1//===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This coordinates the per-function state used while generating code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenFunction.h"
15#include "CodeGenModule.h"
16#include "CGCUDARuntime.h"
17#include "CGCXXABI.h"
18#include "CGDebugInfo.h"
19#include "CGException.h"
20#include "clang/Basic/TargetInfo.h"
21#include "clang/AST/APValue.h"
22#include "clang/AST/ASTContext.h"
23#include "clang/AST/Decl.h"
24#include "clang/AST/DeclCXX.h"
25#include "clang/AST/StmtCXX.h"
26#include "clang/Frontend/CodeGenOptions.h"
27#include "llvm/Target/TargetData.h"
28#include "llvm/Intrinsics.h"
29using namespace clang;
30using namespace CodeGen;
31
32CodeGenFunction::CodeGenFunction(CodeGenModule &cgm)
33  : CodeGenTypeCache(cgm), CGM(cgm),
34    Target(CGM.getContext().getTargetInfo()), Builder(cgm.getModule().getContext()),
35    AutoreleaseResult(false), BlockInfo(0), BlockPointer(0),
36    NormalCleanupDest(0), NextCleanupDestIndex(1),
37    EHResumeBlock(0), ExceptionSlot(0), EHSelectorSlot(0),
38    DebugInfo(0), DisableDebugInfo(false), DidCallStackSave(false),
39    IndirectBranch(0), SwitchInsn(0), CaseRangeBlock(0), UnreachableBlock(0),
40    CXXThisDecl(0), CXXThisValue(0), CXXVTTDecl(0), CXXVTTValue(0),
41    OutermostConditional(0), TerminateLandingPad(0), TerminateHandler(0),
42    TrapBB(0) {
43
44  CatchUndefined = getContext().getLangOptions().CatchUndefined;
45  CGM.getCXXABI().getMangleContext().startNewFunction();
46}
47
48
49llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
50  return CGM.getTypes().ConvertTypeForMem(T);
51}
52
53llvm::Type *CodeGenFunction::ConvertType(QualType T) {
54  return CGM.getTypes().ConvertType(T);
55}
56
57bool CodeGenFunction::hasAggregateLLVMType(QualType type) {
58  switch (type.getCanonicalType()->getTypeClass()) {
59#define TYPE(name, parent)
60#define ABSTRACT_TYPE(name, parent)
61#define NON_CANONICAL_TYPE(name, parent) case Type::name:
62#define DEPENDENT_TYPE(name, parent) case Type::name:
63#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
64#include "clang/AST/TypeNodes.def"
65    llvm_unreachable("non-canonical or dependent type in IR-generation");
66
67  case Type::Builtin:
68  case Type::Pointer:
69  case Type::BlockPointer:
70  case Type::LValueReference:
71  case Type::RValueReference:
72  case Type::MemberPointer:
73  case Type::Vector:
74  case Type::ExtVector:
75  case Type::FunctionProto:
76  case Type::FunctionNoProto:
77  case Type::Enum:
78  case Type::ObjCObjectPointer:
79    return false;
80
81  // Complexes, arrays, records, and Objective-C objects.
82  case Type::Complex:
83  case Type::ConstantArray:
84  case Type::IncompleteArray:
85  case Type::VariableArray:
86  case Type::Record:
87  case Type::ObjCObject:
88  case Type::ObjCInterface:
89    return true;
90
91  // In IRGen, atomic types are just the underlying type
92  case Type::Atomic:
93    return hasAggregateLLVMType(type->getAs<AtomicType>()->getValueType());
94  }
95  llvm_unreachable("unknown type kind!");
96}
97
98void CodeGenFunction::EmitReturnBlock() {
99  // For cleanliness, we try to avoid emitting the return block for
100  // simple cases.
101  llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
102
103  if (CurBB) {
104    assert(!CurBB->getTerminator() && "Unexpected terminated block.");
105
106    // We have a valid insert point, reuse it if it is empty or there are no
107    // explicit jumps to the return block.
108    if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
109      ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
110      delete ReturnBlock.getBlock();
111    } else
112      EmitBlock(ReturnBlock.getBlock());
113    return;
114  }
115
116  // Otherwise, if the return block is the target of a single direct
117  // branch then we can just put the code in that block instead. This
118  // cleans up functions which started with a unified return block.
119  if (ReturnBlock.getBlock()->hasOneUse()) {
120    llvm::BranchInst *BI =
121      dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->use_begin());
122    if (BI && BI->isUnconditional() &&
123        BI->getSuccessor(0) == ReturnBlock.getBlock()) {
124      // Reset insertion point, including debug location, and delete the branch.
