1// Copyright 2006-2008 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6//     * Redistributions of source code must retain the above copyright
7//       notice, this list of conditions and the following disclaimer.
8//     * Redistributions in binary form must reproduce the above
9//       copyright notice, this list of conditions and the following
10//       disclaimer in the documentation and/or other materials provided
11//       with the distribution.
12//     * Neither the name of Google Inc. nor the names of its
13//       contributors may be used to endorse or promote products derived
14//       from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#ifndef V8_JSREGEXP_H_
29#define V8_JSREGEXP_H_
30
31#include "macro-assembler.h"
32
33namespace v8 {
34namespace internal {
35
36
37class RegExpMacroAssembler;
38
39
40class RegExpImpl {
41 public:
42  // Whether V8 is compiled with native regexp support or not.
43  static bool UsesNativeRegExp() {
44#ifdef V8_NATIVE_REGEXP
45    return true;
46#else
47    return false;
48#endif
49  }
50
51  // Creates a regular expression literal in the old space.
52  // This function calls the garbage collector if necessary.
53  static Handle<Object> CreateRegExpLiteral(Handle<JSFunction> constructor,
54                                            Handle<String> pattern,
55                                            Handle<String> flags,
56                                            bool* has_pending_exception);
57
58  // Returns a string representation of a regular expression.
59  // Implements RegExp.prototype.toString, see ECMA-262 section 15.10.6.4.
60  // This function calls the garbage collector if necessary.
61  static Handle<String> ToString(Handle<Object> value);
62
63  // Parses the RegExp pattern and prepares the JSRegExp object with
64  // generic data and choice of implementation - as well as what
65  // the implementation wants to store in the data field.
66  // Returns false if compilation fails.
67  static Handle<Object> Compile(Handle<JSRegExp> re,
68                                Handle<String> pattern,
69                                Handle<String> flags);
70
71  // See ECMA-262 section 15.10.6.2.
72  // This function calls the garbage collector if necessary.
73  static Handle<Object> Exec(Handle<JSRegExp> regexp,
74                             Handle<String> subject,
75                             int index,
76                             Handle<JSArray> lastMatchInfo);
77
78  // Prepares a JSRegExp object with Irregexp-specific data.
79  static void IrregexpPrepare(Handle<JSRegExp> re,
80                              Handle<String> pattern,
81                              JSRegExp::Flags flags,
82                              int capture_register_count);
83
84
85  static void AtomCompile(Handle<JSRegExp> re,
86                          Handle<String> pattern,
87                          JSRegExp::Flags flags,
88                          Handle<String> match_pattern);
89
90  static Handle<Object> AtomExec(Handle<JSRegExp> regexp,
91                                 Handle<String> subject,
92                                 int index,
93                                 Handle<JSArray> lastMatchInfo);
94
95  // Execute an Irregexp bytecode pattern.
96  // On a successful match, the result is a JSArray containing
97  // captured positions. On a failure, the result is the null value.
98  // Returns an empty handle in case of an exception.
99  static Handle<Object> IrregexpExec(Handle<JSRegExp> regexp,
100                                     Handle<String> subject,
101                                     int index,
102                                     Handle<JSArray> lastMatchInfo);
103
104  // Array index in the lastMatchInfo array.
105  static const int kLastCaptureCount = 0;
106  static const int kLastSubject = 1;
107  static const int kLastInput = 2;
108  static const int kFirstCapture = 3;
109  static const int kLastMatchOverhead = 3;
110
111  // Direct offset into the lastMatchInfo array.
112  static const int kLastCaptureCountOffset =
113      FixedArray::kHeaderSize + kLastCaptureCount * kPointerSize;
114  static const int kLastSubjectOffset =
115      FixedArray::kHeaderSize + kLastSubject * kPointerSize;
116  static const int kLastInputOffset =
117      FixedArray::kHeaderSize + kLastInput * kPointerSize;
118  static const int kFirstCaptureOffset =
119      FixedArray::kHeaderSize + kFirstCapture * kPointerSize;
120
121  // Used to access the lastMatchInfo array.
122  static int GetCapture(FixedArray* array, int index) {
123    return Smi::cast(array->get(index + kFirstCapture))->value();
124  }
125
126  static void SetLastCaptureCount(FixedArray* array, int to) {
127    array->set(kLastCaptureCount, Smi::FromInt(to));
128  }
129
130  static void SetLastSubject(FixedArray* array, String* to) {
131    array->set(kLastSubject, to);
132  }
133
134  static void SetLastInput(FixedArray* array, String* to) {
135    array->set(kLastInput, to);
136  }
137
138  static void SetCapture(FixedArray* array, int index, int to) {
139    array->set(index + kFirstCapture, Smi::FromInt(to));
140  }
141
142  static int GetLastCaptureCount(FixedArray* array) {
143    return Smi::cast(array->get(kLastCaptureCount))->value();
144  }
145
146  // For acting on the JSRegExp data FixedArray.
147  static int IrregexpMaxRegisterCount(FixedArray* re);
148  static void SetIrregexpMaxRegisterCount(FixedArray* re, int value);
149  static int IrregexpNumberOfCaptures(FixedArray* re);
150  static int IrregexpNumberOfRegisters(FixedArray* re);
151  static ByteArray* IrregexpByteCode(FixedArray* re, bool is_ascii);
152  static Code* IrregexpNativeCode(FixedArray* re, bool is_ascii);
153
154 private:
155  static String* last_ascii_string_;
156  static String* two_byte_cached_string_;
157
158  static bool CompileIrregexp(Handle<JSRegExp> re, bool is_ascii);
159  static inline bool EnsureCompiledIrregexp(Handle<JSRegExp> re, bool is_ascii);
160
161
162  // Set the subject cache.  The previous string buffer is not deleted, so the
163  // caller should ensure that it doesn't leak.
164  static void SetSubjectCache(String* subject,
165                              char* utf8_subject,
166                              int uft8_length,
167                              int character_position,
168                              int utf8_position);
169
170  // A one element cache of the last utf8_subject string and its length.  The
171  // subject JS String object is cached in the heap.  We also cache a
172  // translation between position and utf8 position.
173  static char* utf8_subject_cache_;
174  static int utf8_length_cache_;
175  static int utf8_position_;
176  static int character_position_;
177};
178
179
180// Represents the location of one element relative to the intersection of
181// two sets. Corresponds to the four areas of a Venn diagram.
182enum ElementInSetsRelation {
183  kInsideNone = 0,
184  kInsideFirst = 1,
185  kInsideSecond = 2,
186  kInsideBoth = 3
187};
188
189
190// Represents the relation of two sets.
191// Sets can be either disjoint, partially or fully overlapping, or equal.
192class SetRelation BASE_EMBEDDED {
193 public:
194  // Relation is represented by a bit saying whether there are elements in
195  // one set that is not in the other, and a bit saying that there are elements
196  // that are in both sets.
197
198  // Location of an element. Corresponds to the internal areas of
199  // a Venn diagram.
