1//===--- ItaniumMangle.cpp - Itanium C++ Name Mangling ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Implements C++ name mangling according to the Itanium C++ ABI,
11// which is used in GCC 3.2 and newer (and many compilers that are
12// ABI-compatible with GCC):
13//
14//   http://www.codesourcery.com/public/cxx-abi/abi.html
15//
16//===----------------------------------------------------------------------===//
17#include "clang/AST/Mangle.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/Decl.h"
20#include "clang/AST/DeclCXX.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/AST/DeclTemplate.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/AST/ExprObjC.h"
25#include "clang/AST/TypeLoc.h"
26#include "clang/Basic/ABI.h"
27#include "clang/Basic/SourceManager.h"
28#include "clang/Basic/TargetInfo.h"
29#include "llvm/ADT/StringExtras.h"
30#include "llvm/Support/raw_ostream.h"
31#include "llvm/Support/ErrorHandling.h"
32
33#define MANGLE_CHECKER 0
34
35#if MANGLE_CHECKER
36#include <cxxabi.h>
37#endif
38
39using namespace clang;
40
41namespace {
42
43static const CXXRecordDecl *GetLocalClassDecl(const NamedDecl *ND) {
44  const DeclContext *DC = dyn_cast<DeclContext>(ND);
45  if (!DC)
46    DC = ND->getDeclContext();
47  while (!DC->isNamespace() && !DC->isTranslationUnit()) {
48    if (isa<FunctionDecl>(DC->getParent()))
49      return dyn_cast<CXXRecordDecl>(DC);
50    DC = DC->getParent();
51  }
52  return 0;
53}
54
55static const FunctionDecl *getStructor(const FunctionDecl *fn) {
56  if (const FunctionTemplateDecl *ftd = fn->getPrimaryTemplate())
57    return ftd->getTemplatedDecl();
58
59  return fn;
60}
61
62static const NamedDecl *getStructor(const NamedDecl *decl) {
63  const FunctionDecl *fn = dyn_cast_or_null<FunctionDecl>(decl);
64  return (fn ? getStructor(fn) : decl);
65}
66
67static const unsigned UnknownArity = ~0U;
68
69class ItaniumMangleContext : public MangleContext {
70  llvm::DenseMap<const TagDecl *, uint64_t> AnonStructIds;
71  unsigned Discriminator;
72  llvm::DenseMap<const NamedDecl*, unsigned> Uniquifier;
73
74public:
75  explicit ItaniumMangleContext(ASTContext &Context,
76                                DiagnosticsEngine &Diags)
77    : MangleContext(Context, Diags) { }
78
79  uint64_t getAnonymousStructId(const TagDecl *TD) {
80    std::pair<llvm::DenseMap<const TagDecl *,
81      uint64_t>::iterator, bool> Result =
82      AnonStructIds.insert(std::make_pair(TD, AnonStructIds.size()));
83    return Result.first->second;
84  }
85
86  void startNewFunction() {
87    MangleContext::startNewFunction();
88    mangleInitDiscriminator();
89  }
90
91  /// @name Mangler Entry Points
92  /// @{
93
94  bool shouldMangleDeclName(const NamedDecl *D);
95  void mangleName(const NamedDecl *D, raw_ostream &);
96  void mangleThunk(const CXXMethodDecl *MD,
97                   const ThunkInfo &Thunk,
98                   raw_ostream &);
99  void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
100                          const ThisAdjustment &ThisAdjustment,
101                          raw_ostream &);
102  void mangleReferenceTemporary(const VarDecl *D,
103                                raw_ostream &);
104  void mangleCXXVTable(const CXXRecordDecl *RD,
105                       raw_ostream &);
106  void mangleCXXVTT(const CXXRecordDecl *RD,
107                    raw_ostream &);
108  void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset,
109                           const CXXRecordDecl *Type,
110                           raw_ostream &);
111  void mangleCXXRTTI(QualType T, raw_ostream &);
112  void mangleCXXRTTIName(QualType T, raw_ostream &);
113  void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type,
114                     raw_ostream &);
115  void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type,
116                     raw_ostream &);
117
118  void mangleItaniumGuardVariable(const VarDecl *D, raw_ostream &);
119
120  void mangleInitDiscriminator() {
121    Discriminator = 0;
122  }
123
124  bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) {
125    unsigned &discriminator = Uniquifier[ND];
126    if (!discriminator)
127      discriminator = ++Discriminator;
128    if (discriminator == 1)
129      return false;
130    disc = discriminator-2;
131    return true;
132  }
133  /// @}
134};
135
136/// CXXNameMangler - Manage the mangling of a single name.
137class CXXNameMangler {
138  ItaniumMangleContext &Context;
139  raw_ostream &Out;
140
141  /// The "structor" is the top-level declaration being mangled, if
142  /// that's not a template specialization; otherwise it's the pattern
143  /// for that specialization.
144  const NamedDecl *Structor;
145  unsigned StructorType;
146
147  /// SeqID - The next subsitution sequence number.
148  unsigned SeqID;
149
150  class FunctionTypeDepthState {
151    unsigned Bits;
152
153    enum { InResultTypeMask = 1 };
154
155  public:
156    FunctionTypeDepthState() : Bits(0) {}
157
158    /// The number of function types we're inside.
159    unsigned getDepth() const {
160      return Bits >> 1;
161    }
162
163    /// True if we're in the return type of the innermost function type.
164    bool isInResultType() const {
165      return Bits & InResultTypeMask;
166    }
167
168    FunctionTypeDepthState push() {
169      FunctionTypeDepthState tmp = *this;
170      Bits = (Bits & ~InResultTypeMask) + 2;
171      return tmp;
172    }
173
174    void enterResultType() {
175      Bits |= InResultTypeMask;
176    }
177
178    void leaveResultType() {
179      Bits &= ~InResultTypeMask;
180    }
181
182    void pop(FunctionTypeDepthState saved) {
183      assert(getDepth() == saved.getDepth() + 1);
184      Bits = saved.Bits;
185    }
186
187  } FunctionTypeDepth;
188
189  llvm::DenseMap<uintptr_t, unsigned> Substitutions;
190
191  ASTContext &getASTContext() const { return Context.getASTContext(); }
192
193public:
194  CXXNameMangler(ItaniumMangleContext &C, raw_ostream &Out_,
195                 const NamedDecl *D = 0)
196    : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(0),
197      SeqID(0) {
198    // These can't be mangled without a ctor type or dtor type.
199    assert(!D || (!isa<CXXDestructorDecl>(D) &&
200                  !isa<CXXConstructorDecl>(D)));
201  }
202  CXXNameMangler(ItaniumMangleContext &C, raw_ostream &Out_,
203                 const CXXConstructorDecl *D, CXXCtorType Type)
204    : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
205      SeqID(0) { }
206  CXXNameMangler(ItaniumMangleContext &C, raw_ostream &Out_,
207                 const CXXDestructorDecl *D, CXXDtorType Type)
208    : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
209      SeqID(0) { }
210
211#if MANGLE_CHECKER
212  ~CXXNameMangler() {
213    if (Out.str()[0] == '\01')
214      return;
215
216    int status = 0;
217    char *result = abi::__cxa_demangle(Out.str().str().c_str(), 0, 0, &status);
218    assert(status == 0 && "Could not demangle mangled name!");
219    free(result);
220  }
221#endif
222  raw_ostream &getStream() { return Out; }
223
224  void mangle(const NamedDecl *D, StringRef Prefix = "_Z");
225  void mangleCallOffset(int64_t NonVirtual, int64_t Virtual);
226  void mangleNumber(const llvm::APSInt &I);
227  void mangleNumber(int64_t Number);
228  void mangleFloat(const llvm::APFloat &F);
229  void mangleFunctionEncoding(const FunctionDecl *FD);
230  void mangleName(const NamedDecl *ND);
231  void mangleType(QualType T);
232  void mangleNameOrStandardSubstitution(const NamedDecl *ND);
233
234private:
235  bool mangleSubstitution(const NamedDecl *ND);
236  bool mangleSubstitution(QualType T);
237  bool mangleSubstitution(TemplateName Template);
238  bool mangleSubstitution(uintptr_t Ptr);
239
240  void mangleExistingSubstitution(QualType type);
241  void mangleExistingSubstitution(TemplateName name);
242
243  bool mangleStandardSubstitution(const NamedDecl *ND);
244
245  void addSubstitution(const NamedDecl *ND) {
246    ND = cast<NamedDecl>(ND->getCanonicalDecl());
247
248    addSubstitution(reinterpret_cast<uintptr_t>(ND));
249  }
250  void addSubstitution(QualType T);
251  void addSubstitution(TemplateName Template);
252  void addSubstitution(uintptr_t Ptr);
253
254  void mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
255                              NamedDecl *firstQualifierLookup,
256                              bool recursive = false);
257  void mangleUnresolvedName(NestedNameSpecifier *qualifier,
258                            NamedDecl *firstQualifierLookup,
259                            DeclarationName name,
260                            unsigned KnownArity = UnknownArity);
261
262  void mangleName(const TemplateDecl *TD,
263                  const TemplateArgument *TemplateArgs,
264                  unsigned NumTemplateArgs);
265  void mangleUnqualifiedName(const NamedDecl *ND) {
266    mangleUnqualifiedName(ND, ND->getDeclName(), UnknownArity);
267  }
268  void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name,
269                             unsigned KnownArity);
270  void mangleUnscopedName(const NamedDecl *ND);
271  void mangleUnscopedTemplateName(const TemplateDecl *ND);
272  void mangleUnscopedTemplateName(TemplateName);
273  void mangleSourceName(const IdentifierInfo *II);
274  void mangleLocalName(const NamedDecl *ND);
275  void mangleNestedName(const NamedDecl *ND, const DeclContext *DC,
276                        bool NoFunction=false);
277  void mangleNestedName(const TemplateDecl *TD,
278                        const TemplateArgument *TemplateArgs,
279                        unsigned NumTemplateArgs);
280  void manglePrefix(NestedNameSpecifier *qualifier);
281  void manglePrefix(const DeclContext *DC, bool NoFunction=false);
282  void manglePrefix(QualType type);
283  void mangleTemplatePrefix(const TemplateDecl *ND);
284  void mangleTemplatePrefix(TemplateName Template);
285  void mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity);
286  void mangleQualifiers(Qualifiers Quals);
287  void mangleRefQualifier(RefQualifierKind RefQualifier);
288
289  void mangleObjCMethodName(const ObjCMethodDecl *MD);
290
291  // Declare manglers for every type class.
292#define ABSTRACT_TYPE(CLASS, PARENT)
293#define NON_CANONICAL_TYPE(CLASS, PARENT)
294#define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T);
295#include "clang/AST/TypeNodes.def"
296
297  void mangleType(const TagType*);
298  void mangleType(TemplateName);
299  void mangleBareFunctionType(const FunctionType *T,
300                              bool MangleReturnType);
301  void mangleNeonVectorType(const VectorType *T);
302
303  void mangleIntegerLiteral(QualType T, const llvm::APSInt &Value);
304  void mangleMemberExpr(const Expr *base, bool isArrow,
305                        NestedNameSpecifier *qualifier,
306                        NamedDecl *firstQualifierLookup,
307                        DeclarationName name,
308                        unsigned knownArity);
309  void mangleExpression(const Expr *E, unsigned Arity = UnknownArity);
310  void mangleCXXCtorType(CXXCtorType T);
311  void mangleCXXDtorType(CXXDtorType T);
312
313  void mangleTemplateArgs(const ASTTemplateArgumentListInfo &TemplateArgs);
314  void mangleTemplateArgs(TemplateName Template,
315                          const TemplateArgument *TemplateArgs,
316                          unsigned NumTemplateArgs);
317  void mangleTemplateArgs(const TemplateParameterList &PL,
318                          const TemplateArgument *TemplateArgs,
319                          unsigned NumTemplateArgs);
320  void mangleTemplateArgs(const TemplateParameterList &PL,
321                          const TemplateArgumentList &AL);
322  void mangleTemplateArg(const NamedDecl *P, TemplateArgument A);
323  void mangleUnresolvedTemplateArgs(const TemplateArgument *args,
324                                    unsigned numArgs);
325
326  void mangleTemplateParameter(unsigned Index);
327
328  void mangleFunctionParam(const ParmVarDecl *parm);
329};
330
331}
332
333static bool isInCLinkageSpecification(const Decl *D) {
334  D = D->getCanonicalDecl();
335  for (const DeclContext *DC = D->getDeclContext();
336       !DC->isTranslationUnit(); DC = DC->getParent()) {
337    if (const LinkageSpecDecl *Linkage = dyn_cast<LinkageSpecDecl>(DC))
338      return Linkage->getLanguage() == LinkageSpecDecl::lang_c;
339  }
340
341  return false;
342}
343
344bool ItaniumMangleContext::shouldMangleDeclName(const NamedDecl *D) {
345  // In C, functions with no attributes never need to be mangled. Fastpath them.
346  if (!getASTContext().getLangOptions().CPlusPlus && !D->hasAttrs())
347    return false;
348
349  // Any decl can be declared with __asm("foo") on it, and this takes precedence
350  // over all other naming in the .o file.
351  if (D->hasAttr<AsmLabelAttr>())
352    return true;
353
354  // Clang's "overloadable" attribute extension to C/C++ implies name mangling
355  // (always) as does passing a C++ member function and a function
356  // whose name is not a simple identifier.
357  const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
358  if (FD && (FD->hasAttr<OverloadableAttr>() || isa<CXXMethodDecl>(FD) ||
359             !FD->getDeclName().isIdentifier()))
360    return true;
361
362  // Otherwise, no mangling is done outside C++ mode.
363  if (!getASTContext().getLangOptions().CPlusPlus)
364    return false;
365
366  // Variables at global scope with non-internal linkage are not mangled
367  if (!FD) {
368    const DeclContext *DC = D->getDeclContext();
369    // Check for extern variable declared locally.
370    if (DC->isFunctionOrMethod() && D->hasLinkage())
371      while (!DC->isNamespace() && !DC->isTranslationUnit())
372        DC = DC->getParent();
373    if (DC->isTranslationUnit() && D->getLinkage() != InternalLinkage)
374      return false;
375  }
376
377  // Class members are always mangled.
378  if (D->getDeclContext()->isRecord())
379    return true;
380
381  // C functions and "main" are not mangled.
382  if ((FD && FD->isMain()) || isInCLinkageSpecification(D))
383    return false;
384
385  return true;
386}
387
388void CXXNameMangler::mangle(const NamedDecl *D, StringRef Prefix) {
389  // Any decl can be declared with __asm("foo") on it, and this takes precedence
390  // over all other naming in the .o file.
391  if (const AsmLabelAttr *ALA = D->getAttr<AsmLabelAttr>()) {
392    // If we have an asm name, then we use it as the mangling.
393
394    // Adding the prefix can cause problems when one file has a "foo" and
395    // another has a "\01foo". That is known to happen on ELF with the
396    // tricks normally used for producing aliases (PR9177). Fortunately the
397    // llvm mangler on ELF is a nop, so we can just avoid adding the \01
398    // marker.  We also avoid adding the marker if this is an alias for an
399    // LLVM intrinsic.
400    StringRef UserLabelPrefix =
401      getASTContext().getTargetInfo().getUserLabelPrefix();
402    if (!UserLabelPrefix.empty() && !ALA->getLabel().startswith("llvm."))
403      Out << '\01';  // LLVM IR Marker for __asm("foo")
404
405    Out << ALA->getLabel();
406    return;
407  }
408
409  // <mangled-name> ::= _Z <encoding>
410  //            ::= <data name>
411  //            ::= <special-name>
412  Out << Prefix;
413  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
414    mangleFunctionEncoding(FD);
415  else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
416    mangleName(VD);
417  else
418    mangleName(cast<FieldDecl>(D));
419}
420
421void CXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD) {
422  // <encoding> ::= <function name> <bare-function-type>
423  mangleName(FD);
424
425  // Don't mangle in the type if this isn't a decl we should typically mangle.
426  if (!Context.shouldMangleDeclName(FD))
427    return;
428
429  // Whether the mangling of a function type includes the return type depends on
430  // the context and the nature of the function. The rules for deciding whether
431  // the return type is included are:
432  //
433  //   1. Template functions (names or types) have return types encoded, with
434  //   the exceptions listed below.
435  //   2. Function types not appearing as part of a function name mangling,
436  //   e.g. parameters, pointer types, etc., have return type encoded, with the
437  //   exceptions listed below.
