1/*
2 * EAP peer state machines (RFC 4137)
3 * Copyright (c) 2004-2008, Jouni Malinen <j@w1.fi>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * Alternatively, this software may be distributed under the terms of BSD
10 * license.
11 *
12 * See README and COPYING for more details.
13 *
14 * This file implements the Peer State Machine as defined in RFC 4137. The used
15 * states and state transitions match mostly with the RFC. However, there are
16 * couple of additional transitions for working around small issues noticed
17 * during testing. These exceptions are explained in comments within the
18 * functions in this file. The method functions, m.func(), are similar to the
19 * ones used in RFC 4137, but some small changes have used here to optimize
20 * operations and to add functionality needed for fast re-authentication
21 * (session resumption).
22 */
23
24#include "includes.h"
25
26#include "common.h"
27#include "eap_i.h"
28#include "eap_config.h"
29#include "crypto/tls.h"
30#include "crypto/crypto.h"
31#include "pcsc_funcs.h"
32#include "wpa_ctrl.h"
33#include "state_machine.h"
34#include "eap_common/eap_wsc_common.h"
35
36#define STATE_MACHINE_DATA struct eap_sm
37#define STATE_MACHINE_DEBUG_PREFIX "EAP"
38
39#define EAP_MAX_AUTH_ROUNDS 50
40
41
42static Boolean eap_sm_allowMethod(struct eap_sm *sm, int vendor,
43				  EapType method);
44static struct wpabuf * eap_sm_buildNak(struct eap_sm *sm, int id);
45static void eap_sm_processIdentity(struct eap_sm *sm,
46				   const struct wpabuf *req);
47static void eap_sm_processNotify(struct eap_sm *sm, const struct wpabuf *req);
48static struct wpabuf * eap_sm_buildNotify(int id);
49static void eap_sm_parseEapReq(struct eap_sm *sm, const struct wpabuf *req);
50#if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG)
51static const char * eap_sm_method_state_txt(EapMethodState state);
52static const char * eap_sm_decision_txt(EapDecision decision);
53#endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
54
55
56
57static Boolean eapol_get_bool(struct eap_sm *sm, enum eapol_bool_var var)
58{
59	return sm->eapol_cb->get_bool(sm->eapol_ctx, var);
60}
61
62
63static void eapol_set_bool(struct eap_sm *sm, enum eapol_bool_var var,
64			   Boolean value)
65{
66	sm->eapol_cb->set_bool(sm->eapol_ctx, var, value);
67}
68
69
70static unsigned int eapol_get_int(struct eap_sm *sm, enum eapol_int_var var)
71{
72	return sm->eapol_cb->get_int(sm->eapol_ctx, var);
73}
74
75
76static void eapol_set_int(struct eap_sm *sm, enum eapol_int_var var,
77			  unsigned int value)
78{
79	sm->eapol_cb->set_int(sm->eapol_ctx, var, value);
80}
81
82
83static struct wpabuf * eapol_get_eapReqData(struct eap_sm *sm)
84{
85	return sm->eapol_cb->get_eapReqData(sm->eapol_ctx);
86}
87
88
89static void eap_deinit_prev_method(struct eap_sm *sm, const char *txt)
90{
91	if (sm->m == NULL || sm->eap_method_priv == NULL)
92		return;
93
94	wpa_printf(MSG_DEBUG, "EAP: deinitialize previously used EAP method "
95		   "(%d, %s) at %s", sm->selectedMethod, sm->m->name, txt);
96	sm->m->deinit(sm, sm->eap_method_priv);
97	sm->eap_method_priv = NULL;
98	sm->m = NULL;
99}
100
101
102/**
103 * eap_allowed_method - Check whether EAP method is allowed
104 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
105 * @vendor: Vendor-Id for expanded types or 0 = IETF for legacy types
106 * @method: EAP type
107 * Returns: 1 = allowed EAP method, 0 = not allowed
108 */
109int eap_allowed_method(struct eap_sm *sm, int vendor, u32 method)
110{
111	struct eap_peer_config *config = eap_get_config(sm);
112	int i;
113	struct eap_method_type *m;
114
115	if (config == NULL || config->eap_methods == NULL)
116		return 1;
117
118	m = config->eap_methods;
119	for (i = 0; m[i].vendor != EAP_VENDOR_IETF ||
120		     m[i].method != EAP_TYPE_NONE; i++) {
121		if (m[i].vendor == vendor && m[i].method == method)
122			return 1;
123	}
124	return 0;
125}
126
127
128/*
129 * This state initializes state machine variables when the machine is
130 * activated (portEnabled = TRUE). This is also used when re-starting
131 * authentication (eapRestart == TRUE).
132 */
133SM_STATE(EAP, INITIALIZE)
134{
135	SM_ENTRY(EAP, INITIALIZE);
136	if (sm->fast_reauth && sm->m && sm->m->has_reauth_data &&
137	    sm->m->has_reauth_data(sm, sm->eap_method_priv) &&
138	    !sm->prev_failure) {
139		wpa_printf(MSG_DEBUG, "EAP: maintaining EAP method data for "
140			   "fast reauthentication");
141		sm->m->deinit_for_reauth(sm, sm->eap_method_priv);
142	} else {
143		eap_deinit_prev_method(sm, "INITIALIZE");
144	}
145	sm->selectedMethod = EAP_TYPE_NONE;
146	sm->methodState = METHOD_NONE;
147	sm->allowNotifications = TRUE;
148	sm->decision = DECISION_FAIL;
149	eapol_set_int(sm, EAPOL_idleWhile, sm->ClientTimeout);
150	eapol_set_bool(sm, EAPOL_eapSuccess, FALSE);
151	eapol_set_bool(sm, EAPOL_eapFail, FALSE);
152	os_free(sm->eapKeyData);
153	sm->eapKeyData = NULL;
154	sm->eapKeyAvailable = FALSE;
155	eapol_set_bool(sm, EAPOL_eapRestart, FALSE);
156	sm->lastId = -1; /* new session - make sure this does not match with
157			  * the first EAP-Packet */
158	/*
159	 * RFC 4137 does not reset eapResp and eapNoResp here. However, this
160	 * seemed to be able to trigger cases where both were set and if EAPOL
161	 * state machine uses eapNoResp first, it may end up not sending a real
162	 * reply correctly. This occurred when the workaround in FAIL state set
163	 * eapNoResp = TRUE.. Maybe that workaround needs to be fixed to do
164	 * something else(?)
165	 */
166	eapol_set_bool(sm, EAPOL_eapResp, FALSE);
167	eapol_set_bool(sm, EAPOL_eapNoResp, FALSE);
168	sm->num_rounds = 0;
169	sm->prev_failure = 0;
170}
171
172
173/*
174 * This state is reached whenever service from the lower layer is interrupted
175 * or unavailable (portEnabled == FALSE). Immediate transition to INITIALIZE
176 * occurs when the port becomes enabled.
177 */
178SM_STATE(EAP, DISABLED)
179{
180	SM_ENTRY(EAP, DISABLED);
181	sm->num_rounds = 0;
182}
183
184
185/*
186 * The state machine spends most of its time here, waiting for something to
187 * happen. This state is entered unconditionally from INITIALIZE, DISCARD, and
188 * SEND_RESPONSE states.
189 */
190SM_STATE(EAP, IDLE)
191{
192	SM_ENTRY(EAP, IDLE);
193}
194
195
196/*
197 * This state is entered when an EAP packet is received (eapReq == TRUE) to
198 * parse the packet header.
199 */
200SM_STATE(EAP, RECEIVED)
201{
202	const struct wpabuf *eapReqData;
203
204	SM_ENTRY(EAP, RECEIVED);
205	eapReqData = eapol_get_eapReqData(sm);
206	/* parse rxReq, rxSuccess, rxFailure, reqId, reqMethod */
207	eap_sm_parseEapReq(sm, eapReqData);
208	sm->num_rounds++;
209}
210
211
212/*
213 * This state is entered when a request for a new type comes in. Either the
214 * correct method is started, or a Nak response is built.
215 */
216SM_STATE(EAP, GET_METHOD)
217{
218	int reinit;
219	EapType method;
220
221	SM_ENTRY(EAP, GET_METHOD);
222
223	if (sm->reqMethod == EAP_TYPE_EXPANDED)
224		method = sm->reqVendorMethod;
225	else
226		method = sm->reqMethod;
227
228	if (!eap_sm_allowMethod(sm, sm->reqVendor, method)) {
229		wpa_printf(MSG_DEBUG, "EAP: vendor %u method %u not allowed",
230			   sm->reqVendor, method);
231		goto nak;
232	}
233
234	/*
235	 * RFC 4137 does not define specific operation for fast
236	 * re-authentication (session resumption). The design here is to allow
237	 * the previously used method data to be maintained for
238	 * re-authentication if the method support session resumption.
239	 * Otherwise, the previously used method data is freed and a new method
240	 * is allocated here.
