1#include "jpake.h" 2 3#include <openssl/crypto.h> 4#include <openssl/sha.h> 5#include <openssl/err.h> 6#include <memory.h> 7#include <assert.h> 8 9/* 10 * In the definition, (xa, xb, xc, xd) are Alice's (x1, x2, x3, x4) or 11 * Bob's (x3, x4, x1, x2). If you see what I mean. 12 */ 13 14typedef struct 15 { 16 char *name; /* Must be unique */ 17 char *peer_name; 18 BIGNUM *p; 19 BIGNUM *g; 20 BIGNUM *q; 21 BIGNUM *gxc; /* Alice's g^{x3} or Bob's g^{x1} */ 22 BIGNUM *gxd; /* Alice's g^{x4} or Bob's g^{x2} */ 23 } JPAKE_CTX_PUBLIC; 24 25struct JPAKE_CTX 26 { 27 JPAKE_CTX_PUBLIC p; 28 BIGNUM *secret; /* The shared secret */ 29 BN_CTX *ctx; 30 BIGNUM *xa; /* Alice's x1 or Bob's x3 */ 31 BIGNUM *xb; /* Alice's x2 or Bob's x4 */ 32 BIGNUM *key; /* The calculated (shared) key */ 33 }; 34 35static void JPAKE_ZKP_init(JPAKE_ZKP *zkp) 36 { 37 zkp->gr = BN_new(); 38 zkp->b = BN_new(); 39 } 40 41static void JPAKE_ZKP_release(JPAKE_ZKP *zkp) 42 { 43 BN_free(zkp->b); 44 BN_free(zkp->gr); 45 } 46 47/* Two birds with one stone - make the global name as expected */ 48#define JPAKE_STEP_PART_init JPAKE_STEP2_init 49#define JPAKE_STEP_PART_release JPAKE_STEP2_release 50 51void JPAKE_STEP_PART_init(JPAKE_STEP_PART *p) 52 { 53 p->gx = BN_new(); 54 JPAKE_ZKP_init(&p->zkpx); 55 } 56 57void JPAKE_STEP_PART_release(JPAKE_STEP_PART *p) 58 { 59 JPAKE_ZKP_release(&p->zkpx); 60 BN_free(p->gx); 61 } 62 63void JPAKE_STEP1_init(JPAKE_STEP1 *s1) 64 { 65 JPAKE_STEP_PART_init(&s1->p1); 66 JPAKE_STEP_PART_init(&s1->p2); 67 } 68 69void JPAKE_STEP1_release(JPAKE_STEP1 *s1) 70 { 71 JPAKE_STEP_PART_release(&s1->p2); 72 JPAKE_STEP_PART_release(&s1->p1); 73 } 74 75static void JPAKE_CTX_init(JPAKE_CTX *ctx, const char *name, 76 const char *peer_name, const BIGNUM *p, 77 const BIGNUM *g, const BIGNUM *q, 78 const BIGNUM *secret) 79 { 80 ctx->p.name = OPENSSL_strdup(name); 81 ctx->p.peer_name = OPENSSL_strdup(peer_name); 82 ctx->p.p = BN_dup(p); 83 ctx->p.g = BN_dup(g); 84 ctx->p.q = BN_dup(q); 85 ctx->secret = BN_dup(secret); 86 87 ctx->p.gxc = BN_new(); 88 ctx->p.gxd = BN_new(); 89 90 ctx->xa = BN_new(); 91 ctx->xb = BN_new(); 92 ctx->key = BN_new(); 93 ctx->ctx = BN_CTX_new(); 94 } 95 96static void JPAKE_CTX_release(JPAKE_CTX *ctx) 97 { 98 BN_CTX_free(ctx->ctx); 99 BN_clear_free(ctx->key); 100 BN_clear_free(ctx->xb); 101 BN_clear_free(ctx->xa); 102 103 BN_free(ctx->p.gxd); 104 BN_free(ctx->p.gxc); 105 106 BN_clear_free(ctx->secret); 107 BN_free(ctx->p.q); 108 BN_free(ctx->p.g); 109 BN_free(ctx->p.p); 110 OPENSSL_free(ctx->p.peer_name); 111 OPENSSL_free(ctx->p.name); 112 113 memset(ctx, '\0', sizeof *ctx); 114 } 115 116JPAKE_CTX *JPAKE_CTX_new(const char *name, const char *peer_name, 117 const BIGNUM *p, const BIGNUM *g, const BIGNUM *q, 118 const BIGNUM *secret) 119 { 120 JPAKE_CTX *ctx = OPENSSL_malloc(sizeof *ctx); 121 122 JPAKE_CTX_init(ctx, name, peer_name, p, g, q, secret); 123 124 