1/*
2 * Copyright (C) 2009 Apple Inc. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 *    notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 *    notice, this list of conditions and the following disclaimer in the
11 *    documentation and/or other materials provided with the distribution.
12 *
13 * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
14 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
16 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL APPLE INC. OR
17 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
18 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
19 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
20 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
21 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
23 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24 */
25
26#include "config.h"
27
28#include "ExecutableAllocator.h"
29
30#include <errno.h>
31
32#if ENABLE(ASSEMBLER) && OS(DARWIN) && CPU(X86_64)
33
34#include "TCSpinLock.h"
35#include <mach/mach_init.h>
36#include <mach/vm_map.h>
37#include <sys/mman.h>
38#include <unistd.h>
39#include <wtf/AVLTree.h>
40#include <wtf/VMTags.h>
41
42using namespace WTF;
43
44namespace JSC {
45
46#define TWO_GB (2u * 1024u * 1024u * 1024u)
47#define SIXTEEN_MB (16u * 1024u * 1024u)
48
49// FreeListEntry describes a free chunk of memory, stored in the freeList.
50struct FreeListEntry {
51    FreeListEntry(void* pointer, size_t size)
52        : pointer(pointer)
53        , size(size)
54        , nextEntry(0)
55        , less(0)
56        , greater(0)
57        , balanceFactor(0)
58    {
59    }
60
61    // All entries of the same size share a single entry
62    // in the AVLTree, and are linked together in a linked
63    // list, using nextEntry.
64    void* pointer;
65    size_t size;
66    FreeListEntry* nextEntry;
67
68    // These fields are used by AVLTree.
69    FreeListEntry* less;
70    FreeListEntry* greater;
71    int balanceFactor;
72};
73
74// Abstractor class for use in AVLTree.
75// Nodes in the AVLTree are of type FreeListEntry, keyed on
76// (and thus sorted by) their size.
77struct AVLTreeAbstractorForFreeList {
78    typedef FreeListEntry* handle;
79    typedef int32_t size;
80    typedef size_t key;
81
82    handle get_less(handle h) { return h->less; }
83    void set_less(handle h, handle lh) { h->less = lh; }
84    handle get_greater(handle h) { return h->greater; }
85    void set_greater(handle h, handle gh) { h->greater = gh; }
86    int get_balance_factor(handle h) { return h->balanceFactor; }
87    void set_balance_factor(handle h, int bf) { h->balanceFactor = bf; }
88
89    static handle null() { return 0; }
90
91    int compare_key_key(key va, key vb) { return va - vb; }
92    int compare_key_node(key k, handle h) { return compare_key_key(k, h->size); }
93    int compare_node_node(handle h1, handle h2) { return compare_key_key(h1->size, h2->size); }
94};
95
96// Used to reverse sort an array of FreeListEntry pointers.
97static int reverseSortFreeListEntriesByPointer(const void* leftPtr, const void* rightPtr)
98{
99    FreeListEntry* left = *(FreeListEntry**)leftPtr;
100    FreeListEntry* right = *(FreeListEntry**)rightPtr;
101
102    return (intptr_t)(right->pointer) - (intptr_t)(left->pointer);
103}
104
105// Used to reverse sort an array of pointers.
106static int reverseSortCommonSizedAllocations(const void* leftPtr, const void* rightPtr)
107{
108    void* left = *(void**)leftPtr;
109    void* right = *(void**)rightPtr;
110
111    return (intptr_t)right - (intptr_t)left;
112}
113
114class FixedVMPoolAllocator
115{
116    // The free list is stored in a sorted tree.
117    typedef AVLTree<AVLTreeAbstractorForFreeList, 40> SizeSortedFreeTree;
118
119    // Use madvise as apropriate to prevent freed pages from being spilled,
120    // and to attempt to ensure that used memory is reported correctly.
121#if HAVE(MADV_FREE_REUSE)
122    void release(void* position, size_t size)
123    {
124        while (madvise(position, size, MADV_FREE_REUSABLE) == -1 && errno == EAGAIN) { }
125    }
126
127    void reuse(void* position, size_t size)
128    {
129        while (madvise(position, size, MADV_FREE_REUSE) == -1 && errno == EAGAIN) { }
130    }
131#elif HAVE(MADV_DONTNEED)
132    void release(void* position, size_t size)
133    {
134        while (madvise(position, size, MADV_DONTNEED) == -1 && errno == EAGAIN) { }
135    }
136
137    void reuse(void*, size_t) {}
138#else
139    void release(void*, size_t) {}
140    void reuse(void*, size_t) {}
141#endif
142
143    // All addition to the free list should go through this method, rather than
144    // calling insert directly, to avoid multiple entries beging added with the
145    // same key.  All nodes being added should be singletons, they should not
146    // already be a part of a chain.
