1/* 2*************************************************************************** 3* Copyright (C) 2008-2009, International Business Machines Corporation 4* and others. All Rights Reserved. 5*************************************************************************** 6* file name: uspoof.cpp 7* encoding: US-ASCII 8* tab size: 8 (not used) 9* indentation:4 10* 11* created on: 2008Feb13 12* created by: Andy Heninger 13* 14* Unicode Spoof Detection 15*/ 16#include "unicode/utypes.h" 17#include "unicode/uspoof.h" 18#include "unicode/unorm.h" 19#include "unicode/ustring.h" 20#include "cmemory.h" 21#include "uspoof_impl.h" 22#include "uassert.h" 23 24 25#if !UCONFIG_NO_NORMALIZATION 26 27 28#include <stdio.h> // debug 29 30U_NAMESPACE_USE 31 32 33U_CAPI USpoofChecker * U_EXPORT2 34uspoof_open(UErrorCode *status) { 35 if (U_FAILURE(*status)) { 36 return NULL; 37 } 38 SpoofImpl *si = new SpoofImpl(SpoofData::getDefault(*status), *status); 39 if (U_FAILURE(*status)) { 40 delete si; 41 si = NULL; 42 } 43 return (USpoofChecker *)si; 44} 45 46 47U_CAPI USpoofChecker * U_EXPORT2 48uspoof_openFromSerialized(const void *data, int32_t length, int32_t *pActualLength, 49 UErrorCode *status) { 50 if (U_FAILURE(*status)) { 51 return NULL; 52 } 53 SpoofData *sd = new SpoofData(data, length, *status); 54 SpoofImpl *si = new SpoofImpl(sd, *status); 55 if (U_FAILURE(*status)) { 56 delete sd; 57 delete si; 58 return NULL; 59 } 60 if (sd == NULL || si == NULL) { 61 *status = U_MEMORY_ALLOCATION_ERROR; 62 delete sd; 63 delete si; 64 return NULL; 65 } 66 67 if (pActualLength != NULL) { 68 *pActualLength = sd->fRawData->fLength; 69 } 70 return reinterpret_cast<USpoofChecker *>(si); 71} 72 73 74U_CAPI USpoofChecker * U_EXPORT2 75uspoof_clone(const USpoofChecker *sc, UErrorCode *status) { 76 const SpoofImpl *src = SpoofImpl::validateThis(sc, *status); 77 if (src == NULL) { 78 return NULL; 79 } 80 SpoofImpl *result = new SpoofImpl(*src, *status); // copy constructor 81 if (U_FAILURE(*status)) { 82 delete result; 83 result = NULL; 84 } 85 return (USpoofChecker *)result; 86} 87 88 89U_CAPI void U_EXPORT2 90uspoof_close(USpoofChecker *sc) { 91 UErrorCode status = U_ZERO_ERROR; 92 SpoofImpl *This = SpoofImpl::validateThis(sc, status); 93 delete This; 94} 95 96 97U_CAPI void U_EXPORT2 98uspoof_setChecks(USpoofChecker *sc, int32_t checks, UErrorCode *status) { 99 SpoofImpl *This = SpoofImpl::validateThis(sc, *status); 100 if (This == NULL) { 101 return; 102 } 103 104 // Verify that the requested checks are all ones (bits) that 105 // are acceptable, known values. 106 if (checks & ~USPOOF_ALL_CHECKS) { 107 *status = U_ILLEGAL_ARGUMENT_ERROR; 108 return; 109 } 110 111 This->fChecks = checks; 112} 113 114 115U_CAPI int32_t U_EXPORT2 116uspoof_getChecks(const USpoofChecker *sc, UErrorCode *status) { 117 const SpoofImpl *This = SpoofImpl::validateThis(sc, *status); 118 if (This == NULL) { 119 return 0; 120 } 121 return This->fChecks; 122} 123 124U_CAPI void U_EXPORT2 125uspoof_setAllowedLocales(USpoofChecker *sc, const char *localesList, UErrorCode *status) { 126 SpoofImpl *This = SpoofImpl::validateThis(sc, *status); 127 if (This == NULL) { 128 return; 129 } 130 This->setAllowedLocales(localesList, *status); 131} 132 133U_CAPI const char * U_EXPORT2 