1/*
2 * Copyright (C) 2013 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define ATRACE_TAG ATRACE_TAG_GRAPHICS
18//#define LOG_NDEBUG 0
19
20// This is needed for stdint.h to define INT64_MAX in C++
21#define __STDC_LIMIT_MACROS
22
23#include <math.h>
24
25#include <algorithm>
26
27#include <log/log.h>
28#include <utils/String8.h>
29#include <utils/Thread.h>
30#include <utils/Trace.h>
31#include <utils/Vector.h>
32
33#include <ui/FenceTime.h>
34
35#include "DispSync.h"
36#include "EventLog/EventLog.h"
37#include "SurfaceFlinger.h"
38
39using std::max;
40using std::min;
41
42namespace android {
43
44// Setting this to true enables verbose tracing that can be used to debug
45// vsync event model or phase issues.
46static const bool kTraceDetailedInfo = false;
47
48// Setting this to true adds a zero-phase tracer for correlating with hardware
49// vsync events
50static const bool kEnableZeroPhaseTracer = false;
51
52// This is the threshold used to determine when hardware vsync events are
53// needed to re-synchronize the software vsync model with the hardware.  The
54// error metric used is the mean of the squared difference between each
55// present time and the nearest software-predicted vsync.
56static const nsecs_t kErrorThreshold = 160000000000; // 400 usec squared
57
58#undef LOG_TAG
59#define LOG_TAG "DispSyncThread"
60class DispSyncThread : public Thread {
61public:
62    explicit DispSyncThread(const char* name)
63          : mName(name),
64            mStop(false),
65            mPeriod(0),
66            mPhase(0),
67            mReferenceTime(0),
68            mWakeupLatency(0),
69            mFrameNumber(0) {}
70
71    virtual ~DispSyncThread() {}
72
73    void updateModel(nsecs_t period, nsecs_t phase, nsecs_t referenceTime) {
74        if (kTraceDetailedInfo) ATRACE_CALL();
75        Mutex::Autolock lock(mMutex);
76        mPeriod = period;
77        mPhase = phase;
78        mReferenceTime = referenceTime;
79        ALOGV("[%s] updateModel: mPeriod = %" PRId64 ", mPhase = %" PRId64
80              " mReferenceTime = %" PRId64,
81              mName, ns2us(mPeriod), ns2us(mPhase), ns2us(mReferenceTime));
82        mCond.signal();
83    }
84
85    void stop() {
86        if (kTraceDetailedInfo) ATRACE_CALL();
87        Mutex::Autolock lock(mMutex);
88        mStop = true;
89        mCond.signal();
90    }
91
92    virtual bool threadLoop() {
93        status_t err;
94        nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
95
96        while (true) {
97            Vector<CallbackInvocation> callbackInvocations;
98
99            nsecs_t targetTime = 0;
100
101            { // Scope for lock
102                Mutex::Autolock lock(mMutex);
103
104                if (kTraceDetailedInfo) {
105                    ATRACE_INT64("DispSync:Frame", mFrameNumber);
106                }
107                ALOGV("[%s] Frame %" PRId64, mName, mFrameNumber);
108                ++mFrameNumber;
109
110                if (mStop) {
111                    return false;
112                }
113
114                if (mPeriod == 0) {
115                    err = mCond.wait(mMutex);
116                    if (err != NO_ERROR) {
117                        ALOGE("error waiting for new events: %s (%d)", strerror(-err), err);
118                        return false;
119                    }
120                    continue;
121                }
122
123                targetTime = computeNextEventTimeLocked(now);
124
125                bool isWakeup = false;
126
127                if (now < targetTime) {
128                    if (kTraceDetailedInfo) ATRACE_NAME("DispSync waiting");
129
130                    if (targetTime == INT64_MAX) {
131                        ALOGV("[%s] Waiting forever", mName);
132                        err = mCond.wait(mMutex);
133                    } else {