125      Builder.SetCurrentDebugLocation(BI->getDebugLoc());
126      Builder.SetInsertPoint(BI->getParent());
127      BI->eraseFromParent();
128      delete ReturnBlock.getBlock();
129      return;
130    }
131  }
132
133  // FIXME: We are at an unreachable point, there is no reason to emit the block
134  // unless it has uses. However, we still need a place to put the debug
135  // region.end for now.
136
137  EmitBlock(ReturnBlock.getBlock());
138}
139
140static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
141  if (!BB) return;
142  if (!BB->use_empty())
143    return CGF.CurFn->getBasicBlockList().push_back(BB);
144  delete BB;
145}
146
147void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
148  assert(BreakContinueStack.empty() &&
149         "mismatched push/pop in break/continue stack!");
150
151  // Pop any cleanups that might have been associated with the
152  // parameters.  Do this in whatever block we're currently in; it's
153  // important to do this before we enter the return block or return
154  // edges will be *really* confused.
155  if (EHStack.stable_begin() != PrologueCleanupDepth)
156    PopCleanupBlocks(PrologueCleanupDepth);
157
158  // Emit function epilog (to return).
159  EmitReturnBlock();
160
161  if (ShouldInstrumentFunction())
162    EmitFunctionInstrumentation("__cyg_profile_func_exit");
163
164  // Emit debug descriptor for function end.
165  if (CGDebugInfo *DI = getDebugInfo()) {
166    DI->setLocation(EndLoc);
167    DI->EmitFunctionEnd(Builder);
168  }
169
170  EmitFunctionEpilog(*CurFnInfo);
171  EmitEndEHSpec(CurCodeDecl);
172
173  assert(EHStack.empty() &&
174         "did not remove all scopes from cleanup stack!");
175
176  // If someone did an indirect goto, emit the indirect goto block at the end of
177  // the function.
178  if (IndirectBranch) {
179    EmitBlock(IndirectBranch->getParent());
180    Builder.ClearInsertionPoint();
181  }
182
183  // Remove the AllocaInsertPt instruction, which is just a convenience for us.
184  llvm::Instruction *Ptr = AllocaInsertPt;
185  AllocaInsertPt = 0;
186  Ptr->eraseFromParent();
187
188  // If someone took the address of a label but never did an indirect goto, we
189  // made a zero entry PHI node, which is illegal, zap it now.
190  if (IndirectBranch) {
191    llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
192    if (PN->getNumIncomingValues() == 0) {
193      PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
194      PN->eraseFromParent();
195    }
196  }
197
198  EmitIfUsed(*this, EHResumeBlock);
199  EmitIfUsed(*this, TerminateLandingPad);
200  EmitIfUsed(*this, TerminateHandler);
201  EmitIfUsed(*this, UnreachableBlock);
202
203  if (CGM.getCodeGenOpts().EmitDeclMetadata)
204    EmitDeclMetadata();
205}
206
207/// ShouldInstrumentFunction - Return true if the current function should be
208/// instrumented with __cyg_profile_func_* calls
209bool CodeGenFunction::ShouldInstrumentFunction() {
210  if (!CGM.getCodeGenOpts().InstrumentFunctions)
211    return false;
212  if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
213    return false;
214  return true;
215}
216
217/// EmitFunctionInstrumentation - Emit LLVM code to call the specified
218/// instrumentation function with the current function and the call site, if
219/// function instrumentation is enabled.
220void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) {
221  // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site);
222  llvm::PointerType *PointerTy = Int8PtrTy;
223  llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy };
224  llvm::FunctionType *FunctionTy =
225    llvm::FunctionType::get(llvm::Type::getVoidTy(getLLVMContext()),
226                            ProfileFuncArgs, false);
227
228  llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn);
229  llvm::CallInst *CallSite = Builder.CreateCall(
230    CGM.getIntrinsic(llvm::Intrinsic::returnaddress),
231    llvm::ConstantInt::get(Int32Ty, 0),
232    "callsite");
233
234  Builder.CreateCall2(F,
235                      llvm::ConstantExpr::getBitCast(CurFn, PointerTy),
236                      CallSite);
237}
238
239void CodeGenFunction::EmitMCountInstrumentation() {
240  llvm::FunctionType *FTy =
241    llvm::FunctionType::get(llvm::Type::getVoidTy(getLLVMContext()), false);
242
243  llvm::Constant *MCountFn = CGM.CreateRuntimeFunction(FTy,
244                                                       Target.getMCountName());
245  Builder.CreateCall(MCountFn);
246}
247
248void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
249                                    llvm::Function *Fn,
250                                    const CGFunctionInfo &FnInfo,
251                                    const FunctionArgList &Args,
252                                    SourceLocation StartLoc) {
253  const Decl *D = GD.getDecl();
254
255  DidCallStackSave = false;
256  CurCodeDecl = CurFuncDecl = D;
257  FnRetTy = RetTy;
258  CurFn = Fn;
259  CurFnInfo = &FnInfo;
260  assert(CurFn->isDeclaration() && "Function already has body?");
261
262  // Pass inline keyword to optimizer if it appears explicitly on any
263  // declaration.
