1/*
2 *  linux/include/asm-arm/cacheflush.h
3 *
4 *  Copyright (C) 1999-2002 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10#ifndef _ASMARM_CACHEFLUSH_H
11#define _ASMARM_CACHEFLUSH_H
12
13#include <linux/sched.h>
14#include <linux/mm.h>
15
16#include <asm/glue.h>
17#include <asm/shmparam.h>
18
19#define CACHE_COLOUR(vaddr)	((vaddr & (SHMLBA - 1)) >> PAGE_SHIFT)
20
21/*
22 *	Cache Model
23 *	===========
24 */
25#undef _CACHE
26#undef MULTI_CACHE
27
28#if defined(CONFIG_CPU_ARM610) || defined(CONFIG_CPU_ARM710)
29# ifdef _CACHE
30#  define MULTI_CACHE 1
31# else
32#  define _CACHE v3
33# endif
34#endif
35
36#if defined(CONFIG_CPU_ARM720T)
37# ifdef _CACHE
38#  define MULTI_CACHE 1
39# else
40#  define _CACHE v4
41# endif
42#endif
43
44#if defined(CONFIG_CPU_ARM920T) || defined(CONFIG_CPU_ARM922T) || \
45    defined(CONFIG_CPU_ARM925T) || defined(CONFIG_CPU_ARM1020)
46# define MULTI_CACHE 1
47#endif
48
49#if defined(CONFIG_CPU_ARM926T)
50# ifdef _CACHE
51#  define MULTI_CACHE 1
52# else
53#  define _CACHE arm926
54# endif
55#endif
56
57#if defined(CONFIG_CPU_SA110) || defined(CONFIG_CPU_SA1100)
58# ifdef _CACHE
59#  define MULTI_CACHE 1
60# else
61#  define _CACHE v4wb
62# endif
63#endif
64
65#if defined(CONFIG_CPU_XSCALE)
66# ifdef _CACHE
67#  define MULTI_CACHE 1
68# else
69#  define _CACHE xscale
70# endif
71#endif
72
73#if defined(CONFIG_CPU_XSC3)
74# ifdef _CACHE
75#  define MULTI_CACHE 1
76# else
77#  define _CACHE xsc3
78# endif
79#endif
80
81#if defined(CONFIG_CPU_V6)
82//# ifdef _CACHE
83#  define MULTI_CACHE 1
84//# else
85//#  define _CACHE v6
86//# endif
87#endif
88
89#if !defined(_CACHE) && !defined(MULTI_CACHE)
90#error Unknown cache maintainence model
91#endif
92
93/*
94 * This flag is used to indicate that the page pointed to by a pte
95 * is dirty and requires cleaning before returning it to the user.
96 */
97#define PG_dcache_dirty PG_arch_1
98
99/*
100 *	MM Cache Management
101 *	===================
102 *
103 *	The arch/arm/mm/cache-*.S and arch/arm/mm/proc-*.S files
104 *	implement these methods.
105 *
106 *	Start addresses are inclusive and end addresses are exclusive;
107 *	start addresses should be rounded down, end addresses up.
108 *
109 *	See Documentation/cachetlb.txt for more information.
110 *	Please note that the implementation of these, and the required
111 *	effects are cache-type (VIVT/VIPT/PIPT) specific.
112 *
113 *	flush_cache_kern_all()
114 *
115 *		Unconditionally clean and invalidate the entire cache.
116 *
117 *	flush_cache_user_mm(mm)
118 *
119 *		Clean and invalidate all user space cache entries
120 *		before a change of page tables.
121 *
122 *	flush_cache_user_range(start, end, flags)
123 *
124 *		Clean and invalidate a range of cache entries in the
125 *		specified address space before a change of page tables.
126 *		- start - user start address (inclusive, page aligned)
127 *		- end   - user end address   (exclusive, page aligned)
128 *		- flags - vma->vm_flags field
129 *
130 *	coherent_kern_range(start, end)
131 *
132 *		Ensure coherency between the Icache and the Dcache in the
133 *		region described by start, end.  If you have non-snooping
134 *		Harvard caches, you need to implement this function.