200  enum {
201    kInFirst = 1 << kInsideFirst,
202    kInSecond = 1 << kInsideSecond,
203    kInBoth = 1 << kInsideBoth
204  };
205  SetRelation() : bits_(0) {}
206  ~SetRelation() {}
207  // Add the existence of objects in a particular
208  void SetElementsInFirstSet() { bits_ |= kInFirst; }
209  void SetElementsInSecondSet() { bits_ |= kInSecond; }
210  void SetElementsInBothSets() { bits_ |= kInBoth; }
211  // Check the currently known relation of the sets (common functions only,
212  // for other combinations, use value() to get the bits and check them
213  // manually).
214  // Sets are completely disjoint.
215  bool Disjoint() { return (bits_ & kInBoth) == 0; }
216  // Sets are equal.
217  bool Equals() { return (bits_ & (kInFirst | kInSecond)) == 0; }
218  // First set contains second.
219  bool Contains() { return (bits_ & kInSecond) == 0; }
220  // Second set contains first.
221  bool ContainedIn() { return (bits_ & kInFirst) == 0; }
222  bool NonTrivialIntersection() {
223    return (bits_ == (kInFirst | kInSecond | kInBoth));
224  }
225  int value() { return bits_; }
226 private:
227  int bits_;
228};
229
230
231class CharacterRange {
232 public:
233  CharacterRange() : from_(0), to_(0) { }
234  // For compatibility with the CHECK_OK macro
235  CharacterRange(void* null) { ASSERT_EQ(NULL, null); }  //NOLINT
236  CharacterRange(uc16 from, uc16 to) : from_(from), to_(to) { }
237  static void AddClassEscape(uc16 type, ZoneList<CharacterRange>* ranges);
238  static Vector<const uc16> GetWordBounds();
239  static inline CharacterRange Singleton(uc16 value) {
240    return CharacterRange(value, value);
241  }
242  static inline CharacterRange Range(uc16 from, uc16 to) {
243    ASSERT(from <= to);
244    return CharacterRange(from, to);
245  }
246  static inline CharacterRange Everything() {
247    return CharacterRange(0, 0xFFFF);
248  }
249  bool Contains(uc16 i) { return from_ <= i && i <= to_; }
250  uc16 from() const { return from_; }
251  void set_from(uc16 value) { from_ = value; }
252  uc16 to() const { return to_; }
253  void set_to(uc16 value) { to_ = value; }
254  bool is_valid() { return from_ <= to_; }
255  bool IsEverything(uc16 max) { return from_ == 0 && to_ >= max; }
256  bool IsSingleton() { return (from_ == to_); }
257  void AddCaseEquivalents(ZoneList<CharacterRange>* ranges, bool is_ascii);
258  static void Split(ZoneList<CharacterRange>* base,
259                    Vector<const uc16> overlay,
260                    ZoneList<CharacterRange>** included,
261                    ZoneList<CharacterRange>** excluded);
262  // Whether a range list is in canonical form: Ranges ordered by from value,
263  // and ranges non-overlapping and non-adjacent.
264  static bool IsCanonical(ZoneList<CharacterRange>* ranges);
265  // Convert range list to canonical form. The characters covered by the ranges
266  // will still be the same, but no character is in more than one range, and
267  // adjacent ranges are merged. The resulting list may be shorter than the
268  // original, but cannot be longer.
269  static void Canonicalize(ZoneList<CharacterRange>* ranges);
270  // Check how the set of characters defined by a CharacterRange list relates
271  // to the set of word characters. List must be in canonical form.
272  static SetRelation WordCharacterRelation(ZoneList<CharacterRange>* ranges);
273  // Takes two character range lists (representing character sets) in canonical
274  // form and merges them.
275  // The characters that are only covered by the first set are added to
276  // first_set_only_out. the characters that are only in the second set are
277  // added to second_set_only_out, and the characters that are in both are
278  // added to both_sets_out.
279  // The pointers to first_set_only_out, second_set_only_out and both_sets_out
280  // should be to empty lists, but they need not be distinct, and may be NULL.
281  // If NULL, the characters are dropped, and if two arguments are the same
282  // pointer, the result is the union of the two sets that would be created
283  // if the pointers had been distinct.
284  // This way, the Merge function can compute all the usual set operations:
285  // union (all three out-sets are equal), intersection (only both_sets_out is
286  // non-NULL), and set difference (only first_set is non-NULL).
287  static void Merge(ZoneList<CharacterRange>* first_set,
288                    ZoneList<CharacterRange>* second_set,
289                    ZoneList<CharacterRange>* first_set_only_out,
290                    ZoneList<CharacterRange>* second_set_only_out,
291                    ZoneList<CharacterRange>* both_sets_out);
292  // Negate the contents of a character range in canonical form.
293  static void Negate(ZoneList<CharacterRange>* src,
294                     ZoneList<CharacterRange>* dst);
295  static const int kRangeCanonicalizeMax = 0x346;
296  static const int kStartMarker = (1 << 24);
297  static const int kPayloadMask = (1 << 24) - 1;
298
299 private:
300  uc16 from_;
301  uc16 to_;
302};
303
304
305// A set of unsigned integers that behaves especially well on small
306// integers (< 32).  May do zone-allocation.
307class OutSet: public ZoneObject {
308 public:
309  OutSet() : first_(0), remaining_(NULL), successors_(NULL) { }
310  OutSet* Extend(unsigned value);
311  bool Get(unsigned value);
312  static const unsigned kFirstLimit = 32;
313
314 private:
315  // Destructively set a value in this set.  In most cases you want
316  // to use Extend instead to ensure that only one instance exists
317  // that contains the same values.
318  void Set(unsigned value);
319
320  // The successors are a list of sets that contain the same values
321  // as this set and the one more value that is not present in this
322  // set.
323  ZoneList<OutSet*>* successors() { return successors_; }
324
325  OutSet(uint32_t first, ZoneList<unsigned>* remaining)
326      : first_(first), remaining_(remaining), successors_(NULL) { }
327  uint32_t first_;
328  ZoneList<unsigned>* remaining_;
329  ZoneList<OutSet*>* successors_;
330  friend class Trace;
331};
332
333
334// A mapping from integers, specified as ranges, to a set of integers.
335// Used for mapping character ranges to choices.
336class DispatchTable : public ZoneObject {
337 public:
338  class Entry {
339   public:
340    Entry() : from_(0), to_(0), out_set_(NULL) { }
341    Entry(uc16 from, uc16 to, OutSet* out_set)
342        : from_(from), to_(to), out_set_(out_set) { }
343    uc16 from() { return from_; }
344    uc16 to() { return to_; }
345    void set_to(uc16 value) { to_ = value; }
346    void AddValue(int value) { out_set_ = out_set_->Extend(value); }
347    OutSet* out_set() { return out_set_; }
348   private:
349    uc16 from_;
350    uc16 to_;
351    OutSet* out_set_;
352  };
353
354  class Config {
355   public:
356    typedef uc16 Key;
357    typedef Entry Value;
358    static const uc16 kNoKey;
359    static const Entry kNoValue;
360    static inline int Compare(uc16 a, uc16 b) {
361      if (a == b)
362        return 0;
363      else if (a < b)
364        return -1;
365      else
366        return 1;
367    }
368  };
369
370  void AddRange(CharacterRange range, int value);
371  OutSet* Get(uc16 value);
372  void Dump();
373
374  template <typename Callback>
375  void ForEach(Callback* callback) { return tree()->ForEach(callback); }
376 private:
377  // There can't be a static empty set since it allocates its
378  // successors in a zone and caches them.
