1/*
2**********************************************************************
3*   Copyright (C) 2000-2009, International Business Machines
4*   Corporation and others.  All Rights Reserved.
5**********************************************************************
6*   file name:  ucnv_lmb.cpp
7*   encoding:   US-ASCII
8*   tab size:   4 (not used)
9*   indentation:4
10*
11*   created on: 2000feb09
12*   created by: Brendan Murray
13*   extensively hacked up by: Jim Snyder-Grant
14*
15* Modification History:
16*
17*   Date        Name             Description
18*
19*   06/20/2000  helena           OS/400 port changes; mostly typecast.
20*   06/27/2000  Jim Snyder-Grant Deal with partial characters and small buffers.
21*                                Add comments to document LMBCS format and implementation
22*                                restructured order & breakdown of functions
23*   06/28/2000  helena           Major rewrite for the callback API changes.
24*/
25
26#include "unicode/utypes.h"
27
28#if !UCONFIG_NO_CONVERSION && !UCONFIG_NO_LEGACY_CONVERSION
29
30#include "unicode/ucnv_err.h"
31#include "unicode/ucnv.h"
32#include "unicode/uset.h"
33#include "cmemory.h"
34#include "cstring.h"
35#include "uassert.h"
36#include "ucnv_imp.h"
37#include "ucnv_bld.h"
38#include "ucnv_cnv.h"
39
40#define LENGTHOF(array) (int32_t)(sizeof(array)/sizeof((array)[0]))
41
42/*
43  LMBCS
44
45  (Lotus Multi-Byte Character Set)
46
47  LMBCS was invented in the late 1980's and is primarily used in Lotus Notes
48  databases and in Lotus 1-2-3 files. Programmers who work with the APIs
49  into these products will sometimes need to deal with strings in this format.
50
51  The code in this file provides an implementation for an ICU converter of
52  LMBCS to and from Unicode.
53
54  Since the LMBCS character set is only sparsely documented in existing
55  printed or online material, we have added  extensive annotation to this
56  file to serve as a guide to understanding LMBCS.
57
58  LMBCS was originally designed with these four sometimes-competing design goals:
59
60  -Provide encodings for the characters in 12 existing national standards
61   (plus a few other characters)
62  -Minimal memory footprint
63  -Maximal speed of conversion into the existing national character sets
64  -No need to track a changing state as you interpret a string.
65
66
67  All of the national character sets LMBCS was trying to encode are 'ANSI'
68  based, in that the bytes from 0x20 - 0x7F are almost exactly the
69  same common Latin unaccented characters and symbols in all character sets.
70
71  So, in order to help meet the speed & memory design goals, the common ANSI
72  bytes from 0x20-0x7F are represented by the same single-byte values in LMBCS.
73
74  The general LMBCS code unit is from 1-3 bytes. We can describe the 3 bytes as
75  follows:
76
77  [G] D1 [D2]
78
79  That is, a sometimes-optional 'group' byte, followed by 1 and sometimes 2
80  data bytes. The maximum size of a LMBCS chjaracter is 3 bytes:
81*/
82#define ULMBCS_CHARSIZE_MAX      3
83/*
84  The single-byte values from 0x20 to 0x7F are examples of single D1 bytes.
85  We often have to figure out if byte values are below or above this, so we
86  use the ANSI nomenclature 'C0' and 'C1' to refer to the range of control
87  characters just above & below the common lower-ANSI  range */
88#define ULMBCS_C0END           0x1F
89#define ULMBCS_C1START         0x80
90/*
91  Since LMBCS is always dealing in byte units. we create a local type here for
92  dealing with these units of LMBCS code units:
93
94*/
95typedef uint8_t ulmbcs_byte_t;
96
97/*
98   Most of the values less than 0x20 are reserved in LMBCS to announce
99   which national  character standard is being used for the 'D' bytes.
100   In the comments we show the common name and the IBM character-set ID
101   for these character-set announcers:
102*/
103
104#define ULMBCS_GRP_L1         0x01   /* Latin-1    :ibm-850  */
105#define ULMBCS_GRP_GR         0x02   /* Greek      :ibm-851  */
106#define ULMBCS_GRP_HE         0x03   /* Hebrew     :ibm-1255 */
107#define ULMBCS_GRP_AR         0x04   /* Arabic     :ibm-1256 */
108#define ULMBCS_GRP_RU         0x05   /* Cyrillic   :ibm-1251 */
109#define ULMBCS_GRP_L2         0x06   /* Latin-2    :ibm-852  */
110#define ULMBCS_GRP_TR         0x08   /* Turkish    :ibm-1254 */
111#define ULMBCS_GRP_TH         0x0B   /* Thai       :ibm-874  */
112#define ULMBCS_GRP_JA         0x10   /* Japanese   :ibm-943  */
113#define ULMBCS_GRP_KO         0x11   /* Korean     :ibm-1261 */
114#define ULMBCS_GRP_TW         0x12   /* Chinese SC :ibm-950  */
115#define ULMBCS_GRP_CN         0x13   /* Chinese TC :ibm-1386 */
116
117/*
118   So, the beginning of understanding LMBCS is that IF the first byte of a LMBCS
119   character is one of those 12 values, you can interpret the remaining bytes of
120   that character as coming from one of those character sets. Since the lower
121   ANSI bytes already are represented in single bytes, using one of the character
122   set announcers is used to announce a character that starts with a byte of
123   0x80 or greater.
124
125   The character sets are  arranged so that the single byte sets all appear
126   before the multi-byte character sets. When we need to tell whether a
127   group byte is for a single byte char set or not we use this define: */
128
129#define ULMBCS_DOUBLEOPTGROUP_START  0x10
130
131/*
132However, to fully understand LMBCS, you must also understand a series of
133exceptions & optimizations made in service of the design goals.
134
135First, those of you who are character set mavens may have noticed that
136the 'double-byte' character sets are actually multi-byte character sets
137that can have 1 or two bytes, even in the upper-ascii range. To force
138each group byte to introduce a fixed-width encoding (to make it faster to
139count characters), we use a convention of doubling up on the group byte
140to introduce any single-byte character > 0x80 in an otherwise double-byte
141character set. So, for example, the LMBCS sequence x10 x10 xAE is the
142same as '0xAE' in the Japanese code page 943.
143
144Next, you will notice that the list of group bytes has some gaps.
145These are used in various ways.
146
147We reserve a few special single byte values for common control
148characters. These are in the same place as their ANSI eqivalents for speed.
