1/* Extended regular expression matching and search library, version 2 0.12. (Implements POSIX draft P10003.2/D11.2, except for 3 internationalization features.) 4 5 Copyright (C) 1993, 1994, 1995, 1996 Free Software Foundation, Inc. 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 2, or (at your option) 10 any later version. 11 12 This program is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with this program; if not, write to the Free Software 19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, 20 USA. */ 21 22/* AIX requires this to be the first thing in the file. */ 23#if defined (_AIX) && !defined (REGEX_MALLOC) 24 #pragma alloca 25#endif 26 27#undef _GNU_SOURCE 28#define _GNU_SOURCE 29 30#include "cs_config.h" 31#include "util/osdep.h" 32 33#ifdef HAVE_CONFIG_H 34#include <config.h> 35#endif 36 37/* We need this for `regex.h', and perhaps for the Emacs include files. */ 38#include <sys/types.h> 39 40/* This is for other GNU distributions with internationalized messages. */ 41#if HAVE_LIBINTL_H || defined (_LIBC) 42# include <libintl.h> 43#else 44# define gettext(msgid) (msgid) 45#endif 46 47#ifndef gettext_noop 48/* This define is so xgettext can find the internationalizable 49 strings. */ 50#define gettext_noop(String) String 51#endif 52 53/* The `emacs' switch turns on certain matching commands 54 that make sense only in Emacs. */ 55#ifdef emacs 56 57#include "lisp.h" 58#include "buffer.h" 59#include "syntax.h" 60 61#else /* not emacs */ 62 63/* If we are not linking with Emacs proper, 64 we can't use the relocating allocator 65 even if config.h says that we can. */ 66#undef REL_ALLOC 67 68#if defined (STDC_HEADERS) || defined (_LIBC) 69#include <stdlib.h> 70#else 71char *malloc (); 72char *realloc (); 73#endif 74 75/* When used in Emacs's lib-src, we need to get bzero and bcopy somehow. 76 If nothing else has been done, use the method below. */ 77#ifdef INHIBIT_STRING_HEADER 78#if !(defined (HAVE_BZERO) && defined (HAVE_BCOPY)) 79#if !defined (bzero) && !defined (bcopy) 80#undef INHIBIT_STRING_HEADER 81#endif 82#endif 83#endif 84 85/* This is the normal way of making sure we have a bcopy and a bzero. 86 This is used in most programs--a few other programs avoid this 87 by defining INHIBIT_STRING_HEADER. */ 88#ifndef INHIBIT_STRING_HEADER 89#if defined (HAVE_STRING_H) || defined (STDC_HEADERS) || defined (_LIBC) 90#include <string.h> 91#ifndef bcmp 92#define bcmp(s1, s2, n) memcmp ((s1), (s2), (n)) 93#endif 94#ifndef bcopy 95#define bcopy(s, d, n) memcpy ((d), (s), (n)) 96#endif 97#ifndef bzero 98#define bzero(s, n) memset ((s), 0, (n)) 99#endif 100#else 101#include <strings.h> 102#endif 103#endif 104 105/* Define the syntax stuff for \<, \>, etc. */ 106 107/* This must be nonzero for the wordchar and notwordchar pattern 108 commands in re_match_2. */ 109#ifndef Sword 110#define Sword 1 111#endif 112 113#ifdef SWITCH_ENUM_BUG 114#define SWITCH_ENUM_CAST(x) ((int)(x)) 115#else 116#define SWITCH_ENUM_CAST(x) (x) 117#endif 118 119#ifdef SYNTAX_TABLE 120 121extern char *re_syntax_table; 122 123#else /* not SYNTAX_TABLE */ 124 125/* How many characters in the character set. */ 126#define CHAR_SET_SIZE 256 127 128static char re_syntax_table[CHAR_SET_SIZE]; 129 130static void 131init_syntax_once () 132{ 133 register int c; 134 static int done = 0; 135 136 if (done) 137 return; 138 139 bzero (re_syntax_table, sizeof re_syntax_table); 140 141 for (c = 'a'; c <= 'z'; c++) 142 re_syntax_table[c] = Sword; 143 144 for (c = 'A'; c <= 'Z'; c++) 145 re_syntax_table[c] = Sword; 146 147 for (c = '0'; c <= '9'; c++) 148 re_syntax_table[c] = Sword; 149 150 re_syntax_table['_'] = Sword; 151 152 done = 1; 153} 154 155#endif /* not SYNTAX_TABLE */ 156 157#define SYNTAX(c) re_syntax_table[c] 158 159#endif /* not emacs */ 160 161/* Get the interface, including the syntax bits. */ 162#include "regex.h" 163 164/* isalpha etc. are used for the character classes. */ 165#include <ctype.h> 166 167/* Jim Meyering writes: 168 169 "... Some ctype macros are valid only for character codes that 170 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when 171 using /bin/cc or gcc but without giving an ansi option). So, all 172 ctype uses should be through macros like ISPRINT... If 173 STDC_HEADERS is defined, then autoconf has verified that the ctype 174 macros don't need to be guarded with references to isascii. ... 175 Defining IN_CTYPE_DOMAIN to 1 should let any compiler worth its salt 176 eliminate the && through constant folding." */ 177 178#if defined (STDC_HEADERS) || (!defined (isascii) && !defined (HAVE_ISASCII)) 179#define IN_CTYPE_DOMAIN(c) 1 180#else 181#define IN_CTYPE_DOMAIN(c) isascii(c) 182#endif 183 184#ifdef isblank 185#define ISBLANK(c) (IN_CTYPE_DOMAIN (c) && isblank (c)) 186#else 187#define ISBLANK(c) ((c) == ' ' || (c) == '\t') 188#endif 189#ifdef isgraph 190#define ISGRAPH(c) (IN_CTYPE_DOMAIN (c) && isgraph (c)) 191#else 192#define ISGRAPH(c) (IN_CTYPE_DOMAIN (c) && isprint (c) && !isspace (c)) 193#endif 194 195#define ISPRINT(c) (IN_CTYPE_DOMAIN (c) && isprint (c)) 196#define ISDIGIT(c) (IN_CTYPE_DOMAIN (c) && isdigit (c)) 197#define ISALNUM(c) (IN_CTYPE_DOMAIN (c) && isalnum (c)) 198#define ISALPHA(c) (IN_CTYPE_DOMAIN (c) && isalpha (c)) 199#define ISCNTRL(c) (IN_CTYPE_DOMAIN (c) && iscntrl (c)) 200#define ISLOWER(c) (IN_CTYPE_DOMAIN (c) && islower (c)) 201#define ISPUNCT(c) (IN_CTYPE_DOMAIN (c) && ispunct (c)) 202#define ISSPACE(c) (IN_CTYPE_DOMAIN (c) && isspace (c)) 203#define ISUPPER(c) (IN_CTYPE_DOMAIN (c) && isupper (c)) 204#define ISXDIGIT(c) (IN_CTYPE_DOMAIN (c) && isxdigit (c)) 205 206#ifndef NULL 207#define NULL (void *)0 208#endif 209 210/* We remove any previous definition of `SIGN_EXTEND_CHAR', 211 since ours (we hope) works properly with all combinations of 212 machines, compilers, `char' and `unsigned char' argument types. 213 (Per Bothner suggested the basic approach.) */ 214#undef SIGN_EXTEND_CHAR 215#if __STDC__ 216#define SIGN_EXTEND_CHAR(c) ((signed char) (c)) 217#else /* not __STDC__ */ 218/* As in Harbison and Steele. */ 219#define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128) 220#endif 221 222/* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we 223 use `alloca' instead of `malloc'. This is because using malloc in 224 re_search* or re_match* could cause memory leaks when C-g is used in 225 Emacs; also, malloc is slower and causes storage fragmentation. On 226 the other hand, malloc is more portable, and easier to debug. 227 228 Because we sometimes use alloca, some routines have to be macros, 229 not functions -- `alloca'-allocated space disappears at the end of the 230 function it is called in. */ 231 232#ifdef REGEX_MALLOC 233 234#define REGEX_ALLOCATE malloc 235#define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize) 236#define REGEX_FREE free 237 238#else /* not REGEX_MALLOC */ 239 240/* Emacs already defines alloca, sometimes. */ 241#ifndef alloca 242 243/* Make alloca work the best possible way. */ 244#ifdef __GNUC__ 245#define alloca __builtin_alloca 246#else /* not __GNUC__ */ 247#if HAVE_ALLOCA_H 248#include <alloca.h> 249#else /* not __GNUC__ or HAVE_ALLOCA_H */ 250#if 0 /* It is a bad idea to declare alloca. We always cast the result. */ 251#ifndef _AIX /* Already did AIX, up at the top. */ 252char *alloca (); 253#endif /* not _AIX */ 254#endif 255#endif /* not HAVE_ALLOCA_H */ 256#endif /* not __GNUC__ */ 257 258#endif /* not alloca */ 259 260#define REGEX_ALLOCATE alloca 261 262/* Assumes a `char *destination' variable. */ 263#define REGEX_REALLOCATE(source, osize, nsize) \ 264 (destination = (char *) alloca (nsize), \ 265 bcopy (source, destination, osize), \ 266 destination) 267 268/* No need to do anything to free, after alloca. */ 269#define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */ 270 271#endif /* not REGEX_MALLOC */ 272 273/* Define how to allocate the failure stack. */ 274 275#if defined (REL_ALLOC) && defined (REGEX_MALLOC) 276 277#define REGEX_ALLOCATE_STACK(size) \ 278 r_alloc (&failure_stack_ptr, (size)) 279#define REGEX_REALLOCATE_STACK(source, osize, nsize) \ 280 r_re_alloc (&failure_stack_ptr, (nsize)) 281#define REGEX_FREE_STACK(ptr) \ 282 r_alloc_free (&failure_stack_ptr) 283 284#else /* not using relocating allocator */ 285 286#ifdef REGEX_MALLOC 287 288#define REGEX_ALLOCATE_STACK malloc 289#define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize) 290#define REGEX_FREE_STACK free 291 292#else /* not REGEX_MALLOC */ 293 294#define REGEX_ALLOCATE_STACK alloca 295 296#define REGEX_REALLOCATE_STACK(source, osize, nsize) \ 297 REGEX_REALLOCATE (source, osize, nsize) 298/* No need to explicitly free anything. */ 299#define REGEX_FREE_STACK(arg) 300 301#endif /* not REGEX_MALLOC */ 302#endif /* not using relocating allocator */ 303 304 305/* True if `size1' is non-NULL and PTR is pointing anywhere inside 306 `string1' or just past its end. This works if PTR is NULL, which is 307 a good thing. */ 308#define FIRST_STRING_P(ptr) \ 309 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1) 310 311/* (Re)Allocate N items of type T using malloc, or fail. */ 312#define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t))) 313#define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t))) 314#define RETALLOC_IF(addr, n, t) \ 315 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t) 316#define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t))) 317 318#define BYTEWIDTH 8 /* In bits. */ 319 320#define STREQ(s1, s2) ((strcmp (s1, s2) == 0)) 321 322#undef MAX 323#undef MIN 324#define MAX(a, b) ((a) > (b) ? (a) : (b)) 325#define MIN(a, b) ((a) < (b) ? (a) : (b)) 326 327typedef char boolean; 328#define false 0 329#define true 1 330 331static int re_match_2_internal (); 332 333/* These are the command codes that appear in compiled regular 334 expressions. Some opcodes are followed by argument bytes. A 335 command code can specify any interpretation whatsoever for its 336 arguments. Zero bytes may appear in the compiled regular expression. */ 337 338typedef enum 339{ 340 no_op = 0, 341 342 /* Succeed right away--no more backtracking. */ 343 succeed, 344 345 /* Followed by one byte giving n, then by n literal bytes. */ 346 exactn, 347 348 /* Matches any (more or less) character. */ 349 anychar, 350 351 /* Matches any one char belonging to specified set. First 352 following byte is number of bitmap bytes. Then come bytes 353 for a bitmap saying which chars are in. Bits in each byte 354 are ordered low-bit-first. A character is in the set if its 355 bit is 1. A character too large to have a bit in the map is 356 automatically not in the set. */ 357 charset, 358 359 /* Same parameters as charset, but match any character that is 360 not one of those specified. */ 361 charset_not, 362 363 /* Start remembering the text that is matched, for storing in a 364 register. Followed by one byte with the register number, in 365 the range 0 to one less than the pattern buffer's re_nsub 366 field. Then followed by one byte with the number of groups 367 inner to this one. (This last has to be part of the 368 start_memory only because we need it in the on_failure_jump 369 of re_match_2.) */ 370 start_memory, 371 372 /* Stop remembering the text that is matched and store it in a 373 memory register. Followed by one byte with the register 374 number, in the range 0 to one less than `re_nsub' in the 375 pattern buffer, and one byte with the number of inner groups, 376 just like `start_memory'. (We need the number of inner 377 groups here because we don't have any easy way of finding the 378 corresponding start_memory when we're at a stop_memory.) */ 379 stop_memory, 380 381 /* Match a duplicate of something remembered. Followed by one 382 byte containing the register number. */ 383 duplicate, 384 385 /* Fail unless at beginning of line. */ 386 begline, 387 388 /* Fail unless at end of line. */ 389 endline, 390 391 /* Succeeds if at beginning of buffer (if emacs) or at beginning 392 of string to be matched (if not). */ 393 begbuf, 394 395 /* Analogously, for end of buffer/string. */ 396 endbuf, 397 398 /* Followed by two byte relative address to which to jump. */ 399 jump, 400 401 /* Same as jump, but marks the end of an alternative. */ 402 jump_past_alt, 403 404 /* Followed by two-byte relative address of place to resume at 405 in case of failure. */ 406 on_failure_jump, 407 408 /* Like on_failure_jump, but pushes a placeholder instead of the 409 current string position when executed. */ 410 on_failure_keep_string_jump, 411 412 /* Throw away latest failure point and then jump to following 413 two-byte relative address. */ 414 pop_failure_jump, 415 416 /* Change to pop_failure_jump if know won't have to backtrack to 417 match; otherwise change to jump. This is used to jump 418 back to the beginning of a repeat. If what follows this jump 419 clearly won't match what the repeat does, such that we can be 420 sure that there is no use backtracking out of repetitions 421 already matched, then we change it to a pop_failure_jump. 422 Followed by two-byte address. */ 423 maybe_pop_jump, 424 425 /* Jump to following two-byte address, and push a dummy failure 426 point. This failure point will be thrown away if an attempt 427 is made to use it for a failure. A `+' construct makes this 428 before the first repeat. Also used as an intermediary kind 429 of jump when compiling an alternative. */ 430 dummy_failure_jump, 431 432 /* Push a dummy failure point and continue. Used at the end of 433 alternatives. */ 434 push_dummy_failure, 435 436 /* Followed by two-byte relative address and two-byte number n. 437 After matching N times, jump to the address upon failure. */ 438 succeed_n, 439 440 /* Followed by two-byte relative address, and two-byte number n. 441 Jump to the address N times, then fail. */ 442 jump_n, 443 444 /* Set the following two-byte relative address to the 445 subsequent two-byte number. The address *includes* the two 446 bytes of number. */ 447 set_number_at, 448 449 wordchar, /* Matches any word-constituent character. */ 450 notwordchar, /* Matches any char that is not a word-constituent. */ 451 452 wordbeg, /* Succeeds if at word beginning. */ 453 wordend, /* Succeeds if at word end. */ 454 455 wordbound, /* Succeeds if at a word boundary. */ 456 notwordbound /* Succeeds if not at a word boundary. */ 457 458#ifdef emacs 459 ,before_dot, /* Succeeds if before point. */ 460 at_dot, /* Succeeds if at point. */ 461 after_dot, /* Succeeds if after point. */ 462 463 /* Matches any character whose syntax is specified. Followed by 464 a byte which contains a syntax code, e.g., Sword. */ 465 syntaxspec, 466 467 /* Matches any character whose syntax is not that specified. */ 468 notsyntaxspec 469#endif /* emacs */ 470} re_opcode_t; 471 472/* Common operations on the compiled pattern. */ 473 474/* Store NUMBER in two contiguous bytes starting at DESTINATION. */ 475 476#define STORE_NUMBER(destination, number) \ 477 do { \ 478 (destination)[0] = (number) & 0377; \ 479 (destination)[1] = (number) >> 8; \ 480 } while (0) 481 482/* Same as STORE_NUMBER, except increment DESTINATION to 483 the byte after where the number is stored. Therefore, DESTINATION 484 must be an lvalue. */ 485 486#define STORE_NUMBER_AND_INCR(destination, number) \ 487 do { \ 488 STORE_NUMBER (destination, number); \ 489 (destination) += 2; \ 490 } while (0) 491 492/* Put into DESTINATION a number stored in two contiguous bytes starting 493 at SOURCE. */ 494 495#define EXTRACT_NUMBER(destination, source) \ 496 do { \ 497 (destination) = *(source) & 0377; \ 498 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \ 499 } while (0) 500 501#ifdef DEBUG 502static void 503extract_number (dest, source) 504 int *dest; 505 unsigned char *source; 506{ 507 int temp = SIGN_EXTEND_CHAR (*(source + 1)); 508 *dest = *source & 0377; 509 *dest += temp << 8; 510} 511 512#ifndef EXTRACT_MACROS /* To debug the macros. */ 513#undef EXTRACT_NUMBER 514#define EXTRACT_NUMBER(dest, src) extract_number (&dest, src) 515#endif /* not EXTRACT_MACROS */ 516 517#endif /* DEBUG */ 518 519/* Same as EXTRACT_NUMBER, except increment SOURCE to after the number. 520 SOURCE must be an lvalue. */ 521 522#define EXTRACT_NUMBER_AND_INCR(destination, source) \ 523 do { \ 524 EXTRACT_NUMBER (destination, source); \ 525 (source) += 2; \ 526 } while (0) 527 528#ifdef DEBUG 529static void 530extract_number_and_incr (destination, source) 531 int *destination; 532 unsigned char **source; 533{ 534 extract_number (destination, *source); 535 *source += 2; 536} 537 538#ifndef EXTRACT_MACROS 539#undef EXTRACT_NUMBER_AND_INCR 540#define EXTRACT_NUMBER_AND_INCR(dest, src) \ 541 extract_number_and_incr (&dest, &src) 542#endif /* not EXTRACT_MACROS */ 543 544#endif /* DEBUG */ 545 546/* If DEBUG is defined, Regex prints many voluminous messages about what 547 it is doing (if the variable `debug' is nonzero). If linked with the 548 main program in `iregex.c', you can enter patterns and strings 549 interactively. And if linked with the main program in `main.c' and 550 the other test files, you can run the already-written tests. */ 551 552#ifdef DEBUG 553 554/* We use standard I/O for debugging. */ 555#include <stdio.h> 556 557/* It is useful to test things that ``must'' be true when debugging. */ 558#include <assert.h> 559 560static int debug = 0; 561 562#define DEBUG_STATEMENT(e) e 563#define DEBUG_PRINT1(x) if (debug) printf (x) 564#define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2) 565#define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3) 566#define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4) 567#define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \ 568 if (debug) print_partial_compiled_pattern (s, e) 569#define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \ 570 if (debug) print_double_string (w, s1, sz1, s2, sz2) 571 572 573/* Print the fastmap in human-readable form. */ 574 575void 576print_fastmap (fastmap) 577 char *fastmap; 578{ 579 unsigned was_a_range = 0; 580 unsigned i = 0; 581 582 while (i < (1 << BYTEWIDTH)) 583 { 584 if (fastmap[i++]) 585 { 586 was_a_range = 0; 587 putchar (i - 1); 588 while (i < (1 << BYTEWIDTH) && fastmap[i]) 589 { 590 was_a_range = 1; 591 i++; 592 } 593 if (was_a_range) 594 { 595 printf ("-"); 596 putchar (i - 1); 597 } 598 } 599 } 600 putchar ('\n'); 601} 602 603 604/* Print a compiled pattern string in human-readable form, starting at 605 the START pointer into it and ending just before the pointer END. */ 606 607void 608print_partial_compiled_pattern (start, end) 609 unsigned char *start; 610 unsigned char *end; 611{ 612 int mcnt, mcnt2; 613 unsigned char *p = start; 614 unsigned char *pend = end; 615 616 if (start == NULL) 617 { 618 printf ("(null)\n"); 619 return; 620 } 621 622 /* Loop over pattern commands. */ 623 while (p < pend) 624 { 625 printf ("%d:\t", p - start); 626 627 switch ((re_opcode_t) *p++) 628 { 629 case no_op: 630 printf ("/no_op"); 631 break; 632 633 case exactn: 634 mcnt = *p++; 635 printf ("/exactn/%d", mcnt); 636 do 637 { 638 putchar ('/'); 639 putchar (*p++); 640 } 641 while (--mcnt); 642 break; 643 644 case start_memory: 645 mcnt = *p++; 646 printf ("/start_memory/%d/%d", mcnt, *p++); 647 break; 648 649 case stop_memory: 650 mcnt = *p++; 651 printf ("/stop_memory/%d/%d", mcnt, *p++); 652 break; 653 654 case duplicate: 655 printf ("/duplicate/%d", *p++); 656 break; 657 658 case anychar: 659 printf ("/anychar"); 660 break; 661 662 case charset: 663 case charset_not: 664 { 665 register int c, last = -100; 666 register int in_range = 0; 667 668 printf ("/charset [%s", 669 (re_opcode_t) *(p - 1) == charset_not ? "^" : ""); 670 671 assert (p + *p < pend); 672 673 for (c = 0; c < 256; c++) 674 if (c / 8 < *p 675 && (p[1 + (c/8)] & (1 << (c % 8)))) 676 { 677 /* Are we starting a range? */ 678 if (last + 1 == c && ! in_range) 679 { 680 putchar ('-'); 681 in_range = 1; 682 } 683 /* Have we broken a range? */ 684 else if (last + 1 != c && in_range) 685 { 686 putchar (last); 687 in_range = 0; 688 } 689 690 if (! in_range) 691 putchar (c); 692 693 last = c; 694 } 695 696 if (in_range) 697 putchar (last); 698 699 putchar (']'); 700 701 p += 1 + *p; 702 } 703 break; 704 705 case begline: 706 printf ("/begline"); 707 break; 708 709 case endline: 710 printf ("/endline"); 711 break; 712 713 case on_failure_jump: 714 extract_number_and_incr (&mcnt, &p); 715 printf ("/on_failure_jump to %d", p + mcnt - start); 716 break; 717 718 case on_failure_keep_string_jump: 719 extract_number_and_incr (&mcnt, &p); 720 printf ("/on_failure_keep_string_jump to %d", p + mcnt - start); 721 break; 722 723 case dummy_failure_jump: 724 extract_number_and_incr (&mcnt, &p); 725 printf ("/dummy_failure_jump to %d", p + mcnt - start); 726 break; 727 728 case push_dummy_failure: 729 printf ("/push_dummy_failure"); 730 break; 731 732 case maybe_pop_jump: 733 extract_number_and_incr (&mcnt, &p); 734 printf ("/maybe_pop_jump to %d", p + mcnt - start); 735 break; 736 737 case pop_failure_jump: 738 extract_number_and_incr (&mcnt, &p); 739 printf ("/pop_failure_jump to %d", p + mcnt - start); 740 break; 741 742 case jump_past_alt: 743 extract_number_and_incr (&mcnt, &p); 744 printf ("/jump_past_alt to %d", p + mcnt - start); 745 break; 746 747 case jump: 748 extract_number_and_incr (&mcnt, &p); 749 printf ("/jump to %d", p + mcnt - start); 750 break; 751 752 case succeed_n: 753 extract_number_and_incr (&mcnt, &p); 754 extract_number_and_incr (&mcnt2, &p); 755 printf ("/succeed_n to %d, %d times", p + mcnt - start, mcnt2); 756 break; 757 758 case jump_n: 759 extract_number_and_incr (&mcnt, &p); 760 extract_number_and_incr (&mcnt2, &p); 761 printf ("/jump_n to %d, %d times", p + mcnt - start, mcnt2); 762 break; 763 764 case set_number_at: 765 extract_number_and_incr (&mcnt, &p); 766 extract_number_and_incr (&mcnt2, &p); 767 printf ("/set_number_at location %d to %d", p + mcnt - start, mcnt2); 768 break; 769 770 case wordbound: 771 printf ("/wordbound"); 772 break; 773 774 case notwordbound: 775 printf ("/notwordbound"); 776 break; 777 778 case wordbeg: 779 printf ("/wordbeg"); 780 break; 781 782 case wordend: 783 printf ("/wordend"); 784 785#ifdef emacs 786 case before_dot: 787 printf ("/before_dot"); 788 break; 789 790 case at_dot: 791 printf ("/at_dot"); 792 break; 793 794 case after_dot: 795 printf ("/after_dot"); 796 break; 797 798 case syntaxspec: 799 printf ("/syntaxspec"); 800 mcnt = *p++; 801 printf ("/%d", mcnt); 802 break; 803 804 case notsyntaxspec: 805 printf ("/notsyntaxspec"); 806 mcnt = *p++; 807 printf ("/%d", mcnt); 808 break; 809#endif /* emacs */ 810 811 case wordchar: 812 printf ("/wordchar"); 813 break; 814 815 case notwordchar: 816 printf ("/notwordchar"); 817 break; 818 819 case begbuf: 820 printf ("/begbuf"); 821 break; 822 823 case endbuf: 824 printf ("/endbuf"); 825 break; 826 827 default: 828 printf ("?