1//===--- RewriteRope.cpp - Rope specialized for rewriter --------*- C++ -*-===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements the RewriteRope class, which is a powerful string. 11// 12//===----------------------------------------------------------------------===// 13 14#include "clang/Rewrite/RewriteRope.h" 15#include "clang/Basic/LLVM.h" 16#include <algorithm> 17using namespace clang; 18 19/// RewriteRope is a "strong" string class, designed to make insertions and 20/// deletions in the middle of the string nearly constant time (really, they are 21/// O(log N), but with a very low constant factor). 22/// 23/// The implementation of this datastructure is a conceptual linear sequence of 24/// RopePiece elements. Each RopePiece represents a view on a separately 25/// allocated and reference counted string. This means that splitting a very 26/// long string can be done in constant time by splitting a RopePiece that 27/// references the whole string into two rope pieces that reference each half. 28/// Once split, another string can be inserted in between the two halves by 29/// inserting a RopePiece in between the two others. All of this is very 30/// inexpensive: it takes time proportional to the number of RopePieces, not the 31/// length of the strings they represent. 32/// 33/// While a linear sequences of RopePieces is the conceptual model, the actual 34/// implementation captures them in an adapted B+ Tree. Using a B+ tree (which 35/// is a tree that keeps the values in the leaves and has where each node 36/// contains a reasonable number of pointers to children/values) allows us to 37/// maintain efficient operation when the RewriteRope contains a *huge* number 38/// of RopePieces. The basic idea of the B+ Tree is that it allows us to find 39/// the RopePiece corresponding to some offset very efficiently, and it 40/// automatically balances itself on insertions of RopePieces (which can happen 41/// for both insertions and erases of string ranges). 42/// 43/// The one wrinkle on the theory is that we don't attempt to keep the tree 44/// properly balanced when erases happen. Erases of string data can both insert 45/// new RopePieces (e.g. when the middle of some other rope piece is deleted, 46/// which results in two rope pieces, which is just like an insert) or it can 47/// reduce the number of RopePieces maintained by the B+Tree. In the case when 48/// the number of RopePieces is reduced, we don't attempt to maintain the 49/// standard 'invariant' that each node in the tree contains at least 50/// 'WidthFactor' children/values. For our use cases, this doesn't seem to 51/// matter. 52/// 53/// The implementation below is primarily implemented in terms of three classes: 54/// RopePieceBTreeNode - Common base class for: 55/// 56/// RopePieceBTreeLeaf - Directly manages up to '2*WidthFactor' RopePiece 57/// nodes. This directly represents a chunk of the string with those 58/// RopePieces contatenated. 59/// RopePieceBTreeInterior - An interior node in the B+ Tree, which manages 60/// up to '2*WidthFactor' other nodes in the tree. 61 62 63//===----------------------------------------------------------------------===// 64// RopePieceBTreeNode Class 65//===----------------------------------------------------------------------===// 66 67namespace { 68 /// RopePieceBTreeNode - Common base class of RopePieceBTreeLeaf and 69 /// RopePieceBTreeInterior. This provides some 'virtual' dispatching methods 70 /// and a flag that determines which subclass the instance is. Also 71 /// important, this node knows the full extend of the node, including any 72 /// children that it has. This allows efficient skipping over entire subtrees 73 /// when looking for an offset in the BTree. 