1
2/* @(#)e_jn.c 1.4 95/01/18 */
3/*
4 * ====================================================
5 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
6 *
7 * Developed at SunSoft, a Sun Microsystems, Inc. business.
8 * Permission to use, copy, modify, and distribute this
9 * software is freely granted, provided that this notice
10 * is preserved.
11 * ====================================================
12 */
13
14#ifndef lint
15static char rcsid[] = "$FreeBSD: src/lib/msun/src/e_jn.c,v 1.9 2005/02/04 18:26:06 das Exp $";
16#endif
17
18/*
19 * __ieee754_jn(n, x), __ieee754_yn(n, x)
20 * floating point Bessel's function of the 1st and 2nd kind
21 * of order n
22 *
23 * Special cases:
24 *	y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
25 *	y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
26 * Note 2. About jn(n,x), yn(n,x)
27 *	For n=0, j0(x) is called,
28 *	for n=1, j1(x) is called,
29 *	for n<x, forward recursion us used starting
30 *	from values of j0(x) and j1(x).
31 *	for n>x, a continued fraction approximation to
32 *	j(n,x)/j(n-1,x) is evaluated and then backward
33 *	recursion is used starting from a supposed value
34 *	for j(n,x). The resulting value of j(0,x) is
35 *	compared with the actual value to correct the
36 *	supposed value of j(n,x).
37 *
38 *	yn(n,x) is similar in all respects, except
39 *	that forward recursion is used for all
40 *	values of n>1.
41 *
42 */
43
44#include "math.h"
45#include "math_private.h"
46
47static const double
48invsqrtpi=  5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
49two   =  2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */
50one   =  1.00000000000000000000e+00; /* 0x3FF00000, 0x00000000 */
51
52static const double zero  =  0.00000000000000000000e+00;
53
54double
55__ieee754_jn(int n, double x)
56{
57	int32_t i,hx,ix,lx, sgn;
58	double a, b, temp, di;
59	double z, w;
60
61    /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
62     * Thus, J(-n,x) = J(n,-x)
63     */
64	EXTRACT_WORDS(hx,lx,x);
65	ix = 0x7fffffff&hx;
66    /* if J(n,NaN) is NaN */
67	if((ix|((u_int32_t)(lx|-lx))>>31)>0x7ff00000) return x+x;
68	if(n<0){
69		n = -n;
70		x = -x;
71		hx ^= 0x80000000;
72	}
73	if(n==0) return(__ieee754_j0(x));
74	if(n==1) return(__ieee754_j1(x));
75	sgn = (n&1)&(hx>>31);	/* even n -- 0, odd n -- sign(x) */
76	x = fabs(x);
77	if((ix|lx)==0||ix>=0x7ff00000) 	/* if x is 0 or inf */
78	    b = zero;
79	else if((double)n<=x) {
80		/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
81	    if(ix>=0x52D00000) { /* x > 2**302 */
82    /* (x >> n**2)
83     *	    Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
84     *	    Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
85     *	    Let s=sin(x), c=cos(x),
86     *		xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
87     *
88     *		   n	sin(xn)*sqt2	cos(xn)*sqt2
89     *		----------------------------------
90     *		   0	 s-c		 c+s
91     *		   1	-s-c 		-c+s
92     *		   2	-s+c		-c-s
93     *		   3	 s+c		 c-s
94     */
95		switch(n&3) {
96		    case 0: temp =  cos(x)+sin(x); break;
97		    case 1: temp = -cos(x)+sin(x); break;
98		    case 2: temp = -cos(x)-sin(x); break;
99		    case 3: temp =  cos(x)-sin(x); break;
100		}
101		b = invsqrtpi*temp/sqrt(x);
102	    } else {
103	        a = __ieee754_j0(x);
104	        b = __ieee754_j1(x);
105	        for(i=1;i<n;i++){
106		    temp = b;
107		    b = b*((double)(i+i)/x) - a; /* avoid underflow */
108		    a = temp;
109	        }
110	    }
111	} else {
112	    if(ix<0x3e100000) {	/* x < 2**-29 */
113    /* x is tiny, return the first Taylor expansion of J(n,x)
114     * J(n,x) = 1/n!*(x/2)^n  - ...
115     */
116		if(n>33)	/* underflow */
117		    b = zero;
118		else {
119		    temp = x*0.5; b = temp;
120		    for (a=one,i=2;i<=n;i++) {
121			a *= (double)i;		/* a = n! */
122			b *= temp;		/* b = (x/2)^n */
123		    }
124		    b = b/a;
125		}
126	    } else {
127		/* use backward recurrence */
128		/* 			x      x^2      x^2
129		 *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
130		 *			2n  - 2(n+1) - 2(n+2)
131		 *
132		 * 			1      1        1
133		 *  (for large x)   =  ----  ------   ------   .....