%d", *(p-1)); 829 } 830 831 putchar ('\n'); 832 } 833 834 printf ("%d:\tend of pattern.\n", p - start); 835} 836 837 838void 839print_compiled_pattern (bufp) 840 struct re_pattern_buffer *bufp; 841{ 842 unsigned char *buffer = bufp->buffer; 843 844 print_partial_compiled_pattern (buffer, buffer + bufp->used); 845 printf ("%d bytes used/%d bytes allocated.\n", bufp->used, bufp->allocated); 846 847 if (bufp->fastmap_accurate && bufp->fastmap) 848 { 849 printf ("fastmap: "); 850 print_fastmap (bufp->fastmap); 851 } 852 853 printf ("re_nsub: %d\t", bufp->re_nsub); 854 printf ("regs_alloc: %d\t", bufp->regs_allocated); 855 printf ("can_be_null: %d\t", bufp->can_be_null); 856 printf ("newline_anchor: %d\n", bufp->newline_anchor); 857 printf ("no_sub: %d\t", bufp->no_sub); 858 printf ("not_bol: %d\t", bufp->not_bol); 859 printf ("not_eol: %d\t", bufp->not_eol); 860 printf ("syntax: %d\n", bufp->syntax); 861 /* Perhaps we should print the translate table? */ 862} 863 864 865void 866print_double_string (where, string1, size1, string2, size2) 867 const char *where; 868 const char *string1; 869 const char *string2; 870 int size1; 871 int size2; 872{ 873 unsigned this_char; 874 875 if (where == NULL) 876 printf ("(null)"); 877 else 878 { 879 if (FIRST_STRING_P (where)) 880 { 881 for (this_char = where - string1; this_char < size1; this_char++) 882 putchar (string1[this_char]); 883 884 where = string2; 885 } 886 887 for (this_char = where - string2; this_char < size2; this_char++) 888 putchar (string2[this_char]); 889 } 890} 891 892#else /* not DEBUG */ 893 894#undef assert 895#define assert(e) 896 897#define DEBUG_STATEMENT(e) 898#define DEBUG_PRINT1(x) 899#define DEBUG_PRINT2(x1, x2) 900#define DEBUG_PRINT3(x1, x2, x3) 901#define DEBUG_PRINT4(x1, x2, x3, x4) 902#define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) 903#define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) 904 905#endif /* not DEBUG */ 906 907/* Set by `re_set_syntax' to the current regexp syntax to recognize. Can 908 also be assigned to arbitrarily: each pattern buffer stores its own 909 syntax, so it can be changed between regex compilations. */ 910/* This has no initializer because initialized variables in Emacs 911 become read-only after dumping. */ 912reg_syntax_t re_syntax_options; 913 914 915/* Specify the precise syntax of regexps for compilation. This provides 916 for compatibility for various utilities which historically have 917 different, incompatible syntaxes. 918 919 The argument SYNTAX is a bit mask comprised of the various bits 920 defined in regex.h. We return the old syntax. */ 921 922reg_syntax_t 923re_set_syntax (syntax) 924 reg_syntax_t syntax; 925{ 926 reg_syntax_t ret = re_syntax_options; 927 928 re_syntax_options = syntax; 929 return ret; 930} 931 932/* This table gives an error message for each of the error codes listed 933 in regex.h. Obviously the order here has to be same as there. 934 POSIX doesn't require that we do anything for REG_NOERROR, 935 but why not be nice? */ 936 937static const char *re_error_msgid[] = 938 { 939 gettext_noop ("Success"), /* REG_NOERROR */ 940 gettext_noop ("No match"), /* REG_NOMATCH */ 941 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */ 942 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */ 943 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */ 944 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */ 945 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */ 946 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */ 947 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */ 948 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */ 949 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */ 950 gettext_noop ("Invalid range end"), /* REG_ERANGE */ 951 gettext_noop ("Memory exhausted"), /* REG_ESPACE */ 952 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */ 953 gettext_noop ("Premature end of regular expression"), /* REG_EEND */ 954 gettext_noop ("Regular expression too big"), /* REG_ESIZE */ 955 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */ 956 }; 957 958/* Avoiding alloca during matching, to placate r_alloc. */ 959 960/* Define MATCH_MAY_ALLOCATE unless we need to make sure that the 961 searching and matching functions should not call alloca. On some 962 systems, alloca is implemented in terms of malloc, and if we're 963 using the relocating allocator routines, then malloc could cause a 964 relocation, which might (if the strings being searched are in the 965 ralloc heap) shift the data out from underneath the regexp 966 routines. 967 968 Here's another reason to avoid allocation: Emacs 969 processes input from X in a signal handler; processing X input may 970 call malloc; if input arrives while a matching routine is calling 971 malloc, then we're scrod. But Emacs can't just block input while 972 calling matching routines; then we don't notice interrupts when 973 they come in. So, Emacs blocks input around all regexp calls 974 except the matching calls, which it leaves unprotected, in the 975 faith that they will not malloc. */ 976 977/* Normally, this is fine. */ 978#define MATCH_MAY_ALLOCATE 979 980/* When using GNU C, we are not REALLY using the C alloca, no matter 981 what config.h may say. So don't take precautions for it. */ 982#ifdef __GNUC__ 983#undef C_ALLOCA 984#endif 985 986/* The match routines may not allocate if (1) they would do it with malloc 987 and (2) it's not safe for them to use malloc. 988 Note that if REL_ALLOC is defined, matching would not use malloc for the 989 failure stack, but we would still use it for the register vectors; 990 so REL_ALLOC should not affect this. */ 991#if (defined (C_ALLOCA) || defined (REGEX_MALLOC)) && defined (emacs) 992#undef MATCH_MAY_ALLOCATE 993#endif 994 995 996/* Failure stack declarations and macros; both re_compile_fastmap and 997 re_match_2 use a failure stack. These have to be macros because of 998 REGEX_ALLOCATE_STACK. */ 999 1000 1001/* Number of failure points for which to initially allocate space 1002 when matching. If this number is exceeded, we allocate more 1003 space, so it is not a hard limit. */ 1004#ifndef INIT_FAILURE_ALLOC 1005#define INIT_FAILURE_ALLOC 5 1006#endif 1007 1008/* Roughly the maximum number of failure points on the stack. Would be 1009 exactly that if always used MAX_FAILURE_ITEMS items each time we failed. 1010 This is a variable only so users of regex can assign to it; we never 1011 change it ourselves. */ 1012#if defined (MATCH_MAY_ALLOCATE) 1013/* 4400 was enough to cause a crash on Alpha OSF/1, 1014 whose default stack limit is 2mb. */ 1015int re_max_failures = 20000; 1016#else 1017int re_max_failures = 2000; 1018#endif 1019 1020union fail_stack_elt 1021{ 1022 unsigned char *pointer; 1023 int integer; 1024}; 1025 1026typedef union fail_stack_elt fail_stack_elt_t; 1027 1028typedef struct 1029{ 1030 fail_stack_elt_t *stack; 1031 unsigned size; 1032 unsigned avail; /* Offset of next open position. */ 1033} fail_stack_type; 1034 1035#define FAIL_STACK_EMPTY() (fail_stack.avail == 0) 1036#define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0) 1037#define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size) 1038 1039 1040/* Define macros to initialize and free the failure stack. 1041 Do `return -2' if the alloc fails. */ 1042 1043#ifdef MATCH_MAY_ALLOCATE 1044#define INIT_FAIL_STACK() \ 1045 do { \ 1046 fail_stack.stack = (fail_stack_elt_t *) \ 1047 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \ 1048 \ 1049 if (fail_stack.stack == NULL) \ 1050 return -2; \ 1051 \ 1052 fail_stack.size = INIT_FAILURE_ALLOC; \ 1053 fail_stack.avail = 0; \ 1054 } while (0) 1055 1056#define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack) 1057#else 1058#define INIT_FAIL_STACK() \ 1059 do { \ 1060 fail_stack.avail = 0; \ 1061 } while (0) 1062 1063#define RESET_FAIL_STACK() 1064#endif 1065 1066 1067/* Double the size of FAIL_STACK, up to approximately `re_max_failures' items. 1068 1069 Return 1 if succeeds, and 0 if either ran out of memory 1070 allocating space for it or it was already too large. 1071 1072 REGEX_REALLOCATE_STACK requires `destination' be declared. */ 1073 1074#define DOUBLE_FAIL_STACK(fail_stack) \ 1075 ((fail_stack).size > re_max_failures * MAX_FAILURE_ITEMS \ 1076 ? 0 \ 1077 : ((fail_stack).stack = (fail_stack_elt_t *) \ 1078 REGEX_REALLOCATE_STACK ((fail_stack).stack, \ 1079 (fail_stack).size * sizeof (fail_stack_elt_t), \ 1080 ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \ 1081 \ 1082 (fail_stack).stack == NULL \ 1083 ? 0 \ 1084 : ((fail_stack).size <<= 1, \ 1085 1))) 1086 1087 1088/* Push pointer POINTER on FAIL_STACK. 1089 Return 1 if was able to do so and 0 if ran out of memory allocating 1090 space to do so. */ 1091#define PUSH_PATTERN_OP(POINTER, FAIL_STACK) \ 1092 ((FAIL_STACK_FULL () \ 1093 && !DOUBLE_FAIL_STACK (FAIL_STACK)) \ 1094 ? 0 \ 1095 : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER, \ 1096 1)) 1097 1098/* Push a pointer value onto the failure stack. 1099 Assumes the variable `fail_stack'. Probably should only 1100 be called from within `PUSH_FAILURE_POINT'. */ 1101#define PUSH_FAILURE_POINTER(item) \ 1102 fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (item) 1103 1104/* This pushes an integer-valued item onto the failure stack. 1105 Assumes the variable `fail_stack'. Probably should only 1106 be called from within `PUSH_FAILURE_POINT'. */ 1107#define PUSH_FAILURE_INT(item) \ 1108 fail_stack.stack[fail_stack.avail++].integer = (item) 1109 1110/* Push a fail_stack_elt_t value onto the failure stack. 1111 Assumes the variable `fail_stack'. Probably should only 1112 be called from within `PUSH_FAILURE_POINT'. */ 1113#define PUSH_FAILURE_ELT(item) \ 1114 fail_stack.stack[fail_stack.avail++] = (item) 1115 1116/* These three POP... operations complement the three PUSH... operations. 1117 All assume that `fail_stack' is nonempty. */ 1118#define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer 1119#define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer 1120#define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail] 1121 1122/* Used to omit pushing failure point id's when we're not debugging. */ 1123#ifdef DEBUG 1124#define DEBUG_PUSH PUSH_FAILURE_INT 1125#define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT () 1126#else 1127#define DEBUG_PUSH(item) 1128#define DEBUG_POP(item_addr) 1129#endif 1130 1131 1132/* Push the information about the state we will need 1133 if we ever fail back to it. 1134 1135 Requires variables fail_stack, regstart, regend, reg_info, and 1136 num_regs be declared. DOUBLE_FAIL_STACK requires `destination' be 1137 declared. 1138 1139 Does `return FAILURE_CODE' if runs out of memory. */ 1140 1141#define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \ 1142 do { \ 1143 char *destination; \ 1144 /* Must be int, so when we don't save any registers, the arithmetic \ 1145 of 0 + -1 isn't done as unsigned. */ \ 1146 int this_reg; \ 1147 \ 1148 DEBUG_STATEMENT (failure_id++); \ 1149 DEBUG_STATEMENT (nfailure_points_pushed++); \ 1150 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \ 1151 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\ 1152 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\ 1153 \ 1154 DEBUG_PRINT2 (" slots needed: %d\n", NUM_FAILURE_ITEMS); \ 1155 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \ 1156 \ 1157 /* Ensure we have enough space allocated for what we will push. */ \ 1158 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \ 1159 { \ 1160 if (!DOUBLE_FAIL_STACK (fail_stack)) \ 1161 return failure_code; \ 1162 \ 1163 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \ 1164 (fail_stack).size); \ 1165 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\ 1166 } \ 1167 \ 1168 /* Push the info, starting with the registers. */ \ 1169 DEBUG_PRINT1 ("\n"); \ 1170 \ 1171 if (1) \ 1172 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \ 1173 this_reg++) \ 1174 { \ 1175 DEBUG_PRINT2 (" Pushing reg: %d\n", this_reg); \ 1176 DEBUG_STATEMENT (num_regs_pushed++); \ 1177 \ 1178 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \ 1179 PUSH_FAILURE_POINTER (regstart[this_reg]); \ 1180 \ 1181 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \ 1182 PUSH_FAILURE_POINTER (regend[this_reg]); \ 1183 \ 1184 DEBUG_PRINT2 (" info: 0x%x\n ", reg_info[this_reg]); \ 1185 DEBUG_PRINT2 (" match_null=%d", \ 1186 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \ 1187 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \ 1188 DEBUG_PRINT2 (" matched_something=%d", \ 1189 MATCHED_SOMETHING (reg_info[this_reg])); \ 1190 DEBUG_PRINT2 (" ever_matched=%d", \ 1191 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \ 1192 DEBUG_PRINT1 ("\n"); \ 1193 PUSH_FAILURE_ELT (reg_info[this_reg].word); \ 1194 } \ 1195 \ 1196 DEBUG_PRINT2 (" Pushing low active reg: %d\n", lowest_active_reg);\ 1197 PUSH_FAILURE_INT (lowest_active_reg); \ 1198 \ 1199 DEBUG_PRINT2 (" Pushing high active reg: %d\n", highest_active_reg);\ 1200 PUSH_FAILURE_INT (highest_active_reg); \ 1201 \ 1202 DEBUG_PRINT2 (" Pushing pattern 0x%x: ", pattern_place); \ 1203 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \ 1204 PUSH_FAILURE_POINTER (pattern_place); \ 1205 \ 1206 DEBUG_PRINT2 (" Pushing string 0x%x: `", string_place); \ 1207 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \ 1208 size2); \ 1209 DEBUG_PRINT1 ("'\n"); \ 1210 PUSH_FAILURE_POINTER (string_place); \ 1211 \ 1212 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \ 1213 DEBUG_PUSH (failure_id); \ 1214 } while (0) 1215 1216/* This is the number of items that are pushed and popped on the stack 1217 for each register. */ 1218#define NUM_REG_ITEMS 3 1219 1220/* Individual items aside from the registers. */ 1221#ifdef DEBUG 1222#define NUM_NONREG_ITEMS 5 /* Includes failure point id. */ 1223#else 1224#define NUM_NONREG_ITEMS 4 1225#endif 1226 1227/* We push at most this many items on the stack. */ 1228/* We used to use (num_regs - 1), which is the number of registers 1229 this regexp will save; but that was changed to 5 1230 to avoid stack overflow for a regexp with lots of parens. */ 1231#define MAX_FAILURE_ITEMS (5 * NUM_REG_ITEMS + NUM_NONREG_ITEMS) 1232 1233/* We actually push this many items. */ 1234#define NUM_FAILURE_ITEMS \ 1235 (((0 \ 1236 ? 0 : highest_active_reg - lowest_active_reg + 1) \ 1237 * NUM_REG_ITEMS) \ 1238 + NUM_NONREG_ITEMS) 1239 1240/* How many items can still be added to the stack without overflowing it. */ 1241#define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail) 1242 1243 1244/* Pops what PUSH_FAIL_STACK pushes. 1245 1246 We restore into the parameters, all of which should be lvalues: 1247 STR -- the saved data position. 1248 PAT -- the saved pattern position. 1249 LOW_REG, HIGH_REG -- the highest and lowest active registers. 1250 REGSTART, REGEND -- arrays of string positions. 1251 REG_INFO -- array of information about each subexpression. 1252 1253 Also assumes the variables `fail_stack' and (if debugging), `bufp', 1254 `pend', `string1', `size1', `string2', and `size2'. */ 1255 1256#define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\ 1257{ \ 1258 DEBUG_STATEMENT (fail_stack_elt_t failure_id;) \ 1259 int this_reg; \ 1260 const unsigned char *string_temp; \ 1261 \ 1262 assert (!FAIL_STACK_EMPTY ()); \ 1263 \ 1264 /* Remove failure points and point to how many regs pushed. */ \ 1265 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \ 1266 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \ 1267 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \ 1268 \ 1269 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \ 1270 \ 1271 DEBUG_POP (&failure_id); \ 1272 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \ 1273 \ 1274 /* If the saved string location is NULL, it came from an \ 1275 on_failure_keep_string_jump opcode, and we want to throw away the \ 1276 saved NULL, thus retaining our current position in the string. */ \ 1277 string_temp = POP_FAILURE_POINTER (); \ 1278 if (string_temp != NULL) \ 1279 str = (const char *) string_temp; \ 1280 \ 1281 DEBUG_PRINT2 (" Popping string 0x%x: `", str); \ 1282 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \ 1283 DEBUG_PRINT1 ("'\n"); \ 1284 \ 1285 pat = (unsigned char *) POP_FAILURE_POINTER (); \ 1286 DEBUG_PRINT2 (" Popping pattern 0x%x: ", pat); \ 1287 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \ 1288 \ 1289 /* Restore register info. */ \ 1290 high_reg = (unsigned) POP_FAILURE_INT (); \ 1291 DEBUG_PRINT2 (" Popping high active reg: %d\n", high_reg); \ 1292 \ 1293 low_reg = (unsigned) POP_FAILURE_INT (); \ 1294 DEBUG_PRINT2 (" Popping low active reg: %d\n", low_reg); \ 1295 \ 1296 if (1) \ 1297 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \ 1298 { \ 1299 DEBUG_PRINT2 (" Popping reg: %d\n", this_reg); \ 1300 \ 1301 reg_info[this_reg].word = POP_FAILURE_ELT (); \ 1302 DEBUG_PRINT2 (" info: 0x%x\n", reg_info[this_reg]); \ 1303 \ 1304 regend[this_reg] = (const char *) POP_FAILURE_POINTER (); \ 1305 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \ 1306 \ 1307 regstart[this_reg] = (const char *) POP_FAILURE_POINTER (); \ 1308 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \ 1309 } \ 1310 else \ 1311 { \ 1312 for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \ 1313 { \ 1314 reg_info[this_reg].word.integer = 0; \ 1315 regend[this_reg] = 0; \ 1316 regstart[this_reg] = 0; \ 1317 } \ 1318 highest_active_reg = high_reg; \ 1319 } \ 1320 \ 1321 set_regs_matched_done = 0; \ 1322 DEBUG_STATEMENT (nfailure_points_popped++); \ 1323} /* POP_FAILURE_POINT */ 1324 1325 1326 1327/* Structure for per-register (a.k.a. per-group) information. 1328 Other register information, such as the 1329 starting and ending positions (which are addresses), and the list of 1330 inner groups (which is a bits list) are maintained in separate 1331 variables. 