURACY_LOW      1
98#define SENSOR_STATUS_ACCURACY_MEDIUM   2
99#define SENSOR_STATUS_ACCURACY_HIGH     3
100
101/**
102 * Definition of the axis
103 * ----------------------
104 *
105 * This API is relative to the screen of the device in its default orientation,
106 * that is, if the device can be used in portrait or landscape, this API
107 * is only relative to the NATURAL orientation of the screen. In other words,
108 * the axis are not swapped when the device's screen orientation changes.
109 * Higher level services /may/ perform this transformation.
110 *
111 *   x<0         x>0
112 *                ^
113 *                |
114 *    +-----------+-->  y>0
115 *    |           |
116 *    |           |
117 *    |           |
118 *    |           |   / z<0
119 *    |           |  /
120 *    |           | /
121 *    O-----------+/
122 *    |[]  [ ]  []/
123 *    +----------/+     y<0
124 *              /
125 *             /
126 *           |/ z>0 (toward the sky)
127 *
128 *    O: Origin (x=0,y=0,z=0)
129 *
130 *
131 * Orientation
132 * -----------
133 *
134 * All values are angles in degrees.
135 *
136 * azimuth: angle between the magnetic north direction and the Y axis, around
137 *  the Z axis (0<=azimuth<360).
138 *      0=North, 90=East, 180=South, 270=West
139 *
140 * pitch: Rotation around X axis (-180<=pitch<=180), with positive values when
141 *  the z-axis moves toward the y-axis.
142 *
143 * roll: Rotation around Y axis (-90<=roll<=90), with positive values when
144 *  the x-axis moves towards the z-axis.
145 *
146 * Note: For historical reasons the roll angle is positive in the clockwise
147 *  direction (mathematically speaking, it should be positive in the
148 *  counter-clockwise direction):
149 *
150 *                Z
151 *                ^
152 *  (+roll)  .--> |
153 *          /     |
154 *         |      |  roll: rotation around Y axis
155 *     X <-------(.)
156 *                 Y
157 *       note that +Y == -roll
158 *
159 *
160 *
161 * Note: This definition is different from yaw, pitch and roll used in aviation
162 *  where the X axis is along the long side of the plane (tail to nose).
163 *
164 *
165 * Acceleration
166 * ------------
167 *
168 *  All values are in SI units (m/s^2) and measure the acceleration of the
169 *  device minus the force of gravity.
170 *
171 *  x: Acceleration minus Gx on the x-axis
172 *  y: Acceleration minus Gy on the y-axis
173 *  z: Acceleration minus Gz on the z-axis
174 *
175 *  Examples:
176 *    When the device lies flat on a table and is pushed on its left side
177 *    toward the right, the x acceleration value is positive.
178 *
179 *    When the device lies flat on a table, the acceleration value is +9.81,
180 *    which correspond to the acceleration of the device (0 m/s^2) minus the
181 *    force of gravity (-9.81 m/s^2).
182 *
183 *    When the device lies flat on a table and is pushed toward the sky, the
184 *    acceleration value is greater than +9.81, which correspond to the
185 *    acceleration of the device (+A m/s^2) minus the force of
186 *    gravity (-9.81 m/s^2).
187 *
188 *
189 * Magnetic Field
190 * --------------
191 *
192 *  All values are in micro-Tesla (uT) and measure the ambient magnetic
193 *  field in the X, Y and Z axis.
194 *
195 * Gyroscope
196 * ---------
197 *  All values are in radians/second and measure the rate of rotation
198 *  around the X, Y and Z axis.  The coordinate system is the same as is
199 *  used for the acceleration sensor.  Rotation is positive in the counter-clockwise
200 *  direction.  That is, an observer looking from some positive location on the x, y.
201 *  or z axis at a device positioned on the origin would report positive rotation
202 *  if the device appeared to be rotating counter clockwise.  Note that this is the
203 *  standard mathematical definition of positive rotation and does not agree with the
204 *  definition of roll given earlier.
