1// Copyright 2009 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6//     * Redistributions of source code must retain the above copyright
7//       notice, this list of conditions and the following disclaimer.
8//     * Redistributions in binary form must reproduce the above
9//       copyright notice, this list of conditions and the following
10//       disclaimer in the documentation and/or other materials provided
11//       with the distribution.
12//     * Neither the name of Google Inc. nor the names of its
13//       contributors may be used to endorse or promote products derived
14//       from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#include "v8.h"
29
30#include "codegen-inl.h"
31#include "compiler.h"
32#include "debug.h"
33#include "full-codegen.h"
34#include "parser.h"
35
36namespace v8 {
37namespace internal {
38
39#define __ ACCESS_MASM(masm_)
40
41// Generate code for a JS function.  On entry to the function the receiver
42// and arguments have been pushed on the stack left to right, with the
43// return address on top of them.  The actual argument count matches the
44// formal parameter count expected by the function.
45//
46// The live registers are:
47//   o edi: the JS function object being called (ie, ourselves)
48//   o esi: our context
49//   o ebp: our caller's frame pointer
50//   o esp: stack pointer (pointing to return address)
51//
52// The function builds a JS frame.  Please see JavaScriptFrameConstants in
53// frames-ia32.h for its layout.
54void FullCodeGenerator::Generate(CompilationInfo* info, Mode mode) {
55  ASSERT(info_ == NULL);
56  info_ = info;
57  SetFunctionPosition(function());
58
59  if (mode == PRIMARY) {
60    __ push(ebp);  // Caller's frame pointer.
61    __ mov(ebp, esp);
62    __ push(esi);  // Callee's context.
63    __ push(edi);  // Callee's JS Function.
64
65    { Comment cmnt(masm_, "[ Allocate locals");
66      int locals_count = scope()->num_stack_slots();
67      if (locals_count == 1) {
68        __ push(Immediate(Factory::undefined_value()));
69      } else if (locals_count > 1) {
70        __ mov(eax, Immediate(Factory::undefined_value()));
71        for (int i = 0; i < locals_count; i++) {
72          __ push(eax);
73        }
74      }
75    }
76
77    bool function_in_register = true;
78
79    // Possibly allocate a local context.
80    if (scope()->num_heap_slots() > 0) {
81      Comment cmnt(masm_, "[ Allocate local context");
82      // Argument to NewContext is the function, which is still in edi.
83      __ push(edi);
84      __ CallRuntime(Runtime::kNewContext, 1);
85      function_in_register = false;
86      // Context is returned in both eax and esi.  It replaces the context
87      // passed to us.  It's saved in the stack and kept live in esi.
88      __ mov(Operand(ebp, StandardFrameConstants::kContextOffset), esi);
89
90      // Copy parameters into context if necessary.
91      int num_parameters = scope()->num_parameters();
92      for (int i = 0; i < num_parameters; i++) {
93        Slot* slot = scope()->parameter(i)->slot();
94        if (slot != NULL && slot->type() == Slot::CONTEXT) {
95          int parameter_offset = StandardFrameConstants::kCallerSPOffset +
96                                     (num_parameters - 1 - i) * kPointerSize;
97          // Load parameter from stack.
98          __ mov(eax, Operand(ebp, parameter_offset));
99          // Store it in the context.
100          int context_offset = Context::SlotOffset(slot->index());
101          __ mov(Operand(esi, context_offset), eax);
102          // Update the write barrier. This clobbers all involved
103          // registers, so we have use a third register to avoid
104          // clobbering esi.
105          __ mov(ecx, esi);
106          __ RecordWrite(ecx, context_offset, eax, ebx);
107        }
108      }
109    }
110
111    Variable* arguments = scope()->arguments()->AsVariable();
112    if (arguments != NULL) {
113      // Function uses arguments object.
114      Comment cmnt(masm_, "[ Allocate arguments object");
115      if (function_in_register) {
116        __ push(edi);
117      } else {
118        __ push(Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
119      }
120      // Receiver is just before the parameters on the caller's stack.
121      int offset = scope()->num_parameters() * kPointerSize;
122      __ lea(edx,
123             Operand(ebp, StandardFrameConstants::kCallerSPOffset + offset));
124      __ push(edx);
125      __ push(Immediate(Smi::FromInt(scope()->num_parameters())));
126      // Arguments to ArgumentsAccessStub:
127      //   function, receiver address, parameter count.
128      // The stub will rewrite receiver and parameter count if the previous
129      // stack frame was an arguments adapter frame.
130      ArgumentsAccessStub stub(ArgumentsAccessStub::NEW_OBJECT);
131      __ CallStub(&stub);
132      __ mov(ecx, eax);  // Duplicate result.
133      Move(arguments->slot(), eax, ebx, edx);
134      Slot* dot_arguments_slot =
135          scope()->arguments_shadow()->AsVariable()->slot();
136      Move(dot_arguments_slot, ecx, ebx, edx);
137    }
138  }
139
140  { Comment cmnt(masm_, "[ Declarations");
141    VisitDeclarations(scope()->declarations());
142  }
143
144  { Comment cmnt(masm_, "[ Stack check");
145    Label ok;
146    ExternalReference stack_limit =
147        ExternalReference::address_of_stack_limit();
148    __ cmp(esp, Operand::StaticVariable(stack_limit));
149    __ j(above_equal, &ok, taken);
150    StackCheckStub stub;
151    __ CallStub(&stub);
152    __ bind(&ok);
153  }
154
155  if (FLAG_trace) {
156    __ CallRuntime(Runtime::kTraceEnter, 0);
157  }
158
159  { Comment cmnt(masm_, "[ Body");
160    ASSERT(loop_depth() == 0);
161    VisitStatements(function()->body());
162    ASSERT(loop_depth() == 0);
163  }
164
165  { Comment cmnt(masm_, "[ return <undefined>;");
166    // Emit a 'return undefined' in case control fell off the end of the body.
167    __ mov(eax, Factory::undefined_value());
168    EmitReturnSequence(function()->end_position());
169  }
170}
171
172
173void FullCodeGenerator::EmitReturnSequence(int position) {
174  Comment cmnt(masm_, "[ Return sequence");
175  if (return_label_.is_bound()) {
176    __ jmp(&return_label_);
177  } else {
178    // Common return label
179    __ bind(&return_label_);
180    if (FLAG_trace) {
181      __ push(eax);
182      __ CallRuntime(Runtime::kTraceExit, 1);
183    }
184#ifdef DEBUG
185    // Add a label for checking the size of the code used for returning.
186    Label check_exit_codesize;
187    masm_->bind(&check_exit_codesize);
188#endif
189    CodeGenerator::RecordPositions(masm_, position);
190    __ RecordJSReturn();
191    // Do not use the leave instruction here because it is too short to
192    // patch with the code required by the debugger.
193    __ mov(esp, ebp);
194    __ pop(ebp);
195    __ ret((scope()->num_parameters() + 1) * kPointerSize);
196#ifdef ENABLE_DEBUGGER_SUPPORT
197    // Check that the size of the code used for returning matches what is
198    // expected by the debugger.
199    ASSERT_EQ(Assembler::kJSReturnSequenceLength,
200            masm_->SizeOfCodeGeneratedSince(&check_exit_codesize));
201#endif
202  }
203}
204
205
206void FullCodeGenerator::Apply(Expression::Context context, Register reg) {
207  switch (context) {
208    case Expression::kUninitialized:
209      UNREACHABLE();
210
211    case Expression::kEffect:
212      // Nothing to do.
213      break;
214
215    case Expression::kValue:
216      // Move value into place.
217      switch (location_) {
218        case kAccumulator:
219          if (!reg.is(result_register())) __ mov(result_register(), reg);
220          break;
221        case kStack:
222          __ push(reg);
223          break;
224      }
225      break;
226
227    case Expression::kTest:
228      // For simplicity we always test the accumulator register.
229      if (!reg.is(result_register())) __ mov(result_register(), reg);
230      DoTest(context);
231      break;
232
233    case Expression::kValueTest:
234    case Expression::kTestValue:
235      if (!reg.is(result_register())) __ mov(result_register(), reg);
236      switch (location_) {
237        case kAccumulator:
238          break;
239        case kStack:
240          __ push(result_register());
241          break;
242      }
243      DoTest(context);
244      break;
245  }
246}
247
248
249void FullCodeGenerator::Apply(Expression::Context context, Slot* slot) {
250  switch (context) {
251    case Expression::kUninitialized:
252      UNREACHABLE();
253    case Expression::kEffect:
254      // Nothing to do.
255      break;
256    case Expression::kValue: {
257      MemOperand slot_operand = EmitSlotSearch(slot, result_register());
258      switch (location_) {
259        case kAccumulator:
260          __ mov(result_register(), slot_operand);
261          break;
262        case kStack:
263          // Memory operands can be pushed directly.
264          __ push(slot_operand);
265          break;
266      }
267      break;
268    }
269
270    case Expression::kTest:
271      // For simplicity we always test the accumulator register.