135 *		- start  - virtual start address
136 *		- end    - virtual end address
137 *
138 *	DMA Cache Coherency
139 *	===================
140 *
141 *	dma_inv_range(start, end)
142 *
143 *		Invalidate (discard) the specified virtual address range.
144 *		May not write back any entries.  If 'start' or 'end'
145 *		are not cache line aligned, those lines must be written
146 *		back.
147 *		- start  - virtual start address
148 *		- end    - virtual end address
149 *
150 *	dma_clean_range(start, end)
151 *
152 *		Clean (write back) the specified virtual address range.
153 *		- start  - virtual start address
154 *		- end    - virtual end address
155 *
156 *	dma_flush_range(start, end)
157 *
158 *		Clean and invalidate the specified virtual address range.
159 *		- start  - virtual start address
160 *		- end    - virtual end address
161 */
162
163struct cpu_cache_fns {
164	void (*flush_kern_all)(void);
165	void (*flush_user_all)(void);
166	void (*flush_user_range)(unsigned long, unsigned long, unsigned int);
167
168	void (*coherent_kern_range)(unsigned long, unsigned long);
169	void (*coherent_user_range)(unsigned long, unsigned long);
170	void (*flush_kern_dcache_page)(void *);
171
172	void (*dma_inv_range)(unsigned long, unsigned long);
173	void (*dma_clean_range)(unsigned long, unsigned long);
174	void (*dma_flush_range)(unsigned long, unsigned long);
175};
176
177/*
178 * Select the calling method
179 */
180#ifdef MULTI_CACHE
181
182extern struct cpu_cache_fns cpu_cache;
183
184#define __cpuc_flush_kern_all		cpu_cache.flush_kern_all
185#define __cpuc_flush_user_all		cpu_cache.flush_user_all
186#define __cpuc_flush_user_range		cpu_cache.flush_user_range
187#define __cpuc_coherent_kern_range	cpu_cache.coherent_kern_range
188#define __cpuc_coherent_user_range	cpu_cache.coherent_user_range
189#define __cpuc_flush_dcache_page	cpu_cache.flush_kern_dcache_page
190
191/*
192 * These are private to the dma-mapping API.  Do not use directly.
193 * Their sole purpose is to ensure that data held in the cache
194 * is visible to DMA, or data written by DMA to system memory is
195 * visible to the CPU.
196 */
197#define dmac_inv_range			cpu_cache.dma_inv_range
198#define dmac_clean_range		cpu_cache.dma_clean_range
199#define dmac_flush_range		cpu_cache.dma_flush_range
200
201#else
202
203#define __cpuc_flush_kern_all		__glue(_CACHE,_flush_kern_cache_all)
204#define __cpuc_flush_user_all		__glue(_CACHE,_flush_user_cache_all)
205#define __cpuc_flush_user_range		__glue(_CACHE,_flush_user_cache_range)
206#define __cpuc_coherent_kern_range	__glue(_CACHE,_coherent_kern_range)
207#define __cpuc_coherent_user_range	__glue(_CACHE,_coherent_user_range)
208#define __cpuc_flush_dcache_page	__glue(_CACHE,_flush_kern_dcache_page)
209
210extern void __cpuc_flush_kern_all(void);
211extern void __cpuc_flush_user_all(void);
212extern void __cpuc_flush_user_range(unsigned long, unsigned long, unsigned int);
213extern void __cpuc_coherent_kern_range(unsigned long, unsigned long);
214extern void __cpuc_coherent_user_range(unsigned long, unsigned long);
215extern void __cpuc_flush_dcache_page(void *);
216
217/*
218 * These are private to the dma-mapping API.  Do not use directly.
219 * Their sole purpose is to ensure that data held in the cache
220 * is visible to DMA, or data written by DMA to system memory is
221 * visible to the CPU.
