1//===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Stmt nodes as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CGDebugInfo.h"
15#include "CodeGenModule.h"
16#include "CodeGenFunction.h"
17#include "TargetInfo.h"
18#include "clang/AST/StmtVisitor.h"
19#include "clang/Basic/PrettyStackTrace.h"
20#include "clang/Basic/TargetInfo.h"
21#include "llvm/ADT/StringExtras.h"
22#include "llvm/InlineAsm.h"
23#include "llvm/Intrinsics.h"
24#include "llvm/Target/TargetData.h"
25using namespace clang;
26using namespace CodeGen;
27
28//===----------------------------------------------------------------------===//
29//                              Statement Emission
30//===----------------------------------------------------------------------===//
31
32void CodeGenFunction::EmitStopPoint(const Stmt *S) {
33  if (CGDebugInfo *DI = getDebugInfo()) {
34    SourceLocation Loc;
35    if (isa<DeclStmt>(S))
36      Loc = S->getLocEnd();
37    else
38      Loc = S->getLocStart();
39    DI->EmitLocation(Builder, Loc);
40  }
41}
42
43void CodeGenFunction::EmitStmt(const Stmt *S) {
44  assert(S && "Null statement?");
45
46  // These statements have their own debug info handling.
47  if (EmitSimpleStmt(S))
48    return;
49
50  // Check if we are generating unreachable code.
51  if (!HaveInsertPoint()) {
52    // If so, and the statement doesn't contain a label, then we do not need to
53    // generate actual code. This is safe because (1) the current point is
54    // unreachable, so we don't need to execute the code, and (2) we've already
55    // handled the statements which update internal data structures (like the
56    // local variable map) which could be used by subsequent statements.
57    if (!ContainsLabel(S)) {
58      // Verify that any decl statements were handled as simple, they may be in
59      // scope of subsequent reachable statements.
60      assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!");
61      return;
62    }
63
64    // Otherwise, make a new block to hold the code.
65    EnsureInsertPoint();
66  }
67
68  // Generate a stoppoint if we are emitting debug info.
69  EmitStopPoint(S);
70
71  switch (S->getStmtClass()) {
72  case Stmt::NoStmtClass:
73  case Stmt::CXXCatchStmtClass:
74  case Stmt::SEHExceptStmtClass:
75  case Stmt::SEHFinallyStmtClass:
76    llvm_unreachable("invalid statement class to emit generically");
77  case Stmt::NullStmtClass:
78  case Stmt::CompoundStmtClass:
79  case Stmt::DeclStmtClass:
80  case Stmt::LabelStmtClass:
81  case Stmt::GotoStmtClass:
82  case Stmt::BreakStmtClass:
83  case Stmt::ContinueStmtClass:
84  case Stmt::DefaultStmtClass:
85  case Stmt::CaseStmtClass:
86    llvm_unreachable("should have emitted these statements as simple");
87
88#define STMT(Type, Base)
89#define ABSTRACT_STMT(Op)
90#define EXPR(Type, Base) \
91  case Stmt::Type##Class:
92#include "clang/AST/StmtNodes.inc"
93  {
94    // Remember the block we came in on.
95    llvm::BasicBlock *incoming = Builder.GetInsertBlock();
96    assert(incoming && "expression emission must have an insertion point");
97
98    EmitIgnoredExpr(cast<Expr>(S));
99
100    llvm::BasicBlock *outgoing = Builder.GetInsertBlock();
101    assert(outgoing && "expression emission cleared block!");
102
103    // The expression emitters assume (reasonably!) that the insertion
104    // point is always set.  To maintain that, the call-emission code
105    // for noreturn functions has to enter a new block with no
106    // predecessors.  We want to kill that block and mark the current
107    // insertion point unreachable in the common case of a call like
108    // "exit();".  Since expression emission doesn't otherwise create
109    // blocks with no predecessors, we can just test for that.
110    // However, we must be careful not to do this to our incoming
111    // block, because *statement* emission does sometimes create
112    // reachable blocks which will have no predecessors until later in
113    // the function.  This occurs with, e.g., labels that are not
114    // reachable by fallthrough.
115    if (incoming != outgoing && outgoing->use_empty()) {
116      outgoing->eraseFromParent();
117      Builder.ClearInsertionPoint();
118    }
119    break;
120  }
121
122  case Stmt::IndirectGotoStmtClass:
123    EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break;
124
125  case Stmt::IfStmtClass:       EmitIfStmt(cast<IfStmt>(*S));             break;
126  case Stmt::WhileStmtClass:    EmitWhileStmt(cast<WhileStmt>(*S));       break;
127  case Stmt::DoStmtClass:       EmitDoStmt(cast<DoStmt>(*S));             break;
128  case Stmt::ForStmtClass:      EmitForStmt(cast<ForStmt>(*S));           break;
129
130  case Stmt::ReturnStmtClass:   EmitReturnStmt(cast<ReturnStmt>(*S));     break;
131
132  case Stmt::SwitchStmtClass:   EmitSwitchStmt(cast<SwitchStmt>(*S));     break;
133  case Stmt::AsmStmtClass:      EmitAsmStmt(cast<AsmStmt>(*S));           break;
134
135  case Stmt::ObjCAtTryStmtClass:
136    EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S));
137    break;
138  case Stmt::ObjCAtCatchStmtClass:
139    llvm_unreachable(
140                    "@catch statements should be handled by EmitObjCAtTryStmt");
141  case Stmt::ObjCAtFinallyStmtClass:
142    llvm_unreachable(
143                  "@finally statements should be handled by EmitObjCAtTryStmt");
144  case Stmt::ObjCAtThrowStmtClass:
145    EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S));
146    break;
147  case Stmt::ObjCAtSynchronizedStmtClass:
148    EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S));
149    break;
150  case Stmt::ObjCForCollectionStmtClass:
151    EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S));
152    break;
153  case Stmt::ObjCAutoreleasePoolStmtClass:
154    EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S));
155    break;
156
157  case Stmt::CXXTryStmtClass:
158    EmitCXXTryStmt(cast<CXXTryStmt>(*S));
159    break;
160  case Stmt::CXXForRangeStmtClass:
161    EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S));
162  case Stmt::SEHTryStmtClass:
163    // FIXME Not yet implemented
164    break;
165  }
166}
167
168bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) {
169  switch (S->getStmtClass()) {
170  default: return false;
171  case Stmt::NullStmtClass: break;
172  case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break;
173  case Stmt::DeclStmtClass:     EmitDeclStmt(cast<DeclStmt>(*S));         break;
174  case Stmt::LabelStmtClass:    EmitLabelStmt(cast<LabelStmt>(*S));       break;
175  case Stmt::GotoStmtClass:     EmitGotoStmt(cast<GotoStmt>(*S));         break;
176  case Stmt::BreakStmtClass:    EmitBreakStmt(cast<BreakStmt>(*S));       break;
177  case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break;
178  case Stmt::DefaultStmtClass:  EmitDefaultStmt(cast<DefaultStmt>(*S));   break;
179  case Stmt::CaseStmtClass:     EmitCaseStmt(cast<CaseStmt>(*S));         break;
180  }
181
182  return true;
183}
184
185/// EmitCompoundStmt - Emit a compound statement {..} node.  If GetLast is true,
186/// this captures the expression result of the last sub-statement and returns it
187/// (for use by the statement expression extension).
188RValue CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast,
189                                         AggValueSlot AggSlot) {
190  PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(),
191                             "LLVM IR generation of compound statement ('{}')");
192
193  CGDebugInfo *DI = getDebugInfo();
194  if (DI)
195    DI->EmitLexicalBlockStart(Builder, S.getLBracLoc());
196
197  // Keep track of the current cleanup stack depth.