return ctx; 125 } 126 127void JPAKE_CTX_free(JPAKE_CTX *ctx) 128 { 129 JPAKE_CTX_release(ctx); 130 OPENSSL_free(ctx); 131 } 132 133static void hashlength(SHA_CTX *sha, size_t l) 134 { 135 unsigned char b[2]; 136 137 assert(l <= 0xffff); 138 b[0] = l >> 8; 139 b[1] = l&0xff; 140 SHA1_Update(sha, b, 2); 141 } 142 143static void hashstring(SHA_CTX *sha, const char *string) 144 { 145 size_t l = strlen(string); 146 147 hashlength(sha, l); 148 SHA1_Update(sha, string, l); 149 } 150 151static void hashbn(SHA_CTX *sha, const BIGNUM *bn) 152 { 153 size_t l = BN_num_bytes(bn); 154 unsigned char *bin = OPENSSL_malloc(l); 155 156 hashlength(sha, l); 157 BN_bn2bin(bn, bin); 158 SHA1_Update(sha, bin, l); 159 OPENSSL_free(bin); 160 } 161 162/* h=hash(g, g^r, g^x, name) */ 163static void zkp_hash(BIGNUM *h, const BIGNUM *zkpg, const JPAKE_STEP_PART *p, 164 const char *proof_name) 165 { 166 unsigned char md[SHA_DIGEST_LENGTH]; 167 SHA_CTX sha; 168 169 /* 170 * XXX: hash should not allow moving of the boundaries - Java code 171 * is flawed in this respect. Length encoding seems simplest. 172 */ 173 SHA1_Init(&sha); 174 hashbn(&sha, zkpg); 175 assert(!BN_is_zero(p->zkpx.gr)); 176 hashbn(&sha, p->zkpx.gr); 177 hashbn(&sha, p->gx); 178 hashstring(&sha, proof_name); 179 SHA1_Final(md, &sha); 180 BN_bin2bn(md, SHA_DIGEST_LENGTH, h); 181 } 182 183/* 184 * Prove knowledge of x 185 * Note that p->gx has already been calculated 186 */ 187static void generate_zkp(JPAKE_STEP_PART *p, const BIGNUM *x, 188 const BIGNUM *zkpg, JPAKE_CTX *ctx) 189 { 190 BIGNUM *r = BN_new(); 191 BIGNUM *h = BN_new(); 192 BIGNUM *t = BN_new(); 193 194 /* 195 * r in [0,q) 196 * XXX: Java chooses r in [0, 2^160) - i.e. distribution not uniform 197 */ 198 BN_rand_range(r, ctx->p.q); 199 /* g^r */ 200 BN_mod_exp(p->zkpx.gr, zkpg, r, ctx->p.p, ctx->ctx); 201 202 /* h=hash... */ 203 zkp_hash(h, zkpg, p, ctx->p.name); 204 205 /* b = r - x*h */ 206 BN_mod_mul(t, x, h, ctx->p.q, ctx->ctx); 207 BN_mod_sub(p->zkpx.b, r, t, ctx->p.q, ctx->ctx); 208 209 /* cleanup */ 210 BN_free(t); 211 BN_free(h); 212 BN_free(r); 213 } 214 215static int verify_zkp(const JPAKE_STEP_PART *p, const BIGNUM *zkpg, 216 JPAKE_CTX *ctx) 217 { 218 BIGNUM *h = BN_new(); 219 BIGNUM *t1 = BN_new(); 220 BIGNUM *t2 = BN_new(); 221 BIGNUM *t3 = BN_new(); 222 int ret = 0; 223 224 zkp_hash(h, zkpg, p, ctx->p.peer_name); 225 226 /* t1 = g^b */ 227 BN_mod_exp(t1, zkpg, p->zkpx.b, ctx->p.p, ctx->ctx); 228 /* t2 = (g^x)^h = g^{hx} */ 229 BN_mod_exp(t2, p->gx, h, ctx->p.p, ctx->ctx); 230 /* t3 = t1 * t2 = g^{hx} * g^b = g^{hx+b} = g^r (allegedly) */ 231 BN_mod_mul(t3, t1, t2, ctx->p.p, ctx->ctx); 232 233 /* verify t3 == g^r */ 234 if(BN_cmp(t3, p->zkpx.gr) == 0) 235 ret = 1; 236 else 237 JPAKEerr(JPAKE_F_VERIFY_ZKP, JPAKE_R_ZKP_VERIFY_FAILED); 238 239 /* cleanup */ 240 BN_free(t3); 241 BN_free(t2); 242 BN_free(t1); 243 BN_free(h); 244 245 return ret; 