241	 */
242	if (sm->fast_reauth &&
243	    sm->m && sm->m->vendor == sm->reqVendor &&
244	    sm->m->method == method &&
245	    sm->m->has_reauth_data &&
246	    sm->m->has_reauth_data(sm, sm->eap_method_priv)) {
247		wpa_printf(MSG_DEBUG, "EAP: Using previous method data"
248			   " for fast re-authentication");
249		reinit = 1;
250	} else {
251		eap_deinit_prev_method(sm, "GET_METHOD");
252		reinit = 0;
253	}
254
255	sm->selectedMethod = sm->reqMethod;
256	if (sm->m == NULL)
257		sm->m = eap_peer_get_eap_method(sm->reqVendor, method);
258	if (!sm->m) {
259		wpa_printf(MSG_DEBUG, "EAP: Could not find selected method: "
260			   "vendor %d method %d",
261			   sm->reqVendor, method);
262		goto nak;
263	}
264
265	wpa_printf(MSG_DEBUG, "EAP: Initialize selected EAP method: "
266		   "vendor %u method %u (%s)",
267		   sm->reqVendor, method, sm->m->name);
268	if (reinit)
269		sm->eap_method_priv = sm->m->init_for_reauth(
270			sm, sm->eap_method_priv);
271	else
272		sm->eap_method_priv = sm->m->init(sm);
273
274	if (sm->eap_method_priv == NULL) {
275		struct eap_peer_config *config = eap_get_config(sm);
276		wpa_msg(sm->msg_ctx, MSG_INFO,
277			"EAP: Failed to initialize EAP method: vendor %u "
278			"method %u (%s)",
279			sm->reqVendor, method, sm->m->name);
280		sm->m = NULL;
281		sm->methodState = METHOD_NONE;
282		sm->selectedMethod = EAP_TYPE_NONE;
283		if (sm->reqMethod == EAP_TYPE_TLS && config &&
284		    (config->pending_req_pin ||
285		     config->pending_req_passphrase)) {
286			/*
287			 * Return without generating Nak in order to allow
288			 * entering of PIN code or passphrase to retry the
289			 * current EAP packet.
290			 */
291			wpa_printf(MSG_DEBUG, "EAP: Pending PIN/passphrase "
292				   "request - skip Nak");
293			return;
294		}
295
296		goto nak;
297	}
298
299	sm->methodState = METHOD_INIT;
300	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_METHOD
301		"EAP vendor %u method %u (%s) selected",
302		sm->reqVendor, method, sm->m->name);
303	return;
304
305nak:
306	wpabuf_free(sm->eapRespData);
307	sm->eapRespData = NULL;
308	sm->eapRespData = eap_sm_buildNak(sm, sm->reqId);
309}
310
311
312/*
313 * The method processing happens here. The request from the authenticator is
314 * processed, and an appropriate response packet is built.
315 */
316SM_STATE(EAP, METHOD)
317{
318	struct wpabuf *eapReqData;
319	struct eap_method_ret ret;
320
321	SM_ENTRY(EAP, METHOD);
322	if (sm->m == NULL) {
323		wpa_printf(MSG_WARNING, "EAP::METHOD - method not selected");
324		return;
325	}
326
327	eapReqData = eapol_get_eapReqData(sm);
328
329	/*
330	 * Get ignore, methodState, decision, allowNotifications, and
331	 * eapRespData. RFC 4137 uses three separate method procedure (check,
332	 * process, and buildResp) in this state. These have been combined into
333	 * a single function call to m->process() in order to optimize EAP
334	 * method implementation interface a bit. These procedures are only
335	 * used from within this METHOD state, so there is no need to keep
336	 * these as separate C functions.
337	 *
338	 * The RFC 4137 procedures return values as follows:
339	 * ignore = m.check(eapReqData)
340	 * (methodState, decision, allowNotifications) = m.process(eapReqData)
341	 * eapRespData = m.buildResp(reqId)
342	 */
343	os_memset(&ret, 0, sizeof(ret));
344	ret.ignore = sm->ignore;
345	ret.methodState = sm->methodState;
346	ret.decision = sm->decision;
347	ret.allowNotifications = sm->allowNotifications;
348	wpabuf_free(sm->eapRespData);
349	sm->eapRespData = NULL;
350	sm->eapRespData = sm->m->process(sm, sm->eap_method_priv, &ret,
351					 eapReqData);
352	wpa_printf(MSG_DEBUG, "EAP: method process -> ignore=%s "
353		   "methodState=%s decision=%s",
354		   ret.ignore ? "TRUE" : "FALSE",
355		   eap_sm_method_state_txt(ret.methodState),
356		   eap_sm_decision_txt(ret.decision));
357
358	sm->ignore = ret.ignore;
359	if (sm->ignore)
360		return;
361	sm->methodState = ret.methodState;
362	sm->decision = ret.decision;
363	sm->allowNotifications = ret.allowNotifications;
364
365	if (sm->m->isKeyAvailable && sm->m->getKey &&
366	    sm->m->isKeyAvailable(sm, sm->eap_method_priv)) {
367		os_free(sm->eapKeyData);
368		sm->eapKeyData = sm->m->getKey(sm, sm->eap_method_priv,
369					       &sm->eapKeyDataLen);
370	}
371}
372
373
374/*
375 * This state signals the lower layer that a response packet is ready to be
376 * sent.
377 */
378SM_STATE(EAP, SEND_RESPONSE)
379{
380	SM_ENTRY(EAP, SEND_RESPONSE);
381	wpabuf_free(sm->lastRespData);
382	if (sm->eapRespData) {
383		if (sm->workaround)
384			os_memcpy(sm->last_md5, sm->req_md5, 16);
385		sm->lastId = sm->reqId;
386		sm->lastRespData = wpabuf_dup(sm->eapRespData);
387		eapol_set_bool(sm, EAPOL_eapResp, TRUE);
388	} else
389		sm->lastRespData = NULL;
390	eapol_set_bool(sm, EAPOL_eapReq, FALSE);
391	eapol_set_int(sm, EAPOL_idleWhile, sm->ClientTimeout);
392}
393
394
395/*
396 * This state signals the lower layer that the request was discarded, and no
397 * response packet will be sent at this time.
398 */
399SM_STATE(EAP, DISCARD)
400{
401	SM_ENTRY(EAP, DISCARD);
402	eapol_set_bool(sm, EAPOL_eapReq, FALSE);
403	eapol_set_bool(sm, EAPOL_eapNoResp, TRUE);
404}
405
406
407/*
408 * Handles requests for Identity method and builds a response.
409 */
410SM_STATE(EAP, IDENTITY)
411{
412	const struct wpabuf *eapReqData;
413
414	SM_ENTRY(EAP, IDENTITY);
415	eapReqData = eapol_get_eapReqData(sm);
416	eap_sm_processIdentity(sm, eapReqData);
417	wpabuf_free(sm->eapRespData);
418	sm->eapRespData = NULL;
419	sm->eapRespData = eap_sm_buildIdentity(sm, sm->reqId, 0);
420}
421
422
423/*
424 * Handles requests for Notification method and builds a response.
425 */
426SM_STATE(EAP, NOTIFICATION)
427{
428	const struct wpabuf *eapReqData;
429
430	SM_ENTRY(EAP, NOTIFICATION);
431	eapReqData = eapol_get_eapReqData(sm);
432	eap_sm_processNotify(sm, eapReqData);
433	wpabuf_free(sm->eapRespData);
434	sm->eapRespData = NULL;
435	sm->eapRespData = eap_sm_buildNotify(sm->reqId);
436}
437
438
439/*
440 * This state retransmits the previous response packet.
441 */
442SM_STATE(EAP, RETRANSMIT)
443{
444	SM_ENTRY(EAP, RETRANSMIT);
445	wpabuf_free(sm->eapRespData);
446	if (sm->lastRespData)
447		sm->eapRespData = wpabuf_dup(sm->lastRespData);
448	else
449		sm->eapRespData = NULL;
450}
451
452
453/*
454 * This state is entered in case of a successful completion of authentication
455 * and state machine waits here until port is disabled or EAP authentication is
456 * restarted.
457 */
458SM_STATE(EAP, SUCCESS)
459{
460	SM_ENTRY(EAP, SUCCESS);
461	if (sm->eapKeyData != NULL)
462		sm->eapKeyAvailable = TRUE;
463	eapol_set_bool(sm, EAPOL_eapSuccess, TRUE);
464
465	/*
466	 * RFC 4137 does not clear eapReq here, but this seems to be required
467	 * to avoid processing the same request twice when state machine is
468	 * initialized.
469	 */
470	eapol_set_bool(sm, EAPOL_eapReq, FALSE);
471
472	/*
473	 * RFC 4137 does not set eapNoResp here, but this seems to be required
474	 * to get EAPOL Supplicant backend state machine into SUCCESS state. In
475	 * addition, either eapResp or eapNoResp is required to be set after
476	 * processing the received EAP frame.
477	 */
478	eapol_set_bool(sm, EAPOL_eapNoResp, TRUE);
479
480	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_SUCCESS
481		"EAP authentication completed successfully");
482}
483
484
485/*
486 * This state is entered in case of a failure and state machine waits here
487 * until port is disabled or EAP authentication is restarted.
488 */
489SM_STATE(EAP, FAILURE)
490{
491	SM_ENTRY(EAP, FAILURE);
492	eapol_set_bool(sm, EAPOL_eapFail, TRUE);
493
494	/*
495	 * RFC 4137 does not clear eapReq here, but this seems to be required
496	 * to avoid processing the same request twice when state machine is
497	 * initialized.
498	 */
499	eapol_set_bool(sm, EAPOL_eapReq, FALSE);
500
501	/*
502	 * RFC 4137 does not set eapNoResp here. However, either eapResp or
503	 * eapNoResp is required to be set after processing the received EAP
504	 * frame.
505	 */
506	eapol_set_bool(sm, EAPOL_eapNoResp, TRUE);
507
508	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_FAILURE
509		"EAP authentication failed");
510
511	sm->prev_failure = 1;
512}
513
514
515static int eap_success_workaround(struct eap_sm *sm, int reqId, int lastId)
516{
517	/*
518	 * At least Microsoft IAS and Meetinghouse Aegis seem to be sending
519	 * EAP-Success/Failure with lastId + 1 even though RFC 3748 and
520	 * RFC 4137 require that reqId == lastId. In addition, it looks like
521	 * Ringmaster v2.1.2.0 would be using lastId + 2 in EAP-Success.
