1/* 2 * EAP peer state machines (RFC 4137) 3 * Copyright (c) 2004-2008, Jouni Malinen <j@w1.fi> 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License version 2 as 7 * published by the Free Software Foundation. 8 * 9 * Alternatively, this software may be distributed under the terms of BSD 10 * license. 11 * 12 * See README and COPYING for more details. 13 * 14 * This file implements the Peer State Machine as defined in RFC 4137. The used 15 * states and state transitions match mostly with the RFC. However, there are 16 * couple of additional transitions for working around small issues noticed 17 * during testing. These exceptions are explained in comments within the 18 * functions in this file. The method functions, m.func(), are similar to the 19 * ones used in RFC 4137, but some small changes have used here to optimize 20 * operations and to add functionality needed for fast re-authentication 21 * (session resumption). 22 */ 23 24#include "includes.h" 25 26#include "common.h" 27#include "eap_i.h" 28#include "eap_config.h" 29#include "crypto/tls.h" 30#include "crypto/crypto.h" 31#include "pcsc_funcs.h" 32#include "wpa_ctrl.h" 33#include "state_machine.h" 34#include "eap_common/eap_wsc_common.h" 35 36#define STATE_MACHINE_DATA struct eap_sm 37#define STATE_MACHINE_DEBUG_PREFIX "EAP" 38 39#define EAP_MAX_AUTH_ROUNDS 50 40 41 42static Boolean eap_sm_allowMethod(struct eap_sm *sm, int vendor, 43 EapType method); 44static struct wpabuf * eap_sm_buildNak(struct eap_sm *sm, int id); 45static void eap_sm_processIdentity(struct eap_sm *sm, 46 const struct wpabuf *req); 47static void eap_sm_processNotify(struct eap_sm *sm, const struct wpabuf *req); 48static struct wpabuf * eap_sm_buildNotify(int id); 49static void eap_sm_parseEapReq(struct eap_sm *sm, const struct wpabuf *req); 50#if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG) 51static const char * eap_sm_method_state_txt(EapMethodState state); 52static const char * eap_sm_decision_txt(EapDecision decision); 53#endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */ 54 55 56 57static Boolean eapol_get_bool(struct eap_sm *sm, enum eapol_bool_var var) 58{ 59 return sm->eapol_cb->get_bool(sm->eapol_ctx, var); 60} 61 62 63static void eapol_set_bool(struct eap_sm *sm, enum eapol_bool_var var, 64 Boolean value) 65{ 66 sm->eapol_cb->set_bool(sm->eapol_ctx, var, value); 67} 68 69 70static unsigned int eapol_get_int(struct eap_sm *sm, enum eapol_int_var var) 71{ 72 return sm->eapol_cb->get_int(sm->eapol_ctx, var); 73} 74 75 76static void eapol_set_int(struct eap_sm *sm, enum eapol_int_var var, 77 unsigned int value) 78{ 79 sm->eapol_cb->set_int(sm->eapol_ctx, var, value); 80} 81 82 83static struct wpabuf * eapol_get_eapReqData(struct eap_sm *sm) 84{ 85 return sm->eapol_cb->get_eapReqData(sm->eapol_ctx); 86} 87 88 89static void eap_deinit_prev_method(struct eap_sm *sm, const char *txt) 90{ 91 if (sm->m == NULL || sm->eap_method_priv == NULL) 92 return; 93 94 wpa_printf(MSG_DEBUG, "EAP: deinitialize previously used EAP method " 95 "(%d, %s) at %s", sm->selectedMethod, sm->m->name, txt); 96 sm->m->deinit(sm, sm->eap_method_priv); 97 sm->eap_method_priv = NULL; 98 sm->m = NULL; 99} 100 101 102/** 103 * eap_allowed_method - Check whether EAP method is allowed 104 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 105 * @vendor: Vendor-Id for expanded types or 0 = IETF for legacy types 106 * @method: EAP type 107 * Returns: 1 = allowed EAP method, 0 = not allowed 108 */ 109int eap_allowed_method(struct eap_sm *sm, int vendor, u32 method) 110{ 111 struct eap_peer_config *config = eap_get_config(sm); 112 int i; 113 struct eap_method_type *m; 114 115 if (config == NULL || config->eap_methods == NULL) 116 return 1; 117 118 m = config->eap_methods; 119 for (i = 0; m[i].vendor != EAP_VENDOR_IETF || 120 m[i].method != EAP_TYPE_NONE; i++) { 121 if (m[i].vendor == vendor && m[i].method == method) 122 return 1; 123 } 124 return 0; 125} 126 127 128/* 129 * This state initializes state machine variables when the machine is 130 * activated (portEnabled = TRUE). This is also used when re-starting 131 * authentication (eapRestart == TRUE). 132 */ 133SM_STATE(EAP, INITIALIZE) 134{ 135 SM_ENTRY(EAP, INITIALIZE); 136 if (sm->fast_reauth && sm->m && sm->m->has_reauth_data && 137 sm->m->has_reauth_data(sm, sm->eap_method_priv) && 138 !sm->prev_failure) { 139 wpa_printf(MSG_DEBUG, "EAP: maintaining EAP method data for " 140 "fast reauthentication"); 141 sm->m->deinit_for_reauth(sm, sm->eap_method_priv); 142 } else { 143 eap_deinit_prev_method(sm, "INITIALIZE"); 144 } 145 sm->selectedMethod = EAP_TYPE_NONE; 146 sm->methodState = METHOD_NONE; 147 sm->allowNotifications = TRUE; 148 sm->decision = DECISION_FAIL; 149 eapol_set_int(sm, EAPOL_idleWhile, sm->ClientTimeout); 150 eapol_set_bool(sm, EAPOL_eapSuccess, FALSE); 151 eapol_set_bool(sm, EAPOL_eapFail, FALSE); 152 os_free(sm->eapKeyData); 153 sm->eapKeyData = NULL; 154 sm->eapKeyAvailable = FALSE; 155 eapol_set_bool(sm, EAPOL_eapRestart, FALSE); 156 sm->lastId = -1; /* new session - make sure this does not match with 157 * the first EAP-Packet */ 158 /* 159 * RFC 4137 does not reset eapResp and eapNoResp here. However, this 160 * seemed to be able to trigger cases where both were set and if EAPOL 161 * state machine uses eapNoResp first, it may end up not sending a real 162 * reply correctly. This occurred when the workaround in FAIL state set 163 * eapNoResp = TRUE.. Maybe that workaround needs to be fixed to do 164 * something else(?) 165 */ 166 eapol_set_bool(sm, EAPOL_eapResp, FALSE); 167 eapol_set_bool(sm, EAPOL_eapNoResp, FALSE); 168 sm->num_rounds = 0; 169 sm->prev_failure = 0; 170} 171 172 173/* 174 * This state is reached whenever service from the lower layer is interrupted 175 * or unavailable (portEnabled == FALSE). Immediate transition to INITIALIZE 176 * occurs when the port becomes enabled. 177 */ 178SM_STATE(EAP, DISABLED) 179{ 180 SM_ENTRY(EAP, DISABLED); 181 sm->num_rounds = 0; 182} 183 184 185/* 186 * The state machine spends most of its time here, waiting for something to 187 * happen. This state is entered unconditionally from INITIALIZE, DISCARD, and 188 * SEND_RESPONSE states. 189 */ 190SM_STATE(EAP, IDLE) 191{ 192 SM_ENTRY(EAP, IDLE); 193} 194 195 196/* 197 * This state is entered when an EAP packet is received (eapReq == TRUE) to 198 * parse the packet header. 199 */ 200SM_STATE(EAP, RECEIVED) 201{ 202 const struct wpabuf *eapReqData; 203 204 SM_ENTRY(EAP, RECEIVED); 205 eapReqData = eapol_get_eapReqData(sm); 206 /* parse rxReq, rxSuccess, rxFailure, reqId, reqMethod */ 207 eap_sm_parseEapReq(sm, eapReqData); 208 sm->num_rounds++; 209} 210 211 212/* 213 * This state is entered when a request for a new type comes in. Either the 214 * correct method is started, or a Nak response is built. 215 */ 216SM_STATE(EAP, GET_METHOD) 217{ 218 int reinit; 219 EapType method; 220 221 SM_ENTRY(EAP, GET_METHOD); 222 223 if (sm->reqMethod == EAP_TYPE_EXPANDED) 224 method = sm->reqVendorMethod; 225 else 226 method = sm->reqMethod; 227 228 if (!eap_sm_allowMethod(sm, sm->reqVendor, method)) { 229 wpa_printf(MSG_DEBUG, "EAP: vendor %u method %u not allowed", 230 sm->reqVendor, method); 231 goto nak; 232 } 233 234 /* 235 * RFC 4137 does not define specific operation for fast 236 * re-authentication (session resumption). The design here is to allow 237 * the previously used method data to be maintained for 238 * re-authentication if the method support session resumption. 