147    void addToFreeList(FreeListEntry* entry)
148    {
149        ASSERT(!entry->nextEntry);
150
151        if (entry->size == m_commonSize) {
152            m_commonSizedAllocations.append(entry->pointer);
153            delete entry;
154        } else if (FreeListEntry* entryInFreeList = m_freeList.search(entry->size, m_freeList.EQUAL)) {
155            // m_freeList already contain an entry for this size - insert this node into the chain.
156            entry->nextEntry = entryInFreeList->nextEntry;
157            entryInFreeList->nextEntry = entry;
158        } else
159            m_freeList.insert(entry);
160    }
161
162    // We do not attempt to coalesce addition, which may lead to fragmentation;
163    // instead we periodically perform a sweep to try to coalesce neigboring
164    // entries in m_freeList.  Presently this is triggered at the point 16MB
165    // of memory has been released.
166    void coalesceFreeSpace()
167    {
168        Vector<FreeListEntry*> freeListEntries;
169        SizeSortedFreeTree::Iterator iter;
170        iter.start_iter_least(m_freeList);
171
172        // Empty m_freeList into a Vector.
173        for (FreeListEntry* entry; (entry = *iter); ++iter) {
174            // Each entry in m_freeList might correspond to multiple
175            // free chunks of memory (of the same size).  Walk the chain
176            // (this is likely of couse only be one entry long!) adding
177            // each entry to the Vector (at reseting the next in chain
178            // pointer to separate each node out).
179            FreeListEntry* next;
180            do {
181                next = entry->nextEntry;
182                entry->nextEntry = 0;
183                freeListEntries.append(entry);
184            } while ((entry = next));
185        }
186        // All entries are now in the Vector; purge the tree.
187        m_freeList.purge();
188
189        // Reverse-sort the freeListEntries and m_commonSizedAllocations Vectors.
190        // We reverse-sort so that we can logically work forwards through memory,
191        // whilst popping items off the end of the Vectors using last() and removeLast().
192        qsort(freeListEntries.begin(), freeListEntries.size(), sizeof(FreeListEntry*), reverseSortFreeListEntriesByPointer);
193        qsort(m_commonSizedAllocations.begin(), m_commonSizedAllocations.size(), sizeof(void*), reverseSortCommonSizedAllocations);
194
195        // The entries from m_commonSizedAllocations that cannot be
196        // coalesced into larger chunks will be temporarily stored here.
197        Vector<void*> newCommonSizedAllocations;
198
199        // Keep processing so long as entries remain in either of the vectors.
200        while (freeListEntries.size() || m_commonSizedAllocations.size()) {
201            // We're going to try to find a FreeListEntry node that we can coalesce onto.
202            FreeListEntry* coalescionEntry = 0;
203
204            // Is the lowest addressed chunk of free memory of common-size, or is it in the free list?
205            if (m_commonSizedAllocations.size() && (!freeListEntries.size() || (m_commonSizedAllocations.last() < freeListEntries.last()->pointer))) {
206                // Pop an item from the m_commonSizedAllocations vector - this is the lowest
207                // addressed free chunk.  Find out the begin and end addresses of the memory chunk.
208                void* begin = m_commonSizedAllocations.last();
209                void* end = (void*)((intptr_t)begin + m_commonSize);
210                m_commonSizedAllocations.removeLast();
211
212                // Try to find another free chunk abutting onto the end of the one we have already found.
213                if (freeListEntries.size() && (freeListEntries.last()->pointer == end)) {
214                    // There is an existing FreeListEntry for the next chunk of memory!
215                    // we can reuse this.  Pop it off the end of m_freeList.
216                    coalescionEntry = freeListEntries.last();
217                    freeListEntries.removeLast();
218                    // Update the existing node to include the common-sized chunk that we also found.
219                    coalescionEntry->pointer = (void*)((intptr_t)coalescionEntry->pointer - m_commonSize);
220                    coalescionEntry->size += m_commonSize;
221                } else if (m_commonSizedAllocations.size() && (m_commonSizedAllocations.last() == end)) {
222                    // There is a second common-sized chunk that can be coalesced.
223                    // Allocate a new node.
224                    m_commonSizedAllocations.removeLast();
225                    coalescionEntry = new FreeListEntry(begin, 2 * m_commonSize);
226                } else {
227                    // Nope - this poor little guy is all on his own. :-(
228                    // Add him into the newCommonSizedAllocations vector for now, we're
229                    // going to end up adding him back into the m_commonSizedAllocations
230                    // list when we're done.