438  //   3. Non-template function names do not have return types encoded.
439  //
440  // The exceptions mentioned in (1) and (2) above, for which the return type is
441  // never included, are
442  //   1. Constructors.
443  //   2. Destructors.
444  //   3. Conversion operator functions, e.g. operator int.
445  bool MangleReturnType = false;
446  if (FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate()) {
447    if (!(isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD) ||
448          isa<CXXConversionDecl>(FD)))
449      MangleReturnType = true;
450
451    // Mangle the type of the primary template.
452    FD = PrimaryTemplate->getTemplatedDecl();
453  }
454
455  mangleBareFunctionType(FD->getType()->getAs<FunctionType>(),
456                         MangleReturnType);
457}
458
459static const DeclContext *IgnoreLinkageSpecDecls(const DeclContext *DC) {
460  while (isa<LinkageSpecDecl>(DC)) {
461    DC = DC->getParent();
462  }
463
464  return DC;
465}
466
467/// isStd - Return whether a given namespace is the 'std' namespace.
468static bool isStd(const NamespaceDecl *NS) {
469  if (!IgnoreLinkageSpecDecls(NS->getParent())->isTranslationUnit())
470    return false;
471
472  const IdentifierInfo *II = NS->getOriginalNamespace()->getIdentifier();
473  return II && II->isStr("std");
474}
475
476// isStdNamespace - Return whether a given decl context is a toplevel 'std'
477// namespace.
478static bool isStdNamespace(const DeclContext *DC) {
479  if (!DC->isNamespace())
480    return false;
481
482  return isStd(cast<NamespaceDecl>(DC));
483}
484
485static const TemplateDecl *
486isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) {
487  // Check if we have a function template.
488  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)){
489    if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
490      TemplateArgs = FD->getTemplateSpecializationArgs();
491      return TD;
492    }
493  }
494
495  // Check if we have a class template.
496  if (const ClassTemplateSpecializationDecl *Spec =
497        dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
498    TemplateArgs = &Spec->getTemplateArgs();
499    return Spec->getSpecializedTemplate();
500  }
501
502  return 0;
503}
504
505void CXXNameMangler::mangleName(const NamedDecl *ND) {
506  //  <name> ::= <nested-name>
507  //         ::= <unscoped-name>
508  //         ::= <unscoped-template-name> <template-args>
509  //         ::= <local-name>
510  //
511  const DeclContext *DC = ND->getDeclContext();
512
513  // If this is an extern variable declared locally, the relevant DeclContext
514  // is that of the containing namespace, or the translation unit.
515  if (isa<FunctionDecl>(DC) && ND->hasLinkage())
516    while (!DC->isNamespace() && !DC->isTranslationUnit())
517      DC = DC->getParent();
518  else if (GetLocalClassDecl(ND)) {
519    mangleLocalName(ND);
520    return;
521  }
522
523  while (isa<LinkageSpecDecl>(DC))
524    DC = DC->getParent();
525
526  if (DC->isTranslationUnit() || isStdNamespace(DC)) {
527    // Check if we have a template.
528    const TemplateArgumentList *TemplateArgs = 0;
529    if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
530      mangleUnscopedTemplateName(TD);
531      TemplateParameterList *TemplateParameters = TD->getTemplateParameters();
532      mangleTemplateArgs(*TemplateParameters, *TemplateArgs);
533      return;
534    }
535
536    mangleUnscopedName(ND);
537    return;
538  }
539
540  if (isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC)) {
541    mangleLocalName(ND);
542    return;
543  }
544
545  mangleNestedName(ND, DC);
546}
547void CXXNameMangler::mangleName(const TemplateDecl *TD,
548                                const TemplateArgument *TemplateArgs,
549                                unsigned NumTemplateArgs) {
550  const DeclContext *DC = IgnoreLinkageSpecDecls(TD->getDeclContext());
551
552  if (DC->isTranslationUnit() || isStdNamespace(DC)) {
553    mangleUnscopedTemplateName(TD);
554    TemplateParameterList *TemplateParameters = TD->getTemplateParameters();
555    mangleTemplateArgs(*TemplateParameters, TemplateArgs, NumTemplateArgs);
556  } else {
557    mangleNestedName(TD, TemplateArgs, NumTemplateArgs);
558  }
559}
560
561void CXXNameMangler::mangleUnscopedName(const NamedDecl *ND) {
562  //  <unscoped-name> ::= <unqualified-name>
563  //                  ::= St <unqualified-name>   # ::std::
564  if (isStdNamespace(ND->getDeclContext()))
565    Out << "St";
566
567  mangleUnqualifiedName(ND);
568}
569
570void CXXNameMangler::mangleUnscopedTemplateName(const TemplateDecl *ND) {
571  //     <unscoped-template-name> ::= <unscoped-name>
572  //                              ::= <substitution>
573  if (mangleSubstitution(ND))
574    return;
575
576  // <template-template-param> ::= <template-param>
577  if (const TemplateTemplateParmDecl *TTP
578                                     = dyn_cast<TemplateTemplateParmDecl>(ND)) {
579    mangleTemplateParameter(TTP->getIndex());
580    return;
581  }
582
583  mangleUnscopedName(ND->getTemplatedDecl());
584  addSubstitution(ND);
585}
586
587void CXXNameMangler::mangleUnscopedTemplateName(TemplateName Template) {
588  //     <unscoped-template-name> ::= <unscoped-name>
589  //                              ::= <substitution>
590  if (TemplateDecl *TD = Template.getAsTemplateDecl())
591    return mangleUnscopedTemplateName(TD);
592
593  if (mangleSubstitution(Template))
594    return;
595
596  DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
597  assert(Dependent && "Not a dependent template name?");
598  if (const IdentifierInfo *Id = Dependent->getIdentifier())
599    mangleSourceName(Id);
600  else
601    mangleOperatorName(Dependent->getOperator(), UnknownArity);
602
603  addSubstitution(Template);
604}
605
606void CXXNameMangler::mangleFloat(const llvm::APFloat &f) {
607  // ABI:
608  //   Floating-point literals are encoded using a fixed-length
609  //   lowercase hexadecimal string corresponding to the internal
610  //   representation (IEEE on Itanium), high-order bytes first,
611  //   without leading zeroes. For example: "Lf bf800000 E" is -1.0f
612  //   on Itanium.
613  // APInt::toString uses uppercase hexadecimal, and it's not really
614  // worth embellishing that interface for this use case, so we just
615  // do a second pass to lowercase things.
616  typedef llvm::SmallString<20> buffer_t;
617  buffer_t buffer;
618  f.bitcastToAPInt().toString(buffer, 16, false);
619
620  for (buffer_t::iterator i = buffer.begin(), e = buffer.end(); i != e; ++i)
621    if (isupper(*i)) *i = tolower(*i);
622
623  Out.write(buffer.data(), buffer.size());
624}
625
626void CXXNameMangler::mangleNumber(const llvm::APSInt &Value) {
627  if (Value.isSigned() && Value.isNegative()) {
628    Out << 'n';
629    Value.abs().print(Out, true);
630  } else
631    Value.print(Out, Value.isSigned());
632}
633
634void CXXNameMangler::mangleNumber(int64_t Number) {
635  //  <number> ::= [n] <non-negative decimal integer>
636  if (Number < 0) {
637    Out << 'n';
638    Number = -Number;
639  }
640
641  Out << Number;
642}
643
644void CXXNameMangler::mangleCallOffset(int64_t NonVirtual, int64_t Virtual) {
645  //  <call-offset>  ::= h <nv-offset> _
646  //                 ::= v <v-offset> _
647  //  <nv-offset>    ::= <offset number>        # non-virtual base override
648  //  <v-offset>     ::= <offset number> _ <virtual offset number>
649  //                      # virtual base override, with vcall offset
650  if (!Virtual) {
651    Out << 'h';
652    mangleNumber(NonVirtual);
653    Out << '_';
654    return;
655  }
656
657  Out << 'v';
658  mangleNumber(NonVirtual);
659  Out << '_';
660  mangleNumber(Virtual);
661  Out << '_';
662}
663
664void CXXNameMangler::manglePrefix(QualType type) {
665  if (const TemplateSpecializationType *TST =
666        type->getAs<TemplateSpecializationType>()) {
667    if (!mangleSubstitution(QualType(TST, 0))) {
668      mangleTemplatePrefix(TST->getTemplateName());
669
670      // FIXME: GCC does not appear to mangle the template arguments when
671      // the template in question is a dependent template name. Should we
672      // emulate that badness?
673      mangleTemplateArgs(TST->getTemplateName(), TST->getArgs(),
674                         TST->getNumArgs());
675      addSubstitution(QualType(TST, 0));
676    }
677  } else if (const DependentTemplateSpecializationType *DTST
678               = type->getAs<DependentTemplateSpecializationType>()) {
679    TemplateName Template
680      = getASTContext().getDependentTemplateName(DTST->getQualifier(),
681                                                 DTST->getIdentifier());
682    mangleTemplatePrefix(Template);
683
684    // FIXME: GCC does not appear to mangle the template arguments when
685    // the template in question is a dependent template name. Should we
686    // emulate that badness?
687    mangleTemplateArgs(Template, DTST->getArgs(), DTST->getNumArgs());
688  } else {
689    // We use the QualType mangle type variant here because it handles
690    // substitutions.
691    mangleType(type);
692  }
693}
694
695/// Mangle everything prior to the base-unresolved-name in an unresolved-name.
696///
697/// \param firstQualifierLookup - the entity found by unqualified lookup
698///   for the first name in the qualifier, if this is for a member expression
699/// \param recursive - true if this is being called recursively,
700///   i.e. if there is more prefix "to the right".
701void CXXNameMangler::mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
702                                            NamedDecl *firstQualifierLookup,
703                                            bool recursive) {
704
705  // x, ::x
706  // <unresolved-name> ::= [gs] <base-unresolved-name>
707
708  // T::x / decltype(p)::x
709  // <unresolved-name> ::= sr <unresolved-type> <base-unresolved-name>
710
711  // T::N::x /decltype(p)::N::x
712  // <unresolved-name> ::= srN <unresolved-type> <unresolved-qualifier-level>+ E
713  //                       <base-unresolved-name>
714
715  // A::x, N::y, A<T>::z; "gs" means leading "::"
716  // <unresolved-name> ::= [gs] sr <unresolved-qualifier-level>+ E
717  //                       <base-unresolved-name>
718
719  switch (qualifier->getKind()) {
720  case NestedNameSpecifier::Global:
721    Out << "gs";
722
723    // We want an 'sr' unless this is the entire NNS.
724    if (recursive)
725      Out << "sr";
726
727    // We never want an 'E' here.
728    return;
729
730  case NestedNameSpecifier::Namespace:
731    if (qualifier->getPrefix())
732      mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
733                             /*recursive*/ true);
734    else
735      Out << "sr";
736    mangleSourceName(qualifier->getAsNamespace()->getIdentifier());
737    break;
738  case NestedNameSpecifier::NamespaceAlias:
739    if (qualifier->getPrefix())
740      mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
741                             /*recursive*/ true);
742    else
743      Out << "sr";
744    mangleSourceName(qualifier->getAsNamespaceAlias()->getIdentifier());
745    break;
746
747  case NestedNameSpecifier::TypeSpec:
748  case NestedNameSpecifier::TypeSpecWithTemplate: {
749    const Type *type = qualifier->getAsType();
750
751    // We only want to use an unresolved-type encoding if this is one of:
752    //   - a decltype
753    //   - a template type parameter
754    //   - a template template parameter with arguments
755    // In all of these cases, we should have no prefix.
756    if (qualifier->getPrefix()) {
757      mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
758                             /*recursive*/ true);
759    } else {
760      // Otherwise, all the cases want this.
761      Out << "sr";
762    }
763
764    // Only certain other types are valid as prefixes;  enumerate them.
765    switch (type->getTypeClass()) {
766    case Type::Builtin:
767    case Type::Complex:
768    case Type::Pointer:
769    case Type::BlockPointer:
770    case Type::LValueReference:
771    case Type::RValueReference:
772    case Type::MemberPointer:
773    case Type::ConstantArray:
774    case Type::IncompleteArray:
775    case Type::VariableArray:
776    case Type::DependentSizedArray:
777    case Type::DependentSizedExtVector:
778    case Type::Vector:
779    case Type::ExtVector:
780    case Type::FunctionProto:
781    case Type::FunctionNoProto:
782    case Type::Enum:
783    case Type::Paren:
784    case Type::Elaborated:
785    case Type::Attributed:
786    case Type::Auto:
787    case Type::PackExpansion:
788    case Type::ObjCObject:
789    case Type::ObjCInterface:
790    case Type::ObjCObjectPointer:
791    case Type::Atomic:
792      llvm_unreachable("type is illegal as a nested name specifier");
793
794    case Type::SubstTemplateTypeParmPack:
795      // FIXME: not clear how to mangle this!
796      // template <class T...> class A {
797      //   template <class U...> void foo(decltype(T::foo(U())) x...);
798      // };
799      Out << "_SUBSTPACK_";
800      break;
801
802    // <unresolved-type> ::= <template-param>
803    //                   ::= <decltype>
804    //                   ::= <template-template-param> <template-args>
805    // (this last is not official yet)
806    case Type::TypeOfExpr:
807    case Type::TypeOf:
808    case Type::Decltype:
809    case Type::TemplateTypeParm:
810    case Type::UnaryTransform:
811    case Type::SubstTemplateTypeParm:
812    unresolvedType:
813      assert(!qualifier->getPrefix());
814
815      // We only get here recursively if we're followed by identifiers.
816      if (recursive) Out << 'N';
817
818      // This seems to do everything we want.  It's not really
819      // sanctioned for a substituted template parameter, though.
820      mangleType(QualType(type, 0));
821
822      // We never want to print 'E' directly after an unresolved-type,
823      // so we return directly.
824      return;
825
826    case Type::Typedef:
827      mangleSourceName(cast<TypedefType>(type)->getDecl()->getIdentifier());
828      break;
829
830    case Type::UnresolvedUsing:
831      mangleSourceName(cast<UnresolvedUsingType>(type)->getDecl()
832                         ->getIdentifier());
833      break;
834
835    case Type::Record:
836      mangleSourceName(cast<RecordType>(type)->getDecl()->getIdentifier());
837      break;
838
839    case Type::TemplateSpecialization: {
840      const TemplateSpecializationType *tst
841        = cast<TemplateSpecializationType>(type);
842      TemplateName name = tst->getTemplateName();
843      switch (name.getKind()) {
844      case TemplateName::Template:
845      case TemplateName::QualifiedTemplate: {
846        TemplateDecl *temp = name.getAsTemplateDecl();
847
848        // If the base is a template template parameter, this is an
849        // unresolved type.
850        assert(temp && "no template for template specialization type");
851        if (isa<TemplateTemplateParmDecl>(temp)) goto unresolvedType;
852
853        mangleSourceName(temp->getIdentifier());
854        break;
855      }
856
857      case TemplateName::OverloadedTemplate:
858      case TemplateName::DependentTemplate:
859        llvm_unreachable("invalid base for a template specialization type");
860
861      case TemplateName::SubstTemplateTemplateParm: {
862        SubstTemplateTemplateParmStorage *subst
863          = name.getAsSubstTemplateTemplateParm();
864        mangleExistingSubstitution(subst->getReplacement());
865        break;
866      }
867
868      case TemplateName::SubstTemplateTemplateParmPack: {
869        // FIXME: not clear how to mangle this!
870        // template <template <class U> class T...> class A {
871        //   template <class U...> void foo(decltype(T<U>::foo) x...);
872        // };
873        Out << "_SUBSTPACK_";
874        break;
875      }
876      }
877
878      mangleUnresolvedTemplateArgs(tst->getArgs(), tst->getNumArgs());
879      break;
880    }
881
882    case Type::InjectedClassName:
883      mangleSourceName(cast<InjectedClassNameType>(type)->getDecl()
884                         ->getIdentifier());
885      break;
886
887    case Type::DependentName:
888      mangleSourceName(cast<DependentNameType>(type)->getIdentifier());
889      break;
890
891    case Type::DependentTemplateSpecialization: {
892      const DependentTemplateSpecializationType *tst
893        = cast<DependentTemplateSpecializationType>(type);
894      mangleSourceName(tst->getIdentifier());
895      mangleUnresolvedTemplateArgs(tst->getArgs(), tst->getNumArgs());
896      break;
897    }
898    }
899    break;
900  }
901
902  case NestedNameSpecifier::Identifier:
903    // Member expressions can have these without prefixes.