264  if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
265    for (FunctionDecl::redecl_iterator RI = FD->redecls_begin(),
266           RE = FD->redecls_end(); RI != RE; ++RI)
267      if (RI->isInlineSpecified()) {
268        Fn->addFnAttr(llvm::Attribute::InlineHint);
269        break;
270      }
271
272  if (getContext().getLangOptions().OpenCL) {
273    // Add metadata for a kernel function.
274    if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
275      if (FD->hasAttr<OpenCLKernelAttr>()) {
276        llvm::LLVMContext &Context = getLLVMContext();
277        llvm::NamedMDNode *OpenCLMetadata =
278          CGM.getModule().getOrInsertNamedMetadata("opencl.kernels");
279
280        llvm::Value *Op = Fn;
281        OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Op));
282      }
283  }
284
285  llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
286
287  // Create a marker to make it easy to insert allocas into the entryblock
288  // later.  Don't create this with the builder, because we don't want it
289  // folded.
290  llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
291  AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB);
292  if (Builder.isNamePreserving())
293    AllocaInsertPt->setName("allocapt");
294
295  ReturnBlock = getJumpDestInCurrentScope("return");
296
297  Builder.SetInsertPoint(EntryBB);
298
299  // Emit subprogram debug descriptor.
300  if (CGDebugInfo *DI = getDebugInfo()) {
301    // FIXME: what is going on here and why does it ignore all these
302    // interesting type properties?
303    QualType FnType =
304      getContext().getFunctionType(RetTy, 0, 0,
305                                   FunctionProtoType::ExtProtoInfo());
306
307    DI->setLocation(StartLoc);
308    DI->EmitFunctionStart(GD, FnType, CurFn, Builder);
309  }
310
311  if (ShouldInstrumentFunction())
312    EmitFunctionInstrumentation("__cyg_profile_func_enter");
313
314  if (CGM.getCodeGenOpts().InstrumentForProfiling)
315    EmitMCountInstrumentation();
316
317  if (RetTy->isVoidType()) {
318    // Void type; nothing to return.
319    ReturnValue = 0;
320  } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
321             hasAggregateLLVMType(CurFnInfo->getReturnType())) {
322    // Indirect aggregate return; emit returned value directly into sret slot.
323    // This reduces code size, and affects correctness in C++.
324    ReturnValue = CurFn->arg_begin();
325  } else {
326    ReturnValue = CreateIRTemp(RetTy, "retval");
327
328    // Tell the epilog emitter to autorelease the result.  We do this
329    // now so that various specialized functions can suppress it
330    // during their IR-generation.
331    if (getLangOptions().ObjCAutoRefCount &&
332        !CurFnInfo->isReturnsRetained() &&
333        RetTy->isObjCRetainableType())
334      AutoreleaseResult = true;
335  }
336
337  EmitStartEHSpec(CurCodeDecl);
338
339  PrologueCleanupDepth = EHStack.stable_begin();
340  EmitFunctionProlog(*CurFnInfo, CurFn, Args);
341
342  if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance())
343    CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
344
345  // If any of the arguments have a variably modified type, make sure to
346  // emit the type size.
347  for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
348       i != e; ++i) {
349    QualType Ty = (*i)->getType();
350
351    if (Ty->isVariablyModifiedType())
352      EmitVariablyModifiedType(Ty);
353  }
354  // Emit a location at the end of the prologue.
355  if (CGDebugInfo *DI = getDebugInfo())
356    DI->EmitLocation(Builder, StartLoc);
357}
358
359void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args) {
360  const FunctionDecl *FD = cast<FunctionDecl>(CurGD.getDecl());
361  assert(FD->getBody());
362  EmitStmt(FD->getBody());
363}
364
365/// Tries to mark the given function nounwind based on the
366/// non-existence of any throwing calls within it.  We believe this is
367/// lightweight enough to do at -O0.
368static void TryMarkNoThrow(llvm::Function *F) {
369  // LLVM treats 'nounwind' on a function as part of the type, so we
370  // can't do this on functions that can be overwritten.