205 *
206 * Proximity
207 * ---------
208 *
209 * The distance value is measured in centimeters.  Note that some proximity
210 * sensors only support a binary "close" or "far" measurement.  In this case,
211 * the sensor should report its maxRange value in the "far" state and a value
212 * less than maxRange in the "near" state.
213 *
214 * Light
215 * -----
216 *
217 * The light sensor value is returned in SI lux units.
218 *
219 * Gravity
220 * -------
221 * A gravity output indicates the direction of and magnitude of gravity in the devices's
222 * coordinates.  On Earth, the magnitude is 9.8.  Units are m/s^2.  The coordinate system
223 * is the same as is used for the acceleration sensor.
224 *
225 * Linear Acceleration
226 * -------------------
227 * Indicates the linear acceleration of the device in device coordinates, not including gravity.
228 * This output is essentially Acceleration - Gravity.  Units are m/s^2.  The coordinate system is
229 * the same as is used for the acceleration sensor.
230 *
231 * Rotation Vector
232 * ---------------
233 * A rotation vector represents the orientation of the device as a combination
234 * of an angle and an axis, in which the device has rotated through an angle
235 * theta around an axis <x, y, z>. The three elements of the rotation vector
236 * are <x*sin(theta/2), y*sin(theta/2), z*sin(theta/2)>, such that the magnitude
237 * of the rotation vector is equal to sin(theta/2), and the direction of the
238 * rotation vector is equal to the direction of the axis of rotation. The three
239 * elements of the rotation vector are equal to the last three components of a
240 * unit quaternion <cos(theta/2), x*sin(theta/2), y*sin(theta/2), z*sin(theta/2)>.
241 * Elements of the rotation vector are unitless.  The x, y, and z axis are defined
242 * in the same was as for the acceleration sensor.
243 */
244
245typedef struct {
246    union {
247        float v[3];
248        struct {
249            float x;
250            float y;
251            float z;
252        };
253        struct {
254            float azimuth;
255            float pitch;
256            float roll;
257        };
258    };
259    int8_t status;
260    uint8_t reserved[3];
261} sensors_vec_t;
262
263/**
264 * Union of the various types of sensor data
265 * that can be returned.
266 */
267typedef struct {
268    /* sensor identifier */
269    int             sensor;
270
271    union {
272        /* x,y,z values of the given sensor */
273        sensors_vec_t   vector;
274
275        /* orientation values are in degrees */
276        sensors_vec_t   orientation;
277
278        /* acceleration values are in meter per second per second (m/s^2) */
279        sensors_vec_t   acceleration;
280
281        /* magnetic vector values are in micro-Tesla (uT) */
282        sensors_vec_t   magnetic;
283
284        /* temperature is in degrees centigrade (Celsius) */
285        float           temperature;
286
287        /* distance in centimeters */
288        float           distance;
289
290        /* light in SI lux units */
291        float           light;
292    };
293
294    /* time is in nanosecond */
295    int64_t         time;
296
297    uint32_t        reserved;
298} sensors_data_t;
299
300
301struct sensor_t;
302
303/**
304 * Every hardware module must have a data structure named HAL_MODULE_INFO_SYM
305 * and the fields of this data structure must begin with hw_module_t
306 * followed by module specific information.
307 */
308struct sensors_module_t {
309    struct hw_module_t common;
310
311    /**
312     * Enumerate all available sensors. The list is returned in "list".
313     * @return number of sensors in the list
314     */
315    int (*get_sensors_list)(struct sensors_module_t* module,
316            struct sensor_t const** list);
317};
318
319struct sensor_t {
320    /* name of this sensors */
321    const char*     name;
322    /* vendor of the hardware part */
323    const char*     vendor;
324    /* version of the hardware part + driver. The value of this field is
325     * left to the implementation and doesn't have to be monotonicaly
326     * increasing.
327     */
328    int             version;
329    /* handle that identifies this sensors. This handle is used to activate
330     * and deactivate this sensor. The value of the handle must be 8 bits
331     * in this version of the API.
