1// Copyright 2005, Google Inc.
2// All rights reserved.
3//
4// Redistribution and use in source and binary forms, with or without
5// modification, are permitted provided that the following conditions are
6// met:
7//
8//     * Redistributions of source code must retain the above copyright
9// notice, this list of conditions and the following disclaimer.
10//     * Redistributions in binary form must reproduce the above
11// copyright notice, this list of conditions and the following disclaimer
12// in the documentation and/or other materials provided with the
13// distribution.
14//     * Neither the name of Google Inc. nor the names of its
15// contributors may be used to endorse or promote products derived from
16// this software without specific prior written permission.
17//
18// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29//
30// Authors: wan@google.com (Zhanyong Wan), eefacm@gmail.com (Sean Mcafee)
31//
32// The Google C++ Testing Framework (Google Test)
33//
34// This header file declares functions and macros used internally by
35// Google Test.  They are subject to change without notice.
36
37#ifndef GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
38#define GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
39
40#include "gtest/internal/gtest-port.h"
41
42#if GTEST_OS_LINUX
43# include <stdlib.h>
44# include <sys/types.h>
45# include <sys/wait.h>
46# include <unistd.h>
47#endif  // GTEST_OS_LINUX
48
49#include <ctype.h>
50#include <string.h>
51#include <iomanip>
52#include <limits>
53#include <set>
54
55#include "gtest/internal/gtest-string.h"
56#include "gtest/internal/gtest-filepath.h"
57#include "gtest/internal/gtest-type-util.h"
58
59// Due to C++ preprocessor weirdness, we need double indirection to
60// concatenate two tokens when one of them is __LINE__.  Writing
61//
62//   foo ## __LINE__
63//
64// will result in the token foo__LINE__, instead of foo followed by
65// the current line number.  For more details, see
66// http://www.parashift.com/c++-faq-lite/misc-technical-issues.html#faq-39.6
67#define GTEST_CONCAT_TOKEN_(foo, bar) GTEST_CONCAT_TOKEN_IMPL_(foo, bar)
68#define GTEST_CONCAT_TOKEN_IMPL_(foo, bar) foo ## bar
69
70// Google Test defines the testing::Message class to allow construction of
71// test messages via the << operator.  The idea is that anything
72// streamable to std::ostream can be streamed to a testing::Message.
73// This allows a user to use his own types in Google Test assertions by
74// overloading the << operator.
75//
76// util/gtl/stl_logging-inl.h overloads << for STL containers.  These
77// overloads cannot be defined in the std namespace, as that will be
78// undefined behavior.  Therefore, they are defined in the global
79// namespace instead.
80//
81// C++'s symbol lookup rule (i.e. Koenig lookup) says that these
82// overloads are visible in either the std namespace or the global
83// namespace, but not other namespaces, including the testing
84// namespace which Google Test's Message class is in.
85//
86// To allow STL containers (and other types that has a << operator
87// defined in the global namespace) to be used in Google Test assertions,
88// testing::Message must access the custom << operator from the global
89// namespace.  Hence this helper function.
90//
91// Note: Jeffrey Yasskin suggested an alternative fix by "using
92// ::operator<<;" in the definition of Message's operator<<.  That fix
93// doesn't require a helper function, but unfortunately doesn't
94// compile with MSVC.
95template <typename T>
96inline void GTestStreamToHelper(std::ostream* os, const T& val) {
97  *os << val;
98}
99
100class ProtocolMessage;
101namespace proto2 { class Message; }
102
103namespace testing {
104
105// Forward declarations.
106
107class AssertionResult;                 // Result of an assertion.
108class Message;                         // Represents a failure message.
109class Test;                            // Represents a test.
110class TestInfo;                        // Information about a test.
111class TestPartResult;                  // Result of a test part.
112class UnitTest;                        // A collection of test cases.
113
114template <typename T>
115::std::string PrintToString(const T& value);
116
117namespace internal {
118
119struct TraceInfo;                      // Information about a trace point.
120class ScopedTrace;                     // Implements scoped trace.
121class TestInfoImpl;                    // Opaque implementation of TestInfo
122class UnitTestImpl;                    // Opaque implementation of UnitTest
123
124// How many times InitGoogleTest() has been called.
125extern int g_init_gtest_count;
126
127// The text used in failure messages to indicate the start of the
128// stack trace.
129GTEST_API_ extern const char kStackTraceMarker[];
130
131// A secret type that Google Test users don't know about.  It has no
132// definition on purpose.  Therefore it's impossible to create a
133// Secret object, which is what we want.
134class Secret;
135
136// Two overloaded helpers for checking at compile time whether an
137// expression is a null pointer literal (i.e. NULL or any 0-valued
138// compile-time integral constant).  Their return values have
139// different sizes, so we can use sizeof() to test which version is
140// picked by the compiler.  These helpers have no implementations, as
141// we only need their signatures.
142//
143// Given IsNullLiteralHelper(x), the compiler will pick the first
144// version if x can be implicitly converted to Secret*, and pick the
145// second version otherwise.  Since Secret is a secret and incomplete
146// type, the only expression a user can write that has type Secret* is
147// a null pointer literal.  Therefore, we know that x is a null
148// pointer literal if and only if the first version is picked by the
149// compiler.
150char IsNullLiteralHelper(Secret* p);
151char (&IsNullLiteralHelper(...))[2];  // NOLINT
152
153// A compile-time bool constant that is true if and only if x is a
154// null pointer literal (i.e. NULL or any 0-valued compile-time
155// integral constant).
156#ifdef GTEST_ELLIPSIS_NEEDS_POD_
157// We lose support for NULL detection where the compiler doesn't like
158// passing non-POD classes through ellipsis (...).
159# define GTEST_IS_NULL_LITERAL_(x) false
160#else
161# define GTEST_IS_NULL_LITERAL_(x) \
162    (sizeof(::testing::internal::IsNullLiteralHelper(x)) == 1)
163#endif  // GTEST_ELLIPSIS_NEEDS_POD_
164
165// Appends the user-supplied message to the Google-Test-generated message.