134uspoof_getAllowedLocales(USpoofChecker *sc, UErrorCode *status) { 135 SpoofImpl *This = SpoofImpl::validateThis(sc, *status); 136 if (This == NULL) { 137 return NULL; 138 } 139 return This->getAllowedLocales(*status); 140} 141 142 143U_CAPI const USet * U_EXPORT2 144uspoof_getAllowedChars(const USpoofChecker *sc, UErrorCode *status) { 145 const UnicodeSet *result = uspoof_getAllowedUnicodeSet(sc, status); 146 return reinterpret_cast<const USet *>(result); 147} 148 149U_CAPI const UnicodeSet * U_EXPORT2 150uspoof_getAllowedUnicodeSet(const USpoofChecker *sc, UErrorCode *status) { 151 const SpoofImpl *This = SpoofImpl::validateThis(sc, *status); 152 if (This == NULL) { 153 return NULL; 154 } 155 return This->fAllowedCharsSet; 156} 157 158 159U_CAPI void U_EXPORT2 160uspoof_setAllowedChars(USpoofChecker *sc, const USet *chars, UErrorCode *status) { 161 const UnicodeSet *set = reinterpret_cast<const UnicodeSet *>(chars); 162 uspoof_setAllowedUnicodeSet(sc, set, status); 163} 164 165 166U_CAPI void U_EXPORT2 167uspoof_setAllowedUnicodeSet(USpoofChecker *sc, const UnicodeSet *chars, UErrorCode *status) { 168 SpoofImpl *This = SpoofImpl::validateThis(sc, *status); 169 if (This == NULL) { 170 return; 171 } 172 if (chars->isBogus()) { 173 *status = U_ILLEGAL_ARGUMENT_ERROR; 174 return; 175 } 176 UnicodeSet *clonedSet = static_cast<UnicodeSet *>(chars->clone()); 177 if (clonedSet == NULL || clonedSet->isBogus()) { 178 *status = U_MEMORY_ALLOCATION_ERROR; 179 return; 180 } 181 clonedSet->freeze(); 182 delete This->fAllowedCharsSet; 183 This->fAllowedCharsSet = clonedSet; 184 This->fChecks |= USPOOF_CHAR_LIMIT; 185} 186 187 188U_CAPI int32_t U_EXPORT2 189uspoof_check(const USpoofChecker *sc, 190 const UChar *text, int32_t length, 191 int32_t *position, 192 UErrorCode *status) { 193 194 const SpoofImpl *This = SpoofImpl::validateThis(sc, *status); 195 if (This == NULL) { 196 return 0; 197 } 198 if (length < -1) { 199 *status = U_ILLEGAL_ARGUMENT_ERROR; 200 return 0; 201 } 202 if (length == -1) { 203 // It's not worth the bother to handle nul terminated strings everywhere. 204 // Just get the length and be done with it. 205 length = u_strlen(text); 206 } 207 208 int32_t result = 0; 209 int32_t failPos = 0x7fffffff; // TODO: do we have a #define for max int32? 210 211 // A count of the number of non-Common or inherited scripts. 212 // Needed for both the SINGLE_SCRIPT and the WHOLE/MIXED_SCIRPT_CONFUSABLE tests. 213 // Share the computation when possible. scriptCount == -1 means that we haven't 214 // done it yet. 215 int32_t scriptCount = -1; 216 217 if ((This->fChecks) & USPOOF_SINGLE_SCRIPT) { 218 scriptCount = This->scriptScan(text, length, failPos, *status); 219 // printf("scriptCount (clipped to 2) = %d\n", scriptCount); 220 if ( scriptCount >= 2) { 221 // Note: scriptCount == 2 covers all cases of the number of scripts >= 2 222 result |= USPOOF_SINGLE_SCRIPT; 223 } 224 } 225 226 if (This->fChecks & USPOOF_CHAR_LIMIT) { 227 int32_t i; 228 UChar32 c; 229 for (i=0; i<length ;) { 230 U16_NEXT(text, i, length, c); 231 if (!This->fAllowedCharsSet->contains(c)) { 232 result |= USPOOF_CHAR_LIMIT; 233 if (i < failPos) { 234 failPos = i; 235 } 236 break; 237 } 238 } 239 } 240 241 if (This->fChecks & 242 (USPOOF_WHOLE_SCRIPT_CONFUSABLE | USPOOF_MIXED_SCRIPT_CONFUSABLE | USPOOF_INVISIBLE)) { 243 // These are the checks that need to be done on NFKD input 244 NFKDBuffer normalizedInput(text, length, *status); 245 const UChar *nfkdText = normalizedInput.getBuffer(); 246 int32_t nfkdLength = normalizedInput.getLength(); 247 248 if (This->fChecks & USPOOF_INVISIBLE) { 249 250 // scan for more than one occurence of the same non-spacing mark 251 // in a sequence of non-spacing marks. 