149*/
150
151#define ULMBCS_HT    0x09   /* Fixed control char - Horizontal Tab */
152#define ULMBCS_LF    0x0A   /* Fixed control char - Line Feed */
153#define ULMBCS_CR    0x0D   /* Fixed control char - Carriage Return */
154
155/* Then, 1-2-3 reserved a special single-byte character to put at the
156beginning of internal 'system' range names: */
157
158#define ULMBCS_123SYSTEMRANGE  0x19
159
160/* Then we needed a place to put all the other ansi control characters
161that must be moved to different values because LMBCS reserves those
162values for other purposes. To represent the control characters, we start
163with a first byte of 0xF & add the control chaarcter value as the
164second byte */
165#define ULMBCS_GRP_CTRL       0x0F
166
167/* For the C0 controls (less than 0x20), we add 0x20 to preserve the
168useful doctrine that any byte less than 0x20 in a LMBCS char must be
169the first byte of a character:*/
170#define ULMBCS_CTRLOFFSET      0x20
171
172/*
173Where to put the characters that aren't part of any of the 12 national
174character sets? The first thing that was done, in the earlier years of
175LMBCS, was to use up the spaces of the form
176
177  [G] D1,
178
179 where  'G' was one of the single-byte character groups, and
180 D1 was less than 0x80. These sequences are gathered together
181 into a Lotus-invented doublebyte character set to represent a
182 lot of stray values. Internally, in this implementation, we track this
183 as group '0', as a place to tuck this exceptions list.*/
184
185#define ULMBCS_GRP_EXCEPT     0x00
186/*
187 Finally, as the durability and usefulness of UNICODE became clear,
188 LOTUS added a new group 0x14 to hold Unicode values not otherwise
189 represented in LMBCS: */
190#define ULMBCS_GRP_UNICODE    0x14
191/* The two bytes appearing after a 0x14 are intrepreted as UFT-16 BE
192(Big-Endian) characters. The exception comes when the UTF16
193representation would have a zero as the second byte. In that case,
194'F6' is used in its place, and the bytes are swapped. (This prevents
195LMBCS from encoding any Unicode values of the form U+F6xx, but that's OK:
1960xF6xx is in the middle of the Private Use Area.)*/
197#define ULMBCS_UNICOMPATZERO   0xF6
198
199/* It is also useful in our code to have a constant for the size of
200a LMBCS char that holds a literal Unicode value */
201#define ULMBCS_UNICODE_SIZE      3
202
203/*
204To squish the LMBCS representations down even further, and to make
205translations even faster,sometimes the optimization group byte can be dropped
206from a LMBCS character. This is decided on a process-by-process basis. The
207group byte that is dropped is called the 'optimization group'.
208
209For Notes, the optimzation group is always 0x1.*/
210#define ULMBCS_DEFAULTOPTGROUP 0x1
211/* For 1-2-3 files, the optimzation group is stored in the header of the 1-2-3
212file.
213
214 In any case, when using ICU, you either pass in the
215optimization group as part of the name of the converter (LMBCS-1, LMBCS-2,
216etc.). Using plain 'LMBCS' as the name of the converter will give you
217LMBCS-1.
218
219
220*** Implementation strategy ***
221
222
223Because of the extensive use of other character sets, the LMBCS converter
224keeps a mapping between optimization groups and IBM character sets, so that
225ICU converters can be created and used as needed. */
226
227/* As you can see, even though any byte below 0x20 could be an optimization
228byte, only those at 0x13 or below can map to an actual converter. To limit
229some loops and searches, we define a value for that last group converter:*/
230
231#define ULMBCS_GRP_LAST       0x13   /* last LMBCS group that has a converter */
232
233static const char * const OptGroupByteToCPName[ULMBCS_GRP_LAST + 1] = {
234   /* 0x0000 */ "lmb-excp", /* internal home for the LOTUS exceptions list */
235   /* 0x0001 */ "ibm-850",
236   /* 0x0002 */ "ibm-851",
237   /* 0x0003 */ "windows-1255",
238   /* 0x0004 */ "windows-1256",
239   /* 0x0005 */ "windows-1251",
240   /* 0x0006 */ "ibm-852",
241   /* 0x0007 */ NULL,      /* Unused */
242   /* 0x0008 */ "windows-1254",
243   /* 0x0009 */ NULL,      /* Control char HT */
244   /* 0x000A */ NULL,      /* Control char LF */
245   /* 0x000B */ "windows-874",
246   /* 0x000C */ NULL,      /* Unused */
247   /* 0x000D */ NULL,      /* Control char CR */
248   /* 0x000E */ NULL,      /* Unused */
249   /* 0x000F */ NULL,      /* Control chars: 0x0F20 + C0/C1 character: algorithmic */
250   /* 0x0010 */ "windows-932",
251   /* 0x0011 */ "windows-949",
252   /* 0x0012 */ "windows-950",
253   /* 0x0013 */ "windows-936"
254
255   /* The rest are null, including the 0x0014 Unicode compatibility region
256   and 0x0019, the 1-2-3 system range control char */
257};
258
259
260/* That's approximately all the data that's needed for translating
261  LMBCS to Unicode.
262
263
264However, to translate Unicode to LMBCS, we need some more support.
265
266That's because there are often more than one possible mappings from a Unicode
267code point back into LMBCS. The first thing we do is look up into a table
268to figure out if there are more than one possible mappings. This table,
269arranged by Unicode values (including ranges) either lists which group
270to use, or says that it could go into one or more of the SBCS sets, or
271into one or more of the DBCS sets.  (If the character exists in both DBCS &
272SBCS, the table will place it in the SBCS sets, to make the LMBCS code point
273length as small as possible. Here's the two special markers we use to indicate
274ambiguous mappings: */
275
276#define ULMBCS_AMBIGUOUS_SBCS   0x80   /* could fit in more than one
277                                          LMBCS sbcs native encoding