166GTEST_API_ String AppendUserMessage(const String& gtest_msg,
167                                    const Message& user_msg);
168
169// A helper class for creating scoped traces in user programs.
170class GTEST_API_ ScopedTrace {
171 public:
172  // The c'tor pushes the given source file location and message onto
173  // a trace stack maintained by Google Test.
174  ScopedTrace(const char* file, int line, const Message& message);
175
176  // The d'tor pops the info pushed by the c'tor.
177  //
178  // Note that the d'tor is not virtual in order to be efficient.
179  // Don't inherit from ScopedTrace!
180  ~ScopedTrace();
181
182 private:
183  GTEST_DISALLOW_COPY_AND_ASSIGN_(ScopedTrace);
184} GTEST_ATTRIBUTE_UNUSED_;  // A ScopedTrace object does its job in its
185                            // c'tor and d'tor.  Therefore it doesn't
186                            // need to be used otherwise.
187
188// Converts a streamable value to a String.  A NULL pointer is
189// converted to "(null)".  When the input value is a ::string,
190// ::std::string, ::wstring, or ::std::wstring object, each NUL
191// character in it is replaced with "\\0".
192// Declared here but defined in gtest.h, so that it has access
193// to the definition of the Message class, required by the ARM
194// compiler.
195template <typename T>
196String StreamableToString(const T& streamable);
197
198// When this operand is a const char* or char*, if the other operand
199// is a ::std::string or ::string, we print this operand as a C string
200// rather than a pointer (we do the same for wide strings); otherwise
201// we print it as a pointer to be safe.
202
203// This internal macro is used to avoid duplicated code.
204// Making the first operand const reference works around a bug in the
205// Symbian compiler which is unable to select the correct specialization of
206// FormatForComparisonFailureMessage.
207#define GTEST_FORMAT_IMPL_(operand2_type, operand1_printer)\
208inline String FormatForComparisonFailureMessage(\
209    operand2_type::value_type* const& str, const operand2_type& /*operand2*/) {\
210  return operand1_printer(str);\
211}\
212inline String FormatForComparisonFailureMessage(\
213    const operand2_type::value_type* const& str, \
214    const operand2_type& /*operand2*/) {\
215  return operand1_printer(str);\
216}
217
218GTEST_FORMAT_IMPL_(::std::string, String::ShowCStringQuoted)
219#if GTEST_HAS_STD_WSTRING
220GTEST_FORMAT_IMPL_(::std::wstring, String::ShowWideCStringQuoted)
221#endif  // GTEST_HAS_STD_WSTRING
222
223#if GTEST_HAS_GLOBAL_STRING
224GTEST_FORMAT_IMPL_(::string, String::ShowCStringQuoted)
225#endif  // GTEST_HAS_GLOBAL_STRING
226#if GTEST_HAS_GLOBAL_WSTRING
227GTEST_FORMAT_IMPL_(::wstring, String::ShowWideCStringQuoted)
228#endif  // GTEST_HAS_GLOBAL_WSTRING
229
230#undef GTEST_FORMAT_IMPL_
231
232// The next four overloads handle the case where the operand being
233// printed is a char/wchar_t pointer and the other operand is not a
234// string/wstring object.  In such cases, we just print the operand as
235// a pointer to be safe.
236//
237// Making the first operand const reference works around a bug in the
238// Symbian compiler which is unable to select the correct specialization of
239// FormatForComparisonFailureMessage.
240#define GTEST_FORMAT_CHAR_PTR_IMPL_(CharType)                       \
241  template <typename T>                                             \
242  String FormatForComparisonFailureMessage(CharType* const& p, const T&) { \
243    return PrintToString(static_cast<const void*>(p));              \
244  }
245
246GTEST_FORMAT_CHAR_PTR_IMPL_(char)
247GTEST_FORMAT_CHAR_PTR_IMPL_(const char)
248GTEST_FORMAT_CHAR_PTR_IMPL_(wchar_t)
249GTEST_FORMAT_CHAR_PTR_IMPL_(const wchar_t)
250
251#undef GTEST_FORMAT_CHAR_PTR_IMPL_
252
253// Constructs and returns the message for an equality assertion
254// (e.g. ASSERT_EQ, EXPECT_STREQ, etc) failure.
255//
256// The first four parameters are the expressions used in the assertion
257// and their values, as strings.  For example, for ASSERT_EQ(foo, bar)
258// where foo is 5 and bar is 6, we have:
259//
260//   expected_expression: "foo"
261//   actual_expression:   "bar"
262//   expected_value:      "5"
263//   actual_value:        "6"
264//
265// The ignoring_case parameter is true iff the assertion is a
266// *_STRCASEEQ*.  When it's true, the string " (ignoring case)" will
267// be inserted into the message.
268GTEST_API_ AssertionResult EqFailure(const char* expected_expression,
269                                     const char* actual_expression,
270                                     const String& expected_value,
271                                     const String& actual_value,
272                                     bool ignoring_case);
273
274// Constructs a failure message for Boolean assertions such as EXPECT_TRUE.
275GTEST_API_ String GetBoolAssertionFailureMessage(
276    const AssertionResult& assertion_result,
277    const char* expression_text,
278    const char* actual_predicate_value,
279    const char* expected_predicate_value);
280
281// This template class represents an IEEE floating-point number
282// (either single-precision or double-precision, depending on the
283// template parameters).
284//
285// The purpose of this class is to do more sophisticated number
286// comparison.  (Due to round-off error, etc, it's very unlikely that
287// two floating-points will be equal exactly.  Hence a naive
288// comparison by the == operation often doesn't work.)
289//
290// Format of IEEE floating-point:
291//
292//   The most-significant bit being the leftmost, an IEEE
293//   floating-point looks like
294//
295//     sign_bit exponent_bits fraction_bits
296//
297//   Here, sign_bit is a single bit that designates the sign of the
298//   number.
299//
300//   For float, there are 8 exponent bits and 23 fraction bits.
301//
302//   For double, there are 11 exponent bits and 52 fraction bits.
303//
304//   More details can be found at
305//   http://en.wikipedia.org/wiki/IEEE_floating-point_standard.