332     */
333    int             handle;
334    /* this sensor's type. */
335    int             type;
336    /* maximaum range of this sensor's value in SI units */
337    float           maxRange;
338    /* smallest difference between two values reported by this sensor */
339    float           resolution;
340    /* rough estimate of this sensor's power consumption in mA */
341    float           power;
342    /* reserved fields, must be zero */
343    void*           reserved[9];
344};
345
346
347/**
348 * Every device data structure must begin with hw_device_t
349 * followed by module specific public methods and attributes.
350 */
351struct sensors_control_device_t {
352    struct hw_device_t common;
353
354    /**
355     * Returns a native_handle_t, which will be the parameter to
356     * sensors_data_device_t::open_data().
357     * The caller takes ownership of this handle. This is intended to be
358     * passed cross processes.
359     *
360     * @return a native_handle_t if successful, NULL on error
361     */
362    native_handle_t* (*open_data_source)(struct sensors_control_device_t *dev);
363
364    /**
365     * Releases any resources that were created by open_data_source.
366     * This call is optional and can be NULL if not implemented
367     * by the sensor HAL.
368     *
369     * @return 0 if successful, < 0 on error
370     */
371    int (*close_data_source)(struct sensors_control_device_t *dev);
372
373    /** Activate/deactivate one sensor.
374     *
375     * @param handle is the handle of the sensor to change.
376     * @param enabled set to 1 to enable, or 0 to disable the sensor.
377     *
378     * @return 0 on success, negative errno code otherwise
379     */
380    int (*activate)(struct sensors_control_device_t *dev,
381            int handle, int enabled);
382
383    /**
384     * Set the delay between sensor events in ms
385     *
386     * @return 0 if successful, < 0 on error
387     */
388    int (*set_delay)(struct sensors_control_device_t *dev, int32_t ms);
389
390    /**
391     * Causes sensors_data_device_t.poll() to return -EWOULDBLOCK immediately.
392     */
393    int (*wake)(struct sensors_control_device_t *dev);
394};
395
396struct sensors_data_device_t {
397    struct hw_device_t common;
398
399    /**
400     * Prepare to read sensor data.
401     *
402     * This routine does NOT take ownership of the handle
403     * and must not close it. Typically this routine would
404     * use a duplicate of the nh parameter.
405     *
406     * @param nh from sensors_control_open.
407     *
408     * @return 0 if successful, < 0 on error
409     */
410    int (*data_open)(struct sensors_data_device_t *dev, native_handle_t* nh);
411
412    /**
413     * Caller has completed using the sensor data.
414     * The caller will not be blocked in sensors_data_poll
415     * when this routine is called.
416     *
417     * @return 0 if successful, < 0 on error
418     */
419    int (*data_close)(struct sensors_data_device_t *dev);
420
421    /**
422     * Return sensor data for one of the enabled sensors.
423     *
424     * @return sensor handle for the returned data, 0x7FFFFFFF when
425     * sensors_control_device_t.wake() is called and -errno on error
426     *
427     */
428    int (*poll)(struct sensors_data_device_t *dev,
429            sensors_data_t* data);
430};
431
432
433/** convenience API for opening and closing a device */
434
435static inline int sensors_control_open(const struct hw_module_t* module,
436        struct sensors_control_device_t** device) {
437    return module->methods->open(module,
438            SENSORS_HARDWARE_CONTROL, (struct hw_device_t**)device);
439}
440
441static inline int sensors_control_close(struct sensors_control_device_t* device) {
442    return device->common.close(&device->common);
443}
444
445static inline int sensors_data_open(const struct hw_module_t* module,
446        struct sensors_data_device_t** device) {
447    return module->methods->open(module,
448            SENSORS_HARDWARE_DATA, (struct hw_device_t**)device);
449}
450
451static inline int sensors_data_close(struct sensors_data_device_t* device) {
452    return device->common.close(&device->common);
453}
454
455
456__END_DECLS
457
458#endif  // ANDROID_SENSORS_INTERFACE_H
459