134                        ALOGV("[%s] Waiting until %" PRId64, mName, ns2us(targetTime));
135                        err = mCond.waitRelative(mMutex, targetTime - now);
136                    }
137
138                    if (err == TIMED_OUT) {
139                        isWakeup = true;
140                    } else if (err != NO_ERROR) {
141                        ALOGE("error waiting for next event: %s (%d)", strerror(-err), err);
142                        return false;
143                    }
144                }
145
146                now = systemTime(SYSTEM_TIME_MONOTONIC);
147
148                // Don't correct by more than 1.5 ms
149                static const nsecs_t kMaxWakeupLatency = us2ns(1500);
150
151                if (isWakeup) {
152                    mWakeupLatency = ((mWakeupLatency * 63) + (now - targetTime)) / 64;
153                    mWakeupLatency = min(mWakeupLatency, kMaxWakeupLatency);
154                    if (kTraceDetailedInfo) {
155                        ATRACE_INT64("DispSync:WakeupLat", now - targetTime);
156                        ATRACE_INT64("DispSync:AvgWakeupLat", mWakeupLatency);
157                    }
158                }
159
160                callbackInvocations = gatherCallbackInvocationsLocked(now);
161            }
162
163            if (callbackInvocations.size() > 0) {
164                fireCallbackInvocations(callbackInvocations);
165            }
166        }
167
168        return false;
169    }
170
171    status_t addEventListener(const char* name, nsecs_t phase, DispSync::Callback* callback) {
172        if (kTraceDetailedInfo) ATRACE_CALL();
173        Mutex::Autolock lock(mMutex);
174
175        for (size_t i = 0; i < mEventListeners.size(); i++) {
176            if (mEventListeners[i].mCallback == callback) {
177                return BAD_VALUE;
178            }
179        }
180
181        EventListener listener;
182        listener.mName = name;
183        listener.mPhase = phase;
184        listener.mCallback = callback;
185
186        // We want to allow the firstmost future event to fire without
187        // allowing any past events to fire
188        listener.mLastEventTime = systemTime() - mPeriod / 2 + mPhase - mWakeupLatency;
189
190        mEventListeners.push(listener);
191
192        mCond.signal();
193
194        return NO_ERROR;
195    }
196
197    status_t removeEventListener(DispSync::Callback* callback) {
198        if (kTraceDetailedInfo) ATRACE_CALL();
199        Mutex::Autolock lock(mMutex);
200
201        for (size_t i = 0; i < mEventListeners.size(); i++) {
202            if (mEventListeners[i].mCallback == callback) {
203                mEventListeners.removeAt(i);
204                mCond.signal();
205                return NO_ERROR;
206            }
207        }
208
209        return BAD_VALUE;
210    }
211
212    status_t changePhaseOffset(DispSync::Callback* callback, nsecs_t phase) {
213        if (kTraceDetailedInfo) ATRACE_CALL();
214        Mutex::Autolock lock(mMutex);
215
216        for (size_t i = 0; i < mEventListeners.size(); i++) {
217            if (mEventListeners[i].mCallback == callback) {
218                EventListener& listener = mEventListeners.editItemAt(i);
219                const nsecs_t oldPhase = listener.mPhase;
220                listener.mPhase = phase;
221
222                // Pretend that the last time this event was handled at the same frame but with the
223                // new offset to allow for a seamless offset change without double-firing or
224                // skipping.
225                listener.mLastEventTime -= (oldPhase - phase);
226                mCond.signal();
227                return NO_ERROR;
228            }
229        }
230
231        return BAD_VALUE;
232    }
233
234    // This method is only here to handle the !SurfaceFlinger::hasSyncFramework
235    // case.