306//
307// Template parameter:
308//
309//   RawType: the raw floating-point type (either float or double)
310template <typename RawType>
311class FloatingPoint {
312 public:
313  // Defines the unsigned integer type that has the same size as the
314  // floating point number.
315  typedef typename TypeWithSize<sizeof(RawType)>::UInt Bits;
316
317  // Constants.
318
319  // # of bits in a number.
320  static const size_t kBitCount = 8*sizeof(RawType);
321
322  // # of fraction bits in a number.
323  static const size_t kFractionBitCount =
324    std::numeric_limits<RawType>::digits - 1;
325
326  // # of exponent bits in a number.
327  static const size_t kExponentBitCount = kBitCount - 1 - kFractionBitCount;
328
329  // The mask for the sign bit.
330  static const Bits kSignBitMask = static_cast<Bits>(1) << (kBitCount - 1);
331
332  // The mask for the fraction bits.
333  static const Bits kFractionBitMask =
334    ~static_cast<Bits>(0) >> (kExponentBitCount + 1);
335
336  // The mask for the exponent bits.
337  static const Bits kExponentBitMask = ~(kSignBitMask | kFractionBitMask);
338
339  // How many ULP's (Units in the Last Place) we want to tolerate when
340  // comparing two numbers.  The larger the value, the more error we
341  // allow.  A 0 value means that two numbers must be exactly the same
342  // to be considered equal.
343  //
344  // The maximum error of a single floating-point operation is 0.5
345  // units in the last place.  On Intel CPU's, all floating-point
346  // calculations are done with 80-bit precision, while double has 64
347  // bits.  Therefore, 4 should be enough for ordinary use.
348  //
349  // See the following article for more details on ULP:
350  // http://www.cygnus-software.com/papers/comparingfloats/comparingfloats.htm.
351  static const size_t kMaxUlps = 4;
352
353  // Constructs a FloatingPoint from a raw floating-point number.
354  //
355  // On an Intel CPU, passing a non-normalized NAN (Not a Number)
356  // around may change its bits, although the new value is guaranteed
357  // to be also a NAN.  Therefore, don't expect this constructor to
358  // preserve the bits in x when x is a NAN.
359  explicit FloatingPoint(const RawType& x) { u_.value_ = x; }
360
361  // Static methods
362
363  // Reinterprets a bit pattern as a floating-point number.
364  //
365  // This function is needed to test the AlmostEquals() method.
366  static RawType ReinterpretBits(const Bits bits) {
367    FloatingPoint fp(0);
368    fp.u_.bits_ = bits;
369    return fp.u_.value_;
370  }
371
372  // Returns the floating-point number that represent positive infinity.
373  static RawType Infinity() {
374    return ReinterpretBits(kExponentBitMask);
375  }
376
377  // Non-static methods
378
379  // Returns the bits that represents this number.
380  const Bits &bits() const { return u_.bits_; }
381
382  // Returns the exponent bits of this number.
383  Bits exponent_bits() const { return kExponentBitMask & u_.bits_; }
384
385  // Returns the fraction bits of this number.
386  Bits fraction_bits() const { return kFractionBitMask & u_.bits_; }
387
388  // Returns the sign bit of this number.
389  Bits sign_bit() const { return kSignBitMask & u_.bits_; }
390
391  // Returns true iff this is NAN (not a number).
392  bool is_nan() const {
393    // It's a NAN if the exponent bits are all ones and the fraction
394    // bits are not entirely zeros.
395    return (exponent_bits() == kExponentBitMask) && (fraction_bits() != 0);
396  }
397
398  // Returns true iff this number is at most kMaxUlps ULP's away from
399  // rhs.  In particular, this function:
400  //
401  //   - returns false if either number is (or both are) NAN.
402  //   - treats really large numbers as almost equal to infinity.
403  //   - thinks +0.0 and -0.0 are 0 DLP's apart.
404  bool AlmostEquals(const FloatingPoint& rhs) const {
405    // The IEEE standard says that any comparison operation involving
406    // a NAN must return false.
407    if (is_nan() || rhs.is_nan()) return false;
408
409    return DistanceBetweenSignAndMagnitudeNumbers(u_.bits_, rhs.u_.bits_)
410        <= kMaxUlps;
411  }
412
413 private:
414  // The data type used to store the actual floating-point number.
415  union FloatingPointUnion {
416    RawType value_;  // The raw floating-point number.
417    Bits bits_;      // The bits that represent the number.
418  };
419
420  // Converts an integer from the sign-and-magnitude representation to
421  // the biased representation.  More precisely, let N be 2 to the
422  // power of (kBitCount - 1), an integer x is represented by the
423  // unsigned number x + N.
424  //
425  // For instance,
426  //
427  //   -N + 1 (the most negative number representable using
428  //          sign-and-magnitude) is represented by 1;
429  //   0      is represented by N; and
430  //   N - 1  (the biggest number representable using
431  //          sign-and-magnitude) is represented by 2N - 1.
432  //
433  // Read http://en.wikipedia.org/wiki/Signed_number_representations
434  // for more details on signed number representations.
435  static Bits SignAndMagnitudeToBiased(const Bits &sam) {
436    if (kSignBitMask & sam) {
437      // sam represents a negative number.
438      return ~sam + 1;
439    } else {
440      // sam represents a positive number.
441      return kSignBitMask | sam;
442    }
443  }
444
445  // Given two numbers in the sign-and-magnitude representation,
446  // returns the distance between them as an unsigned number.
447  static Bits DistanceBetweenSignAndMagnitudeNumbers(const Bits &sam1,
448                                                     const Bits &sam2) {
449    const Bits biased1 = SignAndMagnitudeToBiased(sam1);
450    const Bits biased2 = SignAndMagnitudeToBiased(sam2);
451    return (biased1 >= biased2) ? (biased1 - biased2) : (biased2 - biased1);
452  }
453
454  FloatingPointUnion u_;
455};
456
457// Typedefs the instances of the FloatingPoint template class that we
458// care to use.