379  OutSet* empty() { return &empty_; }
380  OutSet empty_;
381  ZoneSplayTree<Config>* tree() { return &tree_; }
382  ZoneSplayTree<Config> tree_;
383};
384
385
386#define FOR_EACH_NODE_TYPE(VISIT)                                    \
387  VISIT(End)                                                         \
388  VISIT(Action)                                                      \
389  VISIT(Choice)                                                      \
390  VISIT(BackReference)                                               \
391  VISIT(Assertion)                                                   \
392  VISIT(Text)
393
394
395#define FOR_EACH_REG_EXP_TREE_TYPE(VISIT)                            \
396  VISIT(Disjunction)                                                 \
397  VISIT(Alternative)                                                 \
398  VISIT(Assertion)                                                   \
399  VISIT(CharacterClass)                                              \
400  VISIT(Atom)                                                        \
401  VISIT(Quantifier)                                                  \
402  VISIT(Capture)                                                     \
403  VISIT(Lookahead)                                                   \
404  VISIT(BackReference)                                               \
405  VISIT(Empty)                                                       \
406  VISIT(Text)
407
408
409#define FORWARD_DECLARE(Name) class RegExp##Name;
410FOR_EACH_REG_EXP_TREE_TYPE(FORWARD_DECLARE)
411#undef FORWARD_DECLARE
412
413
414class TextElement {
415 public:
416  enum Type {UNINITIALIZED, ATOM, CHAR_CLASS};
417  TextElement() : type(UNINITIALIZED) { }
418  explicit TextElement(Type t) : type(t), cp_offset(-1) { }
419  static TextElement Atom(RegExpAtom* atom);
420  static TextElement CharClass(RegExpCharacterClass* char_class);
421  int length();
422  Type type;
423  union {
424    RegExpAtom* u_atom;
425    RegExpCharacterClass* u_char_class;
426  } data;
427  int cp_offset;
428};
429
430
431class Trace;
432
433
434struct NodeInfo {
435  NodeInfo()
436      : being_analyzed(false),
437        been_analyzed(false),
438        follows_word_interest(false),
439        follows_newline_interest(false),
440        follows_start_interest(false),
441        at_end(false),
442        visited(false) { }
443
444  // Returns true if the interests and assumptions of this node
445  // matches the given one.
446  bool Matches(NodeInfo* that) {
447    return (at_end == that->at_end) &&
448           (follows_word_interest == that->follows_word_interest) &&
449           (follows_newline_interest == that->follows_newline_interest) &&
450           (follows_start_interest == that->follows_start_interest);
451  }
452
453  // Updates the interests of this node given the interests of the
454  // node preceding it.
455  void AddFromPreceding(NodeInfo* that) {
456    at_end |= that->at_end;
457    follows_word_interest |= that->follows_word_interest;
458    follows_newline_interest |= that->follows_newline_interest;
459    follows_start_interest |= that->follows_start_interest;
460  }
461
462  bool HasLookbehind() {
463    return follows_word_interest ||
464           follows_newline_interest ||
465           follows_start_interest;
466  }
467
468  // Sets the interests of this node to include the interests of the
469  // following node.
470  void AddFromFollowing(NodeInfo* that) {
471    follows_word_interest |= that->follows_word_interest;
472    follows_newline_interest |= that->follows_newline_interest;
473    follows_start_interest |= that->follows_start_interest;
474  }
475
476  void ResetCompilationState() {
477    being_analyzed = false;
478    been_analyzed = false;
479  }
480
481  bool being_analyzed: 1;
482  bool been_analyzed: 1;
483
484  // These bits are set of this node has to know what the preceding
485  // character was.
486  bool follows_word_interest: 1;
487  bool follows_newline_interest: 1;
488  bool follows_start_interest: 1;
489
490  bool at_end: 1;
491  bool visited: 1;
492};
493
494
495class SiblingList {
496 public:
497  SiblingList() : list_(NULL) { }
498  int length() {
499    return list_ == NULL ? 0 : list_->length();
500  }
501  void Ensure(RegExpNode* parent) {
502    if (list_ == NULL) {
503      list_ = new ZoneList<RegExpNode*>(2);
504      list_->Add(parent);
505    }
506  }
507  void Add(RegExpNode* node) { list_->Add(node); }
508  RegExpNode* Get(int index) { return list_->at(index); }
509 private:
510  ZoneList<RegExpNode*>* list_;
511};
512
513
514// Details of a quick mask-compare check that can look ahead in the
515// input stream.
516class QuickCheckDetails {
517 public:
518  QuickCheckDetails()
519      : characters_(0),
520        mask_(0),
521        value_(0),
522        cannot_match_(false) { }
523  explicit QuickCheckDetails(int characters)
524      : characters_(characters),
525        mask_(0),
526        value_(0),
527        cannot_match_(false) { }
528  bool Rationalize(bool ascii);
529  // Merge in the information from another branch of an alternation.
530  void Merge(QuickCheckDetails* other, int from_index);
531  // Advance the current position by some amount.
532  void Advance(int by, bool ascii);
533  void Clear();
534  bool cannot_match() { return cannot_match_; }
535  void set_cannot_match() { cannot_match_ = true; }
536  struct Position {
537    Position() : mask(0), value(0), determines_perfectly(false) { }
538    uc16 mask;
539    uc16 value;
540    bool determines_perfectly;
541  };
542  int characters() { return characters_; }
543  void set_characters(int characters) { characters_ = characters; }
544  Position* positions(int index) {
545    ASSERT(index >= 0);
546    ASSERT(index < characters_);
547    return positions_ + index;
548  }
549  uint32_t mask() { return mask_; }
550  uint32_t value() { return value_; }
551
552 private:
553  // How many characters do we have quick check information from.  This is
554  // the same for all branches of a choice node.
555  int characters_;
556  Position positions_[4];
557  // These values are the condensate of the above array after Rationalize().
558  uint32_t mask_;
559  uint32_t value_;
560  // If set to true, there is no way this quick check can match at all.
561  // E.g., if it requires to be at the start of the input, and isn't.
562  bool cannot_match_;
563};
564
565
566class RegExpNode: public ZoneObject {
567 public:
568  RegExpNode() : first_character_set_(NULL), trace_count_(0) { }
569  virtual ~RegExpNode();
570  virtual void Accept(NodeVisitor* visitor) = 0;
571  // Generates a goto to this node or actually generates the code at this point.