272      Move(result_register(), slot);
273      DoTest(context);
274      break;
275
276    case Expression::kValueTest:
277    case Expression::kTestValue:
278      Move(result_register(), slot);
279      switch (location_) {
280        case kAccumulator:
281          break;
282        case kStack:
283          __ push(result_register());
284          break;
285      }
286      DoTest(context);
287      break;
288  }
289}
290
291
292void FullCodeGenerator::Apply(Expression::Context context, Literal* lit) {
293  switch (context) {
294    case Expression::kUninitialized:
295      UNREACHABLE();
296    case Expression::kEffect:
297      // Nothing to do.
298      break;
299    case Expression::kValue:
300      switch (location_) {
301        case kAccumulator:
302          __ mov(result_register(), lit->handle());
303          break;
304        case kStack:
305          // Immediates can be pushed directly.
306          __ push(Immediate(lit->handle()));
307          break;
308      }
309      break;
310
311    case Expression::kTest:
312      // For simplicity we always test the accumulator register.
313      __ mov(result_register(), lit->handle());
314      DoTest(context);
315      break;
316
317    case Expression::kValueTest:
318    case Expression::kTestValue:
319      __ mov(result_register(), lit->handle());
320      switch (location_) {
321        case kAccumulator:
322          break;
323        case kStack:
324          __ push(result_register());
325          break;
326      }
327      DoTest(context);
328      break;
329  }
330}
331
332
333void FullCodeGenerator::ApplyTOS(Expression::Context context) {
334  switch (context) {
335    case Expression::kUninitialized:
336      UNREACHABLE();
337
338    case Expression::kEffect:
339      __ Drop(1);
340      break;
341
342    case Expression::kValue:
343      switch (location_) {
344        case kAccumulator:
345          __ pop(result_register());
346          break;
347        case kStack:
348          break;
349      }
350      break;
351
352    case Expression::kTest:
353      // For simplicity we always test the accumulator register.
354      __ pop(result_register());
355      DoTest(context);
356      break;
357
358    case Expression::kValueTest:
359    case Expression::kTestValue:
360      switch (location_) {
361        case kAccumulator:
362          __ pop(result_register());
363          break;
364        case kStack:
365          __ mov(result_register(), Operand(esp, 0));
366          break;
367      }
368      DoTest(context);
369      break;
370  }
371}
372
373
374void FullCodeGenerator::DropAndApply(int count,
375                                     Expression::Context context,
376                                     Register reg) {
377  ASSERT(count > 0);
378  ASSERT(!reg.is(esp));
379  switch (context) {
380    case Expression::kUninitialized:
381      UNREACHABLE();
382
383    case Expression::kEffect:
384      __ Drop(count);
385      break;
386
387    case Expression::kValue:
388      switch (location_) {
389        case kAccumulator:
390          __ Drop(count);
391          if (!reg.is(result_register())) __ mov(result_register(), reg);
392          break;
393        case kStack:
394          if (count > 1) __ Drop(count - 1);
395          __ mov(Operand(esp, 0), reg);
396          break;
397      }
398      break;
399
400    case Expression::kTest:
401      // For simplicity we always test the accumulator register.
402      __ Drop(count);
403      if (!reg.is(result_register())) __ mov(result_register(), reg);
404      DoTest(context);
405      break;
406
407    case Expression::kValueTest:
408    case Expression::kTestValue:
409      switch (location_) {
410        case kAccumulator:
411          __ Drop(count);
412          if (!reg.is(result_register())) __ mov(result_register(), reg);
413          break;
414        case kStack:
415          if (count > 1) __ Drop(count - 1);
416          __ mov(result_register(), reg);
417          __ mov(Operand(esp, 0), result_register());
418          break;
419      }
420      DoTest(context);
421      break;
422  }
423}
424
425
426void FullCodeGenerator::Apply(Expression::Context context,
427                              Label* materialize_true,
428                              Label* materialize_false) {
429  switch (context) {
430    case Expression::kUninitialized:
431
432    case Expression::kEffect:
433      ASSERT_EQ(materialize_true, materialize_false);
434      __ bind(materialize_true);
435      break;
436
437    case Expression::kValue: {
438      Label done;
439      switch (location_) {
440        case kAccumulator:
441          __ bind(materialize_true);
442          __ mov(result_register(), Factory::true_value());
443          __ jmp(&done);
444          __ bind(materialize_false);
445          __ mov(result_register(), Factory::false_value());
446          break;
447        case kStack:
448          __ bind(materialize_true);
449          __ push(Immediate(Factory::true_value()));
450          __ jmp(&done);
451          __ bind(materialize_false);
452          __ push(Immediate(Factory::false_value()));
453          break;
454      }
455      __ bind(&done);
456      break;
457    }
458
459    case Expression::kTest:
460      break;
461
462    case Expression::kValueTest:
463      __ bind(materialize_true);
464      switch (location_) {
465        case kAccumulator:
466          __ mov(result_register(), Factory::true_value());
467          break;
468        case kStack:
469          __ push(Immediate(Factory::true_value()));
470          break;
471      }
472      __ jmp(true_label_);
473      break;
474
475    case Expression::kTestValue:
476      __ bind(materialize_false);
477      switch (location_) {
478        case kAccumulator:
479          __ mov(result_register(), Factory::false_value());
480          break;
481        case kStack:
482          __ push(Immediate(Factory::false_value()));
483          break;
484      }
485      __ jmp(false_label_);
486      break;
487  }
488}
489
490
491void FullCodeGenerator::DoTest(Expression::Context context) {
492  // The value to test is in the accumulator.  If the value might be needed
493  // on the stack (value/test and test/value contexts with a stack location
494  // desired), then the value is already duplicated on the stack.
495  ASSERT_NE(NULL, true_label_);
496  ASSERT_NE(NULL, false_label_);
497
498  // In value/test and test/value expression contexts with stack as the
499  // desired location, there is already an extra value on the stack.  Use a
500  // label to discard it if unneeded.
501  Label discard;
502  Label* if_true = true_label_;
503  Label* if_false = false_label_;
504  switch (context) {
505    case Expression::kUninitialized:
506    case Expression::kEffect:
507    case Expression::kValue:
508      UNREACHABLE();
509    case Expression::kTest:
510      break;
511    case Expression::kValueTest:
512      switch (location_) {
513        case kAccumulator:
514          break;
515        case kStack:
516          if_false = &discard;
517          break;
518      }
519      break;
520    case Expression::kTestValue:
521      switch (location_) {
522        case kAccumulator:
523          break;
524        case kStack:
525          if_true = &discard;
526          break;
527      }
528      break;
529  }
530
531  // Emit the inlined tests assumed by the stub.
532  __ cmp(result_register(), Factory::undefined_value());
533  __ j(equal, if_false);
534  __ cmp(result_register(), Factory::true_value());
535  __ j(equal, if_true);
536  __ cmp(result_register(), Factory::false_value());
537  __ j(equal, if_false);
538  ASSERT_EQ(0, kSmiTag);
539  __ test(result_register(), Operand(result_register()));
540  __ j(zero, if_false);
541  __ test(result_register(), Immediate(kSmiTagMask));
542  __ j(zero, if_true);
543
544  // Save a copy of the value if it may be needed and isn't already saved.
545  switch (context) {
546    case Expression::kUninitialized:
547    case Expression::kEffect:
548    case Expression::kValue:
549      UNREACHABLE();
550    case Expression::kTest:
551      break;
552    case Expression::kValueTest:
553      switch (location_) {
554        case kAccumulator:
555          __ push(result_register());
556          break;
557        case kStack:
558          break;
559      }
560      break;
561    case Expression::kTestValue:
562      switch (location_) {
563        case kAccumulator:
564          __ push(result_register());
565          break;
566        case kStack:
567          break;
568      }
569      break;
570  }
571
572  // Call the ToBoolean stub for all other cases.
573  ToBooleanStub stub;
574  __ push(result_register());
575  __ CallStub(&stub);
576  __ test(eax, Operand(eax));
577
578  // The stub returns nonzero for true.  Complete based on the context.