904    if (qualifier->getPrefix()) {
905      mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
906                             /*recursive*/ true);
907    } else if (firstQualifierLookup) {
908
909      // Try to make a proper qualifier out of the lookup result, and
910      // then just recurse on that.
911      NestedNameSpecifier *newQualifier;
912      if (TypeDecl *typeDecl = dyn_cast<TypeDecl>(firstQualifierLookup)) {
913        QualType type = getASTContext().getTypeDeclType(typeDecl);
914
915        // Pretend we had a different nested name specifier.
916        newQualifier = NestedNameSpecifier::Create(getASTContext(),
917                                                   /*prefix*/ 0,
918                                                   /*template*/ false,
919                                                   type.getTypePtr());
920      } else if (NamespaceDecl *nspace =
921                   dyn_cast<NamespaceDecl>(firstQualifierLookup)) {
922        newQualifier = NestedNameSpecifier::Create(getASTContext(),
923                                                   /*prefix*/ 0,
924                                                   nspace);
925      } else if (NamespaceAliasDecl *alias =
926                   dyn_cast<NamespaceAliasDecl>(firstQualifierLookup)) {
927        newQualifier = NestedNameSpecifier::Create(getASTContext(),
928                                                   /*prefix*/ 0,
929                                                   alias);
930      } else {
931        // No sensible mangling to do here.
932        newQualifier = 0;
933      }
934
935      if (newQualifier)
936        return mangleUnresolvedPrefix(newQualifier, /*lookup*/ 0, recursive);
937
938    } else {
939      Out << "sr";
940    }
941
942    mangleSourceName(qualifier->getAsIdentifier());
943    break;
944  }
945
946  // If this was the innermost part of the NNS, and we fell out to
947  // here, append an 'E'.
948  if (!recursive)
949    Out << 'E';
950}
951
952/// Mangle an unresolved-name, which is generally used for names which
953/// weren't resolved to specific entities.
954void CXXNameMangler::mangleUnresolvedName(NestedNameSpecifier *qualifier,
955                                          NamedDecl *firstQualifierLookup,
956                                          DeclarationName name,
957                                          unsigned knownArity) {
958  if (qualifier) mangleUnresolvedPrefix(qualifier, firstQualifierLookup);
959  mangleUnqualifiedName(0, name, knownArity);
960}
961
962static const FieldDecl *FindFirstNamedDataMember(const RecordDecl *RD) {
963  assert(RD->isAnonymousStructOrUnion() &&
964         "Expected anonymous struct or union!");
965
966  for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
967       I != E; ++I) {
968    const FieldDecl *FD = *I;
969
970    if (FD->getIdentifier())
971      return FD;
972
973    if (const RecordType *RT = FD->getType()->getAs<RecordType>()) {
974      if (const FieldDecl *NamedDataMember =
975          FindFirstNamedDataMember(RT->getDecl()))
976        return NamedDataMember;
977    }
978  }
979
980  // We didn't find a named data member.
981  return 0;
982}
983
984void CXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND,
985                                           DeclarationName Name,
986                                           unsigned KnownArity) {
987  //  <unqualified-name> ::= <operator-name>
988  //                     ::= <ctor-dtor-name>
989  //                     ::= <source-name>
990  switch (Name.getNameKind()) {
991  case DeclarationName::Identifier: {
992    if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) {
993      // We must avoid conflicts between internally- and externally-
994      // linked variable and function declaration names in the same TU:
995      //   void test() { extern void foo(); }
996      //   static void foo();
997      // This naming convention is the same as that followed by GCC,
998      // though it shouldn't actually matter.
999      if (ND && ND->getLinkage() == InternalLinkage &&
1000          ND->getDeclContext()->isFileContext())
1001        Out << 'L';
1002
1003      mangleSourceName(II);
1004      break;
1005    }
1006
1007    // Otherwise, an anonymous entity.  We must have a declaration.
1008    assert(ND && "mangling empty name without declaration");
1009
1010    if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
1011      if (NS->isAnonymousNamespace()) {
1012        // This is how gcc mangles these names.
1013        Out << "12_GLOBAL__N_1";
1014        break;
1015      }
1016    }
1017
1018    if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1019      // We must have an anonymous union or struct declaration.
1020      const RecordDecl *RD =
1021        cast<RecordDecl>(VD->getType()->getAs<RecordType>()->getDecl());
1022
1023      // Itanium C++ ABI 5.1.2:
1024      //
1025      //   For the purposes of mangling, the name of an anonymous union is
1026      //   considered to be the name of the first named data member found by a
1027      //   pre-order, depth-first, declaration-order walk of the data members of
1028      //   the anonymous union. If there is no such data member (i.e., if all of
1029      //   the data members in the union are unnamed), then there is no way for
1030      //   a program to refer to the anonymous union, and there is therefore no
1031      //   need to mangle its name.
1032      const FieldDecl *FD = FindFirstNamedDataMember(RD);
1033
1034      // It's actually possible for various reasons for us to get here
1035      // with an empty anonymous struct / union.  Fortunately, it
1036      // doesn't really matter what name we generate.
1037      if (!FD) break;
1038      assert(FD->getIdentifier() && "Data member name isn't an identifier!");
1039
1040      mangleSourceName(FD->getIdentifier());
1041      break;
1042    }
1043
1044    // We must have an anonymous struct.
1045    const TagDecl *TD = cast<TagDecl>(ND);
1046    if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) {
1047      assert(TD->getDeclContext() == D->getDeclContext() &&
1048             "Typedef should not be in another decl context!");
1049      assert(D->getDeclName().getAsIdentifierInfo() &&
1050             "Typedef was not named!");
1051      mangleSourceName(D->getDeclName().getAsIdentifierInfo());
1052      break;
1053    }
1054
1055    // Get a unique id for the anonymous struct.
1056    uint64_t AnonStructId = Context.getAnonymousStructId(TD);
1057
1058    // Mangle it as a source name in the form
1059    // [n] $_<id>
1060    // where n is the length of the string.
1061    llvm::SmallString<8> Str;
1062    Str += "$_";
1063    Str += llvm::utostr(AnonStructId);
1064
1065    Out << Str.size();
1066    Out << Str.str();
1067    break;
1068  }
1069
1070  case DeclarationName::ObjCZeroArgSelector:
1071  case DeclarationName::ObjCOneArgSelector:
1072  case DeclarationName::ObjCMultiArgSelector:
1073    llvm_unreachable("Can't mangle Objective-C selector names here!");
1074
1075  case DeclarationName::CXXConstructorName:
1076    if (ND == Structor)
1077      // If the named decl is the C++ constructor we're mangling, use the type
1078      // we were given.
1079      mangleCXXCtorType(static_cast<CXXCtorType>(StructorType));
1080    else
1081      // Otherwise, use the complete constructor name. This is relevant if a
1082      // class with a constructor is declared within a constructor.
1083      mangleCXXCtorType(Ctor_Complete);
1084    break;
1085
1086  case DeclarationName::CXXDestructorName:
1087    if (ND == Structor)
1088      // If the named decl is the C++ destructor we're mangling, use the type we
1089      // were given.
1090      mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
1091    else
1092      // Otherwise, use the complete destructor name. This is relevant if a
1093      // class with a destructor is declared within a destructor.
1094      mangleCXXDtorType(Dtor_Complete);
1095    break;
1096
1097  case DeclarationName::CXXConversionFunctionName:
1098    // <operator-name> ::= cv <type>    # (cast)
1099    Out << "cv";
1100    mangleType(Name.getCXXNameType());
1101    break;
1102
1103  case DeclarationName::CXXOperatorName: {
1104    unsigned Arity;
1105    if (ND) {
1106      Arity = cast<FunctionDecl>(ND)->getNumParams();
1107
1108      // If we have a C++ member function, we need to include the 'this' pointer.
1109      // FIXME: This does not make sense for operators that are static, but their
1110      // names stay the same regardless of the arity (operator new for instance).
1111      if (isa<CXXMethodDecl>(ND))
1112        Arity++;
1113    } else
1114      Arity = KnownArity;
1115
1116    mangleOperatorName(Name.getCXXOverloadedOperator(), Arity);
1117    break;
1118  }
1119
1120  case DeclarationName::CXXLiteralOperatorName:
1121    // FIXME: This mangling is not yet official.
1122    Out << "li";
1123    mangleSourceName(Name.getCXXLiteralIdentifier());
1124    break;
1125
1126  case DeclarationName::CXXUsingDirective:
1127    llvm_unreachable("Can't mangle a using directive name!");
1128  }
1129}
1130
1131void CXXNameMangler::mangleSourceName(const IdentifierInfo *II) {
1132  // <source-name> ::= <positive length number> <identifier>
1133  // <number> ::= [n] <non-negative decimal integer>
1134  // <identifier> ::= <unqualified source code identifier>
1135  Out << II->getLength() << II->getName();
1136}
1137
1138void CXXNameMangler::mangleNestedName(const NamedDecl *ND,
1139                                      const DeclContext *DC,
1140                                      bool NoFunction) {
1141  // <nested-name>
1142  //   ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix> <unqualified-name> E
1143  //   ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix>
1144  //       <template-args> E
1145
1146  Out << 'N';
1147  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(ND)) {
1148    mangleQualifiers(Qualifiers::fromCVRMask(Method->getTypeQualifiers()));
1149    mangleRefQualifier(Method->getRefQualifier());
1150  }
1151
1152  // Check if we have a template.
1153  const TemplateArgumentList *TemplateArgs = 0;
1154  if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
1155    mangleTemplatePrefix(TD);
1156    TemplateParameterList *TemplateParameters = TD->getTemplateParameters();
1157    mangleTemplateArgs(*TemplateParameters, *TemplateArgs);
1158  }
1159  else {
1160    manglePrefix(DC, NoFunction);
1161    mangleUnqualifiedName(ND);
1162  }
1163
1164  Out << 'E';
1165}
1166void CXXNameMangler::mangleNestedName(const TemplateDecl *TD,
1167                                      const TemplateArgument *TemplateArgs,
1168                                      unsigned NumTemplateArgs) {
1169  // <nested-name> ::= N [<CV-qualifiers>] <template-prefix> <template-args> E
1170
1171  Out << 'N';
1172
1173  mangleTemplatePrefix(TD);
1174  TemplateParameterList *TemplateParameters = TD->getTemplateParameters();
1175  mangleTemplateArgs(*TemplateParameters, TemplateArgs, NumTemplateArgs);
1176
1177  Out << 'E';
1178}
1179
1180void CXXNameMangler::mangleLocalName(const NamedDecl *ND) {
1181  // <local-name> := Z <function encoding> E <entity name> [<discriminator>]
1182  //              := Z <function encoding> E s [<discriminator>]
1183  // <discriminator> := _ <non-negative number>
1184  const DeclContext *DC = ND->getDeclContext();
1185  if (isa<ObjCMethodDecl>(DC) && isa<FunctionDecl>(ND)) {
1186    // Don't add objc method name mangling to locally declared function
1187    mangleUnqualifiedName(ND);
1188    return;
1189  }
1190
1191  Out << 'Z';
1192
1193  if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(DC)) {
1194   mangleObjCMethodName(MD);
1195  } else if (const CXXRecordDecl *RD = GetLocalClassDecl(ND)) {
1196    mangleFunctionEncoding(cast<FunctionDecl>(RD->getDeclContext()));
1197    Out << 'E';
1198
1199    // Mangle the name relative to the closest enclosing function.
1200    if (ND == RD) // equality ok because RD derived from ND above
1201      mangleUnqualifiedName(ND);
1202    else
1203      mangleNestedName(ND, DC, true /*NoFunction*/);
1204
1205    unsigned disc;
1206    if (Context.getNextDiscriminator(RD, disc)) {
1207      if (disc < 10)
1208        Out << '_' << disc;
1209      else
1210        Out << "__" << disc << '_';
1211    }
1212
1213    return;
1214  }
1215  else
1216    mangleFunctionEncoding(cast<FunctionDecl>(DC));
1217
1218  Out << 'E';
1219  mangleUnqualifiedName(ND);
1220}
1221
1222void CXXNameMangler::manglePrefix(NestedNameSpecifier *qualifier) {
1223  switch (qualifier->getKind()) {
1224  case NestedNameSpecifier::Global:
1225    // nothing
1226    return;
1227
1228  case NestedNameSpecifier::Namespace:
1229    mangleName(qualifier->getAsNamespace());
1230    return;
1231
1232  case NestedNameSpecifier::NamespaceAlias:
1233    mangleName(qualifier->getAsNamespaceAlias()->getNamespace());
1234    return;
1235
1236  case NestedNameSpecifier::TypeSpec:
1237  case NestedNameSpecifier::TypeSpecWithTemplate:
1238    manglePrefix(QualType(qualifier->getAsType(), 0));
1239    return;
1240
1241  case NestedNameSpecifier::Identifier:
1242    // Member expressions can have these without prefixes, but that
1243    // should end up in mangleUnresolvedPrefix instead.
1244    assert(qualifier->getPrefix());
1245    manglePrefix(qualifier->getPrefix());
1246
1247    mangleSourceName(qualifier->getAsIdentifier());
1248    return;
1249  }
1250
1251  llvm_unreachable("unexpected nested name specifier");
1252}
1253
1254void CXXNameMangler::manglePrefix(const DeclContext *DC, bool NoFunction) {
1255  //  <prefix> ::= <prefix> <unqualified-name>
1256  //           ::= <template-prefix> <template-args>
1257  //           ::= <template-param>
1258  //           ::= # empty
1259  //           ::= <substitution>
1260
1261  while (isa<LinkageSpecDecl>(DC))
1262    DC = DC->getParent();
1263
1264  if (DC->isTranslationUnit())
1265    return;
1266
1267  if (const BlockDecl *Block = dyn_cast<BlockDecl>(DC)) {
1268    manglePrefix(DC->getParent(), NoFunction);
1269    llvm::SmallString<64> Name;
1270    llvm::raw_svector_ostream NameStream(Name);
1271    Context.mangleBlock(Block, NameStream);
1272    NameStream.flush();
1273    Out << Name.size() << Name;
1274    return;
1275  }
1276
1277  if (mangleSubstitution(cast<NamedDecl>(DC)))
1278    return;
1279
1280  // Check if we have a template.
1281  const TemplateArgumentList *TemplateArgs = 0;
1282  if (const TemplateDecl *TD = isTemplate(cast<NamedDecl>(DC), TemplateArgs)) {
1283    mangleTemplatePrefix(TD);
1284    TemplateParameterList *TemplateParameters = TD->getTemplateParameters();
1285    mangleTemplateArgs(*TemplateParameters, *TemplateArgs);
1286  }
1287  else if(NoFunction && (isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC)))
1288    return;
1289  else if (const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(DC))
1290    mangleObjCMethodName(Method);
1291  else {
1292    manglePrefix(DC->getParent(), NoFunction);
1293    mangleUnqualifiedName(cast<NamedDecl>(DC));
1294  }
1295
1296  addSubstitution(cast<NamedDecl>(DC));
1297}
1298
1299void CXXNameMangler::mangleTemplatePrefix(TemplateName Template) {
1300  // <template-prefix> ::= <prefix> <template unqualified-name>
1301  //                   ::= <template-param>
1302  //                   ::= <substitution>
1303  if (TemplateDecl *TD = Template.getAsTemplateDecl())
1304    return mangleTemplatePrefix(TD);
1305
1306  if (QualifiedTemplateName *Qualified = Template.getAsQualifiedTemplateName())
1307    manglePrefix(Qualified->getQualifier());
1308
1309  if (OverloadedTemplateStorage *Overloaded
1310                                      = Template.getAsOverloadedTemplate()) {
1311    mangleUnqualifiedName(0, (*Overloaded->begin())->getDeclName(),
1312                          UnknownArity);
1313    return;
1314  }
1315
1316  DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
1317  assert(Dependent && "Unknown template name kind?");
1318  manglePrefix(Dependent->getQualifier());
1319  mangleUnscopedTemplateName(Template);
1320}
1321
1322void CXXNameMangler::mangleTemplatePrefix(const TemplateDecl *ND) {
1323  // <template-prefix> ::= <prefix> <template unqualified-name>
1324  //                   ::= <template-param>
1325  //                   ::= <substitution>
1326  // <template-template-param> ::= <template-param>
1327  //                               <substitution>
1328
1329  if (mangleSubstitution(ND))
1330    return;
1331
1332  // <template-template-param> ::= <template-param>
1333  if (const TemplateTemplateParmDecl *TTP
1334                                     = dyn_cast<TemplateTemplateParmDecl>(ND)) {
1335    mangleTemplateParameter(TTP->getIndex());
1336    return;
1337  }
1338
1339  manglePrefix(ND->getDeclContext());
1340  mangleUnqualifiedName(ND->getTemplatedDecl());
1341  addSubstitution(ND);
1342}
1343
1344/// Mangles a template name under the production <type>.  Required for
1345/// template template arguments.