198  RunCleanupsScope Scope(*this);
199
200  for (CompoundStmt::const_body_iterator I = S.body_begin(),
201       E = S.body_end()-GetLast; I != E; ++I)
202    EmitStmt(*I);
203
204  if (DI)
205    DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc());
206
207  RValue RV;
208  if (!GetLast)
209    RV = RValue::get(0);
210  else {
211    // We have to special case labels here.  They are statements, but when put
212    // at the end of a statement expression, they yield the value of their
213    // subexpression.  Handle this by walking through all labels we encounter,
214    // emitting them before we evaluate the subexpr.
215    const Stmt *LastStmt = S.body_back();
216    while (const LabelStmt *LS = dyn_cast<LabelStmt>(LastStmt)) {
217      EmitLabel(LS->getDecl());
218      LastStmt = LS->getSubStmt();
219    }
220
221    EnsureInsertPoint();
222
223    RV = EmitAnyExpr(cast<Expr>(LastStmt), AggSlot);
224  }
225
226  return RV;
227}
228
229void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) {
230  llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator());
231
232  // If there is a cleanup stack, then we it isn't worth trying to
233  // simplify this block (we would need to remove it from the scope map
234  // and cleanup entry).
235  if (!EHStack.empty())
236    return;
237
238  // Can only simplify direct branches.
239  if (!BI || !BI->isUnconditional())
240    return;
241
242  BB->replaceAllUsesWith(BI->getSuccessor(0));
243  BI->eraseFromParent();
244  BB->eraseFromParent();
245}
246
247void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) {
248  llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
249
250  // Fall out of the current block (if necessary).
251  EmitBranch(BB);
252
253  if (IsFinished && BB->use_empty()) {
254    delete BB;
255    return;
256  }
257
258  // Place the block after the current block, if possible, or else at
259  // the end of the function.
260  if (CurBB && CurBB->getParent())
261    CurFn->getBasicBlockList().insertAfter(CurBB, BB);
262  else
263    CurFn->getBasicBlockList().push_back(BB);
264  Builder.SetInsertPoint(BB);
265}
266
267void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) {
268  // Emit a branch from the current block to the target one if this
269  // was a real block.  If this was just a fall-through block after a
270  // terminator, don't emit it.
271  llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
272
273  if (!CurBB || CurBB->getTerminator()) {
274    // If there is no insert point or the previous block is already
275    // terminated, don't touch it.
276  } else {
277    // Otherwise, create a fall-through branch.
278    Builder.CreateBr(Target);
279  }
280
281  Builder.ClearInsertionPoint();
282}
283
284void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) {
285  bool inserted = false;
286  for (llvm::BasicBlock::use_iterator
287         i = block->use_begin(), e = block->use_end(); i != e; ++i) {
288    if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(*i)) {
289      CurFn->getBasicBlockList().insertAfter(insn->getParent(), block);
290      inserted = true;
291      break;
292    }
293  }
294
295  if (!inserted)
296    CurFn->getBasicBlockList().push_back(block);
297
298  Builder.SetInsertPoint(block);
299}
300
301CodeGenFunction::JumpDest
302CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) {
303  JumpDest &Dest = LabelMap[D];
304  if (Dest.isValid()) return Dest;
305
306  // Create, but don't insert, the new block.
307  Dest = JumpDest(createBasicBlock(D->getName()),
308                  EHScopeStack::stable_iterator::invalid(),
309                  NextCleanupDestIndex++);
310  return Dest;
311}
312
313void CodeGenFunction::EmitLabel(const LabelDecl *D) {
314  JumpDest &Dest = LabelMap[D];
315
316  // If we didn't need a forward reference to this label, just go
317  // ahead and create a destination at the current scope.
318  if (!Dest.isValid()) {
319    Dest = getJumpDestInCurrentScope(D->getName());
320
321  // Otherwise, we need to give this label a target depth and remove
322  // it from the branch-fixups list.
323  } else {
324    assert(!Dest.getScopeDepth().isValid() && "already emitted label!");
325    Dest = JumpDest(Dest.getBlock(),
326                    EHStack.stable_begin(),
327                    Dest.getDestIndex());
328
329    ResolveBranchFixups(Dest.getBlock());
330  }
331
332  EmitBlock(Dest.getBlock());
333}
334
335
336void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) {
337  EmitLabel(S.getDecl());
338  EmitStmt(S.getSubStmt());
339}
340
341void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) {
342  // If this code is reachable then emit a stop point (if generating
343  // debug info). We have to do this ourselves because we are on the
344  // "simple" statement path.
345  if (HaveInsertPoint())
346    EmitStopPoint(&S);
347
348  EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel()));
349}
350
351
352void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) {
353  if (const LabelDecl *Target = S.getConstantTarget()) {
354    EmitBranchThroughCleanup(getJumpDestForLabel(Target));
355    return;
356  }
357
358  // Ensure that we have an i8* for our PHI node.
359  llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()),
360                                         Int8PtrTy, "addr");
361  llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
362
363
364  // Get the basic block for the indirect goto.
365  llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock();
366
367  // The first instruction in the block has to be the PHI for the switch dest,
368  // add an entry for this branch.
369  cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB);
370
371  EmitBranch(IndGotoBB);
372}
373
374void CodeGenFunction::EmitIfStmt(const IfStmt &S) {
375  // C99 6.8.4.1: The first substatement is executed if the expression compares
376  // unequal to 0.  The condition must be a scalar type.
377  RunCleanupsScope ConditionScope(*this);
378
379  if (S.getConditionVariable())
380    EmitAutoVarDecl(*S.getConditionVariable());
381
382  // If the condition constant folds and can be elided, try to avoid emitting
383  // the condition and the dead arm of the if/else.
384  bool CondConstant;
385  if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant)) {
386    // Figure out which block (then or else) is executed.
387    const Stmt *Executed = S.getThen();
388    const Stmt *Skipped  = S.getElse();
389    if (!CondConstant)  // Condition false?
390      std::swap(Executed, Skipped);
391
392    // If the skipped block has no labels in it, just emit the executed block.
393    // This avoids emitting dead code and simplifies the CFG substantially.
394    if (!ContainsLabel(Skipped)) {
395      if (Executed) {
396        RunCleanupsScope ExecutedScope(*this);
397        EmitStmt(Executed);
398      }
399      return;
400    }
401  }
402
403  // Otherwise, the condition did not fold, or we couldn't elide it.  Just emit
404  // the conditional branch.
405  llvm::BasicBlock *ThenBlock = createBasicBlock("if.then");
406  llvm::BasicBlock *ContBlock = createBasicBlock("if.end");
407  llvm::BasicBlock *ElseBlock = ContBlock;
408  if (S.getElse())
409    ElseBlock = createBasicBlock("if.else");
410  EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock);
411
412  // Emit the 'then' code.
413  EmitBlock(ThenBlock);
414  {
415    RunCleanupsScope ThenScope(*this);
416    EmitStmt(S.getThen());
417  }
418  EmitBranch(ContBlock);
419
420  // Emit the 'else' code if present.
421  if (const Stmt *Else = S.getElse()) {
422    // There is no need to emit line number for unconditional branch.
423    if (getDebugInfo())
424      Builder.SetCurrentDebugLocation(llvm::DebugLoc());
425    EmitBlock(ElseBlock);
426    {
427      RunCleanupsScope ElseScope(*this);
428      EmitStmt(Else);
429    }
430    // There is no need to emit line number for unconditional branch.
431    if (getDebugInfo())
432      Builder.SetCurrentDebugLocation(llvm::DebugLoc());
433    EmitBranch(ContBlock);
434  }
435
436  // Emit the continuation block for code after the if.
437  EmitBlock(ContBlock, true);
438}
439
440void CodeGenFunction::EmitWhileStmt(const WhileStmt &S) {
441  // Emit the header for the loop, which will also become
442  // the continue target.
443  JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond");
444  EmitBlock(LoopHeader.getBlock());
445
446  // Create an exit block for when the condition fails, which will
447  // also become the break target.