222 */
223#define dmac_inv_range			__glue(_CACHE,_dma_inv_range)
224#define dmac_clean_range		__glue(_CACHE,_dma_clean_range)
225#define dmac_flush_range		__glue(_CACHE,_dma_flush_range)
226
227extern void dmac_inv_range(unsigned long, unsigned long);
228extern void dmac_clean_range(unsigned long, unsigned long);
229extern void dmac_flush_range(unsigned long, unsigned long);
230
231#endif
232
233/*
234 * flush_cache_vmap() is used when creating mappings (eg, via vmap,
235 * vmalloc, ioremap etc) in kernel space for pages.  Since the
236 * direct-mappings of these pages may contain cached data, we need
237 * to do a full cache flush to ensure that writebacks don't corrupt
238 * data placed into these pages via the new mappings.
239 */
240#define flush_cache_vmap(start, end)		flush_cache_all()
241#define flush_cache_vunmap(start, end)		flush_cache_all()
242
243/*
244 * Copy user data from/to a page which is mapped into a different
245 * processes address space.  Really, we want to allow our "user
246 * space" model to handle this.
247 */
248#define copy_to_user_page(vma, page, vaddr, dst, src, len) \
249	do {							\
250		memcpy(dst, src, len);				\
251		flush_ptrace_access(vma, page, vaddr, dst, len, 1);\
252	} while (0)
253
254#define copy_from_user_page(vma, page, vaddr, dst, src, len) \
255	do {							\
256		memcpy(dst, src, len);				\
257	} while (0)
258
259/*
260 * Convert calls to our calling convention.
261 */
262#define flush_cache_all()		__cpuc_flush_kern_all()
263#ifndef CONFIG_CPU_CACHE_VIPT
264static inline void flush_cache_mm(struct mm_struct *mm)
265{
266	if (cpu_isset(smp_processor_id(), mm->cpu_vm_mask))
267		__cpuc_flush_user_all();
268}
269
270static inline void
271flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
272{
273	if (cpu_isset(smp_processor_id(), vma->vm_mm->cpu_vm_mask))
274		__cpuc_flush_user_range(start & PAGE_MASK, PAGE_ALIGN(end),
275					vma->vm_flags);
276}
277
278static inline void
279flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn)
280{
281	if (cpu_isset(smp_processor_id(), vma->vm_mm->cpu_vm_mask)) {
282		unsigned long addr = user_addr & PAGE_MASK;
283		__cpuc_flush_user_range(addr, addr + PAGE_SIZE, vma->vm_flags);
284	}
285}
286
287static inline void
288flush_ptrace_access(struct vm_area_struct *vma, struct page *page,
289			 unsigned long uaddr, void *kaddr,
290			 unsigned long len, int write)
291{
292	if (cpu_isset(smp_processor_id(), vma->vm_mm->cpu_vm_mask)) {
293		unsigned long addr = (unsigned long)kaddr;
294		__cpuc_coherent_kern_range(addr, addr + len);
295	}
296}
297#else
298extern void flush_cache_mm(struct mm_struct *mm);
299extern void flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
300extern void flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn);
301extern void flush_ptrace_access(struct vm_area_struct *vma, struct page *page,
302				unsigned long uaddr, void *kaddr,
303				unsigned long len, int write);
304#endif
305
306/*
307 * flush_cache_user_range is used when we want to ensure that the
308 * Harvard caches are synchronised for the user space address range.
309 * This is used for the ARM private sys_cacheflush system call.
310 */
311#define flush_cache_user_range(vma,start,end) \
312	__cpuc_coherent_user_range((start) & PAGE_MASK, PAGE_ALIGN(end))
313
314/*
315 * Perform necessary cache operations to ensure that data previously
316 * stored within this range of addresses can be executed by the CPU.