239 * Otherwise, the previously used method data is freed and a new method 240 * is allocated here. 241 */ 242 if (sm->fast_reauth && 243 sm->m && sm->m->vendor == sm->reqVendor && 244 sm->m->method == method && 245 sm->m->has_reauth_data && 246 sm->m->has_reauth_data(sm, sm->eap_method_priv)) { 247 wpa_printf(MSG_DEBUG, "EAP: Using previous method data" 248 " for fast re-authentication"); 249 reinit = 1; 250 } else { 251 eap_deinit_prev_method(sm, "GET_METHOD"); 252 reinit = 0; 253 } 254 255 sm->selectedMethod = sm->reqMethod; 256 if (sm->m == NULL) 257 sm->m = eap_peer_get_eap_method(sm->reqVendor, method); 258 if (!sm->m) { 259 wpa_printf(MSG_DEBUG, "EAP: Could not find selected method: " 260 "vendor %d method %d", 261 sm->reqVendor, method); 262 goto nak; 263 } 264 265 wpa_printf(MSG_DEBUG, "EAP: Initialize selected EAP method: " 266 "vendor %u method %u (%s)", 267 sm->reqVendor, method, sm->m->name); 268 if (reinit) 269 sm->eap_method_priv = sm->m->init_for_reauth( 270 sm, sm->eap_method_priv); 271 else 272 sm->eap_method_priv = sm->m->init(sm); 273 274 if (sm->eap_method_priv == NULL) { 275 struct eap_peer_config *config = eap_get_config(sm); 276 wpa_msg(sm->msg_ctx, MSG_INFO, 277 "EAP: Failed to initialize EAP method: vendor %u " 278 "method %u (%s)", 279 sm->reqVendor, method, sm->m->name); 280 sm->m = NULL; 281 sm->methodState = METHOD_NONE; 282 sm->selectedMethod = EAP_TYPE_NONE; 283 if (sm->reqMethod == EAP_TYPE_TLS && config && 284 (config->pending_req_pin || 285 config->pending_req_passphrase)) { 286 /* 287 * Return without generating Nak in order to allow 288 * entering of PIN code or passphrase to retry the 289 * current EAP packet. 290 */ 291 wpa_printf(MSG_DEBUG, "EAP: Pending PIN/passphrase " 292 "request - skip Nak"); 293 return; 294 } 295 296 goto nak; 297 } 298 299 sm->methodState = METHOD_INIT; 300 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_METHOD 301 "EAP vendor %u method %u (%s) selected", 302 sm->reqVendor, method, sm->m->name); 303 return; 304 305nak: 306 wpabuf_free(sm->eapRespData); 307 sm->eapRespData = NULL; 308 sm->eapRespData = eap_sm_buildNak(sm, sm->reqId); 309} 310 311 312/* 313 * The method processing happens here. The request from the authenticator is 314 * processed, and an appropriate response packet is built. 315 */ 316SM_STATE(EAP, METHOD) 317{ 318 struct wpabuf *eapReqData; 319 struct eap_method_ret ret; 320 321 SM_ENTRY(EAP, METHOD); 322 if (sm->m == NULL) { 323 wpa_printf(MSG_WARNING, "EAP::METHOD - method not selected"); 324 return; 325 } 326 327 eapReqData = eapol_get_eapReqData(sm); 328 329 /* 330 * Get ignore, methodState, decision, allowNotifications, and 331 * eapRespData. RFC 4137 uses three separate method procedure (check, 332 * process, and buildResp) in this state. These have been combined into 333 * a single function call to m->process() in order to optimize EAP 334 * method implementation interface a bit. These procedures are only 335 * used from within this METHOD state, so there is no need to keep 336 * these as separate C functions. 337 * 338 * The RFC 4137 procedures return values as follows: 339 * ignore = m.check(eapReqData) 340 * (methodState, decision, allowNotifications) = m.process(eapReqData) 341 * eapRespData = m.buildResp(reqId) 342 */ 343 os_memset(&ret, 0, sizeof(ret)); 344 ret.ignore = sm->ignore; 345 ret.methodState = sm->methodState; 346 ret.decision = sm->decision; 347 ret.allowNotifications = sm->allowNotifications; 348 wpabuf_free(sm->eapRespData); 349 sm->eapRespData = NULL; 350 sm->eapRespData = sm->m->process(sm, sm->eap_method_priv, &ret, 351 eapReqData); 352 wpa_printf(MSG_DEBUG, "EAP: method process -> ignore=%s " 353 "methodState=%s decision=%s", 354 ret.ignore ? "TRUE" : "FALSE", 355 eap_sm_method_state_txt(ret.methodState), 356 eap_sm_decision_txt(ret.decision)); 357 358 sm->ignore = ret.ignore; 359 if (sm->ignore) 360 return; 361 sm->methodState = ret.methodState; 362 sm->decision = ret.decision; 363 sm->allowNotifications = ret.allowNotifications; 364 365 if (sm->m->isKeyAvailable && sm->m->getKey && 366 sm->m->isKeyAvailable(sm, sm->eap_method_priv)) { 367 os_free(sm->eapKeyData); 368 sm->eapKeyData = sm->m->getKey(sm, sm->eap_method_priv, 369 &sm->eapKeyDataLen); 370 } 371} 372 373 374/* 375 * This state signals the lower layer that a response packet is ready to be 376 * sent. 377 */ 378SM_STATE(EAP, SEND_RESPONSE) 379{ 380 SM_ENTRY(EAP, SEND_RESPONSE); 381 wpabuf_free(sm->lastRespData); 382 if (sm->eapRespData) { 383 if (sm->workaround) 384 os_memcpy(sm->last_md5, sm->req_md5, 16); 385 sm->lastId = sm->reqId; 386 sm->lastRespData = wpabuf_dup(sm->eapRespData); 387 eapol_set_bool(sm, EAPOL_eapResp, TRUE); 388 } else 389 sm->lastRespData = NULL; 390 eapol_set_bool(sm, EAPOL_eapReq, FALSE); 391 eapol_set_int(sm, EAPOL_idleWhile, sm->ClientTimeout); 392} 393 394 395/* 396 * This state signals the lower layer that the request was discarded, and no 397 * response packet will be sent at this time. 398 */ 399SM_STATE(EAP, DISCARD) 400{ 401 SM_ENTRY(EAP, DISCARD); 402 eapol_set_bool(sm, EAPOL_eapReq, FALSE); 403 eapol_set_bool(sm, EAPOL_eapNoResp, TRUE); 404} 405 406 407/* 408 * Handles requests for Identity method and builds a response. 409 */ 410SM_STATE(EAP, IDENTITY) 411{ 412 const struct wpabuf *eapReqData; 413 414 SM_ENTRY(EAP, IDENTITY); 415 eapReqData = eapol_get_eapReqData(sm); 416 eap_sm_processIdentity(sm, eapReqData); 417 wpabuf_free(sm->eapRespData); 418 sm->eapRespData = NULL; 419 sm->eapRespData = eap_sm_buildIdentity(sm, sm->reqId, 0); 420} 421 422 423/* 424 * Handles requests for Notification method and builds a response. 425 */ 426SM_STATE(EAP, NOTIFICATION) 427{ 428 const struct wpabuf *eapReqData; 429 430 SM_ENTRY(EAP, NOTIFICATION); 431 eapReqData = eapol_get_eapReqData(sm); 432 eap_sm_processNotify(sm, eapReqData); 433 wpabuf_free(sm->eapRespData); 434 sm->eapRespData = NULL; 435 sm->eapRespData = eap_sm_buildNotify(sm->reqId); 436} 437 438 439/* 440 * This state retransmits the previous response packet. 441 */ 442SM_STATE(EAP, RETRANSMIT) 443{ 444 SM_ENTRY(EAP, RETRANSMIT); 445 wpabuf_free(sm->eapRespData); 446 if (sm->lastRespData) 447 sm->eapRespData = wpabuf_dup(sm->lastRespData); 448 else 449 sm->eapRespData = NULL; 450} 451 452 453/* 454 * This state is entered in case of a successful completion of authentication 455 * and state machine waits here until port is disabled or EAP authentication is 456 * restarted. 457 */ 458SM_STATE(EAP, SUCCESS) 459{ 460 SM_ENTRY(EAP, SUCCESS); 461 if (sm->eapKeyData != NULL) 462 sm->eapKeyAvailable = TRUE; 463 eapol_set_bool(sm, EAPOL_eapSuccess, TRUE); 464 465 /* 466 * RFC 4137 does not clear eapReq here, but this seems to be required 467 * to avoid processing the same request twice when state machine is 468 * initialized. 469 */ 470 eapol_set_bool(sm, EAPOL_eapReq, FALSE); 471 472 /* 473 * RFC 4137 does not set eapNoResp here, but this seems to be required 474 * to get EAPOL Supplicant backend state machine into SUCCESS state. In 475 * addition, either eapResp or eapNoResp is required to be set after 476 * processing the received EAP frame. 477 */ 478 eapol_set_bool(sm, EAPOL_eapNoResp, TRUE); 479 480 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_SUCCESS 481 "EAP authentication completed successfully"); 482} 483 484 485/* 486 * This state is entered in case of a failure and state machine waits here 487 * until port is disabled or EAP authentication is restarted. 488 */ 489SM_STATE(EAP, FAILURE) 490{ 491 SM_ENTRY(EAP, FAILURE); 492 eapol_set_bool(sm, EAPOL_eapFail, TRUE); 493 494 /* 495 * RFC 4137 does not clear eapReq here, but this seems to be required 496 * to avoid processing the same request twice when state machine is 497 * initialized. 498 */ 499 eapol_set_bool(sm, EAPOL_eapReq, FALSE); 500 501 /* 502 * RFC 4137 does not set eapNoResp here. However, either eapResp or 503 * eapNoResp is required to be set after processing the received EAP 504 * frame. 505 */ 506 eapol_set_bool(sm, EAPOL_eapNoResp, TRUE); 507 508 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_FAILURE 509 "EAP authentication failed"); 510 511 sm->prev_failure = 1; 512} 513 514 515static int eap_success_workaround(struct eap_sm *sm, int reqId, int lastId) 516{ 517 /* 518 * At least Microsoft IAS and Meetinghouse Aegis seem to be sending 519 * EAP-Success/Failure with lastId + 1 even though RFC 3748 and 520 * RFC 4137 require that reqId == lastId. In addition, it looks like 521 * Ringmaster v2.1.2.0 would be using lastId + 2 in EAP-Success. 