278                                          (example: most accented latin) */
279#define ULMBCS_AMBIGUOUS_MBCS   0x81   /* could fit in more than one
280                                          LMBCS mbcs native encoding
281                                          (example: Unihan) */
282
283/* And here's a simple way to see if a group falls in an appropriate range */
284#define ULMBCS_AMBIGUOUS_MATCH(agroup, xgroup) \
285                  ((((agroup) == ULMBCS_AMBIGUOUS_SBCS) && \
286                  (xgroup) < ULMBCS_DOUBLEOPTGROUP_START) || \
287                  (((agroup) == ULMBCS_AMBIGUOUS_MBCS) && \
288                  (xgroup) >= ULMBCS_DOUBLEOPTGROUP_START))
289
290
291/* The table & some code to use it: */
292
293
294static const struct _UniLMBCSGrpMap
295{
296   const UChar uniStartRange;
297   const UChar uniEndRange;
298   const ulmbcs_byte_t  GrpType;
299} UniLMBCSGrpMap[]
300=
301{
302
303   {0x0001, 0x001F,  ULMBCS_GRP_CTRL},
304   {0x0080, 0x009F,  ULMBCS_GRP_CTRL},
305   {0x00A0, 0x01CD,  ULMBCS_AMBIGUOUS_SBCS},
306   {0x01CE, 0x01CE,  ULMBCS_GRP_TW },
307   {0x01CF, 0x02B9,  ULMBCS_AMBIGUOUS_SBCS},
308   {0x02BA, 0x02BA,  ULMBCS_GRP_CN},
309   {0x02BC, 0x02C8,  ULMBCS_AMBIGUOUS_SBCS},
310   {0x02C9, 0x02D0,  ULMBCS_AMBIGUOUS_MBCS},
311   {0x02D8, 0x02DD,  ULMBCS_AMBIGUOUS_SBCS},
312   {0x0384, 0x03CE,  ULMBCS_AMBIGUOUS_SBCS},
313   {0x0400, 0x044E,  ULMBCS_GRP_RU},
314   {0x044F, 0x044F,  ULMBCS_AMBIGUOUS_MBCS},
315   {0x0450, 0x0491,  ULMBCS_GRP_RU},
316   {0x05B0, 0x05F2,  ULMBCS_GRP_HE},
317   {0x060C, 0x06AF,  ULMBCS_GRP_AR},
318   {0x0E01, 0x0E5B,  ULMBCS_GRP_TH},
319   {0x200C, 0x200F,  ULMBCS_AMBIGUOUS_SBCS},
320   {0x2010, 0x2010,  ULMBCS_AMBIGUOUS_MBCS},
321   {0x2013, 0x2015,  ULMBCS_AMBIGUOUS_SBCS},
322   {0x2016, 0x2016,  ULMBCS_AMBIGUOUS_MBCS},
323   {0x2017, 0x2024,  ULMBCS_AMBIGUOUS_SBCS},
324   {0x2025, 0x2025,  ULMBCS_AMBIGUOUS_MBCS},
325   {0x2026, 0x2026,  ULMBCS_AMBIGUOUS_SBCS},
326   {0x2027, 0x2027,  ULMBCS_GRP_CN},
327   {0x2030, 0x2033,  ULMBCS_AMBIGUOUS_SBCS},
328   {0x2035, 0x2035,  ULMBCS_AMBIGUOUS_MBCS},
329   {0x2039, 0x203A,  ULMBCS_AMBIGUOUS_SBCS},
330   {0x203B, 0x203B,  ULMBCS_AMBIGUOUS_MBCS},
331   {0x2074, 0x2074,  ULMBCS_GRP_KO},
332   {0x207F, 0x207F,  ULMBCS_GRP_EXCEPT},
333   {0x2081, 0x2084,  ULMBCS_GRP_KO},
334   {0x20A4, 0x20AC,  ULMBCS_AMBIGUOUS_SBCS},
335   {0x2103, 0x2109,  ULMBCS_AMBIGUOUS_MBCS},
336   {0x2111, 0x2126,  ULMBCS_AMBIGUOUS_SBCS},
337   {0x212B, 0x212B,  ULMBCS_AMBIGUOUS_MBCS},
338   {0x2135, 0x2135,  ULMBCS_AMBIGUOUS_SBCS},
339   {0x2153, 0x2154,  ULMBCS_GRP_KO},
340   {0x215B, 0x215E,  ULMBCS_GRP_EXCEPT},
341   {0x2160, 0x2179,  ULMBCS_AMBIGUOUS_MBCS},
342   {0x2190, 0x2195,  ULMBCS_GRP_EXCEPT},
343   {0x2196, 0x2199,  ULMBCS_AMBIGUOUS_MBCS},
344   {0x21A8, 0x21A8,  ULMBCS_GRP_EXCEPT},
345   {0x21B8, 0x21B9,  ULMBCS_GRP_CN},
346   {0x21D0, 0x21D5,  ULMBCS_GRP_EXCEPT},
347   {0x21E7, 0x21E7,  ULMBCS_GRP_CN},
348   {0x2200, 0x220B,  ULMBCS_GRP_EXCEPT},
349   {0x220F, 0x2215,  ULMBCS_AMBIGUOUS_MBCS},
350   {0x2219, 0x2220,  ULMBCS_GRP_EXCEPT},
351   {0x2223, 0x2228,  ULMBCS_AMBIGUOUS_MBCS},
352   {0x2229, 0x222B,  ULMBCS_GRP_EXCEPT},
353   {0x222C, 0x223D,  ULMBCS_AMBIGUOUS_MBCS},
354   {0x2245, 0x2248,  ULMBCS_GRP_EXCEPT},
355   {0x224C, 0x224C,  ULMBCS_GRP_TW},
356   {0x2252, 0x2252,  ULMBCS_AMBIGUOUS_MBCS},
357   {0x2260, 0x2265,  ULMBCS_GRP_EXCEPT},
358   {0x2266, 0x226F,  ULMBCS_AMBIGUOUS_MBCS},
359   {0x2282, 0x2297,  ULMBCS_GRP_EXCEPT},
360   {0x2299, 0x22BF,  ULMBCS_AMBIGUOUS_MBCS},
361   {0x22C0, 0x22C0,  ULMBCS_GRP_EXCEPT},
362   {0x2310, 0x2310,  ULMBCS_GRP_EXCEPT},
363   {0x2312, 0x2312,  ULMBCS_AMBIGUOUS_MBCS},
364   {0x2318, 0x2321,  ULMBCS_GRP_EXCEPT},
365   {0x2318, 0x2321,  ULMBCS_GRP_CN},
366   {0x2460, 0x24E9,  ULMBCS_AMBIGUOUS_MBCS},
367   {0x2500, 0x2500,  ULMBCS_AMBIGUOUS_SBCS},
368   {0x2501, 0x2501,  ULMBCS_AMBIGUOUS_MBCS},
369   {0x2502, 0x2502,  ULMBCS_AMBIGUOUS_SBCS},
370   {0x2503, 0x2503,  ULMBCS_AMBIGUOUS_MBCS},
371   {0x2504, 0x2505,  ULMBCS_GRP_TW},
372   {0x2506, 0x2665,  ULMBCS_AMBIGUOUS_MBCS},
373   {0x2666, 0x2666,  ULMBCS_GRP_EXCEPT},
374   {0x2666, 0x2666,  ULMBCS_GRP_EXCEPT},
375   {0x2667, 0x2E7F,  ULMBCS_AMBIGUOUS_SBCS},
376   {0x2E80, 0xF861,  ULMBCS_AMBIGUOUS_MBCS},
377   {0xF862, 0xF8FF,  ULMBCS_GRP_EXCEPT},
378   {0xF900, 0xFA2D,  ULMBCS_AMBIGUOUS_MBCS},
379   {0xFB00, 0xFEFF,  ULMBCS_AMBIGUOUS_SBCS},
380   {0xFF01, 0xFFEE,  ULMBCS_AMBIGUOUS_MBCS},
381   {0xFFFF, 0xFFFF,  ULMBCS_GRP_UNICODE}
382};
383
384static ulmbcs_byte_t
385FindLMBCSUniRange(UChar uniChar)
386{
387   const struct _UniLMBCSGrpMap * pTable = UniLMBCSGrpMap;
388
389   while (uniChar > pTable->uniEndRange)
390   {
391      pTable++;
392   }
393
394   if (uniChar >= pTable->uniStartRange)
395   {
396      return pTable->GrpType;
397   }
398   return ULMBCS_GRP_UNICODE;
399}
400
401/*
402We also ask the creator of a converter to send in a preferred locale
403that we can use in resolving ambiguous mappings. They send the locale
404in as a string, and we map it, if possible, to one of the
405LMBCS groups. We use this table, and the associated code, to
406do the lookup: */
407
408/**************************************************
409  This table maps locale ID's to LMBCS opt groups.
410  The default return is group 0x01. Note that for
411  performance reasons, the table is sorted in
412  increasing alphabetic order, with the notable
413  exception of zhTW. This is to force the check
414  for Traditonal Chinese before dropping back to
415  Simplified.
416
417  Note too that the Latin-1 groups have been
418  commented out because it's the default, and
419  this shortens the table, allowing a serial
420  search to go quickly.