579  switch (context) {
580    case Expression::kUninitialized:
581    case Expression::kEffect:
582    case Expression::kValue:
583      UNREACHABLE();
584
585    case Expression::kTest:
586      __ j(not_zero, true_label_);
587      __ jmp(false_label_);
588      break;
589
590    case Expression::kValueTest:
591      switch (location_) {
592        case kAccumulator:
593          __ j(zero, &discard);
594          __ pop(result_register());
595          __ jmp(true_label_);
596          break;
597        case kStack:
598          __ j(not_zero, true_label_);
599          break;
600      }
601      __ bind(&discard);
602      __ Drop(1);
603      __ jmp(false_label_);
604      break;
605
606    case Expression::kTestValue:
607      switch (location_) {
608        case kAccumulator:
609          __ j(not_zero, &discard);
610          __ pop(result_register());
611          __ jmp(false_label_);
612          break;
613        case kStack:
614          __ j(zero, false_label_);
615          break;
616      }
617      __ bind(&discard);
618      __ Drop(1);
619      __ jmp(true_label_);
620      break;
621  }
622}
623
624
625MemOperand FullCodeGenerator::EmitSlotSearch(Slot* slot, Register scratch) {
626  switch (slot->type()) {
627    case Slot::PARAMETER:
628    case Slot::LOCAL:
629      return Operand(ebp, SlotOffset(slot));
630    case Slot::CONTEXT: {
631      int context_chain_length =
632          scope()->ContextChainLength(slot->var()->scope());
633      __ LoadContext(scratch, context_chain_length);
634      return CodeGenerator::ContextOperand(scratch, slot->index());
635    }
636    case Slot::LOOKUP:
637      UNREACHABLE();
638  }
639  UNREACHABLE();
640  return Operand(eax, 0);
641}
642
643
644void FullCodeGenerator::Move(Register destination, Slot* source) {
645  MemOperand location = EmitSlotSearch(source, destination);
646  __ mov(destination, location);
647}
648
649
650void FullCodeGenerator::Move(Slot* dst,
651                             Register src,
652                             Register scratch1,
653                             Register scratch2) {
654  ASSERT(dst->type() != Slot::LOOKUP);  // Not yet implemented.
655  ASSERT(!scratch1.is(src) && !scratch2.is(src));
656  MemOperand location = EmitSlotSearch(dst, scratch1);
657  __ mov(location, src);
658  // Emit the write barrier code if the location is in the heap.
659  if (dst->type() == Slot::CONTEXT) {
660    int offset = FixedArray::kHeaderSize + dst->index() * kPointerSize;
661    __ RecordWrite(scratch1, offset, src, scratch2);
662  }
663}
664
665
666void FullCodeGenerator::VisitDeclaration(Declaration* decl) {
667  Comment cmnt(masm_, "[ Declaration");
668  Variable* var = decl->proxy()->var();
669  ASSERT(var != NULL);  // Must have been resolved.
670  Slot* slot = var->slot();
671  Property* prop = var->AsProperty();
672
673  if (slot != NULL) {
674    switch (slot->type()) {
675      case Slot::PARAMETER:
676      case Slot::LOCAL:
677        if (decl->mode() == Variable::CONST) {
678          __ mov(Operand(ebp, SlotOffset(slot)),
679                 Immediate(Factory::the_hole_value()));
680        } else if (decl->fun() != NULL) {
681          VisitForValue(decl->fun(), kAccumulator);
682          __ mov(Operand(ebp, SlotOffset(slot)), result_register());
683        }
684        break;
685
686      case Slot::CONTEXT:
687        // We bypass the general EmitSlotSearch because we know more about
688        // this specific context.
689
690        // The variable in the decl always resides in the current context.
691        ASSERT_EQ(0, scope()->ContextChainLength(var->scope()));
692        if (FLAG_debug_code) {
693          // Check if we have the correct context pointer.
694          __ mov(ebx,
695                 CodeGenerator::ContextOperand(esi, Context::FCONTEXT_INDEX));
696          __ cmp(ebx, Operand(esi));
697          __ Check(equal, "Unexpected declaration in current context.");
698        }
699        if (decl->mode() == Variable::CONST) {
700          __ mov(eax, Immediate(Factory::the_hole_value()));
701          __ mov(CodeGenerator::ContextOperand(esi, slot->index()), eax);
702          // No write barrier since the hole value is in old space.
703        } else if (decl->fun() != NULL) {
704          VisitForValue(decl->fun(), kAccumulator);
705          __ mov(CodeGenerator::ContextOperand(esi, slot->index()),
706                 result_register());
707          int offset = Context::SlotOffset(slot->index());
708          __ mov(ebx, esi);
709          __ RecordWrite(ebx, offset, result_register(), ecx);
710        }
711        break;
712
713      case Slot::LOOKUP: {
714        __ push(esi);
715        __ push(Immediate(var->name()));
716        // Declaration nodes are always introduced in one of two modes.
717        ASSERT(decl->mode() == Variable::VAR ||
718               decl->mode() == Variable::CONST);
719        PropertyAttributes attr =
720            (decl->mode() == Variable::VAR) ? NONE : READ_ONLY;
721        __ push(Immediate(Smi::FromInt(attr)));
722        // Push initial value, if any.
723        // Note: For variables we must not push an initial value (such as
724        // 'undefined') because we may have a (legal) redeclaration and we
725        // must not destroy the current value.
726        if (decl->mode() == Variable::CONST) {
727          __ push(Immediate(Factory::the_hole_value()));
728        } else if (decl->fun() != NULL) {
729          VisitForValue(decl->fun(), kStack);
730        } else {
731          __ push(Immediate(Smi::FromInt(0)));  // No initial value!
732        }
733        __ CallRuntime(Runtime::kDeclareContextSlot, 4);
734        break;
735      }
736    }
737
738  } else if (prop != NULL) {
739    if (decl->fun() != NULL || decl->mode() == Variable::CONST) {
740      // We are declaring a function or constant that rewrites to a
741      // property.  Use (keyed) IC to set the initial value.
742      VisitForValue(prop->obj(), kStack);
743      VisitForValue(prop->key(), kStack);
744
745      if (decl->fun() != NULL) {
746        VisitForValue(decl->fun(), kAccumulator);
747      } else {
748        __ mov(result_register(), Factory::the_hole_value());
749      }
750
751      Handle<Code> ic(Builtins::builtin(Builtins::KeyedStoreIC_Initialize));
752      __ call(ic, RelocInfo::CODE_TARGET);
753      // Absence of a test eax instruction following the call
754      // indicates that none of the load was inlined.
755      __ nop();
756
757      // Value in eax is ignored (declarations are statements).  Receiver
758      // and key on stack are discarded.
759      __ Drop(2);
760    }
761  }
762}
763
764
765void FullCodeGenerator::DeclareGlobals(Handle<FixedArray> pairs) {
766  // Call the runtime to declare the globals.
767  __ push(esi);  // The context is the first argument.
768  __ push(Immediate(pairs));
769  __ push(Immediate(Smi::FromInt(is_eval() ? 1 : 0)));
770  __ CallRuntime(Runtime::kDeclareGlobals, 3);
771  // Return value is ignored.
772}
773
774
775void FullCodeGenerator::VisitFunctionLiteral(FunctionLiteral* expr) {
776  Comment cmnt(masm_, "[ FunctionLiteral");
777
778  // Build the function boilerplate and instantiate it.
779  Handle<JSFunction> boilerplate =
780      Compiler::BuildBoilerplate(expr, script(), this);
781  if (HasStackOverflow()) return;
782
783  ASSERT(boilerplate->IsBoilerplate());
784
785  // Create a new closure.
786  __ push(esi);
787  __ push(Immediate(boilerplate));
788  __ CallRuntime(Runtime::kNewClosure, 2);
789  Apply(context_, eax);
790}
791
792
793void FullCodeGenerator::VisitVariableProxy(VariableProxy* expr) {
794  Comment cmnt(masm_, "[ VariableProxy");
795  EmitVariableLoad(expr->var(), context_);
796}
797
798
799void FullCodeGenerator::EmitVariableLoad(Variable* var,
800                                         Expression::Context context) {
801  // Four cases: non-this global variables, lookup slots, all other
802  // types of slots, and parameters that rewrite to explicit property
803  // accesses on the arguments object.
804  Slot* slot = var->slot();
805  Property* property = var->AsProperty();
806
807  if (var->is_global() && !var->is_this()) {
808    Comment cmnt(masm_, "Global variable");
809    // Use inline caching. Variable name is passed in ecx and the global
810    // object on the stack.
811    __ mov(eax, CodeGenerator::GlobalObject());
812    __ mov(ecx, var->name());
813    Handle<Code> ic(Builtins::builtin(Builtins::LoadIC_Initialize));
814    __ call(ic, RelocInfo::CODE_TARGET_CONTEXT);
815    // By emitting a nop we make sure that we do not have a test eax
816    // instruction after the call it is treated specially by the LoadIC code
817    // Remember that the assembler may choose to do peephole optimization
818    // (eg, push/pop elimination).
819    __ nop();
820    Apply(context, eax);
821
822  } else if (slot != NULL && slot->type() == Slot::LOOKUP) {
823    Comment cmnt(masm_, "Lookup slot");
824    __ push(esi);  // Context.
825    __ push(Immediate(var->name()));
826    __ CallRuntime(Runtime::kLoadContextSlot, 2);
827    Apply(context, eax);
828
829  } else if (slot != NULL) {
830    Comment cmnt(masm_, (slot->type() == Slot::CONTEXT)
831                            ? "Context slot"
832                            : "Stack slot");
833    Apply(context, slot);
834
835  } else {
836    Comment cmnt(masm_, "Rewritten parameter");
837    ASSERT_NOT_NULL(property);
838    // Rewritten parameter accesses are of the form "slot[literal]".
839
840    // Assert that the object is in a slot.
841    Variable* object_var = property->obj()->AsVariableProxy()->AsVariable();
842    ASSERT_NOT_NULL(object_var);
843    Slot* object_slot = object_var->slot();
844    ASSERT_NOT_NULL(object_slot);
845
846    // Load the object.
