1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License"); you may not
5 * use this file except in compliance with the License. You may obtain a copy of
6 * the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
12 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
13 * License for the specific language governing permissions and limitations under
14 * the License.
15 */
16
17package com.android.inputmethod.latin;
18
19import java.util.ArrayList;
20import java.util.Arrays;
21import java.util.Collections;
22import java.util.Iterator;
23import java.util.LinkedList;
24import java.util.List;
25
26/**
27 * A dictionary that can fusion heads and tails of words for more compression.
28 */
29public class FusionDictionary implements Iterable<Word> {
30
31    /**
32     * A node of the dictionary, containing several CharGroups.
33     *
34     * A node is but an ordered array of CharGroups, which essentially contain all the
35     * real information.
36     * This class also contains fields to cache size and address, to help with binary
37     * generation.
38     */
39    public static class Node {
40        ArrayList<CharGroup> mData;
41        // To help with binary generation
42        int mCachedSize;
43        int mCachedAddress;
44        public Node() {
45            mData = new ArrayList<CharGroup>();
46            mCachedSize = Integer.MIN_VALUE;
47            mCachedAddress = Integer.MIN_VALUE;
48        }
49        public Node(ArrayList<CharGroup> data) {
50            mData = data;
51            mCachedSize = Integer.MIN_VALUE;
52            mCachedAddress = Integer.MIN_VALUE;
53        }
54    }
55
56    /**
57     * A string with a frequency.
58     *
59     * This represents an "attribute", that is either a bigram or a shortcut.
60     */
61    public static class WeightedString {
62        final String mWord;
63        final int mFrequency;
64        public WeightedString(String word, int frequency) {
65            mWord = word;
66            mFrequency = frequency;
67        }
68    }
69
70    /**
71     * A group of characters, with a frequency, shortcuts, bigrams, and children.
72     *
73     * This is the central class of the in-memory representation. A CharGroup is what can
74     * be seen as a traditional "trie node", except it can hold several characters at the
75     * same time. A CharGroup essentially represents one or several characters in the middle
76     * of the trie trie; as such, it can be a terminal, and it can have children.
77     * In this in-memory representation, whether the CharGroup is a terminal or not is represented
78     * in the frequency, where NOT_A_TERMINAL (= -1) means this is not a terminal and any other
79     * value is the frequency of this terminal. A terminal may have non-null shortcuts and/or
80     * bigrams, but a non-terminal may not. Moreover, children, if present, are null.
81     */
82    public static class CharGroup {
83        public static final int NOT_A_TERMINAL = -1;
84        final int mChars[];
85        final ArrayList<WeightedString> mBigrams;
86        final int mFrequency; // NOT_A_TERMINAL == mFrequency indicates this is not a terminal.
87        Node mChildren;
88        // The two following members to help with binary generation
89        int mCachedSize;
90        int mCachedAddress;
91
92        public CharGroup(final int[] chars,
93                final ArrayList<WeightedString> bigrams, final int frequency) {
94            mChars = chars;
95            mFrequency = frequency;
96            mBigrams = bigrams;
97            mChildren = null;
98        }
99
100        public CharGroup(final int[] chars,
101                final ArrayList<WeightedString> bigrams, final int frequency, final Node children) {
102            mChars = chars;
103            mFrequency = frequency;
104            mBigrams = bigrams;
105            mChildren = children;
106        }
107
108        public void addChild(CharGroup n) {
109            if (null == mChildren) {
110                mChildren = new Node();
111            }
112            mChildren.mData.add(n);
113        }
114
115        public boolean isTerminal() {
116            return NOT_A_TERMINAL != mFrequency;
117        }
118
119        public boolean hasSeveralChars() {
120            assert(mChars.length > 0);
121            return 1 < mChars.length;
122        }
123    }
124
125    /**
126     * Options global to the dictionary.
127     *
128     * There are no options at the moment, so this class is empty.
129     */
130    public static class DictionaryOptions {
131    }
132
133
134    public final DictionaryOptions mOptions;
135    public final Node mRoot;
136
137    public FusionDictionary() {
138        mOptions = new DictionaryOptions();
139        mRoot = new Node();
140    }
141
142    public FusionDictionary(final Node root, final DictionaryOptions options) {
143        mRoot = root;
144        mOptions = options;
145    }
146
147    /**
148     * Helper method to convert a String to an int array.