236    bool hasAnyEventListeners() {
237        if (kTraceDetailedInfo) ATRACE_CALL();
238        Mutex::Autolock lock(mMutex);
239        return !mEventListeners.empty();
240    }
241
242private:
243    struct EventListener {
244        const char* mName;
245        nsecs_t mPhase;
246        nsecs_t mLastEventTime;
247        DispSync::Callback* mCallback;
248    };
249
250    struct CallbackInvocation {
251        DispSync::Callback* mCallback;
252        nsecs_t mEventTime;
253    };
254
255    nsecs_t computeNextEventTimeLocked(nsecs_t now) {
256        if (kTraceDetailedInfo) ATRACE_CALL();
257        ALOGV("[%s] computeNextEventTimeLocked", mName);
258        nsecs_t nextEventTime = INT64_MAX;
259        for (size_t i = 0; i < mEventListeners.size(); i++) {
260            nsecs_t t = computeListenerNextEventTimeLocked(mEventListeners[i], now);
261
262            if (t < nextEventTime) {
263                nextEventTime = t;
264            }
265        }
266
267        ALOGV("[%s] nextEventTime = %" PRId64, mName, ns2us(nextEventTime));
268        return nextEventTime;
269    }
270
271    Vector<CallbackInvocation> gatherCallbackInvocationsLocked(nsecs_t now) {
272        if (kTraceDetailedInfo) ATRACE_CALL();
273        ALOGV("[%s] gatherCallbackInvocationsLocked @ %" PRId64, mName, ns2us(now));
274
275        Vector<CallbackInvocation> callbackInvocations;
276        nsecs_t onePeriodAgo = now - mPeriod;
277
278        for (size_t i = 0; i < mEventListeners.size(); i++) {
279            nsecs_t t = computeListenerNextEventTimeLocked(mEventListeners[i], onePeriodAgo);
280
281            if (t < now) {
282                CallbackInvocation ci;
283                ci.mCallback = mEventListeners[i].mCallback;
284                ci.mEventTime = t;
285                ALOGV("[%s] [%s] Preparing to fire", mName, mEventListeners[i].mName);
286                callbackInvocations.push(ci);
287                mEventListeners.editItemAt(i).mLastEventTime = t;
288            }
289        }
290
291        return callbackInvocations;
292    }
293
294    nsecs_t computeListenerNextEventTimeLocked(const EventListener& listener, nsecs_t baseTime) {
295        if (kTraceDetailedInfo) ATRACE_CALL();
296        ALOGV("[%s] [%s] computeListenerNextEventTimeLocked(%" PRId64 ")", mName, listener.mName,
297              ns2us(baseTime));
298
299        nsecs_t lastEventTime = listener.mLastEventTime + mWakeupLatency;
300        ALOGV("[%s] lastEventTime: %" PRId64, mName, ns2us(lastEventTime));
301        if (baseTime < lastEventTime) {
302            baseTime = lastEventTime;
303            ALOGV("[%s] Clamping baseTime to lastEventTime -> %" PRId64, mName, ns2us(baseTime));
304        }
305
306        baseTime -= mReferenceTime;
307        ALOGV("[%s] Relative baseTime = %" PRId64, mName, ns2us(baseTime));
308        nsecs_t phase = mPhase + listener.mPhase;
309        ALOGV("[%s] Phase = %" PRId64, mName, ns2us(phase));
310        baseTime -= phase;
311        ALOGV("[%s] baseTime - phase = %" PRId64, mName, ns2us(baseTime));
312
313        // If our previous time is before the reference (because the reference
314        // has since been updated), the division by mPeriod will truncate
315        // towards zero instead of computing the floor. Since in all cases
316        // before the reference we want the next time to be effectively now, we
317        // set baseTime to -mPeriod so that numPeriods will be -1.
318        // When we add 1 and the phase, we will be at the correct event time for
319        // this period.