847    MemOperand object_loc = EmitSlotSearch(object_slot, eax);
848    __ mov(edx, object_loc);
849
850    // Assert that the key is a smi.
851    Literal* key_literal = property->key()->AsLiteral();
852    ASSERT_NOT_NULL(key_literal);
853    ASSERT(key_literal->handle()->IsSmi());
854
855    // Load the key.
856    __ mov(eax, Immediate(key_literal->handle()));
857
858    // Do a keyed property load.
859    Handle<Code> ic(Builtins::builtin(Builtins::KeyedLoadIC_Initialize));
860    __ call(ic, RelocInfo::CODE_TARGET);
861    // Notice: We must not have a "test eax, ..." instruction after the
862    // call. It is treated specially by the LoadIC code.
863    __ nop();
864    // Drop key and object left on the stack by IC.
865    Apply(context, eax);
866  }
867}
868
869
870void FullCodeGenerator::VisitRegExpLiteral(RegExpLiteral* expr) {
871  Comment cmnt(masm_, "[ RegExpLiteral");
872  Label done;
873  // Registers will be used as follows:
874  // edi = JS function.
875  // ebx = literals array.
876  // eax = regexp literal.
877  __ mov(edi, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
878  __ mov(ebx, FieldOperand(edi, JSFunction::kLiteralsOffset));
879  int literal_offset =
880    FixedArray::kHeaderSize + expr->literal_index() * kPointerSize;
881  __ mov(eax, FieldOperand(ebx, literal_offset));
882  __ cmp(eax, Factory::undefined_value());
883  __ j(not_equal, &done);
884  // Create regexp literal using runtime function
885  // Result will be in eax.
886  __ push(ebx);
887  __ push(Immediate(Smi::FromInt(expr->literal_index())));
888  __ push(Immediate(expr->pattern()));
889  __ push(Immediate(expr->flags()));
890  __ CallRuntime(Runtime::kMaterializeRegExpLiteral, 4);
891  // Label done:
892  __ bind(&done);
893  Apply(context_, eax);
894}
895
896
897void FullCodeGenerator::VisitObjectLiteral(ObjectLiteral* expr) {
898  Comment cmnt(masm_, "[ ObjectLiteral");
899  __ mov(edi, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
900  __ push(FieldOperand(edi, JSFunction::kLiteralsOffset));
901  __ push(Immediate(Smi::FromInt(expr->literal_index())));
902  __ push(Immediate(expr->constant_properties()));
903  if (expr->depth() > 1) {
904    __ CallRuntime(Runtime::kCreateObjectLiteral, 3);
905  } else {
906    __ CallRuntime(Runtime::kCreateObjectLiteralShallow, 3);
907  }
908
909  // If result_saved is true the result is on top of the stack.  If
910  // result_saved is false the result is in eax.
911  bool result_saved = false;
912
913  for (int i = 0; i < expr->properties()->length(); i++) {
914    ObjectLiteral::Property* property = expr->properties()->at(i);
915    if (property->IsCompileTimeValue()) continue;
916
917    Literal* key = property->key();
918    Expression* value = property->value();
919    if (!result_saved) {
920      __ push(eax);  // Save result on the stack
921      result_saved = true;
922    }
923    switch (property->kind()) {
924      case ObjectLiteral::Property::MATERIALIZED_LITERAL:
925        ASSERT(!CompileTimeValue::IsCompileTimeValue(value));
926        // Fall through.
927      case ObjectLiteral::Property::COMPUTED:
928        if (key->handle()->IsSymbol()) {
929          VisitForValue(value, kAccumulator);
930          __ mov(ecx, Immediate(key->handle()));
931          __ mov(edx, Operand(esp, 0));
932          Handle<Code> ic(Builtins::builtin(Builtins::StoreIC_Initialize));
933          __ call(ic, RelocInfo::CODE_TARGET);
934          __ nop();
935          break;
936        }
937        // Fall through.
938      case ObjectLiteral::Property::PROTOTYPE:
939        __ push(Operand(esp, 0));  // Duplicate receiver.
940        VisitForValue(key, kStack);
941        VisitForValue(value, kStack);
942        __ CallRuntime(Runtime::kSetProperty, 3);
943        break;
944      case ObjectLiteral::Property::SETTER:
945      case ObjectLiteral::Property::GETTER:
946        __ push(Operand(esp, 0));  // Duplicate receiver.
947        VisitForValue(key, kStack);
948        __ push(Immediate(property->kind() == ObjectLiteral::Property::SETTER ?
949                          Smi::FromInt(1) :
950                          Smi::FromInt(0)));
951        VisitForValue(value, kStack);
952        __ CallRuntime(Runtime::kDefineAccessor, 4);
953        break;
954      default: UNREACHABLE();
955    }
956  }
957
958  if (result_saved) {
959    ApplyTOS(context_);
960  } else {
961    Apply(context_, eax);
962  }
963}
964
965
966void FullCodeGenerator::VisitArrayLiteral(ArrayLiteral* expr) {
967  Comment cmnt(masm_, "[ ArrayLiteral");
968  __ mov(ebx, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
969  __ push(FieldOperand(ebx, JSFunction::kLiteralsOffset));
970  __ push(Immediate(Smi::FromInt(expr->literal_index())));
971  __ push(Immediate(expr->constant_elements()));
972  if (expr->depth() > 1) {
973    __ CallRuntime(Runtime::kCreateArrayLiteral, 3);
974  } else {
975    __ CallRuntime(Runtime::kCreateArrayLiteralShallow, 3);
976  }
977
978  bool result_saved = false;  // Is the result saved to the stack?
979
980  // Emit code to evaluate all the non-constant subexpressions and to store
981  // them into the newly cloned array.
982  ZoneList<Expression*>* subexprs = expr->values();
983  for (int i = 0, len = subexprs->length(); i < len; i++) {
984    Expression* subexpr = subexprs->at(i);
985    // If the subexpression is a literal or a simple materialized literal it
986    // is already set in the cloned array.
987    if (subexpr->AsLiteral() != NULL ||
988        CompileTimeValue::IsCompileTimeValue(subexpr)) {
989      continue;
990    }
991
992    if (!result_saved) {
993      __ push(eax);
994      result_saved = true;
995    }
996    VisitForValue(subexpr, kAccumulator);
997
998    // Store the subexpression value in the array's elements.
999    __ mov(ebx, Operand(esp, 0));  // Copy of array literal.
1000    __ mov(ebx, FieldOperand(ebx, JSObject::kElementsOffset));
1001    int offset = FixedArray::kHeaderSize + (i * kPointerSize);
1002    __ mov(FieldOperand(ebx, offset), result_register());
1003
1004    // Update the write barrier for the array store.
1005    __ RecordWrite(ebx, offset, result_register(), ecx);
1006  }
1007
1008  if (result_saved) {
1009    ApplyTOS(context_);
1010  } else {
1011    Apply(context_, eax);
1012  }
1013}
1014
1015
1016void FullCodeGenerator::VisitAssignment(Assignment* expr) {
1017  Comment cmnt(masm_, "[ Assignment");
1018  ASSERT(expr->op() != Token::INIT_CONST);
1019  // Left-hand side can only be a property, a global or a (parameter or local)
1020  // slot. Variables with rewrite to .arguments are treated as KEYED_PROPERTY.
1021  enum LhsKind { VARIABLE, NAMED_PROPERTY, KEYED_PROPERTY };
1022  LhsKind assign_type = VARIABLE;
1023  Property* prop = expr->target()->AsProperty();
1024  if (prop != NULL) {
1025    assign_type =
1026        (prop->key()->IsPropertyName()) ? NAMED_PROPERTY : KEYED_PROPERTY;
1027  }
1028
1029  // Evaluate LHS expression.
1030  switch (assign_type) {
1031    case VARIABLE:
1032      // Nothing to do here.
1033      break;
1034    case NAMED_PROPERTY:
1035      if (expr->is_compound()) {
1036        // We need the receiver both on the stack and in the accumulator.
1037        VisitForValue(prop->obj(), kAccumulator);
1038        __ push(result_register());
1039      } else {
1040        VisitForValue(prop->obj(), kStack);
1041      }
1042      break;
1043    case KEYED_PROPERTY:
1044      if (expr->is_compound()) {
1045        VisitForValue(prop->obj(), kStack);
1046        VisitForValue(prop->key(), kAccumulator);
1047        __ mov(edx, Operand(esp, 0));
1048        __ push(eax);
1049      } else {
1050        VisitForValue(prop->obj(), kStack);
1051        VisitForValue(prop->key(), kStack);
1052      }
1053      break;
1054  }
1055
1056  // If we have a compound assignment: Get value of LHS expression and
1057  // store in on top of the stack.
1058  if (expr->is_compound()) {
1059    Location saved_location = location_;
1060    location_ = kStack;
1061    switch (assign_type) {
1062      case VARIABLE:
1063        EmitVariableLoad(expr->target()->AsVariableProxy()->var(),
1064                         Expression::kValue);
1065        break;
1066      case NAMED_PROPERTY:
1067        EmitNamedPropertyLoad(prop);
1068        __ push(result_register());
1069        break;
1070      case KEYED_PROPERTY:
1071        EmitKeyedPropertyLoad(prop);
1072        __ push(result_register());
1073        break;
1074    }
1075    location_ = saved_location;
1076  }
1077
1078  // Evaluate RHS expression.