74 class RopePieceBTreeNode { 75 protected: 76 /// WidthFactor - This controls the number of K/V slots held in the BTree: 77 /// how wide it is. Each level of the BTree is guaranteed to have at least 78 /// 'WidthFactor' elements in it (either ropepieces or children), (except 79 /// the root, which may have less) and may have at most 2*WidthFactor 80 /// elements. 81 enum { WidthFactor = 8 }; 82 83 /// Size - This is the number of bytes of file this node (including any 84 /// potential children) covers. 85 unsigned Size; 86 87 /// IsLeaf - True if this is an instance of RopePieceBTreeLeaf, false if it 88 /// is an instance of RopePieceBTreeInterior. 89 bool IsLeaf; 90 91 RopePieceBTreeNode(bool isLeaf) : Size(0), IsLeaf(isLeaf) {} 92 ~RopePieceBTreeNode() {} 93 public: 94 95 bool isLeaf() const { return IsLeaf; } 96 unsigned size() const { return Size; } 97 98 void Destroy(); 99 100 /// split - Split the range containing the specified offset so that we are 101 /// guaranteed that there is a place to do an insertion at the specified 102 /// offset. The offset is relative, so "0" is the start of the node. 103 /// 104 /// If there is no space in this subtree for the extra piece, the extra tree 105 /// node is returned and must be inserted into a parent. 106 RopePieceBTreeNode *split(unsigned Offset); 107 108 /// insert - Insert the specified ropepiece into this tree node at the 109 /// specified offset. The offset is relative, so "0" is the start of the 110 /// node. 111 /// 112 /// If there is no space in this subtree for the extra piece, the extra tree 113 /// node is returned and must be inserted into a parent. 114 RopePieceBTreeNode *insert(unsigned Offset, const RopePiece &R); 115 116 /// erase - Remove NumBytes from this node at the specified offset. We are 117 /// guaranteed that there is a split at Offset. 118 void erase(unsigned Offset, unsigned NumBytes); 119 120 //static inline bool classof(const RopePieceBTreeNode *) { return true; } 121 122 }; 123} // end anonymous namespace 124 125//===----------------------------------------------------------------------===// 126// RopePieceBTreeLeaf Class 127//===----------------------------------------------------------------------===// 128 129namespace { 130 /// RopePieceBTreeLeaf - Directly manages up to '2*WidthFactor' RopePiece 131 /// nodes. This directly represents a chunk of the string with those 132 /// RopePieces contatenated. Since this is a B+Tree, all values (in this case 133 /// instances of RopePiece) are stored in leaves like this. To make iteration 134 /// over the leaves efficient, they maintain a singly linked list through the 135 /// NextLeaf field. This allows the B+Tree forward iterator to be constant 136 /// time for all increments. 137 class RopePieceBTreeLeaf : public RopePieceBTreeNode { 138 /// NumPieces - This holds the number of rope pieces currently active in the 139 /// Pieces array. 140 unsigned char NumPieces; 141 142 /// Pieces - This tracks the file chunks currently in this leaf. 143 /// 144 RopePiece Pieces[2*WidthFactor]; 145 146 /// NextLeaf - This is a pointer to the next leaf in the tree, allowing 147 /// efficient in-order forward iteration of the tree without traversal. 148 RopePieceBTreeLeaf **PrevLeaf, *NextLeaf; 149 public: 150 RopePieceBTreeLeaf() : RopePieceBTreeNode(true), NumPieces(0), 151 PrevLeaf(0), NextLeaf(0) {} 152 ~RopePieceBTreeLeaf() { 153 if (PrevLeaf || NextLeaf) 154 removeFromLeafInOrder(); 155 clear(); 156 } 157 158 bool isFull() const { return NumPieces == 2*WidthFactor; } 159 160 /// clear - Remove all rope pieces from this leaf. 161 void clear() { 162 while (NumPieces) 163 Pieces[--NumPieces] = RopePiece(); 164 Size = 0; 165 } 166 167 unsigned getNumPieces() const { return NumPieces; } 168 169 const RopePiece &getPiece(unsigned i) const { 170 assert(i < getNumPieces() && "Invalid piece ID"); 171 return Pieces[i]; 172 } 173 174 const RopePieceBTreeLeaf *getNextLeafInOrder() const { return NextLeaf; } 175 void insertAfterLeafInOrder(RopePieceBTreeLeaf *Node) { 176 assert(PrevLeaf == 0 && NextLeaf == 0 && "Already in ordering"); 177 178 NextLeaf = Node->NextLeaf; 179 if (NextLeaf) 180 NextLeaf->PrevLeaf = &NextLeaf; 181 PrevLeaf = &Node->NextLeaf; 182 Node->NextLeaf = this; 183 } 184 185 void removeFromLeafInOrder() { 186 if (PrevLeaf) { 187 *PrevLeaf = NextLeaf; 188 if (NextLeaf) 189 NextLeaf->PrevLeaf = PrevLeaf; 190 } else if (NextLeaf) { 191 NextLeaf->PrevLeaf = 0; 192 } 193 } 194 195 /// FullRecomputeSizeLocally - This method recomputes the 'Size' field by 196 /// summing the size of all RopePieces. 