522	 *
523	 * Accept this kind of Id if EAP workarounds are enabled. These are
524	 * unauthenticated plaintext messages, so this should have minimal
525	 * security implications (bit easier to fake EAP-Success/Failure).
526	 */
527	if (sm->workaround && (reqId == ((lastId + 1) & 0xff) ||
528			       reqId == ((lastId + 2) & 0xff))) {
529		wpa_printf(MSG_DEBUG, "EAP: Workaround for unexpected "
530			   "identifier field in EAP Success: "
531			   "reqId=%d lastId=%d (these are supposed to be "
532			   "same)", reqId, lastId);
533		return 1;
534	}
535	wpa_printf(MSG_DEBUG, "EAP: EAP-Success Id mismatch - reqId=%d "
536		   "lastId=%d", reqId, lastId);
537	return 0;
538}
539
540
541/*
542 * RFC 4137 - Appendix A.1: EAP Peer State Machine - State transitions
543 */
544
545static void eap_peer_sm_step_idle(struct eap_sm *sm)
546{
547	/*
548	 * The first three transitions are from RFC 4137. The last two are
549	 * local additions to handle special cases with LEAP and PEAP server
550	 * not sending EAP-Success in some cases.
551	 */
552	if (eapol_get_bool(sm, EAPOL_eapReq))
553		SM_ENTER(EAP, RECEIVED);
554	else if ((eapol_get_bool(sm, EAPOL_altAccept) &&
555		  sm->decision != DECISION_FAIL) ||
556		 (eapol_get_int(sm, EAPOL_idleWhile) == 0 &&
557		  sm->decision == DECISION_UNCOND_SUCC))
558		SM_ENTER(EAP, SUCCESS);
559	else if (eapol_get_bool(sm, EAPOL_altReject) ||
560		 (eapol_get_int(sm, EAPOL_idleWhile) == 0 &&
561		  sm->decision != DECISION_UNCOND_SUCC) ||
562		 (eapol_get_bool(sm, EAPOL_altAccept) &&
563		  sm->methodState != METHOD_CONT &&
564		  sm->decision == DECISION_FAIL))
565		SM_ENTER(EAP, FAILURE);
566	else if (sm->selectedMethod == EAP_TYPE_LEAP &&
567		 sm->leap_done && sm->decision != DECISION_FAIL &&
568		 sm->methodState == METHOD_DONE)
569		SM_ENTER(EAP, SUCCESS);
570	else if (sm->selectedMethod == EAP_TYPE_PEAP &&
571		 sm->peap_done && sm->decision != DECISION_FAIL &&
572		 sm->methodState == METHOD_DONE)
573		SM_ENTER(EAP, SUCCESS);
574}
575
576
577static int eap_peer_req_is_duplicate(struct eap_sm *sm)
578{
579	int duplicate;
580
581	duplicate = (sm->reqId == sm->lastId) && sm->rxReq;
582	if (sm->workaround && duplicate &&
583	    os_memcmp(sm->req_md5, sm->last_md5, 16) != 0) {
584		/*
585		 * RFC 4137 uses (reqId == lastId) as the only verification for
586		 * duplicate EAP requests. However, this misses cases where the
587		 * AS is incorrectly using the same id again; and
588		 * unfortunately, such implementations exist. Use MD5 hash as
589		 * an extra verification for the packets being duplicate to
590		 * workaround these issues.
591		 */
592		wpa_printf(MSG_DEBUG, "EAP: AS used the same Id again, but "
593			   "EAP packets were not identical");
594		wpa_printf(MSG_DEBUG, "EAP: workaround - assume this is not a "
595			   "duplicate packet");
596		duplicate = 0;
597	}
598
599	return duplicate;
600}
601
602
603static void eap_peer_sm_step_received(struct eap_sm *sm)
604{
605	int duplicate = eap_peer_req_is_duplicate(sm);
606
607	/*
608	 * Two special cases below for LEAP are local additions to work around
609	 * odd LEAP behavior (EAP-Success in the middle of authentication and
610	 * then swapped roles). Other transitions are based on RFC 4137.
611	 */
612	if (sm->rxSuccess && sm->decision != DECISION_FAIL &&
613	    (sm->reqId == sm->lastId ||
614	     eap_success_workaround(sm, sm->reqId, sm->lastId)))
615		SM_ENTER(EAP, SUCCESS);
616	else if (sm->methodState != METHOD_CONT &&
617		 ((sm->rxFailure &&
618		   sm->decision != DECISION_UNCOND_SUCC) ||
619		  (sm->rxSuccess && sm->decision == DECISION_FAIL &&
620		   (sm->selectedMethod != EAP_TYPE_LEAP ||
621		    sm->methodState != METHOD_MAY_CONT))) &&
622		 (sm->reqId == sm->lastId ||
623		  eap_success_workaround(sm, sm->reqId, sm->lastId)))
624		SM_ENTER(EAP, FAILURE);
625	else if (sm->rxReq && duplicate)
626		SM_ENTER(EAP, RETRANSMIT);
627	else if (sm->rxReq && !duplicate &&
628		 sm->reqMethod == EAP_TYPE_NOTIFICATION &&
629		 sm->allowNotifications)
630		SM_ENTER(EAP, NOTIFICATION);
631	else if (sm->rxReq && !duplicate &&
632		 sm->selectedMethod == EAP_TYPE_NONE &&
633		 sm->reqMethod == EAP_TYPE_IDENTITY)
634		SM_ENTER(EAP, IDENTITY);
635	else if (sm->rxReq && !duplicate &&
636		 sm->selectedMethod == EAP_TYPE_NONE &&
637		 sm->reqMethod != EAP_TYPE_IDENTITY &&
638		 sm->reqMethod != EAP_TYPE_NOTIFICATION)
639		SM_ENTER(EAP, GET_METHOD);
640	else if (sm->rxReq && !duplicate &&
641		 sm->reqMethod == sm->selectedMethod &&
642		 sm->methodState != METHOD_DONE)
643		SM_ENTER(EAP, METHOD);
644	else if (sm->selectedMethod == EAP_TYPE_LEAP &&
645		 (sm->rxSuccess || sm->rxResp))
646		SM_ENTER(EAP, METHOD);
647	else
648		SM_ENTER(EAP, DISCARD);
649}
650
651
652static void eap_peer_sm_step_local(struct eap_sm *sm)
653{
654	switch (sm->EAP_state) {
655	case EAP_INITIALIZE:
656		SM_ENTER(EAP, IDLE);
657		break;
658	case EAP_DISABLED:
659		if (eapol_get_bool(sm, EAPOL_portEnabled) &&
660		    !sm->force_disabled)
661			SM_ENTER(EAP, INITIALIZE);
662		break;
663	case EAP_IDLE:
664		eap_peer_sm_step_idle(sm);
665		break;
666	case EAP_RECEIVED:
667		eap_peer_sm_step_received(sm);
668		break;
669	case EAP_GET_METHOD:
670		if (sm->selectedMethod == sm->reqMethod)
671			SM_ENTER(EAP, METHOD);
672		else
673			SM_ENTER(EAP, SEND_RESPONSE);
674		break;
675	case EAP_METHOD:
676		if (sm->ignore)
677			SM_ENTER(EAP, DISCARD);
678		else
679			SM_ENTER(EAP, SEND_RESPONSE);
680		break;
681	case EAP_SEND_RESPONSE:
682		SM_ENTER(EAP, IDLE);
683		break;
684	case EAP_DISCARD:
685		SM_ENTER(EAP, IDLE);
686		break;
687	case EAP_IDENTITY:
688		SM_ENTER(EAP, SEND_RESPONSE);
689		break;
690	case EAP_NOTIFICATION:
691		SM_ENTER(EAP, SEND_RESPONSE);
692		break;
693	case EAP_RETRANSMIT:
694		SM_ENTER(EAP, SEND_RESPONSE);
695		break;
696	case EAP_SUCCESS:
697		break;
698	case EAP_FAILURE:
699		break;
700	}
701}
702
703
704SM_STEP(EAP)
705{
706	/* Global transitions */
707	if (eapol_get_bool(sm, EAPOL_eapRestart) &&
708	    eapol_get_bool(sm, EAPOL_portEnabled))
709		SM_ENTER_GLOBAL(EAP, INITIALIZE);
710	else if (!eapol_get_bool(sm, EAPOL_portEnabled) || sm->force_disabled)
711		SM_ENTER_GLOBAL(EAP, DISABLED);
712	else if (sm->num_rounds > EAP_MAX_AUTH_ROUNDS) {
713		/* RFC 4137 does not place any limit on number of EAP messages
714		 * in an authentication session. However, some error cases have
715		 * ended up in a state were EAP messages were sent between the
716		 * peer and server in a loop (e.g., TLS ACK frame in both
717		 * direction). Since this is quite undesired outcome, limit the
718		 * total number of EAP round-trips and abort authentication if
719		 * this limit is exceeded.