1079  Expression* rhs = expr->value();
1080  VisitForValue(rhs, kAccumulator);
1081
1082  // If we have a compound assignment: Apply operator.
1083  if (expr->is_compound()) {
1084    Location saved_location = location_;
1085    location_ = kAccumulator;
1086    EmitBinaryOp(expr->binary_op(), Expression::kValue);
1087    location_ = saved_location;
1088  }
1089
1090  // Record source position before possible IC call.
1091  SetSourcePosition(expr->position());
1092
1093  // Store the value.
1094  switch (assign_type) {
1095    case VARIABLE:
1096      EmitVariableAssignment(expr->target()->AsVariableProxy()->var(),
1097                             context_);
1098      break;
1099    case NAMED_PROPERTY:
1100      EmitNamedPropertyAssignment(expr);
1101      break;
1102    case KEYED_PROPERTY:
1103      EmitKeyedPropertyAssignment(expr);
1104      break;
1105  }
1106}
1107
1108
1109void FullCodeGenerator::EmitNamedPropertyLoad(Property* prop) {
1110  SetSourcePosition(prop->position());
1111  Literal* key = prop->key()->AsLiteral();
1112  __ mov(ecx, Immediate(key->handle()));
1113  Handle<Code> ic(Builtins::builtin(Builtins::LoadIC_Initialize));
1114  __ call(ic, RelocInfo::CODE_TARGET);
1115  __ nop();
1116}
1117
1118
1119void FullCodeGenerator::EmitKeyedPropertyLoad(Property* prop) {
1120  SetSourcePosition(prop->position());
1121  Handle<Code> ic(Builtins::builtin(Builtins::KeyedLoadIC_Initialize));
1122  __ call(ic, RelocInfo::CODE_TARGET);
1123  __ nop();
1124}
1125
1126
1127void FullCodeGenerator::EmitBinaryOp(Token::Value op,
1128                                     Expression::Context context) {
1129  __ push(result_register());
1130  GenericBinaryOpStub stub(op,
1131                           NO_OVERWRITE,
1132                           NO_GENERIC_BINARY_FLAGS);
1133  __ CallStub(&stub);
1134  Apply(context, eax);
1135}
1136
1137
1138void FullCodeGenerator::EmitVariableAssignment(Variable* var,
1139                                               Expression::Context context) {
1140  // Three main cases: global variables, lookup slots, and all other
1141  // types of slots.  Left-hand-side parameters that rewrite to
1142  // explicit property accesses do not reach here.
1143  ASSERT(var != NULL);
1144  ASSERT(var->is_global() || var->slot() != NULL);
1145
1146  Slot* slot = var->slot();
1147  if (var->is_global()) {
1148    ASSERT(!var->is_this());
1149    // Assignment to a global variable.  Use inline caching for the
1150    // assignment.  Right-hand-side value is passed in eax, variable name in
1151    // ecx, and the global object on the stack.
1152    __ mov(ecx, var->name());
1153    __ mov(edx, CodeGenerator::GlobalObject());
1154    Handle<Code> ic(Builtins::builtin(Builtins::StoreIC_Initialize));
1155    __ call(ic, RelocInfo::CODE_TARGET);
1156    __ nop();
1157    Apply(context, eax);
1158
1159  } else if (slot != NULL && slot->type() == Slot::LOOKUP) {
1160    __ push(result_register());  // Value.
1161    __ push(esi);  // Context.
1162    __ push(Immediate(var->name()));
1163    __ CallRuntime(Runtime::kStoreContextSlot, 3);
1164    Apply(context, eax);
1165
1166  } else if (slot != NULL) {
1167    switch (slot->type()) {
1168      case Slot::LOCAL:
1169      case Slot::PARAMETER:
1170        __ mov(Operand(ebp, SlotOffset(slot)), result_register());
1171        break;
1172
1173      case Slot::CONTEXT: {
1174        MemOperand target = EmitSlotSearch(slot, ecx);
1175        __ mov(target, result_register());
1176
1177        // RecordWrite may destroy all its register arguments.
1178        __ mov(edx, result_register());
1179        int offset = FixedArray::kHeaderSize + slot->index() * kPointerSize;
1180        __ RecordWrite(ecx, offset, edx, ebx);
1181        break;
1182      }
1183
1184      case Slot::LOOKUP:
1185        UNREACHABLE();
1186        break;
1187    }
1188    Apply(context, result_register());
1189
1190  } else {
1191    // Variables rewritten as properties are not treated as variables in
1192    // assignments.
1193    UNREACHABLE();
1194  }
1195}
1196
1197
1198void FullCodeGenerator::EmitNamedPropertyAssignment(Assignment* expr) {
1199  // Assignment to a property, using a named store IC.
1200  Property* prop = expr->target()->AsProperty();
1201  ASSERT(prop != NULL);
1202  ASSERT(prop->key()->AsLiteral() != NULL);
1203
1204  // If the assignment starts a block of assignments to the same object,
1205  // change to slow case to avoid the quadratic behavior of repeatedly
1206  // adding fast properties.
1207  if (expr->starts_initialization_block()) {
1208    __ push(result_register());
1209    __ push(Operand(esp, kPointerSize));  // Receiver is now under value.
1210    __ CallRuntime(Runtime::kToSlowProperties, 1);
1211    __ pop(result_register());
1212  }
1213
1214  // Record source code position before IC call.
1215  SetSourcePosition(expr->position());
1216  __ mov(ecx, prop->key()->AsLiteral()->handle());
1217  if (expr->ends_initialization_block()) {
1218    __ mov(edx, Operand(esp, 0));
1219  } else {
1220    __ pop(edx);
1221  }
1222  Handle<Code> ic(Builtins::builtin(Builtins::StoreIC_Initialize));
1223  __ call(ic, RelocInfo::CODE_TARGET);
1224  __ nop();
1225
1226  // If the assignment ends an initialization block, revert to fast case.
1227  if (expr->ends_initialization_block()) {
1228    __ push(eax);  // Result of assignment, saved even if not needed.
1229    __ push(Operand(esp, kPointerSize));  // Receiver is under value.
1230    __ CallRuntime(Runtime::kToFastProperties, 1);
1231    __ pop(eax);
1232    DropAndApply(1, context_, eax);
1233  } else {
1234    Apply(context_, eax);
1235  }
1236}
1237
1238
1239void FullCodeGenerator::EmitKeyedPropertyAssignment(Assignment* expr) {
1240  // Assignment to a property, using a keyed store IC.
1241
1242  // If the assignment starts a block of assignments to the same object,
1243  // change to slow case to avoid the quadratic behavior of repeatedly
1244  // adding fast properties.
1245  if (expr->starts_initialization_block()) {
1246    __ push(result_register());
1247    // Receiver is now under the key and value.
1248    __ push(Operand(esp, 2 * kPointerSize));
1249    __ CallRuntime(Runtime::kToSlowProperties, 1);
1250    __ pop(result_register());
1251  }
1252
1253  // Record source code position before IC call.
1254  SetSourcePosition(expr->position());
1255  Handle<Code> ic(Builtins::builtin(Builtins::KeyedStoreIC_Initialize));
1256  __ call(ic, RelocInfo::CODE_TARGET);
1257  // This nop signals to the IC that there is no inlined code at the call
1258  // site for it to patch.
1259  __ nop();
1260
1261  // If the assignment ends an initialization block, revert to fast case.
1262  if (expr->ends_initialization_block()) {
1263    __ push(eax);  // Result of assignment, saved even if not needed.
1264    // Receiver is under the key and value.
1265    __ push(Operand(esp, 2 * kPointerSize));
1266    __ CallRuntime(Runtime::kToFastProperties, 1);
1267    __ pop(eax);
1268  }
1269
1270  // Receiver and key are still on stack.
1271  DropAndApply(2, context_, eax);
1272}
1273
1274
1275void FullCodeGenerator::VisitProperty(Property* expr) {
1276  Comment cmnt(masm_, "[ Property");
1277  Expression* key = expr->key();
1278
1279  if (key->IsPropertyName()) {
1280    VisitForValue(expr->obj(), kAccumulator);
1281    EmitNamedPropertyLoad(expr);
1282    Apply(context_, eax);
1283  } else {
1284    VisitForValue(expr->obj(), kStack);
1285    VisitForValue(expr->key(), kAccumulator);
1286    __ pop(edx);
1287    EmitKeyedPropertyLoad(expr);
1288    Apply(context_, eax);
1289  }
1290}
1291
1292
1293void FullCodeGenerator::EmitCallWithIC(Call* expr,
1294                                       Handle<Object> name,
1295                                       RelocInfo::Mode mode) {
1296  // Code common for calls using the IC.
1297  ZoneList<Expression*>* args = expr->arguments();
1298  int arg_count = args->length();
1299  for (int i = 0; i < arg_count; i++) {
1300    VisitForValue(args->at(i), kStack);
1301  }
1302  __ Set(ecx, Immediate(name));
1303  // Record source position of the IC call.