459typedef FloatingPoint<float> Float;
460typedef FloatingPoint<double> Double;
461
462// In order to catch the mistake of putting tests that use different
463// test fixture classes in the same test case, we need to assign
464// unique IDs to fixture classes and compare them.  The TypeId type is
465// used to hold such IDs.  The user should treat TypeId as an opaque
466// type: the only operation allowed on TypeId values is to compare
467// them for equality using the == operator.
468typedef const void* TypeId;
469
470template <typename T>
471class TypeIdHelper {
472 public:
473  // dummy_ must not have a const type.  Otherwise an overly eager
474  // compiler (e.g. MSVC 7.1 & 8.0) may try to merge
475  // TypeIdHelper<T>::dummy_ for different Ts as an "optimization".
476  static bool dummy_;
477};
478
479template <typename T>
480bool TypeIdHelper<T>::dummy_ = false;
481
482// GetTypeId<T>() returns the ID of type T.  Different values will be
483// returned for different types.  Calling the function twice with the
484// same type argument is guaranteed to return the same ID.
485template <typename T>
486TypeId GetTypeId() {
487  // The compiler is required to allocate a different
488  // TypeIdHelper<T>::dummy_ variable for each T used to instantiate
489  // the template.  Therefore, the address of dummy_ is guaranteed to
490  // be unique.
491  return &(TypeIdHelper<T>::dummy_);
492}
493
494// Returns the type ID of ::testing::Test.  Always call this instead
495// of GetTypeId< ::testing::Test>() to get the type ID of
496// ::testing::Test, as the latter may give the wrong result due to a
497// suspected linker bug when compiling Google Test as a Mac OS X
498// framework.
499GTEST_API_ TypeId GetTestTypeId();
500
501// Defines the abstract factory interface that creates instances
502// of a Test object.
503class TestFactoryBase {
504 public:
505  virtual ~TestFactoryBase() {}
506
507  // Creates a test instance to run. The instance is both created and destroyed
508  // within TestInfoImpl::Run()
509  virtual Test* CreateTest() = 0;
510
511 protected:
512  TestFactoryBase() {}
513
514 private:
515  GTEST_DISALLOW_COPY_AND_ASSIGN_(TestFactoryBase);
516};
517
518// This class provides implementation of TeastFactoryBase interface.
519// It is used in TEST and TEST_F macros.
520template <class TestClass>
521class TestFactoryImpl : public TestFactoryBase {
522 public:
523  virtual Test* CreateTest() { return new TestClass; }
524};
525
526#if GTEST_OS_WINDOWS
527
528// Predicate-formatters for implementing the HRESULT checking macros
529// {ASSERT|EXPECT}_HRESULT_{SUCCEEDED|FAILED}
530// We pass a long instead of HRESULT to avoid causing an
531// include dependency for the HRESULT type.
532GTEST_API_ AssertionResult IsHRESULTSuccess(const char* expr,
533                                            long hr);  // NOLINT
534GTEST_API_ AssertionResult IsHRESULTFailure(const char* expr,
535                                            long hr);  // NOLINT
536
537#endif  // GTEST_OS_WINDOWS
538
539// Types of SetUpTestCase() and TearDownTestCase() functions.
540typedef void (*SetUpTestCaseFunc)();
541typedef void (*TearDownTestCaseFunc)();
542
543// Creates a new TestInfo object and registers it with Google Test;
544// returns the created object.
545//
546// Arguments:
547//
548//   test_case_name:   name of the test case
549//   name:             name of the test
550//   type_param        the name of the test's type parameter, or NULL if
551//                     this is not  a typed or a type-parameterized test.
552//   value_param       text representation of the test's value parameter,
553//                     or NULL if this is not a type-parameterized test.
554//   fixture_class_id: ID of the test fixture class
555//   set_up_tc:        pointer to the function that sets up the test case
556//   tear_down_tc:     pointer to the function that tears down the test case
557//   factory:          pointer to the factory that creates a test object.
558//                     The newly created TestInfo instance will assume
559//                     ownership of the factory object.
560GTEST_API_ TestInfo* MakeAndRegisterTestInfo(
561    const char* test_case_name, const char* name,
562    const char* type_param,
563    const char* value_param,
564    TypeId fixture_class_id,
565    SetUpTestCaseFunc set_up_tc,
566    TearDownTestCaseFunc tear_down_tc,
567    TestFactoryBase* factory);
568
569// If *pstr starts with the given prefix, modifies *pstr to be right
570// past the prefix and returns true; otherwise leaves *pstr unchanged
571// and returns false.  None of pstr, *pstr, and prefix can be NULL.
572GTEST_API_ bool SkipPrefix(const char* prefix, const char** pstr);
573
574#if GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P
575
576// State of the definition of a type-parameterized test case.
577class GTEST_API_ TypedTestCasePState {
578 public:
579  TypedTestCasePState() : registered_(false) {}
580
581  // Adds the given test name to defined_test_names_ and return true
582  // if the test case hasn't been registered; otherwise aborts the
583  // program.
584  bool AddTestName(const char* file, int line, const char* case_name,
585                   const char* test_name) {
586    if (registered_) {
587      fprintf(stderr, "%s Test %s must be defined before "
588              "REGISTER_TYPED_TEST_CASE_P(%s, ...).\n",
589              FormatFileLocation(file, line).c_str(), test_name, case_name);
590      fflush(stderr);
591      posix::Abort();
592    }
593    defined_test_names_.insert(test_name);
594    return true;
595  }
596
597  // Verifies that registered_tests match the test names in
598  // defined_test_names_; returns registered_tests if successful, or
599  // aborts the program otherwise.
600  const char* VerifyRegisteredTestNames(
601      const char* file, int line, const char* registered_tests);
602
603 private:
604  bool registered_;
605  ::std::set<const char*> defined_test_names_;
606};
607
608// Skips to the first non-space char after the first comma in 'str';
609// returns NULL if no comma is found in 'str'.
610inline const char* SkipComma(const char* str) {
611  const char* comma = strchr(str, ',');
612  if (comma == NULL) {
613    return NULL;
614  }
615  while (IsSpace(*(++comma))) {}
616  return comma;
617}
618
619// Returns the prefix of 'str' before the first comma in it; returns
620// the entire string if it contains no comma.