149     */
150    static private int[] getCodePoints(String word) {
151        final int wordLength = word.length();
152        int[] array = new int[word.codePointCount(0, wordLength)];
153        for (int i = 0; i < wordLength; ++i) {
154            array[i] = word.codePointAt(i);
155        }
156        return array;
157    }
158
159    /**
160     * Helper method to add a word as a string.
161     *
162     * This method adds a word to the dictionary with the given frequency. Optional
163     * lists of bigrams and shortcuts can be passed here. For each word inside,
164     * they will be added to the dictionary as necessary.
165     *
166     * @param word the word to add.
167     * @param frequency the frequency of the word, in the range [0..255].
168     * @param bigrams a list of bigrams, or null.
169     */
170    public void add(String word, int frequency, ArrayList<WeightedString> bigrams) {
171        if (null != bigrams) {
172            for (WeightedString bigram : bigrams) {
173                final CharGroup t = findWordInTree(mRoot, bigram.mWord);
174                if (null == t) {
175                    add(getCodePoints(bigram.mWord), 0, null);
176                }
177            }
178        }
179        add(getCodePoints(word), frequency, bigrams);
180    }
181
182    /**
183     * Sanity check for a node.
184     *
185     * This method checks that all CharGroups in a node are ordered as expected.
186     * If they are, nothing happens. If they aren't, an exception is thrown.
187     */
188    private void checkStack(Node node) {
189        ArrayList<CharGroup> stack = node.mData;
190        int lastValue = -1;
191        for (int i = 0; i < stack.size(); ++i) {
192            int currentValue = stack.get(i).mChars[0];
193            if (currentValue <= lastValue)
194                throw new RuntimeException("Invalid stack");
195            else
196                lastValue = currentValue;
197        }
198    }
199
200    /**
201     * Add a word to this dictionary.
202     *
203     * The bigrams, if any, have to be in the dictionary already. If they aren't,
204     * an exception is thrown.
205     *
206     * @param word the word, as an int array.
207     * @param frequency the frequency of the word, in the range [0..255].
208     * @param bigrams an optional list of bigrams for this word (null if none).
209     */
210    private void add(int[] word, int frequency, ArrayList<WeightedString> bigrams) {
211        assert(frequency >= 0 && frequency <= 255);
212        Node currentNode = mRoot;
213        int charIndex = 0;
214
215        CharGroup currentGroup = null;
216        int differentCharIndex = 0; // Set by the loop to the index of the char that differs
217        int nodeIndex = findIndexOfChar(mRoot, word[charIndex]);
218        while (CHARACTER_NOT_FOUND != nodeIndex) {
219            currentGroup = currentNode.mData.get(nodeIndex);
220            differentCharIndex = compareArrays(currentGroup.mChars, word, charIndex);
221            if (ARRAYS_ARE_EQUAL != differentCharIndex
222                    && differentCharIndex < currentGroup.mChars.length) break;
223            if (null == currentGroup.mChildren) break;
224            charIndex += currentGroup.mChars.length;
225            if (charIndex >= word.length) break;
226            currentNode = currentGroup.mChildren;
227            nodeIndex = findIndexOfChar(currentNode, word[charIndex]);
228        }
229
230        if (-1 == nodeIndex) {
231            // No node at this point to accept the word. Create one.
232            final int insertionIndex = findInsertionIndex(currentNode, word[charIndex]);
233            final CharGroup newGroup = new CharGroup(
234                    Arrays.copyOfRange(word, charIndex, word.length), bigrams, frequency);
235            currentNode.mData.add(insertionIndex, newGroup);
236            checkStack(currentNode);
237        } else {
238            // There is a word with a common prefix.
239            if (differentCharIndex == currentGroup.mChars.length) {
240                if (charIndex + differentCharIndex >= word.length) {
241                    // The new word is a prefix of an existing word, but the node on which it
242                    // should end already exists as is.
243                    if (currentGroup.mFrequency > 0) {
244                        throw new RuntimeException("Such a word already exists in the dictionary : "
245                                + new String(word, 0, word.length));
246                    } else {
247                        final CharGroup newNode = new CharGroup(currentGroup.mChars,
248                                bigrams, frequency, currentGroup.mChildren);
249                        currentNode.mData.set(nodeIndex, newNode);
250                        checkStack(currentNode);
251                    }
252                } else {
253                    // The new word matches the full old word and extends past it.
254                    // We only have to create a new node and add it to the end of this.
255                    final CharGroup newNode = new CharGroup(
256                            Arrays.copyOfRange(word, charIndex + differentCharIndex, word.length),
257                                    bigrams, frequency);
258                    currentGroup.mChildren = new Node();
259                    currentGroup.mChildren.mData.add(newNode);
260                }
261            } else {
262                if (0 == differentCharIndex) {
263                    // Exact same word. Check the frequency is 0 or -1, and update.