1304  SetSourcePosition(expr->position());
1305  InLoopFlag in_loop = (loop_depth() > 0) ? IN_LOOP : NOT_IN_LOOP;
1306  Handle<Code> ic = CodeGenerator::ComputeCallInitialize(arg_count, in_loop);
1307  __ call(ic, mode);
1308  // Restore context register.
1309  __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
1310  Apply(context_, eax);
1311}
1312
1313
1314void FullCodeGenerator::EmitCallWithStub(Call* expr) {
1315  // Code common for calls using the call stub.
1316  ZoneList<Expression*>* args = expr->arguments();
1317  int arg_count = args->length();
1318  for (int i = 0; i < arg_count; i++) {
1319    VisitForValue(args->at(i), kStack);
1320  }
1321  // Record source position for debugger.
1322  SetSourcePosition(expr->position());
1323  CallFunctionStub stub(arg_count, NOT_IN_LOOP, RECEIVER_MIGHT_BE_VALUE);
1324  __ CallStub(&stub);
1325  // Restore context register.
1326  __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
1327  DropAndApply(1, context_, eax);
1328}
1329
1330
1331void FullCodeGenerator::VisitCall(Call* expr) {
1332  Comment cmnt(masm_, "[ Call");
1333  Expression* fun = expr->expression();
1334  Variable* var = fun->AsVariableProxy()->AsVariable();
1335
1336  if (var != NULL && var->is_possibly_eval()) {
1337    // Call to the identifier 'eval'.
1338    UNREACHABLE();
1339  } else if (var != NULL && !var->is_this() && var->is_global()) {
1340    // Push global object as receiver for the call IC.
1341    __ push(CodeGenerator::GlobalObject());
1342    EmitCallWithIC(expr, var->name(), RelocInfo::CODE_TARGET_CONTEXT);
1343  } else if (var != NULL && var->slot() != NULL &&
1344             var->slot()->type() == Slot::LOOKUP) {
1345    // Call to a lookup slot.
1346    UNREACHABLE();
1347  } else if (fun->AsProperty() != NULL) {
1348    // Call to an object property.
1349    Property* prop = fun->AsProperty();
1350    Literal* key = prop->key()->AsLiteral();
1351    if (key != NULL && key->handle()->IsSymbol()) {
1352      // Call to a named property, use call IC.
1353      VisitForValue(prop->obj(), kStack);
1354      EmitCallWithIC(expr, key->handle(), RelocInfo::CODE_TARGET);
1355    } else {
1356      // Call to a keyed property, use keyed load IC followed by function
1357      // call.
1358      VisitForValue(prop->obj(), kStack);
1359      VisitForValue(prop->key(), kAccumulator);
1360      // Record source code position for IC call.
1361      SetSourcePosition(prop->position());
1362      if (prop->is_synthetic()) {
1363        __ pop(edx);  // We do not need to keep the receiver.
1364      } else {
1365        __ mov(edx, Operand(esp, 0));  // Keep receiver, to call function on.
1366      }
1367
1368      Handle<Code> ic(Builtins::builtin(Builtins::KeyedLoadIC_Initialize));
1369      __ call(ic, RelocInfo::CODE_TARGET);
1370      // By emitting a nop we make sure that we do not have a "test eax,..."
1371      // instruction after the call it is treated specially by the LoadIC code.
1372      __ nop();
1373      if (prop->is_synthetic()) {
1374        // Push result (function).
1375        __ push(eax);
1376        // Push Global receiver.
1377        __ mov(ecx, CodeGenerator::GlobalObject());
1378        __ push(FieldOperand(ecx, GlobalObject::kGlobalReceiverOffset));
1379      } else {
1380        // Pop receiver.
1381        __ pop(ebx);
1382        // Push result (function).
1383        __ push(eax);
1384        __ push(ebx);
1385      }
1386      EmitCallWithStub(expr);
1387    }
1388  } else {
1389    // Call to some other expression.  If the expression is an anonymous
1390    // function literal not called in a loop, mark it as one that should
1391    // also use the full code generator.
1392    FunctionLiteral* lit = fun->AsFunctionLiteral();
1393    if (lit != NULL &&
1394        lit->name()->Equals(Heap::empty_string()) &&
1395        loop_depth() == 0) {
1396      lit->set_try_full_codegen(true);
1397    }
1398    VisitForValue(fun, kStack);
1399    // Load global receiver object.
1400    __ mov(ebx, CodeGenerator::GlobalObject());
1401    __ push(FieldOperand(ebx, GlobalObject::kGlobalReceiverOffset));
1402    // Emit function call.
1403    EmitCallWithStub(expr);
1404  }
1405}
1406
1407
1408void FullCodeGenerator::VisitCallNew(CallNew* expr) {
1409  Comment cmnt(masm_, "[ CallNew");
1410  // According to ECMA-262, section 11.2.2, page 44, the function
1411  // expression in new calls must be evaluated before the
1412  // arguments.
1413  // Push function on the stack.
1414  VisitForValue(expr->expression(), kStack);
1415
1416  // Push global object (receiver).
1417  __ push(CodeGenerator::GlobalObject());
1418
1419  // Push the arguments ("left-to-right") on the stack.
1420  ZoneList<Expression*>* args = expr->arguments();
1421  int arg_count = args->length();
1422  for (int i = 0; i < arg_count; i++) {
1423    VisitForValue(args->at(i), kStack);
1424  }
1425
1426  // Call the construct call builtin that handles allocation and
1427  // constructor invocation.
1428  SetSourcePosition(expr->position());
1429
1430  // Load function, arg_count into edi and eax.
1431  __ Set(eax, Immediate(arg_count));
1432  // Function is in esp[arg_count + 1].
1433  __ mov(edi, Operand(esp, eax, times_pointer_size, kPointerSize));
1434
1435  Handle<Code> construct_builtin(Builtins::builtin(Builtins::JSConstructCall));
1436  __ call(construct_builtin, RelocInfo::CONSTRUCT_CALL);
1437
1438  // Replace function on TOS with result in eax, or pop it.
1439  DropAndApply(1, context_, eax);
1440}
1441
1442
1443void FullCodeGenerator::VisitCallRuntime(CallRuntime* expr) {
1444  Comment cmnt(masm_, "[ CallRuntime");
1445  ZoneList<Expression*>* args = expr->arguments();
1446
1447  if (expr->is_jsruntime()) {
1448    // Prepare for calling JS runtime function.
1449    __ mov(eax, CodeGenerator::GlobalObject());
1450    __ push(FieldOperand(eax, GlobalObject::kBuiltinsOffset));
1451  }
1452
1453  // Push the arguments ("left-to-right").
1454  int arg_count = args->length();
1455  for (int i = 0; i < arg_count; i++) {
1456    VisitForValue(args->at(i), kStack);
1457  }
1458
1459  if (expr->is_jsruntime()) {
1460    // Call the JS runtime function via a call IC.
1461    __ Set(ecx, Immediate(expr->name()));
1462    InLoopFlag in_loop = (loop_depth() > 0) ? IN_LOOP : NOT_IN_LOOP;
1463    Handle<Code> ic = CodeGenerator::ComputeCallInitialize(arg_count, in_loop);
1464    __ call(ic, RelocInfo::CODE_TARGET);
1465      // Restore context register.
1466    __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
1467  } else {
1468    // Call the C runtime function.
1469    __ CallRuntime(expr->function(), arg_count);
1470  }
1471  Apply(context_, eax);
1472}
1473
1474
1475void FullCodeGenerator::VisitUnaryOperation(UnaryOperation* expr) {
1476  switch (expr->op()) {
1477    case Token::VOID: {
1478      Comment cmnt(masm_, "[ UnaryOperation (VOID)");
1479      VisitForEffect(expr->expression());
1480      switch (context_) {
1481        case Expression::kUninitialized:
1482          UNREACHABLE();
1483          break;
1484        case Expression::kEffect:
1485          break;
1486        case Expression::kValue:
1487          switch (location_) {
1488            case kAccumulator:
1489              __ mov(result_register(), Factory::undefined_value());
1490              break;
1491            case kStack:
1492              __ push(Immediate(Factory::undefined_value()));
1493              break;
1494          }
1495          break;
1496        case Expression::kTestValue:
1497          // Value is false so it's needed.
1498          switch (location_) {
1499            case kAccumulator:
1500              __ mov(result_register(), Factory::undefined_value());
1501              break;
1502            case kStack:
1503              __ push(Immediate(Factory::undefined_value()));
1504              break;
1505          }
1506          // Fall through.
1507        case Expression::kTest:
1508        case Expression::kValueTest:
1509          __ jmp(false_label_);
1510          break;
1511      }
1512      break;
1513    }
1514
1515    case Token::NOT: {
1516      Comment cmnt(masm_, "[ UnaryOperation (NOT)");
1517      Label materialize_true, materialize_false, done;
1518      // Initially assume a pure test context.  Notice that the labels are
1519      // swapped.