421 *************************************************/
422
423static const struct _LocaleLMBCSGrpMap
424{
425   const char    *LocaleID;
426   const ulmbcs_byte_t OptGroup;
427} LocaleLMBCSGrpMap[] =
428{
429    {"ar", ULMBCS_GRP_AR},
430    {"be", ULMBCS_GRP_RU},
431    {"bg", ULMBCS_GRP_L2},
432   /* {"ca", ULMBCS_GRP_L1}, */
433    {"cs", ULMBCS_GRP_L2},
434   /* {"da", ULMBCS_GRP_L1}, */
435   /* {"de", ULMBCS_GRP_L1}, */
436    {"el", ULMBCS_GRP_GR},
437   /* {"en", ULMBCS_GRP_L1}, */
438   /* {"es", ULMBCS_GRP_L1}, */
439   /* {"et", ULMBCS_GRP_L1}, */
440   /* {"fi", ULMBCS_GRP_L1}, */
441   /* {"fr", ULMBCS_GRP_L1}, */
442    {"he", ULMBCS_GRP_HE},
443    {"hu", ULMBCS_GRP_L2},
444   /* {"is", ULMBCS_GRP_L1}, */
445   /* {"it", ULMBCS_GRP_L1}, */
446    {"iw", ULMBCS_GRP_HE},
447    {"ja", ULMBCS_GRP_JA},
448    {"ko", ULMBCS_GRP_KO},
449   /* {"lt", ULMBCS_GRP_L1}, */
450   /* {"lv", ULMBCS_GRP_L1}, */
451    {"mk", ULMBCS_GRP_RU},
452   /* {"nl", ULMBCS_GRP_L1}, */
453   /* {"no", ULMBCS_GRP_L1}, */
454    {"pl", ULMBCS_GRP_L2},
455   /* {"pt", ULMBCS_GRP_L1}, */
456    {"ro", ULMBCS_GRP_L2},
457    {"ru", ULMBCS_GRP_RU},
458    {"sh", ULMBCS_GRP_L2},
459    {"sk", ULMBCS_GRP_L2},
460    {"sl", ULMBCS_GRP_L2},
461    {"sq", ULMBCS_GRP_L2},
462    {"sr", ULMBCS_GRP_RU},
463   /* {"sv", ULMBCS_GRP_L1}, */
464    {"th", ULMBCS_GRP_TH},
465    {"tr", ULMBCS_GRP_TR},
466    {"uk", ULMBCS_GRP_RU},
467   /* {"vi", ULMBCS_GRP_L1}, */
468    {"zhTW", ULMBCS_GRP_TW},
469    {"zh", ULMBCS_GRP_CN},
470    {NULL, ULMBCS_GRP_L1}
471};
472
473
474static ulmbcs_byte_t
475FindLMBCSLocale(const char *LocaleID)
476{
477   const struct _LocaleLMBCSGrpMap *pTable = LocaleLMBCSGrpMap;
478
479   if ((!LocaleID) || (!*LocaleID))
480   {
481      return 0;
482   }
483
484   while (pTable->LocaleID)
485   {
486      if (*pTable->LocaleID == *LocaleID) /* Check only first char for speed */
487      {
488         /* First char matches - check whole name, for entry-length */
489         if (uprv_strncmp(pTable->LocaleID, LocaleID, strlen(pTable->LocaleID)) == 0)
490            return pTable->OptGroup;
491      }
492      else
493      if (*pTable->LocaleID > *LocaleID) /* Sorted alphabetically - exit */
494         break;
495      pTable++;
496   }
497   return ULMBCS_GRP_L1;
498}
499
500
501/*
502  Before we get to the main body of code, here's how we hook up to the rest
503  of ICU. ICU converters are required to define a structure that includes
504  some function pointers, and some common data, in the style of a C++
505  vtable. There is also room in there for converter-specific data. LMBCS
506  uses that converter-specific data to keep track of the 12 subconverters
507  we use, the optimization group, and the group (if any) that matches the
508  locale. We have one structure instantiated for each of the 12 possible
509  optimization groups. To avoid typos & to avoid boring the reader, we
510  put the declarations of these structures and functions into macros. To see
511  the definitions of these structures, see unicode\ucnv_bld.h
512*/
513
514typedef struct
515  {
516    UConverterSharedData *OptGrpConverter[ULMBCS_GRP_LAST+1];    /* Converter per Opt. grp. */
517    uint8_t    OptGroup;                  /* default Opt. grp. for this LMBCS session */
518    uint8_t    localeConverterIndex;      /* reasonable locale match for index */
519  }
520UConverterDataLMBCS;
521
522static void _LMBCSClose(UConverter * _this);
523
524#define DECLARE_LMBCS_DATA(n) \
525static const UConverterImpl _LMBCSImpl##n={\
526    UCNV_LMBCS_##n,\
527    NULL,NULL,\
528    _LMBCSOpen##n,\
529    _LMBCSClose,\
530    NULL,\
531    _LMBCSToUnicodeWithOffsets,\
532    _LMBCSToUnicodeWithOffsets,\
533    _LMBCSFromUnicode,\
534    _LMBCSFromUnicode,\
535    NULL,\
536    NULL,\
537    NULL,\
538    NULL,\
539    _LMBCSSafeClone,\
540    ucnv_getCompleteUnicodeSet\
541};\
542static const UConverterStaticData _LMBCSStaticData##n={\
543  sizeof(UConverterStaticData),\
544 "LMBCS-"  #n,\
545    0, UCNV_IBM, UCNV_LMBCS_##n, 1, 3,\
546    { 0x3f, 0, 0, 0 },1,FALSE,FALSE,0,0,{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} \
547};\
548const UConverterSharedData _LMBCSData##n={\
549    sizeof(UConverterSharedData), ~((uint32_t) 0),\
550    NULL, NULL, &_LMBCSStaticData##n, FALSE, &_LMBCSImpl##n, \
551    0 \
552};
553
554 /* The only function we needed to duplicate 12 times was the 'open'
555function, which will do basically the same thing except set a  different
556optimization group. So, we put the common stuff into a worker function,
557and set up another macro to stamp out the 12 open functions:*/
558#define DEFINE_LMBCS_OPEN(n) \
559static void \
560   _LMBCSOpen##n(UConverter* _this, UConverterLoadArgs* pArgs, UErrorCode* err) \
561{ _LMBCSOpenWorker(_this, pArgs, err, n); }
562
563
564
565/* Here's the open worker & the common close function */
566static void
567_LMBCSOpenWorker(UConverter*  _this,
568                 UConverterLoadArgs *pArgs,
569                 UErrorCode*  err,
570                 ulmbcs_byte_t OptGroup)
571{
572    UConverterDataLMBCS * extraInfo = _this->extraInfo =
573        (UConverterDataLMBCS*)uprv_malloc (sizeof (UConverterDataLMBCS));
574    if(extraInfo != NULL)
575    {
576        UConverterNamePieces stackPieces;
577        UConverterLoadArgs stackArgs={ (int32_t)sizeof(UConverterLoadArgs) };
578        ulmbcs_byte_t i;
579
580        uprv_memset(extraInfo, 0, sizeof(UConverterDataLMBCS));
581
582        stackArgs.onlyTestIsLoadable = pArgs->onlyTestIsLoadable;
583
584        for (i=0; i <= ULMBCS_GRP_LAST && U_SUCCESS(*err); i++)
585        {
586            if(OptGroupByteToCPName[i] != NULL) {
587                extraInfo->OptGrpConverter[i] = ucnv_loadSharedData(OptGroupByteToCPName[i], &stackPieces, &stackArgs, err);
588            }
589        }
590
591        if(U_FAILURE(*err) || pArgs->onlyTestIsLoadable) {
592            _LMBCSClose(_this);
593            return;
594        }
595        extraInfo->OptGroup = OptGroup;
596        extraInfo->localeConverterIndex = FindLMBCSLocale(pArgs->locale);
597   }
598   else
599   {
