1/* LibTomCrypt, modular cryptographic library -- Tom St Denis
2 *
3 * LibTomCrypt is a library that provides various cryptographic
4 * algorithms in a highly modular and flexible manner.
5 *
6 * The library is free for all purposes without any express
7 * guarantee it works.
8 *
9 * Tom St Denis, tomstdenis@gmail.com, http://libtomcrypt.com
10 */
11
12/*******************************************************************************
13*
14* FILE:           safer.c
15*
16* DESCRIPTION:    block-cipher algorithm SAFER (Secure And Fast Encryption
17*                 Routine) in its four versions: SAFER K-64, SAFER K-128,
18*                 SAFER SK-64 and SAFER SK-128.
19*
20* AUTHOR:         Richard De Moliner (demoliner@isi.ee.ethz.ch)
21*                 Signal and Information Processing Laboratory
22*                 Swiss Federal Institute of Technology
23*                 CH-8092 Zuerich, Switzerland
24*
25* DATE:           September 9, 1995
26*
27* CHANGE HISTORY:
28*
29*******************************************************************************/
30
31#include <tomcrypt.h>
32
33#ifdef SAFER
34
35const struct ltc_cipher_descriptor
36   safer_k64_desc = {
37   "safer-k64",
38   8, 8, 8, 8, SAFER_K64_DEFAULT_NOF_ROUNDS,
39   &safer_k64_setup,
40   &safer_ecb_encrypt,
41   &safer_ecb_decrypt,
42   &safer_k64_test,
43   &safer_done,
44   &safer_64_keysize,
45   NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
46   },
47
48   safer_sk64_desc = {
49   "safer-sk64",
50   9, 8, 8, 8, SAFER_SK64_DEFAULT_NOF_ROUNDS,
51   &safer_sk64_setup,
52   &safer_ecb_encrypt,
53   &safer_ecb_decrypt,
54   &safer_sk64_test,
55   &safer_done,
56   &safer_64_keysize,
57   NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
58   },
59
60   safer_k128_desc = {
61   "safer-k128",
62   10, 16, 16, 8, SAFER_K128_DEFAULT_NOF_ROUNDS,
63   &safer_k128_setup,
64   &safer_ecb_encrypt,
65   &safer_ecb_decrypt,
66   &safer_sk128_test,
67   &safer_done,
68   &safer_128_keysize,
69   NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
70   },
71
72   safer_sk128_desc = {
73   "safer-sk128",
74   11, 16, 16, 8, SAFER_SK128_DEFAULT_NOF_ROUNDS,
75   &safer_sk128_setup,
76   &safer_ecb_encrypt,
77   &safer_ecb_decrypt,
78   &safer_sk128_test,
79   &safer_done,
80   &safer_128_keysize,
81   NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
82   };
83
84/******************* Constants ************************************************/
85/* #define TAB_LEN      256  */
86
87/******************* Assertions ***********************************************/
88
89/******************* Macros ***************************************************/
90#define ROL8(x, n)   ((unsigned char)((unsigned int)(x) << (n)\
91                                     |(unsigned int)((x) & 0xFF) >> (8 - (n))))
92#define EXP(x)       safer_ebox[(x) & 0xFF]
93#define LOG(x)       safer_lbox[(x) & 0xFF]
94#define PHT(x, y)    { y += x; x += y; }
95#define IPHT(x, y)   { x -= y; y -= x; }
96
97/******************* Types ****************************************************/
98extern const unsigned char safer_ebox[], safer_lbox[];
99
100#ifdef LTC_CLEAN_STACK
101static void _Safer_Expand_Userkey(const unsigned char *userkey_1,
102                                 const unsigned char *userkey_2,
103                                 unsigned int nof_rounds,
104                                 int strengthened,