448  JumpDest LoopExit = getJumpDestInCurrentScope("while.end");
449
450  // Store the blocks to use for break and continue.
451  BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader));
452
453  // C++ [stmt.while]p2:
454  //   When the condition of a while statement is a declaration, the
455  //   scope of the variable that is declared extends from its point
456  //   of declaration (3.3.2) to the end of the while statement.
457  //   [...]
458  //   The object created in a condition is destroyed and created
459  //   with each iteration of the loop.
460  RunCleanupsScope ConditionScope(*this);
461
462  if (S.getConditionVariable())
463    EmitAutoVarDecl(*S.getConditionVariable());
464
465  // Evaluate the conditional in the while header.  C99 6.8.5.1: The
466  // evaluation of the controlling expression takes place before each
467  // execution of the loop body.
468  llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
469
470  // while(1) is common, avoid extra exit blocks.  Be sure
471  // to correctly handle break/continue though.
472  bool EmitBoolCondBranch = true;
473  if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
474    if (C->isOne())
475      EmitBoolCondBranch = false;
476
477  // As long as the condition is true, go to the loop body.
478  llvm::BasicBlock *LoopBody = createBasicBlock("while.body");
479  if (EmitBoolCondBranch) {
480    llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
481    if (ConditionScope.requiresCleanups())
482      ExitBlock = createBasicBlock("while.exit");
483
484    Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock);
485
486    if (ExitBlock != LoopExit.getBlock()) {
487      EmitBlock(ExitBlock);
488      EmitBranchThroughCleanup(LoopExit);
489    }
490  }
491
492  // Emit the loop body.  We have to emit this in a cleanup scope
493  // because it might be a singleton DeclStmt.
494  {
495    RunCleanupsScope BodyScope(*this);
496    EmitBlock(LoopBody);
497    EmitStmt(S.getBody());
498  }
499
500  BreakContinueStack.pop_back();
501
502  // Immediately force cleanup.
503  ConditionScope.ForceCleanup();
504
505  // Branch to the loop header again.
506  EmitBranch(LoopHeader.getBlock());
507
508  // Emit the exit block.
509  EmitBlock(LoopExit.getBlock(), true);
510
511  // The LoopHeader typically is just a branch if we skipped emitting
512  // a branch, try to erase it.
513  if (!EmitBoolCondBranch)
514    SimplifyForwardingBlocks(LoopHeader.getBlock());
515}
516
517void CodeGenFunction::EmitDoStmt(const DoStmt &S) {
518  JumpDest LoopExit = getJumpDestInCurrentScope("do.end");
519  JumpDest LoopCond = getJumpDestInCurrentScope("do.cond");
520
521  // Store the blocks to use for break and continue.
522  BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond));
523
524  // Emit the body of the loop.
525  llvm::BasicBlock *LoopBody = createBasicBlock("do.body");
526  EmitBlock(LoopBody);
527  {
528    RunCleanupsScope BodyScope(*this);
529    EmitStmt(S.getBody());
530  }
531
532  BreakContinueStack.pop_back();
533
534  EmitBlock(LoopCond.getBlock());
535
536  // C99 6.8.5.2: "The evaluation of the controlling expression takes place
537  // after each execution of the loop body."
538
539  // Evaluate the conditional in the while header.
540  // C99 6.8.5p2/p4: The first substatement is executed if the expression
541  // compares unequal to 0.  The condition must be a scalar type.
542  llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
543
544  // "do {} while (0)" is common in macros, avoid extra blocks.  Be sure
545  // to correctly handle break/continue though.
546  bool EmitBoolCondBranch = true;
547  if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
548    if (C->isZero())
549      EmitBoolCondBranch = false;
550
551  // As long as the condition is true, iterate the loop.
552  if (EmitBoolCondBranch)
553    Builder.CreateCondBr(BoolCondVal, LoopBody, LoopExit.getBlock());
554
555  // Emit the exit block.
556  EmitBlock(LoopExit.getBlock());
557
558  // The DoCond block typically is just a branch if we skipped
559  // emitting a branch, try to erase it.
560  if (!EmitBoolCondBranch)
561    SimplifyForwardingBlocks(LoopCond.getBlock());
562}
563
564void CodeGenFunction::EmitForStmt(const ForStmt &S) {
565  JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
566
567  RunCleanupsScope ForScope(*this);
568
569  CGDebugInfo *DI = getDebugInfo();
570  if (DI)
571    DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
572
573  // Evaluate the first part before the loop.
574  if (S.getInit())
575    EmitStmt(S.getInit());
576
577  // Start the loop with a block that tests the condition.
578  // If there's an increment, the continue scope will be overwritten
579  // later.
580  JumpDest Continue = getJumpDestInCurrentScope("for.cond");
581  llvm::BasicBlock *CondBlock = Continue.getBlock();
582  EmitBlock(CondBlock);
583
584  // Create a cleanup scope for the condition variable cleanups.
585  RunCleanupsScope ConditionScope(*this);
586
587  llvm::Value *BoolCondVal = 0;
588  if (S.getCond()) {
589    // If the for statement has a condition scope, emit the local variable
590    // declaration.
591    llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
592    if (S.getConditionVariable()) {
593      EmitAutoVarDecl(*S.getConditionVariable());
594    }
595
596    // If there are any cleanups between here and the loop-exit scope,
597    // create a block to stage a loop exit along.
598    if (ForScope.requiresCleanups())
599      ExitBlock = createBasicBlock("for.cond.cleanup");
600
601    // As long as the condition is true, iterate the loop.
602    llvm::BasicBlock *ForBody = createBasicBlock("for.body");
603
604    // C99 6.8.5p2/p4: The first substatement is executed if the expression
605    // compares unequal to 0.  The condition must be a scalar type.
606    BoolCondVal = EvaluateExprAsBool(S.getCond());
607    Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock);
608
609    if (ExitBlock != LoopExit.getBlock()) {
610      EmitBlock(ExitBlock);
611      EmitBranchThroughCleanup(LoopExit);
612    }
613
614    EmitBlock(ForBody);
615  } else {
616    // Treat it as a non-zero constant.  Don't even create a new block for the
617    // body, just fall into it.
618  }
619
620  // If the for loop doesn't have an increment we can just use the
621  // condition as the continue block.  Otherwise we'll need to create
622  // a block for it (in the current scope, i.e. in the scope of the
623  // condition), and that we will become our continue block.
624  if (S.getInc())
625    Continue = getJumpDestInCurrentScope("for.inc");
626
627  // Store the blocks to use for break and continue.
628  BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
629
630  {
631    // Create a separate cleanup scope for the body, in case it is not
632    // a compound statement.
633    RunCleanupsScope BodyScope(*this);
634    EmitStmt(S.getBody());
635  }
636
637  // If there is an increment, emit it next.
638  if (S.getInc()) {
639    EmitBlock(Continue.getBlock());
640    EmitStmt(S.getInc());
641  }
642
643  BreakContinueStack.pop_back();
644
645  ConditionScope.ForceCleanup();
646  EmitBranch(CondBlock);
647
648  ForScope.ForceCleanup();
649
650  if (DI)
651    DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
652
653  // Emit the fall-through block.
654  EmitBlock(LoopExit.getBlock(), true);
655}
656
657void CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S) {
658  JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
659
660  RunCleanupsScope ForScope(*this);
661
662  CGDebugInfo *DI = getDebugInfo();
663  if (DI)
664    DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
665
666  // Evaluate the first pieces before the loop.
667  EmitStmt(S.getRangeStmt());
668  EmitStmt(S.getBeginEndStmt());
669
670  // Start the loop with a block that tests the condition.
671  // If there's an increment, the continue scope will be overwritten
672  // later.
673  llvm::BasicBlock *CondBlock = createBasicBlock("for.cond");
674  EmitBlock(CondBlock);
675
676  // If there are any cleanups between here and the loop-exit scope,
677  // create a block to stage a loop exit along.