1332 1333 We are making a (strictly speaking) nonportable assumption here: that 1334 the compiler will pack our bit fields into something that fits into 1335 the type of `word', i.e., is something that fits into one item on the 1336 failure stack. */ 1337 1338typedef union 1339{ 1340 fail_stack_elt_t word; 1341 struct 1342 { 1343 /* This field is one if this group can match the empty string, 1344 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */ 1345#define MATCH_NULL_UNSET_VALUE 3 1346 unsigned match_null_string_p : 2; 1347 unsigned is_active : 1; 1348 unsigned matched_something : 1; 1349 unsigned ever_matched_something : 1; 1350 } bits; 1351} register_info_type; 1352 1353#define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p) 1354#define IS_ACTIVE(R) ((R).bits.is_active) 1355#define MATCHED_SOMETHING(R) ((R).bits.matched_something) 1356#define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something) 1357 1358 1359/* Call this when have matched a real character; it sets `matched' flags 1360 for the subexpressions which we are currently inside. Also records 1361 that those subexprs have matched. */ 1362#define SET_REGS_MATCHED() \ 1363 do \ 1364 { \ 1365 if (!set_regs_matched_done) \ 1366 { \ 1367 unsigned r; \ 1368 set_regs_matched_done = 1; \ 1369 for (r = lowest_active_reg; r <= highest_active_reg; r++) \ 1370 { \ 1371 MATCHED_SOMETHING (reg_info[r]) \ 1372 = EVER_MATCHED_SOMETHING (reg_info[r]) \ 1373 = 1; \ 1374 } \ 1375 } \ 1376 } \ 1377 while (0) 1378 1379/* Registers are set to a sentinel when they haven't yet matched. */ 1380static char reg_unset_dummy; 1381#define REG_UNSET_VALUE (®_unset_dummy) 1382#define REG_UNSET(e) ((e) == REG_UNSET_VALUE) 1383 1384/* Subroutine declarations and macros for regex_compile. */ 1385 1386static void store_op1 (), store_op2 (); 1387static void insert_op1 (), insert_op2 (); 1388static boolean at_begline_loc_p (), at_endline_loc_p (); 1389static boolean group_in_compile_stack (); 1390static reg_errcode_t compile_range (); 1391 1392/* Fetch the next character in the uncompiled pattern---translating it 1393 if necessary. Also cast from a signed character in the constant 1394 string passed to us by the user to an unsigned char that we can use 1395 as an array index (in, e.g., `translate'). */ 1396#ifndef PATFETCH 1397#define PATFETCH(c) \ 1398 do {if (p == pend) return REG_EEND; \ 1399 c = (unsigned char) *p++; \ 1400 if (translate) c = (unsigned char) translate[c]; \ 1401 } while (0) 1402#endif 1403 1404/* Fetch the next character in the uncompiled pattern, with no 1405 translation. */ 1406#define PATFETCH_RAW(c) \ 1407 do {if (p == pend) return REG_EEND; \ 1408 c = (unsigned char) *p++; \ 1409 } while (0) 1410 1411/* Go backwards one character in the pattern. */ 1412#define PATUNFETCH p-- 1413 1414 1415/* If `translate' is non-null, return translate[D], else just D. We 1416 cast the subscript to translate because some data is declared as 1417 `char *', to avoid warnings when a string constant is passed. But 1418 when we use a character as a subscript we must make it unsigned. */ 1419#ifndef TRANSLATE 1420#define TRANSLATE(d) \ 1421 (translate ? (char) translate[(unsigned char) (d)] : (d)) 1422#endif 1423 1424 1425/* Macros for outputting the compiled pattern into `buffer'. */ 1426 1427/* If the buffer isn't allocated when it comes in, use this. */ 1428#define INIT_BUF_SIZE 32 1429 1430/* Make sure we have at least N more bytes of space in buffer. */ 1431#define GET_BUFFER_SPACE(n) \ 1432 while (b - bufp->buffer + (n) > bufp->allocated) \ 1433 EXTEND_BUFFER () 1434 1435/* Make sure we have one more byte of buffer space and then add C to it. */ 1436#define BUF_PUSH(c) \ 1437 do { \ 1438 GET_BUFFER_SPACE (1); \ 1439 *b++ = (unsigned char) (c); \ 1440 } while (0) 1441 1442 1443/* Ensure we have two more bytes of buffer space and then append C1 and C2. */ 1444#define BUF_PUSH_2(c1, c2) \ 1445 do { \ 1446 GET_BUFFER_SPACE (2); \ 1447 *b++ = (unsigned char) (c1); \ 1448 *b++ = (unsigned char) (c2); \ 1449 } while (0) 1450 1451 1452/* As with BUF_PUSH_2, except for three bytes. */ 1453#define BUF_PUSH_3(c1, c2, c3) \ 1454 do { \ 1455 GET_BUFFER_SPACE (3); \ 1456 *b++ = (unsigned char) (c1); \ 1457 *b++ = (unsigned char) (c2); \ 1458 *b++ = (unsigned char) (c3); \ 1459 } while (0) 1460 1461 1462/* Store a jump with opcode OP at LOC to location TO. We store a 1463 relative address offset by the three bytes the jump itself occupies. */ 1464#define STORE_JUMP(op, loc, to) \ 1465 store_op1 (op, loc, (to) - (loc) - 3) 1466 1467/* Likewise, for a two-argument jump. */ 1468#define STORE_JUMP2(op, loc, to, arg) \ 1469 store_op2 (op, loc, (to) - (loc) - 3, arg) 1470 1471/* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */ 1472#define INSERT_JUMP(op, loc, to) \ 1473 insert_op1 (op, loc, (to) - (loc) - 3, b) 1474 1475/* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */ 1476#define INSERT_JUMP2(op, loc, to, arg) \ 1477 insert_op2 (op, loc, (to) - (loc) - 3, arg, b) 1478 1479 1480/* This is not an arbitrary limit: the arguments which represent offsets 1481 into the pattern are two bytes long. So if 2^16 bytes turns out to 1482 be too small, many things would have to change. */ 1483#define MAX_BUF_SIZE (1L << 16) 1484 1485 1486/* Extend the buffer by twice its current size via realloc and 1487 reset the pointers that pointed into the old block to point to the 1488 correct places in the new one. If extending the buffer results in it 1489 being larger than MAX_BUF_SIZE, then flag memory exhausted. */ 1490#define EXTEND_BUFFER() \ 1491 do { \ 1492 unsigned char *old_buffer = bufp->buffer; \ 1493 if (bufp->allocated == MAX_BUF_SIZE) \ 1494 return REG_ESIZE; \ 1495 bufp->allocated <<= 1; \ 1496 if (bufp->allocated > MAX_BUF_SIZE) \ 1497 bufp->allocated = MAX_BUF_SIZE; \ 1498 bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated);\ 1499 if (bufp->buffer == NULL) \ 1500 return REG_ESPACE; \ 1501 /* If the buffer moved, move all the pointers into it. */ \ 1502 if (old_buffer != bufp->buffer) \ 1503 { \ 1504 b = (b - old_buffer) + bufp->buffer; \ 1505 begalt = (begalt - old_buffer) + bufp->buffer; \ 1506 if (fixup_alt_jump) \ 1507 fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\ 1508 if (laststart) \ 1509 laststart = (laststart - old_buffer) + bufp->buffer; \ 1510 if (pending_exact) \ 1511 pending_exact = (pending_exact - old_buffer) + bufp->buffer; \ 1512 } \ 1513 } while (0) 1514 1515 1516/* Since we have one byte reserved for the register number argument to 1517 {start,stop}_memory, the maximum number of groups we can report 1518 things about is what fits in that byte. */ 1519#define MAX_REGNUM 255 1520 1521/* But patterns can have more than `MAX_REGNUM' registers. We just 1522 ignore the excess. */ 1523typedef unsigned regnum_t; 1524 1525 1526/* Macros for the compile stack. */ 1527 1528/* Since offsets can go either forwards or backwards, this type needs to 1529 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */ 1530typedef int pattern_offset_t; 1531 1532typedef struct 1533{ 1534 pattern_offset_t begalt_offset; 1535 pattern_offset_t fixup_alt_jump; 1536 pattern_offset_t inner_group_offset; 1537 pattern_offset_t laststart_offset; 1538 regnum_t regnum; 1539} compile_stack_elt_t; 1540 1541 1542typedef struct 1543{ 1544 compile_stack_elt_t *stack; 1545 unsigned size; 1546 unsigned avail; /* Offset of next open position. */ 1547} compile_stack_type; 1548 1549 1550#define INIT_COMPILE_STACK_SIZE 32 1551 1552#define COMPILE_STACK_EMPTY (compile_stack.avail == 0) 1553#define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size) 1554 1555/* The next available element. */ 1556#define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail]) 1557 1558 1559/* Set the bit for character C in a list. */ 1560#define SET_LIST_BIT(c) \ 1561 (b[((unsigned char) (c)) / BYTEWIDTH] \ 1562 |= 1 << (((unsigned char) c) % BYTEWIDTH)) 1563 1564 1565/* Get the next unsigned number in the uncompiled pattern. */ 1566#define GET_UNSIGNED_NUMBER(num) \ 1567 { if (p != pend) \ 1568 { \ 1569 PATFETCH (c); \ 1570 while (ISDIGIT (c)) \ 1571 { \ 1572 if (num < 0) \ 1573 num = 0; \ 1574 num = num * 10 + c - '0'; \ 1575 if (p == pend) \ 1576 break; \ 1577 PATFETCH (c); \ 1578 } \ 1579 } \ 1580 } 1581 1582#define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */ 1583 1584#define IS_CHAR_CLASS(string) \ 1585 (STREQ (string, "alpha") || STREQ (string, "upper") \ 1586 || STREQ (string, "lower") || STREQ (string, "digit") \ 1587 || STREQ (string, "alnum") || STREQ (string, "xdigit") \ 1588 || STREQ (string, "space") || STREQ (string, "print") \ 1589 || STREQ (string, "punct") || STREQ (string, "graph") \ 1590 || STREQ (string, "cntrl") || STREQ (string, "blank")) 1591 1592#ifndef MATCH_MAY_ALLOCATE 1593 1594/* If we cannot allocate large objects within re_match_2_internal, 1595 we make the fail stack and register vectors global. 1596 The fail stack, we grow to the maximum size when a regexp 1597 is compiled. 1598 The register vectors, we adjust in size each time we 1599 compile a regexp, according to the number of registers it needs. */ 1600 1601static fail_stack_type fail_stack; 1602 1603/* Size with which the following vectors are currently allocated. 1604 That is so we can make them bigger as needed, 1605 but never make them smaller. */ 1606static int regs_allocated_size; 1607 1608static const char ** regstart, ** regend; 1609static const char ** old_regstart, ** old_regend; 1610static const char **best_regstart, **best_regend; 1611static register_info_type *reg_info; 1612static const char **reg_dummy; 1613static register_info_type *reg_info_dummy; 1614 1615/* Make the register vectors big enough for NUM_REGS registers, 1616 but don't make them smaller. */ 1617 1618static 1619regex_grow_registers (num_regs) 1620 int num_regs; 1621{ 1622 if (num_regs > regs_allocated_size) 1623 { 1624 RETALLOC_IF (regstart, num_regs, const char *); 1625 RETALLOC_IF (regend, num_regs, const char *); 1626 RETALLOC_IF (old_regstart, num_regs, const char *); 1627 RETALLOC_IF (old_regend, num_regs, const char *); 1628 RETALLOC_IF (best_regstart, num_regs, const char *); 1629 RETALLOC_IF (best_regend, num_regs, const char *); 1630 RETALLOC_IF (reg_info, num_regs, register_info_type); 1631 RETALLOC_IF (reg_dummy, num_regs, const char *); 1632 RETALLOC_IF (reg_info_dummy, num_regs, register_info_type); 1633 1634 regs_allocated_size = num_regs; 1635 } 1636} 1637 1638#endif /* not MATCH_MAY_ALLOCATE */ 1639 1640/* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX. 1641 Returns one of error codes defined in `regex.h', or zero for success. 1642 1643 Assumes the `allocated' (and perhaps `buffer') and `translate' 1644 fields are set in BUFP on entry. 1645 1646 If it succeeds, results are put in BUFP (if it returns an error, the 1647 contents of BUFP are undefined): 1648 `buffer' is the compiled pattern; 1649 `syntax' is set to SYNTAX; 1650 `used' is set to the length of the compiled pattern; 1651 `fastmap_accurate' is zero; 1652 `re_nsub' is the number of subexpressions in PATTERN; 1653 `not_bol' and `not_eol' are zero; 1654 1655 The `fastmap' and `newline_anchor' fields are neither 1656 examined nor set. */ 1657 1658/* Return, freeing storage we allocated. */ 1659#define FREE_STACK_RETURN(value) \ 1660 return (free (compile_stack.stack), value) 1661 1662static reg_errcode_t 1663regex_compile (pattern, size, syntax, bufp) 1664 const char *pattern; 1665 int size; 1666 reg_syntax_t syntax; 1667 struct re_pattern_buffer *bufp; 1668{ 1669 /* We fetch characters from PATTERN here. Even though PATTERN is 1670 `char *' (i.e., signed), we declare these variables as unsigned, so 1671 they can be reliably used as array indices. */ 1672 register unsigned char c, c1; 1673 1674 /* A random temporary spot in PATTERN. */ 1675 const char *p1; 1676 1677 /* Points to the end of the buffer, where we should append. */ 1678 register unsigned char *b; 1679 1680 /* Keeps track of unclosed groups. */ 1681 compile_stack_type compile_stack; 1682 1683 /* Points to the current (ending) position in the pattern. */ 1684 const char *p = pattern; 1685 const char *pend = pattern + size; 1686 1687 /* How to translate the characters in the pattern. */ 1688 RE_TRANSLATE_TYPE translate = bufp->translate; 1689 1690 /* Address of the count-byte of the most recently inserted `exactn' 1691 command. This makes it possible to tell if a new exact-match 1692 character can be added to that command or if the character requires 1693 a new `exactn' command. */ 1694 unsigned char *pending_exact = 0; 1695 1696 /* Address of start of the most recently finished expression. 1697 This tells, e.g., postfix * where to find the start of its 1698 operand. Reset at the beginning of groups and alternatives. */ 1699 unsigned char *laststart = 0; 1700 1701 /* Address of beginning of regexp, or inside of last group. */ 1702 unsigned char *begalt; 1703 1704 /* Place in the uncompiled pattern (i.e., the {) to 1705 which to go back if the interval is invalid. */ 1706 const char *beg_interval; 1707 1708 /* Address of the place where a forward jump should go to the end of 1709 the containing expression. Each alternative of an `or' -- except the 1710 last -- ends with a forward jump of this sort. */ 1711 unsigned char *fixup_alt_jump = 0; 1712 1713 /* Counts open-groups as they are encountered. Remembered for the 1714 matching close-group on the compile stack, so the same register 1715 number is put in the stop_memory as the start_memory. */ 1716 regnum_t regnum = 0; 1717 1718#ifdef DEBUG 1719 DEBUG_PRINT1 ("\nCompiling pattern: "); 1720 if (debug) 1721 { 1722 unsigned debug_count; 1723 1724 for (debug_count = 0; debug_count < size; debug_count++) 1725 putchar (pattern[debug_count]); 1726 putchar ('\n'); 1727 } 1728#endif /* DEBUG */ 1729 1730 /* Initialize the compile stack. */ 1731 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t); 1732 if (compile_stack.stack == NULL) 1733 return REG_ESPACE; 1734 1735 compile_stack.size = INIT_COMPILE_STACK_SIZE; 1736 compile_stack.avail = 0; 1737 1738 /* Initialize the pattern buffer. */ 1739 bufp->syntax = syntax; 1740 bufp->fastmap_accurate = 0; 1741 bufp->not_bol = bufp->not_eol = 0; 1742 1743 /* Set `used' to zero, so that if we return an error, the pattern 1744 printer (for debugging) will think there's no pattern. We reset it 1745 at the end. */ 1746 bufp->used = 0; 1747 1748 /* Always count groups, whether or not bufp->no_sub is set. */ 1749 bufp->re_nsub = 0; 1750 1751#if !defined (emacs) && !defined (SYNTAX_TABLE) 1752 /* Initialize the syntax table. */ 1753 init_syntax_once (); 1754#endif 1755 1756 if (bufp->allocated == 0) 1757 { 1758 if (bufp->buffer) 1759 { /* If zero allocated, but buffer is non-null, try to realloc 1760 enough space. This loses if buffer's address is bogus, but 1761 that is the user's responsibility. */ 1762 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char); 1763 } 1764 else 1765 { /* Caller did not allocate a buffer. Do it for them. */ 1766 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char); 1767 } 1768 if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE); 1769 1770 bufp->allocated = INIT_BUF_SIZE; 1771 } 1772 1773 begalt = b = bufp->buffer; 1774 1775 /* Loop through the uncompiled pattern until we're at the end. */ 1776 while (p != pend) 1777 { 1778 PATFETCH (c); 1779 1780 switch (c) 1781 { 1782 case '^': 1783 { 1784 if ( /* If at start of pattern, it's an operator. */ 1785 p == pattern + 1 1786 /* If context independent, it's an operator. */ 1787 || syntax & RE_CONTEXT_INDEP_ANCHORS 1788 /* Otherwise, depends on what's come before. */ 1789 || at_begline_loc_p (pattern, p, syntax)) 1790 BUF_PUSH (begline); 1791 else 1792 goto normal_char; 1793 } 1794 break; 1795 1796 1797 case '$': 1798 { 1799 if ( /* If at end of pattern, it's an operator. */ 1800 p == pend 1801 /* If context independent, it's an operator. */ 1802 || syntax & RE_CONTEXT_INDEP_ANCHORS 1803 /* Otherwise, depends on what's next. */ 1804 || at_endline_loc_p (p, pend, syntax)) 1805 BUF_PUSH (endline); 1806 else 1807 goto normal_char; 1808 } 1809 break; 1810 1811 1812 case '+': 1813 case '?': 1814 if ((syntax & RE_BK_PLUS_QM) 1815 || (syntax & RE_LIMITED_OPS)) 1816 goto normal_char; 1817 handle_plus: 1818 case '*': 1819 /* If there is no previous pattern... */ 1820 if (!laststart) 1821 { 1822 if (syntax & RE_CONTEXT_INVALID_OPS) 1823 FREE_STACK_RETURN (REG_BADRPT); 1824 else if (!(syntax & RE_CONTEXT_INDEP_OPS)) 1825 goto normal_char; 1826 } 1827 1828 { 1829 /* Are we optimizing this jump? */ 1830 boolean keep_string_p = false; 1831 1832 /* 1 means zero (many) matches is allowed. */ 1833 char zero_times_ok = 0, many_times_ok = 0; 1834 1835 /* If there is a sequence of repetition chars, collapse it 1836 down to just one (the right one). We can't combine 1837 interval operators with these because of, e.g., `a{2}*', 1838 which should only match an even number of `a's. */ 1839 1840 for (;;) 1841 { 1842 zero_times_ok |= c != '+'; 1843 many_times_ok |= c != '?'; 1844 1845 if (p == pend) 1846 break; 1847 1848 PATFETCH (c); 1849 1850 if (c == '*' 1851 || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?'))) 1852 ; 1853 1854 else if (syntax & RE_BK_PLUS_QM && c == '\\') 1855 { 1856 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE); 1857 1858 PATFETCH (c1); 1859 if (!(c1 == '+' || c1 == '?')) 1860 { 1861 PATUNFETCH; 1862 PATUNFETCH; 1863 break; 1864 } 1865 1866 c = c1; 1867 } 1868 else 1869 { 1870 PATUNFETCH; 1871 break; 1872 } 1873 1874 /* If we get here, we found another repeat character. */ 1875 } 1876 1877 /* Star, etc. applied to an empty pattern is equivalent 1878 to an empty pattern. */ 1879 if (!laststart) 1880 break; 1881 1882 /* Now we know whether or not zero matches is allowed 1883 and also whether or not two or more matches is allowed. */ 1884 if (many_times_ok) 1885 { /* More than one repetition is allowed, so put in at the 1886 end a backward relative jump from `b' to before the next 1887 jump we're going to put in below (which jumps from 1888 laststart to after this jump). 1889 1890 But if we are at the `*' in the exact sequence `.*\n', 1891 insert an unconditional jump backwards to the ., 1892 instead of the beginning of the loop. This way we only 1893 push a failure point once, instead of every time 1894 through the loop. */ 1895 assert (p - 1 > pattern); 1896 1897 /* Allocate the space for the jump. */ 1898 GET_BUFFER_SPACE (3); 1899 1900 /* We know we are not at the first character of the pattern, 1901 because laststart was nonzero. And we've already 1902 incremented `p', by the way, to be the character after 1903 the `*'. Do we have to do something analogous here 1904 for null bytes, because of RE_DOT_NOT_NULL? */ 1905 if (TRANSLATE (*(p - 2)) == TRANSLATE ('.') 1906 && zero_times_ok 1907 && p < pend && TRANSLATE (*p) == TRANSLATE ('\n') 1908 && !(syntax & RE_DOT_NEWLINE)) 1909 { /* We have .*\n. */ 1910 STORE_JUMP (jump, b, laststart); 1911 keep_string_p = true; 1912 } 1913 else 1914 /* Anything else. */ 1915 STORE_JUMP (maybe_pop_jump, b, laststart - 3); 1916 1917 /* We've added more stuff to the buffer. */ 1918 b += 3; 1919 } 1920 1921 /* On failure, jump from laststart to b + 3, which will be the 1922 end of the buffer after this jump is inserted. */ 1923 GET_BUFFER_SPACE (3); 1924 INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump 1925 : on_failure_jump, 1926 laststart, b + 3); 1927 pending_exact = 0; 1928 b += 3; 1929 1930 if (!zero_times_ok) 1931 { 1932 /* At least one repetition is required, so insert a 1933 `dummy_failure_jump' before the initial 1934 `on_failure_jump' instruction of the loop. This 1935 effects a skip over that instruction the first time 1936 we hit that loop. */ 1937 GET_BUFFER_SPACE (3); 1938 INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6); 1939 b += 3; 1940 } 1941 } 1942 break; 1943 1944 1945 case '.': 1946 laststart = b; 1947 BUF_PUSH (anychar); 1948 break; 1949 1950 1951 case '[': 1952 { 1953 boolean had_char_class = false; 1954 1955 if (p == pend) FREE_STACK_RETURN (REG_EBRACK); 1956 1957 /* Ensure that we have enough space to push a charset: the 1958 opcode, the length count, and the bitset; 34 bytes in all. */ 1959 GET_BUFFER_SPACE (34); 1960 1961 laststart = b; 1962 1963 /* We test `*p == '^' twice, instead of using an if 1964 statement, so we only need one BUF_PUSH. */ 1965 BUF_PUSH (*p == '^' ? charset_not : charset); 1966 if (*p == '^') 1967 p++; 1968 1969 /* Remember the first position in the bracket expression. */ 1970 p1 = p; 1971 1972 /* Push the number of bytes in the bitmap. */ 1973 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH); 1974 1975 /* Clear the whole map. */ 1976 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH); 1977 1978 /* charset_not matches newline according to a syntax bit. */ 1979 if ((re_opcode_t) b[-2] == charset_not 1980 && (syntax & RE_HAT_LISTS_NOT_NEWLINE)) 1981 SET_LIST_BIT ('\n'); 1982 1983 /* Read in characters and ranges, setting map bits. */ 1984 for (;;) 1985 { 1986 if (p == pend) FREE_STACK_RETURN (REG_EBRACK); 1987 1988 PATFETCH (c); 1989 1990 /* \ might escape characters inside [...] and [^...]. */ 1991 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\') 1992 { 1993 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE); 1994 1995 PATFETCH (c1); 1996 SET_LIST_BIT (c1); 1997 continue; 1998 } 1999 2000 /* Could be the end of the bracket expression. If it's 2001 not (i.e., when the bracket expression is `[]' so 2002 far), the ']' character bit gets set way below. */ 2003 if (c == ']' && p != p1 + 1) 2004 break; 2005 2006 /* Look ahead to see if it's a range when the last thing 2007 was a character class. */ 2008 if (had_char_class && c == '-' && *p != ']') 2009 FREE_STACK_RETURN (REG_ERANGE); 2010 2011 /* Look ahead to see if it's a range when the last thing 2012 was a character: if this is a hyphen not at the 2013 beginning or the end of a list, then it's the range 2014 operator. */ 2015 if (c == '-' 2016 && !