522 * 523 * Accept this kind of Id if EAP workarounds are enabled. These are 524 * unauthenticated plaintext messages, so this should have minimal 525 * security implications (bit easier to fake EAP-Success/Failure). 526 */ 527 if (sm->workaround && (reqId == ((lastId + 1) & 0xff) || 528 reqId == ((lastId + 2) & 0xff))) { 529 wpa_printf(MSG_DEBUG, "EAP: Workaround for unexpected " 530 "identifier field in EAP Success: " 531 "reqId=%d lastId=%d (these are supposed to be " 532 "same)", reqId, lastId); 533 return 1; 534 } 535 wpa_printf(MSG_DEBUG, "EAP: EAP-Success Id mismatch - reqId=%d " 536 "lastId=%d", reqId, lastId); 537 return 0; 538} 539 540 541/* 542 * RFC 4137 - Appendix A.1: EAP Peer State Machine - State transitions 543 */ 544 545static void eap_peer_sm_step_idle(struct eap_sm *sm) 546{ 547 /* 548 * The first three transitions are from RFC 4137. The last two are 549 * local additions to handle special cases with LEAP and PEAP server 550 * not sending EAP-Success in some cases. 551 */ 552 if (eapol_get_bool(sm, EAPOL_eapReq)) 553 SM_ENTER(EAP, RECEIVED); 554 else if ((eapol_get_bool(sm, EAPOL_altAccept) && 555 sm->decision != DECISION_FAIL) || 556 (eapol_get_int(sm, EAPOL_idleWhile) == 0 && 557 sm->decision == DECISION_UNCOND_SUCC)) 558 SM_ENTER(EAP, SUCCESS); 559 else if (eapol_get_bool(sm, EAPOL_altReject) || 560 (eapol_get_int(sm, EAPOL_idleWhile) == 0 && 561 sm->decision != DECISION_UNCOND_SUCC) || 562 (eapol_get_bool(sm, EAPOL_altAccept) && 563 sm->methodState != METHOD_CONT && 564 sm->decision == DECISION_FAIL)) 565 SM_ENTER(EAP, FAILURE); 566 else if (sm->selectedMethod == EAP_TYPE_LEAP && 567 sm->leap_done && sm->decision != DECISION_FAIL && 568 sm->methodState == METHOD_DONE) 569 SM_ENTER(EAP, SUCCESS); 570 else if (sm->selectedMethod == EAP_TYPE_PEAP && 571 sm->peap_done && sm->decision != DECISION_FAIL && 572 sm->methodState == METHOD_DONE) 573 SM_ENTER(EAP, SUCCESS); 574} 575 576 577static int eap_peer_req_is_duplicate(struct eap_sm *sm) 578{ 579 int duplicate; 580 581 duplicate = (sm->reqId == sm->lastId) && sm->rxReq; 582 if (sm->workaround && duplicate && 583 os_memcmp(sm->req_md5, sm->last_md5, 16) != 0) { 584 /* 585 * RFC 4137 uses (reqId == lastId) as the only verification for 586 * duplicate EAP requests. However, this misses cases where the 587 * AS is incorrectly using the same id again; and 588 * unfortunately, such implementations exist. Use MD5 hash as 589 * an extra verification for the packets being duplicate to 590 * workaround these issues. 591 */ 592 wpa_printf(MSG_DEBUG, "EAP: AS used the same Id again, but " 593 "EAP packets were not identical"); 594 wpa_printf(MSG_DEBUG, "EAP: workaround - assume this is not a " 595 "duplicate packet"); 596 duplicate = 0; 597 } 598 599 return duplicate; 600} 601 602 603static void eap_peer_sm_step_received(struct eap_sm *sm) 604{ 605 int duplicate = eap_peer_req_is_duplicate(sm); 606 607 /* 608 * Two special cases below for LEAP are local additions to work around 609 * odd LEAP behavior (EAP-Success in the middle of authentication and 610 * then swapped roles). Other transitions are based on RFC 4137. 611 */ 612 if (sm->rxSuccess && sm->decision != DECISION_FAIL && 613 (sm->reqId == sm->lastId || 614 eap_success_workaround(sm, sm->reqId, sm->lastId))) 615 SM_ENTER(EAP, SUCCESS); 616 else if (sm->methodState != METHOD_CONT && 617 ((sm->rxFailure && 618 sm->decision != DECISION_UNCOND_SUCC) || 619 (sm->rxSuccess && sm->decision == DECISION_FAIL && 620 (sm->selectedMethod != EAP_TYPE_LEAP || 621 sm->methodState != METHOD_MAY_CONT))) && 622 (sm->reqId == sm->lastId || 623 eap_success_workaround(sm, sm->reqId, sm->lastId))) 624 SM_ENTER(EAP, FAILURE); 625 else if (sm->rxReq && duplicate) 626 SM_ENTER(EAP, RETRANSMIT); 627 else if (sm->rxReq && !duplicate && 628 sm->reqMethod == EAP_TYPE_NOTIFICATION && 629 sm->allowNotifications) 630 SM_ENTER(EAP, NOTIFICATION); 631 else if (sm->rxReq && !duplicate && 632 sm->selectedMethod == EAP_TYPE_NONE && 633 sm->reqMethod == EAP_TYPE_IDENTITY) 634 SM_ENTER(EAP, IDENTITY); 635 else if (sm->rxReq && !duplicate && 636 sm->selectedMethod == EAP_TYPE_NONE && 637 sm->reqMethod != EAP_TYPE_IDENTITY && 638 sm->reqMethod != EAP_TYPE_NOTIFICATION) 639 SM_ENTER(EAP, GET_METHOD); 640 else if (sm->rxReq && !duplicate && 641 sm->reqMethod == sm->selectedMethod && 642 sm->methodState != METHOD_DONE) 643 SM_ENTER(EAP, METHOD); 644 else if (sm->selectedMethod == EAP_TYPE_LEAP && 645 (sm->rxSuccess || sm->rxResp)) 646 SM_ENTER(EAP, METHOD); 647 else 648 SM_ENTER(EAP, DISCARD); 649} 650 651 652static void eap_peer_sm_step_local(struct eap_sm *sm) 653{ 654 switch (sm->EAP_state) { 655 case EAP_INITIALIZE: 656 SM_ENTER(EAP, IDLE); 657 break; 658 case EAP_DISABLED: 659 if (eapol_get_bool(sm, EAPOL_portEnabled) && 660 !sm->force_disabled) 661 SM_ENTER(EAP, INITIALIZE); 662 break; 663 case EAP_IDLE: 664 eap_peer_sm_step_idle(sm); 665 break; 666 case EAP_RECEIVED: 667 eap_peer_sm_step_received(sm); 668 break; 669 case EAP_GET_METHOD: 670 if (sm->selectedMethod == sm->reqMethod) 671 SM_ENTER(EAP, METHOD); 672 else 673 SM_ENTER(EAP, SEND_RESPONSE); 674 break; 675 case EAP_METHOD: 676 if (sm->ignore) 677 SM_ENTER(EAP, DISCARD); 678 else 679 SM_ENTER(EAP, SEND_RESPONSE); 680 break; 681 case EAP_SEND_RESPONSE: 682 SM_ENTER(EAP, IDLE); 683 break; 684 case EAP_DISCARD: 685 SM_ENTER(EAP, IDLE); 686 break; 687 case EAP_IDENTITY: 688 SM_ENTER(EAP, SEND_RESPONSE); 689 break; 690 case EAP_NOTIFICATION: 691 SM_ENTER(EAP, SEND_RESPONSE); 692 break; 693 case EAP_RETRANSMIT: 694 SM_ENTER(EAP, SEND_RESPONSE); 695 break; 696 case EAP_SUCCESS: 697 break; 698 case EAP_FAILURE: 699 break; 700 } 701} 702 703 704SM_STEP(EAP) 705{ 706 /* Global transitions */ 707 if (eapol_get_bool(sm, EAPOL_eapRestart) && 708 eapol_get_bool(sm, EAPOL_portEnabled)) 709 SM_ENTER_GLOBAL(EAP, INITIALIZE); 710 else if (!eapol_get_bool(sm, EAPOL_portEnabled) || sm->force_disabled) 711 SM_ENTER_GLOBAL(EAP, DISABLED); 712 else if (sm->num_rounds > EAP_MAX_AUTH_ROUNDS) { 713 /* RFC 4137 does not place any limit on number of EAP messages 714 * in an authentication session. However, some error cases have 715 * ended up in a state were EAP messages were sent between the 716 * peer and server in a loop (e.g., TLS ACK frame in both 717 * direction). Since this is quite undesired outcome, limit the 718 * total number of EAP round-trips and abort authentication if 719 * this limit is exceeded. 720 */ 721 if (sm->num_rounds == EAP_MAX_AUTH_ROUNDS + 1) { 722 wpa_msg(sm->msg_ctx, MSG_INFO, "EAP: more than %d " 723 "authentication rounds - abort", 724 EAP_MAX_AUTH_ROUNDS); 725 sm->num_rounds++; 726 SM_ENTER_GLOBAL(EAP, FAILURE); 727 } 728 } else { 729 /* Local transitions */ 730 eap_peer_sm_step_local(sm); 731 } 732} 733 734 735static Boolean eap_sm_allowMethod(struct eap_sm *sm, int vendor, 736 EapType method) 737{ 738 if (!eap_allowed_method(sm, vendor, method)) { 739 wpa_printf(MSG_DEBUG, "EAP: configuration does not allow: " 740 "vendor %u method %u", vendor, method); 741 return FALSE; 742 } 743 if (eap_peer_get_eap_method(vendor, method)) 744 return TRUE; 745 wpa_printf(MSG_DEBUG, "EAP: not included in build: " 746 "vendor %u method %u", vendor, method); 747 return FALSE; 748} 749 750 751static struct wpabuf * eap_sm_build_expanded_nak( 752 struct eap_sm *sm, int id, const struct eap_method *methods, 753 size_t count) 754{ 755 struct wpabuf *resp; 756 int found = 0; 757 const struct eap_method *m; 758 759 wpa_printf(MSG_DEBUG, "EAP: Building expanded EAP-Nak"); 760 761 /* RFC 3748 - 5.3.2: Expanded Nak */ 762 resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_EXPANDED, 763 8 + 8 * (count + 1), EAP_CODE_RESPONSE, id); 764 if (resp == NULL) 765 return NULL; 766 767 wpabuf_put_be24(resp, EAP_VENDOR_IETF); 768 wpabuf_put_be32(resp, EAP_TYPE_NAK); 769 770 for (m = methods; m; m = m->next) { 771 if (sm->reqVendor == m->vendor && 772 sm->reqVendorMethod == m->method) 773 continue; /* do