105                                 safer_key_t key)
106#else
107static void Safer_Expand_Userkey(const unsigned char *userkey_1,
108                                 const unsigned char *userkey_2,
109                                 unsigned int nof_rounds,
110                                 int strengthened,
111                                 safer_key_t key)
112#endif
113{   unsigned int i, j, k;
114    unsigned char ka[SAFER_BLOCK_LEN + 1];
115    unsigned char kb[SAFER_BLOCK_LEN + 1];
116
117    if (SAFER_MAX_NOF_ROUNDS < nof_rounds)
118        nof_rounds = SAFER_MAX_NOF_ROUNDS;
119    *key++ = (unsigned char)nof_rounds;
120    ka[SAFER_BLOCK_LEN] = (unsigned char)0;
121    kb[SAFER_BLOCK_LEN] = (unsigned char)0;
122    k = 0;
123    for (j = 0; j < SAFER_BLOCK_LEN; j++) {
124        ka[j] = ROL8(userkey_1[j], 5);
125        ka[SAFER_BLOCK_LEN] ^= ka[j];
126        kb[j] = *key++ = userkey_2[j];
127        kb[SAFER_BLOCK_LEN] ^= kb[j];
128    }
129    for (i = 1; i <= nof_rounds; i++) {
130        for (j = 0; j < SAFER_BLOCK_LEN + 1; j++) {
131            ka[j] = ROL8(ka[j], 6);
132            kb[j] = ROL8(kb[j], 6);
133        }
134        if (strengthened) {
135           k = 2 * i - 1;
136           while (k >= (SAFER_BLOCK_LEN + 1)) { k -= SAFER_BLOCK_LEN + 1; }
137        }
138        for (j = 0; j < SAFER_BLOCK_LEN; j++) {
139            if (strengthened) {
140                *key++ = (ka[k]
141                                + safer_ebox[(int)safer_ebox[(int)((18 * i + j + 1)&0xFF)]]) & 0xFF;
142                if (++k == (SAFER_BLOCK_LEN + 1)) { k = 0; }
143            } else {
144                *key++ = (ka[j] + safer_ebox[(int)safer_ebox[(int)((18 * i + j + 1)&0xFF)]]) & 0xFF;
145            }
146        }
147        if (strengthened) {
148           k = 2 * i;
149           while (k >= (SAFER_BLOCK_LEN + 1)) { k -= SAFER_BLOCK_LEN + 1; }
150        }
151        for (j = 0; j < SAFER_BLOCK_LEN; j++) {
152            if (strengthened) {
153                *key++ = (kb[k]
154                                + safer_ebox[(int)safer_ebox[(int)((18 * i + j + 10)&0xFF)]]) & 0xFF;
155                if (++k == (SAFER_BLOCK_LEN + 1)) { k = 0; }
156            } else {
157                *key++ = (kb[j] + safer_ebox[(int)safer_ebox[(int)((18 * i + j + 10)&0xFF)]]) & 0xFF;
158            }
159        }
160    }
161
162#ifdef LTC_CLEAN_STACK
163    zeromem(ka, sizeof(ka));
164    zeromem(kb, sizeof(kb));
165#endif
166}
167
168#ifdef LTC_CLEAN_STACK
169static void Safer_Expand_Userkey(const unsigned char *userkey_1,
170                                 const unsigned char *userkey_2,
171                                 unsigned int nof_rounds,
172                                 int strengthened,
173                                 safer_key_t key)
174{
175   _Safer_Expand_Userkey(userkey_1, userkey_2, nof_rounds, strengthened, key);
176   burn_stack(sizeof(unsigned char) * (2 * (SAFER_BLOCK_LEN + 1)) + sizeof(unsigned int)*2);
177}
178#endif
179
180int safer_k64_setup(const unsigned char *key, int keylen, int numrounds, symmetric_key *skey)
181{
182   LTC_ARGCHK(key != NULL);
183   LTC_ARGCHK(skey != NULL);
184
185   if (numrounds != 0 && (numrounds < 6 || numrounds > SAFER_MAX_NOF_ROUNDS)) {
186      return CRYPT_INVALID_ROUNDS;
187   }
188
189   if (keylen != 8) {
190      return CRYPT_INVALID_KEYSIZE;
191   }
192