320        if (baseTime < 0) {
321            ALOGV("[%s] Correcting negative baseTime", mName);
322            baseTime = -mPeriod;
323        }
324
325        nsecs_t numPeriods = baseTime / mPeriod;
326        ALOGV("[%s] numPeriods = %" PRId64, mName, numPeriods);
327        nsecs_t t = (numPeriods + 1) * mPeriod + phase;
328        ALOGV("[%s] t = %" PRId64, mName, ns2us(t));
329        t += mReferenceTime;
330        ALOGV("[%s] Absolute t = %" PRId64, mName, ns2us(t));
331
332        // Check that it's been slightly more than half a period since the last
333        // event so that we don't accidentally fall into double-rate vsyncs
334        if (t - listener.mLastEventTime < (3 * mPeriod / 5)) {
335            t += mPeriod;
336            ALOGV("[%s] Modifying t -> %" PRId64, mName, ns2us(t));
337        }
338
339        t -= mWakeupLatency;
340        ALOGV("[%s] Corrected for wakeup latency -> %" PRId64, mName, ns2us(t));
341
342        return t;
343    }
344
345    void fireCallbackInvocations(const Vector<CallbackInvocation>& callbacks) {
346        if (kTraceDetailedInfo) ATRACE_CALL();
347        for (size_t i = 0; i < callbacks.size(); i++) {
348            callbacks[i].mCallback->onDispSyncEvent(callbacks[i].mEventTime);
349        }
350    }
351
352    const char* const mName;
353
354    bool mStop;
355
356    nsecs_t mPeriod;
357    nsecs_t mPhase;
358    nsecs_t mReferenceTime;
359    nsecs_t mWakeupLatency;
360
361    int64_t mFrameNumber;
362
363    Vector<EventListener> mEventListeners;
364
365    Mutex mMutex;
366    Condition mCond;
367};
368
369#undef LOG_TAG
370#define LOG_TAG "DispSync"
371
372class ZeroPhaseTracer : public DispSync::Callback {
373public:
374    ZeroPhaseTracer() : mParity(false) {}
375
376    virtual void onDispSyncEvent(nsecs_t /*when*/) {
377        mParity = !mParity;
378        ATRACE_INT("ZERO_PHASE_VSYNC", mParity ? 1 : 0);
379    }
380
381private:
382    bool mParity;
383};
384
385DispSync::DispSync(const char* name)
386      : mName(name), mRefreshSkipCount(0), mThread(new DispSyncThread(name)) {}
387
388DispSync::~DispSync() {}
389
390void DispSync::init(bool hasSyncFramework, int64_t dispSyncPresentTimeOffset) {
391    mIgnorePresentFences = !hasSyncFramework;
392    mPresentTimeOffset = dispSyncPresentTimeOffset;
393    mThread->run("DispSync", PRIORITY_URGENT_DISPLAY + PRIORITY_MORE_FAVORABLE);
394
395    // set DispSync to SCHED_FIFO to minimize jitter
396    struct sched_param param = {0};
397    param.sched_priority = 2;
398    if (sched_setscheduler(mThread->getTid(), SCHED_FIFO, &param) != 0) {
399        ALOGE("Couldn't set SCHED_FIFO for DispSyncThread");
400    }
401
402    reset();
403    beginResync();
404
405    if (kTraceDetailedInfo) {
406        // If we're not getting present fences then the ZeroPhaseTracer
407        // would prevent HW vsync event from ever being turned off.
408        // Even if we're just ignoring the fences, the zero-phase tracing is
409        // not needed because any time there is an event registered we will
410        // turn on the HW vsync events.
411        if (!mIgnorePresentFences && kEnableZeroPhaseTracer) {
412            mZeroPhaseTracer = std::make_unique<ZeroPhaseTracer>();
413            addEventListener("ZeroPhaseTracer", 0, mZeroPhaseTracer.get());
414        }
415    }
416}
417
418void DispSync::reset() {
419    Mutex::Autolock lock(mMutex);
420
421    mPhase = 0;
422    mReferenceTime = 0;
423    mModelUpdated = false;
424    mNumResyncSamples = 0;
425    mFirstResyncSample = 0;
426    mNumResyncSamplesSincePresent = 0;
427    resetErrorLocked();
428}
429
430bool DispSync::addPresentFence(const std::shared_ptr<FenceTime>& fenceTime) {
