1//===--- RewriteRope.cpp - Rope specialized for rewriter --------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the RewriteRope class, which is a powerful string.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Rewrite/RewriteRope.h"
15#include "clang/Basic/LLVM.h"
16#include <algorithm>
17using namespace clang;
18
19/// RewriteRope is a "strong" string class, designed to make insertions and
20/// deletions in the middle of the string nearly constant time (really, they are
21/// O(log N), but with a very low constant factor).
22///
23/// The implementation of this datastructure is a conceptual linear sequence of
24/// RopePiece elements.  Each RopePiece represents a view on a separately
25/// allocated and reference counted string.  This means that splitting a very
26/// long string can be done in constant time by splitting a RopePiece that
27/// references the whole string into two rope pieces that reference each half.
28/// Once split, another string can be inserted in between the two halves by
29/// inserting a RopePiece in between the two others.  All of this is very
30/// inexpensive: it takes time proportional to the number of RopePieces, not the
31/// length of the strings they represent.
32///
33/// While a linear sequences of RopePieces is the conceptual model, the actual
34/// implementation captures them in an adapted B+ Tree.  Using a B+ tree (which
35/// is a tree that keeps the values in the leaves and has where each node
36/// contains a reasonable number of pointers to children/values) allows us to
37/// maintain efficient operation when the RewriteRope contains a *huge* number
38/// of RopePieces.  The basic idea of the B+ Tree is that it allows us to find
39/// the RopePiece corresponding to some offset very efficiently, and it
40/// automatically balances itself on insertions of RopePieces (which can happen
41/// for both insertions and erases of string ranges).
42///
43/// The one wrinkle on the theory is that we don't attempt to keep the tree
44/// properly balanced when erases happen.  Erases of string data can both insert
45/// new RopePieces (e.g. when the middle of some other rope piece is deleted,
46/// which results in two rope pieces, which is just like an insert) or it can
47/// reduce the number of RopePieces maintained by the B+Tree.  In the case when
48/// the number of RopePieces is reduced, we don't attempt to maintain the
49/// standard 'invariant' that each node in the tree contains at least
50/// 'WidthFactor' children/values.  For our use cases, this doesn't seem to
51/// matter.
52///
53/// The implementation below is primarily implemented in terms of three classes:
54///   RopePieceBTreeNode - Common base class for:
55///
56///     RopePieceBTreeLeaf - Directly manages up to '2*WidthFactor' RopePiece
57///          nodes.  This directly represents a chunk of the string with those
58///          RopePieces contatenated.
59///     RopePieceBTreeInterior - An interior node in the B+ Tree, which manages
60///          up to '2*WidthFactor' other nodes in the tree.
61
62
63//===----------------------------------------------------------------------===//
64// RopePieceBTreeNode Class
65//===----------------------------------------------------------------------===//
66
67namespace {
68  /// RopePieceBTreeNode - Common base class of RopePieceBTreeLeaf and
69  /// RopePieceBTreeInterior.  This provides some 'virtual' dispatching methods
70  /// and a flag that determines which subclass the instance is.  Also
71  /// important, this node knows the full extend of the node, including any
72  /// children that it has.  This allows efficient skipping over entire subtrees
73  /// when looking for an offset in the BTree.
74  class RopePieceBTreeNode {
75  protected:
76    /// WidthFactor - This controls the number of K/V slots held in the BTree:
77    /// how wide it is.  Each level of the BTree is guaranteed to have at least
78    /// 'WidthFactor' elements in it (either ropepieces or children), (except
79    /// the root, which may have less) and may have at most 2*WidthFactor
80    /// elements.
81    enum { WidthFactor = 8 };
82
83    /// Size - This is the number of bytes of file this node (including any
84    /// potential children) covers.
85    unsigned Size;
86
87    /// IsLeaf - True if this is an instance of RopePieceBTreeLeaf, false if it
88    /// is an instance of RopePieceBTreeInterior.
89    bool IsLeaf;
90
91    RopePieceBTreeNode(bool isLeaf) : Size(0), IsLeaf(isLeaf) {}
92    ~RopePieceBTreeNode() {}
93  public:
94
95    bool isLeaf() const { return IsLeaf; }
96    unsigned size() const { return Size; }
97
98    void Destroy();
99
100    /// split - Split the range containing the specified offset so that we are
101    /// guaranteed that there is a place to do an insertion at the specified
102    /// offset.  The offset is relative, so "0" is the start of the node.
103    ///
104    /// If there is no space in this subtree for the extra piece, the extra tree
105    /// node is returned and must be inserted into a parent.