193   Safer_Expand_Userkey(key, key, (unsigned int)(numrounds != 0 ?numrounds:SAFER_K64_DEFAULT_NOF_ROUNDS), 0, skey->safer.key);
194   return CRYPT_OK;
195}
196
197int safer_sk64_setup(const unsigned char *key, int keylen, int numrounds, symmetric_key *skey)
198{
199   LTC_ARGCHK(key != NULL);
200   LTC_ARGCHK(skey != NULL);
201
202   if (numrounds != 0 && (numrounds < 6 || numrounds > SAFER_MAX_NOF_ROUNDS)) {
203      return CRYPT_INVALID_ROUNDS;
204   }
205
206   if (keylen != 8) {
207      return CRYPT_INVALID_KEYSIZE;
208   }
209
210   Safer_Expand_Userkey(key, key, (unsigned int)(numrounds != 0 ?numrounds:SAFER_SK64_DEFAULT_NOF_ROUNDS), 1, skey->safer.key);
211   return CRYPT_OK;
212}
213
214int safer_k128_setup(const unsigned char *key, int keylen, int numrounds, symmetric_key *skey)
215{
216   LTC_ARGCHK(key != NULL);
217   LTC_ARGCHK(skey != NULL);
218
219   if (numrounds != 0 && (numrounds < 6 || numrounds > SAFER_MAX_NOF_ROUNDS)) {
220      return CRYPT_INVALID_ROUNDS;
221   }
222
223   if (keylen != 16) {
224      return CRYPT_INVALID_KEYSIZE;
225   }
226
227   Safer_Expand_Userkey(key, key+8, (unsigned int)(numrounds != 0 ?numrounds:SAFER_K128_DEFAULT_NOF_ROUNDS), 0, skey->safer.key);
228   return CRYPT_OK;
229}
230
231int safer_sk128_setup(const unsigned char *key, int keylen, int numrounds, symmetric_key *skey)
232{
233   LTC_ARGCHK(key != NULL);
234   LTC_ARGCHK(skey != NULL);
235
236   if (numrounds != 0 && (numrounds < 6 || numrounds > SAFER_MAX_NOF_ROUNDS)) {
237      return CRYPT_INVALID_ROUNDS;
238   }
239
240   if (keylen != 16) {
241      return CRYPT_INVALID_KEYSIZE;
242   }
243
244   Safer_Expand_Userkey(key, key+8, (unsigned int)(numrounds != 0?numrounds:SAFER_SK128_DEFAULT_NOF_ROUNDS), 1, skey->safer.key);
245   return CRYPT_OK;
246}
247
248#ifdef LTC_CLEAN_STACK
249static int _safer_ecb_encrypt(const unsigned char *block_in,
250                             unsigned char *block_out,
251                             symmetric_key *skey)
252#else
253int safer_ecb_encrypt(const unsigned char *block_in,
254                             unsigned char *block_out,
255                             symmetric_key *skey)
256#endif
257{   unsigned char a, b, c, d, e, f, g, h, t;
258    unsigned int round;
259    unsigned char *key;
260
261    LTC_ARGCHK(block_in != NULL);
262    LTC_ARGCHK(block_out != NULL);
263    LTC_ARGCHK(skey != NULL);
264
265    key = skey->safer.key;
266    a = block_in[0]; b = block_in[1]; c = block_in[2]; d = block_in[3];
267    e = block_in[4]; f = block_in[5]; g = block_in[6]; h = block_in[7];
268    if (SAFER_MAX_NOF_ROUNDS < (round = *key)) round = SAFER_MAX_NOF_ROUNDS;
269    while(round-- > 0)
270    {
271        a ^= *++key; b += *++key; c += *++key; d ^= *++key;
272        e ^= *++key; f += *++key; g += *++key; h ^= *++key;
273        a = EXP(a) + *++key; b = LOG(b) ^ *++key;
274        c = LOG(c) ^ *++key; d = EXP(d) + *++key;
275        e = EXP(e) + *++key; f = LOG(f) ^ *++key;
276        g = LOG(g) ^ *++key; h = EXP(h) + *++key;
277        PHT(a, b); PHT(c, d); PHT(e, f); PHT(g, h);
278        PHT(a, c); PHT(e, g); PHT(b, d); PHT(f, h);
279        PHT(a, e); PHT(b, f); PHT(c, g); PHT(d, h);
280        t = b; b = e; e = c; c = t; t = d; d = f; f = g; g = t;
281    }
282    a ^= *++key; b += *++key; c += *++key; d ^= *++key;
283    e ^= *++key; f += *++key; g += *++key; h ^= *++key;
284    block_out[0] = a & 0xFF; block_out[1] = b & 0xFF;