720		 */
721		if (sm->num_rounds == EAP_MAX_AUTH_ROUNDS + 1) {
722			wpa_msg(sm->msg_ctx, MSG_INFO, "EAP: more than %d "
723				"authentication rounds - abort",
724				EAP_MAX_AUTH_ROUNDS);
725			sm->num_rounds++;
726			SM_ENTER_GLOBAL(EAP, FAILURE);
727		}
728	} else {
729		/* Local transitions */
730		eap_peer_sm_step_local(sm);
731	}
732}
733
734
735static Boolean eap_sm_allowMethod(struct eap_sm *sm, int vendor,
736				  EapType method)
737{
738	if (!eap_allowed_method(sm, vendor, method)) {
739		wpa_printf(MSG_DEBUG, "EAP: configuration does not allow: "
740			   "vendor %u method %u", vendor, method);
741		return FALSE;
742	}
743	if (eap_peer_get_eap_method(vendor, method))
744		return TRUE;
745	wpa_printf(MSG_DEBUG, "EAP: not included in build: "
746		   "vendor %u method %u", vendor, method);
747	return FALSE;
748}
749
750
751static struct wpabuf * eap_sm_build_expanded_nak(
752	struct eap_sm *sm, int id, const struct eap_method *methods,
753	size_t count)
754{
755	struct wpabuf *resp;
756	int found = 0;
757	const struct eap_method *m;
758
759	wpa_printf(MSG_DEBUG, "EAP: Building expanded EAP-Nak");
760
761	/* RFC 3748 - 5.3.2: Expanded Nak */
762	resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_EXPANDED,
763			     8 + 8 * (count + 1), EAP_CODE_RESPONSE, id);
764	if (resp == NULL)
765		return NULL;
766
767	wpabuf_put_be24(resp, EAP_VENDOR_IETF);
768	wpabuf_put_be32(resp, EAP_TYPE_NAK);
769
770	for (m = methods; m; m = m->next) {
771		if (sm->reqVendor == m->vendor &&
772		    sm->reqVendorMethod == m->method)
773			continue; /* do not allow the current method again */
774		if (eap_allowed_method(sm, m->vendor, m->method)) {
775			wpa_printf(MSG_DEBUG, "EAP: allowed type: "
776				   "vendor=%u method=%u",
777				   m->vendor, m->method);
778			wpabuf_put_u8(resp, EAP_TYPE_EXPANDED);
779			wpabuf_put_be24(resp, m->vendor);
780			wpabuf_put_be32(resp, m->method);
781
782			found++;
783		}
784	}
785	if (!found) {
786		wpa_printf(MSG_DEBUG, "EAP: no more allowed methods");
787		wpabuf_put_u8(resp, EAP_TYPE_EXPANDED);
788		wpabuf_put_be24(resp, EAP_VENDOR_IETF);
789		wpabuf_put_be32(resp, EAP_TYPE_NONE);
790	}
791
792	eap_update_len(resp);
793
794	return resp;
795}
796
797
798static struct wpabuf * eap_sm_buildNak(struct eap_sm *sm, int id)
799{
800	struct wpabuf *resp;
801	u8 *start;
802	int found = 0, expanded_found = 0;
803	size_t count;
804	const struct eap_method *methods, *m;
805
806	wpa_printf(MSG_DEBUG, "EAP: Building EAP-Nak (requested type %u "
807		   "vendor=%u method=%u not allowed)", sm->reqMethod,
808		   sm->reqVendor, sm->reqVendorMethod);
809	methods = eap_peer_get_methods(&count);
810	if (methods == NULL)
811		return NULL;
812	if (sm->reqMethod == EAP_TYPE_EXPANDED)
813		return eap_sm_build_expanded_nak(sm, id, methods, count);
814
815	/* RFC 3748 - 5.3.1: Legacy Nak */
816	resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_NAK,
817			     sizeof(struct eap_hdr) + 1 + count + 1,
818			     EAP_CODE_RESPONSE, id);
819	if (resp == NULL)
820		return NULL;
821
822	start = wpabuf_put(resp, 0);
823	for (m = methods; m; m = m->next) {
824		if (m->vendor == EAP_VENDOR_IETF && m->method == sm->reqMethod)
825			continue; /* do not allow the current method again */
826		if (eap_allowed_method(sm, m->vendor, m->method)) {
827			if (m->vendor != EAP_VENDOR_IETF) {
828				if (expanded_found)
829					continue;
830				expanded_found = 1;
831				wpabuf_put_u8(resp, EAP_TYPE_EXPANDED);
832			} else
833				wpabuf_put_u8(resp, m->method);
834			found++;
835		}
836	}
837	if (!found)
838		wpabuf_put_u8(resp, EAP_TYPE_NONE);
839	wpa_hexdump(MSG_DEBUG, "EAP: allowed methods", start, found);
840
841	eap_update_len(resp);
842
843	return resp;
844}
845
846
847static void eap_sm_processIdentity(struct eap_sm *sm, const struct wpabuf *req)
848{
849	const struct eap_hdr *hdr = wpabuf_head(req);
850	const u8 *pos = (const u8 *) (hdr + 1);
851	pos++;
852
853	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_STARTED
854		"EAP authentication started");
855
856	/*
857	 * RFC 3748 - 5.1: Identity
858	 * Data field may contain a displayable message in UTF-8. If this
859	 * includes NUL-character, only the data before that should be
860	 * displayed. Some EAP implementasitons may piggy-back additional
861	 * options after the NUL.
862	 */
863	/* TODO: could save displayable message so that it can be shown to the
864	 * user in case of interaction is required */
865	wpa_hexdump_ascii(MSG_DEBUG, "EAP: EAP-Request Identity data",
866			  pos, be_to_host16(hdr->length) - 5);
867}
868
869
870#ifdef PCSC_FUNCS
871static int eap_sm_imsi_identity(struct eap_sm *sm,
872				struct eap_peer_config *conf)
873{
874	int aka = 0;
875	char imsi[100];
876	size_t imsi_len;
877	struct eap_method_type *m = conf->eap_methods;
878	int i;
879
880	imsi_len = sizeof(imsi);
881	if (scard_get_imsi(sm->scard_ctx, imsi, &imsi_len)) {
882		wpa_printf(MSG_WARNING, "Failed to get IMSI from SIM");
883		return -1;
884	}
885
886	wpa_hexdump_ascii(MSG_DEBUG, "IMSI", (u8 *) imsi, imsi_len);
887
888	for (i = 0; m && (m[i].vendor != EAP_VENDOR_IETF ||
889			  m[i].method != EAP_TYPE_NONE); i++) {
890		if (m[i].vendor == EAP_VENDOR_IETF &&
891		    m[i].method == EAP_TYPE_AKA) {
892			aka = 1;
893			break;
894		}
895	}
896
897	os_free(conf->identity);
898	conf->identity = os_malloc(1 + imsi_len);
899	if (conf->identity == NULL) {
900		wpa_printf(MSG_WARNING, "Failed to allocate buffer for "
901			   "IMSI-based identity");
902		return -1;
903	}
904
905	conf->identity[0] = aka ? '0' : '1';
906	os_memcpy(conf->identity + 1, imsi, imsi_len);
907	conf->identity_len = 1 + imsi_len;
908
909	return 0;
910}
911#endif /* PCSC_FUNCS */
912
913
914static int eap_sm_set_scard_pin(struct eap_sm *sm,
915				struct eap_peer_config *conf)
916{
917#ifdef PCSC_FUNCS
918	if (scard_set_pin(sm->scard_ctx, conf->pin)) {
919		/*
920		 * Make sure the same PIN is not tried again in order to avoid
921		 * blocking SIM.
922		 */
923		os_free(conf->pin);
924		conf->pin = NULL;
925
926		wpa_printf(MSG_WARNING, "PIN validation failed");
927		eap_sm_request_pin(sm);
928		return -1;
929	}
930	return 0;
931#else /* PCSC_FUNCS */
932	return -1;
933#endif /* PCSC_FUNCS */
934}
935
936static int eap_sm_get_scard_identity(struct eap_sm *sm,
937				     struct eap_peer_config *conf)
938{
939#ifdef PCSC_FUNCS
940	if (eap_sm_set_scard_pin(sm, conf))
941		return -1;
942
943	return eap_sm_imsi_identity(sm, conf);
944#else /* PCSC_FUNCS */
945	return -1;
946#endif /* PCSC_FUNCS */
947}
948
949
950/**
951 * eap_sm_buildIdentity - Build EAP-Identity/Response for the current network
952 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
953 * @id: EAP identifier for the packet
954 * @encrypted: Whether the packet is for encrypted tunnel (EAP phase 2)
955 * Returns: Pointer to the allocated EAP-Identity/Response packet or %NULL on
956 * failure
957 *
958 * This function allocates and builds an EAP-Identity/Response packet for the
959 * current network. The caller is responsible for freeing the returned data.