678  llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
679  if (ForScope.requiresCleanups())
680    ExitBlock = createBasicBlock("for.cond.cleanup");
681
682  // The loop body, consisting of the specified body and the loop variable.
683  llvm::BasicBlock *ForBody = createBasicBlock("for.body");
684
685  // The body is executed if the expression, contextually converted
686  // to bool, is true.
687  llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
688  Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock);
689
690  if (ExitBlock != LoopExit.getBlock()) {
691    EmitBlock(ExitBlock);
692    EmitBranchThroughCleanup(LoopExit);
693  }
694
695  EmitBlock(ForBody);
696
697  // Create a block for the increment. In case of a 'continue', we jump there.
698  JumpDest Continue = getJumpDestInCurrentScope("for.inc");
699
700  // Store the blocks to use for break and continue.
701  BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
702
703  {
704    // Create a separate cleanup scope for the loop variable and body.
705    RunCleanupsScope BodyScope(*this);
706    EmitStmt(S.getLoopVarStmt());
707    EmitStmt(S.getBody());
708  }
709
710  // If there is an increment, emit it next.
711  EmitBlock(Continue.getBlock());
712  EmitStmt(S.getInc());
713
714  BreakContinueStack.pop_back();
715
716  EmitBranch(CondBlock);
717
718  ForScope.ForceCleanup();
719
720  if (DI)
721    DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
722
723  // Emit the fall-through block.
724  EmitBlock(LoopExit.getBlock(), true);
725}
726
727void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) {
728  if (RV.isScalar()) {
729    Builder.CreateStore(RV.getScalarVal(), ReturnValue);
730  } else if (RV.isAggregate()) {
731    EmitAggregateCopy(ReturnValue, RV.getAggregateAddr(), Ty);
732  } else {
733    StoreComplexToAddr(RV.getComplexVal(), ReturnValue, false);
734  }
735  EmitBranchThroughCleanup(ReturnBlock);
736}
737
738/// EmitReturnStmt - Note that due to GCC extensions, this can have an operand
739/// if the function returns void, or may be missing one if the function returns
740/// non-void.  Fun stuff :).
741void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) {
742  // Emit the result value, even if unused, to evalute the side effects.
743  const Expr *RV = S.getRetValue();
744
745  // FIXME: Clean this up by using an LValue for ReturnTemp,
746  // EmitStoreThroughLValue, and EmitAnyExpr.
747  if (S.getNRVOCandidate() && S.getNRVOCandidate()->isNRVOVariable() &&
748      !Target.useGlobalsForAutomaticVariables()) {
749    // Apply the named return value optimization for this return statement,
750    // which means doing nothing: the appropriate result has already been
751    // constructed into the NRVO variable.
752
753    // If there is an NRVO flag for this variable, set it to 1 into indicate
754    // that the cleanup code should not destroy the variable.
755    if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()])
756      Builder.CreateStore(Builder.getTrue(), NRVOFlag);
757  } else if (!ReturnValue) {
758    // Make sure not to return anything, but evaluate the expression
759    // for side effects.
760    if (RV)
761      EmitAnyExpr(RV);
762  } else if (RV == 0) {
763    // Do nothing (return value is left uninitialized)
764  } else if (FnRetTy->isReferenceType()) {
765    // If this function returns a reference, take the address of the expression
766    // rather than the value.
767    RValue Result = EmitReferenceBindingToExpr(RV, /*InitializedDecl=*/0);
768    Builder.CreateStore(Result.getScalarVal(), ReturnValue);
769  } else if (!hasAggregateLLVMType(RV->getType())) {
770    Builder.CreateStore(EmitScalarExpr(RV), ReturnValue);
771  } else if (RV->getType()->isAnyComplexType()) {
772    EmitComplexExprIntoAddr(RV, ReturnValue, false);
773  } else {
774    EmitAggExpr(RV, AggValueSlot::forAddr(ReturnValue, Qualifiers(),
775                                          AggValueSlot::IsDestructed,
776                                          AggValueSlot::DoesNotNeedGCBarriers,
777                                          AggValueSlot::IsNotAliased));
778  }
779
780  EmitBranchThroughCleanup(ReturnBlock);
781}
782
783void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) {
784  // As long as debug info is modeled with instructions, we have to ensure we
785  // have a place to insert here and write the stop point here.
786  if (getDebugInfo() && HaveInsertPoint())
787    EmitStopPoint(&S);
788
789  for (DeclStmt::const_decl_iterator I = S.decl_begin(), E = S.decl_end();
790       I != E; ++I)
791    EmitDecl(**I);
792}
793
794void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) {
795  assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!");
796
797  // If this code is reachable then emit a stop point (if generating
798  // debug info). We have to do this ourselves because we are on the
799  // "simple" statement path.
800  if (HaveInsertPoint())
801    EmitStopPoint(&S);
802
803  JumpDest Block = BreakContinueStack.back().BreakBlock;
804  EmitBranchThroughCleanup(Block);
805}
806
807void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) {
808  assert(!BreakContinueStack.empty() && "continue stmt not in a loop!");
809
810  // If this code is reachable then emit a stop point (if generating
811  // debug info). We have to do this ourselves because we are on the
812  // "simple" statement path.
813  if (HaveInsertPoint())
814    EmitStopPoint(&S);
815
816  JumpDest Block = BreakContinueStack.back().ContinueBlock;
817  EmitBranchThroughCleanup(Block);
818}
819
820/// EmitCaseStmtRange - If case statement range is not too big then
821/// add multiple cases to switch instruction, one for each value within
822/// the range. If range is too big then emit "if" condition check.
823void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) {
824  assert(S.getRHS() && "Expected RHS value in CaseStmt");
825
826  llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext());
827  llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext());
828
829  // Emit the code for this case. We do this first to make sure it is
830  // properly chained from our predecessor before generating the
831  // switch machinery to enter this block.
832  EmitBlock(createBasicBlock("sw.bb"));
833  llvm::BasicBlock *CaseDest = Builder.GetInsertBlock();
834  EmitStmt(S.getSubStmt());
835
836  // If range is empty, do nothing.
837  if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS))
838    return;
839
840  llvm::APInt Range = RHS - LHS;
841  // FIXME: parameters such as this should not be hardcoded.
842  if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) {
843    // Range is small enough to add multiple switch instruction cases.
844    for (unsigned i = 0, e = Range.getZExtValue() + 1; i != e; ++i) {
845      SwitchInsn->addCase(Builder.getInt(LHS), CaseDest);
846      LHS++;
847    }
848    return;
849  }
850
851  // The range is too big. Emit "if" condition into a new block,
852  // making sure to save and restore the current insertion point.
853  llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock();
854
855  // Push this test onto the chain of range checks (which terminates
856  // in the default basic block). The switch's default will be changed
857  // to the top of this chain after switch emission is complete.
858  llvm::BasicBlock *FalseDest = CaseRangeBlock;
859  CaseRangeBlock = createBasicBlock("sw.caserange");
860
861  CurFn->getBasicBlockList().push_back(CaseRangeBlock);
862  Builder.SetInsertPoint(CaseRangeBlock);
863
864  // Emit range check.
865  llvm::Value *Diff =
866    Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS));
867  llvm::Value *Cond =
868    Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds");
869  Builder.CreateCondBr(Cond, CaseDest, FalseDest);
870
871  // Restore the appropriate insertion point.
872  if (RestoreBB)
873    Builder.SetInsertPoint(RestoreBB);
874  else
875    Builder.ClearInsertionPoint();
876}
877
878void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) {
879  // Handle case ranges.
880  if (S.getRHS()) {
881    EmitCaseStmtRange(S);
882    return;
883  }
884
885  llvm::ConstantInt *CaseVal =
886    Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext()));
887
888  // If the body of the case is just a 'break', and if there was no fallthrough,
889  // try to not emit an empty block.