1520      Label* if_true = false_label_;
1521      Label* if_false = true_label_;
1522      switch (context_) {
1523        case Expression::kUninitialized:
1524          UNREACHABLE();
1525          break;
1526        case Expression::kEffect:
1527          if_true = &done;
1528          if_false = &done;
1529          break;
1530        case Expression::kValue:
1531          if_true = &materialize_false;
1532          if_false = &materialize_true;
1533          break;
1534        case Expression::kTest:
1535          break;
1536        case Expression::kValueTest:
1537          if_false = &materialize_true;
1538          break;
1539        case Expression::kTestValue:
1540          if_true = &materialize_false;
1541          break;
1542      }
1543      VisitForControl(expr->expression(), if_true, if_false);
1544      Apply(context_, if_false, if_true);  // Labels swapped.
1545      break;
1546    }
1547
1548    case Token::TYPEOF: {
1549      Comment cmnt(masm_, "[ UnaryOperation (TYPEOF)");
1550      VariableProxy* proxy = expr->expression()->AsVariableProxy();
1551      if (proxy != NULL &&
1552          !proxy->var()->is_this() &&
1553          proxy->var()->is_global()) {
1554        Comment cmnt(masm_, "Global variable");
1555        __ mov(eax, CodeGenerator::GlobalObject());
1556        __ mov(ecx, Immediate(proxy->name()));
1557        Handle<Code> ic(Builtins::builtin(Builtins::LoadIC_Initialize));
1558        // Use a regular load, not a contextual load, to avoid a reference
1559        // error.
1560        __ call(ic, RelocInfo::CODE_TARGET);
1561        __ push(eax);
1562      } else if (proxy != NULL &&
1563                 proxy->var()->slot() != NULL &&
1564                 proxy->var()->slot()->type() == Slot::LOOKUP) {
1565        __ push(esi);
1566        __ push(Immediate(proxy->name()));
1567        __ CallRuntime(Runtime::kLoadContextSlotNoReferenceError, 2);
1568        __ push(eax);
1569      } else {
1570        // This expression cannot throw a reference error at the top level.
1571        VisitForValue(expr->expression(), kStack);
1572      }
1573
1574      __ CallRuntime(Runtime::kTypeof, 1);
1575      Apply(context_, eax);
1576      break;
1577    }
1578
1579    case Token::ADD: {
1580      Comment cmt(masm_, "[ UnaryOperation (ADD)");
1581      VisitForValue(expr->expression(), kAccumulator);
1582      Label no_conversion;
1583      __ test(result_register(), Immediate(kSmiTagMask));
1584      __ j(zero, &no_conversion);
1585      __ push(result_register());
1586      __ InvokeBuiltin(Builtins::TO_NUMBER, CALL_FUNCTION);
1587      __ bind(&no_conversion);
1588      Apply(context_, result_register());
1589      break;
1590    }
1591
1592    case Token::SUB: {
1593      Comment cmt(masm_, "[ UnaryOperation (SUB)");
1594      bool overwrite =
1595          (expr->expression()->AsBinaryOperation() != NULL &&
1596           expr->expression()->AsBinaryOperation()->ResultOverwriteAllowed());
1597      GenericUnaryOpStub stub(Token::SUB, overwrite);
1598      // GenericUnaryOpStub expects the argument to be in the
1599      // accumulator register eax.
1600      VisitForValue(expr->expression(), kAccumulator);
1601      __ CallStub(&stub);
1602      Apply(context_, eax);
1603      break;
1604    }
1605
1606    case Token::BIT_NOT: {
1607      Comment cmt(masm_, "[ UnaryOperation (BIT_NOT)");
1608      bool overwrite =
1609          (expr->expression()->AsBinaryOperation() != NULL &&
1610           expr->expression()->AsBinaryOperation()->ResultOverwriteAllowed());
1611      GenericUnaryOpStub stub(Token::BIT_NOT, overwrite);
1612      // GenericUnaryOpStub expects the argument to be in the
1613      // accumulator register eax.
1614      VisitForValue(expr->expression(), kAccumulator);
1615      // Avoid calling the stub for Smis.
1616      Label smi, done;
1617      __ test(result_register(), Immediate(kSmiTagMask));
1618      __ j(zero, &smi);
1619      // Non-smi: call stub leaving result in accumulator register.
1620      __ CallStub(&stub);
1621      __ jmp(&done);
1622      // Perform operation directly on Smis.
1623      __ bind(&smi);
1624      __ not_(result_register());
1625      __ and_(result_register(), ~kSmiTagMask);  // Remove inverted smi-tag.
1626      __ bind(&done);
1627      Apply(context_, result_register());
1628      break;
1629    }
1630
1631    default:
1632      UNREACHABLE();
1633  }
1634}
1635
1636
1637void FullCodeGenerator::VisitCountOperation(CountOperation* expr) {
1638  Comment cmnt(masm_, "[ CountOperation");
1639
1640  // Expression can only be a property, a global or a (parameter or local)
1641  // slot. Variables with rewrite to .arguments are treated as KEYED_PROPERTY.
1642  enum LhsKind { VARIABLE, NAMED_PROPERTY, KEYED_PROPERTY };
1643  LhsKind assign_type = VARIABLE;
1644  Property* prop = expr->expression()->AsProperty();
1645  // In case of a property we use the uninitialized expression context
1646  // of the key to detect a named property.
1647  if (prop != NULL) {
1648    assign_type =
1649        (prop->key()->IsPropertyName()) ? NAMED_PROPERTY : KEYED_PROPERTY;
1650  }
1651
1652  // Evaluate expression and get value.
1653  if (assign_type == VARIABLE) {
1654    ASSERT(expr->expression()->AsVariableProxy()->var() != NULL);
1655    Location saved_location = location_;
1656    location_ = kAccumulator;
1657    EmitVariableLoad(expr->expression()->AsVariableProxy()->var(),
1658                     Expression::kValue);
1659    location_ = saved_location;
1660  } else  {
1661    // Reserve space for result of postfix operation.
1662    if (expr->is_postfix() && context_ != Expression::kEffect) {
1663      __ push(Immediate(Smi::FromInt(0)));
1664    }
1665    if (assign_type == NAMED_PROPERTY) {
1666      // Put the object both on the stack and in the accumulator.
1667      VisitForValue(prop->obj(), kAccumulator);
1668      __ push(eax);
1669      EmitNamedPropertyLoad(prop);
1670    } else {
1671      VisitForValue(prop->obj(), kStack);
1672      VisitForValue(prop->key(), kAccumulator);
1673      __ mov(edx, Operand(esp, 0));
1674      __ push(eax);
1675      EmitKeyedPropertyLoad(prop);
1676    }
1677  }
1678
1679  // Call ToNumber only if operand is not a smi.
1680  Label no_conversion;
1681  __ test(eax, Immediate(kSmiTagMask));
1682  __ j(zero, &no_conversion);
1683  __ push(eax);
1684  __ InvokeBuiltin(Builtins::TO_NUMBER, CALL_FUNCTION);
1685  __ bind(&no_conversion);
1686
1687  // Save result for postfix expressions.
1688  if (expr->is_postfix()) {
1689    switch (context_) {
1690      case Expression::kUninitialized:
1691        UNREACHABLE();
1692      case Expression::kEffect:
1693        // Do not save result.
1694        break;
1695      case Expression::kValue:
1696      case Expression::kTest:
1697      case Expression::kValueTest:
1698      case Expression::kTestValue:
1699        // Save the result on the stack. If we have a named or keyed property
1700        // we store the result under the receiver that is currently on top
1701        // of the stack.
1702        switch (assign_type) {
1703          case VARIABLE:
1704            __ push(eax);
1705            break;
1706          case NAMED_PROPERTY:
1707            __ mov(Operand(esp, kPointerSize), eax);
1708            break;
1709          case KEYED_PROPERTY:
1710            __ mov(Operand(esp, 2 * kPointerSize), eax);
1711            break;
1712        }
1713        break;
1714    }
1715  }
1716
1717  // Inline smi case if we are in a loop.
1718  Label stub_call, done;
1719  if (loop_depth() > 0) {
1720    if (expr->op() == Token::INC) {
1721      __ add(Operand(eax), Immediate(Smi::FromInt(1)));
1722    } else {
1723      __ sub(Operand(eax), Immediate(Smi::FromInt(1)));
1724    }
1725    __ j(overflow, &stub_call);
1726    // We could eliminate this smi check if we split the code at
1727    // the first smi check before calling ToNumber.
1728    __ test(eax, Immediate(kSmiTagMask));
1729    __ j(zero, &done);
1730    __ bind(&stub_call);
1731    // Call stub. Undo operation first.
1732    if (expr->op() == Token::INC) {
1733      __ sub(Operand(eax), Immediate(Smi::FromInt(1)));
1734    } else {
1735      __ add(Operand(eax), Immediate(Smi::FromInt(1)));
1736    }
1737  }
1738  // Call stub for +1/-1.
1739  GenericBinaryOpStub stub(expr->binary_op(),
1740                           NO_OVERWRITE,
1741                           NO_GENERIC_BINARY_FLAGS);
1742  stub.GenerateCall(masm(), eax, Smi::FromInt(1));
1743  __ bind(&done);
1744
1745  // Store the value returned in eax.