572  virtual void Emit(RegExpCompiler* compiler, Trace* trace) = 0;
573  // How many characters must this node consume at a minimum in order to
574  // succeed.  If we have found at least 'still_to_find' characters that
575  // must be consumed there is no need to ask any following nodes whether
576  // they are sure to eat any more characters.
577  virtual int EatsAtLeast(int still_to_find, int recursion_depth) = 0;
578  // Emits some quick code that checks whether the preloaded characters match.
579  // Falls through on certain failure, jumps to the label on possible success.
580  // If the node cannot make a quick check it does nothing and returns false.
581  bool EmitQuickCheck(RegExpCompiler* compiler,
582                      Trace* trace,
583                      bool preload_has_checked_bounds,
584                      Label* on_possible_success,
585                      QuickCheckDetails* details_return,
586                      bool fall_through_on_failure);
587  // For a given number of characters this returns a mask and a value.  The
588  // next n characters are anded with the mask and compared with the value.
589  // A comparison failure indicates the node cannot match the next n characters.
590  // A comparison success indicates the node may match.
591  virtual void GetQuickCheckDetails(QuickCheckDetails* details,
592                                    RegExpCompiler* compiler,
593                                    int characters_filled_in,
594                                    bool not_at_start) = 0;
595  static const int kNodeIsTooComplexForGreedyLoops = -1;
596  virtual int GreedyLoopTextLength() { return kNodeIsTooComplexForGreedyLoops; }
597  Label* label() { return &label_; }
598  // If non-generic code is generated for a node (ie the node is not at the
599  // start of the trace) then it cannot be reused.  This variable sets a limit
600  // on how often we allow that to happen before we insist on starting a new
601  // trace and generating generic code for a node that can be reused by flushing
602  // the deferred actions in the current trace and generating a goto.
603  static const int kMaxCopiesCodeGenerated = 10;
604
605  NodeInfo* info() { return &info_; }
606
607  void AddSibling(RegExpNode* node) { siblings_.Add(node); }
608
609  // Static version of EnsureSibling that expresses the fact that the
610  // result has the same type as the input.
611  template <class C>
612  static C* EnsureSibling(C* node, NodeInfo* info, bool* cloned) {
613    return static_cast<C*>(node->EnsureSibling(info, cloned));
614  }
615
616  SiblingList* siblings() { return &siblings_; }
617  void set_siblings(SiblingList* other) { siblings_ = *other; }
618
619  // Return the set of possible next characters recognized by the regexp
620  // (or a safe subset, potentially the set of all characters).
621  ZoneList<CharacterRange>* FirstCharacterSet();
622
623  // Compute (if possible within the budget of traversed nodes) the
624  // possible first characters of the input matched by this node and
625  // its continuation. Returns the remaining budget after the computation.
626  // If the budget is spent, the result is negative, and the cached
627  // first_character_set_ value isn't set.
628  virtual int ComputeFirstCharacterSet(int budget);
629
630  // Get and set the cached first character set value.
631  ZoneList<CharacterRange>* first_character_set() {
632    return first_character_set_;
633  }
634  void set_first_character_set(ZoneList<CharacterRange>* character_set) {
635    first_character_set_ = character_set;
636  }
637
638 protected:
639  enum LimitResult { DONE, CONTINUE };
640  static const int kComputeFirstCharacterSetFail = -1;
641
642  LimitResult LimitVersions(RegExpCompiler* compiler, Trace* trace);
643
644  // Returns a sibling of this node whose interests and assumptions
645  // match the ones in the given node info.  If no sibling exists NULL
646  // is returned.
647  RegExpNode* TryGetSibling(NodeInfo* info);
648
649  // Returns a sibling of this node whose interests match the ones in
650  // the given node info.  The info must not contain any assertions.
651  // If no node exists a new one will be created by cloning the current
652  // node.  The result will always be an instance of the same concrete
653  // class as this node.
654  RegExpNode* EnsureSibling(NodeInfo* info, bool* cloned);
655
656  // Returns a clone of this node initialized using the copy constructor
657  // of its concrete class.  Note that the node may have to be pre-
658  // processed before it is on a usable state.
659  virtual RegExpNode* Clone() = 0;
660
661 private:
662  static const int kFirstCharBudget = 10;
663  Label label_;
664  NodeInfo info_;
665  SiblingList siblings_;
666  ZoneList<CharacterRange>* first_character_set_;
667  // This variable keeps track of how many times code has been generated for
668  // this node (in different traces).  We don't keep track of where the
669  // generated code is located unless the code is generated at the start of
670  // a trace, in which case it is generic and can be reused by flushing the
671  // deferred operations in the current trace and generating a goto.
672  int trace_count_;
673};
674
675
676// A simple closed interval.
677class Interval {
678 public:
679  Interval() : from_(kNone), to_(kNone) { }
680  Interval(int from, int to) : from_(from), to_(to) { }
681  Interval Union(Interval that) {
682    if (that.from_ == kNone)
683      return *this;
684    else if (from_ == kNone)
685      return that;
686    else
687      return Interval(Min(from_, that.from_), Max(to_, that.to_));
688  }
689  bool Contains(int value) {
690    return (from_ <= value) && (value <= to_);
691  }
692  bool is_empty() { return from_ == kNone; }
693  int from() { return from_; }
694  int to() { return to_; }
695  static Interval Empty() { return Interval(); }
696  static const int kNone = -1;
697 private:
698  int from_;
699  int to_;
700};
701
702
703class SeqRegExpNode: public RegExpNode {
704 public:
705  explicit SeqRegExpNode(RegExpNode* on_success)
706      : on_success_(on_success) { }
707  RegExpNode* on_success() { return on_success_; }
708  void set_on_success(RegExpNode* node) { on_success_ = node; }
709 private:
710  RegExpNode* on_success_;
711};
712
713
714class ActionNode: public SeqRegExpNode {
715 public:
716  enum Type {
717    SET_REGISTER,
718    INCREMENT_REGISTER,
719    STORE_POSITION,
720    BEGIN_SUBMATCH,
721    POSITIVE_SUBMATCH_SUCCESS,
722    EMPTY_MATCH_CHECK,
723    CLEAR_CAPTURES
724  };
725  static ActionNode* SetRegister(int reg, int val, RegExpNode* on_success);
726  static ActionNode* IncrementRegister(int reg, RegExpNode* on_success);
727  static ActionNode* StorePosition(int reg,
728                                   bool is_capture,
729                                   RegExpNode* on_success);
730  static ActionNode* ClearCaptures(Interval range, RegExpNode* on_success);
731  static ActionNode* BeginSubmatch(int stack_pointer_reg,
732                                   int position_reg,
733                                   RegExpNode* on_success);
734  static ActionNode* PositiveSubmatchSuccess(int stack_pointer_reg,
735                                             int restore_reg,
736                                             int clear_capture_count,
737                                             int clear_capture_from,
738                                             RegExpNode* on_success);
739  static ActionNode* EmptyMatchCheck(int start_register,
740                                     int repetition_register,
741                                     int repetition_limit,
742                                     RegExpNode* on_success);
743  virtual void Accept(NodeVisitor* visitor);
744  virtual void Emit(RegExpCompiler* compiler, Trace* trace);
745  virtual int EatsAtLeast(int still_to_find, int recursion_depth);
746  virtual void GetQuickCheckDetails(QuickCheckDetails* details,
747                                    RegExpCompiler* compiler,
748                                    int filled_in,
749                                    bool not_at_start) {
750    return on_success()->GetQuickCheckDetails(
751        details, compiler, filled_in, not_at_start);
752  }
753  Type type() { return type_; }
754  // TODO(erikcorry): We should allow some action nodes in greedy loops.