197 void FullRecomputeSizeLocally() { 198 Size = 0; 199 for (unsigned i = 0, e = getNumPieces(); i != e; ++i) 200 Size += getPiece(i).size(); 201 } 202 203 /// split - Split the range containing the specified offset so that we are 204 /// guaranteed that there is a place to do an insertion at the specified 205 /// offset. The offset is relative, so "0" is the start of the node. 206 /// 207 /// If there is no space in this subtree for the extra piece, the extra tree 208 /// node is returned and must be inserted into a parent. 209 RopePieceBTreeNode *split(unsigned Offset); 210 211 /// insert - Insert the specified ropepiece into this tree node at the 212 /// specified offset. The offset is relative, so "0" is the start of the 213 /// node. 214 /// 215 /// If there is no space in this subtree for the extra piece, the extra tree 216 /// node is returned and must be inserted into a parent. 217 RopePieceBTreeNode *insert(unsigned Offset, const RopePiece &R); 218 219 220 /// erase - Remove NumBytes from this node at the specified offset. We are 221 /// guaranteed that there is a split at Offset. 222 void erase(unsigned Offset, unsigned NumBytes); 223 224 //static inline bool classof(const RopePieceBTreeLeaf *) { return true; } 225 static inline bool classof(const RopePieceBTreeNode *N) { 226 return N->isLeaf(); 227 } 228 }; 229} // end anonymous namespace 230 231/// split - Split the range containing the specified offset so that we are 232/// guaranteed that there is a place to do an insertion at the specified 233/// offset. The offset is relative, so "0" is the start of the node. 234/// 235/// If there is no space in this subtree for the extra piece, the extra tree 236/// node is returned and must be inserted into a parent. 237RopePieceBTreeNode *RopePieceBTreeLeaf::split(unsigned Offset) { 238 // Find the insertion point. We are guaranteed that there is a split at the 239 // specified offset so find it. 240 if (Offset == 0 || Offset == size()) { 241 // Fastpath for a common case. There is already a splitpoint at the end. 242 return 0; 243 } 244 245 // Find the piece that this offset lands in. 246 unsigned PieceOffs = 0; 247 unsigned i = 0; 248 while (Offset >= PieceOffs+Pieces[i].size()) { 249 PieceOffs += Pieces[i].size(); 250 ++i; 251 } 252 253 // If there is already a split point at the specified offset, just return 254 // success. 255 if (PieceOffs == Offset) 256 return 0; 257 258 // Otherwise, we need to split piece 'i' at Offset-PieceOffs. Convert Offset 259 // to being Piece relative. 260 unsigned IntraPieceOffset = Offset-PieceOffs; 261 262 // We do this by shrinking the RopePiece and then doing an insert of the tail. 263 RopePiece Tail(Pieces[i].StrData, Pieces[i].StartOffs+IntraPieceOffset, 264 Pieces[i].EndOffs); 265 Size -= Pieces[i].size(); 266 Pieces[i].EndOffs = Pieces[i].StartOffs+IntraPieceOffset; 267 Size += Pieces[i].size(); 268 269 return insert(Offset, Tail); 270} 271 272 273/// insert - Insert the specified RopePiece into this tree node at the 274/// specified offset. The offset is relative, so "0" is the start of the node. 275/// 276/// If there is no space in this subtree for the extra piece, the extra tree 277/// node is returned and must be inserted into a parent. 278RopePieceBTreeNode *RopePieceBTreeLeaf::insert(unsigned Offset, 279 const RopePiece &R) { 280 // If this node is not full, insert the piece. 