960 */
961struct wpabuf * eap_sm_buildIdentity(struct eap_sm *sm, int id, int encrypted)
962{
963	struct eap_peer_config *config = eap_get_config(sm);
964	struct wpabuf *resp;
965	const u8 *identity;
966	size_t identity_len;
967
968	if (config == NULL) {
969		wpa_printf(MSG_WARNING, "EAP: buildIdentity: configuration "
970			   "was not available");
971		return NULL;
972	}
973
974	if (sm->m && sm->m->get_identity &&
975	    (identity = sm->m->get_identity(sm, sm->eap_method_priv,
976					    &identity_len)) != NULL) {
977		wpa_hexdump_ascii(MSG_DEBUG, "EAP: using method re-auth "
978				  "identity", identity, identity_len);
979	} else if (!encrypted && config->anonymous_identity) {
980		identity = config->anonymous_identity;
981		identity_len = config->anonymous_identity_len;
982		wpa_hexdump_ascii(MSG_DEBUG, "EAP: using anonymous identity",
983				  identity, identity_len);
984	} else {
985		identity = config->identity;
986		identity_len = config->identity_len;
987		wpa_hexdump_ascii(MSG_DEBUG, "EAP: using real identity",
988				  identity, identity_len);
989	}
990
991	if (identity == NULL) {
992		wpa_printf(MSG_WARNING, "EAP: buildIdentity: identity "
993			   "configuration was not available");
994		if (config->pcsc) {
995			if (eap_sm_get_scard_identity(sm, config) < 0)
996				return NULL;
997			identity = config->identity;
998			identity_len = config->identity_len;
999			wpa_hexdump_ascii(MSG_DEBUG, "permanent identity from "
1000					  "IMSI", identity, identity_len);
1001		} else {
1002			eap_sm_request_identity(sm);
1003			return NULL;
1004		}
1005	} else if (config->pcsc) {
1006		if (eap_sm_set_scard_pin(sm, config) < 0)
1007			return NULL;
1008	}
1009
1010	resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_IDENTITY, identity_len,
1011			     EAP_CODE_RESPONSE, id);
1012	if (resp == NULL)
1013		return NULL;
1014
1015	wpabuf_put_data(resp, identity, identity_len);
1016
1017	return resp;
1018}
1019
1020
1021static void eap_sm_processNotify(struct eap_sm *sm, const struct wpabuf *req)
1022{
1023	const u8 *pos;
1024	char *msg;
1025	size_t i, msg_len;
1026
1027	pos = eap_hdr_validate(EAP_VENDOR_IETF, EAP_TYPE_NOTIFICATION, req,
1028			       &msg_len);
1029	if (pos == NULL)
1030		return;
1031	wpa_hexdump_ascii(MSG_DEBUG, "EAP: EAP-Request Notification data",
1032			  pos, msg_len);
1033
1034	msg = os_malloc(msg_len + 1);
1035	if (msg == NULL)
1036		return;
1037	for (i = 0; i < msg_len; i++)
1038		msg[i] = isprint(pos[i]) ? (char) pos[i] : '_';
1039	msg[msg_len] = '\0';
1040	wpa_msg(sm->msg_ctx, MSG_INFO, "%s%s",
1041		WPA_EVENT_EAP_NOTIFICATION, msg);
1042	os_free(msg);
1043}
1044
1045
1046static struct wpabuf * eap_sm_buildNotify(int id)
1047{
1048	struct wpabuf *resp;
1049
1050	wpa_printf(MSG_DEBUG, "EAP: Generating EAP-Response Notification");
1051	resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_NOTIFICATION, 0,
1052			     EAP_CODE_RESPONSE, id);
1053	if (resp == NULL)
1054		return NULL;
1055
1056	return resp;
1057}
1058
1059
1060static void eap_sm_parseEapReq(struct eap_sm *sm, const struct wpabuf *req)
1061{
1062	const struct eap_hdr *hdr;
1063	size_t plen;
1064	const u8 *pos;
1065
1066	sm->rxReq = sm->rxResp = sm->rxSuccess = sm->rxFailure = FALSE;
1067	sm->reqId = 0;
1068	sm->reqMethod = EAP_TYPE_NONE;
1069	sm->reqVendor = EAP_VENDOR_IETF;
1070	sm->reqVendorMethod = EAP_TYPE_NONE;
1071
1072	if (req == NULL || wpabuf_len(req) < sizeof(*hdr))
1073		return;
1074
1075	hdr = wpabuf_head(req);
1076	plen = be_to_host16(hdr->length);
1077	if (plen > wpabuf_len(req)) {
1078		wpa_printf(MSG_DEBUG, "EAP: Ignored truncated EAP-Packet "
1079			   "(len=%lu plen=%lu)",
1080			   (unsigned long) wpabuf_len(req),
1081			   (unsigned long) plen);
1082		return;
1083	}
1084
1085	sm->reqId = hdr->identifier;
1086
1087	if (sm->workaround) {
1088		const u8 *addr[1];
1089		addr[0] = wpabuf_head(req);
1090		md5_vector(1, addr, &plen, sm->req_md5);
1091	}
1092
1093	switch (hdr->code) {
1094	case EAP_CODE_REQUEST:
1095		if (plen < sizeof(*hdr) + 1) {
1096			wpa_printf(MSG_DEBUG, "EAP: Too short EAP-Request - "
1097				   "no Type field");
1098			return;
1099		}
1100		sm->rxReq = TRUE;
1101		pos = (const u8 *) (hdr + 1);
1102		sm->reqMethod = *pos++;
1103		if (sm->reqMethod == EAP_TYPE_EXPANDED) {
1104			if (plen < sizeof(*hdr) + 8) {
1105				wpa_printf(MSG_DEBUG, "EAP: Ignored truncated "
1106					   "expanded EAP-Packet (plen=%lu)",
1107					   (unsigned long) plen);
1108				return;
1109			}
1110			sm->reqVendor = WPA_GET_BE24(pos);
1111			pos += 3;
1112			sm->reqVendorMethod = WPA_GET_BE32(pos);
1113		}
1114		wpa_printf(MSG_DEBUG, "EAP: Received EAP-Request id=%d "
1115			   "method=%u vendor=%u vendorMethod=%u",
1116			   sm->reqId, sm->reqMethod, sm->reqVendor,
1117			   sm->reqVendorMethod);
1118		break;
1119	case EAP_CODE_RESPONSE:
1120		if (sm->selectedMethod == EAP_TYPE_LEAP) {
1121			/*
1122			 * LEAP differs from RFC 4137 by using reversed roles
1123			 * for mutual authentication and because of this, we
1124			 * need to accept EAP-Response frames if LEAP is used.
1125			 */
1126			if (plen < sizeof(*hdr) + 1) {
1127				wpa_printf(MSG_DEBUG, "EAP: Too short "
1128					   "EAP-Response - no Type field");
1129				return;
1130			}
1131			sm->rxResp = TRUE;
1132			pos = (const u8 *) (hdr + 1);
1133			sm->reqMethod = *pos;
1134			wpa_printf(MSG_DEBUG, "EAP: Received EAP-Response for "
1135				   "LEAP method=%d id=%d",
1136				   sm->reqMethod, sm->reqId);
1137			break;
1138		}
1139		wpa_printf(MSG_DEBUG, "EAP: Ignored EAP-Response");
1140		break;
1141	case EAP_CODE_SUCCESS:
1142		wpa_printf(MSG_DEBUG, "EAP: Received EAP-Success");
1143		sm->rxSuccess = TRUE;
1144		break;
1145	case EAP_CODE_FAILURE:
1146		wpa_printf(MSG_DEBUG, "EAP: Received EAP-Failure");
1147		sm->rxFailure = TRUE;
1148		break;
1149	default:
1150		wpa_printf(MSG_DEBUG, "EAP: Ignored EAP-Packet with unknown "
1151			   "code %d", hdr->code);
1152		break;
1153	}
1154}
1155
1156
1157/**
1158 * eap_peer_sm_init - Allocate and initialize EAP peer state machine
1159 * @eapol_ctx: Context data to be used with eapol_cb calls
1160 * @eapol_cb: Pointer to EAPOL callback functions
1161 * @msg_ctx: Context data for wpa_msg() calls
1162 * @conf: EAP configuration
1163 * Returns: Pointer to the allocated EAP state machine or %NULL on failure
1164 *
1165 * This function allocates and initializes an EAP state machine. In addition,
1166 * this initializes TLS library for the new EAP state machine. eapol_cb pointer
1167 * will be in use until eap_peer_sm_deinit() is used to deinitialize this EAP
1168 * state machine. Consequently, the caller must make sure that this data
1169 * structure remains alive while the EAP state machine is active.
1170 */
1171struct eap_sm * eap_peer_sm_init(void *eapol_ctx,
1172				 struct eapol_callbacks *eapol_cb,
1173				 void *msg_ctx, struct eap_config *conf)
1174{
1175	struct eap_sm *sm;
1176	struct tls_config tlsconf;
1177
1178	sm = os_zalloc(sizeof(*sm));
1179	if (sm == NULL)
1180		return NULL;
1181	sm->eapol_ctx = eapol_ctx;
1182	sm->eapol_cb = eapol_cb;
1183	sm->msg_ctx = msg_ctx;
1184	sm->ClientTimeout = 60;
1185	sm->wps = conf->wps;
1186
1187	os_memset(&tlsconf, 0, sizeof(tlsconf));
1188	tlsconf.opensc_engine_path = conf->opensc_engine_path;
1189	tlsconf.pkcs11_engine_path = conf->pkcs11_engine_path;
1190	tlsconf.pkcs11_module_path = conf->pkcs11_module_path;
1191	sm->ssl_ctx = tls_init(&tlsconf);
1192	if (sm->ssl_ctx == NULL) {
1193		wpa_printf(MSG_WARNING, "SSL: Failed to initialize TLS "
1194			   "context.");
1195		os_free(sm);
1196		return NULL;
1197	}
1198
1199	return sm;
1200}
1201
1202
1203/**
1204 * eap_peer_sm_deinit - Deinitialize and free an EAP peer state machine
1205 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1206 *
1207 * This function deinitializes EAP state machine and frees all allocated
1208 * resources.
1209 */
1210void eap_peer_sm_deinit(struct eap_sm *sm)
1211{
1212	if (sm == NULL)
1213		return;
1214	eap_deinit_prev_method(sm, "EAP deinit");
1215	eap_sm_abort(sm);
1216	tls_deinit(sm->ssl_ctx);
1217	os_free(sm);
1218}
1219
1220
1221/**
1222 * eap_peer_sm_step - Step EAP peer state machine
1223 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1224 * Returns: 1 if EAP state was changed or 0 if not
1225 *
1226 * This function advances EAP state machine to a new state to match with the
1227 * current variables. This should be called whenever variables used by the EAP
1228 * state machine have changed.