755  virtual int GreedyLoopTextLength() { return kNodeIsTooComplexForGreedyLoops; }
756  virtual ActionNode* Clone() { return new ActionNode(*this); }
757  virtual int ComputeFirstCharacterSet(int budget);
758 private:
759  union {
760    struct {
761      int reg;
762      int value;
763    } u_store_register;
764    struct {
765      int reg;
766    } u_increment_register;
767    struct {
768      int reg;
769      bool is_capture;
770    } u_position_register;
771    struct {
772      int stack_pointer_register;
773      int current_position_register;
774      int clear_register_count;
775      int clear_register_from;
776    } u_submatch;
777    struct {
778      int start_register;
779      int repetition_register;
780      int repetition_limit;
781    } u_empty_match_check;
782    struct {
783      int range_from;
784      int range_to;
785    } u_clear_captures;
786  } data_;
787  ActionNode(Type type, RegExpNode* on_success)
788      : SeqRegExpNode(on_success),
789        type_(type) { }
790  Type type_;
791  friend class DotPrinter;
792};
793
794
795class TextNode: public SeqRegExpNode {
796 public:
797  TextNode(ZoneList<TextElement>* elms,
798           RegExpNode* on_success)
799      : SeqRegExpNode(on_success),
800        elms_(elms) { }
801  TextNode(RegExpCharacterClass* that,
802           RegExpNode* on_success)
803      : SeqRegExpNode(on_success),
804        elms_(new ZoneList<TextElement>(1)) {
805    elms_->Add(TextElement::CharClass(that));
806  }
807  virtual void Accept(NodeVisitor* visitor);
808  virtual void Emit(RegExpCompiler* compiler, Trace* trace);
809  virtual int EatsAtLeast(int still_to_find, int recursion_depth);
810  virtual void GetQuickCheckDetails(QuickCheckDetails* details,
811                                    RegExpCompiler* compiler,
812                                    int characters_filled_in,
813                                    bool not_at_start);
814  ZoneList<TextElement>* elements() { return elms_; }
815  void MakeCaseIndependent(bool is_ascii);
816  virtual int GreedyLoopTextLength();
817  virtual TextNode* Clone() {
818    TextNode* result = new TextNode(*this);
819    result->CalculateOffsets();
820    return result;
821  }
822  void CalculateOffsets();
823  virtual int ComputeFirstCharacterSet(int budget);
824 private:
825  enum TextEmitPassType {
826    NON_ASCII_MATCH,             // Check for characters that can't match.
827    SIMPLE_CHARACTER_MATCH,      // Case-dependent single character check.
828    NON_LETTER_CHARACTER_MATCH,  // Check characters that have no case equivs.
829    CASE_CHARACTER_MATCH,        // Case-independent single character check.
830    CHARACTER_CLASS_MATCH        // Character class.
831  };
832  static bool SkipPass(int pass, bool ignore_case);
833  static const int kFirstRealPass = SIMPLE_CHARACTER_MATCH;
834  static const int kLastPass = CHARACTER_CLASS_MATCH;
835  void TextEmitPass(RegExpCompiler* compiler,
836                    TextEmitPassType pass,
837                    bool preloaded,
838                    Trace* trace,
839                    bool first_element_checked,
840                    int* checked_up_to);
841  int Length();
842  ZoneList<TextElement>* elms_;
843};
844
845
846class AssertionNode: public SeqRegExpNode {
847 public:
848  enum AssertionNodeType {
849    AT_END,
850    AT_START,
851    AT_BOUNDARY,
852    AT_NON_BOUNDARY,
853    AFTER_NEWLINE,
854    // Types not directly expressible in regexp syntax.
855    // Used for modifying a boundary node if its following character is
856    // known to be word and/or non-word.
857    AFTER_NONWORD_CHARACTER,
858    AFTER_WORD_CHARACTER
859  };
860  static AssertionNode* AtEnd(RegExpNode* on_success) {
861    return new AssertionNode(AT_END, on_success);
862  }
863  static AssertionNode* AtStart(RegExpNode* on_success) {
864    return new AssertionNode(AT_START, on_success);
865  }
866  static AssertionNode* AtBoundary(RegExpNode* on_success) {
867    return new AssertionNode(AT_BOUNDARY, on_success);
868  }
869  static AssertionNode* AtNonBoundary(RegExpNode* on_success) {
870    return new AssertionNode(AT_NON_BOUNDARY, on_success);
871  }
872  static AssertionNode* AfterNewline(RegExpNode* on_success) {
873    return new AssertionNode(AFTER_NEWLINE, on_success);
874  }
875  virtual void Accept(NodeVisitor* visitor);
876  virtual void Emit(RegExpCompiler* compiler, Trace* trace);
877  virtual int EatsAtLeast(int still_to_find, int recursion_depth);
878  virtual void GetQuickCheckDetails(QuickCheckDetails* details,
879                                    RegExpCompiler* compiler,
880                                    int filled_in,
881                                    bool not_at_start);
882  virtual int ComputeFirstCharacterSet(int budget);
883  virtual AssertionNode* Clone() { return new AssertionNode(*this); }
884  AssertionNodeType type() { return type_; }
885  void set_type(AssertionNodeType type) { type_ = type; }
886 private:
887  AssertionNode(AssertionNodeType t, RegExpNode* on_success)
888      : SeqRegExpNode(on_success), type_(t) { }
889  AssertionNodeType type_;
890};
891
892
893class BackReferenceNode: public SeqRegExpNode {
894 public:
895  BackReferenceNode(int start_reg,
896                    int end_reg,
897                    RegExpNode* on_success)
898      : SeqRegExpNode(on_success),
899        start_reg_(start_reg),
900        end_reg_(end_reg) { }
901  virtual void Accept(NodeVisitor* visitor);
902  int start_register() { return start_reg_; }
903  int end_register() { return end_reg_; }
904  virtual void Emit(RegExpCompiler* compiler, Trace* trace);
905  virtual int EatsAtLeast(int still_to_find, int recursion_depth);
906  virtual void GetQuickCheckDetails(QuickCheckDetails* details,
907                                    RegExpCompiler* compiler,
908                                    int characters_filled_in,
909                                    bool not_at_start) {
910    return;
911  }
912  virtual BackReferenceNode* Clone() { return new BackReferenceNode(*this); }
913  virtual int ComputeFirstCharacterSet(int budget);
914 private:
915  int start_reg_;
916  int end_reg_;
917};
918
919
920class EndNode: public RegExpNode {
921 public:
922  enum Action { ACCEPT, BACKTRACK, NEGATIVE_SUBMATCH_SUCCESS };
923  explicit EndNode(Action action) : action_(action) { }
924  virtual void Accept(NodeVisitor* visitor);
925  virtual void Emit(RegExpCompiler* compiler, Trace* trace);
926  virtual int EatsAtLeast(int still_to_find, int recursion_depth) { return 0; }
927  virtual void GetQuickCheckDetails(QuickCheckDetails* details,
928                                    RegExpCompiler* compiler,
929                                    int characters_filled_in,
930                                    bool not_at_start) {
931    // Returning 0 from EatsAtLeast should ensure we never get here.