1346///   <type> ::= <class-enum-type>
1347///          ::= <template-param>
1348///          ::= <substitution>
1349void CXXNameMangler::mangleType(TemplateName TN) {
1350  if (mangleSubstitution(TN))
1351    return;
1352
1353  TemplateDecl *TD = 0;
1354
1355  switch (TN.getKind()) {
1356  case TemplateName::QualifiedTemplate:
1357    TD = TN.getAsQualifiedTemplateName()->getTemplateDecl();
1358    goto HaveDecl;
1359
1360  case TemplateName::Template:
1361    TD = TN.getAsTemplateDecl();
1362    goto HaveDecl;
1363
1364  HaveDecl:
1365    if (isa<TemplateTemplateParmDecl>(TD))
1366      mangleTemplateParameter(cast<TemplateTemplateParmDecl>(TD)->getIndex());
1367    else
1368      mangleName(TD);
1369    break;
1370
1371  case TemplateName::OverloadedTemplate:
1372    llvm_unreachable("can't mangle an overloaded template name as a <type>");
1373    break;
1374
1375  case TemplateName::DependentTemplate: {
1376    const DependentTemplateName *Dependent = TN.getAsDependentTemplateName();
1377    assert(Dependent->isIdentifier());
1378
1379    // <class-enum-type> ::= <name>
1380    // <name> ::= <nested-name>
1381    mangleUnresolvedPrefix(Dependent->getQualifier(), 0);
1382    mangleSourceName(Dependent->getIdentifier());
1383    break;
1384  }
1385
1386  case TemplateName::SubstTemplateTemplateParm: {
1387    // Substituted template parameters are mangled as the substituted
1388    // template.  This will check for the substitution twice, which is
1389    // fine, but we have to return early so that we don't try to *add*
1390    // the substitution twice.
1391    SubstTemplateTemplateParmStorage *subst
1392      = TN.getAsSubstTemplateTemplateParm();
1393    mangleType(subst->getReplacement());
1394    return;
1395  }
1396
1397  case TemplateName::SubstTemplateTemplateParmPack: {
1398    // FIXME: not clear how to mangle this!
1399    // template <template <class> class T...> class A {
1400    //   template <template <class> class U...> void foo(B<T,U> x...);
1401    // };
1402    Out << "_SUBSTPACK_";
1403    break;
1404  }
1405  }
1406
1407  addSubstitution(TN);
1408}
1409
1410void
1411CXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity) {
1412  switch (OO) {
1413  // <operator-name> ::= nw     # new
1414  case OO_New: Out << "nw"; break;
1415  //              ::= na        # new[]
1416  case OO_Array_New: Out << "na"; break;
1417  //              ::= dl        # delete
1418  case OO_Delete: Out << "dl"; break;
1419  //              ::= da        # delete[]
1420  case OO_Array_Delete: Out << "da"; break;
1421  //              ::= ps        # + (unary)
1422  //              ::= pl        # + (binary or unknown)
1423  case OO_Plus:
1424    Out << (Arity == 1? "ps" : "pl"); break;
1425  //              ::= ng        # - (unary)
1426  //              ::= mi        # - (binary or unknown)
1427  case OO_Minus:
1428    Out << (Arity == 1? "ng" : "mi"); break;
1429  //              ::= ad        # & (unary)
1430  //              ::= an        # & (binary or unknown)
1431  case OO_Amp:
1432    Out << (Arity == 1? "ad" : "an"); break;
1433  //              ::= de        # * (unary)
1434  //              ::= ml        # * (binary or unknown)
1435  case OO_Star:
1436    // Use binary when unknown.
1437    Out << (Arity == 1? "de" : "ml"); break;
1438  //              ::= co        # ~
1439  case OO_Tilde: Out << "co"; break;
1440  //              ::= dv        # /
1441  case OO_Slash: Out << "dv"; break;
1442  //              ::= rm        # %
1443  case OO_Percent: Out << "rm"; break;
1444  //              ::= or        # |
1445  case OO_Pipe: Out << "or"; break;
1446  //              ::= eo        # ^
1447  case OO_Caret: Out << "eo"; break;
1448  //              ::= aS        # =
1449  case OO_Equal: Out << "aS"; break;
1450  //              ::= pL        # +=
1451  case OO_PlusEqual: Out << "pL"; break;
1452  //              ::= mI        # -=
1453  case OO_MinusEqual: Out << "mI"; break;
1454  //              ::= mL        # *=
1455  case OO_StarEqual: Out << "mL"; break;
1456  //              ::= dV        # /=
1457  case OO_SlashEqual: Out << "dV"; break;
1458  //              ::= rM        # %=
1459  case OO_PercentEqual: Out << "rM"; break;
1460  //              ::= aN        # &=
1461  case OO_AmpEqual: Out << "aN"; break;
1462  //              ::= oR        # |=
1463  case OO_PipeEqual: Out << "oR"; break;
1464  //              ::= eO        # ^=
1465  case OO_CaretEqual: Out << "eO"; break;
1466  //              ::= ls        # <<
1467  case OO_LessLess: Out << "ls"; break;
1468  //              ::= rs        # >>
1469  case OO_GreaterGreater: Out << "rs"; break;
1470  //              ::= lS        # <<=
1471  case OO_LessLessEqual: Out << "lS"; break;
1472  //              ::= rS        # >>=
1473  case OO_GreaterGreaterEqual: Out << "rS"; break;
1474  //              ::= eq        # ==
1475  case OO_EqualEqual: Out << "eq"; break;
1476  //              ::= ne        # !=
1477  case OO_ExclaimEqual: Out << "ne"; break;
1478  //              ::= lt        # <
1479  case OO_Less: Out << "lt"; break;
1480  //              ::= gt        # >
1481  case OO_Greater: Out << "gt"; break;
1482  //              ::= le        # <=
1483  case OO_LessEqual: Out << "le"; break;
1484  //              ::= ge        # >=
1485  case OO_GreaterEqual: Out << "ge"; break;
1486  //              ::= nt        # !
1487  case OO_Exclaim: Out << "nt"; break;
1488  //              ::= aa        # &&
1489  case OO_AmpAmp: Out << "aa"; break;
1490  //              ::= oo        # ||
1491  case OO_PipePipe: Out << "oo"; break;
1492  //              ::= pp        # ++
1493  case OO_PlusPlus: Out << "pp"; break;
1494  //              ::= mm        # --
1495  case OO_MinusMinus: Out << "mm"; break;
1496  //              ::= cm        # ,
1497  case OO_Comma: Out << "cm"; break;
1498  //              ::= pm        # ->*
1499  case OO_ArrowStar: Out << "pm"; break;
1500  //              ::= pt        # ->
1501  case OO_Arrow: Out << "pt"; break;
1502  //              ::= cl        # ()
1503  case OO_Call: Out << "cl"; break;
1504  //              ::= ix        # []
1505  case OO_Subscript: Out << "ix"; break;
1506
1507  //              ::= qu        # ?
1508  // The conditional operator can't be overloaded, but we still handle it when
1509  // mangling expressions.
1510  case OO_Conditional: Out << "qu"; break;
1511
1512  case OO_None:
1513  case NUM_OVERLOADED_OPERATORS:
1514    llvm_unreachable("Not an overloaded operator");
1515  }
1516}
1517
1518void CXXNameMangler::mangleQualifiers(Qualifiers Quals) {
1519  // <CV-qualifiers> ::= [r] [V] [K]    # restrict (C99), volatile, const
1520  if (Quals.hasRestrict())
1521    Out << 'r';
1522  if (Quals.hasVolatile())
1523    Out << 'V';
1524  if (Quals.hasConst())
1525    Out << 'K';
1526
1527  if (Quals.hasAddressSpace()) {
1528    // Extension:
1529    //
1530    //   <type> ::= U <address-space-number>
1531    //
1532    // where <address-space-number> is a source name consisting of 'AS'
1533    // followed by the address space <number>.
1534    llvm::SmallString<64> ASString;
1535    ASString = "AS" + llvm::utostr_32(Quals.getAddressSpace());
1536    Out << 'U' << ASString.size() << ASString;
1537  }
1538
1539  StringRef LifetimeName;
1540  switch (Quals.getObjCLifetime()) {
1541  // Objective-C ARC Extension:
1542  //
1543  //   <type> ::= U "__strong"
1544  //   <type> ::= U "__weak"
1545  //   <type> ::= U "__autoreleasing"
1546  case Qualifiers::OCL_None:
1547    break;
1548
1549  case Qualifiers::OCL_Weak:
1550    LifetimeName = "__weak";
1551    break;
1552
1553  case Qualifiers::OCL_Strong:
1554    LifetimeName = "__strong";
1555    break;
1556
1557  case Qualifiers::OCL_Autoreleasing:
1558    LifetimeName = "__autoreleasing";
1559    break;
1560
1561  case Qualifiers::OCL_ExplicitNone:
1562    // The __unsafe_unretained qualifier is *not* mangled, so that
1563    // __unsafe_unretained types in ARC produce the same manglings as the
1564    // equivalent (but, naturally, unqualified) types in non-ARC, providing
1565    // better ABI compatibility.
1566    //
1567    // It's safe to do this because unqualified 'id' won't show up
1568    // in any type signatures that need to be mangled.
1569    break;
1570  }
1571  if (!LifetimeName.empty())
1572    Out << 'U' << LifetimeName.size() << LifetimeName;
1573}
1574
1575void CXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) {
1576  // <ref-qualifier> ::= R                # lvalue reference
1577  //                 ::= O                # rvalue-reference
1578  // Proposal to Itanium C++ ABI list on 1/26/11
1579  switch (RefQualifier) {
1580  case RQ_None:
1581    break;
1582
1583  case RQ_LValue:
1584    Out << 'R';
1585    break;
1586
1587  case RQ_RValue:
1588    Out << 'O';
1589    break;
1590  }
1591}
1592
1593void CXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
1594  Context.mangleObjCMethodName(MD, Out);
1595}
1596
1597void CXXNameMangler::mangleType(QualType T) {
1598  // If our type is instantiation-dependent but not dependent, we mangle
1599  // it as it was written in the source, removing any top-level sugar.
1600  // Otherwise, use the canonical type.
1601  //
1602  // FIXME: This is an approximation of the instantiation-dependent name
1603  // mangling rules, since we should really be using the type as written and
1604  // augmented via semantic analysis (i.e., with implicit conversions and
1605  // default template arguments) for any instantiation-dependent type.
1606  // Unfortunately, that requires several changes to our AST:
1607  //   - Instantiation-dependent TemplateSpecializationTypes will need to be
1608  //     uniqued, so that we can handle substitutions properly
1609  //   - Default template arguments will need to be represented in the
1610  //     TemplateSpecializationType, since they need to be mangled even though
1611  //     they aren't written.
1612  //   - Conversions on non-type template arguments need to be expressed, since
1613  //     they can affect the mangling of sizeof/alignof.
1614  if (!T->isInstantiationDependentType() || T->isDependentType())
1615    T = T.getCanonicalType();
1616  else {
1617    // Desugar any types that are purely sugar.
1618    do {
1619      // Don't desugar through template specialization types that aren't
1620      // type aliases. We need to mangle the template arguments as written.
1621      if (const TemplateSpecializationType *TST
1622                                      = dyn_cast<TemplateSpecializationType>(T))
1623        if (!TST->isTypeAlias())
1624          break;
1625
1626      QualType Desugared
1627        = T.getSingleStepDesugaredType(Context.getASTContext());
1628      if (Desugared == T)
1629        break;
1630
1631      T = Desugared;
1632    } while (true);
1633  }
1634  SplitQualType split = T.split();
1635  Qualifiers quals = split.second;
1636  const Type *ty = split.first;
1637
1638  bool isSubstitutable = quals || !isa<BuiltinType>(T);
1639  if (isSubstitutable && mangleSubstitution(T))
1640    return;
1641
1642  // If we're mangling a qualified array type, push the qualifiers to
1643  // the element type.
1644  if (quals && isa<ArrayType>(T)) {
1645    ty = Context.getASTContext().getAsArrayType(T);
1646    quals = Qualifiers();
1647
1648    // Note that we don't update T: we want to add the
1649    // substitution at the original type.
1650  }
1651
1652  if (quals) {
1653    mangleQualifiers(quals);
1654    // Recurse:  even if the qualified type isn't yet substitutable,
1655    // the unqualified type might be.
1656    mangleType(QualType(ty, 0));
1657  } else {
1658    switch (ty->getTypeClass()) {
1659#define ABSTRACT_TYPE(CLASS, PARENT)
1660#define NON_CANONICAL_TYPE(CLASS, PARENT) \
1661    case Type::CLASS: \
1662      llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
1663      return;
1664#define TYPE(CLASS, PARENT) \
1665    case Type::CLASS: \
1666      mangleType(static_cast<const CLASS##Type*>(ty)); \
1667      break;
1668#include "clang/AST/TypeNodes.def"
1669    }
1670  }
1671
1672  // Add the substitution.
1673  if (isSubstitutable)
1674    addSubstitution(T);
1675}
1676
1677void CXXNameMangler::mangleNameOrStandardSubstitution(const NamedDecl *ND) {
1678  if (!mangleStandardSubstitution(ND))
1679    mangleName(ND);
1680}
1681
1682void CXXNameMangler::mangleType(const BuiltinType *T) {
1683  //  <type>         ::= <builtin-type>
1684  //  <builtin-type> ::= v  # void
1685  //                 ::= w  # wchar_t
1686  //                 ::= b  # bool
1687  //                 ::= c  # char
1688  //                 ::= a  # signed char
1689  //                 ::= h  # unsigned char
1690  //                 ::= s  # short
1691  //                 ::= t  # unsigned short
1692  //                 ::= i  # int
1693  //                 ::= j  # unsigned int
1694  //                 ::= l  # long
1695  //                 ::= m  # unsigned long
1696  //                 ::= x  # long long, __int64
1697  //                 ::= y  # unsigned long long, __int64
1698  //                 ::= n  # __int128
1699  // UNSUPPORTED:    ::= o  # unsigned __int128
1700  //                 ::= f  # float
1701  //                 ::= d  # double
1702  //                 ::= e  # long double, __float80
1703  // UNSUPPORTED:    ::= g  # __float128
1704  // UNSUPPORTED:    ::= Dd # IEEE 754r decimal floating point (64 bits)
1705  // UNSUPPORTED:    ::= De # IEEE 754r decimal floating point (128 bits)
1706  // UNSUPPORTED:    ::= Df # IEEE 754r decimal floating point (32 bits)
1707  //                 ::= Dh # IEEE 754r half-precision floating point (16 bits)
1708  //                 ::= Di # char32_t
1709  //                 ::= Ds # char16_t
1710  //                 ::= Dn # std::nullptr_t (i.e., decltype(nullptr))
1711  //                 ::= u <source-name>    # vendor extended type
1712  switch (T->getKind()) {
1713  case BuiltinType::Void: Out << 'v'; break;
1714  case BuiltinType::Bool: Out << 'b'; break;
1715  case BuiltinType::Char_U: case BuiltinType::Char_S: Out << 'c'; break;
1716  case BuiltinType::UChar: Out << 'h'; break;
1717  case BuiltinType::UShort: Out << 't'; break;
1718  case BuiltinType::UInt: Out << 'j'; break;
1719  case BuiltinType::ULong: Out << 'm'; break;
1720  case BuiltinType::ULongLong: Out << 'y'; break;
1721  case BuiltinType::UInt128: Out << 'o'; break;
1722  case BuiltinType::SChar: Out << 'a'; break;
1723  case BuiltinType::WChar_S:
1724  case BuiltinType::WChar_U: Out << 'w'; break;
1725  case BuiltinType::Char16: Out << "Ds"; break;
1726  case BuiltinType::Char32: Out << "Di"; break;
1727  case BuiltinType::Short: Out << 's'; break;
1728  case BuiltinType::Int: Out << 'i'; break;
1729  case BuiltinType::Long: Out << 'l'; break;
1730  case BuiltinType::LongLong: Out << 'x'; break;
1731  case BuiltinType::Int128: Out << 'n'; break;
1732  case BuiltinType::Half: Out << "Dh"; break;
1733  case BuiltinType::Float: Out << 'f'; break;
1734  case BuiltinType::Double: Out << 'd'; break;
1735  case BuiltinType::LongDouble: Out << 'e'; break;
1736  case BuiltinType::NullPtr: Out << "Dn"; break;
1737
1738#define BUILTIN_TYPE(Id, SingletonId)
1739#define PLACEHOLDER_TYPE(Id, SingletonId) \
1740  case BuiltinType::Id:
1741#include "clang/AST/BuiltinTypes.def"
1742  case BuiltinType::Dependent:
1743    llvm_unreachable("mangling a placeholder type");
1744    break;
1745  case BuiltinType::ObjCId: Out << "11objc_object"; break;
1746  case BuiltinType::ObjCClass: Out << "10objc_class"; break;
1747  case BuiltinType::ObjCSel: Out << "13objc_selector"; break;
1748  }
1749}
1750
1751// <type>          ::= <function-type>
1752// <function-type> ::= F [Y] <bare-function-type> E
1753void CXXNameMangler::mangleType(const FunctionProtoType *T) {
1754  Out << 'F';
1755  // FIXME: We don't have enough information in the AST to produce the 'Y'
1756  // encoding for extern "C" function types.