285    block_out[2] = c & 0xFF; block_out[3] = d & 0xFF;
286    block_out[4] = e & 0xFF; block_out[5] = f & 0xFF;
287    block_out[6] = g & 0xFF; block_out[7] = h & 0xFF;
288    return CRYPT_OK;
289}
290
291#ifdef LTC_CLEAN_STACK
292int safer_ecb_encrypt(const unsigned char *block_in,
293                             unsigned char *block_out,
294                             symmetric_key *skey)
295{
296    int err = _safer_ecb_encrypt(block_in, block_out, skey);
297    burn_stack(sizeof(unsigned char) * 9 + sizeof(unsigned int) + sizeof(unsigned char *));
298    return err;
299}
300#endif
301
302#ifdef LTC_CLEAN_STACK
303static int _safer_ecb_decrypt(const unsigned char *block_in,
304                             unsigned char *block_out,
305                             symmetric_key *skey)
306#else
307int safer_ecb_decrypt(const unsigned char *block_in,
308                             unsigned char *block_out,
309                             symmetric_key *skey)
310#endif
311{   unsigned char a, b, c, d, e, f, g, h, t;
312    unsigned int round;
313    unsigned char *key;
314
315    LTC_ARGCHK(block_in != NULL);
316    LTC_ARGCHK(block_out != NULL);
317    LTC_ARGCHK(skey != NULL);
318
319    key = skey->safer.key;
320    a = block_in[0]; b = block_in[1]; c = block_in[2]; d = block_in[3];
321    e = block_in[4]; f = block_in[5]; g = block_in[6]; h = block_in[7];
322    if (SAFER_MAX_NOF_ROUNDS < (round = *key)) round = SAFER_MAX_NOF_ROUNDS;
323    key += SAFER_BLOCK_LEN * (1 + 2 * round);
324    h ^= *key; g -= *--key; f -= *--key; e ^= *--key;
325    d ^= *--key; c -= *--key; b -= *--key; a ^= *--key;
326    while (round--)
327    {
328        t = e; e = b; b = c; c = t; t = f; f = d; d = g; g = t;
329        IPHT(a, e); IPHT(b, f); IPHT(c, g); IPHT(d, h);
330        IPHT(a, c); IPHT(e, g); IPHT(b, d); IPHT(f, h);
331        IPHT(a, b); IPHT(c, d); IPHT(e, f); IPHT(g, h);
332        h -= *--key; g ^= *--key; f ^= *--key; e -= *--key;
333        d -= *--key; c ^= *--key; b ^= *--key; a -= *--key;
334        h = LOG(h) ^ *--key; g = EXP(g) - *--key;
335        f = EXP(f) - *--key; e = LOG(e) ^ *--key;
336        d = LOG(d) ^ *--key; c = EXP(c) - *--key;
337        b = EXP(b) - *--key; a = LOG(a) ^ *--key;
338    }
339    block_out[0] = a & 0xFF; block_out[1] = b & 0xFF;
340    block_out[2] = c & 0xFF; block_out[3] = d & 0xFF;
341    block_out[4] = e & 0xFF; block_out[5] = f & 0xFF;
342    block_out[6] = g & 0xFF; block_out[7] = h & 0xFF;
343    return CRYPT_OK;
344}
345
346#ifdef LTC_CLEAN_STACK
347int safer_ecb_decrypt(const unsigned char *block_in,
348                             unsigned char *block_out,
349                             symmetric_key *skey)
350{
351    int err = _safer_ecb_decrypt(block_in, block_out, skey);
352    burn_stack(sizeof(unsigned char) * 9 + sizeof(unsigned int) + sizeof(unsigned char *));
353    return err;
354}
355#endif
356
357int safer_64_keysize(int *keysize)
358{
359   LTC_ARGCHK(keysize != NULL);
360   if (*keysize < 8) {
361      return CRYPT_INVALID_KEYSIZE;
362   } else {
363      *keysize = 8;
364      return CRYPT_OK;
365   }
366}
367
368int safer_128_keysize(int *keysize)
369{
370   LTC_ARGCHK(keysize != NULL);
371   if (*keysize < 16) {
372      return CRYPT_INVALID_KEYSIZE;
373   } else {
374      *keysize = 16;
375      return CRYPT_OK;
376   }
377}
378
379int safer_k64_test(void)
380{
381 #ifndef LTC_TEST
382    return CRYPT_NOP;
383 #else