252 int32_t i; 253 UChar32 c; 254 UChar32 firstNonspacingMark = 0; 255 UBool haveMultipleMarks = FALSE; 256 UnicodeSet marksSeenSoFar; // Set of combining marks in a single combining sequence. 257 258 for (i=0; i<length ;) { 259 U16_NEXT(nfkdText, i, nfkdLength, c); 260 if (u_charType(c) != U_NON_SPACING_MARK) { 261 firstNonspacingMark = 0; 262 if (haveMultipleMarks) { 263 marksSeenSoFar.clear(); 264 haveMultipleMarks = FALSE; 265 } 266 continue; 267 } 268 if (firstNonspacingMark == 0) { 269 firstNonspacingMark = c; 270 continue; 271 } 272 if (!haveMultipleMarks) { 273 marksSeenSoFar.add(firstNonspacingMark); 274 haveMultipleMarks = TRUE; 275 } 276 if (marksSeenSoFar.contains(c)) { 277 // report the error, and stop scanning. 278 // No need to find more than the first failure. 279 result |= USPOOF_INVISIBLE; 280 failPos = i; 281 break; 282 } 283 marksSeenSoFar.add(c); 284 } 285 } 286 287 288 if (This->fChecks & (USPOOF_WHOLE_SCRIPT_CONFUSABLE | USPOOF_MIXED_SCRIPT_CONFUSABLE)) { 289 // The basic test is the same for both whole and mixed script confusables. 290 // Compute the set of scripts that every input character has a confusable in. 291 // For this computation an input character is always considered to be 292 // confusable with itself in its own script. 293 // If the number of such scripts is two or more, and the input consisted of 294 // characters all from a single script, we have a whole script confusable. 295 // (The two scripts will be the original script and the one that is confusable) 296 // If the number of such scripts >= one, and the original input contained characters from 297 // more than one script, we have a mixed script confusable. (We can transform 298 // some of the characters, and end up with a visually similar string all in 299 // one script.) 300 301 if (scriptCount == -1) { 302 int32_t t; 303 scriptCount = This->scriptScan(text, length, t, *status); 304 } 305 306 ScriptSet scripts; 307 This->wholeScriptCheck(nfkdText, nfkdLength, &scripts, *status); 308 int32_t confusableScriptCount = scripts.countMembers(); 309 //printf("confusableScriptCount = %d\n", confusableScriptCount); 310 311 if ((This->fChecks & USPOOF_WHOLE_SCRIPT_CONFUSABLE) && 312 confusableScriptCount >= 2 && 313 scriptCount == 1) { 314 result |= USPOOF_WHOLE_SCRIPT_CONFUSABLE; 315 } 316 317 if ((This->fChecks & USPOOF_MIXED_SCRIPT_CONFUSABLE) && 318 confusableScriptCount >= 1 && 319 scriptCount > 1) { 320 result |= USPOOF_MIXED_SCRIPT_CONFUSABLE; 321 } 322 } 323 } 324 if (position != NULL && failPos != 0x7fffffff) { 325 *position = failPos; 326 } 327 return result; 328} 329 330 331U_CAPI int32_t U_EXPORT2 332uspoof_checkUTF8(const USpoofChecker *sc, 333 const char *text, int32_t length, 334 int32_t *position, 335 UErrorCode *status) { 336 337 if (U_FAILURE(*status)) { 338 