231                    newCommonSizedAllocations.append(begin);
232                    continue;
233                }
234            } else {
235                ASSERT(freeListEntries.size());
236                ASSERT(!m_commonSizedAllocations.size() || (freeListEntries.last()->pointer < m_commonSizedAllocations.last()));
237                // The lowest addressed item is from m_freeList; pop it from the Vector.
238                coalescionEntry = freeListEntries.last();
239                freeListEntries.removeLast();
240            }
241
242            // Right, we have a FreeListEntry, we just need check if there is anything else
243            // to coalesce onto the end.
244            ASSERT(coalescionEntry);
245            while (true) {
246                // Calculate the end address of the chunk we have found so far.
247                void* end = (void*)((intptr_t)coalescionEntry->pointer - coalescionEntry->size);
248
249                // Is there another chunk adjacent to the one we already have?
250                if (freeListEntries.size() && (freeListEntries.last()->pointer == end)) {
251                    // Yes - another FreeListEntry -pop it from the list.
252                    FreeListEntry* coalescee = freeListEntries.last();
253                    freeListEntries.removeLast();
254                    // Add it's size onto our existing node.
255                    coalescionEntry->size += coalescee->size;
256                    delete coalescee;
257                } else if (m_commonSizedAllocations.size() && (m_commonSizedAllocations.last() == end)) {
258                    // We can coalesce the next common-sized chunk.
259                    m_commonSizedAllocations.removeLast();
260                    coalescionEntry->size += m_commonSize;
261                } else
262                    break; // Nope, nothing to be added - stop here.
263            }
264
265            // We've coalesced everything we can onto the current chunk.
266            // Add it back into m_freeList.
267            addToFreeList(coalescionEntry);
268        }
269
270        // All chunks of free memory larger than m_commonSize should be
271        // back in m_freeList by now.  All that remains to be done is to
272        // copy the contents on the newCommonSizedAllocations back into
273        // the m_commonSizedAllocations Vector.
274        ASSERT(m_commonSizedAllocations.size() == 0);
275        m_commonSizedAllocations.append(newCommonSizedAllocations);
276    }
277
278public:
279
280    FixedVMPoolAllocator(size_t commonSize, size_t totalHeapSize)
281        : m_commonSize(commonSize)
282        , m_countFreedSinceLastCoalesce(0)
283        , m_totalHeapSize(totalHeapSize)
284    {
285        // Cook up an address to allocate at, using the following recipe:
286        //   17 bits of zero, stay in userspace kids.
287        //   26 bits of randomness for ASLR.
288        //   21 bits of zero, at least stay aligned within one level of the pagetables.
289        //
290        // But! - as a temporary workaround for some plugin problems (rdar://problem/6812854),
291        // for now instead of 2^26 bits of ASLR lets stick with 25 bits of randomization plus
292        // 2^24, which should put up somewhere in the middle of usespace (in the address range
293        // 0x200000000000 .. 0x5fffffffffff).
294        intptr_t randomLocation = arc4random() & ((1 << 25) - 1);
295        randomLocation += (1 << 24);
296        randomLocation <<= 21;
297        m_base = mmap(reinterpret_cast<void*>(randomLocation), m_totalHeapSize, INITIAL_PROTECTION_FLAGS, MAP_PRIVATE | MAP_ANON, VM_TAG_FOR_EXECUTABLEALLOCATOR_MEMORY, 0);
298        if (!m_base)
299            CRASH();
300
301        // For simplicity, we keep all memory in m_freeList in a 'released' state.
302        // This means that we can simply reuse all memory when allocating, without
303        // worrying about it's previous state, and also makes coalescing m_freeList
304        // simpler since we need not worry about the possibility of coalescing released
305        // chunks with non-released ones.
306        release(m_base, m_totalHeapSize);
307        m_freeList.insert(new FreeListEntry(m_base, m_totalHeapSize));
308    }
309
310    void* alloc(size_t size)
311    {
312        void* result;
313
314        // Freed allocations of the common size are not stored back into the main
315        // m_freeList, but are instead stored in a separate vector.  If the request
316        // is for a common sized allocation, check this list.
317        if ((size == m_commonSize) && m_commonSizedAllocations.size()) {
318            result = m_commonSizedAllocations.last();
319            m_commonSizedAllocations.removeLast();
320        } else {
321            // Serach m_freeList for a suitable sized chunk to allocate memory from.
322            FreeListEntry* entry = m_freeList.search(size, m_freeList.GREATER_EQUAL);
323
324            // This would be bad news.