(p - 2 >= pattern && p[-2] == '[') 2017 && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^') 2018 && *p != ']') 2019 { 2020 reg_errcode_t ret 2021 = compile_range (&p, pend, translate, syntax, b); 2022 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret); 2023 } 2024 2025 else if (p[0] == '-' && p[1] != ']') 2026 { /* This handles ranges made up of characters only. */ 2027 reg_errcode_t ret; 2028 2029 /* Move past the `-'. */ 2030 PATFETCH (c1); 2031 2032 ret = compile_range (&p, pend, translate, syntax, b); 2033 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret); 2034 } 2035 2036 /* See if we're at the beginning of a possible character 2037 class. */ 2038 2039 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':') 2040 { /* Leave room for the null. */ 2041 char str[CHAR_CLASS_MAX_LENGTH + 1]; 2042 2043 PATFETCH (c); 2044 c1 = 0; 2045 2046 /* If pattern is `[[:'. */ 2047 if (p == pend) FREE_STACK_RETURN (REG_EBRACK); 2048 2049 for (;;) 2050 { 2051 PATFETCH (c); 2052 if (c == ':' || c == ']' || p == pend 2053 || c1 == CHAR_CLASS_MAX_LENGTH) 2054 break; 2055 str[c1++] = c; 2056 } 2057 str[c1] = '\0'; 2058 2059 /* If isn't a word bracketed by `[:' and:`]': 2060 undo the ending character, the letters, and leave 2061 the leading `:' and `[' (but set bits for them). */ 2062 if (c == ':' && *p == ']') 2063 { 2064 int ch; 2065 boolean is_alnum = STREQ (str, "alnum"); 2066 boolean is_alpha = STREQ (str, "alpha"); 2067 boolean is_blank = STREQ (str, "blank"); 2068 boolean is_cntrl = STREQ (str, "cntrl"); 2069 boolean is_digit = STREQ (str, "digit"); 2070 boolean is_graph = STREQ (str, "graph"); 2071 boolean is_lower = STREQ (str, "lower"); 2072 boolean is_print = STREQ (str, "print"); 2073 boolean is_punct = STREQ (str, "punct"); 2074 boolean is_space = STREQ (str, "space"); 2075 boolean is_upper = STREQ (str, "upper"); 2076 boolean is_xdigit = STREQ (str, "xdigit"); 2077 2078 if (!IS_CHAR_CLASS (str)) 2079 FREE_STACK_RETURN (REG_ECTYPE); 2080 2081 /* Throw away the ] at the end of the character 2082 class. */ 2083 PATFETCH (c); 2084 2085 if (p == pend) FREE_STACK_RETURN (REG_EBRACK); 2086 2087 for (ch = 0; ch < 1 << BYTEWIDTH; ch++) 2088 { 2089 int translated = TRANSLATE (ch); 2090 /* This was split into 3 if's to 2091 avoid an arbitrary limit in some compiler. */ 2092 if ( (is_alnum && ISALNUM (ch)) 2093 || (is_alpha && ISALPHA (ch)) 2094 || (is_blank && ISBLANK (ch)) 2095 || (is_cntrl && ISCNTRL (ch))) 2096 SET_LIST_BIT (translated); 2097 if ( (is_digit && ISDIGIT (ch)) 2098 || (is_graph && ISGRAPH (ch)) 2099 || (is_lower && ISLOWER (ch)) 2100 || (is_print && ISPRINT (ch))) 2101 SET_LIST_BIT (translated); 2102 if ( (is_punct && ISPUNCT (ch)) 2103 || (is_space && ISSPACE (ch)) 2104 || (is_upper && ISUPPER (ch)) 2105 || (is_xdigit && ISXDIGIT (ch))) 2106 SET_LIST_BIT (translated); 2107 } 2108 had_char_class = true; 2109 } 2110 else 2111 { 2112 c1++; 2113 while (c1--) 2114 PATUNFETCH; 2115 SET_LIST_BIT ('['); 2116 SET_LIST_BIT (':'); 2117 had_char_class = false; 2118 } 2119 } 2120 else 2121 { 2122 had_char_class = false; 2123 SET_LIST_BIT (c); 2124 } 2125 } 2126 2127 /* Discard any (non)matching list bytes that are all 0 at the 2128 end of the map. Decrease the map-length byte too. */ 2129 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0) 2130 b[-1]--; 2131 b += b[-1]; 2132 } 2133 break; 2134 2135 2136 case '(': 2137 if (syntax & RE_NO_BK_PARENS) 2138 goto handle_open; 2139 else 2140 goto normal_char; 2141 2142 2143 case ')': 2144 if (syntax & RE_NO_BK_PARENS) 2145 goto handle_close; 2146 else 2147 goto normal_char; 2148 2149 2150 case '\n': 2151 if (syntax & RE_NEWLINE_ALT) 2152 goto handle_alt; 2153 else 2154 goto normal_char; 2155 2156 2157 case '|': 2158 if (syntax & RE_NO_BK_VBAR) 2159 goto handle_alt; 2160 else 2161 goto normal_char; 2162 2163 2164 case '{': 2165 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES) 2166 goto handle_interval; 2167 else 2168 goto normal_char; 2169 2170 2171 case '\\': 2172 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE); 2173 2174 /* Do not translate the character after the \, so that we can 2175 distinguish, e.g., \B from \b, even if we normally would 2176 translate, e.g., B to b. */ 2177 PATFETCH_RAW (c); 2178 2179 switch (c) 2180 { 2181 case '(': 2182 if (syntax & RE_NO_BK_PARENS) 2183 goto normal_backslash; 2184 2185 handle_open: 2186 bufp->re_nsub++; 2187 regnum++; 2188 2189 if (COMPILE_STACK_FULL) 2190 { 2191 RETALLOC (compile_stack.stack, compile_stack.size << 1, 2192 compile_stack_elt_t); 2193 if (compile_stack.stack == NULL) return REG_ESPACE; 2194 2195 compile_stack.size <<= 1; 2196 } 2197 2198 /* These are the values to restore when we hit end of this 2199 group. They are all relative offsets, so that if the 2200 whole pattern moves because of realloc, they will still 2201 be valid. */ 2202 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer; 2203 COMPILE_STACK_TOP.fixup_alt_jump 2204 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0; 2205 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer; 2206 COMPILE_STACK_TOP.regnum = regnum; 2207 2208 /* We will eventually replace the 0 with the number of 2209 groups inner to this one. But do not push a 2210 start_memory for groups beyond the last one we can 2211 represent in the compiled pattern. */ 2212 if (regnum <= MAX_REGNUM) 2213 { 2214 COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2; 2215 BUF_PUSH_3 (start_memory, regnum, 0); 2216 } 2217 2218 compile_stack.avail++; 2219 2220 fixup_alt_jump = 0; 2221 laststart = 0; 2222 begalt = b; 2223 /* If we've reached MAX_REGNUM groups, then this open 2224 won't actually generate any code, so we'll have to 2225 clear pending_exact explicitly. */ 2226 pending_exact = 0; 2227 break; 2228 2229 2230 case ')': 2231 if (syntax & RE_NO_BK_PARENS) goto normal_backslash; 2232 2233 if (COMPILE_STACK_EMPTY) 2234 { 2235 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD) 2236 goto normal_backslash; 2237 else 2238 FREE_STACK_RETURN (REG_ERPAREN); 2239 } 2240 2241 handle_close: 2242 if (fixup_alt_jump) 2243 { /* Push a dummy failure point at the end of the 2244 alternative for a possible future 2245 `pop_failure_jump' to pop. See comments at 2246 `push_dummy_failure' in `re_match_2'. */ 2247 BUF_PUSH (push_dummy_failure); 2248 2249 /* We allocated space for this jump when we assigned 2250 to `fixup_alt_jump', in the `handle_alt' case below. */ 2251 STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1); 2252 } 2253 2254 /* See similar code for backslashed left paren above. */ 2255 if (COMPILE_STACK_EMPTY) 2256 { 2257 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD) 2258 goto normal_char; 2259 else 2260 FREE_STACK_RETURN (REG_ERPAREN); 2261 } 2262 2263 /* Since we just checked for an empty stack above, this 2264 ``can't happen''. */ 2265 assert (compile_stack.avail != 0); 2266 { 2267 /* We don't just want to restore into `regnum', because 2268 later groups should continue to be numbered higher, 2269 as in `(ab)c(de)' -- the second group is #2. */ 2270 regnum_t this_group_regnum; 2271 2272 compile_stack.avail--; 2273 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset; 2274 fixup_alt_jump 2275 = COMPILE_STACK_TOP.fixup_alt_jump 2276 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1 2277 : 0; 2278 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset; 2279 this_group_regnum = COMPILE_STACK_TOP.regnum; 2280 /* If we've reached MAX_REGNUM groups, then this open 2281 won't actually generate any code, so we'll have to 2282 clear pending_exact explicitly. */ 2283 pending_exact = 0; 2284 2285 /* We're at the end of the group, so now we know how many 2286 groups were inside this one. */ 2287 if (this_group_regnum <= MAX_REGNUM) 2288 { 2289 unsigned char *inner_group_loc 2290 = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset; 2291 2292 *inner_group_loc = regnum - this_group_regnum; 2293 BUF_PUSH_3 (stop_memory, this_group_regnum, 2294 regnum - this_group_regnum); 2295 } 2296 } 2297 break; 2298 2299 2300 case '|': /* `\|'. */ 2301 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR) 2302 goto normal_backslash; 2303 handle_alt: 2304 if (syntax & RE_LIMITED_OPS) 2305 goto normal_char; 2306 2307 /* Insert before the previous alternative a jump which 2308 jumps to this alternative if the former fails. */ 2309 GET_BUFFER_SPACE (3); 2310 INSERT_JUMP (on_failure_jump, begalt, b + 6); 2311 pending_exact = 0; 2312 b += 3; 2313 2314 /* The alternative before this one has a jump after it 2315 which gets executed if it gets matched. Adjust that 2316 jump so it will jump to this alternative's analogous 2317 jump (put in below, which in turn will jump to the next 2318 (if any) alternative's such jump, etc.). The last such 2319 jump jumps to the correct final destination. A picture: 2320 _____ _____ 2321 | | | | 2322 | v | v 2323 a | b | c 2324 2325 If we are at `b', then fixup_alt_jump right now points to a 2326 three-byte space after `a'. We'll put in the jump, set 2327 fixup_alt_jump to right after `b', and leave behind three 2328 bytes which we'll fill in when we get to after `c'. */ 2329 2330 if (fixup_alt_jump) 2331 STORE_JUMP (jump_past_alt, fixup_alt_jump, b); 2332 2333 /* Mark and leave space for a jump after this alternative, 2334 to be filled in later either by next alternative or 2335 when know we're at the end of a series of alternatives. */ 2336 fixup_alt_jump = b; 2337 GET_BUFFER_SPACE (3); 2338 b += 3; 2339 2340 laststart = 0; 2341 begalt = b; 2342 break; 2343 2344 2345 case '{': 2346 /* If \{ is a literal. */ 2347 if (!(syntax & RE_INTERVALS) 2348 /* If we're at `\{' and it's not the open-interval 2349 operator. */ 2350 || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES)) 2351 || (p - 2 == pattern && p == pend)) 2352 goto normal_backslash; 2353 2354 handle_interval: 2355 { 2356 /* If got here, then the syntax allows intervals. */ 2357 2358 /* At least (most) this many matches must be made. */ 2359 int lower_bound = -1, upper_bound = -1; 2360 2361 beg_interval = p - 1; 2362 2363 if (p == pend) 2364 { 2365 if (syntax & RE_NO_BK_BRACES) 2366 goto unfetch_interval; 2367 else 2368 FREE_STACK_RETURN (REG_EBRACE); 2369 } 2370 2371 GET_UNSIGNED_NUMBER (lower_bound); 2372 2373 if (c == ',') 2374 { 2375 GET_UNSIGNED_NUMBER (upper_bound); 2376 if (upper_bound < 0) upper_bound = RE_DUP_MAX; 2377 } 2378 else 2379 /* Interval such as `{1}' => match exactly once. */ 2380 upper_bound = lower_bound; 2381 2382 if (lower_bound < 0 || upper_bound > RE_DUP_MAX 2383 || lower_bound > upper_bound) 2384 { 2385 if (syntax & RE_NO_BK_BRACES) 2386 goto unfetch_interval; 2387 else 2388 FREE_STACK_RETURN (REG_BADBR); 2389 } 2390 2391 if (!(syntax & RE_NO_BK_BRACES)) 2392 { 2393 if (c != '\\') FREE_STACK_RETURN (REG_EBRACE); 2394 2395 PATFETCH (c); 2396 } 2397 2398 if (c != '}') 2399 { 2400 if (syntax & RE_NO_BK_BRACES) 2401 goto unfetch_interval; 2402 else 2403 FREE_STACK_RETURN (REG_BADBR); 2404 } 2405 2406 /* We just parsed a valid interval. */ 2407 2408 /* If it's invalid to have no preceding re. */ 2409 if (!laststart) 2410 { 2411 if (syntax & RE_CONTEXT_INVALID_OPS) 2412 FREE_STACK_RETURN (REG_BADRPT); 2413 else if (syntax & RE_CONTEXT_INDEP_OPS) 2414 laststart = b; 2415 else 2416 goto unfetch_interval; 2417 } 2418 2419 /* If the upper bound is zero, don't want to succeed at 2420 all; jump from `laststart' to `b + 3', which will be 2421 the end of the buffer after we insert the jump. */ 2422 if (upper_bound == 0) 2423 { 2424 GET_BUFFER_SPACE (3); 2425 INSERT_JUMP (jump, laststart, b + 3); 2426 b += 3; 2427 } 2428 2429 /* Otherwise, we have a nontrivial interval. When 2430 we're all done, the pattern will look like: 2431 set_number_at <jump count> <upper bound> 2432 set_number_at <succeed_n count> <lower bound> 2433 succeed_n <after jump addr> <succeed_n count> 2434 <body of loop> 2435 jump_n <succeed_n addr> <jump count> 2436 (The upper bound and `jump_n' are omitted if 2437 `upper_bound' is 1, though.) */ 2438 else 2439 { /* If the upper bound is > 1, we need to insert 2440 more at the end of the loop. */ 2441 unsigned nbytes = 10 + (upper_bound > 1) * 10; 2442 2443 GET_BUFFER_SPACE (nbytes); 2444 2445 /* Initialize lower bound of the `succeed_n', even 2446 though it will be set during matching by its 2447 attendant `set_number_at' (inserted next), 2448 because `re_compile_fastmap' needs to know. 2449 Jump to the `jump_n' we might insert below. */ 2450 INSERT_JUMP2 (succeed_n, laststart, 2451 b + 5 + (upper_bound > 1) * 5, 2452 lower_bound); 2453 b += 5; 2454 2455 /* Code to initialize the lower bound. Insert 2456 before the `succeed_n'. The `5' is the last two 2457 bytes of this `set_number_at', plus 3 bytes of 2458 the following `succeed_n'. */ 2459 insert_op2 (set_number_at, laststart, 5, lower_bound, b); 2460 b += 5; 2461 2462 if (upper_bound > 1) 2463 { /* More than one repetition is allowed, so 2464 append a backward jump to the `succeed_n' 2465 that starts this interval. 2466 2467 When we've reached this during matching, 2468 we'll have matched the interval once, so 2469 jump back only `upper_bound - 1' times. */ 2470 STORE_JUMP2 (jump_n, b, laststart + 5, 2471 upper_bound - 1); 2472 b += 5; 2473 2474 /* The location we want to set is the second 2475 parameter of the `jump_n'; that is `b-2' as 2476 an absolute address. `laststart' will be 2477 the `set_number_at' we're about to insert; 2478 `laststart+3' the number to set, the source 2479 for the relative address. But we are 2480 inserting into the middle of the pattern -- 2481 so everything is getting moved up by 5. 2482 Conclusion: (b - 2) - (laststart + 3) + 5, 2483 i.e., b - laststart. 2484 2485 We insert this at the beginning of the loop 2486 so that if we fail during matching, we'll 2487 reinitialize the bounds. */ 2488 insert_op2 (set_number_at, laststart, b - laststart, 2489 upper_bound - 1, b); 2490 b += 5; 2491 } 2492 } 2493 pending_exact = 0; 2494 beg_interval = NULL; 2495 } 2496 break; 2497 2498 unfetch_interval: 2499 /* If an invalid interval, match the characters as literals. */ 2500 assert (beg_interval); 2501 p = beg_interval; 2502 beg_interval = NULL; 2503 2504 /* normal_char and normal_backslash need `c'. */ 2505 PATFETCH (c); 2506 2507 if (!(syntax & RE_NO_BK_BRACES)) 2508 { 2509 if (p > pattern && p[-1] == '\\') 2510 goto normal_backslash; 2511 } 2512 goto normal_char; 2513 2514#ifdef emacs 2515 /* There is no way to specify the before_dot and after_dot 2516 operators. rms says this is ok. --karl */ 2517 case '=': 2518 BUF_PUSH (at_dot); 2519 break; 2520 2521 case 's': 2522 laststart = b; 2523 PATFETCH (c); 2524 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]); 2525 break; 2526 2527 case 'S': 2528 laststart = b; 2529 PATFETCH (c); 2530 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]); 2531 break; 2532#endif /* emacs */ 2533 2534 2535 case 'w': 2536 laststart = b; 2537 BUF_PUSH (wordchar); 2538 break; 2539 2540 2541 case 'W': 2542 laststart = b; 2543 BUF_PUSH (notwordchar); 2544 break; 2545 2546 2547 case '<': 2548 BUF_PUSH (wordbeg); 2549 break; 2550 2551 case '>': 2552 BUF_PUSH (wordend); 2553 break; 2554 2555 case 'b': 2556 BUF_PUSH (wordbound); 2557 break; 2558 2559 case 'B': 2560 BUF_PUSH (notwordbound); 2561 break; 2562 2563 case '`': 2564 BUF_PUSH (begbuf); 2565 break; 2566 2567 case '\'': 2568 BUF_PUSH (endbuf); 2569 break; 2570 2571 case '1': case '2': case '3': case '4': case '5': 2572 case '6': case '7': case '8': case '9': 2573 if (syntax & RE_NO_BK_REFS) 2574 goto normal_char; 2575 2576 c1 = c - '0'; 2577 2578 if (c1 > regnum) 2579 FREE_STACK_RETURN (REG_ESUBREG); 2580 2581 /* Can't back reference to a subexpression if inside of it. */ 2582 if (group_in_compile_stack (compile_stack, c1)) 2583 goto normal_char; 2584 2585 laststart = b; 2586 BUF_PUSH_2 (duplicate, c1); 2587 break; 2588 2589 2590 case '+': 2591 case '?': 2592 if (syntax & RE_BK_PLUS_QM) 2593 goto handle_plus; 2594 else 2595 goto normal_backslash; 2596 2597 default: 2598 normal_backslash: 2599 /* You might think it would be useful for \ to mean 2600 not to translate; but if we don't translate it 2601 it will never match anything. */ 2602 c = TRANSLATE (c); 2603 goto normal_char; 2604 } 2605 break; 2606 2607 2608 default: 2609 /* Expects the character in `c'. */ 2610 normal_char: 2611 /* If no exactn currently being built. */ 2612 if (!pending_exact 2613 2614 /* If last exactn not at current position. */ 2615 || pending_exact + *pending_exact + 1 != b 2616 2617 /* We have only one byte following the exactn for the count. */ 2618 || *pending_exact == (1 << BYTEWIDTH) - 1 2619 2620 /* If followed by a repetition operator. */ 2621 || *p == '*' || *p == '^' 2622 || ((syntax & RE_BK_PLUS_QM) 2623 ? *p == '\\' && (p[1] == '+' || p[1] == '?') 2624 : (*p == '+' || *p == '?')) 2625 || ((syntax & RE_INTERVALS) 2626 && ((syntax & RE_NO_BK_BRACES) 2627 ? *p == '{' 2628 : (p[0] == '\\' && p[1] == '{')))) 2629 { 2630 /* Start building a new exactn. */ 2631 2632 laststart = b; 2633 2634 BUF_PUSH_2 (exactn, 0); 2635 pending_exact = b - 1; 2636 } 2637 2638 BUF_PUSH (c); 2639 (*pending_exact)++; 2640 break; 2641 } /* switch (c) */ 2642 } /* while p != pend */ 2643 2644 2645 /* Through the pattern now. */ 2646 2647 if (fixup_alt_jump) 2648 STORE_JUMP (jump_past_alt, fixup_alt_jump, b); 2649 2650 if (!COMPILE_STACK_EMPTY) 2651 FREE_STACK_RETURN (REG_EPAREN); 2652 2653 /* If we don't want backtracking, force success 2654 the first time we reach the end of the compiled pattern. */ 2655 if (syntax & RE_NO_POSIX_BACKTRACKING) 2656 BUF_PUSH (succeed); 2657 2658 free (compile_stack.stack); 2659 2660 /* We have succeeded; set the length of the buffer. */ 2661 bufp->used = b - bufp->buffer; 2662 2663#ifdef DEBUG 2664 if (debug) 2665 { 2666 DEBUG_PRINT1 ("\nCompiled pattern: \n"); 2667 print_compiled_pattern (bufp); 2668 } 2669#endif /* DEBUG */ 2670 2671#ifndef MATCH_MAY_ALLOCATE 2672 /* Initialize the failure stack to the largest possible stack. This 2673 isn't necessary unless we're trying to avoid calling alloca in 2674 the search and match routines. */ 2675 { 2676 int num_regs = bufp->re_nsub + 1; 2677 2678 /* Since DOUBLE_FAIL_STACK refuses to double only if the current size 2679 is strictly greater than re_max_failures, the largest possible stack 2680 is 2 * re_max_failures failure points. */ 2681 if (fail_stack.size < (2 * re_max_failures * MAX_FAILURE_ITEMS)) 2682 { 2683 fail_stack.size = (2 * re_max_failures * MAX_FAILURE_ITEMS); 2684 2685#ifdef emacs 2686 if (! fail_stack.stack) 2687 fail_stack.stack 2688 = (fail_stack_elt_t *) xmalloc (fail_stack.size 2689 * sizeof (fail_stack_elt_t)); 2690 else 2691 fail_stack.stack 2692 = (fail_stack_elt_t *) xrealloc (fail_stack.stack, 2693 (fail_stack.size 2694 * sizeof (fail_stack_elt_t))); 2695#else /* not emacs */ 2696 if (! fail_stack.stack) 2697 fail_stack.stack 2698 = (fail_stack_elt_t *) malloc (fail_stack.size 2699 * sizeof (fail_stack_elt_t)); 2700 else 2701 fail_stack.stack 2702 = (fail_stack_elt_t *) realloc (fail_stack.stack, 2703 (fail_stack.size 2704 * sizeof (fail_stack_elt_t))); 2705#endif /* not emacs */ 2706 } 2707 2708 regex_grow_registers (num_regs); 2709 } 2710#endif /* not MATCH_MAY_ALLOCATE */ 2711 2712 return REG_NOERROR; 2713} /* regex_compile */ 2714 2715/* Subroutines for `regex_compile'. */ 2716 2717/* Store OP at LOC followed by two-byte integer parameter ARG. */ 2718 2719static void 2720store_op1 (op, loc, arg) 2721 re_opcode_t op; 2722 unsigned char *loc; 2723 int arg; 2724{ 2725 *loc = (unsigned char) op; 2726 STORE_NUMBER (loc + 1, arg); 2727} 2728 2729 2730/* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */ 2731 2732static void 2733store_op2 (op, loc, arg1, arg2) 2734 re_opcode_t op; 2735 unsigned char *loc; 2736 int arg1, arg2; 2737{ 2738 *loc = (unsigned char) op; 2739 STORE_NUMBER (loc + 1, arg1); 2740 STORE_NUMBER (loc + 3, arg2); 2741} 2742 2743 2744/* Copy the bytes from LOC to END to open up three bytes of space at LOC 2745 for OP followed by two-byte integer parameter ARG. */ 2746 2747static void 2748insert_op1 (op, loc, arg, end) 2749 re_opcode_t op; 2750 unsigned char *loc; 2751 int arg; 2752 unsigned char *end; 2753{ 2754 register unsigned char *pfrom = end; 2755 register unsigned char *pto = end + 3; 2756 2757 while (pfrom != loc) 2758 *--pto = *--pfrom; 2759 2760 store_op1 (op, loc, arg); 2761} 2762 2763 2764/* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */ 2765 2766static void 2767insert_op2 (op, loc, arg1, arg2, end) 2768 re_opcode_t op; 2769 unsigned char *loc; 2770 int arg1, arg2; 2771 unsigned char *end; 2772{ 2773 register unsigned char *pfrom = end; 2774 register unsigned char *pto = end + 5; 2775 2776 while (pfrom != loc) 2777 *--pto = *--pfrom; 2778 2779 store_op2 (op, loc, arg1, arg2); 2780} 2781 2782 2783/* P points to just after a ^ in PATTERN. Return true if that ^ comes 2784 after an alternative or a begin-subexpression. We assume there is at 2785 least one character before the ^. */ 2786 2787static boolean 2788at_begline_loc_p (pattern, p, syntax) 2789 const char *pattern, *p; 2790 reg_syntax_t syntax; 2791{ 2792 const char *prev = p - 2; 2793 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\'; 2794 2795 return 2796 /* After a subexpression? */ 2797 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash)) 2798 /* After an alternative? */ 2799 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash)); 2800} 2801 2802 2803/* The dual of at_begline_loc_p. This one is for $. We assume there is 2804 at least one character after the $, i.e., `P < PEND'. */ 2805 2806static boolean 2807at_endline_loc_p (p, pend, syntax) 2808 const char *p, *pend; 2809 int syntax; 2810{ 2811 const char *next = p; 2812 boolean next_backslash = *next == '\\'; 2813 const char *next_next = p + 1 < pend ? p + 1 : 0; 2814 2815 return 2816 /* Before a subexpression? */ 2817 (syntax & RE_NO_BK_PARENS ? *next == ')' 2818 : next_backslash && next_next && *next_next == ')') 2819 /* Before an alternative? */ 2820 || (syntax & RE_NO_BK_VBAR ? *next == '|' 2821 : next_backslash && next_next && *next_next == '|'); 2822} 2823 2824 2825/* Returns true if REGNUM is in one of COMPILE_STACK's elements and 2826 false if it's not. */ 2827 2828static boolean 2829group_in_compile_stack (compile_stack, regnum) 2830 compile_stack_type compile_stack; 2831 regnum_t regnum; 2832{ 2833 int this_element; 2834 2835 for (this_element = compile_stack.avail - 1; 2836 this_element >= 0; 2837 this_element--) 2838 if (compile_stack.stack[this_element].regnum == regnum) 2839 return true; 2840 2841 return false; 2842} 2843 2844 2845/* Read the ending character of a range (in a bracket expression) from the 2846 uncompiled pattern *P_PTR (which ends at PEND). We assume the 2847 starting character is in `P[-2]'. (`P[-1]' is the character `-'.) 