return 0; 339 } 340 UChar stackBuf[USPOOF_STACK_BUFFER_SIZE]; 341 UChar* text16 = stackBuf; 342 int32_t len16; 343 344 u_strFromUTF8(text16, USPOOF_STACK_BUFFER_SIZE, &len16, text, length, status); 345 if (U_FAILURE(*status) && *status != U_BUFFER_OVERFLOW_ERROR) { 346 return 0; 347 } 348 if (*status == U_BUFFER_OVERFLOW_ERROR) { 349 text16 = static_cast<UChar *>(uprv_malloc(len16 * sizeof(UChar) + 2)); 350 if (text16 == NULL) { 351 *status = U_MEMORY_ALLOCATION_ERROR; 352 return 0; 353 } 354 *status = U_ZERO_ERROR; 355 u_strFromUTF8(text16, len16+1, NULL, text, length, status); 356 } 357 358 int32_t position16 = -1; 359 int32_t result = uspoof_check(sc, text16, len16, &position16, status); 360 if (U_FAILURE(*status)) { 361 return 0; 362 } 363 364 if (position16 > 0) { 365 // Translate a UTF-16 based error position back to a UTF-8 offset. 366 // u_strToUTF8() in preflight mode is an easy way to do it. 367 U_ASSERT(position16 <= len16); 368 u_strToUTF8(NULL, 0, position, text16, position16, status); 369 if (position > 0) { 370 // position is the required buffer length from u_strToUTF8, which includes 371 // space for a terminating NULL, which we don't want, hence the -1. 372 *position -= 1; 373 } 374 *status = U_ZERO_ERROR; // u_strToUTF8, above sets BUFFER_OVERFLOW_ERROR. 375 } 376 377 if (text16 != stackBuf) { 378 uprv_free(text16); 379 } 380 return result; 381 382} 383 384/* A convenience wrapper around the public uspoof_getSkeleton that handles 385 * allocating a larger buffer than provided if the original is too small. 386 */ 387static UChar *getSkeleton(const USpoofChecker *sc, uint32_t type, const UChar *s, int32_t inputLength, 388 UChar *dest, int32_t destCapacity, int32_t *outputLength, UErrorCode *status) { 389 int32_t requiredCapacity = 0; 390 UChar *buf = dest; 391 392 if (U_FAILURE(*status)) { 393 return NULL; 394 } 395 requiredCapacity = uspoof_getSkeleton(sc, type, s, inputLength, dest, destCapacity, status); 396 if (*status == U_BUFFER_OVERFLOW_ERROR) { 397 buf = static_cast<UChar *>(uprv_malloc(requiredCapacity * sizeof(UChar))); 398 if (buf == NULL) { 399 *status = U_MEMORY_ALLOCATION_ERROR; 400 return NULL; 401 } 402 *status = U_ZERO_ERROR; 403 uspoof_getSkeleton(sc, type, s, inputLength, buf, requiredCapacity, status); 404 } 405 *outputLength = requiredCapacity; 406 return buf; 407} 408 409 410U_CAPI int32_t U_EXPORT2 411uspoof_areConfusable(const USpoofChecker *sc, 412 const UChar *s1, int32_t length1, 413 const UChar *s2, int32_t length2, 414 UErrorCode *status) { 415 const SpoofImpl *This = SpoofImpl::validateThis(sc, *status); 416 if (U_FAILURE(*status)) { 417 return 0; 418 } 419 // 420 // See section 4 of UAX 39 for the algorithm for checking whether two strings are confusable, 421 // and for definitions of the types (single, whole, mixed-script) of confusables. 422 423 // We only care about a few of the check flags. Ignore the others. 424 // If no tests relavant to this function have been specified, return an error. 425 // TODO: is this really the right thing to do? It's probably an error on the caller's part, 426 // but logically we would just return 0 (no error). 