281 if (!isFull()) { 282 // Find the insertion point. We are guaranteed that there is a split at the 283 // specified offset so find it. 284 unsigned i = 0, e = getNumPieces(); 285 if (Offset == size()) { 286 // Fastpath for a common case. 287 i = e; 288 } else { 289 unsigned SlotOffs = 0; 290 for (; Offset > SlotOffs; ++i) 291 SlotOffs += getPiece(i).size(); 292 assert(SlotOffs == Offset && "Split didn't occur before insertion!"); 293 } 294 295 // For an insertion into a non-full leaf node, just insert the value in 296 // its sorted position. This requires moving later values over. 297 for (; i != e; --e) 298 Pieces[e] = Pieces[e-1]; 299 Pieces[i] = R; 300 ++NumPieces; 301 Size += R.size(); 302 return 0; 303 } 304 305 // Otherwise, if this is leaf is full, split it in two halves. Since this 306 // node is full, it contains 2*WidthFactor values. We move the first 307 // 'WidthFactor' values to the LHS child (which we leave in this node) and 308 // move the last 'WidthFactor' values into the RHS child. 309 310 // Create the new node. 311 RopePieceBTreeLeaf *NewNode = new RopePieceBTreeLeaf(); 312 313 // Move over the last 'WidthFactor' values from here to NewNode. 314 std::copy(&Pieces[WidthFactor], &Pieces[2*WidthFactor], 315 &NewNode->Pieces[0]); 316 // Replace old pieces with null RopePieces to drop refcounts. 317 std::fill(&Pieces[WidthFactor], &Pieces[2*WidthFactor], RopePiece()); 318 319 // Decrease the number of values in the two nodes. 320 NewNode->NumPieces = NumPieces = WidthFactor; 321 322 // Recompute the two nodes' size. 323 NewNode->FullRecomputeSizeLocally(); 324 FullRecomputeSizeLocally(); 325 326 // Update the list of leaves. 327 NewNode->insertAfterLeafInOrder(this); 328 329 // These insertions can't fail. 330 if (this->size() >= Offset) 331 this->insert(Offset, R); 332 else 333 NewNode->insert(Offset - this->size(), R); 334 return NewNode; 335} 336 337/// erase - Remove NumBytes from this node at the specified offset. We are 338/// guaranteed that there is a split at Offset. 339void RopePieceBTreeLeaf::erase(unsigned Offset, unsigned NumBytes) { 340 // Since we are guaranteed that there is a split at Offset, we start by 341 // finding the Piece that starts there. 342 unsigned PieceOffs = 0; 343 unsigned i = 0; 344 for (; Offset > PieceOffs; ++i) 345 PieceOffs += getPiece(i).size(); 346 assert(PieceOffs == Offset && "Split didn't occur before erase!"); 347 348 unsigned StartPiece = i; 349 350 // Figure out how many pieces completely cover 'NumBytes'. We want to remove 351 // all of them. 352 for (; Offset+NumBytes > PieceOffs+getPiece(i).size(); ++i) 353 PieceOffs += getPiece(i).size(); 354 355 // If we exactly include the last one, include it in the region to delete. 356 if (Offset+NumBytes == PieceOffs+getPiece(i).size()) 357 PieceOffs += getPiece(i).size(), ++i; 358 359 // If we completely cover some RopePieces, erase them now. 360 if (i != StartPiece) { 361 unsigned NumDeleted = i-StartPiece; 362 for (; i != getNumPieces(); ++i) 363 Pieces[i-NumDeleted] = Pieces[i]; 364 365 // Drop references to dead rope pieces. 366 std::fill(&Pieces[getNumPieces()-NumDeleted], &Pieces[getNumPieces()], 367 RopePiece()); 368 NumPieces -= NumDeleted; 369 370 unsigned CoverBytes = PieceOffs-Offset; 371 NumBytes -= CoverBytes; 372 Size -= CoverBytes; 373 } 374 375 // If we completely removed some stuff, we could be done. 376 if (NumBytes == 0) return; 377 378 // Okay, now might be erasing part of some Piece. If this is the case, then 379 // move the start point of the piece. 380 assert(getPiece(StartPiece).size() > NumBytes); 381 Pieces[StartPiece].StartOffs += NumBytes; 382 383 // The size of this node just shrunk by NumBytes. 384 Size -= NumBytes; 385} 386 387//===----------------------------------------------------------------------===// 388// RopePieceBTreeInterior Class 389//===----------------------------------------------------------------------===// 390 391namespace { 392 /// RopePieceBTreeInterior - This represents an interior node in the B+Tree, 393 /// which holds up to 2*WidthFactor pointers to child nodes. 