600       *err = U_MEMORY_ALLOCATION_ERROR;
601   }
602}
603
604static void
605_LMBCSClose(UConverter *   _this)
606{
607    if (_this->extraInfo != NULL)
608    {
609        ulmbcs_byte_t Ix;
610        UConverterDataLMBCS * extraInfo = (UConverterDataLMBCS *) _this->extraInfo;
611
612        for (Ix=0; Ix <= ULMBCS_GRP_LAST; Ix++)
613        {
614           if (extraInfo->OptGrpConverter[Ix] != NULL)
615              ucnv_unloadSharedDataIfReady(extraInfo->OptGrpConverter[Ix]);
616        }
617        if (!_this->isExtraLocal) {
618            uprv_free (_this->extraInfo);
619            _this->extraInfo = NULL;
620        }
621    }
622}
623
624typedef struct LMBCSClone {
625    UConverter cnv;
626    UConverterDataLMBCS lmbcs;
627} LMBCSClone;
628
629static UConverter *
630_LMBCSSafeClone(const UConverter *cnv,
631                void *stackBuffer,
632                int32_t *pBufferSize,
633                UErrorCode *status) {
634    LMBCSClone *newLMBCS;
635    UConverterDataLMBCS *extraInfo;
636    int32_t i;
637
638    if(*pBufferSize<=0) {
639        *pBufferSize=(int32_t)sizeof(LMBCSClone);
640        return NULL;
641    }
642
643    extraInfo=(UConverterDataLMBCS *)cnv->extraInfo;
644    newLMBCS=(LMBCSClone *)stackBuffer;
645
646    /* ucnv.c/ucnv_safeClone() copied the main UConverter already */
647
648    uprv_memcpy(&newLMBCS->lmbcs, extraInfo, sizeof(UConverterDataLMBCS));
649
650    /* share the subconverters */
651    for(i = 0; i <= ULMBCS_GRP_LAST; ++i) {
652        if(extraInfo->OptGrpConverter[i] != NULL) {
653            ucnv_incrementRefCount(extraInfo->OptGrpConverter[i]);
654        }
655    }
656
657    newLMBCS->cnv.extraInfo = &newLMBCS->lmbcs;
658    newLMBCS->cnv.isExtraLocal = TRUE;
659    return &newLMBCS->cnv;
660}
661
662/*
663 * There used to be a _LMBCSGetUnicodeSet() function here (up to svn revision 20117)
664 * which added all code points except for U+F6xx
665 * because those cannot be represented in the Unicode group.
666 * However, it turns out that windows-950 has roundtrips for all of U+F6xx
667 * which means that LMBCS can convert all Unicode code points after all.
668 * We now simply use ucnv_getCompleteUnicodeSet().
669 */
670
671/*
672   Here's the basic helper function that we use when converting from
673   Unicode to LMBCS, and we suspect that a Unicode character will fit into
674   one of the 12 groups. The return value is the number of bytes written
675   starting at pStartLMBCS (if any).
676*/
677
678static size_t
679LMBCSConversionWorker (
680   UConverterDataLMBCS * extraInfo,    /* subconverters, opt & locale groups */
681   ulmbcs_byte_t group,                /* The group to try */
682   ulmbcs_byte_t  * pStartLMBCS,              /* where to put the results */
683   UChar * pUniChar,                   /* The input unicode character */
684   ulmbcs_byte_t * lastConverterIndex, /* output: track last successful group used */
685   UBool * groups_tried                /* output: track any unsuccessful groups */
686)
687{
688   ulmbcs_byte_t  * pLMBCS = pStartLMBCS;
689   UConverterSharedData * xcnv = extraInfo->OptGrpConverter[group];
690
691   int bytesConverted;
692   uint32_t value;
693   ulmbcs_byte_t firstByte;
694
695   U_ASSERT(xcnv);
696   U_ASSERT(group<ULMBCS_GRP_UNICODE);
697
698   bytesConverted = ucnv_MBCSFromUChar32(xcnv, *pUniChar, &value, FALSE);
699
700   /* get the first result byte */
701   if(bytesConverted > 0) {
702      firstByte = (ulmbcs_byte_t)(value >> ((bytesConverted - 1) * 8));
703   } else {
704      /* most common failure mode is an unassigned character */
705      groups_tried[group] = TRUE;
706      return 0;
707   }
708
709   *lastConverterIndex = group;
710
711   /* All initial byte values in lower ascii range should have been caught by now,
712      except with the exception group.
713    */
714   U_ASSERT((firstByte <= ULMBCS_C0END) || (firstByte >= ULMBCS_C1START) || (group == ULMBCS_GRP_EXCEPT));
715
716   /* use converted data: first write 0, 1 or two group bytes */
717   if (group != ULMBCS_GRP_EXCEPT && extraInfo->OptGroup != group)
718   {
719      *pLMBCS++ = group;
720      if (bytesConverted == 1 && group >= ULMBCS_DOUBLEOPTGROUP_START)
721      {
722         *pLMBCS++ = group;
723      }
724   }
725
726  /* don't emit control chars */
727   if ( bytesConverted == 1 && firstByte < 0x20 )
728      return 0;
729
730
731   /* then move over the converted data */
732   switch(bytesConverted)
733   {
734   case 4:
735      *pLMBCS++ = (ulmbcs_byte_t)(value >> 24);
736   case 3:
737      *pLMBCS++ = (ulmbcs_byte_t)(value >> 16);
738   case 2:
739      *pLMBCS++ = (ulmbcs_byte_t)(value >> 8);
740   case 1:
741      *pLMBCS++ = (ulmbcs_byte_t)value;
742   default:
743      /* will never occur */
744      break;
745   }
746
747   return (pLMBCS - pStartLMBCS);
748}
749
750
751/* This is a much simpler version of above, when we
752know we are writing LMBCS using the Unicode group
753*/
754static size_t
755LMBCSConvertUni(ulmbcs_byte_t * pLMBCS, UChar uniChar)
756{
757     /* encode into LMBCS Unicode range */
758   uint8_t LowCh =   (uint8_t)(uniChar & 0x00FF);
759   uint8_t HighCh  = (uint8_t)(uniChar >> 8);
760
761   *pLMBCS++ = ULMBCS_GRP_UNICODE;
762
763   if (LowCh == 0)
764   {
765      *pLMBCS++ = ULMBCS_UNICOMPATZERO;
766      *pLMBCS++ = HighCh;
767   }
768   else
769   {
770      *pLMBCS++ = HighCh;
771      *pLMBCS++ = LowCh;
772   }
773   return ULMBCS_UNICODE_SIZE;
774}
775
776
777
778/* The main Unicode to LMBCS conversion function */
779static void
780_LMBCSFromUnicode(UConverterFromUnicodeArgs*     args,
781                  UErrorCode*     err)
782{
783   ulmbcs_byte_t lastConverterIndex = 0;
784   UChar uniChar;
785   ulmbcs_byte_t  LMBCS[ULMBCS_CHARSIZE_MAX];
786   ulmbcs_byte_t  * pLMBCS;
787   int bytes_written;
788   UBool groups_tried[ULMBCS_GRP_LAST+1];
789   UConverterDataLMBCS * extraInfo = (UConverterDataLMBCS *) args->converter->extraInfo;
790   int sourceIndex = 0;
791
792
793   /* Basic strategy: attempt to fill in local LMBCS 1-char buffer.(LMBCS)
794      If that succeeds, see if it will all fit into the target & copy it over
795      if it does.