890  if (isa<BreakStmt>(S.getSubStmt())) {
891    JumpDest Block = BreakContinueStack.back().BreakBlock;
892
893    // Only do this optimization if there are no cleanups that need emitting.
894    if (isObviouslyBranchWithoutCleanups(Block)) {
895      SwitchInsn->addCase(CaseVal, Block.getBlock());
896
897      // If there was a fallthrough into this case, make sure to redirect it to
898      // the end of the switch as well.
899      if (Builder.GetInsertBlock()) {
900        Builder.CreateBr(Block.getBlock());
901        Builder.ClearInsertionPoint();
902      }
903      return;
904    }
905  }
906
907  EmitBlock(createBasicBlock("sw.bb"));
908  llvm::BasicBlock *CaseDest = Builder.GetInsertBlock();
909  SwitchInsn->addCase(CaseVal, CaseDest);
910
911  // Recursively emitting the statement is acceptable, but is not wonderful for
912  // code where we have many case statements nested together, i.e.:
913  //  case 1:
914  //    case 2:
915  //      case 3: etc.
916  // Handling this recursively will create a new block for each case statement
917  // that falls through to the next case which is IR intensive.  It also causes
918  // deep recursion which can run into stack depth limitations.  Handle
919  // sequential non-range case statements specially.
920  const CaseStmt *CurCase = &S;
921  const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt());
922
923  // Otherwise, iteratively add consecutive cases to this switch stmt.
924  while (NextCase && NextCase->getRHS() == 0) {
925    CurCase = NextCase;
926    llvm::ConstantInt *CaseVal =
927      Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext()));
928    SwitchInsn->addCase(CaseVal, CaseDest);
929    NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt());
930  }
931
932  // Normal default recursion for non-cases.
933  EmitStmt(CurCase->getSubStmt());
934}
935
936void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) {
937  llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest();
938  assert(DefaultBlock->empty() &&
939         "EmitDefaultStmt: Default block already defined?");
940  EmitBlock(DefaultBlock);
941  EmitStmt(S.getSubStmt());
942}
943
944/// CollectStatementsForCase - Given the body of a 'switch' statement and a
945/// constant value that is being switched on, see if we can dead code eliminate
946/// the body of the switch to a simple series of statements to emit.  Basically,
947/// on a switch (5) we want to find these statements:
948///    case 5:
949///      printf(...);    <--
950///      ++i;            <--
951///      break;
952///
953/// and add them to the ResultStmts vector.  If it is unsafe to do this
954/// transformation (for example, one of the elided statements contains a label
955/// that might be jumped to), return CSFC_Failure.  If we handled it and 'S'
956/// should include statements after it (e.g. the printf() line is a substmt of
957/// the case) then return CSFC_FallThrough.  If we handled it and found a break
958/// statement, then return CSFC_Success.
959///
960/// If Case is non-null, then we are looking for the specified case, checking
961/// that nothing we jump over contains labels.  If Case is null, then we found
962/// the case and are looking for the break.
963///
964/// If the recursive walk actually finds our Case, then we set FoundCase to
965/// true.
966///
967enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success };
968static CSFC_Result CollectStatementsForCase(const Stmt *S,
969                                            const SwitchCase *Case,
970                                            bool &FoundCase,
971                              SmallVectorImpl<const Stmt*> &ResultStmts) {
972  // If this is a null statement, just succeed.
973  if (S == 0)
974    return Case ? CSFC_Success : CSFC_FallThrough;
975
976  // If this is the switchcase (case 4: or default) that we're looking for, then
977  // we're in business.  Just add the substatement.
978  if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) {
979    if (S == Case) {
980      FoundCase = true;
981      return CollectStatementsForCase(SC->getSubStmt(), 0, FoundCase,
982                                      ResultStmts);
983    }
984
985    // Otherwise, this is some other case or default statement, just ignore it.
986    return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase,
987                                    ResultStmts);
988  }
989
990  // If we are in the live part of the code and we found our break statement,
991  // return a success!
992  if (Case == 0 && isa<BreakStmt>(S))
993    return CSFC_Success;
994
995  // If this is a switch statement, then it might contain the SwitchCase, the
996  // break, or neither.
997  if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
998    // Handle this as two cases: we might be looking for the SwitchCase (if so
999    // the skipped statements must be skippable) or we might already have it.
1000    CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end();
1001    if (Case) {
1002      // Keep track of whether we see a skipped declaration.  The code could be
1003      // using the declaration even if it is skipped, so we can't optimize out
1004      // the decl if the kept statements might refer to it.
1005      bool HadSkippedDecl = false;
1006
1007      // If we're looking for the case, just see if we can skip each of the
1008      // substatements.
1009      for (; Case && I != E; ++I) {
1010        HadSkippedDecl |= isa<DeclStmt>(*I);
1011
1012        switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) {
1013        case CSFC_Failure: return CSFC_Failure;
1014        case CSFC_Success:
1015          // A successful result means that either 1) that the statement doesn't
1016          // have the case and is skippable, or 2) does contain the case value
1017          // and also contains the break to exit the switch.  In the later case,
1018          // we just verify the rest of the statements are elidable.
1019          if (FoundCase) {
1020            // If we found the case and skipped declarations, we can't do the
1021            // optimization.
1022            if (HadSkippedDecl)
1023              return CSFC_Failure;
1024
1025            for (++I; I != E; ++I)
1026              if (CodeGenFunction::ContainsLabel(*I, true))
1027                return CSFC_Failure;
1028            return CSFC_Success;
1029          }
1030          break;
1031        case CSFC_FallThrough:
1032          // If we have a fallthrough condition, then we must have found the
1033          // case started to include statements.  Consider the rest of the
1034          // statements in the compound statement as candidates for inclusion.
1035          assert(FoundCase && "Didn't find case but returned fallthrough?");
1036          // We recursively found Case, so we're not looking for it anymore.
1037          Case = 0;
1038
1039          // If we found the case and skipped declarations, we can't do the
1040          // optimization.
1041          if (HadSkippedDecl)
1042            return CSFC_Failure;
1043          break;
1044        }
1045      }
1046    }
1047
1048    // If we have statements in our range, then we know that the statements are
1049    // live and need to be added to the set of statements we're tracking.
1050    for (; I != E; ++I) {
1051      switch (CollectStatementsForCase(*I, 0, FoundCase, ResultStmts)) {
1052      case CSFC_Failure: return CSFC_Failure;
1053      case CSFC_FallThrough:
1054        // A fallthrough result means that the statement was simple and just
1055        // included in ResultStmt, keep adding them afterwards.
1056        break;
1057      case CSFC_Success:
1058        // A successful result means that we found the break statement and
1059        // stopped statement inclusion.  We just ensure that any leftover stmts
1060        // are skippable and return success ourselves.
1061        for (++I; I != E; ++I)
1062          if (CodeGenFunction::ContainsLabel(*I, true))
1063            return CSFC_Failure;
1064        return CSFC_Success;
1065      }
1066    }
1067
1068    return Case ? CSFC_Success : CSFC_FallThrough;
1069  }
1070
1071  // Okay, this is some other statement that we don't handle explicitly, like a
1072  // for statement or increment etc.  If we are skipping over this statement,
1073  // just verify it doesn't have labels, which would make it invalid to elide.
1074  if (Case) {
1075    if (CodeGenFunction::ContainsLabel(S, true))
1076      return CSFC_Failure;
1077    return CSFC_Success;
1078  }
1079
1080  // Otherwise, we want to include this statement.  Everything is cool with that
1081  // so long as it doesn't contain a break out of the switch we're in.
1082  if (CodeGenFunction::containsBreak(S)) return CSFC_Failure;
1083
1084  // Otherwise, everything is great.  Include the statement and tell the caller
1085  // that we fall through and include the next statement as well.