394 class RopePieceBTreeInterior : public RopePieceBTreeNode { 395 /// NumChildren - This holds the number of children currently active in the 396 /// Children array. 397 unsigned char NumChildren; 398 RopePieceBTreeNode *Children[2*WidthFactor]; 399 public: 400 RopePieceBTreeInterior() : RopePieceBTreeNode(false), NumChildren(0) {} 401 402 RopePieceBTreeInterior(RopePieceBTreeNode *LHS, RopePieceBTreeNode *RHS) 403 : RopePieceBTreeNode(false) { 404 Children[0] = LHS; 405 Children[1] = RHS; 406 NumChildren = 2; 407 Size = LHS->size() + RHS->size(); 408 } 409 410 bool isFull() const { return NumChildren == 2*WidthFactor; } 411 412 unsigned getNumChildren() const { return NumChildren; } 413 const RopePieceBTreeNode *getChild(unsigned i) const { 414 assert(i < NumChildren && "invalid child #"); 415 return Children[i]; 416 } 417 RopePieceBTreeNode *getChild(unsigned i) { 418 assert(i < NumChildren && "invalid child #"); 419 return Children[i]; 420 } 421 422 /// FullRecomputeSizeLocally - Recompute the Size field of this node by 423 /// summing up the sizes of the child nodes. 424 void FullRecomputeSizeLocally() { 425 Size = 0; 426 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 427 Size += getChild(i)->size(); 428 } 429 430 431 /// split - Split the range containing the specified offset so that we are 432 /// guaranteed that there is a place to do an insertion at the specified 433 /// offset. The offset is relative, so "0" is the start of the node. 434 /// 435 /// If there is no space in this subtree for the extra piece, the extra tree 436 /// node is returned and must be inserted into a parent. 437 RopePieceBTreeNode *split(unsigned Offset); 438 439 440 /// insert - Insert the specified ropepiece into this tree node at the 441 /// specified offset. The offset is relative, so "0" is the start of the 442 /// node. 443 /// 444 /// If there is no space in this subtree for the extra piece, the extra tree 445 /// node is returned and must be inserted into a parent. 446 RopePieceBTreeNode *insert(unsigned Offset, const RopePiece &R); 447 448 /// HandleChildPiece - A child propagated an insertion result up to us. 449 /// Insert the new child, and/or propagate the result further up the tree. 450 RopePieceBTreeNode *HandleChildPiece(unsigned i, RopePieceBTreeNode *RHS); 451 452 /// erase - Remove NumBytes from this node at the specified offset. We are 453 /// guaranteed that there is a split at Offset. 454 void erase(unsigned Offset, unsigned NumBytes); 455 456 //static inline bool classof(const RopePieceBTreeInterior *) { return true; } 457 static inline bool classof(const RopePieceBTreeNode *N) { 458 return !N->isLeaf(); 459 } 460 }; 461} // end anonymous namespace 462 463/// split - Split the range containing the specified offset so that we are 464/// guaranteed that there is a place to do an insertion at the specified 465/// offset. The offset is relative, so "0" is the start of the node. 466/// 467/// If there is no space in this subtree for the extra piece, the extra tree 468/// node is returned and must be inserted into a parent. 469RopePieceBTreeNode *RopePieceBTreeInterior::split(unsigned Offset) { 470 // Figure out which child to split. 471 if (Offset == 0 || Offset == size()) 472 return 0; // If we have an exact offset, we're already split. 473 474 unsigned ChildOffset = 0; 475 unsigned i = 0; 476 for (; Offset >= ChildOffset+getChild(i)->size(); ++i) 477 ChildOffset += getChild(i)->size(); 478 479 // If already split there, we're done. 480 if (ChildOffset == Offset) 481 return 0; 482 483 // Otherwise, recursively split the child. 