796
797      We try conversions in the following order:
798
799      1. Single-byte ascii & special fixed control chars (&null)
800      2. Look up group in table & try that (could be
801            A) Unicode group
802            B) control group,
803            C) national encoding,
804               or ambiguous SBCS or MBCS group (on to step 4...)
805
806      3. If its ambiguous, try this order:
807         A) The optimization group
808         B) The locale group
809         C) The last group that succeeded with this string.
810         D) every other group that's relevent (single or double)
811         E) If its single-byte ambiguous, try the exceptions group
812
813      4. And as a grand fallback: Unicode
814   */
815
816   while (args->source < args->sourceLimit && !U_FAILURE(*err))
817   {
818      if (args->target >= args->targetLimit)
819      {
820         *err = U_BUFFER_OVERFLOW_ERROR;
821         break;
822      }
823      uniChar = *(args->source);
824      bytes_written = 0;
825      pLMBCS = LMBCS;
826
827      /* check cases in rough order of how common they are, for speed */
828
829      /* single byte matches: strategy 1 */
830
831      if (((uniChar > ULMBCS_C0END) && (uniChar < ULMBCS_C1START)) ||
832          uniChar == 0 || uniChar == ULMBCS_HT || uniChar == ULMBCS_CR ||
833          uniChar == ULMBCS_LF || uniChar == ULMBCS_123SYSTEMRANGE
834          )
835      {
836         *pLMBCS++ = (ulmbcs_byte_t ) uniChar;
837         bytes_written = 1;
838      }
839
840
841      if (!bytes_written)
842      {
843         /* Check by UNICODE range (Strategy 2) */
844         ulmbcs_byte_t group = FindLMBCSUniRange(uniChar);
845
846         if (group == ULMBCS_GRP_UNICODE)  /* (Strategy 2A) */
847         {
848            pLMBCS += LMBCSConvertUni(pLMBCS,uniChar);
849
850            bytes_written = pLMBCS - LMBCS;
851         }
852         else if (group == ULMBCS_GRP_CTRL)  /* (Strategy 2B) */
853         {
854            /* Handle control characters here */
855            if (uniChar <= ULMBCS_C0END)
856            {
857               *pLMBCS++ = ULMBCS_GRP_CTRL;
858               *pLMBCS++ = (ulmbcs_byte_t)(ULMBCS_CTRLOFFSET + uniChar);
859            }
860            else if (uniChar >= ULMBCS_C1START && uniChar <= ULMBCS_C1START + ULMBCS_CTRLOFFSET)
861            {
862               *pLMBCS++ = ULMBCS_GRP_CTRL;
863               *pLMBCS++ = (ulmbcs_byte_t ) (uniChar & 0x00FF);
864            }
865            bytes_written = pLMBCS - LMBCS;
866         }
867         else if (group < ULMBCS_GRP_UNICODE)  /* (Strategy 2C) */
868         {
869            /* a specific converter has been identified - use it */
870            bytes_written = LMBCSConversionWorker (
871                              extraInfo, group, pLMBCS, &uniChar,
872                              &lastConverterIndex, groups_tried);
873         }
874         if (!bytes_written)    /* the ambiguous group cases  (Strategy 3) */
875         {
876            uprv_memset(groups_tried, 0, sizeof(groups_tried));
877
878         /* check for non-default optimization group (Strategy 3A )*/
879            if (extraInfo->OptGroup != 1
880                  && ULMBCS_AMBIGUOUS_MATCH(group, extraInfo->OptGroup))
881            {
882               bytes_written = LMBCSConversionWorker (extraInfo,
883                  extraInfo->OptGroup, pLMBCS, &uniChar,
884                  &lastConverterIndex, groups_tried);
885            }
886            /* check for locale optimization group (Strategy 3B) */
887            if (!bytes_written
888               && (extraInfo->localeConverterIndex)
889               && (ULMBCS_AMBIGUOUS_MATCH(group, extraInfo->localeConverterIndex)))
890               {
891                  bytes_written = LMBCSConversionWorker (extraInfo,
892                     extraInfo->localeConverterIndex, pLMBCS, &uniChar,
893                     &lastConverterIndex, groups_tried);
894               }
895            /* check for last optimization group used for this string (Strategy 3C) */
896            if (!bytes_written
897                && (lastConverterIndex)
898               && (ULMBCS_AMBIGUOUS_MATCH(group, lastConverterIndex)))
899               {
900                  bytes_written = LMBCSConversionWorker (extraInfo,
901                     lastConverterIndex, pLMBCS, &uniChar,
902                     &lastConverterIndex, groups_tried);
903
904               }
905            if (!bytes_written)
906            {
907               /* just check every possible matching converter (Strategy 3D) */
908               ulmbcs_byte_t grp_start;
909               ulmbcs_byte_t grp_end;
910               ulmbcs_byte_t grp_ix;
911               grp_start = (ulmbcs_byte_t)((group == ULMBCS_AMBIGUOUS_MBCS)
912                        ? ULMBCS_DOUBLEOPTGROUP_START
913                        :  ULMBCS_GRP_L1);
914               grp_end = (ulmbcs_byte_t)((group == ULMBCS_AMBIGUOUS_MBCS)
915                        ? ULMBCS_GRP_LAST
916                        :  ULMBCS_GRP_TH);
917               for (grp_ix = grp_start;
918                   grp_ix <= grp_end && !bytes_written;
919                    grp_ix++)
920               {
921                  if (extraInfo->OptGrpConverter [grp_ix] && !groups_tried [grp_ix])
922                  {
923                     bytes_written = LMBCSConversionWorker (extraInfo,
924                       grp_ix, pLMBCS, &uniChar,
925                       &lastConverterIndex, groups_tried);
926                  }
927               }
928                /* a final conversion fallback to the exceptions group if its likely
929                     to be single byte  (Strategy 3E) */
930               if (!bytes_written && grp_start == ULMBCS_GRP_L1)
931               {
932                  bytes_written = LMBCSConversionWorker (extraInfo,
933                     ULMBCS_GRP_EXCEPT, pLMBCS, &uniChar,
934                     &lastConverterIndex, groups_tried);
935               }
936            }
937            /* all of our other strategies failed. Fallback to Unicode. (Strategy 4)*/
938            if (!bytes_written)
939            {
940
941               pLMBCS += LMBCSConvertUni(pLMBCS, uniChar);
942               bytes_written = pLMBCS - LMBCS;
943            }
944         }
945      }
946
947      /* we have a translation. increment source and write as much as posible to target */
948      args->source++;
949      pLMBCS = LMBCS;
950      while (args->target < args->targetLimit && bytes_written--)
951      {
952         *(args->target)++ = *pLMBCS++;
953         if (args->offsets)
954         {
955            *(args->offsets)++ = sourceIndex;
956         }
957      }
958      sourceIndex++;
959      if (bytes_written > 0)
960      {
961         /* write any bytes that didn't fit in target to the error buffer,
962            common code will move this to target if we get called back with
963            enough target room
964         */
965         uint8_t * pErrorBuffer = args->converter->charErrorBuffer;
966         *err = U_BUFFER_OVERFLOW_ERROR;
967         args->converter->charErrorBufferLength = (int8_t)bytes_written;
968         while (bytes_written--)
969         {
970            *pErrorBuffer++ = *pLMBCS++;
971         }
972      }
973   }
974}
975
976
977/* Now, the Unicode from LMBCS section */
978
979
980/* A function to call when we are looking at the Unicode group byte in LMBCS */
981static UChar
982GetUniFromLMBCSUni(char const ** ppLMBCSin)  /* Called with LMBCS-style Unicode byte stream */
983{
984   uint8_t  HighCh = *(*ppLMBCSin)++;  /* Big-endian Unicode in LMBCS compatibility group*/
985   uint8_t  LowCh  = *(*ppLMBCSin)++;
986
987   if (HighCh == ULMBCS_UNICOMPATZERO )
988   {
989      HighCh = LowCh;
990      LowCh = 0; /* zero-byte in LSB special character */
991   }
992   return (UChar)((HighCh << 8) | LowCh);
993}
994
995
996
997/* CHECK_SOURCE_LIMIT: Helper macro to verify that there are at least'index'
998   bytes left in source up to  sourceLimit.Errors appropriately if not.