325            if (!entry) {
326                // Errk!  Lets take a last-ditch desparation attempt at defragmentation...
327                coalesceFreeSpace();
328                // Did that free up a large enough chunk?
329                entry = m_freeList.search(size, m_freeList.GREATER_EQUAL);
330                // No?...  *BOOM!*
331                if (!entry)
332                    CRASH();
333            }
334            ASSERT(entry->size != m_commonSize);
335
336            // Remove the entry from m_freeList.  But! -
337            // Each entry in the tree may represent a chain of multiple chunks of the
338            // same size, and we only want to remove one on them.  So, if this entry
339            // does have a chain, just remove the first-but-one item from the chain.
340            if (FreeListEntry* next = entry->nextEntry) {
341                // We're going to leave 'entry' in the tree; remove 'next' from its chain.
342                entry->nextEntry = next->nextEntry;
343                next->nextEntry = 0;
344                entry = next;
345            } else
346                m_freeList.remove(entry->size);
347
348            // Whoo!, we have a result!
349            ASSERT(entry->size >= size);
350            result = entry->pointer;
351
352            // If the allocation exactly fits the chunk we found in the,
353            // m_freeList then the FreeListEntry node is no longer needed.
354            if (entry->size == size)
355                delete entry;
356            else {
357                // There is memory left over, and it is not of the common size.
358                // We can reuse the existing FreeListEntry node to add this back
359                // into m_freeList.
360                entry->pointer = (void*)((intptr_t)entry->pointer + size);
361                entry->size -= size;
362                addToFreeList(entry);
363            }
364        }
365
366        // Call reuse to report to the operating system that this memory is in use.
367        ASSERT(isWithinVMPool(result, size));
368        reuse(result, size);
369        return result;
370    }
371
372    void free(void* pointer, size_t size)
373    {
374        // Call release to report to the operating system that this
375        // memory is no longer in use, and need not be paged out.
376        ASSERT(isWithinVMPool(pointer, size));
377        release(pointer, size);
378
379        // Common-sized allocations are stored in the m_commonSizedAllocations
380        // vector; all other freed chunks are added to m_freeList.
381        if (size == m_commonSize)
382            m_commonSizedAllocations.append(pointer);
383        else
384            addToFreeList(new FreeListEntry(pointer, size));
385
386        // Do some housekeeping.  Every time we reach a point that
387        // 16MB of allocations have been freed, sweep m_freeList
388        // coalescing any neighboring fragments.
389        m_countFreedSinceLastCoalesce += size;
390        if (m_countFreedSinceLastCoalesce >= SIXTEEN_MB) {
391            m_countFreedSinceLastCoalesce = 0;
392            coalesceFreeSpace();
393        }
394    }
395
396private:
397
398#ifndef NDEBUG
399    bool isWithinVMPool(void* pointer, size_t size)
400    {
401        return pointer >= m_base && (reinterpret_cast<char*>(pointer) + size <= reinterpret_cast<char*>(m_base) + m_totalHeapSize);
402    }
403#endif
404
405    // Freed space from the most common sized allocations will be held in this list, ...
406    const size_t m_commonSize;
407    Vector<void*> m_commonSizedAllocations;
408
409    // ... and all other freed allocations are held in m_freeList.
410    SizeSortedFreeTree m_freeList;
411
412    // This is used for housekeeping, to trigger defragmentation of the freed lists.
413    size_t m_countFreedSinceLastCoalesce;
414
415    void* m_base;
416    size_t m_totalHeapSize;
417};
418
419void ExecutableAllocator::intializePageSize()
420{
421    ExecutableAllocator::pageSize = getpagesize();
422}
423
424static FixedVMPoolAllocator* allocator = 0;
425static SpinLock spinlock = SPINLOCK_INITIALIZER;
426
427ExecutablePool::Allocation ExecutablePool::systemAlloc(size_t size)
428{
429  SpinLockHolder lock_holder(&spinlock);
430
431    if (!allocator)
432        allocator = new FixedVMPoolAllocator(JIT_ALLOCATOR_LARGE_ALLOC_SIZE, TWO_GB);
433    ExecutablePool::Allocation alloc = {reinterpret_cast<char*>(allocator->alloc(size)), size};
434    return alloc;
435}
436
437void ExecutablePool::systemRelease(const ExecutablePool::Allocation& allocation)
438{
439  SpinLockHolder lock_holder(&spinlock);
440
441    ASSERT(allocator);
442    allocator->free(allocation.pages, allocation.size);
443}
444
445}
446
447#endif // HAVE(ASSEMBLER)
448