427 if ((This->fChecks & (USPOOF_SINGLE_SCRIPT_CONFUSABLE | USPOOF_MIXED_SCRIPT_CONFUSABLE | 428 USPOOF_WHOLE_SCRIPT_CONFUSABLE)) == 0) { 429 *status = U_INVALID_STATE_ERROR; 430 return 0; 431 } 432 int32_t flagsForSkeleton = This->fChecks & USPOOF_ANY_CASE; 433 UChar s1SkeletonBuf[USPOOF_STACK_BUFFER_SIZE]; 434 UChar *s1Skeleton; 435 int32_t s1SkeletonLength = 0; 436 437 UChar s2SkeletonBuf[USPOOF_STACK_BUFFER_SIZE]; 438 UChar *s2Skeleton; 439 int32_t s2SkeletonLength = 0; 440 441 int32_t result = 0; 442 int32_t t; 443 int32_t s1ScriptCount = This->scriptScan(s1, length1, t, *status); 444 int32_t s2ScriptCount = This->scriptScan(s2, length2, t, *status); 445 446 if (This->fChecks & USPOOF_SINGLE_SCRIPT_CONFUSABLE) { 447 // Do the Single Script compare. 448 if (s1ScriptCount <= 1 && s2ScriptCount <= 1) { 449 flagsForSkeleton |= USPOOF_SINGLE_SCRIPT_CONFUSABLE; 450 s1Skeleton = getSkeleton(sc, flagsForSkeleton, s1, length1, s1SkeletonBuf, 451 sizeof(s1SkeletonBuf)/sizeof(UChar), &s1SkeletonLength, status); 452 s2Skeleton = getSkeleton(sc, flagsForSkeleton, s2, length2, s2SkeletonBuf, 453 sizeof(s2SkeletonBuf)/sizeof(UChar), &s2SkeletonLength, status); 454 if (s1SkeletonLength == s2SkeletonLength && u_strncmp(s1Skeleton, s2Skeleton, s1SkeletonLength) == 0) { 455 result |= USPOOF_SINGLE_SCRIPT_CONFUSABLE; 456 } 457 if (s1Skeleton != s1SkeletonBuf) { 458 uprv_free(s1Skeleton); 459 } 460 if (s2Skeleton != s2SkeletonBuf) { 461 uprv_free(s2Skeleton); 462 } 463 } 464 } 465 466 if (result & USPOOF_SINGLE_SCRIPT_CONFUSABLE) { 467 // If the two inputs are single script confusable they cannot also be 468 // mixed or whole script confusable, according to the UAX39 definitions. 469 // So we can skip those tests. 470 return result; 471 } 472 473 // Optimization for whole script confusables test: two identifiers are whole script confusable if 474 // each is of a single script and they are mixed script confusable. 475 UBool possiblyWholeScriptConfusables = 476 s1ScriptCount <= 1 && s2ScriptCount <= 1 && (This->fChecks & USPOOF_WHOLE_SCRIPT_CONFUSABLE); 477 478 // 479 // Mixed Script Check 480 // 481 if ((This->fChecks & USPOOF_MIXED_SCRIPT_CONFUSABLE) || possiblyWholeScriptConfusables ) { 482 // For getSkeleton(), resetting the USPOOF_SINGLE_SCRIPT_CONFUSABLE flag will get us 483 // the mixed script table skeleton, which is what we want. 484 // The Any Case / Lower Case bit in the skelton flags was set at the top of the function. 485 flagsForSkeleton &= ~USPOOF_SINGLE_SCRIPT_CONFUSABLE; 486 s1Skeleton = getSkeleton(sc, flagsForSkeleton, s1, length1, s1SkeletonBuf, 487 sizeof(s1SkeletonBuf)/sizeof(UChar), &s1SkeletonLength, status); 488 s2Skeleton = getSkeleton(sc, flagsForSkeleton, s2, length2, s2SkeletonBuf, 489 sizeof(s2SkeletonBuf)/sizeof(UChar), &s2SkeletonLength, status); 490 if (s1SkeletonLength == s2SkeletonLength && u_strncmp(s1Skeleton, s2Skeleton, s1SkeletonLength) == 0) { 491 result |= USPOOF_MIXED_SCRIPT_CONFUSABLE; 492 if (possiblyWholeScriptConfusables) { 493 result |= USPOOF_WHOLE_SCRIPT_CONFUSABLE; 494 } 495 } 496 if (s1Skeleton != s1SkeletonBuf) { 497 uprv_free(s1Skeleton); 498 } 499 if (s2Skeleton != s2SkeletonBuf) { 500 uprv_free(s2Skeleton); 501 } 502 } 503 504 return result; 505} 506 507 508// Convenience function for converting a UTF-8 input to a UChar * string, including 509// reallocating a buffer when required. Parameters and their interpretation mostly 510// match u_strFromUTF8. 