431    Mutex::Autolock lock(mMutex);
432
433    mPresentFences[mPresentSampleOffset] = fenceTime;
434    mPresentSampleOffset = (mPresentSampleOffset + 1) % NUM_PRESENT_SAMPLES;
435    mNumResyncSamplesSincePresent = 0;
436
437    updateErrorLocked();
438
439    return !mModelUpdated || mError > kErrorThreshold;
440}
441
442void DispSync::beginResync() {
443    Mutex::Autolock lock(mMutex);
444    ALOGV("[%s] beginResync", mName);
445    mModelUpdated = false;
446    mNumResyncSamples = 0;
447}
448
449bool DispSync::addResyncSample(nsecs_t timestamp) {
450    Mutex::Autolock lock(mMutex);
451
452    ALOGV("[%s] addResyncSample(%" PRId64 ")", mName, ns2us(timestamp));
453
454    size_t idx = (mFirstResyncSample + mNumResyncSamples) % MAX_RESYNC_SAMPLES;
455    mResyncSamples[idx] = timestamp;
456    if (mNumResyncSamples == 0) {
457        mPhase = 0;
458        mReferenceTime = timestamp;
459        ALOGV("[%s] First resync sample: mPeriod = %" PRId64 ", mPhase = 0, "
460              "mReferenceTime = %" PRId64,
461              mName, ns2us(mPeriod), ns2us(mReferenceTime));
462        mThread->updateModel(mPeriod, mPhase, mReferenceTime);
463    }
464
465    if (mNumResyncSamples < MAX_RESYNC_SAMPLES) {
466        mNumResyncSamples++;
467    } else {
468        mFirstResyncSample = (mFirstResyncSample + 1) % MAX_RESYNC_SAMPLES;
469    }
470
471    updateModelLocked();
472
473    if (mNumResyncSamplesSincePresent++ > MAX_RESYNC_SAMPLES_WITHOUT_PRESENT) {
474        resetErrorLocked();
475    }
476
477    if (mIgnorePresentFences) {
478        // If we don't have the sync framework we will never have
479        // addPresentFence called.  This means we have no way to know whether
480        // or not we're synchronized with the HW vsyncs, so we just request
481        // that the HW vsync events be turned on whenever we need to generate
482        // SW vsync events.
483        return mThread->hasAnyEventListeners();
484    }
485
486    // Check against kErrorThreshold / 2 to add some hysteresis before having to
487    // resync again
488    bool modelLocked = mModelUpdated && mError < (kErrorThreshold / 2);
489    ALOGV("[%s] addResyncSample returning %s", mName, modelLocked ? "locked" : "unlocked");
490    return !modelLocked;
491}
492
493void DispSync::endResync() {}
494
495status_t DispSync::addEventListener(const char* name, nsecs_t phase, Callback* callback) {
496    Mutex::Autolock lock(mMutex);
497    return mThread->addEventListener(name, phase, callback);
498}
499
500void DispSync::setRefreshSkipCount(int count) {
501    Mutex::Autolock lock(mMutex);
502    ALOGD("setRefreshSkipCount(%d)", count);
503    mRefreshSkipCount = count;
504    updateModelLocked();
505}
506
507status_t DispSync::removeEventListener(Callback* callback) {
508    Mutex::Autolock lock(mMutex);
509    return mThread->removeEventListener(callback);
510}
511
512status_t DispSync::changePhaseOffset(Callback* callback, nsecs_t phase) {
513    Mutex::Autolock lock(mMutex);
514    return mThread->changePhaseOffset(callback, phase);
515}
516
517void DispSync::setPeriod(nsecs_t period) {
518    Mutex::Autolock lock(mMutex);
519    mPeriod = period;
520    mPhase = 0;
521    mReferenceTime = 0;
522    mThread->updateModel(mPeriod, mPhase, mReferenceTime);
523}
524
525nsecs_t DispSync::getPeriod() {
526    // lock mutex as mPeriod changes multiple times in updateModelLocked
527    Mutex::Autolock lock(mMutex);
528    return mPeriod;
529}
530
531void DispSync::updateModelLocked() {
532    ALOGV("[%s] updateModelLocked %zu", mName, mNumResyncSamples);
533    if (mNumResyncSamples >= MIN_RESYNC_SAMPLES_FOR_UPDATE) {
534        ALOGV("[%s] Computing...", mName);