621inline String GetPrefixUntilComma(const char* str) {
622  const char* comma = strchr(str, ',');
623  return comma == NULL ? String(str) : String(str, comma - str);
624}
625
626// TypeParameterizedTest<Fixture, TestSel, Types>::Register()
627// registers a list of type-parameterized tests with Google Test.  The
628// return value is insignificant - we just need to return something
629// such that we can call this function in a namespace scope.
630//
631// Implementation note: The GTEST_TEMPLATE_ macro declares a template
632// template parameter.  It's defined in gtest-type-util.h.
633template <GTEST_TEMPLATE_ Fixture, class TestSel, typename Types>
634class TypeParameterizedTest {
635 public:
636  // 'index' is the index of the test in the type list 'Types'
637  // specified in INSTANTIATE_TYPED_TEST_CASE_P(Prefix, TestCase,
638  // Types).  Valid values for 'index' are [0, N - 1] where N is the
639  // length of Types.
640  static bool Register(const char* prefix, const char* case_name,
641                       const char* test_names, int index) {
642    typedef typename Types::Head Type;
643    typedef Fixture<Type> FixtureClass;
644    typedef typename GTEST_BIND_(TestSel, Type) TestClass;
645
646    // First, registers the first type-parameterized test in the type
647    // list.
648    MakeAndRegisterTestInfo(
649        String::Format("%s%s%s/%d", prefix, prefix[0] == '\0' ? "" : "/",
650                       case_name, index).c_str(),
651        GetPrefixUntilComma(test_names).c_str(),
652        GetTypeName<Type>().c_str(),
653        NULL,  // No value parameter.
654        GetTypeId<FixtureClass>(),
655        TestClass::SetUpTestCase,
656        TestClass::TearDownTestCase,
657        new TestFactoryImpl<TestClass>);
658
659    // Next, recurses (at compile time) with the tail of the type list.
660    return TypeParameterizedTest<Fixture, TestSel, typename Types::Tail>
661        ::Register(prefix, case_name, test_names, index + 1);
662  }
663};
664
665// The base case for the compile time recursion.
666template <GTEST_TEMPLATE_ Fixture, class TestSel>
667class TypeParameterizedTest<Fixture, TestSel, Types0> {
668 public:
669  static bool Register(const char* /*prefix*/, const char* /*case_name*/,
670                       const char* /*test_names*/, int /*index*/) {
671    return true;
672  }
673};
674
675// TypeParameterizedTestCase<Fixture, Tests, Types>::Register()
676// registers *all combinations* of 'Tests' and 'Types' with Google
677// Test.  The return value is insignificant - we just need to return
678// something such that we can call this function in a namespace scope.
679template <GTEST_TEMPLATE_ Fixture, typename Tests, typename Types>
680class TypeParameterizedTestCase {
681 public:
682  static bool Register(const char* prefix, const char* case_name,
683                       const char* test_names) {
684    typedef typename Tests::Head Head;
685
686    // First, register the first test in 'Test' for each type in 'Types'.
687    TypeParameterizedTest<Fixture, Head, Types>::Register(
688        prefix, case_name, test_names, 0);
689
690    // Next, recurses (at compile time) with the tail of the test list.
691    return TypeParameterizedTestCase<Fixture, typename Tests::Tail, Types>
692        ::Register(prefix, case_name, SkipComma(test_names));
693  }
694};
695
696// The base case for the compile time recursion.
697template <GTEST_TEMPLATE_ Fixture, typename Types>
698class TypeParameterizedTestCase<Fixture, Templates0, Types> {
699 public:
700  static bool Register(const char* /*prefix*/, const char* /*case_name*/,
701                       const char* /*test_names*/) {
702    return true;
703  }
704};
705
706#endif  // GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P
707
708// Returns the current OS stack trace as a String.
709//
710// The maximum number of stack frames to be included is specified by
711// the gtest_stack_trace_depth flag.  The skip_count parameter
712// specifies the number of top frames to be skipped, which doesn't
713// count against the number of frames to be included.
714//
715// For example, if Foo() calls Bar(), which in turn calls
716// GetCurrentOsStackTraceExceptTop(..., 1), Foo() will be included in
717// the trace but Bar() and GetCurrentOsStackTraceExceptTop() won't.
718GTEST_API_ String GetCurrentOsStackTraceExceptTop(UnitTest* unit_test,
719                                                  int skip_count);
720
721// Helpers for suppressing warnings on unreachable code or constant
722// condition.
723
724// Always returns true.
725GTEST_API_ bool AlwaysTrue();
726
727// Always returns false.
728inline bool AlwaysFalse() { return !AlwaysTrue(); }
729
730// Helper for suppressing false warning from Clang on a const char*
731// variable declared in a conditional expression always being NULL in
732// the else branch.
733struct GTEST_API_ ConstCharPtr {
734  ConstCharPtr(const char* str) : value(str) {}
735  operator bool() const { return true; }
736  const char* value;
737};
738
739// A simple Linear Congruential Generator for generating random
740// numbers with a uniform distribution.  Unlike rand() and srand(), it
741// doesn't use global state (and therefore can't interfere with user
742// code).  Unlike rand_r(), it's portable.  An LCG isn't very random,
743// but it's good enough for our purposes.
744class GTEST_API_ Random {
745 public:
746  static const UInt32 kMaxRange = 1u << 31;
747
748  explicit Random(UInt32 seed) : state_(seed) {}
749
750  void Reseed(UInt32 seed) { state_ = seed; }
751
752  // Generates a random number from [0, range).  Crashes if 'range' is
753  // 0 or greater than kMaxRange.
754  UInt32 Generate(UInt32 range);
755
756 private:
757  UInt32 state_;
758  GTEST_DISALLOW_COPY_AND_ASSIGN_(Random);
759};
760
761// Defining a variable of type CompileAssertTypesEqual<T1, T2> will cause a
762// compiler error iff T1 and T2 are different types.
763template <typename T1, typename T2>
764struct CompileAssertTypesEqual;
765
766template <typename T>
767struct CompileAssertTypesEqual<T, T> {
768};
769
770// Removes the reference from a type if it is a reference type,
771// otherwise leaves it unchanged.  This is the same as
772// tr1::remove_reference, which is not widely available yet.