932    UNREACHABLE();
933  }
934  virtual EndNode* Clone() { return new EndNode(*this); }
935 private:
936  Action action_;
937};
938
939
940class NegativeSubmatchSuccess: public EndNode {
941 public:
942  NegativeSubmatchSuccess(int stack_pointer_reg,
943                          int position_reg,
944                          int clear_capture_count,
945                          int clear_capture_start)
946      : EndNode(NEGATIVE_SUBMATCH_SUCCESS),
947        stack_pointer_register_(stack_pointer_reg),
948        current_position_register_(position_reg),
949        clear_capture_count_(clear_capture_count),
950        clear_capture_start_(clear_capture_start) { }
951  virtual void Emit(RegExpCompiler* compiler, Trace* trace);
952
953 private:
954  int stack_pointer_register_;
955  int current_position_register_;
956  int clear_capture_count_;
957  int clear_capture_start_;
958};
959
960
961class Guard: public ZoneObject {
962 public:
963  enum Relation { LT, GEQ };
964  Guard(int reg, Relation op, int value)
965      : reg_(reg),
966        op_(op),
967        value_(value) { }
968  int reg() { return reg_; }
969  Relation op() { return op_; }
970  int value() { return value_; }
971
972 private:
973  int reg_;
974  Relation op_;
975  int value_;
976};
977
978
979class GuardedAlternative {
980 public:
981  explicit GuardedAlternative(RegExpNode* node) : node_(node), guards_(NULL) { }
982  void AddGuard(Guard* guard);
983  RegExpNode* node() { return node_; }
984  void set_node(RegExpNode* node) { node_ = node; }
985  ZoneList<Guard*>* guards() { return guards_; }
986
987 private:
988  RegExpNode* node_;
989  ZoneList<Guard*>* guards_;
990};
991
992
993class AlternativeGeneration;
994
995
996class ChoiceNode: public RegExpNode {
997 public:
998  explicit ChoiceNode(int expected_size)
999      : alternatives_(new ZoneList<GuardedAlternative>(expected_size)),
1000        table_(NULL),
1001        not_at_start_(false),
1002        being_calculated_(false) { }
1003  virtual void Accept(NodeVisitor* visitor);
1004  void AddAlternative(GuardedAlternative node) { alternatives()->Add(node); }
1005  ZoneList<GuardedAlternative>* alternatives() { return alternatives_; }
1006  DispatchTable* GetTable(bool ignore_case);
1007  virtual void Emit(RegExpCompiler* compiler, Trace* trace);
1008  virtual int EatsAtLeast(int still_to_find, int recursion_depth);
1009  int EatsAtLeastHelper(int still_to_find,
1010                        int recursion_depth,
1011                        RegExpNode* ignore_this_node);
1012  virtual void GetQuickCheckDetails(QuickCheckDetails* details,
1013                                    RegExpCompiler* compiler,
1014                                    int characters_filled_in,
1015                                    bool not_at_start);
1016  virtual ChoiceNode* Clone() { return new ChoiceNode(*this); }
1017
1018  bool being_calculated() { return being_calculated_; }
1019  bool not_at_start() { return not_at_start_; }
1020  void set_not_at_start() { not_at_start_ = true; }
1021  void set_being_calculated(bool b) { being_calculated_ = b; }
1022  virtual bool try_to_emit_quick_check_for_alternative(int i) { return true; }
1023
1024 protected:
1025  int GreedyLoopTextLength(GuardedAlternative* alternative);
1026  ZoneList<GuardedAlternative>* alternatives_;
1027
1028 private:
1029  friend class DispatchTableConstructor;
1030  friend class Analysis;
1031  void GenerateGuard(RegExpMacroAssembler* macro_assembler,
1032                     Guard* guard,
1033                     Trace* trace);
1034  int CalculatePreloadCharacters(RegExpCompiler* compiler);
1035  void EmitOutOfLineContinuation(RegExpCompiler* compiler,
1036                                 Trace* trace,
1037                                 GuardedAlternative alternative,
1038                                 AlternativeGeneration* alt_gen,
1039                                 int preload_characters,
1040                                 bool next_expects_preload);
1041  DispatchTable* table_;
1042  // If true, this node is never checked at the start of the input.
1043  // Allows a new trace to start with at_start() set to false.
1044  bool not_at_start_;
1045  bool being_calculated_;
1046};
1047
1048
1049class NegativeLookaheadChoiceNode: public ChoiceNode {
1050 public:
1051  explicit NegativeLookaheadChoiceNode(GuardedAlternative this_must_fail,
1052                                       GuardedAlternative then_do_this)
1053      : ChoiceNode(2) {
1054    AddAlternative(this_must_fail);
1055    AddAlternative(then_do_this);
1056  }
1057  virtual int EatsAtLeast(int still_to_find, int recursion_depth);
1058  virtual void GetQuickCheckDetails(QuickCheckDetails* details,
1059                                    RegExpCompiler* compiler,
1060                                    int characters_filled_in,
1061                                    bool not_at_start);
1062  // For a negative lookahead we don't emit the quick check for the
1063  // alternative that is expected to fail.  This is because quick check code
1064  // starts by loading enough characters for the alternative that takes fewest
1065  // characters, but on a negative lookahead the negative branch did not take
1066  // part in that calculation (EatsAtLeast) so the assumptions don't hold.
1067  virtual bool try_to_emit_quick_check_for_alternative(int i) { return i != 0; }
1068  virtual int ComputeFirstCharacterSet(int budget);
1069};
1070
1071
1072class LoopChoiceNode: public ChoiceNode {
1073 public:
1074  explicit LoopChoiceNode(bool body_can_be_zero_length)
1075      : ChoiceNode(2),
1076        loop_node_(NULL),
1077        continue_node_(NULL),
1078        body_can_be_zero_length_(body_can_be_zero_length) { }
1079  void AddLoopAlternative(GuardedAlternative alt);
1080  void AddContinueAlternative(GuardedAlternative alt);
1081  virtual void Emit(RegExpCompiler* compiler, Trace* trace);
1082  virtual int EatsAtLeast(int still_to_find, int recursion_depth);
1083  virtual void GetQuickCheckDetails(QuickCheckDetails* details,
1084                                    RegExpCompiler* compiler,
1085                                    int characters_filled_in,
1086                                    bool not_at_start);
1087  virtual int ComputeFirstCharacterSet(int budget);
1088  virtual LoopChoiceNode* Clone() { return new LoopChoiceNode(*this); }
1089  RegExpNode* loop_node() { return loop_node_; }
1090  RegExpNode* continue_node() { return continue_node_; }
1091  bool body_can_be_zero_length() { return body_can_be_zero_length_; }
1092  virtual void Accept(NodeVisitor* visitor);
1093
1094 private:
1095  // AddAlternative is made private for loop nodes because alternatives
1096  // should not be added freely, we need to keep track of which node
1097  // goes back to the node itself.
