1/* 2 * This code implements the MD5 message-digest algorithm. 3 * The algorithm is due to Ron Rivest. This code was 4 * written by Colin Plumb in 1993, no copyright is claimed. 5 * This code is in the public domain; do with it what you wish. 6 * 7 * Equivalent code is available from RSA Data Security, Inc. 8 * This code has been tested against that, and is equivalent, 9 * except that you don't need to include two pages of legalese 10 * with every copy. 11 * 12 * To compute the message digest of a chunk of bytes, declare an 13 * MD5Context structure, pass it to MD5Init, call MD5Update as 14 * needed on buffers full of bytes, and then call MD5Final, which 15 * will fill a supplied 16-byte array with the digest. 16 * 17 * Changed so as no longer to depend on Colin Plumb's `usual.h' header 18 * definitions 19 * - Ian Jackson <ian@chiark.greenend.org.uk>. 20 * Still in the public domain. 21 */ 22 23#include <sys/types.h> /* for stupid systems */ 24 25#include <string.h> /* for memcpy() */ 26 27#include "md5_utils.h" 28 29void 30byteSwap(UWORD32 *buf, unsigned words) 31{ 32 md5byte *p; 33 34 /* Only swap bytes for big endian machines */ 35 int i = 1; 36 37 if (*(char *)&i == 1) 38 return; 39 40 p = (md5byte *)buf; 41 42 do 43 { 44 *buf++ = (UWORD32)((unsigned)p[3] << 8 | p[2]) << 16 | 45 ((unsigned)p[1] << 8 | p[0]); 46 p += 4; 47 } 48 while (--words); 49} 50 51/* 52 * Start MD5 accumulation. Set bit count to 0 and buffer to mysterious 53 * initialization constants. 54 */ 55void 56MD5Init(struct MD5Context *ctx) 57{ 58 ctx->buf[0] = 0x67452301; 59 ctx->buf[1] = 0xefcdab89; 60 ctx->buf[2] = 0x98badcfe; 61 ctx->buf[3] = 0x10325476; 62 63 ctx->bytes[0] = 0; 64 ctx->bytes[1] = 0; 65} 66 67/* 68 * Update context to reflect the concatenation of another buffer full 69 * of bytes. 70 */ 71void 72MD5Update(struct MD5Context *ctx, md5byte const *buf, unsigned len) 73{ 74 UWORD32 t; 75 76 /* Update byte count */ 77 78 t = ctx->bytes[0]; 79 80 if ((ctx->bytes[0] = t + len) < t) 81 ctx->bytes[1]++; /* Carry from low to high */ 82 83 t = 64 - (t & 0x3f); /* Space available in ctx->in (at least 1) */ 84 85 if (t > len) 86 { 87 memcpy((md5byte *)ctx->in + 64 - t, buf, len); 88 return; 89 } 90 91 /* First chunk is an odd size */ 92 memcpy((md5byte *)ctx->in + 64 - t, buf, t); 93 byteSwap(ctx->in, 16); 94 MD5Transform(ctx->buf, ctx->in); 95 buf += t; 96 len -= t; 97 98 /* Process data in 64-byte chunks */ 99 while (len >= 64) 100 { 101 memcpy(ctx->in, buf, 64); 102 byteSwap(ctx->in, 16); 103 MD5Transform(ctx->buf, ctx->in); 104 buf += 64; 105 len -= 64; 106 } 107 108 /* Handle any remaining bytes of data. */ 109 memcpy(ctx->in, buf, len); 110} 111 112/* 113 * Final wrapup - pad to 64-byte boundary with the bit pattern 114 * 1 0* (64-bit count of bits processed, MSB-first) 115 */ 116void 117MD5Final(md5byte digest[16], struct MD5Context *ctx) 118{ 119 int count = ctx->bytes[0] & 0x3f; /* Number of bytes in ctx->in */ 120 md5byte *p = (md5byte *)ctx->in + count; 121 122 /* Set the first char of padding to 0x80. There is always room. */ 123 *p++ = 0x80; 124 125 /* Bytes of padding needed to make 56 bytes (-8..55) */ 126 count = 56 - 1 - count; 127 128 if (count < 0) /* Padding forces an extra block */ 129 { 130 memset(p, 0, count + 8); 131 byteSwap(ctx->in, 16); 132 MD5Transform(ctx->buf, ctx->in); 133 p = (md5byte *)ctx->in; 134 count = 56; 135 } 136 137 memset(p, 0, count); 138 byteSwap(ctx->in, 14); 139 140 /* Append length in bits and transform */ 141 ctx->in[14] = ctx->bytes[0] << 3; 142 ctx->in[15] = ctx->bytes[1] << 3 | ctx->bytes[0] >> 29; 143 MD5Transform(ctx->buf, ctx->in); 144 145 byteSwap(ctx->buf, 4); 146 memcpy(digest, ctx->buf, 16); 147 memset(ctx, 0, sizeof(*ctx)); /* In case it's sensitive */ 148} 149 150#ifndef ASM_MD5 151 152/* The four core functions - F1 is optimized somewhat */ 153 154/* #define F1(x, y, z) (x & y | ~x & z) */ 155#define F1(x, y, z) (z ^ (x & (y ^ z))) 156#define F2(x, y, z) F1(z, x, y) 157#define F3(x, y, z) (x ^ y ^ z) 158#define F4(x, y, z) (y ^ (x | ~z)) 159 160/* This is the central step in the MD5 algorithm. */ 161#define MD5STEP(f,w,x,y,z,in,s) \ 162 (w += f(x,y,z) + in, w = (w<<s | w>>(32-s)) + x) 163 164/* 165 * The core of the MD5 algorithm, this alters an existing MD5 hash to 166 * reflect the addition of 16 longwords of new data. MD5Update blocks 167 * the data and converts bytes into longwords for this routine. 168 */ 169void 170MD5Transform(UWORD32 buf[4], UWORD32 const in[16]) 171{ 172 register UWORD32 a, b, c, d; 173 174 a = buf[0]; 175 b = buf[1]; 176 c = buf[2]; 177 d = buf[3]; 178 179 MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7); 180 MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12); 181 MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17); 182 MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22); 183 MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7); 184 MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12); 185 MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17); 186 MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22); 187 MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7); 188 MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12); 189 MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17); 190 MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22); 191 MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7); 192 MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12); 193 MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17); 194 MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22); 195 196 MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5); 197 MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9); 198 MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14); 199 MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20); 200 MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5); 201 MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9); 202 MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14); 203 MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20); 204 MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5); 205 MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9); 206 MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14); 207 MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20); 208 MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5); 209 MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9); 210 MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14); 211 MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20); 212 213 MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4); 214 MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11); 215 MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16); 216 MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23); 217 MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4); 218 MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11); 219 MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16); 220 MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23); 221 MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4); 222 MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11); 223 MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16); 224 MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23); 225 MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4); 226 MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11); 227 MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16); 228 MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23); 229 230 MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6); 231 MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10); 232 MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15); 233 MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21); 234 MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6); 235 MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10); 236 MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15); 237 MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21); 238 MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6); 239 MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10); 240 MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15); 241 MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21); 242 MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6); 243 MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10); 244 MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15); 245 MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21); 246 247 buf[0] += a; 248 buf[1] += b; 249 buf[2] += c; 250 buf[3] += d; 251} 252 253#endif 254