1086  ResultStmts.push_back(S);
1087  return CSFC_FallThrough;
1088}
1089
1090/// FindCaseStatementsForValue - Find the case statement being jumped to and
1091/// then invoke CollectStatementsForCase to find the list of statements to emit
1092/// for a switch on constant.  See the comment above CollectStatementsForCase
1093/// for more details.
1094static bool FindCaseStatementsForValue(const SwitchStmt &S,
1095                                       const llvm::APInt &ConstantCondValue,
1096                                SmallVectorImpl<const Stmt*> &ResultStmts,
1097                                       ASTContext &C) {
1098  // First step, find the switch case that is being branched to.  We can do this
1099  // efficiently by scanning the SwitchCase list.
1100  const SwitchCase *Case = S.getSwitchCaseList();
1101  const DefaultStmt *DefaultCase = 0;
1102
1103  for (; Case; Case = Case->getNextSwitchCase()) {
1104    // It's either a default or case.  Just remember the default statement in
1105    // case we're not jumping to any numbered cases.
1106    if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) {
1107      DefaultCase = DS;
1108      continue;
1109    }
1110
1111    // Check to see if this case is the one we're looking for.
1112    const CaseStmt *CS = cast<CaseStmt>(Case);
1113    // Don't handle case ranges yet.
1114    if (CS->getRHS()) return false;
1115
1116    // If we found our case, remember it as 'case'.
1117    if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue)
1118      break;
1119  }
1120
1121  // If we didn't find a matching case, we use a default if it exists, or we
1122  // elide the whole switch body!
1123  if (Case == 0) {
1124    // It is safe to elide the body of the switch if it doesn't contain labels
1125    // etc.  If it is safe, return successfully with an empty ResultStmts list.
1126    if (DefaultCase == 0)
1127      return !CodeGenFunction::ContainsLabel(&S);
1128    Case = DefaultCase;
1129  }
1130
1131  // Ok, we know which case is being jumped to, try to collect all the
1132  // statements that follow it.  This can fail for a variety of reasons.  Also,
1133  // check to see that the recursive walk actually found our case statement.
1134  // Insane cases like this can fail to find it in the recursive walk since we
1135  // don't handle every stmt kind:
1136  // switch (4) {
1137  //   while (1) {
1138  //     case 4: ...
1139  bool FoundCase = false;
1140  return CollectStatementsForCase(S.getBody(), Case, FoundCase,
1141                                  ResultStmts) != CSFC_Failure &&
1142         FoundCase;
1143}
1144
1145void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) {
1146  JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog");
1147
1148  RunCleanupsScope ConditionScope(*this);
1149
1150  if (S.getConditionVariable())
1151    EmitAutoVarDecl(*S.getConditionVariable());
1152
1153  // See if we can constant fold the condition of the switch and therefore only
1154  // emit the live case statement (if any) of the switch.
1155  llvm::APInt ConstantCondValue;
1156  if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) {
1157    SmallVector<const Stmt*, 4> CaseStmts;
1158    if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts,
1159                                   getContext())) {
1160      RunCleanupsScope ExecutedScope(*this);
1161
1162      // Okay, we can dead code eliminate everything except this case.  Emit the
1163      // specified series of statements and we're good.
1164      for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i)
1165        EmitStmt(CaseStmts[i]);
1166      return;
1167    }
1168  }
1169
1170  llvm::Value *CondV = EmitScalarExpr(S.getCond());
1171
1172  // Handle nested switch statements.
1173  llvm::SwitchInst *SavedSwitchInsn = SwitchInsn;
1174  llvm::BasicBlock *SavedCRBlock = CaseRangeBlock;
1175
1176  // Create basic block to hold stuff that comes after switch
1177  // statement. We also need to create a default block now so that
1178  // explicit case ranges tests can have a place to jump to on
1179  // failure.
1180  llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default");
1181  SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock);
1182  CaseRangeBlock = DefaultBlock;
1183
1184  // Clear the insertion point to indicate we are in unreachable code.
1185  Builder.ClearInsertionPoint();
1186
1187  // All break statements jump to NextBlock. If BreakContinueStack is non empty
1188  // then reuse last ContinueBlock.
1189  JumpDest OuterContinue;
1190  if (!BreakContinueStack.empty())
1191    OuterContinue = BreakContinueStack.back().ContinueBlock;
1192
1193  BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue));
1194
1195  // Emit switch body.
1196  EmitStmt(S.getBody());
1197
1198  BreakContinueStack.pop_back();
1199
1200  // Update the default block in case explicit case range tests have
1201  // been chained on top.
1202  SwitchInsn->setSuccessor(0, CaseRangeBlock);
1203
1204  // If a default was never emitted:
1205  if (!DefaultBlock->getParent()) {
1206    // If we have cleanups, emit the default block so that there's a
1207    // place to jump through the cleanups from.
1208    if (ConditionScope.requiresCleanups()) {
1209      EmitBlock(DefaultBlock);
1210
1211    // Otherwise, just forward the default block to the switch end.
1212    } else {
1213      DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock());
1214      delete DefaultBlock;
1215    }
1216  }
1217
1218  ConditionScope.ForceCleanup();
1219
1220  // Emit continuation.
1221  EmitBlock(SwitchExit.getBlock(), true);
1222
1223  SwitchInsn = SavedSwitchInsn;
1224  CaseRangeBlock = SavedCRBlock;
1225}
1226
1227static std::string
1228SimplifyConstraint(const char *Constraint, const TargetInfo &Target,
1229                 SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=0) {
1230  std::string Result;
1231
1232  while (*Constraint) {
1233    switch (*Constraint) {
1234    default:
1235      Result += Target.convertConstraint(Constraint);
1236      break;
1237    // Ignore these
1238    case '*':
1239    case '?':
1240    case '!':
1241    case '=': // Will see this and the following in mult-alt constraints.
1242    case '+':
1243      break;
1244    case ',':
1245      Result += "|";
1246      break;
1247    case 'g':
1248      Result += "imr";
1249      break;
1250    case '[': {
1251      assert(OutCons &&
1252             "Must pass output names to constraints with a symbolic name");
1253      unsigned Index;
1254      bool result = Target.resolveSymbolicName(Constraint,
1255                                               &(*OutCons)[0],
1256                                               OutCons->size(), Index);
1257      assert(result && "Could not resolve symbolic name"); (void)result;
1258      Result += llvm::utostr(Index);
1259      break;
1260    }
1261    }
1262
1263    Constraint++;
1264  }
1265
1266  return Result;
1267}
1268
1269/// AddVariableConstraints - Look at AsmExpr and if it is a variable declared
1270/// as using a particular register add that as a constraint that will be used
1271/// in this asm stmt.
1272static std::string
1273AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr,
1274                       const TargetInfo &Target, CodeGenModule &CGM,
1275                       const AsmStmt &Stmt) {
1276  const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr);
1277  if (!AsmDeclRef)
1278    return Constraint;
1279  const ValueDecl &Value = *AsmDeclRef->getDecl();
1280  const VarDecl *Variable = dyn_cast<VarDecl>(&Value);
1281  if (!Variable)
1282    return Constraint;
1283  AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>();
1284  if (!Attr)
1285    return Constraint;
1286  StringRef Register = Attr->getLabel();
1287  assert(Target.isValidGCCRegisterName(Register));
1288  // We're using validateOutputConstraint here because we only care if
1289  // this is a register constraint.
1290  TargetInfo::ConstraintInfo Info(Constraint, "");
1291  if (Target.validateOutputConstraint(Info) &&
1292      !Info.allowsRegister()) {
1293    CGM.ErrorUnsupported(&Stmt, "__asm__");
1294    return Constraint;
1295  }
1296  // Canonicalize the register here before returning it.