371  if (F->mayBeOverridden()) return;
372
373  for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI)
374    for (llvm::BasicBlock::iterator
375           BI = FI->begin(), BE = FI->end(); BI != BE; ++BI)
376      if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) {
377        if (!Call->doesNotThrow())
378          return;
379      } else if (isa<llvm::ResumeInst>(&*BI)) {
380        return;
381      }
382  F->setDoesNotThrow(true);
383}
384
385void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
386                                   const CGFunctionInfo &FnInfo) {
387  const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
388
389  // Check if we should generate debug info for this function.
390  if (CGM.getModuleDebugInfo() && !FD->hasAttr<NoDebugAttr>())
391    DebugInfo = CGM.getModuleDebugInfo();
392
393  FunctionArgList Args;
394  QualType ResTy = FD->getResultType();
395
396  CurGD = GD;
397  if (isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isInstance())
398    CGM.getCXXABI().BuildInstanceFunctionParams(*this, ResTy, Args);
399
400  if (FD->getNumParams())
401    for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i)
402      Args.push_back(FD->getParamDecl(i));
403
404  SourceRange BodyRange;
405  if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange();
406
407  // Emit the standard function prologue.
408  StartFunction(GD, ResTy, Fn, FnInfo, Args, BodyRange.getBegin());
409
410  // Generate the body of the function.
411  if (isa<CXXDestructorDecl>(FD))
412    EmitDestructorBody(Args);
413  else if (isa<CXXConstructorDecl>(FD))
414    EmitConstructorBody(Args);
415  else if (getContext().getLangOptions().CUDA &&
416           !CGM.getCodeGenOpts().CUDAIsDevice &&
417           FD->hasAttr<CUDAGlobalAttr>())
418    CGM.getCUDARuntime().EmitDeviceStubBody(*this, Args);
419  else
420    EmitFunctionBody(Args);
421
422  // Emit the standard function epilogue.
423  FinishFunction(BodyRange.getEnd());
424
425  // If we haven't marked the function nothrow through other means, do
426  // a quick pass now to see if we can.
427  if (!CurFn->doesNotThrow())
428    TryMarkNoThrow(CurFn);
429}
430
431/// ContainsLabel - Return true if the statement contains a label in it.  If
432/// this statement is not executed normally, it not containing a label means
433/// that we can just remove the code.
434bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
435  // Null statement, not a label!
436  if (S == 0) return false;
437
438  // If this is a label, we have to emit the code, consider something like:
439  // if (0) {  ...  foo:  bar(); }  goto foo;
440  //
441  // TODO: If anyone cared, we could track __label__'s, since we know that you
442  // can't jump to one from outside their declared region.
443  if (isa<LabelStmt>(S))
444    return true;
445
446  // If this is a case/default statement, and we haven't seen a switch, we have
447  // to emit the code.
448  if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
449    return true;
450
451  // If this is a switch statement, we want to ignore cases below it.
452  if (isa<SwitchStmt>(S))
453    IgnoreCaseStmts = true;
454
455  // Scan subexpressions for verboten labels.
456  for (Stmt::const_child_range I = S->children(); I; ++I)
457    if (ContainsLabel(*I, IgnoreCaseStmts))
458      return true;
459
460  return false;
461}
462
463/// containsBreak - Return true if the statement contains a break out of it.
464/// If the statement (recursively) contains a switch or loop with a break
465/// inside of it, this is fine.
466bool CodeGenFunction::containsBreak(const Stmt *S) {
467  // Null statement, not a label!
468  if (S == 0) return false;
469
470  // If this is a switch or loop that defines its own break scope, then we can
471  // include it and anything inside of it.
472  if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
473      isa<ForStmt>(S))
474    return false;
475
476  if (isa<BreakStmt>(S))
477    return true;
478
479  // Scan subexpressions for verboten breaks.
480  for (Stmt::const_child_range I = S->children(); I; ++I)
481    if (containsBreak(*I))
482      return true;
483
484  return false;
485}
486
487
488/// ConstantFoldsToSimpleInteger - If the specified expression does not fold
489/// to a constant, or if it does but contains a label, return false.  If it
490/// constant folds return true and set the boolean result in Result.
491bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
492                                                   bool &ResultBool) {
493  llvm::APInt ResultInt;
494  if (!ConstantFoldsToSimpleInteger(Cond, ResultInt))
495    return false;
496
497  ResultBool = ResultInt.getBoolValue();
498  return true;
499}
500
501/// ConstantFoldsToSimpleInteger - If the specified expression does not fold
502/// to a constant, or if it does but contains a label, return false.  If it
503/// constant folds return true and set the folded value.
504bool CodeGenFunction::
505ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APInt &ResultInt) {
506  // FIXME: Rename and handle conversion of other evaluatable things
507  // to bool.
508  Expr::EvalResult Result;
509  if (!Cond->Evaluate(Result, getContext()) || !Result.Val.isInt() ||
510      Result.HasSideEffects)
511    return false;  // Not foldable, not integer or not fully evaluatable.