773template <typename T>
774struct RemoveReference { typedef T type; };  // NOLINT
775template <typename T>
776struct RemoveReference<T&> { typedef T type; };  // NOLINT
777
778// A handy wrapper around RemoveReference that works when the argument
779// T depends on template parameters.
780#define GTEST_REMOVE_REFERENCE_(T) \
781    typename ::testing::internal::RemoveReference<T>::type
782
783// Removes const from a type if it is a const type, otherwise leaves
784// it unchanged.  This is the same as tr1::remove_const, which is not
785// widely available yet.
786template <typename T>
787struct RemoveConst { typedef T type; };  // NOLINT
788template <typename T>
789struct RemoveConst<const T> { typedef T type; };  // NOLINT
790
791// MSVC 8.0 and Sun C++ have a bug which causes the above definition
792// to fail to remove the const in 'const int[3]'.  The following
793// specialization works around the bug.  However, it causes trouble
794// with GCC and thus needs to be conditionally compiled.
795#if defined(_MSC_VER) || defined(__SUNPRO_CC)
796template <typename T, size_t N>
797struct RemoveConst<T[N]> {
798  typedef typename RemoveConst<T>::type type[N];
799};
800#endif
801
802// A handy wrapper around RemoveConst that works when the argument
803// T depends on template parameters.
804#define GTEST_REMOVE_CONST_(T) \
805    typename ::testing::internal::RemoveConst<T>::type
806
807// Turns const U&, U&, const U, and U all into U.
808#define GTEST_REMOVE_REFERENCE_AND_CONST_(T) \
809    GTEST_REMOVE_CONST_(GTEST_REMOVE_REFERENCE_(T))
810
811// Adds reference to a type if it is not a reference type,
812// otherwise leaves it unchanged.  This is the same as
813// tr1::add_reference, which is not widely available yet.
814template <typename T>
815struct AddReference { typedef T& type; };  // NOLINT
816template <typename T>
817struct AddReference<T&> { typedef T& type; };  // NOLINT
818
819// A handy wrapper around AddReference that works when the argument T
820// depends on template parameters.
821#define GTEST_ADD_REFERENCE_(T) \
822    typename ::testing::internal::AddReference<T>::type
823
824// Adds a reference to const on top of T as necessary.  For example,
825// it transforms
826//
827//   char         ==> const char&
828//   const char   ==> const char&
829//   char&        ==> const char&
830//   const char&  ==> const char&
831//
832// The argument T must depend on some template parameters.
833#define GTEST_REFERENCE_TO_CONST_(T) \
834    GTEST_ADD_REFERENCE_(const GTEST_REMOVE_REFERENCE_(T))
835
836// ImplicitlyConvertible<From, To>::value is a compile-time bool
837// constant that's true iff type From can be implicitly converted to
838// type To.
839template <typename From, typename To>
840class ImplicitlyConvertible {
841 private:
842  // We need the following helper functions only for their types.
843  // They have no implementations.
844
845  // MakeFrom() is an expression whose type is From.  We cannot simply
846  // use From(), as the type From may not have a public default
847  // constructor.
848  static From MakeFrom();
849
850  // These two functions are overloaded.  Given an expression
851  // Helper(x), the compiler will pick the first version if x can be
852  // implicitly converted to type To; otherwise it will pick the
853  // second version.
854  //
855  // The first version returns a value of size 1, and the second
856  // version returns a value of size 2.  Therefore, by checking the
857  // size of Helper(x), which can be done at compile time, we can tell
858  // which version of Helper() is used, and hence whether x can be
859  // implicitly converted to type To.
860  static char Helper(To);
861  static char (&Helper(...))[2];  // NOLINT
862
863  // We have to put the 'public' section after the 'private' section,
864  // or MSVC refuses to compile the code.
865 public:
866  // MSVC warns about implicitly converting from double to int for
867  // possible loss of data, so we need to temporarily disable the
868  // warning.
869#ifdef _MSC_VER
870# pragma warning(push)          // Saves the current warning state.
871# pragma warning(disable:4244)  // Temporarily disables warning 4244.
872
873  static const bool value =
874      sizeof(Helper(ImplicitlyConvertible::MakeFrom())) == 1;
875# pragma warning(pop)           // Restores the warning state.
876#elif defined(__BORLANDC__)
877  // C++Builder cannot use member overload resolution during template
878  // instantiation.  The simplest workaround is to use its C++0x type traits
879  // functions (C++Builder 2009 and above only).
880  static const bool value = __is_convertible(From, To);
881#else
882  static const bool value =
883      sizeof(Helper(ImplicitlyConvertible::MakeFrom())) == 1;
884#endif  // _MSV_VER
885};
886template <typename From, typename To>
887const bool ImplicitlyConvertible<From, To>::value;
888
889// IsAProtocolMessage<T>::value is a compile-time bool constant that's
890// true iff T is type ProtocolMessage, proto2::Message, or a subclass
891// of those.
892template <typename T>
893struct IsAProtocolMessage
894    : public bool_constant<
895  ImplicitlyConvertible<const T*, const ::ProtocolMessage*>::value ||
896  ImplicitlyConvertible<const T*, const ::proto2::Message*>::value> {
897};
898
899// When the compiler sees expression IsContainerTest<C>(0), if C is an
900// STL-style container class, the first overload of IsContainerTest
901// will be viable (since both C::iterator* and C::const_iterator* are
902// valid types and NULL can be implicitly converted to them).  It will
903// be picked over the second overload as 'int' is a perfect match for
904// the type of argument 0.  If C::iterator or C::const_iterator is not
905// a valid type, the first overload is not viable, and the second
906// overload will be picked.  Therefore, we can determine whether C is
907// a container class by checking the type of IsContainerTest<C>(0).
908// The value of the expression is insignificant.
909//
910// Note that we look for both C::iterator and C::const_iterator.  The
911// reason is that C++ injects the name of a class as a member of the
912// class itself (e.g. you can refer to class iterator as either
913// 'iterator' or 'iterator::iterator').  If we look for C::iterator
914// only, for example, we would mistakenly think that a class named
915// iterator is an STL container.