1229 */
1230int eap_peer_sm_step(struct eap_sm *sm)
1231{
1232	int res = 0;
1233	do {
1234		sm->changed = FALSE;
1235		SM_STEP_RUN(EAP);
1236		if (sm->changed)
1237			res = 1;
1238	} while (sm->changed);
1239	return res;
1240}
1241
1242
1243/**
1244 * eap_sm_abort - Abort EAP authentication
1245 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1246 *
1247 * Release system resources that have been allocated for the authentication
1248 * session without fully deinitializing the EAP state machine.
1249 */
1250void eap_sm_abort(struct eap_sm *sm)
1251{
1252	wpabuf_free(sm->lastRespData);
1253	sm->lastRespData = NULL;
1254	wpabuf_free(sm->eapRespData);
1255	sm->eapRespData = NULL;
1256	os_free(sm->eapKeyData);
1257	sm->eapKeyData = NULL;
1258
1259	/* This is not clearly specified in the EAP statemachines draft, but
1260	 * it seems necessary to make sure that some of the EAPOL variables get
1261	 * cleared for the next authentication. */
1262	eapol_set_bool(sm, EAPOL_eapSuccess, FALSE);
1263}
1264
1265
1266#ifdef CONFIG_CTRL_IFACE
1267static const char * eap_sm_state_txt(int state)
1268{
1269	switch (state) {
1270	case EAP_INITIALIZE:
1271		return "INITIALIZE";
1272	case EAP_DISABLED:
1273		return "DISABLED";
1274	case EAP_IDLE:
1275		return "IDLE";
1276	case EAP_RECEIVED:
1277		return "RECEIVED";
1278	case EAP_GET_METHOD:
1279		return "GET_METHOD";
1280	case EAP_METHOD:
1281		return "METHOD";
1282	case EAP_SEND_RESPONSE:
1283		return "SEND_RESPONSE";
1284	case EAP_DISCARD:
1285		return "DISCARD";
1286	case EAP_IDENTITY:
1287		return "IDENTITY";
1288	case EAP_NOTIFICATION:
1289		return "NOTIFICATION";
1290	case EAP_RETRANSMIT:
1291		return "RETRANSMIT";
1292	case EAP_SUCCESS:
1293		return "SUCCESS";
1294	case EAP_FAILURE:
1295		return "FAILURE";
1296	default:
1297		return "UNKNOWN";
1298	}
1299}
1300#endif /* CONFIG_CTRL_IFACE */
1301
1302
1303#if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG)
1304static const char * eap_sm_method_state_txt(EapMethodState state)
1305{
1306	switch (state) {
1307	case METHOD_NONE:
1308		return "NONE";
1309	case METHOD_INIT:
1310		return "INIT";
1311	case METHOD_CONT:
1312		return "CONT";
1313	case METHOD_MAY_CONT:
1314		return "MAY_CONT";
1315	case METHOD_DONE:
1316		return "DONE";
1317	default:
1318		return "UNKNOWN";
1319	}
1320}
1321
1322
1323static const char * eap_sm_decision_txt(EapDecision decision)
1324{
1325	switch (decision) {
1326	case DECISION_FAIL:
1327		return "FAIL";
1328	case DECISION_COND_SUCC:
1329		return "COND_SUCC";
1330	case DECISION_UNCOND_SUCC:
1331		return "UNCOND_SUCC";
1332	default:
1333		return "UNKNOWN";
1334	}
1335}
1336#endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
1337
1338
1339#ifdef CONFIG_CTRL_IFACE
1340
1341/**
1342 * eap_sm_get_status - Get EAP state machine status
1343 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1344 * @buf: Buffer for status information
1345 * @buflen: Maximum buffer length
1346 * @verbose: Whether to include verbose status information
1347 * Returns: Number of bytes written to buf.
1348 *
1349 * Query EAP state machine for status information. This function fills in a
1350 * text area with current status information from the EAPOL state machine. If
1351 * the buffer (buf) is not large enough, status information will be truncated
1352 * to fit the buffer.
1353 */
1354int eap_sm_get_status(struct eap_sm *sm, char *buf, size_t buflen, int verbose)
1355{
1356	int len, ret;
1357
1358	if (sm == NULL)
1359		return 0;
1360
1361	len = os_snprintf(buf, buflen,
1362			  "EAP state=%s\n",
1363			  eap_sm_state_txt(sm->EAP_state));
1364	if (len < 0 || (size_t) len >= buflen)
1365		return 0;
1366
1367	if (sm->selectedMethod != EAP_TYPE_NONE) {
1368		const char *name;
1369		if (sm->m) {
1370			name = sm->m->name;
1371		} else {
1372			const struct eap_method *m =
1373				eap_peer_get_eap_method(EAP_VENDOR_IETF,
1374							sm->selectedMethod);
1375			if (m)
1376				name = m->name;
1377			else
1378				name = "?";
1379		}
1380		ret = os_snprintf(buf + len, buflen - len,
1381				  "selectedMethod=%d (EAP-%s)\n",
1382				  sm->selectedMethod, name);
1383		if (ret < 0 || (size_t) ret >= buflen - len)
1384			return len;
1385		len += ret;
1386
1387		if (sm->m && sm->m->get_status) {
1388			len += sm->m->get_status(sm, sm->eap_method_priv,
1389						 buf + len, buflen - len,
1390						 verbose);
1391		}
1392	}
1393
1394	if (verbose) {
1395		ret = os_snprintf(buf + len, buflen - len,
1396				  "reqMethod=%d\n"
1397				  "methodState=%s\n"
1398				  "decision=%s\n"
1399				  "ClientTimeout=%d\n",
1400				  sm->reqMethod,
1401				  eap_sm_method_state_txt(sm->methodState),
1402				  eap_sm_decision_txt(sm->decision),
1403				  sm->ClientTimeout);
1404		if (ret < 0 || (size_t) ret >= buflen - len)
1405			return len;
1406		len += ret;
1407	}
1408
1409	return len;
1410}
1411#endif /* CONFIG_CTRL_IFACE */
1412
1413
1414#if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG)
1415typedef enum {
1416	TYPE_IDENTITY, TYPE_PASSWORD, TYPE_OTP, TYPE_PIN, TYPE_NEW_PASSWORD,
1417	TYPE_PASSPHRASE
1418} eap_ctrl_req_type;
1419
1420static void eap_sm_request(struct eap_sm *sm, eap_ctrl_req_type type,
1421			   const char *msg, size_t msglen)
1422{
1423	struct eap_peer_config *config;
1424	char *field, *txt, *tmp;
1425
1426	if (sm == NULL)
1427		return;
1428	config = eap_get_config(sm);
1429	if (config == NULL)
1430		return;
1431
1432	switch (type) {
1433	case TYPE_IDENTITY:
1434		field = "IDENTITY";
1435		txt = "Identity";
1436		config->pending_req_identity++;
1437		break;
1438	case TYPE_PASSWORD:
1439		field = "PASSWORD";
1440		txt = "Password";
1441		config->pending_req_password++;
1442		break;
1443	case TYPE_NEW_PASSWORD:
1444		field = "NEW_PASSWORD";
1445		txt = "New Password";
1446		config->pending_req_new_password++;
1447		break;
1448	case TYPE_PIN:
1449		field = "PIN";
1450		txt = "PIN";
1451		config->pending_req_pin++;
1452		break;
1453	case TYPE_OTP:
1454		field = "OTP";
1455		if (msg) {
1456			tmp = os_malloc(msglen + 3);
1457			if (tmp == NULL)
1458				return;
1459			tmp[0] = '[';
1460			os_memcpy(tmp + 1, msg, msglen);
1461			tmp[msglen + 1] = ']';
1462			tmp[msglen + 2] = '\0';
1463			txt = tmp;
1464			os_free(config->pending_req_otp);
1465			config->pending_req_otp = tmp;
1466			config->pending_req_otp_len = msglen + 3;
1467		} else {
1468			if (config->pending_req_otp == NULL)
1469				return;
1470			txt = config->pending_req_otp;
1471		}
1472		break;
1473	case TYPE_PASSPHRASE:
1474		field = "PASSPHRASE";
1475		txt = "Private key passphrase";
1476		config->pending_req_passphrase++;
1477		break;
1478	default:
1479		return;
1480	}
1481
1482	if (sm->eapol_cb->eap_param_needed)
1483		sm->eapol_cb->eap_param_needed(sm->eapol_ctx, field, txt);
1484}
1485#else /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
1486#define eap_sm_request(sm, type, msg, msglen) do { } while (0)
1487#endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
1488
1489
1490/**
1491 * eap_sm_request_identity - Request identity from user (ctrl_iface)
1492 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1493 *
1494 * EAP methods can call this function to request identity information for the
1495 * current network. This is normally called when the identity is not included
1496 * in the network configuration. The request will be sent to monitor programs
1497 * through the control interface.
1498 */
1499void eap_sm_request_identity(struct eap_sm *sm)
1500{
1501	eap_sm_request(sm, TYPE_IDENTITY, NULL, 0);
1502}
1503
1504
1505/**
1506 * eap_sm_request_password - Request password from user (ctrl_iface)
1507 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1508 *
1509 * EAP methods can call this function to request password information for the
1510 * current network. This is normally called when the password is not included
1511 * in the network configuration. The request will be sent to monitor programs
1512 * through the control interface.
1513 */
1514void eap_sm_request_password(struct eap_sm *sm)
1515{
1516	eap_sm_request(sm, TYPE_PASSWORD, NULL, 0);
1517}
1518
1519
1520/**
1521 * eap_sm_request_new_password - Request new password from user (ctrl_iface)
1522 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1523 *
1524 * EAP methods can call this function to request new password information for
1525 * the current network. This is normally called when the EAP method indicates
1526 * that the current password has expired and password change is required. The
1527 * request will be sent to monitor programs through the control interface.