512
513  if (CodeGenFunction::ContainsLabel(Cond))
514    return false;  // Contains a label.
515
516  ResultInt = Result.Val.getInt();
517  return true;
518}
519
520
521
522/// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
523/// statement) to the specified blocks.  Based on the condition, this might try
524/// to simplify the codegen of the conditional based on the branch.
525///
526void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
527                                           llvm::BasicBlock *TrueBlock,
528                                           llvm::BasicBlock *FalseBlock) {
529  Cond = Cond->IgnoreParens();
530
531  if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
532    // Handle X && Y in a condition.
533    if (CondBOp->getOpcode() == BO_LAnd) {
534      // If we have "1 && X", simplify the code.  "0 && X" would have constant
535      // folded if the case was simple enough.
536      bool ConstantBool = false;
537      if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
538          ConstantBool) {
539        // br(1 && X) -> br(X).
540        return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
541      }
542
543      // If we have "X && 1", simplify the code to use an uncond branch.
544      // "X && 0" would have been constant folded to 0.
545      if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
546          ConstantBool) {
547        // br(X && 1) -> br(X).
548        return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
549      }
550
551      // Emit the LHS as a conditional.  If the LHS conditional is false, we
552      // want to jump to the FalseBlock.
553      llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
554
555      ConditionalEvaluation eval(*this);
556      EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock);
557      EmitBlock(LHSTrue);
558
559      // Any temporaries created here are conditional.
560      eval.begin(*this);
561      EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
562      eval.end(*this);
563
564      return;
565    }
566
567    if (CondBOp->getOpcode() == BO_LOr) {
568      // If we have "0 || X", simplify the code.  "1 || X" would have constant
569      // folded if the case was simple enough.
570      bool ConstantBool = false;
571      if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
572          !ConstantBool) {
573        // br(0 || X) -> br(X).
574        return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
575      }
576
577      // If we have "X || 0", simplify the code to use an uncond branch.
578      // "X || 1" would have been constant folded to 1.
579      if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
580          !ConstantBool) {
581        // br(X || 0) -> br(X).
582        return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
583      }
584
585      // Emit the LHS as a conditional.  If the LHS conditional is true, we
586      // want to jump to the TrueBlock.
587      llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
588
589      ConditionalEvaluation eval(*this);
590      EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse);
591      EmitBlock(LHSFalse);
592
593      // Any temporaries created here are conditional.
594      eval.begin(*this);
595      EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
596      eval.end(*this);
597
598      return;
599    }
600  }
601
602  if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
603    // br(!x, t, f) -> br(x, f, t)
604    if (CondUOp->getOpcode() == UO_LNot)
605      return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock);
606  }
607
608  if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
609    // Handle ?: operator.
610
611    // Just ignore GNU ?: extension.
612    if (CondOp->getLHS()) {
613      // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
614      llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
615      llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
616
617      ConditionalEvaluation cond(*this);
618      EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock);
619
620      cond.begin(*this);
621      EmitBlock(LHSBlock);
622      EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock);
623      cond.end(*this);
624
625      cond.begin(*this);
626      EmitBlock(RHSBlock);
627      EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock);
628      cond.end(*this);
629
630      return;
631    }
632  }
633
634  // Emit the code with the fully general case.
635  llvm::Value *CondV = EvaluateExprAsBool(Cond);
636  Builder.CreateCondBr(CondV, TrueBlock, FalseBlock);
637}
638
639/// ErrorUnsupported - Print out an error that codegen doesn't support the
640/// specified stmt yet.
641void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type,
642                                       bool OmitOnError) {
643  CGM.ErrorUnsupported(S, Type, OmitOnError);
644}
645
646/// emitNonZeroVLAInit - Emit the "zero" initialization of a
647/// variable-length array whose elements have a non-zero bit-pattern.
648///
649/// \param src - a char* pointing to the bit-pattern for a single
650/// base element of the array
651/// \param sizeInChars - the total size of the VLA, in chars
652/// \param align - the total alignment of the VLA
653static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
654                               llvm::Value *dest, llvm::Value *src,
655                               llvm::Value *sizeInChars) {
656  std::pair<CharUnits,CharUnits> baseSizeAndAlign
657    = CGF.getContext().getTypeInfoInChars(baseType);
658
659  CGBuilderTy &Builder = CGF.Builder;
660
661  llvm::Value *baseSizeInChars
662    = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity());
663
664  llvm::Type *i8p = Builder.getInt8PtrTy();
665
666  llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin");
667  llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end");
668
669  llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
670  llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
671  llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
672
673  // Make a loop over the VLA.  C99 guarantees that the VLA element
674  // count must be nonzero.