not allow the current method again */ 774 if (eap_allowed_method(sm, m->vendor, m->method)) { 775 wpa_printf(MSG_DEBUG, "EAP: allowed type: " 776 "vendor=%u method=%u", 777 m->vendor, m->method); 778 wpabuf_put_u8(resp, EAP_TYPE_EXPANDED); 779 wpabuf_put_be24(resp, m->vendor); 780 wpabuf_put_be32(resp, m->method); 781 782 found++; 783 } 784 } 785 if (!found) { 786 wpa_printf(MSG_DEBUG, "EAP: no more allowed methods"); 787 wpabuf_put_u8(resp, EAP_TYPE_EXPANDED); 788 wpabuf_put_be24(resp, EAP_VENDOR_IETF); 789 wpabuf_put_be32(resp, EAP_TYPE_NONE); 790 } 791 792 eap_update_len(resp); 793 794 return resp; 795} 796 797 798static struct wpabuf * eap_sm_buildNak(struct eap_sm *sm, int id) 799{ 800 struct wpabuf *resp; 801 u8 *start; 802 int found = 0, expanded_found = 0; 803 size_t count; 804 const struct eap_method *methods, *m; 805 806 wpa_printf(MSG_DEBUG, "EAP: Building EAP-Nak (requested type %u " 807 "vendor=%u method=%u not allowed)", sm->reqMethod, 808 sm->reqVendor, sm->reqVendorMethod); 809 methods = eap_peer_get_methods(&count); 810 if (methods == NULL) 811 return NULL; 812 if (sm->reqMethod == EAP_TYPE_EXPANDED) 813 return eap_sm_build_expanded_nak(sm, id, methods, count); 814 815 /* RFC 3748 - 5.3.1: Legacy Nak */ 816 resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_NAK, 817 sizeof(struct eap_hdr) + 1 + count + 1, 818 EAP_CODE_RESPONSE, id); 819 if (resp == NULL) 820 return NULL; 821 822 start = wpabuf_put(resp, 0); 823 for (m = methods; m; m = m->next) { 824 if (m->vendor == EAP_VENDOR_IETF && m->method == sm->reqMethod) 825 continue; /* do not allow the current method again */ 826 if (eap_allowed_method(sm, m->vendor, m->method)) { 827 if (m->vendor != EAP_VENDOR_IETF) { 828 if (expanded_found) 829 continue; 830 expanded_found = 1; 831 wpabuf_put_u8(resp, EAP_TYPE_EXPANDED); 832 } else 833 wpabuf_put_u8(resp, m->method); 834 found++; 835 } 836 } 837 if (!found) 838 wpabuf_put_u8(resp, EAP_TYPE_NONE); 839 wpa_hexdump(MSG_DEBUG, "EAP: allowed methods", start, found); 840 841 eap_update_len(resp); 842 843 return resp; 844} 845 846 847static void eap_sm_processIdentity(struct eap_sm *sm, const struct wpabuf *req) 848{ 849 const struct eap_hdr *hdr = wpabuf_head(req); 850 const u8 *pos = (const u8 *) (hdr + 1); 851 pos++; 852 853 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_STARTED 854 "EAP authentication started"); 855 856 /* 857 * RFC 3748 - 5.1: Identity 858 * Data field may contain a displayable message in UTF-8. If this 859 * includes NUL-character, only the data before that should be 860 * displayed. Some EAP implementasitons may piggy-back additional 861 * options after the NUL. 862 */ 863 /* TODO: could save displayable message so that it can be shown to the 864 * user in case of interaction is required */ 865 wpa_hexdump_ascii(MSG_DEBUG, "EAP: EAP-Request Identity data", 866 pos, be_to_host16(hdr->length) - 5); 867} 868 869 870#ifdef PCSC_FUNCS 871static int eap_sm_imsi_identity(struct eap_sm *sm, 872 struct eap_peer_config *conf) 873{ 874 int aka = 0; 875 char imsi[100]; 876 size_t imsi_len; 877 struct eap_method_type *m = conf->eap_methods; 878 int i; 879 880 imsi_len = sizeof(imsi); 881 if (scard_get_imsi(sm->scard_ctx, imsi, &imsi_len)) { 882 wpa_printf(MSG_WARNING, "Failed to get IMSI from SIM"); 883 return -1; 884 } 885 886 wpa_hexdump_ascii(MSG_DEBUG, "IMSI", (u8 *) imsi, imsi_len); 887 888 for (i = 0; m && (m[i].vendor != EAP_VENDOR_IETF || 889 m[i].method != EAP_TYPE_NONE); i++) { 890 if (m[i].vendor == EAP_VENDOR_IETF && 891 m[i].method == EAP_TYPE_AKA) { 892 aka = 1; 893 break; 894 } 895 } 896 897 os_free(conf->identity); 898 conf->identity = os_malloc(1 + imsi_len); 899 if (conf->identity == NULL) { 900 wpa_printf(MSG_WARNING, "Failed to allocate buffer for " 901 "IMSI-based identity"); 902 return -1; 903 } 904 905 conf->identity[0] = aka ? '0' : '1'; 906 os_memcpy(conf->identity + 1, imsi, imsi_len); 907 conf->identity_len = 1 + imsi_len; 908 909 return 0; 910} 911#endif /* PCSC_FUNCS */ 912 913 914static int eap_sm_set_scard_pin(struct eap_sm *sm, 915 struct eap_peer_config *conf) 916{ 917#ifdef PCSC_FUNCS 918 if (scard_set_pin(sm->scard_ctx, conf->pin)) { 919 /* 920 * Make sure the same PIN is not tried again in order to avoid 921 * blocking SIM. 922 */ 923 os_free(conf->pin); 924 conf->pin = NULL; 925 926 wpa_printf(MSG_WARNING, "PIN validation failed"); 927 eap_sm_request_pin(sm); 928 return -1; 929 } 930 return 0; 931#else /* PCSC_FUNCS */ 932 return -1; 933#endif /* PCSC_FUNCS */ 934} 935 936static int eap_sm_get_scard_identity(struct eap_sm *sm, 937 struct eap_peer_config *conf) 938{ 939#ifdef PCSC_FUNCS 940 if (eap_sm_set_scard_pin(sm, conf)) 941 return -1; 942 943 return eap_sm_imsi_identity(sm, conf); 944#else /* PCSC_FUNCS */ 945 return -1; 946#endif /* PCSC_FUNCS */ 947} 948 949 950/** 951 * eap_sm_buildIdentity - Build EAP-Identity/Response for the current network 952 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 953 * @id: EAP identifier for the packet 954 * @encrypted: Whether the packet is for encrypted tunnel (EAP phase 2) 955 * Returns: Pointer to the allocated EAP-Identity/Response packet or %NULL on 956 * failure 957 * 958 * This function allocates and builds an EAP-Identity/Response packet for the 959 * current network. The caller is responsible for freeing the returned data. 960 */ 961struct wpabuf * eap_sm_buildIdentity(struct eap_sm *sm, int id, int encrypted) 962{ 963 struct eap_peer_config *config = eap_get_config(sm); 964 struct wpabuf *resp; 965 const u8 *identity; 966 size_t identity_len; 967 968 if (config == NULL) { 969 wpa_printf(MSG_WARNING, "EAP: buildIdentity: configuration " 970 "was not available"); 971 return NULL; 972 } 973 974 if (sm->m && sm->m->get_identity && 975 (identity = sm->m->get_identity(sm, sm->eap_method_priv, 976 &identity_len)) != NULL) { 977 wpa_hexdump_ascii(MSG_DEBUG, "EAP: using method re-auth " 978 "identity", identity, identity_len); 979 } else if (!encrypted && config->anonymous_identity) { 980 identity = config->anonymous_identity; 981 identity_len = config->anonymous_identity_len; 982 wpa_hexdump_ascii(MSG_DEBUG, "EAP: using anonymous identity", 983 identity, identity_len); 984 } else { 985 identity = config->identity; 986 identity_len = config->identity_len; 987 wpa_hexdump_ascii(MSG_DEBUG, "EAP: using real identity", 988 identity, identity_len); 989 } 990 991 if (identity == NULL) { 992 wpa_printf(MSG_WARNING, "EAP: buildIdentity: identity " 993 "configuration was not available"); 994 if (config->pcsc) { 995 if (eap_sm_get_scard_identity(sm, config) < 0) 996 return NULL; 997 identity = config->identity; 998 identity_len = config->identity_len; 999 wpa_hexdump_ascii(MSG_DEBUG, "permanent identity from " 1000 "IMSI", identity, identity_len); 1001 } else { 1002 eap_sm_request_identity(sm); 1003 return NULL; 1004 } 1005 } else if (config->pcsc) { 1006 if (eap_sm_set_scard_pin(sm, config) < 0) 1007 return NULL; 1008 } 1009 1010 resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_IDENTITY, identity_len, 1011 EAP_CODE_RESPONSE, id); 1012 if (resp == NULL) 1013 return NULL; 1014 1015 wpabuf_put_data(resp, identity, identity_len); 1016 1017 return resp; 1018} 1019 1020 1021static void eap_sm_processNotify(struct eap_sm *sm, const struct wpabuf *req) 1022{ 1023 const u8 *pos; 1024 char *msg; 1025 size_t i, msg_len; 1026 1027 pos = eap_hdr_validate(EAP_VENDOR_IETF, EAP_TYPE_NOTIFICATION, req, 1028 &msg_len); 1029 if (pos == NULL) 1030 return; 1031 wpa_hexdump_ascii(MSG_DEBUG, "EAP: EAP-Request Notification data", 1032 pos, msg_len); 1033 1034 msg = os_malloc(msg_len + 1); 1035 if (msg == NULL) 1036 return; 1037 for (i = 0; i < msg_len; i++) 1038 msg[i] = isprint(pos[i]) ? (char) pos[i] : '_'; 1039 msg[msg_len] = '\0'; 1040 wpa_msg(sm->msg_ctx, MSG_INFO, "%s%s", 1041 WPA_EVENT_EAP_NOTIFICATION, msg); 1042 os_free(msg); 1043} 1044 1045 1046static struct wpabuf * eap_sm_buildNotify(int id) 1047{ 1048 struct wpabuf *resp; 1049 1050 