317 */
318#define flush_icache_range(s,e)		__cpuc_coherent_kern_range(s,e)
319
320/*
321 * Perform necessary cache operations to ensure that the TLB will
322 * see data written in the specified area.
323 */
324#define clean_dcache_area(start,size)	cpu_dcache_clean_area(start, size)
325
326/*
327 * flush_dcache_page is used when the kernel has written to the page
328 * cache page at virtual address page->virtual.
329 *
330 * If this page isn't mapped (ie, page_mapping == NULL), or it might
331 * have userspace mappings, then we _must_ always clean + invalidate
332 * the dcache entries associated with the kernel mapping.
333 *
334 * Otherwise we can defer the operation, and clean the cache when we are
335 * about to change to user space.  This is the same method as used on SPARC64.
336 * See update_mmu_cache for the user space part.
337 */
338extern void flush_dcache_page(struct page *);
339
340#define flush_dcache_mmap_lock(mapping) \
341	write_lock_irq(&(mapping)->tree_lock)
342#define flush_dcache_mmap_unlock(mapping) \
343	write_unlock_irq(&(mapping)->tree_lock)
344
345#define flush_icache_user_range(vma,page,addr,len) \
346	flush_dcache_page(page)
347
348/*
349 * We don't appear to need to do anything here.  In fact, if we did, we'd
350 * duplicate cache flushing elsewhere performed by flush_dcache_page().
351 */
352#define flush_icache_page(vma,page)	do { } while (0)
353
354#define __cacheid_present(val)		(val != read_cpuid(CPUID_ID))
355#define __cacheid_vivt(val)		((val & (15 << 25)) != (14 << 25))
356#define __cacheid_vipt(val)		((val & (15 << 25)) == (14 << 25))
357#define __cacheid_vipt_nonaliasing(val)	((val & (15 << 25 | 1 << 23)) == (14 << 25))
358#define __cacheid_vipt_aliasing(val)	((val & (15 << 25 | 1 << 23)) == (14 << 25 | 1 << 23))
359
360#if defined(CONFIG_CPU_CACHE_VIVT) && !defined(CONFIG_CPU_CACHE_VIPT)
361
362#define cache_is_vivt()			1
363#define cache_is_vipt()			0
364#define cache_is_vipt_nonaliasing()	0
365#define cache_is_vipt_aliasing()	0
366
367#elif defined(CONFIG_CPU_CACHE_VIPT)
368
369#define cache_is_vivt()			0
370#define cache_is_vipt()			1
371#define cache_is_vipt_nonaliasing()					\
372	({								\
373		unsigned int __val = read_cpuid(CPUID_CACHETYPE);	\
374		__cacheid_vipt_nonaliasing(__val);			\
375	})
376
377#define cache_is_vipt_aliasing()					\
378	({								\
379		unsigned int __val = read_cpuid(CPUID_CACHETYPE);	\
380		__cacheid_vipt_aliasing(__val);				\
381	})
382
383#else
384
385#define cache_is_vivt()							\
386	({								\
387		unsigned int __val = read_cpuid(CPUID_CACHETYPE);	\
388		(!__cacheid_present(__val)) || __cacheid_vivt(__val);	\
389	})
390
391#define cache_is_vipt()							\
392	({								\
393		unsigned int __val = read_cpuid(CPUID_CACHETYPE);	\
394		__cacheid_present(__val) && __cacheid_vipt(__val);	\
395	})
396
397#define cache_is_vipt_nonaliasing()					\
398	({								\
399		unsigned int __val = read_cpuid(CPUID_CACHETYPE);	\
400		__cacheid_present(__val) &&				\
401		 __cacheid_vipt_nonaliasing(__val);			\
402	})
403
404#define cache_is_vipt_aliasing()					\
405	({								\
406		unsigned int __val = read_cpuid(CPUID_CACHETYPE);	\
407		__cacheid_present(__val) &&				\
408		 __cacheid_vipt_aliasing(__val);			\
409	})
410
411#endif
412
413#endif
414