1757  mangleBareFunctionType(T, /*MangleReturnType=*/true);
1758  Out << 'E';
1759}
1760void CXXNameMangler::mangleType(const FunctionNoProtoType *T) {
1761  llvm_unreachable("Can't mangle K&R function prototypes");
1762}
1763void CXXNameMangler::mangleBareFunctionType(const FunctionType *T,
1764                                            bool MangleReturnType) {
1765  // We should never be mangling something without a prototype.
1766  const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
1767
1768  // Record that we're in a function type.  See mangleFunctionParam
1769  // for details on what we're trying to achieve here.
1770  FunctionTypeDepthState saved = FunctionTypeDepth.push();
1771
1772  // <bare-function-type> ::= <signature type>+
1773  if (MangleReturnType) {
1774    FunctionTypeDepth.enterResultType();
1775    mangleType(Proto->getResultType());
1776    FunctionTypeDepth.leaveResultType();
1777  }
1778
1779  if (Proto->getNumArgs() == 0 && !Proto->isVariadic()) {
1780    //   <builtin-type> ::= v   # void
1781    Out << 'v';
1782
1783    FunctionTypeDepth.pop(saved);
1784    return;
1785  }
1786
1787  for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(),
1788                                         ArgEnd = Proto->arg_type_end();
1789       Arg != ArgEnd; ++Arg)
1790    mangleType(Context.getASTContext().getSignatureParameterType(*Arg));
1791
1792  FunctionTypeDepth.pop(saved);
1793
1794  // <builtin-type>      ::= z  # ellipsis
1795  if (Proto->isVariadic())
1796    Out << 'z';
1797}
1798
1799// <type>            ::= <class-enum-type>
1800// <class-enum-type> ::= <name>
1801void CXXNameMangler::mangleType(const UnresolvedUsingType *T) {
1802  mangleName(T->getDecl());
1803}
1804
1805// <type>            ::= <class-enum-type>
1806// <class-enum-type> ::= <name>
1807void CXXNameMangler::mangleType(const EnumType *T) {
1808  mangleType(static_cast<const TagType*>(T));
1809}
1810void CXXNameMangler::mangleType(const RecordType *T) {
1811  mangleType(static_cast<const TagType*>(T));
1812}
1813void CXXNameMangler::mangleType(const TagType *T) {
1814  mangleName(T->getDecl());
1815}
1816
1817// <type>       ::= <array-type>
1818// <array-type> ::= A <positive dimension number> _ <element type>
1819//              ::= A [<dimension expression>] _ <element type>
1820void CXXNameMangler::mangleType(const ConstantArrayType *T) {
1821  Out << 'A' << T->getSize() << '_';
1822  mangleType(T->getElementType());
1823}
1824void CXXNameMangler::mangleType(const VariableArrayType *T) {
1825  Out << 'A';
1826  // decayed vla types (size 0) will just be skipped.
1827  if (T->getSizeExpr())
1828    mangleExpression(T->getSizeExpr());
1829  Out << '_';
1830  mangleType(T->getElementType());
1831}
1832void CXXNameMangler::mangleType(const DependentSizedArrayType *T) {
1833  Out << 'A';
1834  mangleExpression(T->getSizeExpr());
1835  Out << '_';
1836  mangleType(T->getElementType());
1837}
1838void CXXNameMangler::mangleType(const IncompleteArrayType *T) {
1839  Out << "A_";
1840  mangleType(T->getElementType());
1841}
1842
1843// <type>                   ::= <pointer-to-member-type>
1844// <pointer-to-member-type> ::= M <class type> <member type>
1845void CXXNameMangler::mangleType(const MemberPointerType *T) {
1846  Out << 'M';
1847  mangleType(QualType(T->getClass(), 0));
1848  QualType PointeeType = T->getPointeeType();
1849  if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(PointeeType)) {
1850    mangleQualifiers(Qualifiers::fromCVRMask(FPT->getTypeQuals()));
1851    mangleRefQualifier(FPT->getRefQualifier());
1852    mangleType(FPT);
1853
1854    // Itanium C++ ABI 5.1.8:
1855    //
1856    //   The type of a non-static member function is considered to be different,
1857    //   for the purposes of substitution, from the type of a namespace-scope or
1858    //   static member function whose type appears similar. The types of two
1859    //   non-static member functions are considered to be different, for the
1860    //   purposes of substitution, if the functions are members of different
1861    //   classes. In other words, for the purposes of substitution, the class of
1862    //   which the function is a member is considered part of the type of
1863    //   function.
1864
1865    // We increment the SeqID here to emulate adding an entry to the
1866    // substitution table. We can't actually add it because we don't want this
1867    // particular function type to be substituted.
1868    ++SeqID;
1869  } else
1870    mangleType(PointeeType);
1871}
1872
1873// <type>           ::= <template-param>
1874void CXXNameMangler::mangleType(const TemplateTypeParmType *T) {
1875  mangleTemplateParameter(T->getIndex());
1876}
1877
1878// <type>           ::= <template-param>
1879void CXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T) {
1880  // FIXME: not clear how to mangle this!
1881  // template <class T...> class A {
1882  //   template <class U...> void foo(T(*)(U) x...);
1883  // };
1884  Out << "_SUBSTPACK_";
1885}
1886
1887// <type> ::= P <type>   # pointer-to
1888void CXXNameMangler::mangleType(const PointerType *T) {
1889  Out << 'P';
1890  mangleType(T->getPointeeType());
1891}
1892void CXXNameMangler::mangleType(const ObjCObjectPointerType *T) {
1893  Out << 'P';
1894  mangleType(T->getPointeeType());
1895}
1896
1897// <type> ::= R <type>   # reference-to
1898void CXXNameMangler::mangleType(const LValueReferenceType *T) {
1899  Out << 'R';
1900  mangleType(T->getPointeeType());
1901}
1902
1903// <type> ::= O <type>   # rvalue reference-to (C++0x)
1904void CXXNameMangler::mangleType(const RValueReferenceType *T) {
1905  Out << 'O';
1906  mangleType(T->getPointeeType());
1907}
1908
1909// <type> ::= C <type>   # complex pair (C 2000)
1910void CXXNameMangler::mangleType(const ComplexType *T) {
1911  Out << 'C';
1912  mangleType(T->getElementType());
1913}
1914
1915// ARM's ABI for Neon vector types specifies that they should be mangled as
1916// if they are structs (to match ARM's initial implementation).  The
1917// vector type must be one of the special types predefined by ARM.
1918void CXXNameMangler::mangleNeonVectorType(const VectorType *T) {
1919  QualType EltType = T->getElementType();
1920  assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
1921  const char *EltName = 0;
1922  if (T->getVectorKind() == VectorType::NeonPolyVector) {
1923    switch (cast<BuiltinType>(EltType)->getKind()) {
1924    case BuiltinType::SChar:     EltName = "poly8_t"; break;
1925    case BuiltinType::Short:     EltName = "poly16_t"; break;
1926    default: llvm_unreachable("unexpected Neon polynomial vector element type");
1927    }
1928  } else {
1929    switch (cast<BuiltinType>(EltType)->getKind()) {
1930    case BuiltinType::SChar:     EltName = "int8_t"; break;
1931    case BuiltinType::UChar:     EltName = "uint8_t"; break;
1932    case BuiltinType::Short:     EltName = "int16_t"; break;
1933    case BuiltinType::UShort:    EltName = "uint16_t"; break;
1934    case BuiltinType::Int:       EltName = "int32_t"; break;
1935    case BuiltinType::UInt:      EltName = "uint32_t"; break;
1936    case BuiltinType::LongLong:  EltName = "int64_t"; break;
1937    case BuiltinType::ULongLong: EltName = "uint64_t"; break;
1938    case BuiltinType::Float:     EltName = "float32_t"; break;
1939    default: llvm_unreachable("unexpected Neon vector element type");
1940    }
1941  }
1942  const char *BaseName = 0;
1943  unsigned BitSize = (T->getNumElements() *
1944                      getASTContext().getTypeSize(EltType));
1945  if (BitSize == 64)
1946    BaseName = "__simd64_";
1947  else {
1948    assert(BitSize == 128 && "Neon vector type not 64 or 128 bits");
1949    BaseName = "__simd128_";
1950  }
1951  Out << strlen(BaseName) + strlen(EltName);
1952  Out << BaseName << EltName;
1953}
1954
1955// GNU extension: vector types
1956// <type>                  ::= <vector-type>
1957// <vector-type>           ::= Dv <positive dimension number> _
1958//                                    <extended element type>
1959//                         ::= Dv [<dimension expression>] _ <element type>
1960// <extended element type> ::= <element type>
1961//                         ::= p # AltiVec vector pixel
1962void CXXNameMangler::mangleType(const VectorType *T) {
1963  if ((T->getVectorKind() == VectorType::NeonVector ||
1964       T->getVectorKind() == VectorType::NeonPolyVector)) {
1965    mangleNeonVectorType(T);
1966    return;
1967  }
1968  Out << "Dv" << T->getNumElements() << '_';
1969  if (T->getVectorKind() == VectorType::AltiVecPixel)
1970    Out << 'p';
1971  else if (T->getVectorKind() == VectorType::AltiVecBool)
1972    Out << 'b';
1973  else
1974    mangleType(T->getElementType());
1975}
1976void CXXNameMangler::mangleType(const ExtVectorType *T) {
1977  mangleType(static_cast<const VectorType*>(T));
1978}
1979void CXXNameMangler::mangleType(const DependentSizedExtVectorType *T) {
1980  Out << "Dv";
1981  mangleExpression(T->getSizeExpr());
1982  Out << '_';
1983  mangleType(T->getElementType());
1984}
1985
1986void CXXNameMangler::mangleType(const PackExpansionType *T) {
1987  // <type>  ::= Dp <type>          # pack expansion (C++0x)
1988  Out << "Dp";
1989  mangleType(T->getPattern());
1990}
1991
1992void CXXNameMangler::mangleType(const ObjCInterfaceType *T) {
1993  mangleSourceName(T->getDecl()->getIdentifier());
1994}
1995
1996void CXXNameMangler::mangleType(const ObjCObjectType *T) {
1997  // We don't allow overloading by different protocol qualification,
1998  // so mangling them isn't necessary.
1999  mangleType(T->getBaseType());
2000}
2001
2002void CXXNameMangler::mangleType(const BlockPointerType *T) {
2003  Out << "U13block_pointer";
2004  mangleType(T->getPointeeType());
2005}
2006
2007void CXXNameMangler::mangleType(const InjectedClassNameType *T) {
2008  // Mangle injected class name types as if the user had written the
2009  // specialization out fully.  It may not actually be possible to see
2010  // this mangling, though.
2011  mangleType(T->getInjectedSpecializationType());
2012}
2013
2014void CXXNameMangler::mangleType(const TemplateSpecializationType *T) {
2015  if (TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl()) {
2016    mangleName(TD, T->getArgs(), T->getNumArgs());
2017  } else {
2018    if (mangleSubstitution(QualType(T, 0)))
2019      return;
2020
2021    mangleTemplatePrefix(T->getTemplateName());
2022
2023    // FIXME: GCC does not appear to mangle the template arguments when
2024    // the template in question is a dependent template name. Should we
2025    // emulate that badness?
2026    mangleTemplateArgs(T->getTemplateName(), T->getArgs(), T->getNumArgs());
2027    addSubstitution(QualType(T, 0));
2028  }
2029}
2030
2031void CXXNameMangler::mangleType(const DependentNameType *T) {
2032  // Typename types are always nested
2033  Out << 'N';
2034  manglePrefix(T->getQualifier());
2035  mangleSourceName(T->getIdentifier());
2036  Out << 'E';
2037}
2038
2039void CXXNameMangler::mangleType(const DependentTemplateSpecializationType *T) {
2040  // Dependently-scoped template types are nested if they have a prefix.
2041  Out << 'N';
2042
2043  // TODO: avoid making this TemplateName.
2044  TemplateName Prefix =
2045    getASTContext().getDependentTemplateName(T->getQualifier(),
2046                                             T->getIdentifier());
2047  mangleTemplatePrefix(Prefix);
2048
2049  // FIXME: GCC does not appear to mangle the template arguments when
2050  // the template in question is a dependent template name. Should we
2051  // emulate that badness?
2052  mangleTemplateArgs(Prefix, T->getArgs(), T->getNumArgs());
2053  Out << 'E';
2054}
2055
2056void CXXNameMangler::mangleType(const TypeOfType *T) {
2057  // FIXME: this is pretty unsatisfactory, but there isn't an obvious
2058  // "extension with parameters" mangling.
2059  Out << "u6typeof";
2060}
2061
2062void CXXNameMangler::mangleType(const TypeOfExprType *T) {
2063  // FIXME: this is pretty unsatisfactory, but there isn't an obvious
2064  // "extension with parameters" mangling.
2065  Out << "u6typeof";
2066}
2067
2068void CXXNameMangler::mangleType(const DecltypeType *T) {
2069  Expr *E = T->getUnderlyingExpr();
2070
2071  // type ::= Dt <expression> E  # decltype of an id-expression
2072  //                             #   or class member access
2073  //      ::= DT <expression> E  # decltype of an expression
2074
2075  // This purports to be an exhaustive list of id-expressions and
2076  // class member accesses.  Note that we do not ignore parentheses;
2077  // parentheses change the semantics of decltype for these
2078  // expressions (and cause the mangler to use the other form).
2079  if (isa<DeclRefExpr>(E) ||
2080      isa<MemberExpr>(E) ||
2081      isa<UnresolvedLookupExpr>(E) ||
2082      isa<DependentScopeDeclRefExpr>(E) ||
2083      isa<CXXDependentScopeMemberExpr>(E) ||
2084      isa<UnresolvedMemberExpr>(E))
2085    Out << "Dt";
2086  else
2087    Out << "DT";
2088  mangleExpression(E);
2089  Out << 'E';
2090}
2091
2092void CXXNameMangler::mangleType(const UnaryTransformType *T) {
2093  // If this is dependent, we need to record that. If not, we simply
2094  // mangle it as the underlying type since they are equivalent.
2095  if (T->isDependentType()) {
2096    Out << 'U';
2097
2098    switch (T->getUTTKind()) {
2099      case UnaryTransformType::EnumUnderlyingType:
2100        Out << "3eut";
2101        break;
2102    }
2103  }
2104
2105  mangleType(T->getUnderlyingType());
2106}
2107
2108void CXXNameMangler::mangleType(const AutoType *T) {
2109  QualType D = T->getDeducedType();
2110  // <builtin-type> ::= Da  # dependent auto
2111  if (D.isNull())
2112    Out << "Da";
2113  else
2114    mangleType(D);
2115}
2116
2117void CXXNameMangler::mangleType(const AtomicType *T) {
2118  // <type> ::= U <source-name> <type>	# vendor extended type qualifier
2119  // (Until there's a standardized mangling...)
2120  Out << "U7_Atomic";
2121  mangleType(T->getValueType());
2122}
2123
2124void CXXNameMangler::mangleIntegerLiteral(QualType T,
2125                                          const llvm::APSInt &Value) {
2126  //  <expr-primary> ::= L <type> <value number> E # integer literal
2127  Out << 'L';
2128
2129  mangleType(T);
2130  if (T->isBooleanType()) {
2131    // Boolean values are encoded as 0/1.