264                    if (0 != frequency) {
265                        if (0 < currentGroup.mFrequency) {
266                            throw new RuntimeException("This word already exists with frequency "
267                                    + currentGroup.mFrequency + " : "
268                                    + new String(word, 0, word.length));
269                        }
270                        final CharGroup newGroup = new CharGroup(word,
271                                currentGroup.mBigrams, frequency, currentGroup.mChildren);
272                        currentNode.mData.set(nodeIndex, newGroup);
273                    }
274                } else {
275                    // Partial prefix match only. We have to replace the current node with a node
276                    // containing the current prefix and create two new ones for the tails.
277                    Node newChildren = new Node();
278                    final CharGroup newOldWord = new CharGroup(
279                            Arrays.copyOfRange(currentGroup.mChars, differentCharIndex,
280                                    currentGroup.mChars.length),
281                            currentGroup.mBigrams, currentGroup.mFrequency, currentGroup.mChildren);
282                    newChildren.mData.add(newOldWord);
283
284                    final CharGroup newParent;
285                    if (charIndex + differentCharIndex >= word.length) {
286                        newParent = new CharGroup(
287                                Arrays.copyOfRange(currentGroup.mChars, 0, differentCharIndex),
288                                        bigrams, frequency, newChildren);
289                    } else {
290                        newParent = new CharGroup(
291                                Arrays.copyOfRange(currentGroup.mChars, 0, differentCharIndex),
292                                        null, -1, newChildren);
293                        final CharGroup newWord = new CharGroup(
294                                Arrays.copyOfRange(word, charIndex + differentCharIndex,
295                                        word.length), bigrams, frequency);
296                        final int addIndex = word[charIndex + differentCharIndex]
297                                > currentGroup.mChars[differentCharIndex] ? 1 : 0;
298                        newChildren.mData.add(addIndex, newWord);
299                    }
300                    currentNode.mData.set(nodeIndex, newParent);
301                }
302                checkStack(currentNode);
303            }
304        }
305    }
306
307    /**
308     * Custom comparison of two int arrays taken to contain character codes.
309     *
310     * This method compares the two arrays passed as an argument in a lexicographic way,
311     * with an offset in the dst string.
312     * This method does NOT test for the first character. It is taken to be equal.
313     * I repeat: this method starts the comparison at 1 <> dstOffset + 1.
314     * The index where the strings differ is returned. ARRAYS_ARE_EQUAL = 0 is returned if the
315     * strings are equal. This works BECAUSE we don't look at the first character.
316     *
317     * @param src the left-hand side string of the comparison.
318     * @param dst the right-hand side string of the comparison.
319     * @param dstOffset the offset in the right-hand side string.
320     * @return the index at which the strings differ, or ARRAYS_ARE_EQUAL = 0 if they don't.
321     */
322    private static int ARRAYS_ARE_EQUAL = 0;
323    private static int compareArrays(final int[] src, final int[] dst, int dstOffset) {
324        // We do NOT test the first char, because we come from a method that already
325        // tested it.
326        for (int i = 1; i < src.length; ++i) {
327            if (dstOffset + i >= dst.length) return i;
328            if (src[i] != dst[dstOffset + i]) return i;
329        }
330        if (dst.length > src.length) return src.length;
331        return ARRAYS_ARE_EQUAL;
332    }
333
334    /**
335     * Helper class that compares and sorts two chargroups according to their
336     * first element only. I repeat: ONLY the first element is considered, the rest
337     * is ignored.
338     * This comparator imposes orderings that are inconsistent with equals.
339     */
340    static private class CharGroupComparator implements java.util.Comparator {
341        public int compare(Object o1, Object o2) {
342            final CharGroup c1 = (CharGroup)o1;
343            final CharGroup c2 = (CharGroup)o2;
344            if (c1.mChars[0] == c2.mChars[0]) return 0;
345            return c1.mChars[0] < c2.mChars[0] ? -1 : 1;
346        }
347        public boolean equals(Object o) {
348            return o instanceof CharGroupComparator;
349        }
350    }
351    final static private CharGroupComparator CHARGROUP_COMPARATOR = new CharGroupComparator();
352
353    /**
354     * Finds the insertion index of a character within a node.