2848 Then we set the translation of all bits between the starting and 2849 ending characters (inclusive) in the compiled pattern B. 2850 2851 Return an error code. 2852 2853 We use these short variable names so we can use the same macros as 2854 `regex_compile' itself. */ 2855 2856static reg_errcode_t 2857compile_range (p_ptr, pend, translate, syntax, b) 2858 const char **p_ptr, *pend; 2859 RE_TRANSLATE_TYPE translate; 2860 reg_syntax_t syntax; 2861 unsigned char *b; 2862{ 2863 unsigned this_char; 2864 2865 const char *p = *p_ptr; 2866 int range_start, range_end; 2867 2868 if (p == pend) 2869 return REG_ERANGE; 2870 2871 /* Even though the pattern is a signed `char *', we need to fetch 2872 with unsigned char *'s; if the high bit of the pattern character 2873 is set, the range endpoints will be negative if we fetch using a 2874 signed char *. 2875 2876 We also want to fetch the endpoints without translating them; the 2877 appropriate translation is done in the bit-setting loop below. */ 2878 /* The SVR4 compiler on the 3B2 had trouble with unsigned const char *. */ 2879 range_start = ((const unsigned char *) p)[-2]; 2880 range_end = ((const unsigned char *) p)[0]; 2881 2882 /* Have to increment the pointer into the pattern string, so the 2883 caller isn't still at the ending character. */ 2884 (*p_ptr)++; 2885 2886 /* If the start is after the end, the range is empty. */ 2887 if (range_start > range_end) 2888 return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR; 2889 2890 /* Here we see why `this_char' has to be larger than an `unsigned 2891 char' -- the range is inclusive, so if `range_end' == 0xff 2892 (assuming 8-bit characters), we would otherwise go into an infinite 2893 loop, since all characters <= 0xff. */ 2894 for (this_char = range_start; this_char <= range_end; this_char++) 2895 { 2896 SET_LIST_BIT (TRANSLATE (this_char)); 2897 } 2898 2899 return REG_NOERROR; 2900} 2901 2902/* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in 2903 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible 2904 characters can start a string that matches the pattern. This fastmap 2905 is used by re_search to skip quickly over impossible starting points. 2906 2907 The caller must supply the address of a (1 << BYTEWIDTH)-byte data 2908 area as BUFP->fastmap. 2909 2910 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in 2911 the pattern buffer. 2912 2913 Returns 0 if we succeed, -2 if an internal error. */ 2914 2915int 2916re_compile_fastmap (bufp) 2917 struct re_pattern_buffer *bufp; 2918{ 2919 int j, k; 2920#ifdef MATCH_MAY_ALLOCATE 2921 fail_stack_type fail_stack; 2922#endif 2923#ifndef REGEX_MALLOC 2924 char *destination; 2925#endif 2926 /* We don't push any register information onto the failure stack. */ 2927 unsigned num_regs = 0; 2928 2929 register char *fastmap = bufp->fastmap; 2930 unsigned char *pattern = bufp->buffer; 2931 unsigned long size = bufp->used; 2932 unsigned char *p = pattern; 2933 register unsigned char *pend = pattern + size; 2934 2935 /* This holds the pointer to the failure stack, when 2936 it is allocated relocatably. */ 2937#ifdef REL_ALLOC 2938 fail_stack_elt_t *failure_stack_ptr; 2939#endif 2940 2941 /* Assume that each path through the pattern can be null until 2942 proven otherwise. We set this false at the bottom of switch 2943 statement, to which we get only if a particular path doesn't 2944 match the empty string. */ 2945 boolean path_can_be_null = true; 2946 2947 /* We aren't doing a `succeed_n' to begin with. */ 2948 boolean succeed_n_p = false; 2949 2950 assert (fastmap != NULL && p != NULL); 2951 2952 INIT_FAIL_STACK (); 2953 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */ 2954 bufp->fastmap_accurate = 1; /* It will be when we're done. */ 2955 bufp->can_be_null = 0; 2956 2957 while (1) 2958 { 2959 if (p == pend || *p == succeed) 2960 { 2961 /* We have reached the (effective) end of pattern. */ 2962 if (!FAIL_STACK_EMPTY ()) 2963 { 2964 bufp->can_be_null |= path_can_be_null; 2965 2966 /* Reset for next path. */ 2967 path_can_be_null = true; 2968 2969 p = fail_stack.stack[--fail_stack.avail].pointer; 2970 2971 continue; 2972 } 2973 else 2974 break; 2975 } 2976 2977 /* We should never be about to go beyond the end of the pattern. */ 2978 assert (p < pend); 2979 2980 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++)) 2981 { 2982 2983 /* I guess the idea here is to simply not bother with a fastmap 2984 if a backreference is used, since it's too hard to figure out 2985 the fastmap for the corresponding group. Setting 2986 `can_be_null' stops `re_search_2' from using the fastmap, so 2987 that is all we do. */ 2988 case duplicate: 2989 bufp->can_be_null = 1; 2990 goto done; 2991 2992 2993 /* Following are the cases which match a character. These end 2994 with `break'. */ 2995 2996 case exactn: 2997 fastmap[p[1]] = 1; 2998 break; 2999 3000 3001 case charset: 3002 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--) 3003 if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))) 3004 fastmap[j] = 1; 3005 break; 3006 3007 3008 case charset_not: 3009 /* Chars beyond end of map must be allowed. */ 3010 for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++) 3011 fastmap[j] = 1; 3012 3013 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--) 3014 if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))) 3015 fastmap[j] = 1; 3016 break; 3017 3018 3019 case wordchar: 3020 for (j = 0; j < (1 << BYTEWIDTH); j++) 3021 if (SYNTAX (j) == Sword) 3022 fastmap[j] = 1; 3023 break; 3024 3025 3026 case notwordchar: 3027 for (j = 0; j < (1 << BYTEWIDTH); j++) 3028 if (SYNTAX (j) != Sword) 3029 fastmap[j] = 1; 3030 break; 3031 3032 3033 case anychar: 3034 { 3035 int fastmap_newline = fastmap['\n']; 3036 3037 /* `.' matches anything ... */ 3038 for (j = 0; j < (1 << BYTEWIDTH); j++) 3039 fastmap[j] = 1; 3040 3041 /* ... except perhaps newline. */ 3042 if (!(bufp->syntax & RE_DOT_NEWLINE)) 3043 fastmap['\n'] = fastmap_newline; 3044 3045 /* Return if we have already set `can_be_null'; if we have, 3046 then the fastmap is irrelevant. Something's wrong here. */ 3047 else if (bufp->can_be_null) 3048 goto done; 3049 3050 /* Otherwise, have to check alternative paths. */ 3051 break; 3052 } 3053 3054#ifdef emacs 3055 case syntaxspec: 3056 k = *p++; 3057 for (j = 0; j < (1 << BYTEWIDTH); j++) 3058 if (SYNTAX (j) == (enum syntaxcode) k) 3059 fastmap[j] = 1; 3060 break; 3061 3062 3063 case notsyntaxspec: 3064 k = *p++; 3065 for (j = 0; j < (1 << BYTEWIDTH); j++) 3066 if (SYNTAX (j) != (enum syntaxcode) k) 3067 fastmap[j] = 1; 3068 break; 3069 3070 3071 /* All cases after this match the empty string. These end with 3072 `continue'. */ 3073 3074 3075 case before_dot: 3076 case at_dot: 3077 case after_dot: 3078 continue; 3079#endif /* emacs */ 3080 3081 3082 case no_op: 3083 case begline: 3084 case endline: 3085 case begbuf: 3086 case endbuf: 3087 case wordbound: 3088 case notwordbound: 3089 case wordbeg: 3090 case wordend: 3091 case push_dummy_failure: 3092 continue; 3093 3094 3095 case jump_n: 3096 case pop_failure_jump: 3097 case maybe_pop_jump: 3098 case jump: 3099 case jump_past_alt: 3100 case dummy_failure_jump: 3101 EXTRACT_NUMBER_AND_INCR (j, p); 3102 p += j; 3103 if (j > 0) 3104 continue; 3105 3106 /* Jump backward implies we just went through the body of a 3107 loop and matched nothing. Opcode jumped to should be 3108 `on_failure_jump' or `succeed_n'. Just treat it like an 3109 ordinary jump. For a * loop, it has pushed its failure 3110 point already; if so, discard that as redundant. */ 3111 if ((re_opcode_t) *p != on_failure_jump 3112 && (re_opcode_t) *p != succeed_n) 3113 continue; 3114 3115 p++; 3116 EXTRACT_NUMBER_AND_INCR (j, p); 3117 p += j; 3118 3119 /* If what's on the stack is where we are now, pop it. */ 3120 if (!FAIL_STACK_EMPTY () 3121 && fail_stack.stack[fail_stack.avail - 1].pointer == p) 3122 fail_stack.avail--; 3123 3124 continue; 3125 3126 3127 case on_failure_jump: 3128 case on_failure_keep_string_jump: 3129 handle_on_failure_jump: 3130 EXTRACT_NUMBER_AND_INCR (j, p); 3131 3132 /* For some patterns, e.g., `(a?)?', `p+j' here points to the 3133 end of the pattern. We don't want to push such a point, 3134 since when we restore it above, entering the switch will 3135 increment `p' past the end of the pattern. We don't need 3136 to push such a point since we obviously won't find any more 3137 fastmap entries beyond `pend'. Such a pattern can match 3138 the null string, though. */ 3139 if (p + j < pend) 3140 { 3141 if (!PUSH_PATTERN_OP (p + j, fail_stack)) 3142 { 3143 RESET_FAIL_STACK (); 3144 return -2; 3145 } 3146 } 3147 else 3148 bufp->can_be_null = 1; 3149 3150 if (succeed_n_p) 3151 { 3152 EXTRACT_NUMBER_AND_INCR (k, p); /* Skip the n. */ 3153 succeed_n_p = false; 3154 } 3155 3156 continue; 3157 3158 3159 case succeed_n: 3160 /* Get to the number of times to succeed. */ 3161 p += 2; 3162 3163 /* Increment p past the n for when k != 0. */ 3164 EXTRACT_NUMBER_AND_INCR (k, p); 3165 if (k == 0) 3166 { 3167 p -= 4; 3168 succeed_n_p = true; /* Spaghetti code alert. */ 3169 goto handle_on_failure_jump; 3170 } 3171 continue; 3172 3173 3174 case set_number_at: 3175 p += 4; 3176 continue; 3177 3178 3179 case start_memory: 3180 case stop_memory: 3181 p += 2; 3182 continue; 3183 3184 3185 default: 3186 abort (); /* We have listed all the cases. */ 3187 } /* switch *p++ */ 3188 3189 /* Getting here means we have found the possible starting 3190 characters for one path of the pattern -- and that the empty 3191 string does not match. We need not follow this path further. 3192 Instead, look at the next alternative (remembered on the 3193 stack), or quit if no more. The test at the top of the loop 3194 does these things. */ 3195 path_can_be_null = false; 3196 p = pend; 3197 } /* while p */ 3198 3199 /* Set `can_be_null' for the last path (also the first path, if the 3200 pattern is empty). */ 3201 bufp->can_be_null |= path_can_be_null; 3202 3203 done: 3204 RESET_FAIL_STACK (); 3205 return 0; 3206} /* re_compile_fastmap */ 3207 3208/* Set REGS to hold NUM_REGS registers, storing them in STARTS and 3209 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use 3210 this memory for recording register information. STARTS and ENDS 3211 must be allocated using the malloc library routine, and must each 3212 be at least NUM_REGS * sizeof (regoff_t) bytes long. 3213 3214 If NUM_REGS == 0, then subsequent matches should allocate their own 3215 register data. 3216 3217 Unless this function is called, the first search or match using 3218 PATTERN_BUFFER will allocate its own register data, without 3219 freeing the old data. */ 3220 3221void 3222re_set_registers (bufp, regs, num_regs, starts, ends) 3223 struct re_pattern_buffer *bufp; 3224 struct re_registers *regs; 3225 unsigned num_regs; 3226 regoff_t *starts, *ends; 3227{ 3228 if (num_regs) 3229 { 3230 bufp->regs_allocated = REGS_REALLOCATE; 3231 regs->num_regs = num_regs; 3232 regs->start = starts; 3233 regs->end = ends; 3234 } 3235 else 3236 { 3237 bufp->regs_allocated = REGS_UNALLOCATED; 3238 regs->num_regs = 0; 3239 regs->start = regs->end = (regoff_t *) 0; 3240 } 3241} 3242 3243/* Searching routines. */ 3244 3245/* Like re_search_2, below, but only one string is specified, and 3246 doesn't let you say where to stop matching. */ 3247 3248int 3249re_search (bufp, string, size, startpos, range, regs) 3250 struct re_pattern_buffer *bufp; 3251 const char *string; 3252 int size, startpos, range; 3253 struct re_registers *regs; 3254{ 3255 return re_search_2 (bufp, NULL, 0, string, size, startpos, range, 3256 regs, size); 3257} 3258 3259 3260/* Using the compiled pattern in BUFP->buffer, first tries to match the 3261 virtual concatenation of STRING1 and STRING2, starting first at index 3262 STARTPOS, then at STARTPOS + 1, and so on. 3263 3264 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively. 3265 3266 RANGE is how far to scan while trying to match. RANGE = 0 means try 3267 only at STARTPOS; in general, the last start tried is STARTPOS + 3268 RANGE. 3269 3270 In REGS, return the indices of the virtual concatenation of STRING1 3271 and STRING2 that matched the entire BUFP->buffer and its contained 3272 subexpressions. 3273 3274 Do not consider matching one past the index STOP in the virtual 3275 concatenation of STRING1 and STRING2. 3276 3277 We return either the position in the strings at which the match was 3278 found, -1 if no match, or -2 if error (such as failure 3279 stack overflow). */ 3280 3281int 3282re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop) 3283 struct re_pattern_buffer *bufp; 3284 const char *string1, *string2; 3285 int size1, size2; 3286 int startpos; 3287 int range; 3288 struct re_registers *regs; 3289 int stop; 3290{ 3291 int val; 3292 register char *fastmap = bufp->fastmap; 3293 register RE_TRANSLATE_TYPE translate = bufp->translate; 3294 int total_size = size1 + size2; 3295 int endpos = startpos + range; 3296 int anchored_start = 0; 3297 3298 /* Check for out-of-range STARTPOS. */ 3299 if (startpos < 0 || startpos > total_size) 3300 return -1; 3301 3302 /* Fix up RANGE if it might eventually take us outside 3303 the virtual concatenation of STRING1 and STRING2. 3304 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */ 3305 if (endpos < 0) 3306 range = 0 - startpos; 3307 else if (endpos > total_size) 3308 range = total_size - startpos; 3309 3310 /* If the search isn't to be a backwards one, don't waste time in a 3311 search for a pattern that must be anchored. */ 3312 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0) 3313 { 3314 if (startpos > 0) 3315 return -1; 3316 else 3317 range = 1; 3318 } 3319 3320#ifdef emacs 3321 /* In a forward search for something that starts with \=. 3322 don't keep searching past point. */ 3323 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0) 3324 { 3325 range = PT - startpos; 3326 if (range <= 0) 3327 return -1; 3328 } 3329#endif /* emacs */ 3330 3331 /* Update the fastmap now if not correct already. */ 3332 if (fastmap && !bufp->fastmap_accurate) 3333 if (re_compile_fastmap (bufp) == -2) 3334 return -2; 3335 3336 /* See whether the pattern is anchored. */ 3337 if (bufp->buffer[0] == begline) 3338 anchored_start = 1; 3339 3340 /* Loop through the string, looking for a place to start matching. */ 3341 for (;;) 3342 { 3343 /* If the pattern is anchored, 3344 skip quickly past places we cannot match. 3345 We don't bother to treat startpos == 0 specially 3346 because that case doesn't repeat. */ 3347 if (anchored_start && startpos > 0) 3348 { 3349 if (! (bufp->newline_anchor 3350 && ((startpos <= size1 ? string1[startpos - 1] 3351 : string2[startpos - size1 - 1]) 3352 == '\n'))) 3353 goto advance; 3354 } 3355 3356 /* If a fastmap is supplied, skip quickly over characters that 3357 cannot be the start of a match. If the pattern can match the 3358 null string, however, we don't need to skip characters; we want 3359 the first null string. */ 3360 if (fastmap && startpos < total_size && !bufp->can_be_null) 3361 { 3362 if (range > 0) /* Searching forwards. */ 3363 { 3364 register const char *d; 3365 register int lim = 0; 3366 int irange = range; 3367 3368 if (startpos < size1 && startpos + range >= size1) 3369 lim = range - (size1 - startpos); 3370 3371 d = (startpos >= size1 ? string2 - size1 : string1) + startpos; 3372 3373 /* Written out as an if-else to avoid testing `translate' 3374 inside the loop. */ 3375 if (translate) 3376 while (range > lim 3377 && !fastmap[(unsigned char) 3378 translate[(unsigned char) *d++]]) 3379 range--; 3380 else 3381 while (range > lim && !fastmap[(unsigned char) *d++]) 3382 range--; 3383 3384 startpos += irange - range; 3385 } 3386 else /* Searching backwards. */ 3387 { 3388 register char c = (size1 == 0 || startpos >= size1 3389 ? string2[startpos - size1] 3390 : string1[startpos]); 3391 3392 if (!fastmap[(unsigned char) TRANSLATE (c)]) 3393 goto advance; 3394 } 3395 } 3396 3397 /* If can't match the null string, and that's all we have left, fail. */ 3398 if (range >= 0 && startpos == total_size && fastmap 3399 && !bufp->can_be_null) 3400 return -1; 3401 3402 val = re_match_2_internal (bufp, string1, size1, string2, size2, 3403 startpos, regs, stop); 3404#ifndef REGEX_MALLOC 3405#ifdef C_ALLOCA 3406 alloca (0); 3407#endif 3408#endif 3409 3410 if (val >= 0) 3411 return startpos; 3412 3413 if (val == -2) 3414 return -2; 3415 3416 advance: 3417 if (!range) 3418 break; 3419 else if (range > 0) 3420 { 3421 range--; 3422 startpos++; 3423 } 3424 else 3425 { 3426 range++; 3427 startpos--; 3428 } 3429 } 3430 return -1; 3431} /* re_search_2 */ 3432 3433/* Declarations and macros for re_match_2. */ 3434 3435static int bcmp_translate (); 3436static boolean alt_match_null_string_p (), 3437 common_op_match_null_string_p (), 3438 group_match_null_string_p (); 3439 3440/* This converts PTR, a pointer into one of the search strings `string1' 3441 and `string2' into an offset from the beginning of that string. */ 3442#define POINTER_TO_OFFSET(ptr) \ 3443 (FIRST_STRING_P (ptr) \ 3444 ? ((regoff_t) ((ptr) - string1)) \ 3445 : ((regoff_t) ((ptr) - string2 + size1))) 3446 3447/* Macros for dealing with the split strings in re_match_2. */ 3448 3449#define MATCHING_IN_FIRST_STRING (dend == end_match_1) 3450 3451/* Call before fetching a character with *d. This switches over to 3452 string2 if necessary. */ 3453#define PREFETCH() \ 3454 while (d == dend) \ 3455 { \ 3456 /* End of string2 => fail. */ \ 3457 if (dend == end_match_2) \ 3458 goto fail; \ 3459 /* End of string1 => advance to string2. */ \ 3460 d = string2; \ 3461 dend = end_match_2; \ 3462 } 3463 3464 3465/* Test if at very beginning or at very end of the virtual concatenation 3466 of `string1' and `string2'. If only one string, it's `string2'. */ 3467#define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2) 3468#define AT_STRINGS_END(d) ((d) == end2) 3469 3470 3471/* Test if D points to a character which is word-constituent. We have 3472 two special cases to check for: if past the end of string1, look at 3473 the first character in string2; and if before the beginning of 3474 string2, look at the last character in string1. */ 3475#define WORDCHAR_P(d) \ 3476 (SYNTAX ((d) == end1 ? *string2 \ 3477 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \ 3478 == Sword) 3479 3480/* Disabled due to a compiler bug -- see comment at case wordbound */ 3481#if 0 3482/* Test if the character before D and the one at D differ with respect 3483 to being word-constituent. */ 3484#define AT_WORD_BOUNDARY(d) \ 3485 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \ 3486 || WORDCHAR_P (d - 1) != WORDCHAR_P (d)) 3487#endif 3488 3489/* Free everything we malloc. */ 3490#ifdef MATCH_MAY_ALLOCATE 3491#define FREE_VAR(var) if (var) { REGEX_FREE (var); var = NULL; } else 3492#define FREE_VARIABLES() \ 3493 do { \ 3494 REGEX_FREE_STACK (fail_stack.stack); \ 3495 FREE_VAR (regstart); \ 3496 FREE_VAR (regend); \ 3497 FREE_VAR (old_regstart); \ 3498 FREE_VAR (old_regend); \ 3499 FREE_VAR (best_regstart); \ 3500 FREE_VAR (best_regend); \ 3501 FREE_VAR (reg_info); \ 3502 FREE_VAR (reg_dummy); \ 3503 FREE_VAR (reg_info_dummy); \ 3504 } while (0) 3505#else 3506#define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */ 3507#endif /* not MATCH_MAY_ALLOCATE */ 3508 3509/* These values must meet several constraints. They must not be valid 3510 register values; since we have a limit of 255 registers (because 3511 we use only one byte in the pattern for the register number), we can 3512 use numbers larger than 255. They must differ by 1, because of 3513 NUM_FAILURE_ITEMS above. And the value for the lowest register must 3514 be larger than the value for the highest register, so we do not try 3515 to actually save any registers when none are active. */ 3516#define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH) 3517#define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1) 3518 3519/* Matching routines. */ 3520 3521#ifndef emacs /* Emacs never uses this. */ 3522/* re_match is like re_match_2 except it takes only a single string. */ 3523 3524int 3525re_match (bufp, string, size, pos, regs) 3526 struct re_pattern_buffer *bufp; 3527 const char *string; 3528 int size, pos; 3529 struct re_registers *regs; 3530{ 3531 int result = re_match_2_internal (bufp, NULL, 0, string, size, 3532 pos, regs, size); 3533 alloca (0); 3534 return result; 3535} 3536#endif /* not emacs */ 3537 3538 3539/* re_match_2 matches the compiled pattern in BUFP against the 3540 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1 3541 and SIZE2, respectively). We start matching at POS, and stop 3542 matching at STOP. 3543 3544 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we 3545 store offsets for the substring each group matched in REGS. See the 3546 documentation for exactly how many groups we fill. 3547 3548 We return -1 if no match, -2 if an internal error (such as the 3549 failure stack overflowing). Otherwise, we return the length of the 3550 matched substring. */ 3551 3552int 3553re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop) 3554 struct re_pattern_buffer *bufp; 3555 const char *string1, *string2; 3556 int size1, size2; 3557 int pos; 3558 struct re_registers *regs; 3559 int stop; 3560{ 3561 int result = re_match_2_internal (bufp, string1, size1, string2, size2, 3562 pos, regs, stop); 3563 alloca (0); 3564 return result; 3565} 3566 3567/* This is a separate function so that we can force an alloca cleanup 3568 afterwards. */ 3569static int 3570re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop) 3571 struct re_pattern_buffer *bufp; 3572 const char *string1, *string2; 3573 int size1, size2; 3574 int pos; 3575 struct re_registers *regs; 3576 int stop; 3577{ 3578 /* General temporaries. */ 3579 int mcnt; 3580 unsigned char *p1; 3581 3582 /* Just past the end of the corresponding string. */ 3583 const char *end1, *end2; 3584 3585 /* Pointers into string1 and string2, just past the last characters in 3586 each to consider matching. */ 3587 const char *end_match_1, *end_match_2; 3588 3589 /* Where we are in the data, and the end of the current string. */ 3590 const char *d, *dend; 3591 3592 /* Where we are in the pattern, and the end of the pattern. */ 3593 unsigned char *p = bufp->buffer; 3594 register unsigned char *pend = p + bufp->used; 3595 3596 /* Mark the opcode just after a start_memory, so we can test for an 3597 empty subpattern when we get to the stop_memory. */ 3598 unsigned char *just_past_start_mem = 0; 3599 3600 /* We use this to map every character in the string. */ 3601 RE_TRANSLATE_TYPE translate = bufp->translate; 3602 3603 /* Failure point stack. Each place that can handle a failure further 3604 down the line pushes a failure point on this stack. It consists of 3605 restart, regend, and reg_info for all registers corresponding to 3606 the subexpressions we're currently inside, plus the number of such 3607 registers, and, finally, two char *'s. The first char * is where 3608 to resume scanning the pattern; the second one is where to resume 3609 scanning the strings. If the latter is zero, the failure point is 3610 a ``dummy''; if a failure happens and the failure point is a dummy, 3611 it gets discarded and the next next one is tried. */ 3612#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */ 3613 fail_stack_type fail_stack; 3614#endif 3615#ifdef DEBUG 3616 static unsigned failure_id = 0; 3617 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0; 3618#endif 3619 3620 /* This holds the pointer to the failure stack, when 3621 it is allocated relocatably. */ 3622#ifdef REL_ALLOC 3623 fail_stack_elt_t *failure_stack_ptr; 3624#endif 3625 3626 /* We fill all the registers internally, independent of what we 3627 return, for use in backreferences. The number here includes 3628 an element for register zero. */ 3629 unsigned num_regs = bufp->re_nsub + 1; 3630 3631 /* The currently active registers. */ 3632 unsigned lowest_active_reg = NO_LOWEST_ACTIVE_REG; 3633 unsigned highest_active_reg = NO_HIGHEST_ACTIVE_REG; 3634 3635 /* Information on the contents of registers. These are pointers into 3636 the input strings; they record just what was matched (on this 3637 attempt) by a subexpression part of the pattern, that is, the 3638 regnum-th regstart pointer points to where in the pattern we began 3639 matching and the regnum-th regend points to right after where we 3640 stopped matching the regnum-th subexpression. (The zeroth register 3641 keeps track of what the whole pattern matches.) */ 3642#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */ 3643 const char **regstart, **regend; 3644#endif 3645 3646 /* If a group that's operated upon by a repetition operator fails to 3647 match anything, then the register for its start will need to be 3648 restored because it will have been set to wherever in the string we 3649 are when we last see its open-group operator. Similarly for a 3650 register's end. */ 3651#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */ 3652 const char **old_regstart, **old_regend; 3653#endif 3654 3655 /* The is_active field of reg_info helps us keep track of which (possibly 3656 nested) subexpressions we are currently in. The matched_something 3657 field of reg_info[reg_num] helps us tell whether or not we have 3658 matched any of the pattern so far this time through the reg_num-th 3659 subexpression. These two fields get reset each time through any 3660 loop their register is in. */ 3661#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */ 3662 register_info_type *reg_info; 3663#endif 3664 3665 /* The following record the register info as found in the above 3666 variables when we find a match better than any we've seen before. 3667 This happens as we backtrack through the failure points, which in 3668 turn happens only if we have not yet matched the entire string. */ 3669 unsigned best_regs_set = false; 3670#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */ 3671 const char **best_regstart, **best_regend; 3672#endif 3673 3674 /* Logically, this is `best_regend[0]'. But we don't want to have to 3675 allocate space for that if we're not allocating space for anything 3676 else (see below). Also, we never need info about register 0 for 3677 any of the other register vectors, and it seems rather a kludge to 3678 treat `best_regend' differently than the rest. So we keep track of 3679 the end of the best match so far in a separate variable. We 3680 initialize this to NULL so that when we backtrack the first time 3681 and need to test it, it's not garbage. */ 3682 const char *match_end = NULL; 3683 3684 /* This helps SET_REGS_MATCHED avoid doing redundant work. */ 3685 int set_regs_matched_done = 0; 3686 3687 /* Used when we pop values we don't care about. */ 3688#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */ 3689 const char **reg_dummy; 3690 register_info_type *reg_info_dummy; 3691#endif 3692 3693#ifdef DEBUG 3694 /* Counts the total number of registers pushed. */ 3695 unsigned num_regs_pushed = 0; 3696#endif 3697 3698 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n"); 3699 3700 INIT_FAIL_STACK (); 3701 3702#ifdef MATCH_MAY_ALLOCATE 3703 /* Do not bother to initialize all the register variables if there are 3704 no groups in the pattern, as it takes a fair amount of time. If 3705 there are groups, we include space for register 0 (the whole 3706 pattern), even though we never use it, since it simplifies the 3707 array indexing. We should fix this. */ 3708 if (bufp->re_nsub) 3709 { 3710 regstart = REGEX_TALLOC (num_regs, const char *); 3711 regend = REGEX_TALLOC (num_regs, const char *); 3712 old_regstart = REGEX_TALLOC (num_regs, const char *); 3713 old_regend = REGEX_TALLOC (num_regs, const char *); 3714 best_regstart = REGEX_TALLOC (num_regs, const char *); 3715 best_regend = REGEX_TALLOC (num_regs, const char *); 3716 reg_info = REGEX_TALLOC (num_regs, register_info_type); 3717 reg_dummy = REGEX_TALLOC (num_regs, const char *); 3718 reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type); 3719 3720 if (!(regstart && regend && old_regstart && old_regend && reg_info 3721 && best_regstart && best_regend && reg_dummy && reg_info_dummy)) 3722 { 3723 FREE_VARIABLES (); 3724 return -2; 3725 } 3726 } 3727 else 3728 { 3729 /* We must initialize all our variables to NULL, so that 3730 `FREE_VARIABLES' doesn't try to free them. */ 3731 regstart = regend = old_regstart = old_regend = best_regstart 3732 = best_regend = reg_dummy = NULL; 3733 reg_info = reg_info_dummy = (register_info_type *) NULL; 3734 } 3735#endif /* MATCH_MAY_ALLOCATE */ 3736 3737 /* The starting position is bogus. */ 3738 if (pos < 0 || pos > size1 + size2) 3739 { 3740 FREE_VARIABLES (); 3741 return -1; 3742 } 3743 3744 /* Initialize subexpression text positions to -1 to mark ones that no 3745 start_memory/stop_memory has been seen for. Also initialize the 3746 register information struct. */ 3747 for (mcnt = 1; mcnt < num_regs; mcnt++) 3748 { 3749 regstart[mcnt] = regend[mcnt] 3750 = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE; 3751 3752 REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE; 3753 IS_ACTIVE (reg_info[mcnt]) = 0; 3754 MATCHED_SOMETHING (reg_info[mcnt]) = 0; 3755 EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0; 3756 } 3757 3758 /* We move `string1' into `string2' if the latter's empty -- but not if 3759 `string1' is null. */ 3760 if (size2 == 0 && string1 != NULL) 3761 { 3762 string2 = string1; 3763 size2 = size1; 3764 string1 = 0; 3765 size1 = 0; 3766 } 3767 end1 = string1 + size1; 3768 end2 = string2 + size2; 3769 3770 /* Compute where to stop matching, within the two strings. */ 3771 if (stop <= size1) 3772 { 3773 end_match_1 = string1 + stop; 3774 end_match_2 = string2; 3775 } 3776 else 3777 { 3778 end_match_1 = end1; 3779 end_match_2 = string2 + stop - size1; 3780 } 3781 3782 /* `p' scans through the pattern as `d' scans through the data. 3783 `dend' is the end of the input string that `d' points within. `d' 3784 is advanced into the following input string whenever necessary, but 3785 this happens before fetching; therefore, at the beginning of the 3786 loop, `d' can be pointing at the end of a string, but it cannot 3787 equal `string2'. */ 3788 if (size1 > 0 && pos <= size1) 3789 { 3790 d = string1 + pos; 3791 dend = end_match_1; 3792 } 3793 else 3794 { 3795 d = string2 + pos - size1; 3796 dend = end_match_2; 3797 } 3798 3799 DEBUG_PRINT1 ("The compiled pattern is: "); 3800 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend); 3801 DEBUG_PRINT1 ("The string to match is: `"); 3802 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2); 3803 DEBUG_PRINT1 ("'\n"); 3804 3805 /* This loops over pattern commands. It exits by returning from the 3806 function if the match is complete, or it drops through if the match 3807 fails at this starting point in the input data. */ 3808 for (;;) 3809 { 3810 DEBUG_PRINT2 ("\n0x%x: ", p); 3811 3812 if (p == pend) 3813 { /* End of pattern means we might have succeeded. */ 3814 DEBUG_PRINT1 ("end of pattern ... "); 3815 3816 /* If we haven't matched the entire string, and we want the 3817 longest match, try backtracking. */ 3818 if (d != end_match_2) 3819 { 3820 /* 1 if this match ends in the same string (string1 or string2) 3821 as the best previous match. */ 3822 boolean same_str_p = (FIRST_STRING_P (match_end) 3823 == MATCHING_IN_FIRST_STRING); 3824 /* 1 if this match is the best seen so far. */ 3825 boolean best_match_p; 3826 3827 /* AIX compiler got confused when this was combined 3828 with the previous declaration. */ 3829 if (same_str_p) 3830 best_match_p = d > match_end; 3831 else 3832 best_match_p = !MATCHING_IN_FIRST_STRING; 3833 3834 DEBUG_PRINT1 ("backtracking.\n"); 3835 3836 if (!FAIL_STACK_EMPTY ()) 3837 { /* More failure points to try. */ 3838 3839 /* If exceeds best match so far, save it. */ 3840 if (!best_regs_set || best_match_p) 3841 { 3842 best_regs_set = true; 3843 match_end = d; 3844 3845 DEBUG_PRINT1 ("\nSAVING match as best so far.\n"); 3846 3847 for (mcnt = 1; mcnt < num_regs; mcnt++) 3848 { 3849 best_regstart[mcnt] = regstart[mcnt]; 3850 best_regend[mcnt] = regend[mcnt]; 3851 } 3852 } 3853 goto fail; 3854 } 3855 3856 /* If no failure points, don't restore garbage. And if 3857 last match is real best match, don't restore second 3858 best one. */ 3859 else if (best_regs_set && !best_match_p) 3860 { 3861 restore_best_regs: 3862 /* Restore best match. It may happen that `dend == 3863 end_match_1' while the restored d is in string2. 3864 For example, the pattern `x.*y.*z' against the 3865 strings `x-' and `y-z-', if the two strings are 3866 not consecutive in memory. */ 3867 DEBUG_PRINT1 ("Restoring best registers.\n"); 3868 3869 d = match_end; 3870 dend = ((d >= string1 && d <= end1) 3871 ? end_match_1 : end_match_2); 3872 3873 for (mcnt = 1; mcnt < num_regs; mcnt++) 3874 { 3875 regstart[mcnt] = best_regstart[mcnt]; 3876 regend[mcnt] = best_regend[mcnt]; 3877 } 3878 } 3879 } /* d != end_match_2 */ 3880 3881 succeed_label: 3882 DEBUG_PRINT1 ("Accepting match.\n"); 3883 3884 /* If caller wants register contents data back, do it. */ 3885 if (regs && !bufp->no_sub) 3886 { 3887 /* Have the register data arrays been allocated? */ 3888 if (bufp->regs_allocated == REGS_UNALLOCATED) 3889 { /* No. So allocate them with malloc. We need one 3890 extra element beyond `num_regs' for the `-1' marker 3891 GNU code uses. */ 3892 regs->num_regs = MAX (RE_NREGS, num_regs + 1); 3893 regs->start = TALLOC (regs->num_regs, regoff_t); 3894 regs->end = TALLOC (regs->num_regs, regoff_t); 3895 if (regs->start == NULL || regs->end == NULL) 3896 { 3897 FREE_VARIABLES (); 3898 return -2; 3899 } 3900 bufp->regs_allocated = REGS_REALLOCATE; 3901 } 3902 else if (bufp->regs_allocated == REGS_REALLOCATE) 3903 { /* Yes. If we need more elements than were already 3904 allocated, reallocate them. If we need fewer, just 3905 leave it alone. */ 3906 if (regs->num_regs < num_regs + 1) 3907 { 3908 regs->num_regs = num_regs + 1; 3909 RETALLOC (regs->start, regs->num_regs, regoff_t); 3910 RETALLOC (regs->end, regs->num_regs, regoff_t); 3911 if (regs->start == NULL || regs->end == NULL) 3912 { 3913 FREE_VARIABLES (); 3914 return -2; 3915 } 3916 } 3917 } 3918 else 3919 { 3920 /* These braces fend off a "empty body in an else-statement" 3921 warning under GCC when assert expands to nothing. */ 3922 assert (bufp->regs_allocated == REGS_FIXED); 3923 } 3924 3925 /* Convert the pointer data in `regstart' and `regend' to 3926 indices. Register zero has to be set differently, 3927 since we haven't kept track of any info for it. */ 3928 if (regs->num_regs > 0) 3929 { 3930 regs->start[0] = pos; 3931 regs->end[0] = (MATCHING_IN_FIRST_STRING 3932 ? ((regoff_t) (d - string1)) 3933 : ((regoff_t) (d - string2 + size1))); 3934 } 3935 3936 /* Go through the first `min (num_regs, regs->num_regs)' 3937 registers, since that is all we initialized. */ 3938 for (mcnt = 1; mcnt < MIN (num_regs, regs->num_regs); mcnt++) 3939 { 3940 if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt])) 3941 regs->start[mcnt] = regs->end[mcnt] = -1; 3942 else 3943 { 3944 regs->start[mcnt] 3945 = (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]); 3946 regs->end[mcnt] 3947 = (regoff_t) POINTER_TO_OFFSET (regend[mcnt]); 3948 } 3949 } 3950 3951 /* If the regs structure we return has more elements than 3952 were in the pattern, set the extra elements to -1. If 3953 we (re)allocated the registers, this is the case, 3954 because we always allocate enough to have at least one 3955 -1 at the end. */ 3956 for (mcnt = num_regs; mcnt < regs->num_regs; mcnt++) 3957 regs->start[mcnt] = regs->end[mcnt] = -1; 3958 } /* regs && !bufp->no_sub */ 3959 3960 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n", 3961 nfailure_points_pushed, nfailure_points_popped, 3962 nfailure_points_pushed - nfailure_points_popped); 3963 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed); 3964 3965 mcnt = d - pos - (MATCHING_IN_FIRST_STRING 3966 ? string1 3967 : string2 - size1); 3968 3969 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt); 3970 3971 FREE_VARIABLES (); 3972 return mcnt; 3973 } 3974 3975 /* Otherwise match next pattern command. */ 3976 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++)) 3977 { 3978 /* Ignore these. Used to ignore the n of succeed_n's which 3979 currently have n == 0. */ 3980 case no_op: 3981 DEBUG_PRINT1 ("EXECUTING no_op.\n"); 3982 break; 3983 3984 case succeed: 3985 DEBUG_PRINT1 ("EXECUTING succeed.\n"); 3986 goto succeed_label; 3987 3988 /* Match the next n pattern characters exactly. The following 3989 byte in the pattern defines n, and the n bytes after that 3990 are the characters to match. */ 3991 case exactn: 3992 mcnt = *p++; 3993 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt); 3994 3995 /* This is written out as an if-else so we don't waste time 3996 testing `translate' inside the loop. */ 3997 if (translate) 3998 { 3999 do 4000 { 4001 PREFETCH (); 4002 if ((unsigned char) translate[(unsigned char) *d++] 4003 != (unsigned char) *p++) 4004 goto fail; 4005 } 4006 while (--mcnt); 4007 } 4008 else 4009 { 4010 do 4011 { 4012 PREFETCH (); 4013 if (*d++ != (char) *p++) goto fail; 4014 } 4015 while (--mcnt); 4016 } 4017 SET_REGS_MATCHED (); 4018 break; 4019 4020 4021 /* Match any character except possibly a newline or a null. */ 4022 case anychar: 4023 DEBUG_PRINT1 ("EXECUTING anychar.\n"); 4024 4025 PREFETCH (); 4026 4027 if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n') 4028 || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000')) 4029 goto fail; 4030 4031 SET_REGS_MATCHED (); 4032 DEBUG_PRINT2 (" Matched `%d'.\n", *d); 4033 d++; 4034 break; 4035 4036 4037 case charset: 4038 case charset_not: 4039 { 4040 register unsigned char c; 4041 boolean not = (re_opcode_t) *(p - 1) == charset_not; 4042 4043 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : ""); 4044 4045 PREFETCH (); 4046 c = TRANSLATE (*d); /* The character to match. */ 4047 4048 /* Cast to `unsigned' instead of `unsigned char' in case the 4049 bit list is a full 32 bytes long. */ 4050 if (c < (unsigned) (*p * BYTEWIDTH) 4051 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH))) 4052 not = !not; 4053 4054 p += 1 + *p; 4055 4056 if (!not) goto fail; 4057 4058 SET_REGS_MATCHED (); 4059 d++; 4060 break; 4061 } 4062 4063 4064 /* The beginning of a group is represented by start_memory. 