2132    Out << (Value.getBoolValue() ? '1' : '0');
2133  } else {
2134    mangleNumber(Value);
2135  }
2136  Out << 'E';
2137
2138}
2139
2140/// Mangles a member expression.  Implicit accesses are not handled,
2141/// but that should be okay, because you shouldn't be able to
2142/// make an implicit access in a function template declaration.
2143void CXXNameMangler::mangleMemberExpr(const Expr *base,
2144                                      bool isArrow,
2145                                      NestedNameSpecifier *qualifier,
2146                                      NamedDecl *firstQualifierLookup,
2147                                      DeclarationName member,
2148                                      unsigned arity) {
2149  // <expression> ::= dt <expression> <unresolved-name>
2150  //              ::= pt <expression> <unresolved-name>
2151  Out << (isArrow ? "pt" : "dt");
2152  mangleExpression(base);
2153  mangleUnresolvedName(qualifier, firstQualifierLookup, member, arity);
2154}
2155
2156/// Look at the callee of the given call expression and determine if
2157/// it's a parenthesized id-expression which would have triggered ADL
2158/// otherwise.
2159static bool isParenthesizedADLCallee(const CallExpr *call) {
2160  const Expr *callee = call->getCallee();
2161  const Expr *fn = callee->IgnoreParens();
2162
2163  // Must be parenthesized.  IgnoreParens() skips __extension__ nodes,
2164  // too, but for those to appear in the callee, it would have to be
2165  // parenthesized.
2166  if (callee == fn) return false;
2167
2168  // Must be an unresolved lookup.
2169  const UnresolvedLookupExpr *lookup = dyn_cast<UnresolvedLookupExpr>(fn);
2170  if (!lookup) return false;
2171
2172  assert(!lookup->requiresADL());
2173
2174  // Must be an unqualified lookup.
2175  if (lookup->getQualifier()) return false;
2176
2177  // Must not have found a class member.  Note that if one is a class
2178  // member, they're all class members.
2179  if (lookup->getNumDecls() > 0 &&
2180      (*lookup->decls_begin())->isCXXClassMember())
2181    return false;
2182
2183  // Otherwise, ADL would have been triggered.
2184  return true;
2185}
2186
2187void CXXNameMangler::mangleExpression(const Expr *E, unsigned Arity) {
2188  // <expression> ::= <unary operator-name> <expression>
2189  //              ::= <binary operator-name> <expression> <expression>
2190  //              ::= <trinary operator-name> <expression> <expression> <expression>
2191  //              ::= cv <type> expression           # conversion with one argument
2192  //              ::= cv <type> _ <expression>* E # conversion with a different number of arguments
2193  //              ::= st <type>                      # sizeof (a type)
2194  //              ::= at <type>                      # alignof (a type)
2195  //              ::= <template-param>
2196  //              ::= <function-param>
2197  //              ::= sr <type> <unqualified-name>                   # dependent name
2198  //              ::= sr <type> <unqualified-name> <template-args>   # dependent template-id
2199  //              ::= ds <expression> <expression>                   # expr.*expr
2200  //              ::= sZ <template-param>                            # size of a parameter pack
2201  //              ::= sZ <function-param>    # size of a function parameter pack
2202  //              ::= <expr-primary>
2203  // <expr-primary> ::= L <type> <value number> E    # integer literal
2204  //                ::= L <type <value float> E      # floating literal
2205  //                ::= L <mangled-name> E           # external name
2206  QualType ImplicitlyConvertedToType;
2207
2208recurse:
2209  switch (E->getStmtClass()) {
2210  case Expr::NoStmtClass:
2211#define ABSTRACT_STMT(Type)
2212#define EXPR(Type, Base)
2213#define STMT(Type, Base) \
2214  case Expr::Type##Class:
2215#include "clang/AST/StmtNodes.inc"
2216    // fallthrough
2217
2218  // These all can only appear in local or variable-initialization
2219  // contexts and so should never appear in a mangling.
2220  case Expr::AddrLabelExprClass:
2221  case Expr::BlockDeclRefExprClass:
2222  case Expr::CXXThisExprClass:
2223  case Expr::DesignatedInitExprClass:
2224  case Expr::ImplicitValueInitExprClass:
2225  case Expr::InitListExprClass:
2226  case Expr::ParenListExprClass:
2227  case Expr::CXXScalarValueInitExprClass:
2228    llvm_unreachable("unexpected statement kind");
2229    break;
2230
2231  // FIXME: invent manglings for all these.
2232  case Expr::BlockExprClass:
2233  case Expr::CXXPseudoDestructorExprClass:
2234  case Expr::ChooseExprClass:
2235  case Expr::CompoundLiteralExprClass:
2236  case Expr::ExtVectorElementExprClass:
2237  case Expr::GenericSelectionExprClass:
2238  case Expr::ObjCEncodeExprClass:
2239  case Expr::ObjCIsaExprClass:
2240  case Expr::ObjCIvarRefExprClass:
2241  case Expr::ObjCMessageExprClass:
2242  case Expr::ObjCPropertyRefExprClass:
2243  case Expr::ObjCProtocolExprClass:
2244  case Expr::ObjCSelectorExprClass:
2245  case Expr::ObjCStringLiteralClass:
2246  case Expr::ObjCIndirectCopyRestoreExprClass:
2247  case Expr::OffsetOfExprClass:
2248  case Expr::PredefinedExprClass:
2249  case Expr::ShuffleVectorExprClass:
2250  case Expr::StmtExprClass:
2251  case Expr::UnaryTypeTraitExprClass:
2252  case Expr::BinaryTypeTraitExprClass:
2253  case Expr::ArrayTypeTraitExprClass:
2254  case Expr::ExpressionTraitExprClass:
2255  case Expr::VAArgExprClass:
2256  case Expr::CXXUuidofExprClass:
2257  case Expr::CXXNoexceptExprClass:
2258  case Expr::CUDAKernelCallExprClass:
2259  case Expr::AsTypeExprClass:
2260  case Expr::AtomicExprClass:
2261  {
2262    // As bad as this diagnostic is, it's better than crashing.
2263    DiagnosticsEngine &Diags = Context.getDiags();
2264    unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2265                                     "cannot yet mangle expression type %0");
2266    Diags.Report(E->getExprLoc(), DiagID)
2267      << E->getStmtClassName() << E->getSourceRange();
2268    break;
2269  }
2270
2271  // Even gcc-4.5 doesn't mangle this.
2272  case Expr::BinaryConditionalOperatorClass: {
2273    DiagnosticsEngine &Diags = Context.getDiags();
2274    unsigned DiagID =
2275      Diags.getCustomDiagID(DiagnosticsEngine::Error,
2276                "?: operator with omitted middle operand cannot be mangled");
2277    Diags.Report(E->getExprLoc(), DiagID)
2278      << E->getStmtClassName() << E->getSourceRange();
2279    break;
2280  }
2281
2282  // These are used for internal purposes and cannot be meaningfully mangled.
2283  case Expr::OpaqueValueExprClass:
2284    llvm_unreachable("cannot mangle opaque value; mangling wrong thing?");
2285
2286  case Expr::CXXDefaultArgExprClass:
2287    mangleExpression(cast<CXXDefaultArgExpr>(E)->getExpr(), Arity);
2288    break;
2289
2290  case Expr::SubstNonTypeTemplateParmExprClass:
2291    mangleExpression(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(),
2292                     Arity);
2293    break;
2294
2295  case Expr::CXXMemberCallExprClass: // fallthrough
2296  case Expr::CallExprClass: {
2297    const CallExpr *CE = cast<CallExpr>(E);
2298
2299    // <expression> ::= cp <simple-id> <expression>* E
2300    // We use this mangling only when the call would use ADL except
2301    // for being parenthesized.  Per discussion with David
2302    // Vandervoorde, 2011.04.25.
2303    if (isParenthesizedADLCallee(CE)) {
2304      Out << "cp";
2305      // The callee here is a parenthesized UnresolvedLookupExpr with
2306      // no qualifier and should always get mangled as a <simple-id>
2307      // anyway.
2308
2309    // <expression> ::= cl <expression>* E
2310    } else {
2311      Out << "cl";
2312    }
2313
2314    mangleExpression(CE->getCallee(), CE->getNumArgs());
2315    for (unsigned I = 0, N = CE->getNumArgs(); I != N; ++I)
2316      mangleExpression(CE->getArg(I));
2317    Out << 'E';
2318    break;
2319  }
2320
2321  case Expr::CXXNewExprClass: {
2322    // Proposal from David Vandervoorde, 2010.06.30
2323    const CXXNewExpr *New = cast<CXXNewExpr>(E);
2324    if (New->isGlobalNew()) Out << "gs";
2325    Out << (New->isArray() ? "na" : "nw");
2326    for (CXXNewExpr::const_arg_iterator I = New->placement_arg_begin(),
2327           E = New->placement_arg_end(); I != E; ++I)
2328      mangleExpression(*I);
2329    Out << '_';
2330    mangleType(New->getAllocatedType());
2331    if (New->hasInitializer()) {
2332      Out << "pi";
2333      for (CXXNewExpr::const_arg_iterator I = New->constructor_arg_begin(),
2334             E = New->constructor_arg_end(); I != E; ++I)
2335        mangleExpression(*I);
2336    }
2337    Out << 'E';
2338    break;
2339  }
2340
2341  case Expr::MemberExprClass: {
2342    const MemberExpr *ME = cast<MemberExpr>(E);
2343    mangleMemberExpr(ME->getBase(), ME->isArrow(),
2344                     ME->getQualifier(), 0, ME->getMemberDecl()->getDeclName(),
2345                     Arity);
2346    break;
2347  }
2348
2349  case Expr::UnresolvedMemberExprClass: {
2350    const UnresolvedMemberExpr *ME = cast<UnresolvedMemberExpr>(E);
2351    mangleMemberExpr(ME->getBase(), ME->isArrow(),
2352                     ME->getQualifier(), 0, ME->getMemberName(),
2353                     Arity);
2354    if (ME->hasExplicitTemplateArgs())
2355      mangleTemplateArgs(ME->getExplicitTemplateArgs());
2356    break;
2357  }
2358
2359  case Expr::CXXDependentScopeMemberExprClass: {
2360    const CXXDependentScopeMemberExpr *ME
2361      = cast<CXXDependentScopeMemberExpr>(E);
2362    mangleMemberExpr(ME->getBase(), ME->isArrow(),
2363                     ME->getQualifier(), ME->getFirstQualifierFoundInScope(),
2364                     ME->getMember(), Arity);
2365    if (ME->hasExplicitTemplateArgs())
2366      mangleTemplateArgs(ME->getExplicitTemplateArgs());
2367    break;
2368  }
2369
2370  case Expr::UnresolvedLookupExprClass: {
2371    const UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(E);
2372    mangleUnresolvedName(ULE->getQualifier(), 0, ULE->getName(), Arity);
2373
2374    // All the <unresolved-name> productions end in a
2375    // base-unresolved-name, where <template-args> are just tacked
2376    // onto the end.
2377    if (ULE->hasExplicitTemplateArgs())
2378      mangleTemplateArgs(ULE->getExplicitTemplateArgs());
2379    break;
2380  }
2381
2382  case Expr::CXXUnresolvedConstructExprClass: {
2383    const CXXUnresolvedConstructExpr *CE = cast<CXXUnresolvedConstructExpr>(E);
2384    unsigned N = CE->arg_size();
2385
2386    Out << "cv";
2387    mangleType(CE->getType());
2388    if (N != 1) Out << '_';
2389    for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
2390    if (N != 1) Out << 'E';
2391    break;
2392  }
2393
2394  case Expr::CXXTemporaryObjectExprClass:
2395  case Expr::CXXConstructExprClass: {
2396    const CXXConstructExpr *CE = cast<CXXConstructExpr>(E);
2397    unsigned N = CE->getNumArgs();
2398
2399    Out << "cv";
2400    mangleType(CE->getType());
2401    if (N != 1) Out << '_';
2402    for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
2403    if (N != 1) Out << 'E';
2404    break;
2405  }
2406
2407  case Expr::UnaryExprOrTypeTraitExprClass: {
2408    const UnaryExprOrTypeTraitExpr *SAE = cast<UnaryExprOrTypeTraitExpr>(E);
2409
2410    if (!SAE->isInstantiationDependent()) {
2411      // Itanium C++ ABI:
2412      //   If the operand of a sizeof or alignof operator is not
2413      //   instantiation-dependent it is encoded as an integer literal
2414      //   reflecting the result of the operator.
2415      //
2416      //   If the result of the operator is implicitly converted to a known
2417      //   integer type, that type is used for the literal; otherwise, the type
2418      //   of std::size_t or std::ptrdiff_t is used.
2419      QualType T = (ImplicitlyConvertedToType.isNull() ||
2420                    !ImplicitlyConvertedToType->isIntegerType())? SAE->getType()
2421                                                    : ImplicitlyConvertedToType;
2422      llvm::APSInt V = SAE->EvaluateKnownConstInt(Context.getASTContext());
2423      mangleIntegerLiteral(T, V);
2424      break;
2425    }
2426
2427    switch(SAE->getKind()) {
2428    case UETT_SizeOf:
2429      Out << 's';
2430      break;
2431    case UETT_AlignOf:
2432      Out << 'a';
2433      break;
2434    case UETT_VecStep:
2435      DiagnosticsEngine &Diags = Context.getDiags();
2436      unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2437                                     "cannot yet mangle vec_step expression");
2438      Diags.Report(DiagID);
2439      return;
2440    }
2441    if (SAE->isArgumentType()) {
2442      Out << 't';
2443      mangleType(SAE->getArgumentType());
2444    } else {
2445      Out << 'z';
2446      mangleExpression(SAE->getArgumentExpr());
2447    }
2448    break;
2449  }
2450
2451  case Expr::CXXThrowExprClass: {
2452    const CXXThrowExpr *TE = cast<CXXThrowExpr>(E);
2453
2454    // Proposal from David Vandervoorde, 2010.06.30
2455    if (TE->getSubExpr()) {
2456      Out << "tw";
2457      mangleExpression(TE->getSubExpr());
2458    } else {
2459      Out << "tr";
2460    }
2461    break;
2462  }
2463
2464  case Expr::CXXTypeidExprClass: {
2465    const CXXTypeidExpr *TIE = cast<CXXTypeidExpr>(E);
2466
2467    // Proposal from David Vandervoorde, 2010.06.30
2468    if (TIE->isTypeOperand()) {
2469      Out << "ti";
2470      mangleType(TIE->getTypeOperand());
2471    } else {
2472      Out << "te";
2473      mangleExpression(TIE->getExprOperand());
2474    }
2475    break;
2476  }
2477
2478  case Expr::CXXDeleteExprClass: {
2479    const CXXDeleteExpr *DE = cast<CXXDeleteExpr>(E);
2480
2481    // Proposal from David Vandervoorde, 2010.06.30
2482    if (DE->isGlobalDelete()) Out << "gs";
2483    Out << (DE->isArrayForm() ? "da" : "dl");
2484    mangleExpression(DE->getArgument());
2485    break;
2486  }
2487
2488  case Expr::UnaryOperatorClass: {
2489    const UnaryOperator *UO = cast<UnaryOperator>(E);
2490    mangleOperatorName(UnaryOperator::getOverloadedOperator(UO->getOpcode()),
2491                       /*Arity=*/1);
2492    mangleExpression(UO->getSubExpr());
2493    break;
2494  }
2495
2496  case Expr::ArraySubscriptExprClass: {
2497    const ArraySubscriptExpr *AE = cast<ArraySubscriptExpr>(E);
2498
2499    // Array subscript is treated as a syntactically weird form of
2500    // binary operator.