355     */
356    private static int findInsertionIndex(final Node node, int character) {
357        final List data = node.mData;
358        final CharGroup reference = new CharGroup(new int[] { character }, null, 0);
359        int result = Collections.binarySearch(data, reference, CHARGROUP_COMPARATOR);
360        return result >= 0 ? result : -result - 1;
361    }
362
363    /**
364     * Find the index of a char in a node, if it exists.
365     *
366     * @param node the node to search in.
367     * @param character the character to search for.
368     * @return the position of the character if it's there, or CHARACTER_NOT_FOUND = -1 else.
369     */
370    private static int CHARACTER_NOT_FOUND = -1;
371    private static int findIndexOfChar(final Node node, int character) {
372        final int insertionIndex = findInsertionIndex(node, character);
373        if (node.mData.size() <= insertionIndex) return CHARACTER_NOT_FOUND;
374        return character == node.mData.get(insertionIndex).mChars[0] ? insertionIndex
375                : CHARACTER_NOT_FOUND;
376    }
377
378    /**
379     * Helper method to find a word in a given branch.
380     */
381    public static CharGroup findWordInTree(Node node, final String s) {
382        int index = 0;
383        final StringBuilder checker = new StringBuilder();
384
385        CharGroup currentGroup;
386        do {
387            int indexOfGroup = findIndexOfChar(node, s.codePointAt(index));
388            if (CHARACTER_NOT_FOUND == indexOfGroup) return null;
389            currentGroup = node.mData.get(indexOfGroup);
390            checker.append(new String(currentGroup.mChars, 0, currentGroup.mChars.length));
391            index += currentGroup.mChars.length;
392            if (index < s.length()) {
393                node = currentGroup.mChildren;
394            }
395        } while (null != node && index < s.length());
396
397        if (!s.equals(checker.toString())) return null;
398        return currentGroup;
399    }
400
401    /**
402     * Recursively count the number of character groups in a given branch of the trie.
403     *
404     * @param node the parent node.
405     * @return the number of char groups in all the branch under this node.
406     */
407    public static int countCharGroups(final Node node) {
408        final int nodeSize = node.mData.size();
409        int size = nodeSize;
410        for (int i = nodeSize - 1; i >= 0; --i) {
411            CharGroup group = node.mData.get(i);
412            if (null != group.mChildren)
413                size += countCharGroups(group.mChildren);
414        }
415        return size;
416    }
417
418    /**
419     * Recursively count the number of nodes in a given branch of the trie.
420     *
421     * @param node the node to count.
422     * @result the number of nodes in this branch.
423     */
424    public static int countNodes(final Node node) {
425        int size = 1;
426        for (int i = node.mData.size() - 1; i >= 0; --i) {
427            CharGroup group = node.mData.get(i);
428            if (null != group.mChildren)
429                size += countNodes(group.mChildren);
430        }
431        return size;
432    }
433
434    // Historically, the tails of the words were going to be merged to save space.
435    // However, that would prevent the code to search for a specific address in log(n)
436    // time so this was abandoned.
437    // The code is still of interest as it does add some compression to any dictionary
438    // that has no need for attributes. Implementations that does not read attributes should be
439    // able to read a dictionary with merged tails.
440    // Also, the following code does support frequencies, as in, it will only merges
441    // tails that share the same frequency. Though it would result in the above loss of
442    // performance while searching by address, it is still technically possible to merge
443    // tails that contain attributes, but this code does not take that into account - it does
444    // not compare attributes and will merge terminals with different attributes regardless.