1746  switch (assign_type) {
1747    case VARIABLE:
1748      if (expr->is_postfix()) {
1749        EmitVariableAssignment(expr->expression()->AsVariableProxy()->var(),
1750                               Expression::kEffect);
1751        // For all contexts except kEffect: We have the result on
1752        // top of the stack.
1753        if (context_ != Expression::kEffect) {
1754          ApplyTOS(context_);
1755        }
1756      } else {
1757        EmitVariableAssignment(expr->expression()->AsVariableProxy()->var(),
1758                               context_);
1759      }
1760      break;
1761    case NAMED_PROPERTY: {
1762      __ mov(ecx, prop->key()->AsLiteral()->handle());
1763      __ pop(edx);
1764      Handle<Code> ic(Builtins::builtin(Builtins::StoreIC_Initialize));
1765      __ call(ic, RelocInfo::CODE_TARGET);
1766      // This nop signals to the IC that there is no inlined code at the call
1767      // site for it to patch.
1768      __ nop();
1769      if (expr->is_postfix()) {
1770        if (context_ != Expression::kEffect) {
1771          ApplyTOS(context_);
1772        }
1773      } else {
1774        Apply(context_, eax);
1775      }
1776      break;
1777    }
1778    case KEYED_PROPERTY: {
1779      Handle<Code> ic(Builtins::builtin(Builtins::KeyedStoreIC_Initialize));
1780      __ call(ic, RelocInfo::CODE_TARGET);
1781      // This nop signals to the IC that there is no inlined code at the call
1782      // site for it to patch.
1783      __ nop();
1784      if (expr->is_postfix()) {
1785        __ Drop(2);  // Result is on the stack under the key and the receiver.
1786        if (context_ != Expression::kEffect) {
1787          ApplyTOS(context_);
1788        }
1789      } else {
1790        DropAndApply(2, context_, eax);
1791      }
1792      break;
1793    }
1794  }
1795}
1796
1797
1798void FullCodeGenerator::VisitBinaryOperation(BinaryOperation* expr) {
1799  Comment cmnt(masm_, "[ BinaryOperation");
1800  switch (expr->op()) {
1801    case Token::COMMA:
1802      VisitForEffect(expr->left());
1803      Visit(expr->right());
1804      break;
1805
1806    case Token::OR:
1807    case Token::AND:
1808      EmitLogicalOperation(expr);
1809      break;
1810
1811    case Token::ADD:
1812    case Token::SUB:
1813    case Token::DIV:
1814    case Token::MOD:
1815    case Token::MUL:
1816    case Token::BIT_OR:
1817    case Token::BIT_AND:
1818    case Token::BIT_XOR:
1819    case Token::SHL:
1820    case Token::SHR:
1821    case Token::SAR:
1822      VisitForValue(expr->left(), kStack);
1823      VisitForValue(expr->right(), kAccumulator);
1824      EmitBinaryOp(expr->op(), context_);
1825      break;
1826
1827    default:
1828      UNREACHABLE();
1829  }
1830}
1831
1832
1833void FullCodeGenerator::VisitCompareOperation(CompareOperation* expr) {
1834  Comment cmnt(masm_, "[ CompareOperation");
1835
1836  // Always perform the comparison for its control flow.  Pack the result
1837  // into the expression's context after the comparison is performed.
1838  Label materialize_true, materialize_false, done;
1839  // Initially assume we are in a test context.
1840  Label* if_true = true_label_;
1841  Label* if_false = false_label_;
1842  switch (context_) {
1843    case Expression::kUninitialized:
1844      UNREACHABLE();
1845      break;
1846    case Expression::kEffect:
1847      if_true = &done;
1848      if_false = &done;
1849      break;
1850    case Expression::kValue:
1851      if_true = &materialize_true;
1852      if_false = &materialize_false;
1853      break;
1854    case Expression::kTest:
1855      break;
1856    case Expression::kValueTest:
1857      if_true = &materialize_true;
1858      break;
1859    case Expression::kTestValue:
1860      if_false = &materialize_false;
1861      break;
1862  }
1863
1864  VisitForValue(expr->left(), kStack);
1865  switch (expr->op()) {
1866    case Token::IN:
1867      VisitForValue(expr->right(), kStack);
1868      __ InvokeBuiltin(Builtins::IN, CALL_FUNCTION);
1869      __ cmp(eax, Factory::true_value());
1870      __ j(equal, if_true);
1871      __ jmp(if_false);
1872      break;
1873
1874    case Token::INSTANCEOF: {
1875      VisitForValue(expr->right(), kStack);
1876      InstanceofStub stub;
1877      __ CallStub(&stub);
1878      __ test(eax, Operand(eax));
1879      __ j(zero, if_true);  // The stub returns 0 for true.
1880      __ jmp(if_false);
1881      break;
1882    }
1883
1884    default: {
1885      VisitForValue(expr->right(), kAccumulator);
1886      Condition cc = no_condition;
1887      bool strict = false;
1888      switch (expr->op()) {
1889        case Token::EQ_STRICT:
1890          strict = true;
1891          // Fall through
1892        case Token::EQ:
1893          cc = equal;
1894          __ pop(edx);
1895          break;
1896        case Token::LT:
1897          cc = less;
1898          __ pop(edx);
1899          break;
1900        case Token::GT:
1901          // Reverse left and right sizes to obtain ECMA-262 conversion order.
1902          cc = less;
1903          __ mov(edx, result_register());
1904          __ pop(eax);
1905         break;
1906        case Token::LTE:
1907          // Reverse left and right sizes to obtain ECMA-262 conversion order.
1908          cc = greater_equal;
1909          __ mov(edx, result_register());
1910          __ pop(eax);
1911          break;
1912        case Token::GTE:
1913          cc = greater_equal;
1914          __ pop(edx);
1915          break;
1916        case Token::IN:
1917        case Token::INSTANCEOF:
1918        default:
1919          UNREACHABLE();
1920      }
1921
1922      // The comparison stub expects the smi vs. smi case to be handled
1923      // before it is called.
1924      Label slow_case;
1925      __ mov(ecx, Operand(edx));
1926      __ or_(ecx, Operand(eax));
1927      __ test(ecx, Immediate(kSmiTagMask));
1928      __ j(not_zero, &slow_case, not_taken);
1929      __ cmp(edx, Operand(eax));
1930      __ j(cc, if_true);
1931      __ jmp(if_false);
1932
1933      __ bind(&slow_case);
1934      CompareStub stub(cc, strict);
1935      __ CallStub(&stub);
1936      __ test(eax, Operand(eax));
1937      __ j(cc, if_true);
1938      __ jmp(if_false);
1939    }
1940  }
1941
1942  // Convert the result of the comparison into one expected for this
1943  // expression's context.
1944  Apply(context_, if_true, if_false);
1945}
1946
1947
1948void FullCodeGenerator::VisitThisFunction(ThisFunction* expr) {
1949  __ mov(eax, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
1950  Apply(context_, eax);
1951}
1952
1953
1954Register FullCodeGenerator::result_register() { return eax; }
1955
1956
1957Register FullCodeGenerator::context_register() { return esi; }
1958
1959
1960void FullCodeGenerator::StoreToFrameField(int frame_offset, Register value) {
1961  ASSERT_EQ(POINTER_SIZE_ALIGN(frame_offset), frame_offset);
1962  __ mov(Operand(ebp, frame_offset), value);
1963}
1964
1965
1966void FullCodeGenerator::LoadContextField(Register dst, int context_index) {
1967  __ mov(dst, CodeGenerator::ContextOperand(esi, context_index));
1968}
1969
1970
1971// ----------------------------------------------------------------------------
1972// Non-local control flow support.
1973
1974void FullCodeGenerator::EnterFinallyBlock() {
1975  // Cook return address on top of stack (smi encoded Code* delta)
1976  ASSERT(!result_register().is(edx));
1977  __ mov(edx, Operand(esp, 0));
1978  __ sub(Operand(edx), Immediate(masm_->CodeObject()));
1979  ASSERT_EQ(1, kSmiTagSize + kSmiShiftSize);
1980  ASSERT_EQ(0, kSmiTag);
1981  __ add(edx, Operand(edx));  // Convert to smi.
1982  __ mov(Operand(esp, 0), edx);
1983  // Store result register while executing finally block.
1984  __ push(result_register());
1985}
1986
1987
1988void FullCodeGenerator::ExitFinallyBlock() {
1989  ASSERT(!result_register().is(edx));
1990  // Restore result register from stack.
1991  __ pop(result_register());
1992  // Uncook return address.
1993  __ mov(edx, Operand(esp, 0));
1994  __ sar(edx, 1);  // Convert smi to int.
1995  __ add(Operand(edx), Immediate(masm_->CodeObject()));
1996  __ mov(Operand(esp, 0), edx);
1997  // And return.
1998  __ ret(0);
1999}
2000
2001
2002#undef __
2003
2004} }  // namespace v8::internal
2005