wpa_printf(MSG_DEBUG, "EAP: Generating EAP-Response Notification"); 1051 resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_NOTIFICATION, 0, 1052 EAP_CODE_RESPONSE, id); 1053 if (resp == NULL) 1054 return NULL; 1055 1056 return resp; 1057} 1058 1059 1060static void eap_sm_parseEapReq(struct eap_sm *sm, const struct wpabuf *req) 1061{ 1062 const struct eap_hdr *hdr; 1063 size_t plen; 1064 const u8 *pos; 1065 1066 sm->rxReq = sm->rxResp = sm->rxSuccess = sm->rxFailure = FALSE; 1067 sm->reqId = 0; 1068 sm->reqMethod = EAP_TYPE_NONE; 1069 sm->reqVendor = EAP_VENDOR_IETF; 1070 sm->reqVendorMethod = EAP_TYPE_NONE; 1071 1072 if (req == NULL || wpabuf_len(req) < sizeof(*hdr)) 1073 return; 1074 1075 hdr = wpabuf_head(req); 1076 plen = be_to_host16(hdr->length); 1077 if (plen > wpabuf_len(req)) { 1078 wpa_printf(MSG_DEBUG, "EAP: Ignored truncated EAP-Packet " 1079 "(len=%lu plen=%lu)", 1080 (unsigned long) wpabuf_len(req), 1081 (unsigned long) plen); 1082 return; 1083 } 1084 1085 sm->reqId = hdr->identifier; 1086 1087 if (sm->workaround) { 1088 const u8 *addr[1]; 1089 addr[0] = wpabuf_head(req); 1090 md5_vector(1, addr, &plen, sm->req_md5); 1091 } 1092 1093 switch (hdr->code) { 1094 case EAP_CODE_REQUEST: 1095 if (plen < sizeof(*hdr) + 1) { 1096 wpa_printf(MSG_DEBUG, "EAP: Too short EAP-Request - " 1097 "no Type field"); 1098 return; 1099 } 1100 sm->rxReq = TRUE; 1101 pos = (const u8 *) (hdr + 1); 1102 sm->reqMethod = *pos++; 1103 if (sm->reqMethod == EAP_TYPE_EXPANDED) { 1104 if (plen < sizeof(*hdr) + 8) { 1105 wpa_printf(MSG_DEBUG, "EAP: Ignored truncated " 1106 "expanded EAP-Packet (plen=%lu)", 1107 (unsigned long) plen); 1108 return; 1109 } 1110 sm->reqVendor = WPA_GET_BE24(pos); 1111 pos += 3; 1112 sm->reqVendorMethod = WPA_GET_BE32(pos); 1113 } 1114 wpa_printf(MSG_DEBUG, "EAP: Received EAP-Request id=%d " 1115 "method=%u vendor=%u vendorMethod=%u", 1116 sm->reqId, sm->reqMethod, sm->reqVendor, 1117 sm->reqVendorMethod); 1118 break; 1119 case EAP_CODE_RESPONSE: 1120 if (sm->selectedMethod == EAP_TYPE_LEAP) { 1121 /* 1122 * LEAP differs from RFC 4137 by using reversed roles 1123 * for mutual authentication and because of this, we 1124 * need to accept EAP-Response frames if LEAP is used. 1125 */ 1126 if (plen < sizeof(*hdr) + 1) { 1127 wpa_printf(MSG_DEBUG, "EAP: Too short " 1128 "EAP-Response - no Type field"); 1129 return; 1130 } 1131 sm->rxResp = TRUE; 1132 pos = (const u8 *) (hdr + 1); 1133 sm->reqMethod = *pos; 1134 wpa_printf(MSG_DEBUG, "EAP: Received EAP-Response for " 1135 "LEAP method=%d id=%d", 1136 sm->reqMethod, sm->reqId); 1137 break; 1138 } 1139 wpa_printf(MSG_DEBUG, "EAP: Ignored EAP-Response"); 1140 break; 1141 case EAP_CODE_SUCCESS: 1142 wpa_printf(MSG_DEBUG, "EAP: Received EAP-Success"); 1143 sm->rxSuccess = TRUE; 1144 break; 1145 case EAP_CODE_FAILURE: 1146 wpa_printf(MSG_DEBUG, "EAP: Received EAP-Failure"); 1147 sm->rxFailure = TRUE; 1148 break; 1149 default: 1150 wpa_printf(MSG_DEBUG, "EAP: Ignored EAP-Packet with unknown " 1151 "code %d", hdr->code); 1152 break; 1153 } 1154} 1155 1156 1157/** 1158 * eap_peer_sm_init - Allocate and initialize EAP peer state machine 1159 * @eapol_ctx: Context data to be used with eapol_cb calls 1160 * @eapol_cb: Pointer to EAPOL callback functions 1161 * @msg_ctx: Context data for wpa_msg() calls 1162 * @conf: EAP configuration 1163 * Returns: Pointer to the allocated EAP state machine or %NULL on failure 1164 * 1165 * This function allocates and initializes an EAP state machine. In addition, 1166 * this initializes TLS library for the new EAP state machine. eapol_cb pointer 1167 * will be in use until eap_peer_sm_deinit() is used to deinitialize this EAP 1168 * state machine. Consequently, the caller must make sure that this data 1169 * structure remains alive while the EAP state machine is active. 1170 */ 1171struct eap_sm * eap_peer_sm_init(void *eapol_ctx, 1172 struct eapol_callbacks *eapol_cb, 1173 void *msg_ctx, struct eap_config *conf) 1174{ 1175 struct eap_sm *sm; 1176 struct tls_config tlsconf; 1177 1178 sm = os_zalloc(sizeof(*sm)); 1179 if (sm == NULL) 1180 return NULL; 1181 sm->eapol_ctx = eapol_ctx; 1182 sm->eapol_cb = eapol_cb; 1183 sm->msg_ctx = msg_ctx; 1184 sm->ClientTimeout = 60; 1185 sm->wps = conf->wps; 1186 1187 os_memset(&tlsconf, 0, sizeof(tlsconf)); 1188 tlsconf.opensc_engine_path = conf->opensc_engine_path; 1189 tlsconf.pkcs11_engine_path = conf->pkcs11_engine_path; 1190 tlsconf.pkcs11_module_path = conf->pkcs11_module_path; 1191 sm->ssl_ctx = tls_init(&tlsconf); 1192 if (sm->ssl_ctx == NULL) { 1193 wpa_printf(MSG_WARNING, "SSL: Failed to initialize TLS " 1194 "context."); 1195 os_free(sm); 1196 return NULL; 1197 } 1198 1199 return sm; 1200} 1201 1202 1203/** 1204 * eap_peer_sm_deinit - Deinitialize and free an EAP peer state machine 1205 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1206 * 1207 * This function deinitializes EAP state machine and frees all allocated 1208 * resources. 1209 */ 1210void eap_peer_sm_deinit(struct eap_sm *sm) 1211{ 1212 if (sm == NULL) 1213 return; 1214 eap_deinit_prev_method(sm, "EAP deinit"); 1215 eap_sm_abort(sm); 1216 tls_deinit(sm->ssl_ctx); 1217 os_free(sm); 1218} 1219 1220 1221/** 1222 * eap_peer_sm_step - Step EAP peer state machine 1223 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1224 * Returns: 1 if EAP state was changed or 0 if not 1225 * 1226 * This function advances EAP state machine to a new state to match with the 1227 * current variables. This should be called whenever variables used by the EAP 1228 * state machine have changed. 1229 */ 1230int eap_peer_sm_step(struct eap_sm *sm) 1231{ 1232 int res = 0; 1233 do { 1234 sm->changed = FALSE; 1235 SM_STEP_RUN(EAP); 1236 if (sm->changed) 1237 res = 1; 1238 } while (sm->changed); 1239 return res; 1240} 1241 1242 1243/** 1244 * eap_sm_abort - Abort EAP authentication 1245 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1246 * 1247 * Release system resources that have been allocated for the authentication 1248 * session without fully deinitializing the EAP state machine. 1249 */ 1250void eap_sm_abort(struct eap_sm *sm) 1251{ 1252 wpabuf_free(sm->lastRespData); 1253 sm->lastRespData = NULL; 1254 wpabuf_free(sm->eapRespData); 1255 sm->eapRespData = NULL; 1256 os_free(sm->eapKeyData); 1257 sm->eapKeyData = NULL; 1258 1259 /* This is not clearly specified in the EAP statemachines draft, but 1260 * it seems necessary to make sure that some of the EAPOL variables get 1261 * cleared for the next authentication. */ 1262 eapol_set_bool(sm, EAPOL_eapSuccess, FALSE); 1263} 1264 1265 1266#ifdef CONFIG_CTRL_IFACE 1267static const char * eap_sm_state_txt(int state) 1268{ 1269 switch (state) { 1270 case EAP_INITIALIZE: 1271 return "INITIALIZE"; 1272 case EAP_DISABLED: 1273 return "DISABLED"; 1274 case EAP_IDLE: 1275 return "IDLE"; 1276 case EAP_RECEIVED: 1277 return "RECEIVED"; 1278 case EAP_GET_METHOD: 1279 return "GET_METHOD"; 1280 case EAP_METHOD: 1281 return "METHOD"; 1282 case EAP_SEND_RESPONSE: 1283 return "SEND_RESPONSE"; 1284 case EAP_DISCARD: 1285 return "DISCARD"; 1286 case EAP_IDENTITY: 1287 return "IDENTITY"; 1288 case EAP_NOTIFICATION: 1289 return "NOTIFICATION"; 1290 case EAP_RETRANSMIT: 1291 return "RETRANSMIT"; 1292 case EAP_SUCCESS: 1293 return "SUCCESS"; 1294 case EAP_FAILURE: 1295 return "FAILURE"; 1296 default: 1297 return "UNKNOWN"; 1298 } 1299} 1300#endif /* CONFIG_CTRL_IFACE */ 1301 1302 1303#if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG) 1304static const char * eap_sm_method_state_txt(EapMethodState state) 1305{ 1306 switch (state) { 1307 case METHOD_NONE: 1308 return "NONE"; 1309 case METHOD_INIT: 1310 return "INIT"; 1311 case METHOD_CONT: 1312 return "CONT"; 1313 case METHOD_MAY_CONT: 1314 return "MAY_CONT"; 1315 case METHOD_DONE: 1316 return "DONE"; 1317 default: 1318 return "UNKNOWN"; 1319 } 1320} 1321 1322 1323static const char * eap_sm_decision_txt(EapDecision decision) 1324{ 1325 switch (decision) { 1326 case DECISION_FAIL: 1327 return "FAIL"; 1328 case DECISION_COND_SUCC: 1329 return "COND_SUCC"; 1330 case DECISION_UNCOND_SUCC: 1331 return "UNCOND_SUCC"; 1332 default: 1333 return "UNKNOWN"; 1334 } 1335} 1336#endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */ 1337 1338 1339#ifdef CONFIG_CTRL_IFACE 1340 1341/** 1342 * eap_sm_get_status - Get EAP state machine status 1343 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1344 * @buf: Buffer for status information 1345 * @buflen: Maximum buffer length 1346 * @verbose: Whether to include verbose status information 1347 * Returns: Number of bytes written to buf. 1348 * 1349 * Query EAP state machine for status information. This function fills in a 1350 * text area with current status information from the EAPOL state machine. If 1351 * the buffer (buf) is not large enough, status information will be truncated 1352 * to fit the buffer. 