916//
917// Also note that the simpler approach of overloading
918// IsContainerTest(typename C::const_iterator*) and
919// IsContainerTest(...) doesn't work with Visual Age C++ and Sun C++.
920typedef int IsContainer;
921template <class C>
922IsContainer IsContainerTest(int /* dummy */,
923                            typename C::iterator* /* it */ = NULL,
924                            typename C::const_iterator* /* const_it */ = NULL) {
925  return 0;
926}
927
928typedef char IsNotContainer;
929template <class C>
930IsNotContainer IsContainerTest(long /* dummy */) { return '\0'; }
931
932// EnableIf<condition>::type is void when 'Cond' is true, and
933// undefined when 'Cond' is false.  To use SFINAE to make a function
934// overload only apply when a particular expression is true, add
935// "typename EnableIf<expression>::type* = 0" as the last parameter.
936template<bool> struct EnableIf;
937template<> struct EnableIf<true> { typedef void type; };  // NOLINT
938
939// Utilities for native arrays.
940
941// ArrayEq() compares two k-dimensional native arrays using the
942// elements' operator==, where k can be any integer >= 0.  When k is
943// 0, ArrayEq() degenerates into comparing a single pair of values.
944
945template <typename T, typename U>
946bool ArrayEq(const T* lhs, size_t size, const U* rhs);
947
948// This generic version is used when k is 0.
949template <typename T, typename U>
950inline bool ArrayEq(const T& lhs, const U& rhs) { return lhs == rhs; }
951
952// This overload is used when k >= 1.
953template <typename T, typename U, size_t N>
954inline bool ArrayEq(const T(&lhs)[N], const U(&rhs)[N]) {
955  return internal::ArrayEq(lhs, N, rhs);
956}
957
958// This helper reduces code bloat.  If we instead put its logic inside
959// the previous ArrayEq() function, arrays with different sizes would
960// lead to different copies of the template code.
961template <typename T, typename U>
962bool ArrayEq(const T* lhs, size_t size, const U* rhs) {
963  for (size_t i = 0; i != size; i++) {
964    if (!internal::ArrayEq(lhs[i], rhs[i]))
965      return false;
966  }
967  return true;
968}
969
970// Finds the first element in the iterator range [begin, end) that
971// equals elem.  Element may be a native array type itself.
972template <typename Iter, typename Element>
973Iter ArrayAwareFind(Iter begin, Iter end, const Element& elem) {
974  for (Iter it = begin; it != end; ++it) {
975    if (internal::ArrayEq(*it, elem))
976      return it;
977  }
978  return end;
979}
980
981// CopyArray() copies a k-dimensional native array using the elements'
982// operator=, where k can be any integer >= 0.  When k is 0,
983// CopyArray() degenerates into copying a single value.
984
985template <typename T, typename U>
986void CopyArray(const T* from, size_t size, U* to);
987
988// This generic version is used when k is 0.
989template <typename T, typename U>
990inline void CopyArray(const T& from, U* to) { *to = from; }
991
992// This overload is used when k >= 1.
993template <typename T, typename U, size_t N>
994inline void CopyArray(const T(&from)[N], U(*to)[N]) {
995  internal::CopyArray(from, N, *to);
996}
997
998// This helper reduces code bloat.  If we instead put its logic inside
999// the previous CopyArray() function, arrays with different sizes
1000// would lead to different copies of the template code.
1001template <typename T, typename U>
1002void CopyArray(const T* from, size_t size, U* to) {
1003  for (size_t i = 0; i != size; i++) {
1004    internal::CopyArray(from[i], to + i);
1005  }
1006}
1007
1008// The relation between an NativeArray object (see below) and the
1009// native array it represents.
1010enum RelationToSource {
1011  kReference,  // The NativeArray references the native array.
1012  kCopy        // The NativeArray makes a copy of the native array and
1013               // owns the copy.
1014};
1015
1016// Adapts a native array to a read-only STL-style container.  Instead
1017// of the complete STL container concept, this adaptor only implements
1018// members useful for Google Mock's container matchers.  New members
1019// should be added as needed.  To simplify the implementation, we only
1020// support Element being a raw type (i.e. having no top-level const or
1021// reference modifier).  It's the client's responsibility to satisfy
1022// this requirement.  Element can be an array type itself (hence
1023// multi-dimensional arrays are supported).
1024template <typename Element>
1025class NativeArray {
1026 public:
1027  // STL-style container typedefs.
1028  typedef Element value_type;
1029  typedef Element* iterator;
1030  typedef const Element* const_iterator;
1031
1032  // Constructs from a native array.
1033  NativeArray(const Element* array, size_t count, RelationToSource relation) {
1034    Init(array, count, relation);
1035  }
1036
1037  // Copy constructor.
1038  NativeArray(const NativeArray& rhs) {
1039    Init(rhs.array_, rhs.size_, rhs.relation_to_source_);
1040  }
1041
1042  ~NativeArray() {
1043    // Ensures that the user doesn't instantiate NativeArray with a
1044    // const or reference type.
1045    static_cast<void>(StaticAssertTypeEqHelper<Element,
1046        GTEST_REMOVE_REFERENCE_AND_CONST_(Element)>());
1047    if (relation_to_source_ == kCopy)
1048      delete[] array_;
1049  }
1050
1051  // STL-style container methods.
1052  size_t size() const { return size_; }
1053  const_iterator begin() const { return array_; }
1054  const_iterator end() const { return array_ + size_; }
1055  bool operator==(const NativeArray& rhs) const {
1056    return size() == rhs.size() &&
1057        ArrayEq(begin(), size(), rhs.begin());
1058  }
1059
1060 private:
1061  // Initializes this object; makes a copy of the input array if
1062  // 'relation' is kCopy.