1528 */
1529void eap_sm_request_new_password(struct eap_sm *sm)
1530{
1531	eap_sm_request(sm, TYPE_NEW_PASSWORD, NULL, 0);
1532}
1533
1534
1535/**
1536 * eap_sm_request_pin - Request SIM or smart card PIN from user (ctrl_iface)
1537 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1538 *
1539 * EAP methods can call this function to request SIM or smart card PIN
1540 * information for the current network. This is normally called when the PIN is
1541 * not included in the network configuration. The request will be sent to
1542 * monitor programs through the control interface.
1543 */
1544void eap_sm_request_pin(struct eap_sm *sm)
1545{
1546	eap_sm_request(sm, TYPE_PIN, NULL, 0);
1547}
1548
1549
1550/**
1551 * eap_sm_request_otp - Request one time password from user (ctrl_iface)
1552 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1553 * @msg: Message to be displayed to the user when asking for OTP
1554 * @msg_len: Length of the user displayable message
1555 *
1556 * EAP methods can call this function to request open time password (OTP) for
1557 * the current network. The request will be sent to monitor programs through
1558 * the control interface.
1559 */
1560void eap_sm_request_otp(struct eap_sm *sm, const char *msg, size_t msg_len)
1561{
1562	eap_sm_request(sm, TYPE_OTP, msg, msg_len);
1563}
1564
1565
1566/**
1567 * eap_sm_request_passphrase - Request passphrase from user (ctrl_iface)
1568 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1569 *
1570 * EAP methods can call this function to request passphrase for a private key
1571 * for the current network. This is normally called when the passphrase is not
1572 * included in the network configuration. The request will be sent to monitor
1573 * programs through the control interface.
1574 */
1575void eap_sm_request_passphrase(struct eap_sm *sm)
1576{
1577	eap_sm_request(sm, TYPE_PASSPHRASE, NULL, 0);
1578}
1579
1580
1581/**
1582 * eap_sm_notify_ctrl_attached - Notification of attached monitor
1583 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1584 *
1585 * Notify EAP state machines that a monitor was attached to the control
1586 * interface to trigger re-sending of pending requests for user input.
1587 */
1588void eap_sm_notify_ctrl_attached(struct eap_sm *sm)
1589{
1590	struct eap_peer_config *config = eap_get_config(sm);
1591
1592	if (config == NULL)
1593		return;
1594
1595	/* Re-send any pending requests for user data since a new control
1596	 * interface was added. This handles cases where the EAP authentication
1597	 * starts immediately after system startup when the user interface is
1598	 * not yet running. */
1599	if (config->pending_req_identity)
1600		eap_sm_request_identity(sm);
1601	if (config->pending_req_password)
1602		eap_sm_request_password(sm);
1603	if (config->pending_req_new_password)
1604		eap_sm_request_new_password(sm);
1605	if (config->pending_req_otp)
1606		eap_sm_request_otp(sm, NULL, 0);
1607	if (config->pending_req_pin)
1608		eap_sm_request_pin(sm);
1609	if (config->pending_req_passphrase)
1610		eap_sm_request_passphrase(sm);
1611}
1612
1613
1614static int eap_allowed_phase2_type(int vendor, int type)
1615{
1616	if (vendor != EAP_VENDOR_IETF)
1617		return 0;
1618	return type != EAP_TYPE_PEAP && type != EAP_TYPE_TTLS &&
1619		type != EAP_TYPE_FAST;
1620}
1621
1622
1623/**
1624 * eap_get_phase2_type - Get EAP type for the given EAP phase 2 method name
1625 * @name: EAP method name, e.g., MD5
1626 * @vendor: Buffer for returning EAP Vendor-Id
1627 * Returns: EAP method type or %EAP_TYPE_NONE if not found
1628 *
1629 * This function maps EAP type names into EAP type numbers that are allowed for
1630 * Phase 2, i.e., for tunneled authentication. Phase 2 is used, e.g., with
1631 * EAP-PEAP, EAP-TTLS, and EAP-FAST.
1632 */
1633u32 eap_get_phase2_type(const char *name, int *vendor)
1634{
1635	int v;
1636	u8 type = eap_peer_get_type(name, &v);
1637	if (eap_allowed_phase2_type(v, type)) {
1638		*vendor = v;
1639		return type;
1640	}
1641	*vendor = EAP_VENDOR_IETF;
1642	return EAP_TYPE_NONE;
1643}
1644
1645
1646/**
1647 * eap_get_phase2_types - Get list of allowed EAP phase 2 types
1648 * @config: Pointer to a network configuration
1649 * @count: Pointer to a variable to be filled with number of returned EAP types
1650 * Returns: Pointer to allocated type list or %NULL on failure
1651 *
1652 * This function generates an array of allowed EAP phase 2 (tunneled) types for
1653 * the given network configuration.
1654 */
1655struct eap_method_type * eap_get_phase2_types(struct eap_peer_config *config,
1656					      size_t *count)
1657{
1658	struct eap_method_type *buf;
1659	u32 method;
1660	int vendor;
1661	size_t mcount;
1662	const struct eap_method *methods, *m;
1663
1664	methods = eap_peer_get_methods(&mcount);
1665	if (methods == NULL)
1666		return NULL;
1667	*count = 0;
1668	buf = os_malloc(mcount * sizeof(struct eap_method_type));
1669	if (buf == NULL)
1670		return NULL;
1671
1672	for (m = methods; m; m = m->next) {
1673		vendor = m->vendor;
1674		method = m->method;
1675		if (eap_allowed_phase2_type(vendor, method)) {
1676			if (vendor == EAP_VENDOR_IETF &&
1677			    method == EAP_TYPE_TLS && config &&
1678			    config->private_key2 == NULL)
1679				continue;
1680			buf[*count].vendor = vendor;
1681			buf[*count].method = method;
1682			(*count)++;
1683		}
1684	}
1685
1686	return buf;
1687}
1688
1689
1690/**
1691 * eap_set_fast_reauth - Update fast_reauth setting
1692 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1693 * @enabled: 1 = Fast reauthentication is enabled, 0 = Disabled
1694 */
1695void eap_set_fast_reauth(struct eap_sm *sm, int enabled)
1696{
1697	sm->fast_reauth = enabled;
1698}
1699
1700
1701/**
1702 * eap_set_workaround - Update EAP workarounds setting
1703 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1704 * @workaround: 1 = Enable EAP workarounds, 0 = Disable EAP workarounds
1705 */
1706void eap_set_workaround(struct eap_sm *sm, unsigned int workaround)
1707{
1708	sm->workaround = workaround;
1709}
1710
1711
1712/**
1713 * eap_get_config - Get current network configuration
1714 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1715 * Returns: Pointer to the current network configuration or %NULL if not found
1716 *
1717 * EAP peer methods should avoid using this function if they can use other
1718 * access functions, like eap_get_config_identity() and
1719 * eap_get_config_password(), that do not require direct access to
1720 * struct eap_peer_config.
1721 */
1722struct eap_peer_config * eap_get_config(struct eap_sm *sm)
1723{
1724	return sm->eapol_cb->get_config(sm->eapol_ctx);
1725}
1726
1727
1728/**
1729 * eap_get_config_identity - Get identity from the network configuration
1730 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1731 * @len: Buffer for the length of the identity
1732 * Returns: Pointer to the identity or %NULL if not found
1733 */
1734const u8 * eap_get_config_identity(struct eap_sm *sm, size_t *len)
1735{
1736	struct eap_peer_config *config = eap_get_config(sm);
1737	if (config == NULL)
1738		return NULL;
1739	*len = config->identity_len;
1740	return config->identity;
1741}
1742
1743
1744/**
1745 * eap_get_config_password - Get password from the network configuration
1746 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1747 * @len: Buffer for the length of the password
1748 * Returns: Pointer to the password or %NULL if not found
1749 */
1750const u8 * eap_get_config_password(struct eap_sm *sm, size_t *len)
1751{
1752	struct eap_peer_config *config = eap_get_config(sm);
1753	if (config == NULL)
1754		return NULL;
1755	*len = config->password_len;
1756	return config->password;
1757}
1758
1759
1760/**
1761 * eap_get_config_password2 - Get password from the network configuration
1762 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1763 * @len: Buffer for the length of the password
1764 * @hash: Buffer for returning whether the password is stored as a
1765 * NtPasswordHash instead of plaintext password; can be %NULL if this
1766 * information is not needed
1767 * Returns: Pointer to the password or %NULL if not found
1768 */
1769const u8 * eap_get_config_password2(struct eap_sm *sm, size_t *len, int *hash)
1770{
1771	struct eap_peer_config *config = eap_get_config(sm);
1772	if (config == NULL)
1773		return NULL;
1774	*len = config->password_len;
1775	if (hash)
1776		*hash = !!(config->flags & EAP_CONFIG_FLAGS_PASSWORD_NTHASH);
1777	return config->password;
1778}
1779
1780
1781/**
1782 * eap_get_config_new_password - Get new password from network configuration
1783 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1784 * @len: Buffer for the length of the new password
1785 * Returns: Pointer to the new password or %NULL if not found
1786 */
1787const u8 * eap_get_config_new_password(struct eap_sm *sm, size_t *len)
1788{
1789	struct eap_peer_config *config = eap_get_config(sm);
1790	if (config == NULL)
1791		return NULL;
1792	*len = config->new_password_len;
1793	return config->new_password;
1794}
1795
1796
1797/**
1798 * eap_get_config_otp - Get one-time password from the network configuration
1799 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1800 * @len: Buffer for the length of the one-time password
1801 * Returns: Pointer to the one-time password or %NULL if not found
1802 */
1803const u8 * eap_get_config_otp(struct eap_sm *sm, size_t *len)
1804{
1805	struct eap_peer_config *config = eap_get_config(sm);
1806	if (config == NULL)
1807		return NULL;
1808	*len = config->otp_len;
1809	return config->otp;
1810}
1811
1812
1813/**
1814 * eap_clear_config_otp - Clear used one-time password
1815 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1816 *
1817 * This function clears a used one-time password (OTP) from the current network
1818 * configuration. This should be called when the OTP has been used and is not
1819 * needed anymore.