511 512static UChar * convertFromUTF8(UChar *outBuf, int32_t outBufCapacity, int32_t *outputLength, 513 const char *in, int32_t inLength, UErrorCode *status) { 514 if (U_FAILURE(*status)) { 515 return NULL; 516 } 517 UChar *dest = outBuf; 518 u_strFromUTF8(dest, outBufCapacity, outputLength, in, inLength, status); 519 if (*status == U_BUFFER_OVERFLOW_ERROR) { 520 dest = static_cast<UChar *>(uprv_malloc(*outputLength * sizeof(UChar))); 521 if (dest == NULL) { 522 *status = U_MEMORY_ALLOCATION_ERROR; 523 return NULL; 524 } 525 *status = U_ZERO_ERROR; 526 u_strFromUTF8(dest, *outputLength, NULL, in, inLength, status); 527 } 528 return dest; 529} 530 531 532 533U_CAPI int32_t U_EXPORT2 534uspoof_areConfusableUTF8(const USpoofChecker *sc, 535 const char *s1, int32_t length1, 536 const char *s2, int32_t length2, 537 UErrorCode *status) { 538 539 SpoofImpl::validateThis(sc, *status); 540 if (U_FAILURE(*status)) { 541 return 0; 542 } 543 544 UChar s1Buf[USPOOF_STACK_BUFFER_SIZE]; 545 int32_t lengthS1U; 546 UChar *s1U = convertFromUTF8(s1Buf, USPOOF_STACK_BUFFER_SIZE, &lengthS1U, s1, length1, status); 547 548 UChar s2Buf[USPOOF_STACK_BUFFER_SIZE]; 549 int32_t lengthS2U; 550 UChar *s2U = convertFromUTF8(s2Buf, USPOOF_STACK_BUFFER_SIZE, &lengthS2U, s2, length2, status); 551 552 int32_t results = uspoof_areConfusable(sc, s1U, lengthS1U, s2U, lengthS2U, status); 553 554 if (s1U != s1Buf) { 555 uprv_free(s1U); 556 } 557 if (s2U != s2Buf) { 558 uprv_free(s2U); 559 } 560 return results; 561} 562 563 564U_CAPI int32_t U_EXPORT2 565uspoof_areConfusableUnicodeString(const USpoofChecker *sc, 566 const U_NAMESPACE_QUALIFIER UnicodeString &s1, 567 const U_NAMESPACE_QUALIFIER UnicodeString &s2, 568 UErrorCode *status) { 569 570 const UChar *u1 = s1.getBuffer(); 571 int32_t length1 = s1.length(); 572 const UChar *u2 = s2.getBuffer(); 573 int32_t length2 = s2.length(); 574 575 int32_t results = uspoof_areConfusable(sc, u1, length1, u2, length2, status); 576 return results; 577} 578 579 580 581 582U_CAPI int32_t U_EXPORT2 583uspoof_checkUnicodeString(const USpoofChecker *sc, 584 const U_NAMESPACE_QUALIFIER UnicodeString &text, 585 int32_t *position, 586 UErrorCode *status) { 587 int32_t result = uspoof_check(sc, text.getBuffer(), text.length(), position, status); 588 return result; 589} 590 591 592U_CAPI int32_t U_EXPORT2 593uspoof_getSkeleton(const USpoofChecker *sc, 594 uint32_t type, 595 const UChar *s, int32_t length, 596 UChar *dest, int32_t destCapacity, 597 UErrorCode *status) { 598 599 // TODO: this function could be sped up a bit 600 // Skip the input normalization when not needed, work from callers data. 601 // Put the initial skeleton straight into the caller's destination buffer. 602 // It probably won't need normalization. 603 // But these would make the structure more complicated. 604 605 const SpoofImpl *This = SpoofImpl::validateThis(sc, *status); 606 if (U_FAILURE(*status)) { 607 return 0; 608 } 609 if (length<-1 || destCapacity<0 || (destCapacity==0 && dest!