246 } 247 248static void generate_step_part(JPAKE_STEP_PART *p, const BIGNUM *x, 249 const BIGNUM *g, JPAKE_CTX *ctx) 250 { 251 BN_mod_exp(p->gx, g, x, ctx->p.p, ctx->ctx); 252 generate_zkp(p, x, g, ctx); 253 } 254 255/* Generate each party's random numbers. xa is in [0, q), xb is in [1, q). */ 256static void genrand(JPAKE_CTX *ctx) 257 { 258 BIGNUM *qm1; 259 260 /* xa in [0, q) */ 261 BN_rand_range(ctx->xa, ctx->p.q); 262 263 /* q-1 */ 264 qm1 = BN_new(); 265 BN_copy(qm1, ctx->p.q); 266 BN_sub_word(qm1, 1); 267 268 /* ... and xb in [0, q-1) */ 269 BN_rand_range(ctx->xb, qm1); 270 /* [1, q) */ 271 BN_add_word(ctx->xb, 1); 272 273 /* cleanup */ 274 BN_free(qm1); 275 } 276 277int JPAKE_STEP1_generate(JPAKE_STEP1 *send, JPAKE_CTX *ctx) 278 { 279 genrand(ctx); 280 generate_step_part(&send->p1, ctx->xa, ctx->p.g, ctx); 281 generate_step_part(&send->p2, ctx->xb, ctx->p.g, ctx); 282 283 return 1; 284 } 285 286int JPAKE_STEP1_process(JPAKE_CTX *ctx, const JPAKE_STEP1 *received) 287 { 288 /* verify their ZKP(xc) */ 289 if(!verify_zkp(&received->p1, ctx->p.g, ctx)) 290 { 291 JPAKEerr(JPAKE_F_JPAKE_STEP1_PROCESS, JPAKE_R_VERIFY_X3_FAILED); 292 return 0; 293 } 294 295 /* verify their ZKP(xd) */ 296 if(!verify_zkp(&received->p2, ctx->p.g, ctx)) 297 { 298 JPAKEerr(JPAKE_F_JPAKE_STEP1_PROCESS, JPAKE_R_VERIFY_X4_FAILED); 299 return 0; 300 } 301 302 /* g^xd != 1 */ 303 if(BN_is_one(received->p2.gx)) 304 { 305 JPAKEerr(JPAKE_F_JPAKE_STEP1_PROCESS, JPAKE_R_G_TO_THE_X4_IS_ONE); 306 return 0; 307 } 308 309 /* Save the bits we need for later */ 310 BN_copy(ctx->p.gxc, received->p1.gx); 311 BN_copy(ctx->p.gxd, received->p2.gx); 312 313 return 1; 314 } 315 316 317int JPAKE_STEP2_generate(JPAKE_STEP2 *send, JPAKE_CTX *ctx) 318 { 319 BIGNUM *t1 = BN_new(); 320 BIGNUM *t2 = BN_new(); 321 322 /* 323 * X = g^{(xa + xc + xd) * xb * s} 324 * t1 = g^xa 325 */ 326 BN_mod_exp(t1, ctx->p.g, ctx->xa, ctx->p.p, ctx->ctx); 327 /* t2 = t1 * g^{xc} = g^{xa} * g^{xc} = g^{xa + xc} */ 328 BN_mod_mul(t2, t1, ctx->p.gxc, ctx->p.p, ctx->ctx); 329 /* t1 = t2 * g^{xd} = g^{xa + xc + xd} */ 330 BN_mod_mul(t1, t2, ctx->p.gxd, ctx->p.p, ctx->ctx); 331 /* t2 = xb * s */ 332 BN_mod_mul(t2, ctx->xb, ctx->secret, ctx->p.q, ctx->ctx); 333 334 /* 335 * ZKP(xb * s) 336 * XXX: this is kinda funky, because we're using 337 * 338 * g' = g^{xa + xc + xd} 339 * 340 * as the generator, which means X is g'^{xb * s} 341 * X = t1^{t2} = t1^{xb * s} = g^{(xa + xc + xd) * xb * s} 342 */ 343 generate_step_part(send, t2, t1, ctx); 344 345 /* cleanup */ 346 BN_free(t1); 347 BN_free(t2); 348 349 return 1; 350 } 351 352/* gx = g^{xc + xa + xb} * xd * s */ 353static int compute_key(JPAKE_CTX *ctx, const BIGNUM *gx) 354 { 355 BIGNUM *t1 = BN_new(); 356 BIGNUM *t2 = BN_new(); 357 BIGNUM *t3 = BN_new(); 358 359 /* 360 * K = (gx/g^{xb * xd * s})^{xb} 361 * = (g^{(xc + xa + xb) * xd * s - xb * xd *s})^{xb} 362 * = (g^{(xa + xc) * xd * s})^{xb} 363 * = g^{(xa + xc) * xb * xd * s} 364 * [which is the same regardless of who calculates it] 365 */ 366 367 /* t1 = (g^{xd})^{xb} = g^{xb * xd} */ 368 BN_mod_exp(t1, ctx->p.gxd, ctx->xb, ctx->p.p, ctx->ctx); 369 /* t2 = -s = q-s */ 370 BN_sub(t2, ctx->p.q, ctx->secret); 371 /* t3 = t1^t2 = g^{-xb * xd * s} */ 372 BN_mod_exp(t3, t1, t2, ctx->p.p, ctx->ctx); 373 /* t1 = gx * t3 = X/g^{xb * xd * s} */ 374 BN_mod_mul(t1, gx, t3, ctx->p.p, ctx->ctx); 375 /* K = t1^{xb} */ 376 BN_mod_exp(ctx->key, t1, ctx->xb, ctx->p.p, ctx->ctx); 377 378 /* cleanup */ 379 BN_free(t3); 380 BN_free(t2); 381 BN_free(t1); 382 383 return 1; 384 } 385 386int JPAKE_STEP2_process(JPAKE_CTX *ctx, const JPAKE_STEP2 *received) 387 { 388 BIGNUM *t1 = BN_new(); 389 BIGNUM *t2 = BN_new(); 390 int ret = 0; 391 392 /* 393 * g' = g^{xc + xa + xb} [from our POV] 394 * t1 = xa + xb 395 */ 396 BN_mod_add(t1, ctx->xa, ctx->xb, ctx->p.q, ctx->ctx); 397 /* t2 = g^{t1} = g^{xa+xb} */ 398 BN_mod_exp(t2, ctx->p.g, t1, ctx->p.p, ctx->ctx); 399 /* t1 = g^{xc} * t2 = g^{xc + xa + xb} */ 400 BN_mod_mul(t1, ctx->p.gxc, t2, ctx->p.p, ctx->ctx); 401 402 if(verify_zkp(received, t1, ctx)) 403 ret = 1; 404 else 405 JPAKEerr(JPAKE_F_JPAKE_STEP2_PROCESS, JPAKE_R_VERIFY_B_FAILED); 406 407 compute_key(ctx, received->gx); 408 409 /* cleanup */ 410 BN_free(t2); 411 BN_free(t1); 412 413 return ret; 414 } 415 416static void quickhashbn(unsigned char *md, const BIGNUM *bn) 417 { 418 SHA_CTX sha; 419 420 SHA1_Init(&sha); 421 hashbn(&sha, bn); 422 SHA1_Final(md, &sha); 423 } 424 425void JPAKE_STEP3A_init(JPAKE_STEP3A *s3a) 426 {} 427 428int JPAKE_STEP3A_generate(JPAKE_STEP3A *send, JPAKE_CTX *ctx) 429 { 430 quickhashbn(send->hhk, ctx->key); 431 SHA1(send->hhk, sizeof send->hhk, send->hhk); 432 433 return 1; 434 } 435 436int JPAKE_STEP3A_process(JPAKE_CTX *ctx, const JPAKE_STEP3A *received) 437 { 438 unsigned char hhk[SHA_DIGEST_LENGTH]; 439 440 quickhashbn(hhk, ctx->key); 441 SHA1(hhk, sizeof hhk, hhk); 442 if(memcmp(hhk, received->hhk, sizeof hhk)) 443 { 444 JPAKEerr(JPAKE_F_JPAKE_STEP3A_PROCESS, JPAKE_R_HASH_OF_HASH_OF_KEY_MISMATCH); 445 return 0; 446 } 447 return 1; 448 } 449 450void JPAKE_STEP3A_release(JPAKE_STEP3A *s3a) 451 {} 452 453void JPAKE_STEP3B_init(JPAKE_STEP3B *s3b) 454 {} 455 456int JPAKE_STEP3B_generate(JPAKE_STEP3B *send, JPAKE_CTX *ctx) 457 { 458 quickhashbn(send->hk, ctx->key); 459 460 return 1; 461 } 462 463int JPAKE_STEP3B_process(JPAKE_CTX *ctx, const JPAKE_STEP3B *received) 464 { 465 unsigned char hk[SHA_DIGEST_LENGTH]; 466 467 quickhashbn(hk, ctx->key); 468 if(memcmp(hk, received->hk, sizeof hk)) 469 { 470 JPAKEerr(JPAKE_F_JPAKE_STEP3B_PROCESS, JPAKE_R_HASH_OF_KEY_MISMATCH); 471 return 0; 472 } 473 return 1; 474 } 475 476void JPAKE_STEP3B_release(JPAKE_STEP3B *s3b) 477 {} 478 479const BIGNUM *JPAKE_get_shared_key(JPAKE_CTX *ctx) 480 { 481 return ctx->key; 482 } 483 484