1353 */ 1354int eap_sm_get_status(struct eap_sm *sm, char *buf, size_t buflen, int verbose) 1355{ 1356 int len, ret; 1357 1358 if (sm == NULL) 1359 return 0; 1360 1361 len = os_snprintf(buf, buflen, 1362 "EAP state=%s\n", 1363 eap_sm_state_txt(sm->EAP_state)); 1364 if (len < 0 || (size_t) len >= buflen) 1365 return 0; 1366 1367 if (sm->selectedMethod != EAP_TYPE_NONE) { 1368 const char *name; 1369 if (sm->m) { 1370 name = sm->m->name; 1371 } else { 1372 const struct eap_method *m = 1373 eap_peer_get_eap_method(EAP_VENDOR_IETF, 1374 sm->selectedMethod); 1375 if (m) 1376 name = m->name; 1377 else 1378 name = "?"; 1379 } 1380 ret = os_snprintf(buf + len, buflen - len, 1381 "selectedMethod=%d (EAP-%s)\n", 1382 sm->selectedMethod, name); 1383 if (ret < 0 || (size_t) ret >= buflen - len) 1384 return len; 1385 len += ret; 1386 1387 if (sm->m && sm->m->get_status) { 1388 len += sm->m->get_status(sm, sm->eap_method_priv, 1389 buf + len, buflen - len, 1390 verbose); 1391 } 1392 } 1393 1394 if (verbose) { 1395 ret = os_snprintf(buf + len, buflen - len, 1396 "reqMethod=%d\n" 1397 "methodState=%s\n" 1398 "decision=%s\n" 1399 "ClientTimeout=%d\n", 1400 sm->reqMethod, 1401 eap_sm_method_state_txt(sm->methodState), 1402 eap_sm_decision_txt(sm->decision), 1403 sm->ClientTimeout); 1404 if (ret < 0 || (size_t) ret >= buflen - len) 1405 return len; 1406 len += ret; 1407 } 1408 1409 return len; 1410} 1411#endif /* CONFIG_CTRL_IFACE */ 1412 1413 1414#if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG) 1415typedef enum { 1416 TYPE_IDENTITY, TYPE_PASSWORD, TYPE_OTP, TYPE_PIN, TYPE_NEW_PASSWORD, 1417 TYPE_PASSPHRASE 1418} eap_ctrl_req_type; 1419 1420static void eap_sm_request(struct eap_sm *sm, eap_ctrl_req_type type, 1421 const char *msg, size_t msglen) 1422{ 1423 struct eap_peer_config *config; 1424 char *field, *txt, *tmp; 1425 1426 if (sm == NULL) 1427 return; 1428 config = eap_get_config(sm); 1429 if (config == NULL) 1430 return; 1431 1432 switch (type) { 1433 case TYPE_IDENTITY: 1434 field = "IDENTITY"; 1435 txt = "Identity"; 1436 config->pending_req_identity++; 1437 break; 1438 case TYPE_PASSWORD: 1439 field = "PASSWORD"; 1440 txt = "Password"; 1441 config->pending_req_password++; 1442 break; 1443 case TYPE_NEW_PASSWORD: 1444 field = "NEW_PASSWORD"; 1445 txt = "New Password"; 1446 config->pending_req_new_password++; 1447 break; 1448 case TYPE_PIN: 1449 field = "PIN"; 1450 txt = "PIN"; 1451 config->pending_req_pin++; 1452 break; 1453 case TYPE_OTP: 1454 field = "OTP"; 1455 if (msg) { 1456 tmp = os_malloc(msglen + 3); 1457 if (tmp == NULL) 1458 return; 1459 tmp[0] = '['; 1460 os_memcpy(tmp + 1, msg, msglen); 1461 tmp[msglen + 1] = ']'; 1462 tmp[msglen + 2] = '\0'; 1463 txt = tmp; 1464 os_free(config->pending_req_otp); 1465 config->pending_req_otp = tmp; 1466 config->pending_req_otp_len = msglen + 3; 1467 } else { 1468 if (config->pending_req_otp == NULL) 1469 return; 1470 txt = config->pending_req_otp; 1471 } 1472 break; 1473 case TYPE_PASSPHRASE: 1474 field = "PASSPHRASE"; 1475 txt = "Private key passphrase"; 1476 config->pending_req_passphrase++; 1477 break; 1478 default: 1479 return; 1480 } 1481 1482 if (sm->eapol_cb->eap_param_needed) 1483 sm->eapol_cb->eap_param_needed(sm->eapol_ctx, field, txt); 1484} 1485#else /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */ 1486#define eap_sm_request(sm, type, msg, msglen) do { } while (0) 1487#endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */ 1488 1489 1490/** 1491 * eap_sm_request_identity - Request identity from user (ctrl_iface) 1492 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1493 * 1494 * EAP methods can call this function to request identity information for the 1495 * current network. This is normally called when the identity is not included 1496 * in the network configuration. The request will be sent to monitor programs 1497 * through the control interface. 1498 */ 1499void eap_sm_request_identity(struct eap_sm *sm) 1500{ 1501 eap_sm_request(sm, TYPE_IDENTITY, NULL, 0); 1502} 1503 1504 1505/** 1506 * eap_sm_request_password - Request password from user (ctrl_iface) 1507 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1508 * 1509 * EAP methods can call this function to request password information for the 1510 * current network. This is normally called when the password is not included 1511 * in the network configuration. The request will be sent to monitor programs 1512 * through the control interface. 1513 */ 1514void eap_sm_request_password(struct eap_sm *sm) 1515{ 1516 eap_sm_request(sm, TYPE_PASSWORD, NULL, 0); 1517} 1518 1519 1520/** 1521 * eap_sm_request_new_password - Request new password from user (ctrl_iface) 1522 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1523 * 1524 * EAP methods can call this function to request new password information for 1525 * the current network. This is normally called when the EAP method indicates 1526 * that the current password has expired and password change is required. The 1527 * request will be sent to monitor programs through the control interface. 1528 */ 1529void eap_sm_request_new_password(struct eap_sm *sm) 1530{ 1531 eap_sm_request(sm, TYPE_NEW_PASSWORD, NULL, 0); 1532} 1533 1534 1535/** 1536 * eap_sm_request_pin - Request SIM or smart card PIN from user (ctrl_iface) 1537 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1538 * 1539 * EAP methods can call this function to request SIM or smart card PIN 1540 * information for the current network. This is normally called when the PIN is 1541 * not included in the network configuration. The request will be sent to 1542 * monitor programs through the control interface. 1543 */ 1544void eap_sm_request_pin(struct eap_sm *sm) 1545{ 1546 eap_sm_request(sm, TYPE_PIN, NULL, 0); 1547} 1548 1549 1550/** 1551 * eap_sm_request_otp - Request one time password from user (ctrl_iface) 1552 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1553 * @msg: Message to be displayed to the user when asking for OTP 1554 * @msg_len: Length of the user displayable message 1555 * 1556 * EAP methods can call this function to request open time password (OTP) for 1557 * the current network. The request will be sent to monitor programs through 1558 * the control interface. 1559 */ 1560void eap_sm_request_otp(struct eap_sm *sm, const char *msg, size_t msg_len) 1561{ 1562 eap_sm_request(sm, TYPE_OTP, msg, msg_len); 1563} 1564 1565 1566/** 1567 * eap_sm_request_passphrase - Request passphrase from user (ctrl_iface) 1568 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1569 * 1570 * EAP methods can call this function to request passphrase for a private key 1571 * for the current network. This is normally called when the passphrase is not 1572 * included in the network configuration. The request will be sent to monitor 1573 * programs through the control interface. 1574 */ 1575void eap_sm_request_passphrase(struct eap_sm *sm) 1576{ 1577 eap_sm_request(sm, TYPE_PASSPHRASE, NULL, 0); 1578} 1579 1580 1581/** 1582 * eap_sm_notify_ctrl_attached - Notification of attached monitor 1583 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1584 * 1585 * Notify EAP state machines that a monitor was attached to the control 1586 * interface to trigger re-sending of pending requests for user input. 