134		 *			2n   2(n+1)   2(n+2)
135		 *			-- - ------ - ------ -
136		 *			 x     x         x
137		 *
138		 * Let w = 2n/x and h=2/x, then the above quotient
139		 * is equal to the continued fraction:
140		 *		    1
141		 *	= -----------------------
142		 *		       1
143		 *	   w - -----------------
144		 *			  1
145		 * 	        w+h - ---------
146		 *		       w+2h - ...
147		 *
148		 * To determine how many terms needed, let
149		 * Q(0) = w, Q(1) = w(w+h) - 1,
150		 * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
151		 * When Q(k) > 1e4	good for single
152		 * When Q(k) > 1e9	good for double
153		 * When Q(k) > 1e17	good for quadruple
154		 */
155	    /* determine k */
156		double t,v;
157		double q0,q1,h,tmp; int32_t k,m;
158		w  = (n+n)/(double)x; h = 2.0/(double)x;
159		q0 = w;  z = w+h; q1 = w*z - 1.0; k=1;
160		while(q1<1.0e9) {
161			k += 1; z += h;
162			tmp = z*q1 - q0;
163			q0 = q1;
164			q1 = tmp;
165		}
166		m = n+n;
167		for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t);
168		a = t;
169		b = one;
170		/*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
171		 *  Hence, if n*(log(2n/x)) > ...
172		 *  single 8.8722839355e+01
173		 *  double 7.09782712893383973096e+02
174		 *  long double 1.1356523406294143949491931077970765006170e+04
175		 *  then recurrent value may overflow and the result is
176		 *  likely underflow to zero
177		 */
178		tmp = n;
179		v = two/x;
180		tmp = tmp*__ieee754_log(fabs(v*tmp));
181		if(tmp<7.09782712893383973096e+02) {
182	    	    for(i=n-1,di=(double)(i+i);i>0;i--){
183		        temp = b;
184			b *= di;
185			b  = b/x - a;
186		        a = temp;
187			di -= two;
188	     	    }
189		} else {
190	    	    for(i=n-1,di=(double)(i+i);i>0;i--){
191		        temp = b;
192			b *= di;
193			b  = b/x - a;
194		        a = temp;
195			di -= two;
196		    /* scale b to avoid spurious overflow */
197			if(b>1e100) {
198			    a /= b;
199			    t /= b;
200			    b  = one;
201			}
202	     	    }
203		}
204	    	b = (t*__ieee754_j0(x)/b);
205	    }
206	}
207	if(sgn==1) return -b; else return b;
208}
209
210double
211__ieee754_yn(int n, double x)
212{
213	int32_t i,hx,ix,lx;
214	int32_t sign;
215	double a, b, temp;
216
217	EXTRACT_WORDS(hx,lx,x);
218	ix = 0x7fffffff&hx;
219    /* if Y(n,NaN) is NaN */
220	if((ix|((u_int32_t)(lx|-lx))>>31)>0x7ff00000) return x+x;
221	if((ix|lx)==0) return -one/zero;
222	if(hx<0) return zero/zero;
223	sign = 1;
224	if(n<0){
225		n = -n;
226		sign = 1 - ((n&1)<<1);
227	}
228	if(n==0) return(__ieee754_y0(x));
229	if(n==1) return(sign*__ieee754_y1(x));
230	if(ix==0x7ff00000) return zero;
231	if(ix>=0x52D00000) { /* x > 2**302 */
232    /* (x >> n**2)
233     *	    Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
234     *	    Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
235     *	    Let s=sin(x), c=cos(x),
236     *		xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
237     *
238     *		   n	sin(xn)*sqt2	cos(xn)*sqt2
239     *		----------------------------------
240     *		   0	 s-c		 c+s
241     *		   1	-s-c 		-c+s
242     *		   2	-s+c		-c-s
243     *		   3	 s+c		 c-s
244     */
245		switch(n&3) {
246		    case 0: temp =  sin(x)-cos(x); break;
247		    case 1: temp = -sin(x)-cos(x); break;
248		    case 2: temp = -sin(x)+cos(x); break;
249		    case 3: temp =  sin(x)+cos(x); break;
250		}
251		b = invsqrtpi*temp/sqrt(x);
252	} else {
253	    u_int32_t high;
254	    a = __ieee754_y0(x);
255	    b = __ieee754_y1(x);
256	/* quit if b is -inf */
257	    GET_HIGH_WORD(high,b);
258	    for(i=1;i<n&&high!=0xfff00000;i++){
259		temp = b;
260		b = ((double)(i+i)/x)*b - a;
261		GET_HIGH_WORD(high,b);
262		a = temp;
263	    }
264	}
265	if(sign>0) return b; else return -b;
266}
267