675  CGF.EmitBlock(loopBB);
676
677  llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur");
678  cur->addIncoming(begin, originBB);
679
680  // memcpy the individual element bit-pattern.
681  Builder.CreateMemCpy(cur, src, baseSizeInChars,
682                       baseSizeAndAlign.second.getQuantity(),
683                       /*volatile*/ false);
684
685  // Go to the next element.
686  llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(cur, 1, "vla.next");
687
688  // Leave if that's the end of the VLA.
689  llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
690  Builder.CreateCondBr(done, contBB, loopBB);
691  cur->addIncoming(next, loopBB);
692
693  CGF.EmitBlock(contBB);
694}
695
696void
697CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) {
698  // Ignore empty classes in C++.
699  if (getContext().getLangOptions().CPlusPlus) {
700    if (const RecordType *RT = Ty->getAs<RecordType>()) {
701      if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
702        return;
703    }
704  }
705
706  // Cast the dest ptr to the appropriate i8 pointer type.
707  unsigned DestAS =
708    cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
709  llvm::Type *BP = Builder.getInt8PtrTy(DestAS);
710  if (DestPtr->getType() != BP)
711    DestPtr = Builder.CreateBitCast(DestPtr, BP);
712
713  // Get size and alignment info for this aggregate.
714  std::pair<CharUnits, CharUnits> TypeInfo =
715    getContext().getTypeInfoInChars(Ty);
716  CharUnits Size = TypeInfo.first;
717  CharUnits Align = TypeInfo.second;
718
719  llvm::Value *SizeVal;
720  const VariableArrayType *vla;
721
722  // Don't bother emitting a zero-byte memset.
723  if (Size.isZero()) {
724    // But note that getTypeInfo returns 0 for a VLA.
725    if (const VariableArrayType *vlaType =
726          dyn_cast_or_null<VariableArrayType>(
727                                          getContext().getAsArrayType(Ty))) {
728      QualType eltType;
729      llvm::Value *numElts;
730      llvm::tie(numElts, eltType) = getVLASize(vlaType);
731
732      SizeVal = numElts;
733      CharUnits eltSize = getContext().getTypeSizeInChars(eltType);
734      if (!eltSize.isOne())
735        SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
736      vla = vlaType;
737    } else {
738      return;
739    }
740  } else {
741    SizeVal = CGM.getSize(Size);
742    vla = 0;
743  }
744
745  // If the type contains a pointer to data member we can't memset it to zero.
746  // Instead, create a null constant and copy it to the destination.
747  // TODO: there are other patterns besides zero that we can usefully memset,
748  // like -1, which happens to be the pattern used by member-pointers.
749  if (!CGM.getTypes().isZeroInitializable(Ty)) {
750    // For a VLA, emit a single element, then splat that over the VLA.
751    if (vla) Ty = getContext().getBaseElementType(vla);
752
753    llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
754
755    llvm::GlobalVariable *NullVariable =
756      new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
757                               /*isConstant=*/true,
758                               llvm::GlobalVariable::PrivateLinkage,
759                               NullConstant, Twine());
760    llvm::Value *SrcPtr =
761      Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy());
762
763    if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
764
765    // Get and call the appropriate llvm.memcpy overload.
766    Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false);
767    return;
768  }
769
770  // Otherwise, just memset the whole thing to zero.  This is legal
771  // because in LLVM, all default initializers (other than the ones we just
772  // handled above) are guaranteed to have a bit pattern of all zeros.
773  Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal,
774                       Align.getQuantity(), false);
775}
776
777llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
778  // Make sure that there is a block for the indirect goto.
779  if (IndirectBranch == 0)
780    GetIndirectGotoBlock();
781
782  llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
783
784  // Make sure the indirect branch includes all of the address-taken blocks.
785  IndirectBranch->addDestination(BB);
786  return llvm::BlockAddress::get(CurFn, BB);
787}
788
789llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
790  // If we already made the indirect branch for indirect goto, return its block.
791  if (IndirectBranch) return IndirectBranch->getParent();
792
793  CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto"));
794
795  // Create the PHI node that indirect gotos will add entries to.
796  llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
797                                              "indirect.goto.dest");
798
799  // Create the indirect branch instruction.
800  IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
801  return IndirectBranch->getParent();
802}
803
804/// Computes the length of an array in elements, as well as the base
805/// element type and a properly-typed first element pointer.
806llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
807                                              QualType &baseType,
808                                              llvm::Value *&addr) {
809  const ArrayType *arrayType = origArrayType;
810
811  // If it's a VLA, we have to load the stored size.  Note that
812  // this is the size of the VLA in bytes, not its size in elements.