999   If we reach the limit, then update the source pointer to there to consume
1000   all input as required by ICU converter semantics.
1001*/
1002
1003#define CHECK_SOURCE_LIMIT(index) \
1004     if (args->source+index > args->sourceLimit){\
1005         *err = U_TRUNCATED_CHAR_FOUND;\
1006         args->source = args->sourceLimit;\
1007         return 0xffff;}
1008
1009/* Return the Unicode representation for the current LMBCS character */
1010
1011static UChar32
1012_LMBCSGetNextUCharWorker(UConverterToUnicodeArgs*   args,
1013                         UErrorCode*   err)
1014{
1015    UChar32 uniChar = 0;    /* an output UNICODE char */
1016    ulmbcs_byte_t   CurByte; /* A byte from the input stream */
1017
1018    /* error check */
1019    if (args->source >= args->sourceLimit)
1020    {
1021        *err = U_ILLEGAL_ARGUMENT_ERROR;
1022        return 0xffff;
1023    }
1024    /* Grab first byte & save address for error recovery */
1025    CurByte = *((ulmbcs_byte_t  *) (args->source++));
1026
1027    /*
1028    * at entry of each if clause:
1029    * 1. 'CurByte' points at the first byte of a LMBCS character
1030    * 2. '*source'points to the next byte of the source stream after 'CurByte'
1031    *
1032    * the job of each if clause is:
1033    * 1. set '*source' to point at the beginning of next char (nop if LMBCS char is only 1 byte)
1034    * 2. set 'uniChar' up with the right Unicode value, or set 'err' appropriately
1035    */
1036
1037    /* First lets check the simple fixed values. */
1038
1039    if(((CurByte > ULMBCS_C0END) && (CurByte < ULMBCS_C1START)) /* ascii range */
1040    ||  (CurByte == 0)
1041    ||  CurByte == ULMBCS_HT || CurByte == ULMBCS_CR
1042    ||  CurByte == ULMBCS_LF || CurByte == ULMBCS_123SYSTEMRANGE)
1043    {
1044        uniChar = CurByte;
1045    }
1046    else
1047    {
1048        UConverterDataLMBCS * extraInfo;
1049        ulmbcs_byte_t group;
1050        UConverterSharedData *cnv;
1051
1052        if (CurByte == ULMBCS_GRP_CTRL)  /* Control character group - no opt group update */
1053        {
1054            ulmbcs_byte_t  C0C1byte;
1055            CHECK_SOURCE_LIMIT(1);
1056            C0C1byte = *(args->source)++;
1057            uniChar = (C0C1byte < ULMBCS_C1START) ? C0C1byte - ULMBCS_CTRLOFFSET : C0C1byte;
1058        }
1059        else
1060        if (CurByte == ULMBCS_GRP_UNICODE) /* Unicode compatibility group: BigEndian UTF16 */
1061        {
1062            CHECK_SOURCE_LIMIT(2);
1063
1064            /* don't check for error indicators fffe/ffff below */
1065            return GetUniFromLMBCSUni(&(args->source));
1066        }
1067        else if (CurByte <= ULMBCS_CTRLOFFSET)
1068        {
1069            group = CurByte;                   /* group byte is in the source */
1070            extraInfo = (UConverterDataLMBCS *) args->converter->extraInfo;
1071            if (group > ULMBCS_GRP_LAST || (cnv = extraInfo->OptGrpConverter[group]) == NULL)
1072            {
1073                /* this is not a valid group byte - no converter*/
1074                *err = U_INVALID_CHAR_FOUND;
1075            }
1076            else if (group >= ULMBCS_DOUBLEOPTGROUP_START)    /* double byte conversion */
1077            {
1078
1079                CHECK_SOURCE_LIMIT(2);
1080
1081                /* check for LMBCS doubled-group-byte case */
1082                if (*args->source == group) {
1083                    /* single byte */
1084                    ++args->source;
1085                    uniChar = ucnv_MBCSSimpleGetNextUChar(cnv, args->source, 1, FALSE);
1086                    ++args->source;
1087                } else {
1088                    /* double byte */
1089                    uniChar = ucnv_MBCSSimpleGetNextUChar(cnv, args->source, 2, FALSE);
1090                    args->source += 2;
1091                }
1092            }
1093            else {                                  /* single byte conversion */
1094                CHECK_SOURCE_LIMIT(1);
1095                CurByte = *(args->source)++;
1096
1097                if (CurByte >= ULMBCS_C1START)
1098                {
1099                    uniChar = _MBCS_SINGLE_SIMPLE_GET_NEXT_BMP(cnv, CurByte);
1100                }
1101                else
1102                {
1103                    /* The non-optimizable oddballs where there is an explicit byte
1104                    * AND the second byte is not in the upper ascii range
1105                    */
1106                    char bytes[2];
1107
1108                    extraInfo = (UConverterDataLMBCS *) args->converter->extraInfo;
1109                    cnv = extraInfo->OptGrpConverter [ULMBCS_GRP_EXCEPT];
1110
1111                    /* Lookup value must include opt group */
1112                    bytes[0] = group;
1113                    bytes[1] = CurByte;
1114                    uniChar = ucnv_MBCSSimpleGetNextUChar(cnv, bytes, 2, FALSE);
1115                }
1116            }
1117        }
1118        else if (CurByte >= ULMBCS_C1START) /* group byte is implicit */
1119        {
1120            extraInfo = (UConverterDataLMBCS *) args->converter->extraInfo;
1121            group = extraInfo->OptGroup;
1122            cnv = extraInfo->OptGrpConverter[group];
1123            if (group >= ULMBCS_DOUBLEOPTGROUP_START)    /* double byte conversion */
1124            {
1125                if (!ucnv_MBCSIsLeadByte(cnv, CurByte))
1126                {
1127                    CHECK_SOURCE_LIMIT(0);
1128