1587 */ 1588void eap_sm_notify_ctrl_attached(struct eap_sm *sm) 1589{ 1590 struct eap_peer_config *config = eap_get_config(sm); 1591 1592 if (config == NULL) 1593 return; 1594 1595 /* Re-send any pending requests for user data since a new control 1596 * interface was added. This handles cases where the EAP authentication 1597 * starts immediately after system startup when the user interface is 1598 * not yet running. */ 1599 if (config->pending_req_identity) 1600 eap_sm_request_identity(sm); 1601 if (config->pending_req_password) 1602 eap_sm_request_password(sm); 1603 if (config->pending_req_new_password) 1604 eap_sm_request_new_password(sm); 1605 if (config->pending_req_otp) 1606 eap_sm_request_otp(sm, NULL, 0); 1607 if (config->pending_req_pin) 1608 eap_sm_request_pin(sm); 1609 if (config->pending_req_passphrase) 1610 eap_sm_request_passphrase(sm); 1611} 1612 1613 1614static int eap_allowed_phase2_type(int vendor, int type) 1615{ 1616 if (vendor != EAP_VENDOR_IETF) 1617 return 0; 1618 return type != EAP_TYPE_PEAP && type != EAP_TYPE_TTLS && 1619 type != EAP_TYPE_FAST; 1620} 1621 1622 1623/** 1624 * eap_get_phase2_type - Get EAP type for the given EAP phase 2 method name 1625 * @name: EAP method name, e.g., MD5 1626 * @vendor: Buffer for returning EAP Vendor-Id 1627 * Returns: EAP method type or %EAP_TYPE_NONE if not found 1628 * 1629 * This function maps EAP type names into EAP type numbers that are allowed for 1630 * Phase 2, i.e., for tunneled authentication. Phase 2 is used, e.g., with 1631 * EAP-PEAP, EAP-TTLS, and EAP-FAST. 1632 */ 1633u32 eap_get_phase2_type(const char *name, int *vendor) 1634{ 1635 int v; 1636 u8 type = eap_peer_get_type(name, &v); 1637 if (eap_allowed_phase2_type(v, type)) { 1638 *vendor = v; 1639 return type; 1640 } 1641 *vendor = EAP_VENDOR_IETF; 1642 return EAP_TYPE_NONE; 1643} 1644 1645 1646/** 1647 * eap_get_phase2_types - Get list of allowed EAP phase 2 types 1648 * @config: Pointer to a network configuration 1649 * @count: Pointer to a variable to be filled with number of returned EAP types 1650 * Returns: Pointer to allocated type list or %NULL on failure 1651 * 1652 * This function generates an array of allowed EAP phase 2 (tunneled) types for 1653 * the given network configuration. 1654 */ 1655struct eap_method_type * eap_get_phase2_types(struct eap_peer_config *config, 1656 size_t *count) 1657{ 1658 struct eap_method_type *buf; 1659 u32 method; 1660 int vendor; 1661 size_t mcount; 1662 const struct eap_method *methods, *m; 1663 1664 methods = eap_peer_get_methods(&mcount); 1665 if (methods == NULL) 1666 return NULL; 1667 *count = 0; 1668 buf = os_malloc(mcount * sizeof(struct eap_method_type)); 1669 if (buf == NULL) 1670 return NULL; 1671 1672 for (m = methods; m; m = m->next) { 1673 vendor = m->vendor; 1674 method = m->method; 1675 if (eap_allowed_phase2_type(vendor, method)) { 1676 if (vendor == EAP_VENDOR_IETF && 1677 method == EAP_TYPE_TLS && config && 1678 config->private_key2 == NULL) 1679 continue; 1680 buf[*count].vendor = vendor; 1681 buf[*count].method = method; 1682 (*count)++; 1683 } 1684 } 1685 1686 return buf; 1687} 1688 1689 1690/** 1691 * eap_set_fast_reauth - Update fast_reauth setting 1692 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1693 * @enabled: 1 = Fast reauthentication is enabled, 0 = Disabled 1694 */ 1695void eap_set_fast_reauth(struct eap_sm *sm, int enabled) 1696{ 1697 sm->fast_reauth = enabled; 1698} 1699 1700 1701/** 1702 * eap_set_workaround - Update EAP workarounds setting 1703 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1704 * @workaround: 1 = Enable EAP workarounds, 0 = Disable EAP workarounds 1705 */ 1706void eap_set_workaround(struct eap_sm *sm, unsigned int workaround) 1707{ 1708 sm->workaround = workaround; 1709} 1710 1711 1712/** 1713 * eap_get_config - Get current network configuration 1714 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1715 * Returns: Pointer to the current network configuration or %NULL if not found 1716 * 1717 * EAP peer methods should avoid using this function if they can use other 1718 * access functions, like eap_get_config_identity() and 1719 * eap_get_config_password(), that do not require direct access to 1720 * struct eap_peer_config. 1721 */ 1722struct eap_peer_config * eap_get_config(struct eap_sm *sm) 1723{ 1724 return sm->eapol_cb->get_config(sm->eapol_ctx); 1725} 1726 1727 1728/** 1729 * eap_get_config_identity - Get identity from the network configuration 1730 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1731 * @len: Buffer for the length of the identity 1732 * Returns: Pointer to the identity or %NULL if not found 1733 */ 1734const u8 * eap_get_config_identity(struct eap_sm *sm, size_t *len) 1735{ 1736 struct eap_peer_config *config = eap_get_config(sm); 1737 if (config == NULL) 1738 return NULL; 1739 *len = config->identity_len; 1740 return config->identity; 1741} 1742 1743 1744/** 1745 * eap_get_config_password - Get password from the network configuration 1746 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1747 * @len: Buffer for the length of the password 1748 * Returns: Pointer to the password or %NULL if not found 1749 */ 1750const u8 * eap_get_config_password(struct eap_sm *sm, size_t *len) 1751{ 1752 struct eap_peer_config *config = eap_get_config(sm); 1753 if (config == NULL) 1754 return NULL; 1755 *len = config->password_len; 1756 return config->password; 1757} 1758 1759 1760/** 1761 * eap_get_config_password2 - Get password from the network configuration 1762 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1763 * @len: Buffer for the length of the password 1764 * @hash: Buffer for returning whether the password is stored as a 1765 * NtPasswordHash instead of plaintext password; can be %NULL if this 1766 * information is not needed 1767 * Returns: Pointer to the password or %NULL if not found 1768 */ 1769const u8 * eap_get_config_password2(struct eap_sm *sm, size_t *len, int *hash) 1770{ 1771 struct eap_peer_config *config = eap_get_config(sm); 1772 if (config == NULL) 1773 return NULL; 1774 *len = config->password_len; 1775 if (hash) 1776 *hash = !!(config->flags & EAP_CONFIG_FLAGS_PASSWORD_NTHASH); 1777 return config->password; 1778} 1779 1780 1781/** 1782 * eap_get_config_new_password - Get new password from network configuration 1783 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1784 * @len: Buffer for the length of the new password 1785 * Returns: Pointer to the new password or %NULL if not found 1786 */ 1787const u8 * eap_get_config_new_password(struct eap_sm *sm, size_t *len) 1788{ 1789 struct eap_peer_config *config = eap_get_config(sm); 1790 if (config == NULL) 1791 return NULL; 1792 *len = config->new_password_len; 1793 return config->new_password; 1794} 1795 1796 1797/** 1798 * eap_get_config_otp - Get one-time password from the network configuration 1799 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1800 * @len: Buffer for the length of the one-time password 1801 * Returns: Pointer to the one-time password or %NULL if not found 1802 */ 1803const u8 * eap_get_config_otp(struct eap_sm *sm, size_t *len) 1804{ 1805 struct eap_peer_config *config = eap_get_config(sm); 1806 if (config == NULL) 1807 return NULL; 1808 *len = config->otp_len; 1809 return config->otp; 1810} 1811 1812 1813/** 1814 * eap_clear_config_otp - Clear used one-time password 1815 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1816 * 1817 * This function clears a used one-time password (OTP) from the current network 1818 * configuration. This should be called when the OTP has been used and is not 1819 * needed anymore. 