4065 The arguments are the register number in the next byte, and the 4066 number of groups inner to this one in the next. The text 4067 matched within the group is recorded (in the internal 4068 registers data structure) under the register number. */ 4069 case start_memory: 4070 DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]); 4071 4072 /* Find out if this group can match the empty string. */ 4073 p1 = p; /* To send to group_match_null_string_p. */ 4074 4075 if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE) 4076 REG_MATCH_NULL_STRING_P (reg_info[*p]) 4077 = group_match_null_string_p (&p1, pend, reg_info); 4078 4079 /* Save the position in the string where we were the last time 4080 we were at this open-group operator in case the group is 4081 operated upon by a repetition operator, e.g., with `(a*)*b' 4082 against `ab'; then we want to ignore where we are now in 4083 the string in case this attempt to match fails. */ 4084 old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p]) 4085 ? REG_UNSET (regstart[*p]) ? d : regstart[*p] 4086 : regstart[*p]; 4087 DEBUG_PRINT2 (" old_regstart: %d\n", 4088 POINTER_TO_OFFSET (old_regstart[*p])); 4089 4090 regstart[*p] = d; 4091 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p])); 4092 4093 IS_ACTIVE (reg_info[*p]) = 1; 4094 MATCHED_SOMETHING (reg_info[*p]) = 0; 4095 4096 /* Clear this whenever we change the register activity status. */ 4097 set_regs_matched_done = 0; 4098 4099 /* This is the new highest active register. */ 4100 highest_active_reg = *p; 4101 4102 /* If nothing was active before, this is the new lowest active 4103 register. */ 4104 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG) 4105 lowest_active_reg = *p; 4106 4107 /* Move past the register number and inner group count. */ 4108 p += 2; 4109 just_past_start_mem = p; 4110 4111 break; 4112 4113 4114 /* The stop_memory opcode represents the end of a group. Its 4115 arguments are the same as start_memory's: the register 4116 number, and the number of inner groups. */ 4117 case stop_memory: 4118 DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]); 4119 4120 /* We need to save the string position the last time we were at 4121 this close-group operator in case the group is operated 4122 upon by a repetition operator, e.g., with `((a*)*(b*)*)*' 4123 against `aba'; then we want to ignore where we are now in 4124 the string in case this attempt to match fails. */ 4125 old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p]) 4126 ? REG_UNSET (regend[*p]) ? d : regend[*p] 4127 : regend[*p]; 4128 DEBUG_PRINT2 (" old_regend: %d\n", 4129 POINTER_TO_OFFSET (old_regend[*p])); 4130 4131 regend[*p] = d; 4132 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p])); 4133 4134 /* This register isn't active anymore. */ 4135 IS_ACTIVE (reg_info[*p]) = 0; 4136 4137 /* Clear this whenever we change the register activity status. */ 4138 set_regs_matched_done = 0; 4139 4140 /* If this was the only register active, nothing is active 4141 anymore. */ 4142 if (lowest_active_reg == highest_active_reg) 4143 { 4144 lowest_active_reg = NO_LOWEST_ACTIVE_REG; 4145 highest_active_reg = NO_HIGHEST_ACTIVE_REG; 4146 } 4147 else 4148 { /* We must scan for the new highest active register, since 4149 it isn't necessarily one less than now: consider 4150 (a(b)c(d(e)f)g). When group 3 ends, after the f), the 4151 new highest active register is 1. */ 4152 unsigned char r = *p - 1; 4153 while (r > 0 && !IS_ACTIVE (reg_info[r])) 4154 r--; 4155 4156 /* If we end up at register zero, that means that we saved 4157 the registers as the result of an `on_failure_jump', not 4158 a `start_memory', and we jumped to past the innermost 4159 `stop_memory'. For example, in ((.)*) we save 4160 registers 1 and 2 as a result of the *, but when we pop 4161 back to the second ), we are at the stop_memory 1. 4162 Thus, nothing is active. */ 4163 if (r == 0) 4164 { 4165 lowest_active_reg = NO_LOWEST_ACTIVE_REG; 4166 highest_active_reg = NO_HIGHEST_ACTIVE_REG; 4167 } 4168 else 4169 highest_active_reg = r; 4170 } 4171 4172 /* If just failed to match something this time around with a 4173 group that's operated on by a repetition operator, try to 4174 force exit from the ``loop'', and restore the register 4175 information for this group that we had before trying this 4176 last match. */ 4177 if ((!MATCHED_SOMETHING (reg_info[*p]) 4178 || just_past_start_mem == p - 1) 4179 && (p + 2) < pend) 4180 { 4181 boolean is_a_jump_n = false; 4182 4183 p1 = p + 2; 4184 mcnt = 0; 4185 switch ((re_opcode_t) *p1++) 4186 { 4187 case jump_n: 4188 is_a_jump_n = true; 4189 case pop_failure_jump: 4190 case maybe_pop_jump: 4191 case jump: 4192 case dummy_failure_jump: 4193 EXTRACT_NUMBER_AND_INCR (mcnt, p1); 4194 if (is_a_jump_n) 4195 p1 += 2; 4196 break; 4197 4198 default: 4199 /* do nothing */ ; 4200 } 4201 p1 += mcnt; 4202 4203 /* If the next operation is a jump backwards in the pattern 4204 to an on_failure_jump right before the start_memory 4205 corresponding to this stop_memory, exit from the loop 4206 by forcing a failure after pushing on the stack the 4207 on_failure_jump's jump in the pattern, and d. */ 4208 if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump 4209 && (re_opcode_t) p1[3] == start_memory && p1[4] == *p) 4210 { 4211 /* If this group ever matched anything, then restore 4212 what its registers were before trying this last 4213 failed match, e.g., with `(a*)*b' against `ab' for 4214 regstart[1], and, e.g., with `((a*)*(b*)*)*' 4215 against `aba' for regend[3]. 4216 4217 Also restore the registers for inner groups for, 4218 e.g., `((a*)(b*))*' against `aba' (register 3 would 4219 otherwise get trashed). */ 4220 4221 if (EVER_MATCHED_SOMETHING (reg_info[*p])) 4222 { 4223 unsigned r; 4224 4225 EVER_MATCHED_SOMETHING (reg_info[*p]) = 0; 4226 4227 /* Restore this and inner groups' (if any) registers. */ 4228 for (r = *p; r < *p + *(p + 1); r++) 4229 { 4230 regstart[r] = old_regstart[r]; 4231 4232 /* xx why this test? */ 4233 if (old_regend[r] >= regstart[r]) 4234 regend[r] = old_regend[r]; 4235 } 4236 } 4237 p1++; 4238 EXTRACT_NUMBER_AND_INCR (mcnt, p1); 4239 PUSH_FAILURE_POINT (p1 + mcnt, d, -2); 4240 4241 goto fail; 4242 } 4243 } 4244 4245 /* Move past the register number and the inner group count. */ 4246 p += 2; 4247 break; 4248 4249 4250 /* \<digit> has been turned into a `duplicate' command which is 4251 followed by the numeric value of <digit> as the register number. */ 4252 case duplicate: 4253 { 4254 register const char *d2, *dend2; 4255 int regno = *p++; /* Get which register to match against. */ 4256 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno); 4257 4258 /* Can't back reference a group which we've never matched. */ 4259 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno])) 4260 goto fail; 4261 4262 /* Where in input to try to start matching. */ 4263 d2 = regstart[regno]; 4264 4265 /* Where to stop matching; if both the place to start and 4266 the place to stop matching are in the same string, then 4267 set to the place to stop, otherwise, for now have to use 4268 the end of the first string. */ 4269 4270 dend2 = ((FIRST_STRING_P (regstart[regno]) 4271 == FIRST_STRING_P (regend[regno])) 4272 ? regend[regno] : end_match_1); 4273 for (;;) 4274 { 4275 /* If necessary, advance to next segment in register 4276 contents. */ 4277 while (d2 == dend2) 4278 { 4279 if (dend2 == end_match_2) break; 4280 if (dend2 == regend[regno]) break; 4281 4282 /* End of string1 => advance to string2. */ 4283 d2 = string2; 4284 dend2 = regend[regno]; 4285 } 4286 /* At end of register contents => success */ 4287 if (d2 == dend2) break; 4288 4289 /* If necessary, advance to next segment in data. */ 4290 PREFETCH (); 4291 4292 /* How many characters left in this segment to match. */ 4293 mcnt = dend - d; 4294 4295 /* Want how many consecutive characters we can match in 4296 one shot, so, if necessary, adjust the count. */ 4297 if (mcnt > dend2 - d2) 4298 mcnt = dend2 - d2; 4299 4300 /* Compare that many; failure if mismatch, else move 4301 past them. */ 4302 if (translate 4303 ? bcmp_translate (d, d2, mcnt, translate) 4304 : bcmp (d, d2, mcnt)) 4305 goto fail; 4306 d += mcnt, d2 += mcnt; 4307 4308 /* Do this because we've match some characters. */ 4309 SET_REGS_MATCHED (); 4310 } 4311 } 4312 break; 4313 4314 4315 /* begline matches the empty string at the beginning of the string 4316 (unless `not_bol' is set in `bufp'), and, if 4317 `newline_anchor' is set, after newlines. */ 4318 case begline: 4319 DEBUG_PRINT1 ("EXECUTING begline.\n"); 4320 4321 if (AT_STRINGS_BEG (d)) 4322 { 4323 if (!bufp->not_bol) break; 4324 } 4325 else if (d[-1] == '\n' && bufp->newline_anchor) 4326 { 4327 break; 4328 } 4329 /* In all other cases, we fail. */ 4330 goto fail; 4331 4332 4333 /* endline is the dual of begline. */ 4334 case endline: 4335 DEBUG_PRINT1 ("EXECUTING endline.\n"); 4336 4337 if (AT_STRINGS_END (d)) 4338 { 4339 if (!bufp->not_eol) break; 4340 } 4341 4342 /* We have to ``prefetch'' the next character. */ 4343 else if ((d == end1 ? *string2 : *d) == '\n' 4344 && bufp->newline_anchor) 4345 { 4346 break; 4347 } 4348 goto fail; 4349 4350 4351 /* Match at the very beginning of the data. */ 4352 case begbuf: 4353 DEBUG_PRINT1 ("EXECUTING begbuf.\n"); 4354 if (AT_STRINGS_BEG (d)) 4355 break; 4356 goto fail; 4357 4358 4359 /* Match at the very end of the data. */ 4360 case endbuf: 4361 DEBUG_PRINT1 ("EXECUTING endbuf.\n"); 4362 if (AT_STRINGS_END (d)) 4363 break; 4364 goto fail; 4365 4366 4367 /* on_failure_keep_string_jump is used to optimize `.*\n'. It 4368 pushes NULL as the value for the string on the stack. Then 4369 `pop_failure_point' will keep the current value for the 4370 string, instead of restoring it. To see why, consider 4371 matching `foo\nbar' against `.*\n'. The .* matches the foo; 4372 then the . fails against the \n. But the next thing we want 4373 to do is match the \n against the \n; if we restored the 4374 string value, we would be back at the foo. 4375 4376 Because this is used only in specific cases, we don't need to 4377 check all the things that `on_failure_jump' does, to make 4378 sure the right things get saved on the stack. Hence we don't 4379 share its code. The only reason to push anything on the 4380 stack at all is that otherwise we would have to change 4381 `anychar's code to do something besides goto fail in this 4382 case; that seems worse than this. */ 4383 case on_failure_keep_string_jump: 4384 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump"); 4385 4386 EXTRACT_NUMBER_AND_INCR (mcnt, p); 4387 DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt); 4388 4389 PUSH_FAILURE_POINT (p + mcnt, NULL, -2); 4390 break; 4391 4392 4393 /* Uses of on_failure_jump: 4394 4395 Each alternative starts with an on_failure_jump that points 4396 to the beginning of the next alternative. Each alternative 4397 except the last ends with a jump that in effect jumps past 4398 the rest of the alternatives. (They really jump to the 4399 ending jump of the following alternative, because tensioning 4400 these jumps is a hassle.) 4401 4402 Repeats start with an on_failure_jump that points past both 4403 the repetition text and either the following jump or 4404 pop_failure_jump back to this on_failure_jump. */ 4405 case on_failure_jump: 4406 on_failure: 4407 DEBUG_PRINT1 ("EXECUTING on_failure_jump"); 4408 4409 EXTRACT_NUMBER_AND_INCR (mcnt, p); 4410 DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt); 4411 4412 /* If this on_failure_jump comes right before a group (i.e., 4413 the original * applied to a group), save the information 4414 for that group and all inner ones, so that if we fail back 4415 to this point, the group's information will be correct. 4416 For example, in \(a*\)*\1, we need the preceding group, 4417 and in \(zz\(a*\)b*\)\2, we need the inner group. */ 4418 4419 /* We can't use `p' to check ahead because we push 4420 a failure point to `p + mcnt' after we do this. */ 4421 p1 = p; 4422 4423 /* We need to skip no_op's before we look for the 4424 start_memory in case this on_failure_jump is happening as 4425 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1 4426 against aba. */ 4427 while (p1 < pend && (re_opcode_t) *p1 == no_op) 4428 p1++; 4429 4430 if (p1 < pend && (re_opcode_t) *p1 == start_memory) 4431 { 4432 /* We have a new highest active register now. This will 4433 get reset at the start_memory we are about to get to, 4434 but we will have saved all the registers relevant to 4435 this repetition op, as described above. */ 4436 highest_active_reg = *(p1 + 1) + *(p1 + 2); 4437 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG) 4438 lowest_active_reg = *(p1 + 1); 4439 } 4440 4441 DEBUG_PRINT1 (":\n"); 4442 PUSH_FAILURE_POINT (p + mcnt, d, -2); 4443 break; 4444 4445 4446 /* A smart repeat ends with `maybe_pop_jump'. 4447 We change it to either `pop_failure_jump' or `jump'. */ 4448 case maybe_pop_jump: 4449 EXTRACT_NUMBER_AND_INCR (mcnt, p); 4450 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt); 4451 { 4452 register unsigned char *p2 = p; 4453 4454 /* Compare the beginning of the repeat with what in the 4455 pattern follows its end. If we can establish that there 4456 is nothing that they would both match, i.e., that we 4457 would have to backtrack because of (as in, e.g., `a*a') 4458 then we can change to pop_failure_jump, because we'll 4459 never have to backtrack. 4460 4461 This is not true in the case of alternatives: in 4462 `(a|ab)*' we do need to backtrack to the `ab' alternative 4463 (e.g., if the string was `ab'). But instead of trying to 4464 detect that here, the alternative has put on a dummy 4465 failure point which is what we will end up popping. */ 4466 4467 /* Skip over open/close-group commands. 4468 If what follows this loop is a ...+ construct, 4469 look at what begins its body, since we will have to 4470 match at least one of that. */ 4471 while (1) 4472 { 4473 if (p2 + 2 < pend 4474 && ((re_opcode_t) *p2 == stop_memory 4475 || (re_opcode_t) *p2 == start_memory)) 4476 p2 += 3; 4477 else if (p2 + 6 < pend 4478 && (re_opcode_t) *p2 == dummy_failure_jump) 4479 p2 += 6; 4480 else 4481 break; 4482 } 4483 4484 p1 = p + mcnt; 4485 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding 4486 to the `maybe_finalize_jump' of this case. Examine what 4487 follows. */ 4488 4489 /* If we're at the end of the pattern, we can change. */ 4490 if (p2 == pend) 4491 { 4492 /* Consider what happens when matching ":\(.*\)" 4493 against ":/". I don't really understand this code 4494 yet. */ 4495 p[-3] = (unsigned char) pop_failure_jump; 4496 DEBUG_PRINT1 4497 (" End of pattern: change to `pop_failure_jump'.\n"); 4498 } 4499 4500 else if ((re_opcode_t) *p2 == exactn 4501 || (bufp->newline_anchor && (re_opcode_t) *p2 == endline)) 4502 { 4503 register unsigned char c 4504 = *p2 == (unsigned char) endline ? '\n' : p2[2]; 4505 4506 if ((re_opcode_t) p1[3] == exactn && p1[5] != c) 4507 { 4508 p[-3] = (unsigned char) pop_failure_jump; 4509 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n", 4510 c, p1[5]); 4511 } 4512 4513 else if ((re_opcode_t) p1[3] == charset 4514 || (re_opcode_t) p1[3] == charset_not) 4515 { 4516 int not = (re_opcode_t) p1[3] == charset_not; 4517 4518 if (c < (unsigned char) (p1[4] * BYTEWIDTH) 4519 && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH))) 4520 not = !not; 4521 4522 /* `not' is equal to 1 if c would match, which means 4523 that we can't change to pop_failure_jump. */ 4524 if (!not) 4525 { 4526 p[-3] = (unsigned char) pop_failure_jump; 4527 DEBUG_PRINT1 (" No match => pop_failure_jump.\n"); 4528 } 4529 } 4530 } 4531 else if ((re_opcode_t) *p2 == charset) 4532 { 4533#ifdef DEBUG 4534 register unsigned char c 4535 = *p2 == (unsigned char) endline ? '\n' : p2[2]; 4536#endif 4537 4538 if ((re_opcode_t) p1[3] == exactn 4539 && ! ((int) p2[1] * BYTEWIDTH > (int) p1[5] 4540 && (p2[2 + p1[5] / BYTEWIDTH] 4541 & (1 << (p1[5] % BYTEWIDTH))))) 4542 { 4543 p[-3] = (unsigned char) pop_failure_jump; 4544 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n", 4545 c, p1[5]); 4546 } 4547 4548 else if ((re_opcode_t) p1[3] == charset_not) 4549 { 4550 int idx; 4551 /* We win if the charset_not inside the loop 4552 lists every character listed in the charset after. */ 4553 for (idx = 0; idx < (int) p2[1]; idx++) 4554 if (! (p2[2 + idx] == 0 4555 || (idx < (int) p1[4] 4556 && ((p2[2 + idx] & ~ p1[5 + idx]) == 0)))) 4557 break; 4558 4559 if (idx == p2[1]) 4560 { 4561 p[-3] = (unsigned char) pop_failure_jump; 4562 DEBUG_PRINT1 (" No match => pop_failure_jump.\n"); 4563 } 4564 } 4565 else if ((re_opcode_t) p1[3] == charset) 4566 { 4567 int idx; 4568 /* We win if the charset inside the loop 4569 has no overlap with the one after the loop. */ 4570 for (idx = 0; 4571 idx < (int) p2[1] && idx < (int) p1[4]; 4572 idx++) 4573 if ((p2[2 + idx] & p1[5 + idx]) != 0) 4574 break; 4575 4576 if (idx == p2[1] || idx == p1[4]) 4577 { 4578 p[-3] = (unsigned char) pop_failure_jump; 4579 DEBUG_PRINT1 (" No match => pop_failure_jump.\n"); 4580 } 4581 } 4582 } 4583 } 4584 p -= 2; /* Point at relative address again. */ 4585 if ((re_opcode_t) p[-1] != pop_failure_jump) 4586 { 4587 p[-1] = (unsigned char) jump; 4588 DEBUG_PRINT1 (" Match => jump.\n"); 4589 goto unconditional_jump; 4590 } 4591 /* Note fall through. */ 4592 4593 4594 /* The end of a simple repeat has a pop_failure_jump back to 4595 its matching on_failure_jump, where the latter will push a 4596 failure point. The pop_failure_jump takes off failure 4597 points put on by this pop_failure_jump's matching 4598 on_failure_jump; we got through the pattern to here from the 4599 matching on_failure_jump, so didn't fail. */ 4600 case pop_failure_jump: 4601 { 4602 /* We need to pass separate storage for the lowest and 4603 highest registers, even though we don't care about the 4604 actual values. Otherwise, we will restore only one 4605 register from the stack, since lowest will == highest in 4606 `pop_failure_point'. */ 4607 unsigned dummy_low_reg, dummy_high_reg; 4608 unsigned char *pdummy; 4609 const char *sdummy; 4610 4611 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n"); 4612 POP_FAILURE_POINT (sdummy, pdummy, 4613 dummy_low_reg, dummy_high_reg, 4614 reg_dummy, reg_dummy, reg_info_dummy); 4615 } 4616 /* Note fall through. */ 4617 4618 4619 /* Unconditionally jump (without popping any failure points). */ 4620 case jump: 4621 unconditional_jump: 4622 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */ 4623 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt); 4624 p += mcnt; /* Do the jump. */ 4625 DEBUG_PRINT2 ("(to 0x%x).\n", p); 4626 break; 4627 4628 4629 /* We need this opcode so we can detect where alternatives end 4630 in `group_match_null_string_p' et al. */ 4631 case jump_past_alt: 4632 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n"); 4633 goto unconditional_jump; 4634 4635 4636 /* Normally, the on_failure_jump pushes a failure point, which 4637 then gets popped at pop_failure_jump. We will end up at 4638 pop_failure_jump, also, and with a pattern of, say, `a+', we 4639 are skipping over the on_failure_jump, so we have to push 4640 something meaningless for pop_failure_jump to pop. */ 4641 case dummy_failure_jump: 4642 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n"); 4643 /* It doesn't matter what we push for the string here. What 4644 the code at `fail' tests is the value for the pattern. */ 4645 PUSH_FAILURE_POINT (0, 0, -2); 4646 goto unconditional_jump; 4647 4648 4649 /* At the end of an alternative, we need to push a dummy failure 4650 point in case we are followed by a `pop_failure_jump', because 4651 we don't want the failure point for the alternative to be 4652 popped. For example, matching `(a|ab)*' against `aab' 4653 requires that we match the `ab' alternative. */ 4654 case push_dummy_failure: 4655 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n"); 4656 /* See comments just above at `dummy_failure_jump' about the 4657 two zeroes. */ 4658 PUSH_FAILURE_POINT (0, 0, -2); 4659 break; 4660 4661 /* Have to succeed matching what follows at least n times. 4662 After that, handle like `on_failure_jump'. */ 4663 case succeed_n: 4664 EXTRACT_NUMBER (mcnt, p + 2); 4665 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt); 4666 4667 assert (mcnt >= 0); 4668 /* Originally, this is how many times we HAVE to succeed. */ 4669 if (mcnt > 0) 4670 { 4671 mcnt--; 4672 p += 2; 4673 STORE_NUMBER_AND_INCR (p, mcnt); 4674 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p, mcnt); 4675 } 4676 else if (mcnt == 0) 4677 { 4678 DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n", p+2); 4679 p[2] = (unsigned char) no_op; 4680 p[3] = (unsigned char) no_op; 4681 goto on_failure; 4682 } 4683 break; 4684 4685 case jump_n: 4686 EXTRACT_NUMBER (mcnt, p + 2); 4687 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt); 4688 4689 /* Originally, this is how many times we CAN jump. */ 4690 if (mcnt) 4691 { 4692 mcnt--; 4693 STORE_NUMBER (p + 2, mcnt); 4694 goto unconditional_jump; 4695 } 4696 /* If don't have to jump any more, skip over the rest of command. */ 4697 else 4698 p += 4; 4699 break; 4700 4701 case set_number_at: 4702 { 4703 DEBUG_PRINT1 ("EXECUTING set_number_at.\n"); 4704 4705 EXTRACT_NUMBER_AND_INCR (mcnt, p); 4706 p1 = p + mcnt; 4707 EXTRACT_NUMBER_AND_INCR (mcnt, p); 4708 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1, mcnt); 4709 STORE_NUMBER (p1, mcnt); 4710 break; 4711 } 4712 4713#if 0 4714 /* The DEC Alpha C compiler 3.x generates incorrect code for the 4715 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of 4716 AT_WORD_BOUNDARY, so this code is disabled. Expanding the 4717 macro and introducing temporary variables works around the bug. */ 4718 4719 case wordbound: 4720 DEBUG_PRINT1 ("EXECUTING wordbound.\n"); 4721 if (AT_WORD_BOUNDARY (d)) 4722 break; 4723 goto fail; 4724 4725 case notwordbound: 4726 DEBUG_PRINT1 ("EXECUTING notwordbound.\n"); 4727 if (AT_WORD_BOUNDARY (d)) 4728 goto fail; 4729 break; 4730#else 4731 case wordbound: 4732 { 4733 boolean prevchar, thischar; 4734 4735 DEBUG_PRINT1 ("EXECUTING wordbound.\n"); 4736 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d)) 4737 break; 4738 4739 prevchar = WORDCHAR_P (d - 1); 4740 thischar = WORDCHAR_P (d); 4741 if (prevchar != thischar) 4742 break; 4743 goto fail; 4744 } 4745 4746 case notwordbound: 4747 { 4748 boolean prevchar, thischar; 4749 4750 DEBUG_PRINT1 ("EXECUTING notwordbound.\n"); 4751 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d)) 4752 goto fail; 4753 4754 prevchar = WORDCHAR_P (d - 1); 4755 thischar = WORDCHAR_P (d); 4756 if (prevchar != thischar) 4757 goto fail; 4758 break; 4759 } 4760#endif 4761 4762 case wordbeg: 4763 DEBUG_PRINT1 ("EXECUTING wordbeg.