1129                    /* let the MBCS conversion consume CurByte again */
1130                    uniChar = ucnv_MBCSSimpleGetNextUChar(cnv, args->source - 1, 1, FALSE);
1131                }
1132                else
1133                {
1134                    CHECK_SOURCE_LIMIT(1);
1135                    /* let the MBCS conversion consume CurByte again */
1136                    uniChar = ucnv_MBCSSimpleGetNextUChar(cnv, args->source - 1, 2, FALSE);
1137                    ++args->source;
1138                }
1139            }
1140            else                                   /* single byte conversion */
1141            {
1142                uniChar = _MBCS_SINGLE_SIMPLE_GET_NEXT_BMP(cnv, CurByte);
1143            }
1144        }
1145    }
1146    return uniChar;
1147}
1148
1149
1150/* The exported function that converts lmbcs to one or more
1151   UChars - currently UTF-16
1152*/
1153static void
1154_LMBCSToUnicodeWithOffsets(UConverterToUnicodeArgs*    args,
1155                     UErrorCode*    err)
1156{
1157   char LMBCS [ULMBCS_CHARSIZE_MAX];
1158   UChar uniChar;    /* one output UNICODE char */
1159   const char * saveSource; /* beginning of current code point */
1160   const char * pStartLMBCS = args->source;  /* beginning of whole string */
1161   const char * errSource = NULL; /* pointer to actual input in case an error occurs */
1162   int8_t savebytes = 0;
1163
1164   /* Process from source to limit, or until error */
1165   while (U_SUCCESS(*err) && args->sourceLimit > args->source && args->targetLimit > args->target)
1166   {
1167      saveSource = args->source; /* beginning of current code point */
1168
1169      if (args->converter->toULength) /* reassemble char from previous call */
1170      {
1171        const char *saveSourceLimit;
1172        size_t size_old = args->converter->toULength;
1173
1174         /* limit from source is either remainder of temp buffer, or user limit on source */
1175        size_t size_new_maybe_1 = sizeof(LMBCS) - size_old;
1176        size_t size_new_maybe_2 = args->sourceLimit - args->source;
1177        size_t size_new = (size_new_maybe_1 < size_new_maybe_2) ? size_new_maybe_1 : size_new_maybe_2;
1178
1179
1180        uprv_memcpy(LMBCS, args->converter->toUBytes, size_old);
1181        uprv_memcpy(LMBCS + size_old, args->source, size_new);
1182        saveSourceLimit = args->sourceLimit;
1183        args->source = errSource = LMBCS;
1184        args->sourceLimit = LMBCS+size_old+size_new;
1185        savebytes = (int8_t)(size_old+size_new);
1186        uniChar = (UChar) _LMBCSGetNextUCharWorker(args, err);
1187        args->source = saveSource + ((args->source - LMBCS) - size_old);
1188        args->sourceLimit = saveSourceLimit;
1189
1190        if (*err == U_TRUNCATED_CHAR_FOUND)
1191        {
1192            /* evil special case: source buffers so small a char spans more than 2 buffers */
1193            args->converter->toULength = savebytes;
1194            uprv_memcpy(args->converter->toUBytes, LMBCS, savebytes);
1195            args->source = args->sourceLimit;
1196            *err = U_ZERO_ERROR;
1197            return;
1198         }
1199         else
1200         {
1201            /* clear the partial-char marker */
1202            args->converter->toULength = 0;
1203         }
1204      }
1205      else
1206      {
1207         errSource = saveSource;
1208         uniChar = (UChar) _LMBCSGetNextUCharWorker(args, err);
1209         savebytes = (int8_t)(args->source - saveSource);
1210      }
1211      if (U_SUCCESS(*err))
1212      {
1213         if (uniChar < 0xfffe)
1214         {
1215            *(args->target)++ = uniChar;
1216            if(args->offsets)
1217            {
1218               *(args->offsets)++ = saveSource - pStartLMBCS;
1219            }
1220         }
1221         else if (uniChar == 0xfffe)
1222         {
1223            *err = U_INVALID_CHAR_FOUND;
1224         }
1225         else /* if (uniChar == 0xffff) */
1226         {
1227            *err = U_ILLEGAL_CHAR_FOUND;
1228         }
1229      }
1230   }
1231   /* if target ran out before source, return U_BUFFER_OVERFLOW_ERROR */
1232   if (U_SUCCESS(*err) && args->sourceLimit > args->source && args->targetLimit <= args->target)
1233   {
1234      *err = U_BUFFER_OVERFLOW_ERROR;
1235   }
1236   else if (U_FAILURE(*err))
1237   {
1238      /* If character incomplete or unmappable/illegal, store it in toUBytes[] */
1239      args->converter->toULength = savebytes;
1240      if (savebytes > 0) {
1241         uprv_memcpy(args->converter->toUBytes, errSource, savebytes);
1242      }
1243      if (*err == U_TRUNCATED_CHAR_FOUND) {
1244         *err = U_ZERO_ERROR;
1245      }
1246   }
1247}
1248
1249/* And now, the macroized declarations of data & functions: */
1250DEFINE_LMBCS_OPEN(1)
1251DEFINE_LMBCS_OPEN(2)
1252DEFINE_LMBCS_OPEN(3)
1253DEFINE_LMBCS_OPEN(4)
1254DEFINE_LMBCS_OPEN(5)
1255DEFINE_LMBCS_OPEN(6)
1256DEFINE_LMBCS_OPEN(8)
1257DEFINE_LMBCS_OPEN(11)
1258DEFINE_LMBCS_OPEN(16)
1259DEFINE_LMBCS_OPEN(17)
1260DEFINE_LMBCS_OPEN(18)
1261DEFINE_LMBCS_OPEN(19)
1262
1263
1264DECLARE_LMBCS_DATA(1)
1265DECLARE_LMBCS_DATA(2)
1266DECLARE_LMBCS_DATA(3)
1267DECLARE_LMBCS_DATA(4)
1268DECLARE_LMBCS_DATA(5)
1269DECLARE_LMBCS_DATA(6)
1270DECLARE_LMBCS_DATA(8)
1271DECLARE_LMBCS_DATA(11)
1272DECLARE_LMBCS_DATA(16)
1273DECLARE_LMBCS_DATA(17)
1274DECLARE_LMBCS_DATA(18)
1275DECLARE_LMBCS_DATA(19)
1276
1277#endif /* #if !UCONFIG_NO_LEGACY_CONVERSION */
1278