=NULL) || 610 (type & ~(USPOOF_SINGLE_SCRIPT_CONFUSABLE | USPOOF_ANY_CASE)) != 0) { 611 *status = U_ILLEGAL_ARGUMENT_ERROR; 612 return 0; 613 } 614 615 int32_t tableMask = 0; 616 switch (type) { 617 case 0: 618 tableMask = USPOOF_ML_TABLE_FLAG; 619 break; 620 case USPOOF_SINGLE_SCRIPT_CONFUSABLE: 621 tableMask = USPOOF_SL_TABLE_FLAG; 622 break; 623 case USPOOF_ANY_CASE: 624 tableMask = USPOOF_MA_TABLE_FLAG; 625 break; 626 case USPOOF_SINGLE_SCRIPT_CONFUSABLE | USPOOF_ANY_CASE: 627 tableMask = USPOOF_SA_TABLE_FLAG; 628 break; 629 default: 630 *status = U_ILLEGAL_ARGUMENT_ERROR; 631 return 0; 632 } 633 634 // NFKD transform of the user supplied input 635 636 UChar nfkdStackBuf[USPOOF_STACK_BUFFER_SIZE]; 637 UChar *nfkdInput = nfkdStackBuf; 638 int32_t normalizedLen = unorm_normalize( 639 s, length, UNORM_NFKD, 0, nfkdInput, USPOOF_STACK_BUFFER_SIZE, status); 640 if (*status == U_BUFFER_OVERFLOW_ERROR) { 641 nfkdInput = (UChar *)uprv_malloc((normalizedLen+1)*sizeof(UChar)); 642 if (nfkdInput == NULL) { 643 *status = U_MEMORY_ALLOCATION_ERROR; 644 return 0; 645 } 646 *status = U_ZERO_ERROR; 647 normalizedLen = unorm_normalize(s, length, UNORM_NFKD, 0, 648 nfkdInput, normalizedLen+1, status); 649 } 650 if (U_FAILURE(*status)) { 651 if (nfkdInput != nfkdStackBuf) { 652 uprv_free(nfkdInput); 653 } 654 return 0; 655 } 656 657 // buffer to hold the Unicode defined skeleton mappings for a single code point 658 UChar buf[USPOOF_MAX_SKELETON_EXPANSION]; 659 660 // Apply the skeleton mapping to the NFKD normalized input string 661 // Accumulate the skeleton, possibly unnormalized, in a UnicodeString. 662 int32_t inputIndex = 0; 663 UnicodeString skelStr; 664 while (inputIndex < normalizedLen) { 665 UChar32 c; 666 U16_NEXT(nfkdInput, inputIndex, normalizedLen, c); 667 int32_t replaceLen = This->confusableLookup(c, tableMask, buf); 668 skelStr.append(buf, replaceLen); 669 } 670 671 if (nfkdInput != nfkdStackBuf) { 672 uprv_free(nfkdInput); 673 } 674 675 const UChar *result = skelStr.getBuffer(); 676 int32_t resultLen = skelStr.length(); 677 UChar *normedResult = NULL; 678 679 // Check the skeleton for NFKD, normalize it if needed. 680 // Unnormalized results should be very rare. 681 if (!unorm_isNormalized(result, resultLen, UNORM_NFKD, status)) { 682 normalizedLen = unorm_normalize(dest, resultLen, UNORM_NFKD, 0, NULL, 0, status); 683 UChar *normedResult = static_cast<UChar *>(uprv_malloc((normalizedLen+1)*sizeof(UChar))); 684 if (normedResult == NULL) { 685 *status = U_MEMORY_ALLOCATION_ERROR; 686 return 0; 687 } 688 unorm_normalize(result, resultLen, UNORM_NFKD, 0, normedResult, normalizedLen+1, status); 689 result = normedResult; 690 resultLen = normalizedLen; 691 } 692 693 // Copy the skeleton to the caller's buffer 694 if (U_SUCCESS(*status)) { 695 if (destCapacity == 0 || resultLen > destCapacity) { 696 *status = resultLen>destCapacity ? U_BUFFER_OVERFLOW_ERROR : U_STRING_NOT_TERMINATED_WARNING; 697 } else { 698 u_memcpy(dest, result, resultLen); 699 if (destCapacity > resultLen) { 700 dest[resultLen] = 0; 701 } else { 702 *status = U_STRING_NOT_TERMINATED_WARNING; 703 } 704 } 705 } 706 uprv_free(normedResult); 707 return resultLen; 708} 709 710 711 712U_CAPI UnicodeString & U_EXPORT2 713uspoof_getSkeletonUnicodeString(const USpoofChecker *sc, 714 uint32_t type, 715 const UnicodeString &s, 716 UnicodeString &dest, 717 UErrorCode *status) { 718 if (U_FAILURE(*status)) { 719 return dest; 720 } 721 dest.remove(); 722 723 const