2501    Out << "ix";
2502    mangleExpression(AE->getLHS());
2503    mangleExpression(AE->getRHS());
2504    break;
2505  }
2506
2507  case Expr::CompoundAssignOperatorClass: // fallthrough
2508  case Expr::BinaryOperatorClass: {
2509    const BinaryOperator *BO = cast<BinaryOperator>(E);
2510    if (BO->getOpcode() == BO_PtrMemD)
2511      Out << "ds";
2512    else
2513      mangleOperatorName(BinaryOperator::getOverloadedOperator(BO->getOpcode()),
2514                         /*Arity=*/2);
2515    mangleExpression(BO->getLHS());
2516    mangleExpression(BO->getRHS());
2517    break;
2518  }
2519
2520  case Expr::ConditionalOperatorClass: {
2521    const ConditionalOperator *CO = cast<ConditionalOperator>(E);
2522    mangleOperatorName(OO_Conditional, /*Arity=*/3);
2523    mangleExpression(CO->getCond());
2524    mangleExpression(CO->getLHS(), Arity);
2525    mangleExpression(CO->getRHS(), Arity);
2526    break;
2527  }
2528
2529  case Expr::ImplicitCastExprClass: {
2530    ImplicitlyConvertedToType = E->getType();
2531    E = cast<ImplicitCastExpr>(E)->getSubExpr();
2532    goto recurse;
2533  }
2534
2535  case Expr::ObjCBridgedCastExprClass: {
2536    // Mangle ownership casts as a vendor extended operator __bridge,
2537    // __bridge_transfer, or __bridge_retain.
2538    StringRef Kind = cast<ObjCBridgedCastExpr>(E)->getBridgeKindName();
2539    Out << "v1U" << Kind.size() << Kind;
2540  }
2541  // Fall through to mangle the cast itself.
2542
2543  case Expr::CStyleCastExprClass:
2544  case Expr::CXXStaticCastExprClass:
2545  case Expr::CXXDynamicCastExprClass:
2546  case Expr::CXXReinterpretCastExprClass:
2547  case Expr::CXXConstCastExprClass:
2548  case Expr::CXXFunctionalCastExprClass: {
2549    const ExplicitCastExpr *ECE = cast<ExplicitCastExpr>(E);
2550    Out << "cv";
2551    mangleType(ECE->getType());
2552    mangleExpression(ECE->getSubExpr());
2553    break;
2554  }
2555
2556  case Expr::CXXOperatorCallExprClass: {
2557    const CXXOperatorCallExpr *CE = cast<CXXOperatorCallExpr>(E);
2558    unsigned NumArgs = CE->getNumArgs();
2559    mangleOperatorName(CE->getOperator(), /*Arity=*/NumArgs);
2560    // Mangle the arguments.
2561    for (unsigned i = 0; i != NumArgs; ++i)
2562      mangleExpression(CE->getArg(i));
2563    break;
2564  }
2565
2566  case Expr::ParenExprClass:
2567    mangleExpression(cast<ParenExpr>(E)->getSubExpr(), Arity);
2568    break;
2569
2570  case Expr::DeclRefExprClass: {
2571    const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl();
2572
2573    switch (D->getKind()) {
2574    default:
2575      //  <expr-primary> ::= L <mangled-name> E # external name
2576      Out << 'L';
2577      mangle(D, "_Z");
2578      Out << 'E';
2579      break;
2580
2581    case Decl::ParmVar:
2582      mangleFunctionParam(cast<ParmVarDecl>(D));
2583      break;
2584
2585    case Decl::EnumConstant: {
2586      const EnumConstantDecl *ED = cast<EnumConstantDecl>(D);
2587      mangleIntegerLiteral(ED->getType(), ED->getInitVal());
2588      break;
2589    }
2590
2591    case Decl::NonTypeTemplateParm: {
2592      const NonTypeTemplateParmDecl *PD = cast<NonTypeTemplateParmDecl>(D);
2593      mangleTemplateParameter(PD->getIndex());
2594      break;
2595    }
2596
2597    }
2598
2599    break;
2600  }
2601
2602  case Expr::SubstNonTypeTemplateParmPackExprClass:
2603    // FIXME: not clear how to mangle this!
2604    // template <unsigned N...> class A {
2605    //   template <class U...> void foo(U (&x)[N]...);
2606    // };
2607    Out << "_SUBSTPACK_";
2608    break;
2609
2610  case Expr::DependentScopeDeclRefExprClass: {
2611    const DependentScopeDeclRefExpr *DRE = cast<DependentScopeDeclRefExpr>(E);
2612    mangleUnresolvedName(DRE->getQualifier(), 0, DRE->getDeclName(), Arity);
2613
2614    // All the <unresolved-name> productions end in a
2615    // base-unresolved-name, where <template-args> are just tacked
2616    // onto the end.
2617    if (DRE->hasExplicitTemplateArgs())
2618      mangleTemplateArgs(DRE->getExplicitTemplateArgs());
2619    break;
2620  }
2621
2622  case Expr::CXXBindTemporaryExprClass:
2623    mangleExpression(cast<CXXBindTemporaryExpr>(E)->getSubExpr());
2624    break;
2625
2626  case Expr::ExprWithCleanupsClass:
2627    mangleExpression(cast<ExprWithCleanups>(E)->getSubExpr(), Arity);
2628    break;
2629
2630  case Expr::FloatingLiteralClass: {
2631    const FloatingLiteral *FL = cast<FloatingLiteral>(E);
2632    Out << 'L';
2633    mangleType(FL->getType());
2634    mangleFloat(FL->getValue());
2635    Out << 'E';
2636    break;
2637  }
2638
2639  case Expr::CharacterLiteralClass:
2640    Out << 'L';
2641    mangleType(E->getType());
2642    Out << cast<CharacterLiteral>(E)->getValue();
2643    Out << 'E';
2644    break;
2645
2646  case Expr::CXXBoolLiteralExprClass:
2647    Out << "Lb";
2648    Out << (cast<CXXBoolLiteralExpr>(E)->getValue() ? '1' : '0');
2649    Out << 'E';
2650    break;
2651
2652  case Expr::IntegerLiteralClass: {
2653    llvm::APSInt Value(cast<IntegerLiteral>(E)->getValue());
2654    if (E->getType()->isSignedIntegerType())
2655      Value.setIsSigned(true);
2656    mangleIntegerLiteral(E->getType(), Value);
2657    break;
2658  }
2659
2660  case Expr::ImaginaryLiteralClass: {
2661    const ImaginaryLiteral *IE = cast<ImaginaryLiteral>(E);
2662    // Mangle as if a complex literal.
2663    // Proposal from David Vandevoorde, 2010.06.30.
2664    Out << 'L';
2665    mangleType(E->getType());
2666    if (const FloatingLiteral *Imag =
2667          dyn_cast<FloatingLiteral>(IE->getSubExpr())) {
2668      // Mangle a floating-point zero of the appropriate type.
2669      mangleFloat(llvm::APFloat(Imag->getValue().getSemantics()));
2670      Out << '_';
2671      mangleFloat(Imag->getValue());
2672    } else {
2673      Out << "0_";
2674      llvm::APSInt Value(cast<IntegerLiteral>(IE->getSubExpr())->getValue());
2675      if (IE->getSubExpr()->getType()->isSignedIntegerType())
2676        Value.setIsSigned(true);
2677      mangleNumber(Value);
2678    }
2679    Out << 'E';
2680    break;
2681  }
2682
2683  case Expr::StringLiteralClass: {
2684    // Revised proposal from David Vandervoorde, 2010.07.15.
2685    Out << 'L';
2686    assert(isa<ConstantArrayType>(E->getType()));
2687    mangleType(E->getType());
2688    Out << 'E';
2689    break;
2690  }
2691
2692  case Expr::GNUNullExprClass:
2693    // FIXME: should this really be mangled the same as nullptr?
2694    // fallthrough
2695
2696  case Expr::CXXNullPtrLiteralExprClass: {
2697    // Proposal from David Vandervoorde, 2010.06.30, as
2698    // modified by ABI list discussion.
2699    Out << "LDnE";
2700    break;
2701  }
2702
2703  case Expr::PackExpansionExprClass:
2704    Out << "sp";
2705    mangleExpression(cast<PackExpansionExpr>(E)->getPattern());
2706    break;
2707
2708  case Expr::SizeOfPackExprClass: {
2709    Out << "sZ";
2710    const NamedDecl *Pack = cast<SizeOfPackExpr>(E)->getPack();
2711    if (const TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Pack))
2712      mangleTemplateParameter(TTP->getIndex());
2713    else if (const NonTypeTemplateParmDecl *NTTP
2714                = dyn_cast<NonTypeTemplateParmDecl>(Pack))
2715      mangleTemplateParameter(NTTP->getIndex());
2716    else if (const TemplateTemplateParmDecl *TempTP
2717                                    = dyn_cast<TemplateTemplateParmDecl>(Pack))
2718      mangleTemplateParameter(TempTP->getIndex());
2719    else
2720      mangleFunctionParam(cast<ParmVarDecl>(Pack));
2721    break;
2722  }
2723
2724  case Expr::MaterializeTemporaryExprClass: {
2725    mangleExpression(cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr());
2726    break;
2727  }
2728  }
2729}
2730
2731/// Mangle an expression which refers to a parameter variable.
2732///
2733/// <expression>     ::= <function-param>
2734/// <function-param> ::= fp <top-level CV-qualifiers> _      # L == 0, I == 0
2735/// <function-param> ::= fp <top-level CV-qualifiers>
2736///                      <parameter-2 non-negative number> _ # L == 0, I > 0
2737/// <function-param> ::= fL <L-1 non-negative number>
2738///                      p <top-level CV-qualifiers> _       # L > 0, I == 0
2739/// <function-param> ::= fL <L-1 non-negative number>
2740///                      p <top-level CV-qualifiers>
2741///                      <I-1 non-negative number> _         # L > 0, I > 0
2742///
2743/// L is the nesting depth of the parameter, defined as 1 if the
2744/// parameter comes from the innermost function prototype scope
2745/// enclosing the current context, 2 if from the next enclosing
2746/// function prototype scope, and so on, with one special case: if
2747/// we've processed the full parameter clause for the innermost
2748/// function type, then L is one less.  This definition conveniently
2749/// makes it irrelevant whether a function's result type was written
2750/// trailing or leading, but is otherwise overly complicated; the
2751/// numbering was first designed without considering references to
2752/// parameter in locations other than return types, and then the
2753/// mangling had to be generalized without changing the existing
2754/// manglings.
2755///
2756/// I is the zero-based index of the parameter within its parameter
2757/// declaration clause.  Note that the original ABI document describes
2758/// this using 1-based ordinals.
2759void CXXNameMangler::mangleFunctionParam(const ParmVarDecl *parm) {
2760  unsigned parmDepth = parm->getFunctionScopeDepth();
2761  unsigned parmIndex = parm->getFunctionScopeIndex();
2762
2763  // Compute 'L'.
2764  // parmDepth does not include the declaring function prototype.
2765  // FunctionTypeDepth does account for that.
2766  assert(parmDepth < FunctionTypeDepth.getDepth());
2767  unsigned nestingDepth = FunctionTypeDepth.getDepth() - parmDepth;
2768  if (FunctionTypeDepth.isInResultType())
2769    nestingDepth--;
2770
2771  if (nestingDepth == 0) {
2772    Out << "fp";
2773  } else {
2774    Out << "fL" << (nestingDepth - 1) << 'p';
2775  }
2776
2777  // Top-level qualifiers.  We don't have to worry about arrays here,
2778  // because parameters declared as arrays should already have been
2779  // tranformed to have pointer type. FIXME: apparently these don't
2780  // get mangled if used as an rvalue of a known non-class type?
2781  assert(!parm->getType()->isArrayType()
2782         && "parameter's type is still an array type?");
2783  mangleQualifiers(parm->getType().getQualifiers());
2784
2785  // Parameter index.
2786  if (parmIndex != 0) {
2787    Out << (parmIndex - 1);
2788  }
2789  Out << '_';
2790}
2791
2792void CXXNameMangler::mangleCXXCtorType(CXXCtorType T) {
2793  // <ctor-dtor-name> ::= C1  # complete object constructor
2794  //                  ::= C2  # base object constructor
2795  //                  ::= C3  # complete object allocating constructor
2796  //
2797  switch (T) {
2798  case Ctor_Complete:
2799    Out << "C1";
2800    break;
2801  case Ctor_Base:
2802    Out << "C2";
2803    break;
2804  case Ctor_CompleteAllocating:
2805    Out << "C3";
2806    break;
2807  }
2808}
2809
2810void CXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
2811  // <ctor-dtor-name> ::= D0  # deleting destructor
2812  //                  ::= D1  # complete object destructor
2813  //                  ::= D2  # base object destructor
2814  //
2815  switch (T) {
2816  case Dtor_Deleting:
2817    Out << "D0";
2818    break;
2819  case Dtor_Complete:
2820    Out << "D1";
2821    break;
2822  case Dtor_Base:
2823    Out << "D2";
2824    break;
2825  }
2826}
2827
2828void CXXNameMangler::mangleTemplateArgs(
2829                          const ASTTemplateArgumentListInfo &TemplateArgs) {
2830  // <template-args> ::= I <template-arg>+ E
2831  Out << 'I';
2832  for (unsigned i = 0, e = TemplateArgs.NumTemplateArgs; i != e; ++i)
2833    mangleTemplateArg(0, TemplateArgs.getTemplateArgs()[i].getArgument());
2834  Out << 'E';
2835}
2836
2837void CXXNameMangler::mangleTemplateArgs(TemplateName Template,
2838                                        const TemplateArgument *TemplateArgs,
2839                                        unsigned NumTemplateArgs) {
2840  if (TemplateDecl *TD = Template.getAsTemplateDecl())
2841    return mangleTemplateArgs(*TD->getTemplateParameters(), TemplateArgs,
2842                              NumTemplateArgs);
2843
2844  mangleUnresolvedTemplateArgs(TemplateArgs, NumTemplateArgs);
2845}
2846
2847void CXXNameMangler::mangleUnresolvedTemplateArgs(const TemplateArgument *args,
2848                                                  unsigned numArgs) {
2849  // <template-args> ::= I <template-arg>+ E
2850  Out << 'I';
2851  for (unsigned i = 0; i != numArgs; ++i)
2852    mangleTemplateArg(0, args[i]);
2853  Out << 'E';
2854}
2855
2856void CXXNameMangler::mangleTemplateArgs(const TemplateParameterList &PL,
2857                                        const TemplateArgumentList &AL) {
2858  // <template-args> ::= I <template-arg>+ E
2859  Out << 'I';
2860  for (unsigned i = 0, e = AL.size(); i != e; ++i)
2861    mangleTemplateArg(PL.getParam(i), AL[i]);
2862  Out << 'E';
2863}
2864
2865void CXXNameMangler::mangleTemplateArgs(const TemplateParameterList &PL,
2866                                        const TemplateArgument *TemplateArgs,
2867                                        unsigned NumTemplateArgs) {
2868  // <template-args> ::= I <template-arg>+ E
2869  Out << 'I';
2870  for (unsigned i = 0; i != NumTemplateArgs; ++i)
2871    mangleTemplateArg(PL.getParam(i), TemplateArgs[i]);
2872  Out << 'E';
2873}
2874
2875void CXXNameMangler::mangleTemplateArg(const NamedDecl *P,
2876                                       TemplateArgument A) {
2877  // <template-arg> ::= <type>              # type or template
2878  //                ::= X <expression> E    # expression
2879  //                ::= <expr-primary>      # simple expressions
2880  //                ::= J <template-arg>* E # argument pack
2881  //                ::= sp <expression>     # pack expansion of (C++0x)
2882  if (!A.isInstantiationDependent() || A.isDependent())
2883    A = Context.getASTContext().getCanonicalTemplateArgument(A);
2884
2885  switch (A.getKind()) {
2886  case TemplateArgument::Null:
2887    llvm_unreachable("Cannot mangle NULL template argument");
2888
2889  case TemplateArgument::Type:
2890    mangleType(A.getAsType());
2891    break;
2892  case TemplateArgument::Template:
2893    // This is mangled as <type>.
2894    mangleType(A.getAsTemplate());
2895    break;
2896  case TemplateArgument::TemplateExpansion:
2897    // <type>  ::= Dp <type>          # pack expansion (C++0x)
2898    Out << "Dp";
2899    mangleType(A.getAsTemplateOrTemplatePattern());
2900    break;
2901  case TemplateArgument::Expression:
2902    Out << 'X';
2903    mangleExpression(A.getAsExpr());
2904    Out << 'E';
2905    break;
2906  case TemplateArgument::Integral:
2907    mangleIntegerLiteral(A.getIntegralType(), *A.getAsIntegral());
2908    break;
2909  case TemplateArgument::Declaration: {
2910    assert(P && "Missing template parameter for declaration argument");
2911    //  <expr-primary> ::= L <mangled-name> E # external name
2912
2913    // Clang produces AST's where pointer-to-member-function expressions
2914    // and pointer-to-function expressions are represented as a declaration not
2915    // an expression. We compensate for it here to produce the correct mangling.