1297  Register = Target.getNormalizedGCCRegisterName(Register);
1298  return "{" + Register.str() + "}";
1299}
1300
1301llvm::Value*
1302CodeGenFunction::EmitAsmInputLValue(const AsmStmt &S,
1303                                    const TargetInfo::ConstraintInfo &Info,
1304                                    LValue InputValue, QualType InputType,
1305                                    std::string &ConstraintStr) {
1306  llvm::Value *Arg;
1307  if (Info.allowsRegister() || !Info.allowsMemory()) {
1308    if (!CodeGenFunction::hasAggregateLLVMType(InputType)) {
1309      Arg = EmitLoadOfLValue(InputValue).getScalarVal();
1310    } else {
1311      llvm::Type *Ty = ConvertType(InputType);
1312      uint64_t Size = CGM.getTargetData().getTypeSizeInBits(Ty);
1313      if (Size <= 64 && llvm::isPowerOf2_64(Size)) {
1314        Ty = llvm::IntegerType::get(getLLVMContext(), Size);
1315        Ty = llvm::PointerType::getUnqual(Ty);
1316
1317        Arg = Builder.CreateLoad(Builder.CreateBitCast(InputValue.getAddress(),
1318                                                       Ty));
1319      } else {
1320        Arg = InputValue.getAddress();
1321        ConstraintStr += '*';
1322      }
1323    }
1324  } else {
1325    Arg = InputValue.getAddress();
1326    ConstraintStr += '*';
1327  }
1328
1329  return Arg;
1330}
1331
1332llvm::Value* CodeGenFunction::EmitAsmInput(const AsmStmt &S,
1333                                         const TargetInfo::ConstraintInfo &Info,
1334                                           const Expr *InputExpr,
1335                                           std::string &ConstraintStr) {
1336  if (Info.allowsRegister() || !Info.allowsMemory())
1337    if (!CodeGenFunction::hasAggregateLLVMType(InputExpr->getType()))
1338      return EmitScalarExpr(InputExpr);
1339
1340  InputExpr = InputExpr->IgnoreParenNoopCasts(getContext());
1341  LValue Dest = EmitLValue(InputExpr);
1342  return EmitAsmInputLValue(S, Info, Dest, InputExpr->getType(), ConstraintStr);
1343}
1344
1345/// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline
1346/// asm call instruction.  The !srcloc MDNode contains a list of constant
1347/// integers which are the source locations of the start of each line in the
1348/// asm.
1349static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str,
1350                                      CodeGenFunction &CGF) {
1351  SmallVector<llvm::Value *, 8> Locs;
1352  // Add the location of the first line to the MDNode.
1353  Locs.push_back(llvm::ConstantInt::get(CGF.Int32Ty,
1354                                        Str->getLocStart().getRawEncoding()));
1355  StringRef StrVal = Str->getString();
1356  if (!StrVal.empty()) {
1357    const SourceManager &SM = CGF.CGM.getContext().getSourceManager();
1358    const LangOptions &LangOpts = CGF.CGM.getLangOptions();
1359
1360    // Add the location of the start of each subsequent line of the asm to the
1361    // MDNode.
1362    for (unsigned i = 0, e = StrVal.size()-1; i != e; ++i) {
1363      if (StrVal[i] != '\n') continue;
1364      SourceLocation LineLoc = Str->getLocationOfByte(i+1, SM, LangOpts,
1365                                                      CGF.Target);
1366      Locs.push_back(llvm::ConstantInt::get(CGF.Int32Ty,
1367                                            LineLoc.getRawEncoding()));
1368    }
1369  }
1370
1371  return llvm::MDNode::get(CGF.getLLVMContext(), Locs);
1372}
1373
1374void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) {
1375  // Analyze the asm string to decompose it into its pieces.  We know that Sema
1376  // has already done this, so it is guaranteed to be successful.
1377  SmallVector<AsmStmt::AsmStringPiece, 4> Pieces;
1378  unsigned DiagOffs;
1379  S.AnalyzeAsmString(Pieces, getContext(), DiagOffs);
1380
1381  // Assemble the pieces into the final asm string.
1382  std::string AsmString;
1383  for (unsigned i = 0, e = Pieces.size(); i != e; ++i) {
1384    if (Pieces[i].isString())
1385      AsmString += Pieces[i].getString();
1386    else if (Pieces[i].getModifier() == '\0')
1387      AsmString += '$' + llvm::utostr(Pieces[i].getOperandNo());
1388    else
1389      AsmString += "${" + llvm::utostr(Pieces[i].getOperandNo()) + ':' +
1390                   Pieces[i].getModifier() + '}';
1391  }
1392
1393  // Get all the output and input constraints together.
1394  SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
1395  SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
1396
1397  for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
1398    TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i),
1399                                    S.getOutputName(i));
1400    bool IsValid = Target.validateOutputConstraint(Info); (void)IsValid;
1401    assert(IsValid && "Failed to parse output constraint");
1402    OutputConstraintInfos.push_back(Info);
1403  }
1404
1405  for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
1406    TargetInfo::ConstraintInfo Info(S.getInputConstraint(i),
1407                                    S.getInputName(i));
1408    bool IsValid = Target.validateInputConstraint(OutputConstraintInfos.data(),
1409                                                  S.getNumOutputs(), Info);
1410    assert(IsValid && "Failed to parse input constraint"); (void)IsValid;
1411    InputConstraintInfos.push_back(Info);
1412  }
1413
1414  std::string Constraints;
1415
1416  std::vector<LValue> ResultRegDests;
1417  std::vector<QualType> ResultRegQualTys;
1418  std::vector<llvm::Type *> ResultRegTypes;
1419  std::vector<llvm::Type *> ResultTruncRegTypes;
1420  std::vector<llvm::Type*> ArgTypes;
1421  std::vector<llvm::Value*> Args;
1422
1423  // Keep track of inout constraints.
1424  std::string InOutConstraints;
1425  std::vector<llvm::Value*> InOutArgs;
1426  std::vector<llvm::Type*> InOutArgTypes;
1427
1428  for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
1429    TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
1430
1431    // Simplify the output constraint.
1432    std::string OutputConstraint(S.getOutputConstraint(i));
1433    OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1, Target);
1434
1435    const Expr *OutExpr = S.getOutputExpr(i);
1436    OutExpr = OutExpr->IgnoreParenNoopCasts(getContext());
1437
1438    OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr,
1439                                              Target, CGM, S);
1440
1441    LValue Dest = EmitLValue(OutExpr);
1442    if (!Constraints.empty())
1443      Constraints += ',';
1444
1445    // If this is a register output, then make the inline asm return it
1446    // by-value.  If this is a memory result, return the value by-reference.
1447    if (!Info.allowsMemory() && !hasAggregateLLVMType(OutExpr->getType())) {
1448      Constraints += "=" + OutputConstraint;
1449      ResultRegQualTys.push_back(OutExpr->getType());
1450      ResultRegDests.push_back(Dest);
1451      ResultRegTypes.push_back(ConvertTypeForMem(OutExpr->getType()));
1452      ResultTruncRegTypes.push_back(ResultRegTypes.back());
1453
1454      // If this output is tied to an input, and if the input is larger, then
1455      // we need to set the actual result type of the inline asm node to be the
1456      // same as the input type.
1457      if (Info.hasMatchingInput()) {
1458        unsigned InputNo;
1459        for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) {
1460          TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo];
1461          if (Input.hasTiedOperand() && Input.getTiedOperand() == i)
1462            break;
1463        }
1464        assert(InputNo != S.getNumInputs() && "Didn't find matching input!");
1465
1466        QualType InputTy = S.getInputExpr(InputNo)->getType();
1467        QualType OutputType = OutExpr->getType();
1468
1469        uint64_t InputSize = getContext().getTypeSize(InputTy);
1470        if (getContext().getTypeSize(OutputType) < InputSize) {
1471          // Form the asm to return the value as a larger integer or fp type.