484 if (RopePieceBTreeNode *RHS = getChild(i)->split(Offset-ChildOffset)) 485 return HandleChildPiece(i, RHS); 486 return 0; // Done! 487} 488 489/// insert - Insert the specified ropepiece into this tree node at the 490/// specified offset. The offset is relative, so "0" is the start of the 491/// node. 492/// 493/// If there is no space in this subtree for the extra piece, the extra tree 494/// node is returned and must be inserted into a parent. 495RopePieceBTreeNode *RopePieceBTreeInterior::insert(unsigned Offset, 496 const RopePiece &R) { 497 // Find the insertion point. We are guaranteed that there is a split at the 498 // specified offset so find it. 499 unsigned i = 0, e = getNumChildren(); 500 501 unsigned ChildOffs = 0; 502 if (Offset == size()) { 503 // Fastpath for a common case. Insert at end of last child. 504 i = e-1; 505 ChildOffs = size()-getChild(i)->size(); 506 } else { 507 for (; Offset > ChildOffs+getChild(i)->size(); ++i) 508 ChildOffs += getChild(i)->size(); 509 } 510 511 Size += R.size(); 512 513 // Insert at the end of this child. 514 if (RopePieceBTreeNode *RHS = getChild(i)->insert(Offset-ChildOffs, R)) 515 return HandleChildPiece(i, RHS); 516 517 return 0; 518} 519 520/// HandleChildPiece - A child propagated an insertion result up to us. 521/// Insert the new child, and/or propagate the result further up the tree. 522RopePieceBTreeNode * 523RopePieceBTreeInterior::HandleChildPiece(unsigned i, RopePieceBTreeNode *RHS) { 524 // Otherwise the child propagated a subtree up to us as a new child. See if 525 // we have space for it here. 526 if (!isFull()) { 527 // Insert RHS after child 'i'. 528 if (i + 1 != getNumChildren()) 529 memmove(&Children[i+2], &Children[i+1], 530 (getNumChildren()-i-1)*sizeof(Children[0])); 531 Children[i+1] = RHS; 532 ++NumChildren; 533 return 0; 534 } 535 536 // Okay, this node is full. Split it in half, moving WidthFactor children to 537 // a newly allocated interior node. 538 539 // Create the new node. 540 RopePieceBTreeInterior *NewNode = new RopePieceBTreeInterior(); 541 542 // Move over the last 'WidthFactor' values from here to NewNode. 543 memcpy(&NewNode->Children[0], &Children[WidthFactor], 544 WidthFactor*sizeof(Children[0])); 545 546 // Decrease the number of values in the two nodes. 547 NewNode->NumChildren = NumChildren = WidthFactor; 548 549 // Finally, insert the two new children in the side the can (now) hold them. 550 // These insertions can't fail. 551 if (i < WidthFactor) 552 this->HandleChildPiece(i, RHS); 553 else 554 NewNode->HandleChildPiece(i-WidthFactor, RHS); 555 556 // Recompute the two nodes' size. 557 NewNode->FullRecomputeSizeLocally(); 558 FullRecomputeSizeLocally(); 559 return NewNode; 560} 561 562/// erase - Remove NumBytes from this node at the specified offset. We are 563/// guaranteed that there is a split at Offset. 564void RopePieceBTreeInterior::erase(unsigned Offset, unsigned NumBytes) { 565 // This will shrink this node by NumBytes. 566 Size -= NumBytes; 567 568 // Find the first child that overlaps with Offset. 569 unsigned i = 0; 570 for (; Offset >= getChild(i)->size(); ++i) 571 Offset -= getChild(i)->size(); 572 573 // Propagate the delete request into overlapping children, or completely 574 // delete the children as appropriate. 575 while (NumBytes) { 576 RopePieceBTreeNode *CurChild = getChild(i); 577 578 // If we are deleting something contained entirely in the child, pass on the 579 // request. 580 if (Offset+NumBytes < CurChild->size()) { 581 CurChild->erase(Offset, NumBytes); 582 return; 583 } 584 585 // If this deletion request starts somewhere in the middle of the child, it 586 // must be deleting to the end of the child. 587 if (Offset) { 588 unsigned BytesFromChild = CurChild->size()-Offset; 589 CurChild->erase(Offset, BytesFromChild); 590 NumBytes -= BytesFromChild; 591 // Start at the beginning of the next child. 