2916    NamedDecl *D = cast<NamedDecl>(A.getAsDecl());
2917    const NonTypeTemplateParmDecl *Parameter = cast<NonTypeTemplateParmDecl>(P);
2918    bool compensateMangling = !Parameter->getType()->isReferenceType();
2919    if (compensateMangling) {
2920      Out << 'X';
2921      mangleOperatorName(OO_Amp, 1);
2922    }
2923
2924    Out << 'L';
2925    // References to external entities use the mangled name; if the name would
2926    // not normally be manged then mangle it as unqualified.
2927    //
2928    // FIXME: The ABI specifies that external names here should have _Z, but
2929    // gcc leaves this off.
2930    if (compensateMangling)
2931      mangle(D, "_Z");
2932    else
2933      mangle(D, "Z");
2934    Out << 'E';
2935
2936    if (compensateMangling)
2937      Out << 'E';
2938
2939    break;
2940  }
2941
2942  case TemplateArgument::Pack: {
2943    // Note: proposal by Mike Herrick on 12/20/10
2944    Out << 'J';
2945    for (TemplateArgument::pack_iterator PA = A.pack_begin(),
2946                                      PAEnd = A.pack_end();
2947         PA != PAEnd; ++PA)
2948      mangleTemplateArg(P, *PA);
2949    Out << 'E';
2950  }
2951  }
2952}
2953
2954void CXXNameMangler::mangleTemplateParameter(unsigned Index) {
2955  // <template-param> ::= T_    # first template parameter
2956  //                  ::= T <parameter-2 non-negative number> _
2957  if (Index == 0)
2958    Out << "T_";
2959  else
2960    Out << 'T' << (Index - 1) << '_';
2961}
2962
2963void CXXNameMangler::mangleExistingSubstitution(QualType type) {
2964  bool result = mangleSubstitution(type);
2965  assert(result && "no existing substitution for type");
2966  (void) result;
2967}
2968
2969void CXXNameMangler::mangleExistingSubstitution(TemplateName tname) {
2970  bool result = mangleSubstitution(tname);
2971  assert(result && "no existing substitution for template name");
2972  (void) result;
2973}
2974
2975// <substitution> ::= S <seq-id> _
2976//                ::= S_
2977bool CXXNameMangler::mangleSubstitution(const NamedDecl *ND) {
2978  // Try one of the standard substitutions first.
2979  if (mangleStandardSubstitution(ND))
2980    return true;
2981
2982  ND = cast<NamedDecl>(ND->getCanonicalDecl());
2983  return mangleSubstitution(reinterpret_cast<uintptr_t>(ND));
2984}
2985
2986bool CXXNameMangler::mangleSubstitution(QualType T) {
2987  if (!T.getCVRQualifiers()) {
2988    if (const RecordType *RT = T->getAs<RecordType>())
2989      return mangleSubstitution(RT->getDecl());
2990  }
2991
2992  uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
2993
2994  return mangleSubstitution(TypePtr);
2995}
2996
2997bool CXXNameMangler::mangleSubstitution(TemplateName Template) {
2998  if (TemplateDecl *TD = Template.getAsTemplateDecl())
2999    return mangleSubstitution(TD);
3000
3001  Template = Context.getASTContext().getCanonicalTemplateName(Template);
3002  return mangleSubstitution(
3003                      reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
3004}
3005
3006bool CXXNameMangler::mangleSubstitution(uintptr_t Ptr) {
3007  llvm::DenseMap<uintptr_t, unsigned>::iterator I = Substitutions.find(Ptr);
3008  if (I == Substitutions.end())
3009    return false;
3010
3011  unsigned SeqID = I->second;
3012  if (SeqID == 0)
3013    Out << "S_";
3014  else {
3015    SeqID--;
3016
3017    // <seq-id> is encoded in base-36, using digits and upper case letters.
3018    char Buffer[10];
3019    char *BufferPtr = llvm::array_endof(Buffer);
3020
3021    if (SeqID == 0) *--BufferPtr = '0';
3022
3023    while (SeqID) {
3024      assert(BufferPtr > Buffer && "Buffer overflow!");
3025
3026      char c = static_cast<char>(SeqID % 36);
3027
3028      *--BufferPtr =  (c < 10 ? '0' + c : 'A' + c - 10);
3029      SeqID /= 36;
3030    }
3031
3032    Out << 'S'
3033        << StringRef(BufferPtr, llvm::array_endof(Buffer)-BufferPtr)
3034        << '_';
3035  }
3036
3037  return true;
3038}
3039
3040static bool isCharType(QualType T) {
3041  if (T.isNull())
3042    return false;
3043
3044  return T->isSpecificBuiltinType(BuiltinType::Char_S) ||
3045    T->isSpecificBuiltinType(BuiltinType::Char_U);
3046}
3047
3048/// isCharSpecialization - Returns whether a given type is a template
3049/// specialization of a given name with a single argument of type char.
3050static bool isCharSpecialization(QualType T, const char *Name) {
3051  if (T.isNull())
3052    return false;
3053
3054  const RecordType *RT = T->getAs<RecordType>();
3055  if (!RT)
3056    return false;
3057
3058  const ClassTemplateSpecializationDecl *SD =
3059    dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
3060  if (!SD)
3061    return false;
3062
3063  if (!isStdNamespace(SD->getDeclContext()))
3064    return false;
3065
3066  const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
3067  if (TemplateArgs.size() != 1)
3068    return false;
3069
3070  if (!isCharType(TemplateArgs[0].getAsType()))
3071    return false;
3072
3073  return SD->getIdentifier()->getName() == Name;
3074}
3075
3076template <std::size_t StrLen>
3077static bool isStreamCharSpecialization(const ClassTemplateSpecializationDecl*SD,
3078                                       const char (&Str)[StrLen]) {
3079  if (!SD->getIdentifier()->isStr(Str))
3080    return false;
3081
3082  const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
3083  if (TemplateArgs.size() != 2)
3084    return false;
3085
3086  if (!isCharType(TemplateArgs[0].getAsType()))
3087    return false;
3088
3089  if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
3090    return false;
3091
3092  return true;
3093}
3094
3095bool CXXNameMangler::mangleStandardSubstitution(const NamedDecl *ND) {
3096  // <substitution> ::= St # ::std::
3097  if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
3098    if (isStd(NS)) {
3099      Out << "St";
3100      return true;
3101    }
3102  }
3103
3104  if (const ClassTemplateDecl *TD = dyn_cast<ClassTemplateDecl>(ND)) {
3105    if (!isStdNamespace(TD->getDeclContext()))
3106      return false;
3107
3108    // <substitution> ::= Sa # ::std::allocator
3109    if (TD->getIdentifier()->isStr("allocator")) {
3110      Out << "Sa";
3111      return true;
3112    }
3113
3114    // <<substitution> ::= Sb # ::std::basic_string
3115    if (TD->getIdentifier()->isStr("basic_string")) {
3116      Out << "Sb";
3117      return true;
3118    }
3119  }
3120
3121  if (const ClassTemplateSpecializationDecl *SD =
3122        dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
3123    if (!isStdNamespace(SD->getDeclContext()))
3124      return false;
3125
3126    //    <substitution> ::= Ss # ::std::basic_string<char,
3127    //                            ::std::char_traits<char>,
3128    //                            ::std::allocator<char> >
3129    if (SD->getIdentifier()->isStr("basic_string")) {
3130      const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
3131
3132      if (TemplateArgs.size() != 3)
3133        return false;
3134
3135      if (!isCharType(TemplateArgs[0].getAsType()))
3136        return false;
3137
3138      if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
3139        return false;
3140
3141      if (!isCharSpecialization(TemplateArgs[2].getAsType(), "allocator"))
3142        return false;
3143
3144      Out << "Ss";
3145      return true;
3146    }
3147
3148    //    <substitution> ::= Si # ::std::basic_istream<char,
3149    //                            ::std::char_traits<char> >
3150    if (isStreamCharSpecialization(SD, "basic_istream")) {
3151      Out << "Si";
3152      return true;
3153    }
3154
3155    //    <substitution> ::= So # ::std::basic_ostream<char,
3156    //                            ::std::char_traits<char> >
3157    if (isStreamCharSpecialization(SD, "basic_ostream")) {
3158      Out << "So";
3159      return true;
3160    }
3161
3162    //    <substitution> ::= Sd # ::std::basic_iostream<char,
3163    //                            ::std::char_traits<char> >
3164    if (isStreamCharSpecialization(SD, "basic_iostream")) {
3165      Out << "Sd";
3166      return true;
3167    }
3168  }
3169  return false;
3170}
3171
3172void CXXNameMangler::addSubstitution(QualType T) {
3173  if (!T.getCVRQualifiers()) {
3174    if (const RecordType *RT = T->getAs<RecordType>()) {
3175      addSubstitution(RT->getDecl());
3176      return;
3177    }
3178  }
3179
3180  uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
3181  addSubstitution(TypePtr);
3182}
3183
3184void CXXNameMangler::addSubstitution(TemplateName Template) {
3185  if (TemplateDecl *TD = Template.getAsTemplateDecl())
3186    return addSubstitution(TD);
3187
3188  Template = Context.getASTContext().getCanonicalTemplateName(Template);
3189  addSubstitution(reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
3190}
3191
3192void CXXNameMangler::addSubstitution(uintptr_t Ptr) {
3193  assert(!Substitutions.count(Ptr) && "Substitution already exists!");
3194  Substitutions[Ptr] = SeqID++;
3195}
3196
3197//
3198
3199/// \brief Mangles the name of the declaration D and emits that name to the
3200/// given output stream.
3201///
3202/// If the declaration D requires a mangled name, this routine will emit that
3203/// mangled name to \p os and return true. Otherwise, \p os will be unchanged
3204/// and this routine will return false. In this case, the caller should just
3205/// emit the identifier of the declaration (\c D->getIdentifier()) as its
3206/// name.
3207void ItaniumMangleContext::mangleName(const NamedDecl *D,
3208                                      raw_ostream &Out) {
3209  assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) &&
3210          "Invalid mangleName() call, argument is not a variable or function!");
3211  assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) &&
3212         "Invalid mangleName() call on 'structor decl!");
3213
3214  PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
3215                                 getASTContext().getSourceManager(),
3216                                 "Mangling declaration");
3217
3218  CXXNameMangler Mangler(*this, Out, D);
3219  return Mangler.mangle(D);
3220}
3221
3222void ItaniumMangleContext::mangleCXXCtor(const CXXConstructorDecl *D,
3223                                         CXXCtorType Type,
3224                                         raw_ostream &Out) {
3225  CXXNameMangler Mangler(*this, Out, D, Type);
3226  Mangler.mangle(D);
3227}
3228
3229void ItaniumMangleContext::mangleCXXDtor(const CXXDestructorDecl *D,
3230                                         CXXDtorType Type,
3231                                         raw_ostream &Out) {
3232  CXXNameMangler Mangler(*this, Out, D, Type);
3233  Mangler.mangle(D);
3234}
3235
3236void ItaniumMangleContext::mangleThunk(const CXXMethodDecl *MD,
3237                                       const ThunkInfo &Thunk,
3238                                       raw_ostream &Out) {
3239  //  <special-name> ::= T <call-offset> <base encoding>
3240  //                      # base is the nominal target function of thunk
3241  //  <special-name> ::= Tc <call-offset> <call-offset> <base encoding>
3242  //                      # base is the nominal target function of thunk
3243  //                      # first call-offset is 'this' adjustment
3244  //                      # second call-offset is result adjustment
3245
3246  assert(!isa<CXXDestructorDecl>(MD) &&
3247         "Use mangleCXXDtor for destructor decls!");
3248  CXXNameMangler Mangler(*this, Out);
3249  Mangler.getStream() << "_ZT";
3250  if (!Thunk.Return.isEmpty())
3251    Mangler.getStream() << 'c';
3252
3253  // Mangle the 'this' pointer adjustment.
3254  Mangler.mangleCallOffset(Thunk.This.NonVirtual, Thunk.This.VCallOffsetOffset);
3255
3256  // Mangle the return pointer adjustment if there is one.
3257  if (!Thunk.Return.isEmpty())
3258    Mangler.mangleCallOffset(Thunk.Return.NonVirtual,
3259                             Thunk.Return.VBaseOffsetOffset);
3260
3261  Mangler.mangleFunctionEncoding(MD);
3262}
3263
3264void
3265ItaniumMangleContext::mangleCXXDtorThunk(const CXXDestructorDecl *DD,
3266                                         CXXDtorType Type,
3267                                         const ThisAdjustment &ThisAdjustment,
3268                                         raw_ostream &Out) {
3269  //  <special-name> ::= T <call-offset> <base encoding>
3270  //                      # base is the nominal target function of thunk
3271  CXXNameMangler Mangler(*this, Out, DD, Type);
3272  Mangler.getStream() << "_ZT";
3273
3274  // Mangle the 'this' pointer adjustment.
3275  Mangler.mangleCallOffset(ThisAdjustment.NonVirtual,
3276                           ThisAdjustment.VCallOffsetOffset);
3277
3278  Mangler.mangleFunctionEncoding(DD);
3279}
3280
3281/// mangleGuardVariable - Returns the mangled name for a guard variable
3282/// for the passed in VarDecl.
3283void ItaniumMangleContext::mangleItaniumGuardVariable(const VarDecl *D,
3284                                                      raw_ostream &Out) {
3285  //  <special-name> ::= GV <object name>       # Guard variable for one-time
3286  //                                            # initialization
3287  CXXNameMangler Mangler(*this, Out);
3288  Mangler.getStream() << "_ZGV";
3289  Mangler.mangleName(D);
3290}
3291
3292void ItaniumMangleContext::mangleReferenceTemporary(const VarDecl *D,
3293                                                    raw_ostream &Out) {
3294  // We match the GCC mangling here.
3295  //  <special-name> ::= GR <object name>
3296  CXXNameMangler Mangler(*this, Out);
3297  Mangler.getStream() << "_ZGR";
3298  Mangler.mangleName(D);
3299}
3300
3301void ItaniumMangleContext::mangleCXXVTable(const CXXRecordDecl *RD,
3302                                           raw_ostream &Out) {
3303  // <special-name> ::= TV <type>  # virtual table
3304  CXXNameMangler Mangler(*this, Out);
3305  Mangler.getStream() << "_ZTV";
3306  Mangler.mangleNameOrStandardSubstitution(RD);
3307}
3308
3309void ItaniumMangleContext::mangleCXXVTT(const CXXRecordDecl *RD,
3310                                        raw_ostream &Out) {
3311  // <special-name> ::= TT <type>  # VTT structure
3312  CXXNameMangler Mangler(*this, Out);
3313  Mangler.getStream() << "_ZTT";
3314  Mangler.mangleNameOrStandardSubstitution(RD);
3315}
3316
3317void ItaniumMangleContext::mangleCXXCtorVTable(const CXXRecordDecl *RD,
3318                                               int64_t Offset,
3319                                               const CXXRecordDecl *Type,
3320                                               raw_ostream &Out) {
3321  // <special-name> ::= TC <type> <offset number> _ <base type>
3322  CXXNameMangler Mangler(*this, Out);
3323  Mangler.getStream() << "_ZTC";
3324  Mangler.mangleNameOrStandardSubstitution(RD);
3325  Mangler.getStream() << Offset;
3326  Mangler.getStream() << '_';
3327  Mangler.mangleNameOrStandardSubstitution(Type);
3328}
3329
3330void ItaniumMangleContext::mangleCXXRTTI(QualType Ty,
3331                                         raw_ostream &Out) {
3332  // <special-name> ::= TI <type>  # typeinfo structure
3333  assert(!Ty.hasQualifiers() && "RTTI info cannot have top-level qualifiers");
3334  CXXNameMangler Mangler(*this, Out);
3335  Mangler.getStream() << "_ZTI";
3336  Mangler.mangleType(Ty);
3337}
3338
3339void ItaniumMangleContext::mangleCXXRTTIName(QualType Ty,
3340                                             raw_ostream &Out) {
3341  // <special-name> ::= TS <type>  # typeinfo name (null terminated byte string)
3342  CXXNameMangler Mangler(*this, Out);
3343  Mangler.getStream() << "_ZTS";
3344  Mangler.mangleType(Ty);
3345}
3346
3347MangleContext *clang::createItaniumMangleContext(ASTContext &Context,
3348                                                 DiagnosticsEngine &Diags) {
3349  return new ItaniumMangleContext(Context, Diags);
3350}
3351