813  llvm::Value *numVLAElements = 0;
814  if (isa<VariableArrayType>(arrayType)) {
815    numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first;
816
817    // Walk into all VLAs.  This doesn't require changes to addr,
818    // which has type T* where T is the first non-VLA element type.
819    do {
820      QualType elementType = arrayType->getElementType();
821      arrayType = getContext().getAsArrayType(elementType);
822
823      // If we only have VLA components, 'addr' requires no adjustment.
824      if (!arrayType) {
825        baseType = elementType;
826        return numVLAElements;
827      }
828    } while (isa<VariableArrayType>(arrayType));
829
830    // We get out here only if we find a constant array type
831    // inside the VLA.
832  }
833
834  // We have some number of constant-length arrays, so addr should
835  // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
836  // down to the first element of addr.
837  SmallVector<llvm::Value*, 8> gepIndices;
838
839  // GEP down to the array type.
840  llvm::ConstantInt *zero = Builder.getInt32(0);
841  gepIndices.push_back(zero);
842
843  // It's more efficient to calculate the count from the LLVM
844  // constant-length arrays than to re-evaluate the array bounds.
845  uint64_t countFromCLAs = 1;
846
847  llvm::ArrayType *llvmArrayType =
848    cast<llvm::ArrayType>(
849      cast<llvm::PointerType>(addr->getType())->getElementType());
850  while (true) {
851    assert(isa<ConstantArrayType>(arrayType));
852    assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
853             == llvmArrayType->getNumElements());
854
855    gepIndices.push_back(zero);
856    countFromCLAs *= llvmArrayType->getNumElements();
857
858    llvmArrayType =
859      dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
860    if (!llvmArrayType) break;
861
862    arrayType = getContext().getAsArrayType(arrayType->getElementType());
863    assert(arrayType && "LLVM and Clang types are out-of-synch");
864  }
865
866  baseType = arrayType->getElementType();
867
868  // Create the actual GEP.
869  addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin");
870
871  llvm::Value *numElements
872    = llvm::ConstantInt::get(SizeTy, countFromCLAs);
873
874  // If we had any VLA dimensions, factor them in.
875  if (numVLAElements)
876    numElements = Builder.CreateNUWMul(numVLAElements, numElements);
877
878  return numElements;
879}
880
881std::pair<llvm::Value*, QualType>
882CodeGenFunction::getVLASize(QualType type) {
883  const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
884  assert(vla && "type was not a variable array type!");
885  return getVLASize(vla);
886}
887
888std::pair<llvm::Value*, QualType>
889CodeGenFunction::getVLASize(const VariableArrayType *type) {
890  // The number of elements so far; always size_t.
891  llvm::Value *numElements = 0;
892
893  QualType elementType;
894  do {
895    elementType = type->getElementType();
896    llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
897    assert(vlaSize && "no size for VLA!");
898    assert(vlaSize->getType() == SizeTy);
899
900    if (!numElements) {
901      numElements = vlaSize;
902    } else {
903      // It's undefined behavior if this wraps around, so mark it that way.
904      numElements = Builder.CreateNUWMul(numElements, vlaSize);
905    }
906  } while ((type = getContext().getAsVariableArrayType(elementType)));
907
908  return std::pair<llvm::Value*,QualType>(numElements, elementType);
909}
910
911void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
912  assert(type->isVariablyModifiedType() &&
913         "Must pass variably modified type to EmitVLASizes!");
914
915  EnsureInsertPoint();
916
917  // We're going to walk down into the type and look for VLA
918  // expressions.
919  type = type.getCanonicalType();
920  do {
921    assert(type->isVariablyModifiedType());
922
923    const Type *ty = type.getTypePtr();
924    switch (ty->getTypeClass()) {
925#define TYPE(Class, Base)
926#define ABSTRACT_TYPE(Class, Base)
927#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
928#define DEPENDENT_TYPE(Class, Base) case Type::Class:
929#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
930#include "clang/AST/TypeNodes.def"
931      llvm_unreachable("unexpected dependent or non-canonical type!");
932
933    // These types are never variably-modified.
934    case Type::Builtin:
935    case Type::Complex:
936    case Type::Vector:
937    case Type::ExtVector:
938    case Type::Record:
939    case Type::Enum:
940    case Type::ObjCObject:
941    case Type::ObjCInterface:
942    case Type::ObjCObjectPointer:
943      llvm_unreachable("type class is never variably-modified!");
944
945    case Type::Pointer:
946      type = cast<PointerType>(ty)->getPointeeType();
947      break;
948
949    case Type::BlockPointer:
950      type = cast<BlockPointerType>(ty)->getPointeeType();
951      break;
952
953    case Type::LValueReference:
954    case Type::RValueReference:
955      type = cast<ReferenceType>(ty)->getPointeeType();
956      break;
957
958    case Type::MemberPointer:
959      type = cast<MemberPointerType>(ty)->getPointeeType();
960      break;
961
962    case Type::ConstantArray:
963    case Type::IncompleteArray:
964      // Losing element qualification here is fine.