535        nsecs_t durationSum = 0;
536        nsecs_t minDuration = INT64_MAX;
537        nsecs_t maxDuration = 0;
538        for (size_t i = 1; i < mNumResyncSamples; i++) {
539            size_t idx = (mFirstResyncSample + i) % MAX_RESYNC_SAMPLES;
540            size_t prev = (idx + MAX_RESYNC_SAMPLES - 1) % MAX_RESYNC_SAMPLES;
541            nsecs_t duration = mResyncSamples[idx] - mResyncSamples[prev];
542            durationSum += duration;
543            minDuration = min(minDuration, duration);
544            maxDuration = max(maxDuration, duration);
545        }
546
547        // Exclude the min and max from the average
548        durationSum -= minDuration + maxDuration;
549        mPeriod = durationSum / (mNumResyncSamples - 3);
550
551        ALOGV("[%s] mPeriod = %" PRId64, mName, ns2us(mPeriod));
552
553        double sampleAvgX = 0;
554        double sampleAvgY = 0;
555        double scale = 2.0 * M_PI / double(mPeriod);
556        // Intentionally skip the first sample
557        for (size_t i = 1; i < mNumResyncSamples; i++) {
558            size_t idx = (mFirstResyncSample + i) % MAX_RESYNC_SAMPLES;
559            nsecs_t sample = mResyncSamples[idx] - mReferenceTime;
560            double samplePhase = double(sample % mPeriod) * scale;
561            sampleAvgX += cos(samplePhase);
562            sampleAvgY += sin(samplePhase);
563        }
564
565        sampleAvgX /= double(mNumResyncSamples - 1);
566        sampleAvgY /= double(mNumResyncSamples - 1);
567
568        mPhase = nsecs_t(atan2(sampleAvgY, sampleAvgX) / scale);
569
570        ALOGV("[%s] mPhase = %" PRId64, mName, ns2us(mPhase));
571
572        if (mPhase < -(mPeriod / 2)) {
573            mPhase += mPeriod;
574            ALOGV("[%s] Adjusting mPhase -> %" PRId64, mName, ns2us(mPhase));
575        }
576
577        if (kTraceDetailedInfo) {
578            ATRACE_INT64("DispSync:Period", mPeriod);
579            ATRACE_INT64("DispSync:Phase", mPhase + mPeriod / 2);
580        }
581
582        // Artificially inflate the period if requested.
583        mPeriod += mPeriod * mRefreshSkipCount;
584
585        mThread->updateModel(mPeriod, mPhase, mReferenceTime);
586        mModelUpdated = true;
587    }
588}
589
590void DispSync::updateErrorLocked() {
591    if (!mModelUpdated) {
592        return;
593    }
594
595    // Need to compare present fences against the un-adjusted refresh period,
596    // since they might arrive between two events.
597    nsecs_t period = mPeriod / (1 + mRefreshSkipCount);
598
599    int numErrSamples = 0;
600    nsecs_t sqErrSum = 0;
601
602    for (size_t i = 0; i < NUM_PRESENT_SAMPLES; i++) {
603        // Only check for the cached value of signal time to avoid unecessary
604        // syscalls. It is the responsibility of the DispSync owner to
605        // call getSignalTime() periodically so the cache is updated when the
606        // fence signals.
607        nsecs_t time = mPresentFences[i]->getCachedSignalTime();
608        if (time == Fence::SIGNAL_TIME_PENDING || time == Fence::SIGNAL_TIME_INVALID) {
609            continue;
610        }
611
612        nsecs_t sample = time - mReferenceTime;
613        if (sample <= mPhase) {
614            continue;
615        }
616
617        nsecs_t sampleErr = (sample - mPhase) % period;
618        if (sampleErr > period / 2) {
619            sampleErr -= period;
620        }
621        sqErrSum += sampleErr * sampleErr;
622        numErrSamples++;
623    }
624
625    if (numErrSamples > 0) {
626        mError = sqErrSum / numErrSamples;
627        mZeroErrSamplesCount = 0;
628    } else {
629        mError = 0;
630        // Use mod ACCEPTABLE_ZERO_ERR_SAMPLES_COUNT to avoid log spam.