1472          ResultRegTypes.back() = ConvertType(InputTy);
1473        }
1474      }
1475      if (llvm::Type* AdjTy =
1476            getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
1477                                                 ResultRegTypes.back()))
1478        ResultRegTypes.back() = AdjTy;
1479    } else {
1480      ArgTypes.push_back(Dest.getAddress()->getType());
1481      Args.push_back(Dest.getAddress());
1482      Constraints += "=*";
1483      Constraints += OutputConstraint;
1484    }
1485
1486    if (Info.isReadWrite()) {
1487      InOutConstraints += ',';
1488
1489      const Expr *InputExpr = S.getOutputExpr(i);
1490      llvm::Value *Arg = EmitAsmInputLValue(S, Info, Dest, InputExpr->getType(),
1491                                            InOutConstraints);
1492
1493      if (Info.allowsRegister())
1494        InOutConstraints += llvm::utostr(i);
1495      else
1496        InOutConstraints += OutputConstraint;
1497
1498      InOutArgTypes.push_back(Arg->getType());
1499      InOutArgs.push_back(Arg);
1500    }
1501  }
1502
1503  unsigned NumConstraints = S.getNumOutputs() + S.getNumInputs();
1504
1505  for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
1506    const Expr *InputExpr = S.getInputExpr(i);
1507
1508    TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
1509
1510    if (!Constraints.empty())
1511      Constraints += ',';
1512
1513    // Simplify the input constraint.
1514    std::string InputConstraint(S.getInputConstraint(i));
1515    InputConstraint = SimplifyConstraint(InputConstraint.c_str(), Target,
1516                                         &OutputConstraintInfos);
1517
1518    InputConstraint =
1519      AddVariableConstraints(InputConstraint,
1520                            *InputExpr->IgnoreParenNoopCasts(getContext()),
1521                            Target, CGM, S);
1522
1523    llvm::Value *Arg = EmitAsmInput(S, Info, InputExpr, Constraints);
1524
1525    // If this input argument is tied to a larger output result, extend the
1526    // input to be the same size as the output.  The LLVM backend wants to see
1527    // the input and output of a matching constraint be the same size.  Note
1528    // that GCC does not define what the top bits are here.  We use zext because
1529    // that is usually cheaper, but LLVM IR should really get an anyext someday.
1530    if (Info.hasTiedOperand()) {
1531      unsigned Output = Info.getTiedOperand();
1532      QualType OutputType = S.getOutputExpr(Output)->getType();
1533      QualType InputTy = InputExpr->getType();
1534
1535      if (getContext().getTypeSize(OutputType) >
1536          getContext().getTypeSize(InputTy)) {
1537        // Use ptrtoint as appropriate so that we can do our extension.
1538        if (isa<llvm::PointerType>(Arg->getType()))
1539          Arg = Builder.CreatePtrToInt(Arg, IntPtrTy);
1540        llvm::Type *OutputTy = ConvertType(OutputType);
1541        if (isa<llvm::IntegerType>(OutputTy))
1542          Arg = Builder.CreateZExt(Arg, OutputTy);
1543        else if (isa<llvm::PointerType>(OutputTy))
1544          Arg = Builder.CreateZExt(Arg, IntPtrTy);
1545        else {
1546          assert(OutputTy->isFloatingPointTy() && "Unexpected output type");
1547          Arg = Builder.CreateFPExt(Arg, OutputTy);
1548        }
1549      }
1550    }
1551    if (llvm::Type* AdjTy =
1552              getTargetHooks().adjustInlineAsmType(*this, InputConstraint,
1553                                                   Arg->getType()))
1554      Arg = Builder.CreateBitCast(Arg, AdjTy);
1555
1556    ArgTypes.push_back(Arg->getType());
1557    Args.push_back(Arg);
1558    Constraints += InputConstraint;
1559  }
1560
1561  // Append the "input" part of inout constraints last.
1562  for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) {
1563    ArgTypes.push_back(InOutArgTypes[i]);
1564    Args.push_back(InOutArgs[i]);
1565  }
1566  Constraints += InOutConstraints;
1567
1568  // Clobbers
1569  for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) {
1570    StringRef Clobber = S.getClobber(i)->getString();
1571
1572    if (Clobber != "memory" && Clobber != "cc")
1573    Clobber = Target.getNormalizedGCCRegisterName(Clobber);
1574
1575    if (i != 0 || NumConstraints != 0)
1576      Constraints += ',';
1577
1578    Constraints += "~{";
1579    Constraints += Clobber;
1580    Constraints += '}';
1581  }
1582
1583  // Add machine specific clobbers
1584  std::string MachineClobbers = Target.getClobbers();
1585  if (!MachineClobbers.empty()) {
1586    if (!Constraints.empty())
1587      Constraints += ',';
1588    Constraints += MachineClobbers;
1589  }
1590
1591  llvm::Type *ResultType;
1592  if (ResultRegTypes.empty())
1593    ResultType = llvm::Type::getVoidTy(getLLVMContext());
1594  else if (ResultRegTypes.size() == 1)
1595    ResultType = ResultRegTypes[0];
1596  else
1597    ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes);
1598
1599  llvm::FunctionType *FTy =
1600    llvm::FunctionType::get(ResultType, ArgTypes, false);
1601
1602  llvm::InlineAsm *IA =
1603    llvm::InlineAsm::get(FTy, AsmString, Constraints,
1604                         S.isVolatile() || S.getNumOutputs() == 0);
1605  llvm::CallInst *Result = Builder.CreateCall(IA, Args);
1606  Result->addAttribute(~0, llvm::Attribute::NoUnwind);
1607
1608  // Slap the source location of the inline asm into a !srcloc metadata on the
1609  // call.
1610  Result->setMetadata("srcloc", getAsmSrcLocInfo(S.getAsmString(), *this));
1611
1612  // Extract all of the register value results from the asm.
1613  std::vector<llvm::Value*> RegResults;
1614  if (ResultRegTypes.size() == 1) {
1615    RegResults.push_back(Result);
1616  } else {
1617    for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) {
1618      llvm::Value *Tmp = Builder.CreateExtractValue(Result, i, "asmresult");
1619      RegResults.push_back(Tmp);
1620    }
1621  }
1622
1623  for (unsigned i = 0, e = RegResults.size(); i != e; ++i) {
1624    llvm::Value *Tmp = RegResults[i];
1625
1626    // If the result type of the LLVM IR asm doesn't match the result type of
1627    // the expression, do the conversion.
1628    if (ResultRegTypes[i] != ResultTruncRegTypes[i]) {
1629      llvm::Type *TruncTy = ResultTruncRegTypes[i];
1630
1631      // Truncate the integer result to the right size, note that TruncTy can be
1632      // a pointer.
1633      if (TruncTy->isFloatingPointTy())
1634        Tmp = Builder.CreateFPTrunc(Tmp, TruncTy);
1635      else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) {
1636        uint64_t ResSize = CGM.getTargetData().getTypeSizeInBits(TruncTy);
1637        Tmp = Builder.CreateTrunc(Tmp,
1638                   llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize));
1639        Tmp = Builder.CreateIntToPtr(Tmp, TruncTy);
1640      } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) {
1641        uint64_t TmpSize =CGM.getTargetData().getTypeSizeInBits(Tmp->getType());
1642        Tmp = Builder.CreatePtrToInt(Tmp,
1643                   llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize));
1644        Tmp = Builder.CreateTrunc(Tmp, TruncTy);
1645      } else if (TruncTy->isIntegerTy()) {
1646        Tmp = Builder.CreateTrunc(Tmp, TruncTy);
1647      } else if (TruncTy->isVectorTy()) {
1648        Tmp = Builder.CreateBitCast(Tmp, TruncTy);
1649      }
1650    }
1651
1652    EmitStoreThroughLValue(RValue::get(Tmp), ResultRegDests[i]);
1653  }
1654}
1655