UChar *str = s.getBuffer(); 724 int32_t strLen = s.length(); 725 UChar smallBuf[USPOOF_STACK_BUFFER_SIZE]; 726 UChar *buf = smallBuf; 727 int32_t outputSize = uspoof_getSkeleton(sc, type, str, strLen, smallBuf, USPOOF_STACK_BUFFER_SIZE, status); 728 if (*status == U_BUFFER_OVERFLOW_ERROR) { 729 buf = static_cast<UChar *>(uprv_malloc((outputSize+1)*sizeof(UChar))); 730 if (buf == NULL) { 731 *status = U_MEMORY_ALLOCATION_ERROR; 732 return dest; 733 } 734 *status = U_ZERO_ERROR; 735 uspoof_getSkeleton(sc, type, str, strLen, buf, outputSize+1, status); 736 } 737 if (U_SUCCESS(*status)) { 738 dest.setTo(buf, outputSize); 739 } 740 741 if (buf != smallBuf) { 742 uprv_free(buf); 743 } 744 return dest; 745} 746 747 748U_CAPI int32_t U_EXPORT2 749uspoof_getSkeletonUTF8(const USpoofChecker *sc, 750 uint32_t type, 751 const char *s, int32_t length, 752 char *dest, int32_t destCapacity, 753 UErrorCode *status) { 754 // Lacking a UTF-8 normalization API, just converting the input to 755 // UTF-16 seems as good an approach as any. In typical use, input will 756 // be an identifier, which is to say not too long for stack buffers. 757 if (U_FAILURE(*status)) { 758 return 0; 759 } 760 // Buffers for the UChar form of the input and skeleton strings. 761 UChar smallInBuf[USPOOF_STACK_BUFFER_SIZE]; 762 UChar *inBuf = smallInBuf; 763 UChar smallOutBuf[USPOOF_STACK_BUFFER_SIZE]; 764 UChar *outBuf = smallOutBuf; 765 766 int32_t lengthInUChars = 0; 767 int32_t skelLengthInUChars = 0; 768 int32_t skelLengthInUTF8 = 0; 769 770 u_strFromUTF8(inBuf, USPOOF_STACK_BUFFER_SIZE, &lengthInUChars, 771 s, length, status); 772 if (*status == U_BUFFER_OVERFLOW_ERROR) { 773 inBuf = static_cast<UChar *>(uprv_malloc((lengthInUChars+1)*sizeof(UChar))); 774 if (inBuf == NULL) { 775 *status = U_MEMORY_ALLOCATION_ERROR; 776 goto cleanup; 777 } 778 *status = U_ZERO_ERROR; 779 u_strFromUTF8(inBuf, USPOOF_STACK_BUFFER_SIZE, &lengthInUChars+1, 780 s, length, status); 781 } 782 783 skelLengthInUChars = uspoof_getSkeleton(sc, type, outBuf, lengthInUChars, 784 outBuf, USPOOF_STACK_BUFFER_SIZE, status); 785 if (*status == U_BUFFER_OVERFLOW_ERROR) { 786 *status = U_ZERO_ERROR; 787 outBuf = static_cast<UChar *>(uprv_malloc((skelLengthInUChars+1)*sizeof(UChar))); 788 if (outBuf == NULL) { 789 *status = U_MEMORY_ALLOCATION_ERROR; 790 goto cleanup; 791 } 792 skelLengthInUChars = uspoof_getSkeleton(sc, type, outBuf, lengthInUChars, 793 outBuf, USPOOF_STACK_BUFFER_SIZE, status); 794 } 795 796 u_strToUTF8(dest, destCapacity, &skelLengthInUTF8, 797 outBuf, skelLengthInUChars, status); 798 799 cleanup: 800 if (inBuf != smallInBuf) { 801 uprv_free(inBuf); 802 } 803 if (outBuf != smallOutBuf) { 804 uprv_free(outBuf); 805 } 806 return skelLengthInUTF8; 807} 808 809 810U_CAPI int32_t U_EXPORT2 811uspoof_serialize(USpoofChecker *sc,void *buf, int32_t capacity, UErrorCode *status) { 812 SpoofImpl *This = SpoofImpl::validateThis(sc, *status); 813 if (This == NULL) { 814 U_ASSERT(U_FAILURE(*status)); 815 return 0; 816 } 817 int32_t dataSize = This->fSpoofData->fRawData->fLength; 818 if (capacity < dataSize) { 819 *status = U_BUFFER_OVERFLOW_ERROR; 820 return dataSize; 821 } 822 uprv_memcpy(buf, This->fSpoofData->fRawData, dataSize); 823 return dataSize; 824} 825 826#endif 827