1098  void AddAlternative(GuardedAlternative node) {
1099    ChoiceNode::AddAlternative(node);
1100  }
1101
1102  RegExpNode* loop_node_;
1103  RegExpNode* continue_node_;
1104  bool body_can_be_zero_length_;
1105};
1106
1107
1108// There are many ways to generate code for a node.  This class encapsulates
1109// the current way we should be generating.  In other words it encapsulates
1110// the current state of the code generator.  The effect of this is that we
1111// generate code for paths that the matcher can take through the regular
1112// expression.  A given node in the regexp can be code-generated several times
1113// as it can be part of several traces.  For example for the regexp:
1114// /foo(bar|ip)baz/ the code to match baz will be generated twice, once as part
1115// of the foo-bar-baz trace and once as part of the foo-ip-baz trace.  The code
1116// to match foo is generated only once (the traces have a common prefix).  The
1117// code to store the capture is deferred and generated (twice) after the places
1118// where baz has been matched.
1119class Trace {
1120 public:
1121  // A value for a property that is either known to be true, know to be false,
1122  // or not known.
1123  enum TriBool {
1124    UNKNOWN = -1, FALSE = 0, TRUE = 1
1125  };
1126
1127  class DeferredAction {
1128   public:
1129    DeferredAction(ActionNode::Type type, int reg)
1130        : type_(type), reg_(reg), next_(NULL) { }
1131    DeferredAction* next() { return next_; }
1132    bool Mentions(int reg);
1133    int reg() { return reg_; }
1134    ActionNode::Type type() { return type_; }
1135   private:
1136    ActionNode::Type type_;
1137    int reg_;
1138    DeferredAction* next_;
1139    friend class Trace;
1140  };
1141
1142  class DeferredCapture : public DeferredAction {
1143   public:
1144    DeferredCapture(int reg, bool is_capture, Trace* trace)
1145        : DeferredAction(ActionNode::STORE_POSITION, reg),
1146          cp_offset_(trace->cp_offset()),
1147          is_capture_(is_capture) { }
1148    int cp_offset() { return cp_offset_; }
1149    bool is_capture() { return is_capture_; }
1150   private:
1151    int cp_offset_;
1152    bool is_capture_;
1153    void set_cp_offset(int cp_offset) { cp_offset_ = cp_offset; }
1154  };
1155
1156  class DeferredSetRegister : public DeferredAction {
1157   public:
1158    DeferredSetRegister(int reg, int value)
1159        : DeferredAction(ActionNode::SET_REGISTER, reg),
1160          value_(value) { }
1161    int value() { return value_; }
1162   private:
1163    int value_;
1164  };
1165
1166  class DeferredClearCaptures : public DeferredAction {
1167   public:
1168    explicit DeferredClearCaptures(Interval range)
1169        : DeferredAction(ActionNode::CLEAR_CAPTURES, -1),
1170          range_(range) { }
1171    Interval range() { return range_; }
1172   private:
1173    Interval range_;
1174  };
1175
1176  class DeferredIncrementRegister : public DeferredAction {
1177   public:
1178    explicit DeferredIncrementRegister(int reg)
1179        : DeferredAction(ActionNode::INCREMENT_REGISTER, reg) { }
1180  };
1181
1182  Trace()
1183      : cp_offset_(0),
1184        actions_(NULL),
1185        backtrack_(NULL),
1186        stop_node_(NULL),
1187        loop_label_(NULL),
1188        characters_preloaded_(0),
1189        bound_checked_up_to_(0),
1190        flush_budget_(100),
1191        at_start_(UNKNOWN) { }
1192
1193  // End the trace.  This involves flushing the deferred actions in the trace
1194  // and pushing a backtrack location onto the backtrack stack.  Once this is
1195  // done we can start a new trace or go to one that has already been
1196  // generated.
1197  void Flush(RegExpCompiler* compiler, RegExpNode* successor);
1198  int cp_offset() { return cp_offset_; }
1199  DeferredAction* actions() { return actions_; }
1200  // A trivial trace is one that has no deferred actions or other state that
1201  // affects the assumptions used when generating code.  There is no recorded
1202  // backtrack location in a trivial trace, so with a trivial trace we will
1203  // generate code that, on a failure to match, gets the backtrack location
1204  // from the backtrack stack rather than using a direct jump instruction.  We
1205  // always start code generation with a trivial trace and non-trivial traces
1206  // are created as we emit code for nodes or add to the list of deferred
1207  // actions in the trace.  The location of the code generated for a node using
1208  // a trivial trace is recorded in a label in the node so that gotos can be
1209  // generated to that code.
1210  bool is_trivial() {
1211    return backtrack_ == NULL &&
1212           actions_ == NULL &&
1213           cp_offset_ == 0 &&
1214           characters_preloaded_ == 0 &&
1215           bound_checked_up_to_ == 0 &&
1216           quick_check_performed_.characters() == 0 &&
1217           at_start_ == UNKNOWN;
1218  }
1219  TriBool at_start() { return at_start_; }
1220  void set_at_start(bool at_start) { at_start_ = at_start ? TRUE : FALSE; }
1221  Label* backtrack() { return backtrack_; }
1222  Label* loop_label() { return loop_label_; }
1223  RegExpNode* stop_node() { return stop_node_; }
1224  int characters_preloaded() { return characters_preloaded_; }
1225  int bound_checked_up_to() { return bound_checked_up_to_; }
1226  int flush_budget() { return flush_budget_; }
1227  QuickCheckDetails* quick_check_performed() { return &quick_check_performed_; }
1228  bool mentions_reg(int reg);
1229  // Returns true if a deferred position store exists to the specified
1230  // register and stores the offset in the out-parameter.  Otherwise
1231  // returns false.
1232  bool GetStoredPosition(int reg, int* cp_offset);
1233  // These set methods and AdvanceCurrentPositionInTrace should be used only on
1234  // new traces - the intention is that traces are immutable after creation.