592 Offset = 0; 593 ++i; 594 continue; 595 } 596 597 // If the deletion request completely covers the child, delete it and move 598 // the rest down. 599 NumBytes -= CurChild->size(); 600 CurChild->Destroy(); 601 --NumChildren; 602 if (i != getNumChildren()) 603 memmove(&Children[i], &Children[i+1], 604 (getNumChildren()-i)*sizeof(Children[0])); 605 } 606} 607 608//===----------------------------------------------------------------------===// 609// RopePieceBTreeNode Implementation 610//===----------------------------------------------------------------------===// 611 612void RopePieceBTreeNode::Destroy() { 613 if (RopePieceBTreeLeaf *Leaf = dyn_cast<RopePieceBTreeLeaf>(this)) 614 delete Leaf; 615 else 616 delete cast<RopePieceBTreeInterior>(this); 617} 618 619/// split - Split the range containing the specified offset so that we are 620/// guaranteed that there is a place to do an insertion at the specified 621/// offset. The offset is relative, so "0" is the start of the node. 622/// 623/// If there is no space in this subtree for the extra piece, the extra tree 624/// node is returned and must be inserted into a parent. 625RopePieceBTreeNode *RopePieceBTreeNode::split(unsigned Offset) { 626 assert(Offset <= size() && "Invalid offset to split!"); 627 if (RopePieceBTreeLeaf *Leaf = dyn_cast<RopePieceBTreeLeaf>(this)) 628 return Leaf->split(Offset); 629 return cast<RopePieceBTreeInterior>(this)->split(Offset); 630} 631 632/// insert - Insert the specified ropepiece into this tree node at the 633/// specified offset. The offset is relative, so "0" is the start of the 634/// node. 635/// 636/// If there is no space in this subtree for the extra piece, the extra tree 637/// node is returned and must be inserted into a parent. 638RopePieceBTreeNode *RopePieceBTreeNode::insert(unsigned Offset, 639 const RopePiece &R) { 640 assert(Offset <= size() && "Invalid offset to insert!"); 641 if (RopePieceBTreeLeaf *Leaf = dyn_cast<RopePieceBTreeLeaf>(this)) 642 return Leaf->insert(Offset, R); 643 return cast<RopePieceBTreeInterior>(this)->insert(Offset, R); 644} 645 646/// erase - Remove NumBytes from this node at the specified offset. We are 647/// guaranteed that there is a split at Offset. 648void RopePieceBTreeNode::erase(unsigned Offset, unsigned NumBytes) { 649 assert(Offset+NumBytes <= size() && "Invalid offset to erase!"); 650 if (RopePieceBTreeLeaf *Leaf = dyn_cast<RopePieceBTreeLeaf>(this)) 651 return Leaf->erase(Offset, NumBytes); 652 return cast<RopePieceBTreeInterior>(this)->erase(Offset, NumBytes); 653} 654 655 656//===----------------------------------------------------------------------===// 657// RopePieceBTreeIterator Implementation 658//===----------------------------------------------------------------------===// 659 660static const RopePieceBTreeLeaf *getCN(const void *P) { 661 return static_cast<const RopePieceBTreeLeaf*>(P); 662} 663 664// begin iterator. 665RopePieceBTreeIterator::RopePieceBTreeIterator(const void *n) { 666 const RopePieceBTreeNode *N = static_cast<const RopePieceBTreeNode*>(n); 667 668 // Walk down the left side of the tree until we get to a leaf. 669 while (const RopePieceBTreeInterior *IN = dyn_cast<RopePieceBTreeInterior>(N)) 670 N = IN->getChild(0); 671 672 // We must have at least one leaf. 673 CurNode = cast<RopePieceBTreeLeaf>(N); 674 675 // If we found a leaf that happens to be empty, skip over it until we get 676 // to something full. 677 while (CurNode && getCN(CurNode)->getNumPieces() == 0) 678 CurNode = getCN(CurNode)->getNextLeafInOrder(); 679 680 if (CurNode != 0) 681 CurPiece = &getCN(CurNode)->getPiece(0); 682 else // Empty tree, this is an end() iterator. 683 CurPiece = 0; 684 CurChar = 0; 685} 686 687void RopePieceBTreeIterator::MoveToNextPiece() { 688 if (CurPiece != &getCN(CurNode)->getPiece(getCN(CurNode)->getNumPieces()-1)) { 689 CurChar = 0; 690 ++CurPiece; 691 return; 692 } 693 694 // Find the next non-empty leaf node. 695 do 696 CurNode = getCN(CurNode)->getNextLeafInOrder(); 697 while (CurNode && getCN(CurNode)->getNumPieces() == 0); 698 699 if (CurNode != 0) 700 CurPiece = &getCN(CurNode)->getPiece(0); 701 else // Hit end(). 