445    public void mergeTails() {
446        MakedictLog.i("Do not merge tails");
447        return;
448
449//        MakedictLog.i("Merging nodes. Number of nodes : " + countNodes(root));
450//        MakedictLog.i("Number of groups : " + countCharGroups(root));
451//
452//        final HashMap<String, ArrayList<Node>> repository =
453//                  new HashMap<String, ArrayList<Node>>();
454//        mergeTailsInner(repository, root);
455//
456//        MakedictLog.i("Number of different pseudohashes : " + repository.size());
457//        int size = 0;
458//        for (ArrayList<Node> a : repository.values()) {
459//            size += a.size();
460//        }
461//        MakedictLog.i("Number of nodes after merge : " + (1 + size));
462//        MakedictLog.i("Recursively seen nodes : " + countNodes(root));
463    }
464
465    // The following methods are used by the deactivated mergeTails()
466//   private static boolean isEqual(Node a, Node b) {
467//       if (null == a && null == b) return true;
468//       if (null == a || null == b) return false;
469//       if (a.data.size() != b.data.size()) return false;
470//       final int size = a.data.size();
471//       for (int i = size - 1; i >= 0; --i) {
472//           CharGroup aGroup = a.data.get(i);
473//           CharGroup bGroup = b.data.get(i);
474//           if (aGroup.frequency != bGroup.frequency) return false;
475//           if (aGroup.alternates == null && bGroup.alternates != null) return false;
476//           if (aGroup.alternates != null && !aGroup.equals(bGroup.alternates)) return false;
477//           if (!Arrays.equals(aGroup.chars, bGroup.chars)) return false;
478//           if (!isEqual(aGroup.children, bGroup.children)) return false;
479//       }
480//       return true;
481//   }
482
483//   static private HashMap<String, ArrayList<Node>> mergeTailsInner(
484//           final HashMap<String, ArrayList<Node>> map, final Node node) {
485//       final ArrayList<CharGroup> branches = node.data;
486//       final int nodeSize = branches.size();
487//       for (int i = 0; i < nodeSize; ++i) {
488//           CharGroup group = branches.get(i);
489//           if (null != group.children) {
490//               String pseudoHash = getPseudoHash(group.children);
491//               ArrayList<Node> similarList = map.get(pseudoHash);
492//               if (null == similarList) {
493//                   similarList = new ArrayList<Node>();
494//                   map.put(pseudoHash, similarList);
495//               }
496//               boolean merged = false;
497//               for (Node similar : similarList) {
498//                   if (isEqual(group.children, similar)) {
499//                       group.children = similar;
500//                       merged = true;
501//                       break;
502//                   }
503//               }
504//               if (!merged) {
505//                   similarList.add(group.children);
506//               }
507//               mergeTailsInner(map, group.children);
508//           }
509//       }
510//       return map;
511//   }
512
513//  private static String getPseudoHash(final Node node) {
514//      StringBuilder s = new StringBuilder();
515//      for (CharGroup g : node.data) {
516//          s.append(g.frequency);
517//          for (int ch : g.chars){
518//              s.append(Character.toChars(ch));
519//          }
520//      }
521//      return s.toString();
522//  }
523
524    /**
525     * Iterator to walk through a dictionary.
526     *
527     * This is purely for convenience.
528     */
529    public static class DictionaryIterator implements Iterator<Word> {
530
531        private static class Position {
532            public Iterator<CharGroup> pos;
533            public int length;
534            public Position(ArrayList<CharGroup> groups) {
535                pos = groups.iterator();
536                length = 0;
537            }
538        }
539        final StringBuilder mCurrentString;
540        final LinkedList<Position> mPositions;
541
542        public DictionaryIterator(ArrayList<CharGroup> root) {
543            mCurrentString = new StringBuilder();
544            mPositions = new LinkedList<Position>();
545            final Position rootPos = new Position(root);
546            mPositions.add(rootPos);
547        }
548
549        @Override
550        public boolean hasNext() {
551            for (Position p : mPositions) {
552                if (p.pos.hasNext()) {
553                    return true;
554                }
555            }
556            return false;
557        }
558
559        @Override
560        public Word next() {
561            Position currentPos = mPositions.getLast();
562            mCurrentString.setLength(mCurrentString.length() - currentPos.length);
563
564            do {
565                if (currentPos.pos.hasNext()) {
566                    final CharGroup currentGroup = currentPos.pos.next();
567                    currentPos.length = currentGroup.mChars.length;
568                    for (int i : currentGroup.mChars)
569                        mCurrentString.append(Character.toChars(i));
570                    if (null != currentGroup.mChildren) {
571                        currentPos = new Position(currentGroup.mChildren.mData);
572                        mPositions.addLast(currentPos);
573                    }
574                    if (currentGroup.mFrequency >= 0)
575                        return new Word(mCurrentString.toString(), currentGroup.mFrequency,
576                                currentGroup.mBigrams);
577                } else {
578                    mPositions.removeLast();
579                    currentPos = mPositions.getLast();
580                    mCurrentString.setLength(mCurrentString.length() - mPositions.getLast().length);
581                }
582            } while(true);
583        }
584
585        @Override
586        public void remove() {
587            throw new UnsupportedOperationException("Unsupported yet");
588        }
589
590    }
591
592    /**
593     * Method to return an iterator.
594     *
595     * This method enables Java's enhanced for loop. With this you can have a FusionDictionary x
596     * and say : for (Word w : x) {}
597     */
598    @Override
599    public Iterator<Word> iterator() {
600        return new DictionaryIterator(mRoot.mData);
601    }
602}
603