1820 */ 1821void eap_clear_config_otp(struct eap_sm *sm) 1822{ 1823 struct eap_peer_config *config = eap_get_config(sm); 1824 if (config == NULL) 1825 return; 1826 os_memset(config->otp, 0, config->otp_len); 1827 os_free(config->otp); 1828 config->otp = NULL; 1829 config->otp_len = 0; 1830} 1831 1832 1833/** 1834 * eap_get_config_phase1 - Get phase1 data from the network configuration 1835 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1836 * Returns: Pointer to the phase1 data or %NULL if not found 1837 */ 1838const char * eap_get_config_phase1(struct eap_sm *sm) 1839{ 1840 struct eap_peer_config *config = eap_get_config(sm); 1841 if (config == NULL) 1842 return NULL; 1843 return config->phase1; 1844} 1845 1846 1847/** 1848 * eap_get_config_phase2 - Get phase2 data from the network configuration 1849 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1850 * Returns: Pointer to the phase1 data or %NULL if not found 1851 */ 1852const char * eap_get_config_phase2(struct eap_sm *sm) 1853{ 1854 struct eap_peer_config *config = eap_get_config(sm); 1855 if (config == NULL) 1856 return NULL; 1857 return config->phase2; 1858} 1859 1860 1861/** 1862 * eap_key_available - Get key availability (eapKeyAvailable variable) 1863 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1864 * Returns: 1 if EAP keying material is available, 0 if not 1865 */ 1866int eap_key_available(struct eap_sm *sm) 1867{ 1868 return sm ? sm->eapKeyAvailable : 0; 1869} 1870 1871 1872/** 1873 * eap_notify_success - Notify EAP state machine about external success trigger 1874 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1875 * 1876 * This function is called when external event, e.g., successful completion of 1877 * WPA-PSK key handshake, is indicating that EAP state machine should move to 1878 * success state. This is mainly used with security modes that do not use EAP 1879 * state machine (e.g., WPA-PSK). 1880 */ 1881void eap_notify_success(struct eap_sm *sm) 1882{ 1883 if (sm) { 1884 sm->decision = DECISION_COND_SUCC; 1885 sm->EAP_state = EAP_SUCCESS; 1886 } 1887} 1888 1889 1890/** 1891 * eap_notify_lower_layer_success - Notification of lower layer success 1892 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1893 * 1894 * Notify EAP state machines that a lower layer has detected a successful 1895 * authentication. This is used to recover from dropped EAP-Success messages. 1896 */ 1897void eap_notify_lower_layer_success(struct eap_sm *sm) 1898{ 1899 if (sm == NULL) 1900 return; 1901 1902 if (eapol_get_bool(sm, EAPOL_eapSuccess) || 1903 sm->decision == DECISION_FAIL || 1904 (sm->methodState != METHOD_MAY_CONT && 1905 sm->methodState != METHOD_DONE)) 1906 return; 1907 1908 if (sm->eapKeyData != NULL) 1909 sm->eapKeyAvailable = TRUE; 1910 eapol_set_bool(sm, EAPOL_eapSuccess, TRUE); 1911 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_SUCCESS 1912 "EAP authentication completed successfully (based on lower " 1913 "layer success)"); 1914} 1915 1916 1917/** 1918 * eap_get_eapKeyData - Get master session key (MSK) from EAP state machine 1919 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1920 * @len: Pointer to variable that will be set to number of bytes in the key 1921 * Returns: Pointer to the EAP keying data or %NULL on failure 1922 * 1923 * Fetch EAP keying material (MSK, eapKeyData) from the EAP state machine. The 1924 * key is available only after a successful authentication. EAP state machine 1925 * continues to manage the key data and the caller must not change or free the 1926 * returned data. 1927 */ 1928const u8 * eap_get_eapKeyData(struct eap_sm *sm, size_t *len) 1929{ 1930 if (sm == NULL || sm->eapKeyData == NULL) { 1931 *len = 0; 1932 return NULL; 1933 } 1934 1935 *len = sm->eapKeyDataLen; 1936 return sm->eapKeyData; 1937} 1938 1939 1940/** 1941 * eap_get_eapKeyData - Get EAP response data 1942 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1943 * Returns: Pointer to the EAP response (eapRespData) or %NULL on failure 1944 * 1945 * Fetch EAP response (eapRespData) from the EAP state machine. This data is 1946 * available when EAP state machine has processed an incoming EAP request. The 1947 * EAP state machine does not maintain a reference to the response after this 1948 * function is called and the caller is responsible for freeing the data. 1949 */ 1950struct wpabuf * eap_get_eapRespData(struct eap_sm *sm) 1951{ 1952 struct wpabuf *resp; 1953 1954 if (sm == NULL || sm->eapRespData == NULL) 1955 return NULL; 1956 1957 resp = sm->eapRespData; 1958 sm->eapRespData = NULL; 1959 1960 return resp; 1961} 1962 1963 1964/** 1965 * eap_sm_register_scard_ctx - Notification of smart card context 1966 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1967 * @ctx: Context data for smart card operations 1968 * 1969 * Notify EAP state machines of context data for smart card operations. This 1970 * context data will be used as a parameter for scard_*() functions. 1971 */ 1972void eap_register_scard_ctx(struct eap_sm *sm, void *ctx) 1973{ 1974 if (sm) 1975 sm->scard_ctx = ctx; 1976} 1977 1978 1979/** 1980 * eap_set_config_blob - Set or add a named configuration blob 1981 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1982 * @blob: New value for the blob 1983 * 1984 * Adds a new configuration blob or replaces the current value of an existing 1985 * blob. 1986 */ 1987void eap_set_config_blob(struct eap_sm *sm, struct wpa_config_blob *blob) 1988{ 1989#ifndef CONFIG_NO_CONFIG_BLOBS 1990 sm->eapol_cb->set_config_blob(sm->eapol_ctx, blob); 1991#endif /* CONFIG_NO_CONFIG_BLOBS */ 1992} 1993 1994 1995/** 1996 * eap_get_config_blob - Get a named configuration blob 1997 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1998 * @name: Name of the blob 1999 * Returns: Pointer to blob data or %NULL if not found 2000 */ 2001const struct wpa_config_blob * eap_get_config_blob(struct eap_sm *sm, 2002 const char *name) 2003{ 2004#ifndef CONFIG_NO_CONFIG_BLOBS 2005 return sm->eapol_cb->get_config_blob(sm->eapol_ctx, name); 2006#else /* CONFIG_NO_CONFIG_BLOBS */ 2007 return NULL; 2008#endif /* CONFIG_NO_CONFIG_BLOBS */ 2009} 2010 2011 2012/** 2013 * eap_set_force_disabled - Set force_disabled flag 2014 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 2015 * @disabled: 1 = EAP disabled, 0 = EAP enabled 2016 * 2017 * This function is used to force EAP state machine to be disabled when it is 2018 * not in use (e.g., with WPA-PSK or plaintext connections). 2019 */ 2020void eap_set_force_disabled(struct eap_sm *sm, int disabled) 2021{ 2022 sm->force_disabled = disabled; 2023} 2024 2025 2026 /** 2027 * eap_notify_pending - Notify that EAP method is ready to re-process a request 2028 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 2029 * 2030 * An EAP method can perform a pending operation (e.g., to get a response from 2031 * an external process). Once the response is available, this function can be 2032 * used to request EAPOL state machine to retry delivering the previously 2033 * received (and still unanswered) EAP request to EAP state machine. 2034 */ 2035void eap_notify_pending(struct eap_sm *sm) 2036{ 2037 sm->eapol_cb->notify_pending(sm->eapol_ctx); 2038} 2039 2040 2041/** 2042 * eap_invalidate_cached_session - Mark cached session data invalid 2043 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 2044 */ 2045void eap_invalidate_cached_session(struct eap_sm *sm) 2046{ 2047 if (sm) 2048 eap_deinit_prev_method(sm, "invalidate"); 2049} 2050 2051 2052int eap_is_wps_pbc_enrollee(struct eap_peer_config *conf) 2053{ 2054 if (conf->identity_len != WSC_ID_ENROLLEE_LEN || 2055 os_memcmp(conf->identity, WSC_ID_ENROLLEE, WSC_ID_ENROLLEE_LEN)) 2056 return 0; /* Not a WPS Enrollee */ 2057 2058 if (conf->phase1 == NULL || os_strstr(conf->phase1, "pbc=1") == NULL) 2059 return 0; /* Not using PBC */ 2060 2061 return 1; 2062} 2063 2064 2065int eap_is_wps_pin_enrollee(struct eap_peer_config *conf) 2066{ 2067 if (conf->identity_len != WSC_ID_ENROLLEE_LEN || 2068 os_memcmp(conf->identity, WSC_ID_ENROLLEE, WSC_ID_ENROLLEE_LEN)) 2069 return 0; /* Not a WPS Enrollee */ 2070 2071 if (conf->phase1 == NULL || os_strstr(conf->phase1, "pin=") == NULL) 2072 return 0; /* Not using PIN */ 2073 2074 return 1; 2075} 2076