965      type = cast<ArrayType>(ty)->getElementType();
966      break;
967
968    case Type::VariableArray: {
969      // Losing element qualification here is fine.
970      const VariableArrayType *vat = cast<VariableArrayType>(ty);
971
972      // Unknown size indication requires no size computation.
973      // Otherwise, evaluate and record it.
974      if (const Expr *size = vat->getSizeExpr()) {
975        // It's possible that we might have emitted this already,
976        // e.g. with a typedef and a pointer to it.
977        llvm::Value *&entry = VLASizeMap[size];
978        if (!entry) {
979          // Always zexting here would be wrong if it weren't
980          // undefined behavior to have a negative bound.
981          entry = Builder.CreateIntCast(EmitScalarExpr(size), SizeTy,
982                                        /*signed*/ false);
983        }
984      }
985      type = vat->getElementType();
986      break;
987    }
988
989    case Type::FunctionProto:
990    case Type::FunctionNoProto:
991      type = cast<FunctionType>(ty)->getResultType();
992      break;
993
994    case Type::Atomic:
995      type = cast<AtomicType>(ty)->getValueType();
996      break;
997    }
998  } while (type->isVariablyModifiedType());
999}
1000
1001llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) {
1002  if (getContext().getBuiltinVaListType()->isArrayType())
1003    return EmitScalarExpr(E);
1004  return EmitLValue(E).getAddress();
1005}
1006
1007void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
1008                                              llvm::Constant *Init) {
1009  assert (Init && "Invalid DeclRefExpr initializer!");
1010  if (CGDebugInfo *Dbg = getDebugInfo())
1011    Dbg->EmitGlobalVariable(E->getDecl(), Init);
1012}
1013
1014CodeGenFunction::PeepholeProtection
1015CodeGenFunction::protectFromPeepholes(RValue rvalue) {
1016  // At the moment, the only aggressive peephole we do in IR gen
1017  // is trunc(zext) folding, but if we add more, we can easily
1018  // extend this protection.
1019
1020  if (!rvalue.isScalar()) return PeepholeProtection();
1021  llvm::Value *value = rvalue.getScalarVal();
1022  if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
1023
1024  // Just make an extra bitcast.
1025  assert(HaveInsertPoint());
1026  llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
1027                                                  Builder.GetInsertBlock());
1028
1029  PeepholeProtection protection;
1030  protection.Inst = inst;
1031  return protection;
1032}
1033
1034void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
1035  if (!protection.Inst) return;
1036
1037  // In theory, we could try to duplicate the peepholes now, but whatever.
1038  protection.Inst->eraseFromParent();
1039}
1040
1041llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn,
1042                                                 llvm::Value *AnnotatedVal,
1043                                                 llvm::StringRef AnnotationStr,
1044                                                 SourceLocation Location) {
1045  llvm::Value *Args[4] = {
1046    AnnotatedVal,
1047    Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
1048    Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
1049    CGM.EmitAnnotationLineNo(Location)
1050  };
1051  return Builder.CreateCall(AnnotationFn, Args);
1052}
1053
1054void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
1055  assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1056  // FIXME We create a new bitcast for every annotation because that's what
1057  // llvm-gcc was doing.
1058  for (specific_attr_iterator<AnnotateAttr>
1059       ai = D->specific_attr_begin<AnnotateAttr>(),
1060       ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
1061    EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
1062                       Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
1063                       (*ai)->getAnnotation(), D->getLocation());
1064}
1065
1066llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
1067                                                   llvm::Value *V) {
1068  assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1069  llvm::Type *VTy = V->getType();
1070  llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
1071                                    CGM.Int8PtrTy);
1072
1073  for (specific_attr_iterator<AnnotateAttr>
1074       ai = D->specific_attr_begin<AnnotateAttr>(),
1075       ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) {
1076    // FIXME Always emit the cast inst so we can differentiate between
1077    // annotation on the first field of a struct and annotation on the struct
1078    // itself.
1079    if (VTy != CGM.Int8PtrTy)
1080      V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy));
1081    V = EmitAnnotationCall(F, V, (*ai)->getAnnotation(), D->getLocation());
1082    V = Builder.CreateBitCast(V, VTy);
1083  }
1084
1085  return V;
1086}
1087