702 CurPiece = 0; 703 CurChar = 0; 704} 705 706//===----------------------------------------------------------------------===// 707// RopePieceBTree Implementation 708//===----------------------------------------------------------------------===// 709 710static RopePieceBTreeNode *getRoot(void *P) { 711 return static_cast<RopePieceBTreeNode*>(P); 712} 713 714RopePieceBTree::RopePieceBTree() { 715 Root = new RopePieceBTreeLeaf(); 716} 717RopePieceBTree::RopePieceBTree(const RopePieceBTree &RHS) { 718 assert(RHS.empty() && "Can't copy non-empty tree yet"); 719 Root = new RopePieceBTreeLeaf(); 720} 721RopePieceBTree::~RopePieceBTree() { 722 getRoot(Root)->Destroy(); 723} 724 725unsigned RopePieceBTree::size() const { 726 return getRoot(Root)->size(); 727} 728 729void RopePieceBTree::clear() { 730 if (RopePieceBTreeLeaf *Leaf = dyn_cast<RopePieceBTreeLeaf>(getRoot(Root))) 731 Leaf->clear(); 732 else { 733 getRoot(Root)->Destroy(); 734 Root = new RopePieceBTreeLeaf(); 735 } 736} 737 738void RopePieceBTree::insert(unsigned Offset, const RopePiece &R) { 739 // #1. Split at Offset. 740 if (RopePieceBTreeNode *RHS = getRoot(Root)->split(Offset)) 741 Root = new RopePieceBTreeInterior(getRoot(Root), RHS); 742 743 // #2. Do the insertion. 744 if (RopePieceBTreeNode *RHS = getRoot(Root)->insert(Offset, R)) 745 Root = new RopePieceBTreeInterior(getRoot(Root), RHS); 746} 747 748void RopePieceBTree::erase(unsigned Offset, unsigned NumBytes) { 749 // #1. Split at Offset. 750 if (RopePieceBTreeNode *RHS = getRoot(Root)->split(Offset)) 751 Root = new RopePieceBTreeInterior(getRoot(Root), RHS); 752 753 // #2. Do the erasing. 754 getRoot(Root)->erase(Offset, NumBytes); 755} 756 757//===----------------------------------------------------------------------===// 758// RewriteRope Implementation 759//===----------------------------------------------------------------------===// 760 761/// MakeRopeString - This copies the specified byte range into some instance of 762/// RopeRefCountString, and return a RopePiece that represents it. This uses 763/// the AllocBuffer object to aggregate requests for small strings into one 764/// allocation instead of doing tons of tiny allocations. 765RopePiece RewriteRope::MakeRopeString(const char *Start, const char *End) { 766 unsigned Len = End-Start; 767 assert(Len && "Zero length RopePiece is invalid!"); 768 769 // If we have space for this string in the current alloc buffer, use it. 770 if (AllocOffs+Len <= AllocChunkSize) { 771 memcpy(AllocBuffer->Data+AllocOffs, Start, Len); 772 AllocOffs += Len; 773 return RopePiece(AllocBuffer, AllocOffs-Len, AllocOffs); 774 } 775 776 // If we don't have enough room because this specific allocation is huge, 777 // just allocate a new rope piece for it alone. 778 if (Len > AllocChunkSize) { 779 unsigned Size = End-Start+sizeof(RopeRefCountString)-1; 780 RopeRefCountString *Res = 781 reinterpret_cast<RopeRefCountString *>(new char[Size]); 782 Res->RefCount = 0; 783 memcpy(Res->Data, Start, End-Start); 784 return RopePiece(Res, 0, End-Start); 785 } 786 787 // Otherwise, this was a small request but we just don't have space for it 788 // Make a new chunk and share it with later allocations. 789 790 // If we had an old allocation, drop our reference to it. 791 if (AllocBuffer && --AllocBuffer->RefCount == 0) 792 delete [] (char*)AllocBuffer; 793 794 unsigned AllocSize = offsetof(RopeRefCountString, Data) + AllocChunkSize; 795 AllocBuffer = reinterpret_cast<RopeRefCountString *>(new char[AllocSize]); 796 AllocBuffer->RefCount = 0; 797 memcpy(AllocBuffer->Data, Start, Len); 798 AllocOffs = Len; 799 800 // Start out the new allocation with a refcount of 1, since we have an 801 // internal reference to it. 802 AllocBuffer->addRef(); 803 return RopePiece(AllocBuffer, 0, Len); 804} 805 806 807