1820 */
1821void eap_clear_config_otp(struct eap_sm *sm)
1822{
1823	struct eap_peer_config *config = eap_get_config(sm);
1824	if (config == NULL)
1825		return;
1826	os_memset(config->otp, 0, config->otp_len);
1827	os_free(config->otp);
1828	config->otp = NULL;
1829	config->otp_len = 0;
1830}
1831
1832
1833/**
1834 * eap_get_config_phase1 - Get phase1 data from the network configuration
1835 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1836 * Returns: Pointer to the phase1 data or %NULL if not found
1837 */
1838const char * eap_get_config_phase1(struct eap_sm *sm)
1839{
1840	struct eap_peer_config *config = eap_get_config(sm);
1841	if (config == NULL)
1842		return NULL;
1843	return config->phase1;
1844}
1845
1846
1847/**
1848 * eap_get_config_phase2 - Get phase2 data from the network configuration
1849 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1850 * Returns: Pointer to the phase1 data or %NULL if not found
1851 */
1852const char * eap_get_config_phase2(struct eap_sm *sm)
1853{
1854	struct eap_peer_config *config = eap_get_config(sm);
1855	if (config == NULL)
1856		return NULL;
1857	return config->phase2;
1858}
1859
1860
1861/**
1862 * eap_key_available - Get key availability (eapKeyAvailable variable)
1863 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1864 * Returns: 1 if EAP keying material is available, 0 if not
1865 */
1866int eap_key_available(struct eap_sm *sm)
1867{
1868	return sm ? sm->eapKeyAvailable : 0;
1869}
1870
1871
1872/**
1873 * eap_notify_success - Notify EAP state machine about external success trigger
1874 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1875 *
1876 * This function is called when external event, e.g., successful completion of
1877 * WPA-PSK key handshake, is indicating that EAP state machine should move to
1878 * success state. This is mainly used with security modes that do not use EAP
1879 * state machine (e.g., WPA-PSK).
1880 */
1881void eap_notify_success(struct eap_sm *sm)
1882{
1883	if (sm) {
1884		sm->decision = DECISION_COND_SUCC;
1885		sm->EAP_state = EAP_SUCCESS;
1886	}
1887}
1888
1889
1890/**
1891 * eap_notify_lower_layer_success - Notification of lower layer success
1892 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1893 *
1894 * Notify EAP state machines that a lower layer has detected a successful
1895 * authentication. This is used to recover from dropped EAP-Success messages.
1896 */
1897void eap_notify_lower_layer_success(struct eap_sm *sm)
1898{
1899	if (sm == NULL)
1900		return;
1901
1902	if (eapol_get_bool(sm, EAPOL_eapSuccess) ||
1903	    sm->decision == DECISION_FAIL ||
1904	    (sm->methodState != METHOD_MAY_CONT &&
1905	     sm->methodState != METHOD_DONE))
1906		return;
1907
1908	if (sm->eapKeyData != NULL)
1909		sm->eapKeyAvailable = TRUE;
1910	eapol_set_bool(sm, EAPOL_eapSuccess, TRUE);
1911	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_SUCCESS
1912		"EAP authentication completed successfully (based on lower "
1913		"layer success)");
1914}
1915
1916
1917/**
1918 * eap_get_eapKeyData - Get master session key (MSK) from EAP state machine
1919 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1920 * @len: Pointer to variable that will be set to number of bytes in the key
1921 * Returns: Pointer to the EAP keying data or %NULL on failure
1922 *
1923 * Fetch EAP keying material (MSK, eapKeyData) from the EAP state machine. The
1924 * key is available only after a successful authentication. EAP state machine
1925 * continues to manage the key data and the caller must not change or free the
1926 * returned data.
1927 */
1928const u8 * eap_get_eapKeyData(struct eap_sm *sm, size_t *len)
1929{
1930	if (sm == NULL || sm->eapKeyData == NULL) {
1931		*len = 0;
1932		return NULL;
1933	}
1934
1935	*len = sm->eapKeyDataLen;
1936	return sm->eapKeyData;
1937}
1938
1939
1940/**
1941 * eap_get_eapKeyData - Get EAP response data
1942 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1943 * Returns: Pointer to the EAP response (eapRespData) or %NULL on failure
1944 *
1945 * Fetch EAP response (eapRespData) from the EAP state machine. This data is
1946 * available when EAP state machine has processed an incoming EAP request. The
1947 * EAP state machine does not maintain a reference to the response after this
1948 * function is called and the caller is responsible for freeing the data.
1949 */
1950struct wpabuf * eap_get_eapRespData(struct eap_sm *sm)
1951{
1952	struct wpabuf *resp;
1953
1954	if (sm == NULL || sm->eapRespData == NULL)
1955		return NULL;
1956
1957	resp = sm->eapRespData;
1958	sm->eapRespData = NULL;
1959
1960	return resp;
1961}
1962
1963
1964/**
1965 * eap_sm_register_scard_ctx - Notification of smart card context
1966 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1967 * @ctx: Context data for smart card operations
1968 *
1969 * Notify EAP state machines of context data for smart card operations. This
1970 * context data will be used as a parameter for scard_*() functions.
1971 */
1972void eap_register_scard_ctx(struct eap_sm *sm, void *ctx)
1973{
1974	if (sm)
1975		sm->scard_ctx = ctx;
1976}
1977
1978
1979/**
1980 * eap_set_config_blob - Set or add a named configuration blob
1981 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1982 * @blob: New value for the blob
1983 *
1984 * Adds a new configuration blob or replaces the current value of an existing
1985 * blob.
1986 */
1987void eap_set_config_blob(struct eap_sm *sm, struct wpa_config_blob *blob)
1988{
1989#ifndef CONFIG_NO_CONFIG_BLOBS
1990	sm->eapol_cb->set_config_blob(sm->eapol_ctx, blob);
1991#endif /* CONFIG_NO_CONFIG_BLOBS */
1992}
1993
1994
1995/**
1996 * eap_get_config_blob - Get a named configuration blob
1997 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1998 * @name: Name of the blob
1999 * Returns: Pointer to blob data or %NULL if not found
2000 */
2001const struct wpa_config_blob * eap_get_config_blob(struct eap_sm *sm,
2002						   const char *name)
2003{
2004#ifndef CONFIG_NO_CONFIG_BLOBS
2005	return sm->eapol_cb->get_config_blob(sm->eapol_ctx, name);
2006#else /* CONFIG_NO_CONFIG_BLOBS */
2007	return NULL;
2008#endif /* CONFIG_NO_CONFIG_BLOBS */
2009}
2010
2011
2012/**
2013 * eap_set_force_disabled - Set force_disabled flag
2014 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2015 * @disabled: 1 = EAP disabled, 0 = EAP enabled
2016 *
2017 * This function is used to force EAP state machine to be disabled when it is
2018 * not in use (e.g., with WPA-PSK or plaintext connections).
2019 */
2020void eap_set_force_disabled(struct eap_sm *sm, int disabled)
2021{
2022	sm->force_disabled = disabled;
2023}
2024
2025
2026 /**
2027 * eap_notify_pending - Notify that EAP method is ready to re-process a request
2028 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2029 *
2030 * An EAP method can perform a pending operation (e.g., to get a response from
2031 * an external process). Once the response is available, this function can be
2032 * used to request EAPOL state machine to retry delivering the previously
2033 * received (and still unanswered) EAP request to EAP state machine.
2034 */
2035void eap_notify_pending(struct eap_sm *sm)
2036{
2037	sm->eapol_cb->notify_pending(sm->eapol_ctx);
2038}
2039
2040
2041/**
2042 * eap_invalidate_cached_session - Mark cached session data invalid
2043 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2044 */
2045void eap_invalidate_cached_session(struct eap_sm *sm)
2046{
2047	if (sm)
2048		eap_deinit_prev_method(sm, "invalidate");
2049}
2050
2051
2052int eap_is_wps_pbc_enrollee(struct eap_peer_config *conf)
2053{
2054	if (conf->identity_len != WSC_ID_ENROLLEE_LEN ||
2055	    os_memcmp(conf->identity, WSC_ID_ENROLLEE, WSC_ID_ENROLLEE_LEN))
2056		return 0; /* Not a WPS Enrollee */
2057
2058	if (conf->phase1 == NULL || os_strstr(conf->phase1, "pbc=1") == NULL)
2059		return 0; /* Not using PBC */
2060
2061	return 1;
2062}
2063
2064
2065int eap_is_wps_pin_enrollee(struct eap_peer_config *conf)
2066{
2067	if (conf->identity_len != WSC_ID_ENROLLEE_LEN ||
2068	    os_memcmp(conf->identity, WSC_ID_ENROLLEE, WSC_ID_ENROLLEE_LEN))
2069		return 0; /* Not a WPS Enrollee */
2070
2071	if (conf->phase1 == NULL || os_strstr(conf->phase1, "pin=") == NULL)
2072		return 0; /* Not using PIN */
2073
2074	return 1;
2075}
2076