1235  void add_action(DeferredAction* new_action) {
1236    ASSERT(new_action->next_ == NULL);
1237    new_action->next_ = actions_;
1238    actions_ = new_action;
1239  }
1240  void set_backtrack(Label* backtrack) { backtrack_ = backtrack; }
1241  void set_stop_node(RegExpNode* node) { stop_node_ = node; }
1242  void set_loop_label(Label* label) { loop_label_ = label; }
1243  void set_characters_preloaded(int count) { characters_preloaded_ = count; }
1244  void set_bound_checked_up_to(int to) { bound_checked_up_to_ = to; }
1245  void set_flush_budget(int to) { flush_budget_ = to; }
1246  void set_quick_check_performed(QuickCheckDetails* d) {
1247    quick_check_performed_ = *d;
1248  }
1249  void InvalidateCurrentCharacter();
1250  void AdvanceCurrentPositionInTrace(int by, RegExpCompiler* compiler);
1251 private:
1252  int FindAffectedRegisters(OutSet* affected_registers);
1253  void PerformDeferredActions(RegExpMacroAssembler* macro,
1254                               int max_register,
1255                               OutSet& affected_registers,
1256                               OutSet* registers_to_pop,
1257                               OutSet* registers_to_clear);
1258  void RestoreAffectedRegisters(RegExpMacroAssembler* macro,
1259                                int max_register,
1260                                OutSet& registers_to_pop,
1261                                OutSet& registers_to_clear);
1262  int cp_offset_;
1263  DeferredAction* actions_;
1264  Label* backtrack_;
1265  RegExpNode* stop_node_;
1266  Label* loop_label_;
1267  int characters_preloaded_;
1268  int bound_checked_up_to_;
1269  QuickCheckDetails quick_check_performed_;
1270  int flush_budget_;
1271  TriBool at_start_;
1272};
1273
1274
1275class NodeVisitor {
1276 public:
1277  virtual ~NodeVisitor() { }
1278#define DECLARE_VISIT(Type)                                          \
1279  virtual void Visit##Type(Type##Node* that) = 0;
1280FOR_EACH_NODE_TYPE(DECLARE_VISIT)
1281#undef DECLARE_VISIT
1282  virtual void VisitLoopChoice(LoopChoiceNode* that) { VisitChoice(that); }
1283};
1284
1285
1286// Node visitor used to add the start set of the alternatives to the
1287// dispatch table of a choice node.
1288class DispatchTableConstructor: public NodeVisitor {
1289 public:
1290  DispatchTableConstructor(DispatchTable* table, bool ignore_case)
1291      : table_(table),
1292        choice_index_(-1),
1293        ignore_case_(ignore_case) { }
1294
1295  void BuildTable(ChoiceNode* node);
1296
1297  void AddRange(CharacterRange range) {
1298    table()->AddRange(range, choice_index_);
1299  }
1300
1301  void AddInverse(ZoneList<CharacterRange>* ranges);
1302
1303#define DECLARE_VISIT(Type)                                          \
1304  virtual void Visit##Type(Type##Node* that);
1305FOR_EACH_NODE_TYPE(DECLARE_VISIT)
1306#undef DECLARE_VISIT
1307
1308  DispatchTable* table() { return table_; }
1309  void set_choice_index(int value) { choice_index_ = value; }
1310
1311 protected:
1312  DispatchTable* table_;
1313  int choice_index_;
1314  bool ignore_case_;
1315};
1316
1317
1318// Assertion propagation moves information about assertions such as
1319// \b to the affected nodes.  For instance, in /.\b./ information must
1320// be propagated to the first '.' that whatever follows needs to know
1321// if it matched a word or a non-word, and to the second '.' that it
1322// has to check if it succeeds a word or non-word.  In this case the
1323// result will be something like:
1324//
1325//   +-------+        +------------+
1326//   |   .   |        |      .     |
1327//   +-------+  --->  +------------+
1328//   | word? |        | check word |
1329//   +-------+        +------------+
1330class Analysis: public NodeVisitor {
1331 public:
1332  Analysis(bool ignore_case, bool is_ascii)
1333      : ignore_case_(ignore_case),
1334        is_ascii_(is_ascii),
1335        error_message_(NULL) { }
1336  void EnsureAnalyzed(RegExpNode* node);
1337
1338#define DECLARE_VISIT(Type)                                          \
1339  virtual void Visit##Type(Type##Node* that);
1340FOR_EACH_NODE_TYPE(DECLARE_VISIT)
1341#undef DECLARE_VISIT
1342  virtual void VisitLoopChoice(LoopChoiceNode* that);
1343
1344  bool has_failed() { return error_message_ != NULL; }
1345  const char* error_message() {
1346    ASSERT(error_message_ != NULL);
1347    return error_message_;
1348  }
1349  void fail(const char* error_message) {
1350    error_message_ = error_message;
1351  }
1352 private:
1353  bool ignore_case_;
1354  bool is_ascii_;
1355  const char* error_message_;
1356
1357  DISALLOW_IMPLICIT_CONSTRUCTORS(Analysis);
1358};
1359
1360
1361struct RegExpCompileData {
1362  RegExpCompileData()
1363    : tree(NULL),
1364      node(NULL),
1365      simple(true),
1366      contains_anchor(false),
1367      capture_count(0) { }
1368  RegExpTree* tree;
1369  RegExpNode* node;
1370  bool simple;
1371  bool contains_anchor;
1372  Handle<String> error;
1373  int capture_count;
1374};
1375
1376
1377class RegExpEngine: public AllStatic {
1378 public:
1379  struct CompilationResult {
1380    explicit CompilationResult(const char* error_message)
1381        : error_message(error_message),
1382          code(Heap::the_hole_value()),
1383          num_registers(0) {}
1384    CompilationResult(Object* code, int registers)
1385      : error_message(NULL),
1386        code(code),
1387        num_registers(registers) {}
1388    const char* error_message;
1389    Object* code;
1390    int num_registers;
1391  };
1392
1393  static CompilationResult Compile(RegExpCompileData* input,
1394                                   bool ignore_case,
1395                                   bool multiline,
1396                                   Handle<String> pattern,
1397                                   bool is_ascii);
1398
1399  static void DotPrint(const char* label, RegExpNode* node, bool ignore_case);
1400};
1401
1402
1403class OffsetsVector {
1404 public:
1405  inline OffsetsVector(int num_registers)
1406      : offsets_vector_length_(num_registers) {
1407    if (offsets_vector_length_ > kStaticOffsetsVectorSize) {
1408      vector_ = NewArray<int>(offsets_vector_length_);
1409    } else {
1410      vector_ = static_offsets_vector_;
1411    }
1412  }
1413  inline ~OffsetsVector() {
1414    if (offsets_vector_length_ > kStaticOffsetsVectorSize) {
1415      DeleteArray(vector_);
1416      vector_ = NULL;
1417    }
1418  }
1419  inline int* vector() { return vector_; }
1420  inline int length() { return offsets_vector_length_; }
1421
1422  static const int kStaticOffsetsVectorSize = 50;
1423
1424 private:
1425  static Address static_offsets_vector_address() {
1426    return reinterpret_cast<Address>(&static_offsets_vector_);
1427  }
1428
1429  int* vector_;
1430  int offsets_vector_length_;
1431  static int static_offsets_vector_[kStaticOffsetsVectorSize];
1432
1433  friend class ExternalReference;
1434};
1435
1436
1437} }  // namespace v8::internal
1438
1439#endif  // V8_JSREGEXP_H_
1440