\n"); 4764 if (WORDCHAR_P (d) && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1))) 4765 break; 4766 goto fail; 4767 4768 case wordend: 4769 DEBUG_PRINT1 ("EXECUTING wordend.\n"); 4770 if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1) 4771 && (!WORDCHAR_P (d) || AT_STRINGS_END (d))) 4772 break; 4773 goto fail; 4774 4775#ifdef emacs 4776 case before_dot: 4777 DEBUG_PRINT1 ("EXECUTING before_dot.\n"); 4778 if (PTR_CHAR_POS ((unsigned char *) d) >= PT) 4779 goto fail; 4780 break; 4781 4782 case at_dot: 4783 DEBUG_PRINT1 ("EXECUTING at_dot.\n"); 4784 if (PTR_CHAR_POS ((unsigned char *) d) != PT) 4785 goto fail; 4786 break; 4787 4788 case after_dot: 4789 DEBUG_PRINT1 ("EXECUTING after_dot.\n"); 4790 if (PTR_CHAR_POS ((unsigned char *) d) <= PT) 4791 goto fail; 4792 break; 4793 4794 case syntaxspec: 4795 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt); 4796 mcnt = *p++; 4797 goto matchsyntax; 4798 4799 case wordchar: 4800 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n"); 4801 mcnt = (int) Sword; 4802 matchsyntax: 4803 PREFETCH (); 4804 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */ 4805 d++; 4806 if (SYNTAX (d[-1]) != (enum syntaxcode) mcnt) 4807 goto fail; 4808 SET_REGS_MATCHED (); 4809 break; 4810 4811 case notsyntaxspec: 4812 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt); 4813 mcnt = *p++; 4814 goto matchnotsyntax; 4815 4816 case notwordchar: 4817 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n"); 4818 mcnt = (int) Sword; 4819 matchnotsyntax: 4820 PREFETCH (); 4821 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */ 4822 d++; 4823 if (SYNTAX (d[-1]) == (enum syntaxcode) mcnt) 4824 goto fail; 4825 SET_REGS_MATCHED (); 4826 break; 4827 4828#else /* not emacs */ 4829 case wordchar: 4830 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n"); 4831 PREFETCH (); 4832 if (!WORDCHAR_P (d)) 4833 goto fail; 4834 SET_REGS_MATCHED (); 4835 d++; 4836 break; 4837 4838 case notwordchar: 4839 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n"); 4840 PREFETCH (); 4841 if (WORDCHAR_P (d)) 4842 goto fail; 4843 SET_REGS_MATCHED (); 4844 d++; 4845 break; 4846#endif /* not emacs */ 4847 4848 default: 4849 abort (); 4850 } 4851 continue; /* Successfully executed one pattern command; keep going. */ 4852 4853 4854 /* We goto here if a matching operation fails. */ 4855 fail: 4856 if (!FAIL_STACK_EMPTY ()) 4857 { /* A restart point is known. Restore to that state. */ 4858 DEBUG_PRINT1 ("\nFAIL:\n"); 4859 POP_FAILURE_POINT (d, p, 4860 lowest_active_reg, highest_active_reg, 4861 regstart, regend, reg_info); 4862 4863 /* If this failure point is a dummy, try the next one. */ 4864 if (!p) 4865 goto fail; 4866 4867 /* If we failed to the end of the pattern, don't examine *p. */ 4868 assert (p <= pend); 4869 if (p < pend) 4870 { 4871 boolean is_a_jump_n = false; 4872 4873 /* If failed to a backwards jump that's part of a repetition 4874 loop, need to pop this failure point and use the next one. */ 4875 switch ((re_opcode_t) *p) 4876 { 4877 case jump_n: 4878 is_a_jump_n = true; 4879 case maybe_pop_jump: 4880 case pop_failure_jump: 4881 case jump: 4882 p1 = p + 1; 4883 EXTRACT_NUMBER_AND_INCR (mcnt, p1); 4884 p1 += mcnt; 4885 4886 if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n) 4887 || (!is_a_jump_n 4888 && (re_opcode_t) *p1 == on_failure_jump)) 4889 goto fail; 4890 break; 4891 default: 4892 /* do nothing */ ; 4893 } 4894 } 4895 4896 if (d >= string1 && d <= end1) 4897 dend = end_match_1; 4898 } 4899 else 4900 break; /* Matching at this starting point really fails. */ 4901 } /* for (;;) */ 4902 4903 if (best_regs_set) 4904 goto restore_best_regs; 4905 4906 FREE_VARIABLES (); 4907 4908 return -1; /* Failure to match. */ 4909} /* re_match_2 */ 4910 4911/* Subroutine definitions for re_match_2. */ 4912 4913 4914/* We are passed P pointing to a register number after a start_memory. 4915 4916 Return true if the pattern up to the corresponding stop_memory can 4917 match the empty string, and false otherwise. 4918 4919 If we find the matching stop_memory, sets P to point to one past its number. 4920 Otherwise, sets P to an undefined byte less than or equal to END. 4921 4922 We don't handle duplicates properly (yet). */ 4923 4924static boolean 4925group_match_null_string_p (p, end, reg_info) 4926 unsigned char **p, *end; 4927 register_info_type *reg_info; 4928{ 4929 int mcnt; 4930 /* Point to after the args to the start_memory. */ 4931 unsigned char *p1 = *p + 2; 4932 4933 while (p1 < end) 4934 { 4935 /* Skip over opcodes that can match nothing, and return true or 4936 false, as appropriate, when we get to one that can't, or to the 4937 matching stop_memory. */ 4938 4939 switch ((re_opcode_t) *p1) 4940 { 4941 /* Could be either a loop or a series of alternatives. */ 4942 case on_failure_jump: 4943 p1++; 4944 EXTRACT_NUMBER_AND_INCR (mcnt, p1); 4945 4946 /* If the next operation is not a jump backwards in the 4947 pattern. */ 4948 4949 if (mcnt >= 0) 4950 { 4951 /* Go through the on_failure_jumps of the alternatives, 4952 seeing if any of the alternatives cannot match nothing. 4953 The last alternative starts with only a jump, 4954 whereas the rest start with on_failure_jump and end 4955 with a jump, e.g., here is the pattern for `a|b|c': 4956 4957 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6 4958 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3 4959 /exactn/1/c 4960 4961 So, we have to first go through the first (n-1) 4962 alternatives and then deal with the last one separately. */ 4963 4964 4965 /* Deal with the first (n-1) alternatives, which start 4966 with an on_failure_jump (see above) that jumps to right 4967 past a jump_past_alt. */ 4968 4969 while ((re_opcode_t) p1[mcnt-3] == jump_past_alt) 4970 { 4971 /* `mcnt' holds how many bytes long the alternative 4972 is, including the ending `jump_past_alt' and 4973 its number. */ 4974 4975 if (!alt_match_null_string_p (p1, p1 + mcnt - 3, 4976 reg_info)) 4977 return false; 4978 4979 /* Move to right after this alternative, including the 4980 jump_past_alt. */ 4981 p1 += mcnt; 4982 4983 /* Break if it's the beginning of an n-th alternative 4984 that doesn't begin with an on_failure_jump. */ 4985 if ((re_opcode_t) *p1 != on_failure_jump) 4986 break; 4987 4988 /* Still have to check that it's not an n-th 4989 alternative that starts with an on_failure_jump. */ 4990 p1++; 4991 EXTRACT_NUMBER_AND_INCR (mcnt, p1); 4992 if ((re_opcode_t) p1[mcnt-3] != jump_past_alt) 4993 { 4994 /* Get to the beginning of the n-th alternative. */ 4995 p1 -= 3; 4996 break; 4997 } 4998 } 4999 5000 /* Deal with the last alternative: go back and get number 5001 of the `jump_past_alt' just before it. `mcnt' contains 5002 the length of the alternative. */ 5003 EXTRACT_NUMBER (mcnt, p1 - 2); 5004 5005 if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info)) 5006 return false; 5007 5008 p1 += mcnt; /* Get past the n-th alternative. */ 5009 } /* if mcnt > 0 */ 5010 break; 5011 5012 5013 case stop_memory: 5014 assert (p1[1] == **p); 5015 *p = p1 + 2; 5016 return true; 5017 5018 5019 default: 5020 if (!common_op_match_null_string_p (&p1, end, reg_info)) 5021 return false; 5022 } 5023 } /* while p1 < end */ 5024 5025 return false; 5026} /* group_match_null_string_p */ 5027 5028 5029/* Similar to group_match_null_string_p, but doesn't deal with alternatives: 5030 It expects P to be the first byte of a single alternative and END one 5031 byte past the last. The alternative can contain groups. */ 5032 5033static boolean 5034alt_match_null_string_p (p, end, reg_info) 5035 unsigned char *p, *end; 5036 register_info_type *reg_info; 5037{ 5038 int mcnt; 5039 unsigned char *p1 = p; 5040 5041 while (p1 < end) 5042 { 5043 /* Skip over opcodes that can match nothing, and break when we get 5044 to one that can't. */ 5045 5046 switch ((re_opcode_t) *p1) 5047 { 5048 /* It's a loop. */ 5049 case on_failure_jump: 5050 p1++; 5051 EXTRACT_NUMBER_AND_INCR (mcnt, p1); 5052 p1 += mcnt; 5053 break; 5054 5055 default: 5056 if (!common_op_match_null_string_p (&p1, end, reg_info)) 5057 return false; 5058 } 5059 } /* while p1 < end */ 5060 5061 return true; 5062} /* alt_match_null_string_p */ 5063 5064 5065/* Deals with the ops common to group_match_null_string_p and 5066 alt_match_null_string_p. 5067 5068 Sets P to one after the op and its arguments, if any. */ 5069 5070static boolean 5071common_op_match_null_string_p (p, end, reg_info) 5072 unsigned char **p, *end; 5073 register_info_type *reg_info; 5074{ 5075 int mcnt; 5076 boolean ret; 5077 int reg_no; 5078 unsigned char *p1 = *p; 5079 5080 switch ((re_opcode_t) *p1++) 5081 { 5082 case no_op: 5083 case begline: 5084 case endline: 5085 case begbuf: 5086 case endbuf: 5087 case wordbeg: 5088 case wordend: 5089 case wordbound: 5090 case notwordbound: 5091#ifdef emacs 5092 case before_dot: 5093 case at_dot: 5094 case after_dot: 5095#endif 5096 break; 5097 5098 case start_memory: 5099 reg_no = *p1; 5100 assert (reg_no > 0 && reg_no <= MAX_REGNUM); 5101 ret = group_match_null_string_p (&p1, end, reg_info); 5102 5103 /* Have to set this here in case we're checking a group which 5104 contains a group and a back reference to it. */ 5105 5106 if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE) 5107 REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret; 5108 5109 if (!ret) 5110 return false; 5111 break; 5112 5113 /* If this is an optimized succeed_n for zero times, make the jump. */ 5114 case jump: 5115 EXTRACT_NUMBER_AND_INCR (mcnt, p1); 5116 if (mcnt >= 0) 5117 p1 += mcnt; 5118 else 5119 return false; 5120 break; 5121 5122 case succeed_n: 5123 /* Get to the number of times to succeed. */ 5124 p1 += 2; 5125 EXTRACT_NUMBER_AND_INCR (mcnt, p1); 5126 5127 if (mcnt == 0) 5128 { 5129 p1 -= 4; 5130 EXTRACT_NUMBER_AND_INCR (mcnt, p1); 5131 p1 += mcnt; 5132 } 5133 else 5134 return false; 5135 break; 5136 5137 case duplicate: 5138 if (!REG_MATCH_NULL_STRING_P (reg_info[*p1])) 5139 return false; 5140 break; 5141 5142 case set_number_at: 5143 p1 += 4; 5144 5145 default: 5146 /* All other opcodes mean we cannot match the empty string. */ 5147 return false; 5148 } 5149 5150 *p = p1; 5151 return true; 5152} /* common_op_match_null_string_p */ 5153 5154 5155/* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN 5156 bytes; nonzero otherwise. */ 5157 5158static int 5159bcmp_translate (s1, s2, len, translate) 5160 unsigned char *s1, *s2; 5161 register int len; 5162 RE_TRANSLATE_TYPE translate; 5163{ 5164 register unsigned char *p1 = s1, *p2 = s2; 5165 while (len) 5166 { 5167 if (translate[*p1++] != translate[*p2++]) return 1; 5168 len--; 5169 } 5170 return 0; 5171} 5172 5173/* Entry points for GNU code. */ 5174 5175/* re_compile_pattern is the GNU regular expression compiler: it 5176 compiles PATTERN (of length SIZE) and puts the result in BUFP. 5177 Returns 0 if the pattern was valid, otherwise an error string. 5178 5179 Assumes the `allocated' (and perhaps `buffer') and `translate' fields 5180 are set in BUFP on entry. 5181 5182 We call regex_compile to do the actual compilation. */ 5183 5184const char * 5185re_compile_pattern (pattern, length, bufp) 5186 const char *pattern; 5187 int length; 5188 struct re_pattern_buffer *bufp; 5189{ 5190 reg_errcode_t ret; 5191 5192 /* GNU code is written to assume at least RE_NREGS registers will be set 5193 (and at least one extra will be -1). */ 5194 bufp->regs_allocated = REGS_UNALLOCATED; 5195 5196 /* And GNU code determines whether or not to get register information 5197 by passing null for the REGS argument to re_match, etc., not by 5198 setting no_sub. */ 5199 bufp->no_sub = 0; 5200 5201 /* Match anchors at newline. */ 5202 bufp->newline_anchor = 1; 5203 5204 ret = regex_compile (pattern, length, re_syntax_options, bufp); 5205 5206 if (!ret) 5207 return NULL; 5208 return gettext (re_error_msgid[(int) ret]); 5209} 5210 5211/* Entry points compatible with 4.2 BSD regex library. We don't define 5212 them unless specifically requested. */ 5213 5214#if defined (_REGEX_RE_COMP) || defined (_LIBC) 5215 5216/* BSD has one and only one pattern buffer. */ 5217static struct re_pattern_buffer re_comp_buf; 5218 5219char * 5220#ifdef _LIBC 5221/* Make these definitions weak in libc, so POSIX programs can redefine 5222 these names if they don't use our functions, and still use 5223 regcomp/regexec below without link errors. */ 5224weak_function 5225#endif 5226re_comp (s) 5227 const char *s; 5228{ 5229 reg_errcode_t ret; 5230 5231 if (!s) 5232 { 5233 if (!re_comp_buf.buffer) 5234 return gettext ("No previous regular expression"); 5235 return 0; 5236 } 5237 5238 if (!re_comp_buf.buffer) 5239 { 5240 re_comp_buf.buffer = (unsigned char *) malloc (200); 5241 if (re_comp_buf.buffer == NULL) 5242 return gettext (re_error_msgid[(int) REG_ESPACE]); 5243 re_comp_buf.allocated = 200; 5244 5245 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH); 5246 if (re_comp_buf.fastmap == NULL) 5247 return gettext (re_error_msgid[(int) REG_ESPACE]); 5248 } 5249 5250 /* Since `re_exec' always passes NULL for the `regs' argument, we 5251 don't need to initialize the pattern buffer fields which affect it. */ 5252 5253 /* Match anchors at newlines. */ 5254 re_comp_buf.newline_anchor = 1; 5255 5256 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf); 5257 5258 if (!ret) 5259 return NULL; 5260 5261 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */ 5262 return (char *) gettext (re_error_msgid[(int) ret]); 5263} 5264 5265 5266int 5267#ifdef _LIBC 5268weak_function 5269#endif 5270re_exec (s) 5271 const char *s; 5272{ 5273 const int len = strlen (s); 5274 return 5275 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0); 5276} 5277#endif /* _REGEX_RE_COMP */ 5278 5279/* POSIX.2 functions. Don't define these for Emacs. */ 5280 5281#ifndef emacs 5282 5283/* regcomp takes a regular expression as a string and compiles it. 5284 5285 PREG is a regex_t *. We do not expect any fields to be initialized, 5286 since POSIX says we shouldn't. Thus, we set 5287 5288 `buffer' to the compiled pattern; 5289 `used' to the length of the compiled pattern; 5290 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the 5291 REG_EXTENDED bit in CFLAGS is set; otherwise, to 5292 RE_SYNTAX_POSIX_BASIC; 5293 `newline_anchor' to REG_NEWLINE being set in CFLAGS; 5294 `fastmap' and `fastmap_accurate' to zero; 5295 `re_nsub' to the number of subexpressions in PATTERN. 5296 5297 PATTERN is the address of the pattern string. 5298 5299 CFLAGS is a series of bits which affect compilation. 5300 5301 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we 5302 use POSIX basic syntax. 5303 5304 If REG_NEWLINE is set, then . and [^...] don't match newline. 5305 Also, regexec will try a match beginning after every newline. 5306 5307 If REG_ICASE is set, then we considers upper- and lowercase 5308 versions of letters to be equivalent when matching. 5309 5310 If REG_NOSUB is set, then when PREG is passed to regexec, that 5311 routine will report only success or failure, and nothing about the 5312 registers. 5313 5314 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for 5315 the return codes and their meanings.) */ 5316 5317int 5318regcomp (preg, pattern, cflags) 5319 regex_t *preg; 5320 const char *pattern; 5321 int cflags; 5322{ 5323 reg_errcode_t ret; 5324 unsigned syntax 5325 = (cflags & REG_EXTENDED) ? 5326 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC; 5327 5328 /* regex_compile will allocate the space for the compiled pattern. */ 5329 preg->buffer = 0; 5330 preg->allocated = 0; 5331 preg->used = 0; 5332 5333 /* Don't bother to use a fastmap when searching. This simplifies the 5334 REG_NEWLINE case: if we used a fastmap, we'd have to put all the 5335 characters after newlines into the fastmap. This way, we just try 5336 every character. */ 5337 preg->fastmap = 0; 5338 5339 if (cflags & REG_ICASE) 5340 { 5341 unsigned i; 5342 5343 preg->translate 5344 = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE 5345 * sizeof (*(RE_TRANSLATE_TYPE)0)); 5346 if (preg->translate == NULL) 5347 return (int) REG_ESPACE; 5348 5349 /* Map uppercase characters to corresponding lowercase ones. */ 5350 for (i = 0; i < CHAR_SET_SIZE; i++) 5351 preg->translate[i] = ISUPPER (i) ? tolower (i) : i; 5352 } 5353 else 5354 preg->translate = NULL; 5355 5356 /* If REG_NEWLINE is set, newlines are treated differently. */ 5357 if (cflags & REG_NEWLINE) 5358 { /* REG_NEWLINE implies neither . nor [^...] match newline. */ 5359 syntax &= ~RE_DOT_NEWLINE; 5360 syntax |= RE_HAT_LISTS_NOT_NEWLINE; 5361 /* It also changes the matching behavior. */ 5362 preg->newline_anchor = 1; 5363 } 5364 else 5365 preg->newline_anchor = 0; 5366 5367 preg->no_sub = !!(cflags & REG_NOSUB); 5368 5369 /* POSIX says a null character in the pattern terminates it, so we 5370 can use strlen here in compiling the pattern. */ 5371 ret = regex_compile (pattern, strlen (pattern), syntax, preg); 5372 5373 /* POSIX doesn't distinguish between an unmatched open-group and an 5374 unmatched close-group: both are REG_EPAREN. */ 5375 if (ret == REG_ERPAREN) ret = REG_EPAREN; 5376 5377 return (int) ret; 5378} 5379 5380 5381/* regexec searches for a given pattern, specified by PREG, in the 5382 string STRING. 5383 5384 If NMATCH is zero or REG_NOSUB was set in the cflags argument to 5385 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at 5386 least NMATCH elements, and we set them to the offsets of the 5387 corresponding matched substrings. 5388 5389 EFLAGS specifies `execution flags' which affect matching: if 5390 REG_NOTBOL is set, then ^ does not match at the beginning of the 5391 string; if REG_NOTEOL is set, then $ does not match at the end. 5392 5393 We return 0 if we find a match and REG_NOMATCH if not. */ 5394 5395int 5396regexec (preg, string, nmatch, pmatch, eflags) 5397 const regex_t *preg; 5398 const char *string; 5399 size_t nmatch; 5400 regmatch_t pmatch[]; 5401 int eflags; 5402{ 5403 int ret; 5404 struct re_registers regs; 5405 regex_t private_preg; 5406 int len = strlen (string); 5407 boolean want_reg_info = !preg->no_sub && nmatch > 0; 5408 5409 private_preg = *preg; 5410 5411 private_preg.not_bol = !!(eflags & REG_NOTBOL); 5412 private_preg.not_eol = !!(eflags & REG_NOTEOL); 5413 5414 /* The user has told us exactly how many registers to return 5415 information about, via `nmatch'. We have to pass that on to the 5416 matching routines. */ 5417 private_preg.regs_allocated = REGS_FIXED; 5418 5419 if (want_reg_info) 5420 { 5421 regs.num_regs = nmatch; 5422 regs.start = TALLOC (nmatch, regoff_t); 5423 regs.end = TALLOC (nmatch, regoff_t); 5424 if (regs.start == NULL || regs.end == NULL) 5425 return (int) REG_NOMATCH; 5426 } 5427 5428 /* Perform the searching operation. */ 5429 ret = re_search (&private_preg, string, len, 5430 /* start: */ 0, /* range: */ len, 5431 want_reg_info ? ®s : (struct re_registers *) 0); 5432 5433 /* Copy the register information to the POSIX structure. */ 5434 if (want_reg_info) 5435 { 5436 if (ret >= 0) 5437 { 5438 unsigned r; 5439 5440 for (r = 0; r < nmatch; r++) 5441 { 5442 pmatch[r].rm_so = regs.start[r]; 5443 pmatch[r].rm_eo = regs.end[r]; 5444 } 5445 } 5446 5447 /* If we needed the temporary register info, free the space now. */ 5448 free (regs.start); 5449 free (regs.end); 5450 } 5451 5452 /* We want zero return to mean success, unlike `re_search'. */ 5453 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH; 5454} 5455 5456 5457/* Returns a message corresponding to an error code, ERRCODE, returned 5458 from either regcomp or regexec. We don't use PREG here. */ 5459 5460size_t 5461regerror (errcode, preg, errbuf, errbuf_size) 5462 int errcode; 5463 const regex_t *preg; 5464 char *errbuf; 5465 size_t errbuf_size; 5466{ 5467 const char *msg; 5468 size_t msg_size; 5469 5470 if (errcode < 0 5471 || errcode >= (sizeof (re_error_msgid) / sizeof (re_error_msgid[0]))) 5472 /* Only error codes returned by the rest of the code should be passed 5473 to this routine. If we are given anything else, or if other regex 5474 code generates an invalid error code, then the program has a bug. 5475 Dump core so we can fix it. */ 5476 abort (); 5477 5478 msg = gettext (re_error_msgid[errcode]); 5479 5480 msg_size = strlen (msg) + 1; /* Includes the null. */ 5481 5482 if (errbuf_size != 0) 5483 { 5484 if (msg_size > errbuf_size) 5485 { 5486 strncpy (errbuf, msg, errbuf_size - 1); 5487 errbuf[errbuf_size - 1] = 0; 5488 } 5489 else 5490 strcpy (errbuf, msg); 5491 } 5492 5493 return msg_size; 5494} 5495 5496 5497/* Free dynamically allocated space used by PREG. */ 5498 5499void 5500regfree (preg) 5501 regex_t *preg; 5502{ 5503 if (preg->buffer != NULL) 5504 free (preg->buffer); 5505 preg->buffer = NULL; 5506 5507 preg->allocated = 0; 5508 preg->used = 0; 5509 5510 if (preg->fastmap != NULL) 5511 free (preg->fastmap); 5512 preg->fastmap = NULL; 5513 preg->fastmap_accurate = 0; 5514 5515 if (preg->translate != NULL) 5516 free (preg->translate); 5517 preg->translate = NULL; 5518} 5519 5520#endif /* not emacs */ 5521