384   static const unsigned char k64_pt[]  = { 1, 2, 3, 4, 5, 6, 7, 8 },
385                              k64_key[] = { 8, 7, 6, 5, 4, 3, 2, 1 },
386                              k64_ct[]  = { 200, 242, 156, 221, 135, 120, 62, 217 };
387
388   symmetric_key skey;
389   unsigned char buf[2][8];
390   int err;
391
392   /* test K64 */
393   if ((err = safer_k64_setup(k64_key, 8, 6, &skey)) != CRYPT_OK) {
394      return err;
395   }
396   safer_ecb_encrypt(k64_pt, buf[0], &skey);
397   safer_ecb_decrypt(buf[0], buf[1], &skey);
398
399   if (XMEMCMP(buf[0], k64_ct, 8) != 0 || XMEMCMP(buf[1], k64_pt, 8) != 0) {
400      return CRYPT_FAIL_TESTVECTOR;
401   }
402
403   return CRYPT_OK;
404 #endif
405}
406
407
408int safer_sk64_test(void)
409{
410 #ifndef LTC_TEST
411    return CRYPT_NOP;
412 #else
413   static const unsigned char sk64_pt[]  = { 1, 2, 3, 4, 5, 6, 7, 8 },
414                              sk64_key[] = { 1, 2, 3, 4, 5, 6, 7, 8 },
415                              sk64_ct[]  = { 95, 206, 155, 162, 5, 132, 56, 199 };
416
417   symmetric_key skey;
418   unsigned char buf[2][8];
419   int err, y;
420
421   /* test SK64 */
422   if ((err = safer_sk64_setup(sk64_key, 8, 6, &skey)) != CRYPT_OK) {
423      return err;
424   }
425
426   safer_ecb_encrypt(sk64_pt, buf[0], &skey);
427   safer_ecb_decrypt(buf[0], buf[1], &skey);
428
429   if (XMEMCMP(buf[0], sk64_ct, 8) != 0 || XMEMCMP(buf[1], sk64_pt, 8) != 0) {
430      return CRYPT_FAIL_TESTVECTOR;
431   }
432
433      /* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */
434      for (y = 0; y < 8; y++) buf[0][y] = 0;
435      for (y = 0; y < 1000; y++) safer_ecb_encrypt(buf[0], buf[0], &skey);
436      for (y = 0; y < 1000; y++) safer_ecb_decrypt(buf[0], buf[0], &skey);
437      for (y = 0; y < 8; y++) if (buf[0][y] != 0) return CRYPT_FAIL_TESTVECTOR;
438
439   return CRYPT_OK;
440  #endif
441}
442
443/** Terminate the context
444   @param skey    The scheduled key
445*/
446void safer_done(symmetric_key *skey)
447{
448}
449
450int safer_sk128_test(void)
451{
452 #ifndef LTC_TEST
453    return CRYPT_NOP;
454 #else
455   static const unsigned char sk128_pt[]  = { 1, 2, 3, 4, 5, 6, 7, 8 },
456                              sk128_key[] = { 1, 2, 3, 4, 5, 6, 7, 8,
457                                              0, 0, 0, 0, 0, 0, 0, 0 },
458                              sk128_ct[]  = { 255, 120, 17, 228, 179, 167, 46, 113 };
459
460   symmetric_key skey;
461   unsigned char buf[2][8];
462   int err, y;
463
464   /* test SK128 */
465   if ((err = safer_sk128_setup(sk128_key, 16, 0, &skey)) != CRYPT_OK) {
466      return err;
467   }
468   safer_ecb_encrypt(sk128_pt, buf[0], &skey);
469   safer_ecb_decrypt(buf[0], buf[1], &skey);
470
471   if (XMEMCMP(buf[0], sk128_ct, 8) != 0 || XMEMCMP(buf[1], sk128_pt, 8) != 0) {
472      return CRYPT_FAIL_TESTVECTOR;
473   }
474
475      /* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */
476      for (y = 0; y < 8; y++) buf[0][y] = 0;
477      for (y = 0; y < 1000; y++) safer_ecb_encrypt(buf[0], buf[0], &skey);
478      for (y = 0; y < 1000; y++) safer_ecb_decrypt(buf[0], buf[0], &skey);
479      for (y = 0; y < 8; y++) if (buf[0][y] != 0) return CRYPT_FAIL_TESTVECTOR;
480  return CRYPT_OK;
481 #endif
482}
483
484#endif
485
486
487
488
489/* $Source: /cvs/libtom/libtomcrypt/src/ciphers/safer/safer.c,v $ */
490/* $Revision: 1.13 $ */
491/* $Date: 2006/11/08 23:01:06 $ */
492