631        mZeroErrSamplesCount++;
632        ALOGE_IF((mZeroErrSamplesCount % ACCEPTABLE_ZERO_ERR_SAMPLES_COUNT) == 0,
633                 "No present times for model error.");
634    }
635
636    if (kTraceDetailedInfo) {
637        ATRACE_INT64("DispSync:Error", mError);
638    }
639}
640
641void DispSync::resetErrorLocked() {
642    mPresentSampleOffset = 0;
643    mError = 0;
644    mZeroErrSamplesCount = 0;
645    for (size_t i = 0; i < NUM_PRESENT_SAMPLES; i++) {
646        mPresentFences[i] = FenceTime::NO_FENCE;
647    }
648}
649
650nsecs_t DispSync::computeNextRefresh(int periodOffset) const {
651    Mutex::Autolock lock(mMutex);
652    nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
653    nsecs_t phase = mReferenceTime + mPhase;
654    return (((now - phase) / mPeriod) + periodOffset + 1) * mPeriod + phase;
655}
656
657void DispSync::dump(String8& result) const {
658    Mutex::Autolock lock(mMutex);
659    result.appendFormat("present fences are %s\n", mIgnorePresentFences ? "ignored" : "used");
660    result.appendFormat("mPeriod: %" PRId64 " ns (%.3f fps; skipCount=%d)\n", mPeriod,
661                        1000000000.0 / mPeriod, mRefreshSkipCount);
662    result.appendFormat("mPhase: %" PRId64 " ns\n", mPhase);
663    result.appendFormat("mError: %" PRId64 " ns (sqrt=%.1f)\n", mError, sqrt(mError));
664    result.appendFormat("mNumResyncSamplesSincePresent: %d (limit %d)\n",
665                        mNumResyncSamplesSincePresent, MAX_RESYNC_SAMPLES_WITHOUT_PRESENT);
666    result.appendFormat("mNumResyncSamples: %zd (max %d)\n", mNumResyncSamples, MAX_RESYNC_SAMPLES);
667
668    result.appendFormat("mResyncSamples:\n");
669    nsecs_t previous = -1;
670    for (size_t i = 0; i < mNumResyncSamples; i++) {
671        size_t idx = (mFirstResyncSample + i) % MAX_RESYNC_SAMPLES;
672        nsecs_t sampleTime = mResyncSamples[idx];
673        if (i == 0) {
674            result.appendFormat("  %" PRId64 "\n", sampleTime);
675        } else {
676            result.appendFormat("  %" PRId64 " (+%" PRId64 ")\n", sampleTime,
677                                sampleTime - previous);
678        }
679        previous = sampleTime;
680    }
681
682    result.appendFormat("mPresentFences [%d]:\n", NUM_PRESENT_SAMPLES);
683    nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
684    previous = Fence::SIGNAL_TIME_INVALID;
685    for (size_t i = 0; i < NUM_PRESENT_SAMPLES; i++) {
686        size_t idx = (i + mPresentSampleOffset) % NUM_PRESENT_SAMPLES;
687        nsecs_t presentTime = mPresentFences[idx]->getSignalTime();
688        if (presentTime == Fence::SIGNAL_TIME_PENDING) {
689            result.appendFormat("  [unsignaled fence]\n");
690        } else if (presentTime == Fence::SIGNAL_TIME_INVALID) {
691            result.appendFormat("  [invalid fence]\n");
692        } else if (previous == Fence::SIGNAL_TIME_PENDING ||
693                   previous == Fence::SIGNAL_TIME_INVALID) {
694            result.appendFormat("  %" PRId64 "  (%.3f ms ago)\n", presentTime,
695                                (now - presentTime) / 1000000.0);
696        } else {
697            result.appendFormat("  %" PRId64 " (+%" PRId64 " / %.3f)  (%.3f ms ago)\n", presentTime,
698                                presentTime - previous, (presentTime - previous) / (double)mPeriod,
699                                (now - presentTime) / 1000000.0);
700        }
701        previous = presentTime;
702    }
703
704    result.appendFormat("current monotonic time: %" PRId64 "\n", now);
705}
706
707} // namespace android
708