1063  void Init(const Element* array, size_t a_size, RelationToSource relation) {
1064    if (relation == kReference) {
1065      array_ = array;
1066    } else {
1067      Element* const copy = new Element[a_size];
1068      CopyArray(array, a_size, copy);
1069      array_ = copy;
1070    }
1071    size_ = a_size;
1072    relation_to_source_ = relation;
1073  }
1074
1075  const Element* array_;
1076  size_t size_;
1077  RelationToSource relation_to_source_;
1078
1079  GTEST_DISALLOW_ASSIGN_(NativeArray);
1080};
1081
1082}  // namespace internal
1083}  // namespace testing
1084
1085#define GTEST_MESSAGE_AT_(file, line, message, result_type) \
1086  ::testing::internal::AssertHelper(result_type, file, line, message) \
1087    = ::testing::Message()
1088
1089#define GTEST_MESSAGE_(message, result_type) \
1090  GTEST_MESSAGE_AT_(__FILE__, __LINE__, message, result_type)
1091
1092#define GTEST_FATAL_FAILURE_(message) \
1093  return GTEST_MESSAGE_(message, ::testing::TestPartResult::kFatalFailure)
1094
1095#define GTEST_NONFATAL_FAILURE_(message) \
1096  GTEST_MESSAGE_(message, ::testing::TestPartResult::kNonFatalFailure)
1097
1098#define GTEST_SUCCESS_(message) \
1099  GTEST_MESSAGE_(message, ::testing::TestPartResult::kSuccess)
1100
1101// Suppresses MSVC warnings 4072 (unreachable code) for the code following
1102// statement if it returns or throws (or doesn't return or throw in some
1103// situations).
1104#define GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement) \
1105  if (::testing::internal::AlwaysTrue()) { statement; }
1106
1107#define GTEST_TEST_THROW_(statement, expected_exception, fail) \
1108  GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1109  if (::testing::internal::ConstCharPtr gtest_msg = "") { \
1110    bool gtest_caught_expected = false; \
1111    try { \
1112      GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1113    } \
1114    catch (expected_exception const&) { \
1115      gtest_caught_expected = true; \
1116    } \
1117    catch (...) { \
1118      gtest_msg.value = \
1119          "Expected: " #statement " throws an exception of type " \
1120          #expected_exception ".\n  Actual: it throws a different type."; \
1121      goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \
1122    } \
1123    if (!gtest_caught_expected) { \
1124      gtest_msg.value = \
1125          "Expected: " #statement " throws an exception of type " \
1126          #expected_exception ".\n  Actual: it throws nothing."; \
1127      goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \
1128    } \
1129  } else \
1130    GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__): \
1131      fail(gtest_msg.value)
1132
1133#define GTEST_TEST_NO_THROW_(statement, fail) \
1134  GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1135  if (::testing::internal::AlwaysTrue()) { \
1136    try { \
1137      GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1138    } \
1139    catch (...) { \
1140      goto GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__); \
1141    } \
1142  } else \
1143    GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__): \
1144      fail("Expected: " #statement " doesn't throw an exception.\n" \
1145           "  Actual: it throws.")
1146
1147#define GTEST_TEST_ANY_THROW_(statement, fail) \
1148  GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1149  if (::testing::internal::AlwaysTrue()) { \
1150    bool gtest_caught_any = false; \
1151    try { \
1152      GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1153    } \
1154    catch (...) { \
1155      gtest_caught_any = true; \
1156    } \
1157    if (!gtest_caught_any) { \
1158      goto GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__); \
1159    } \
1160  } else \
1161    GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__): \
1162      fail("Expected: " #statement " throws an exception.\n" \
1163           "  Actual: it doesn't.")
1164
1165
1166// Implements Boolean test assertions such as EXPECT_TRUE. expression can be
1167// either a boolean expression or an AssertionResult. text is a textual
1168// represenation of expression as it was passed into the EXPECT_TRUE.
1169#define GTEST_TEST_BOOLEAN_(expression, text, actual, expected, fail) \
1170  GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1171  if (const ::testing::AssertionResult gtest_ar_ = \
1172      ::testing::AssertionResult(expression)) \
1173    ; \
1174  else \
1175    fail(::testing::internal::GetBoolAssertionFailureMessage(\
1176        gtest_ar_, text, #actual, #expected).c_str())
1177
1178#define GTEST_TEST_NO_FATAL_FAILURE_(statement, fail) \
1179  GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1180  if (::testing::internal::AlwaysTrue()) { \
1181    ::testing::internal::HasNewFatalFailureHelper gtest_fatal_failure_checker; \
1182    GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1183    if (gtest_fatal_failure_checker.has_new_fatal_failure()) { \
1184      goto GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__); \
1185    } \
1186  } else \
1187    GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__): \
1188      fail("Expected: " #statement " doesn't generate new fatal " \
1189           "failures in the current thread.\n" \
1190           "  Actual: it does.")
1191
1192// Expands to the name of the class that implements the given test.
1193#define GTEST_TEST_CLASS_NAME_(test_case_name, test_name) \
1194  test_case_name##_##test_name##_Test
1195
1196// Helper macro for defining tests.
1197#define GTEST_TEST_(test_case_name, test_name, parent_class, parent_id)\
1198class GTEST_TEST_CLASS_NAME_(test_case_name, test_name) : public parent_class {\
1199 public:\
1200  GTEST_TEST_CLASS_NAME_(test_case_name, test_name)() {}\
1201 private:\
1202  virtual void TestBody();\
1203  static ::testing::TestInfo* const test_info_ GTEST_ATTRIBUTE_UNUSED_;\
1204  GTEST_DISALLOW_COPY_AND_ASSIGN_(\
1205      GTEST_TEST_CLASS_NAME_(test_case_name, test_name));\
1206};\
1207\
1208::testing::TestInfo* const GTEST_TEST_CLASS_NAME_(test_case_name, test_name)\
1209  ::test_info_ =\
1210    ::testing::internal::MakeAndRegisterTestInfo(\
1211        #test_case_name, #test_name, NULL, NULL, \
1212        (parent_id), \
1213        parent_class::SetUpTestCase, \
1214        parent_class::TearDownTestCase, \
1215        new ::testing::internal::TestFactoryImpl<\
1216            GTEST_TEST_CLASS_NAME_(test_case_name, test_name)>);\
1217void GTEST_TEST_CLASS_NAME_(test_case_name, test_name)::TestBody()
1218
1219#endif  // GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
1220