106    RopePieceBTreeNode *split(unsigned Offset);
107
108    /// insert - Insert the specified ropepiece into this tree node at the
109    /// specified offset.  The offset is relative, so "0" is the start of the
110    /// node.
111    ///
112    /// If there is no space in this subtree for the extra piece, the extra tree
113    /// node is returned and must be inserted into a parent.
114    RopePieceBTreeNode *insert(unsigned Offset, const RopePiece &R);
115
116    /// erase - Remove NumBytes from this node at the specified offset.  We are
117    /// guaranteed that there is a split at Offset.
118    void erase(unsigned Offset, unsigned NumBytes);
119
120    //static inline bool classof(const RopePieceBTreeNode *) { return true; }
121
122  };
123} // end anonymous namespace
124
125//===----------------------------------------------------------------------===//
126// RopePieceBTreeLeaf Class
127//===----------------------------------------------------------------------===//
128
129namespace {
130  /// RopePieceBTreeLeaf - Directly manages up to '2*WidthFactor' RopePiece
131  /// nodes.  This directly represents a chunk of the string with those
132  /// RopePieces contatenated.  Since this is a B+Tree, all values (in this case
133  /// instances of RopePiece) are stored in leaves like this.  To make iteration
134  /// over the leaves efficient, they maintain a singly linked list through the
135  /// NextLeaf field.  This allows the B+Tree forward iterator to be constant
136  /// time for all increments.
137  class RopePieceBTreeLeaf : public RopePieceBTreeNode {
138    /// NumPieces - This holds the number of rope pieces currently active in the
139    /// Pieces array.
140    unsigned char NumPieces;
141
142    /// Pieces - This tracks the file chunks currently in this leaf.
143    ///
144    RopePiece Pieces[2*WidthFactor];
145
146    /// NextLeaf - This is a pointer to the next leaf in the tree, allowing
147    /// efficient in-order forward iteration of the tree without traversal.
148    RopePieceBTreeLeaf **PrevLeaf, *NextLeaf;
149  public:
150    RopePieceBTreeLeaf() : RopePieceBTreeNode(true), NumPieces(0),
151                           PrevLeaf(0), NextLeaf(0) {}
152    ~RopePieceBTreeLeaf() {
153      if (PrevLeaf || NextLeaf)
154        removeFromLeafInOrder();
155      clear();
156    }
157
158    bool isFull() const { return NumPieces == 2*WidthFactor; }
159
160    /// clear - Remove all rope pieces from this leaf.
161    void clear() {
162      while (NumPieces)
163        Pieces[--NumPieces] = RopePiece();
164      Size = 0;
165    }
166
167    unsigned getNumPieces() const { return NumPieces; }
168
169    const RopePiece &getPiece(unsigned i) const {
170      assert(i < getNumPieces() && "Invalid piece ID");
171      return Pieces[i];
172    }
173
174    const RopePieceBTreeLeaf *getNextLeafInOrder() const { return NextLeaf; }
175    void insertAfterLeafInOrder(RopePieceBTreeLeaf *Node) {
176      assert(PrevLeaf == 0 && NextLeaf == 0 && "Already in ordering");
177
178      NextLeaf = Node->NextLeaf;
179      if (NextLeaf)
180        NextLeaf->PrevLeaf = &NextLeaf;
181      PrevLeaf = &Node->NextLeaf;
182      Node->NextLeaf = this;
183    }
184
185    void removeFromLeafInOrder() {
186      if (PrevLeaf) {
187        *PrevLeaf = NextLeaf;
188        if (NextLeaf)
189          NextLeaf->PrevLeaf = PrevLeaf;
190      } else if (NextLeaf) {
191        NextLeaf->PrevLeaf = 0;
192      }
193    }
194
195    /// FullRecomputeSizeLocally - This method recomputes the 'Size' field by
196    /// summing the size of all RopePieces.
197    void FullRecomputeSizeLocally() {
198      Size = 0;
199      for (unsigned i = 0, e = getNumPieces(); i != e; ++i)
200        Size += getPiece(i).size();
201    }
202
203    /// split - Split the range containing the specified offset so that we are
204    /// guaranteed that there is a place to do an insertion at the specified
205    /// offset.  The offset is relative, so "0" is the start of the node.
206    ///
207    /// If there is no space in this subtree for the extra piece, the extra tree
208    /// node is returned and must be inserted into a parent.
209    RopePieceBTreeNode *split(unsigned Offset);
210
211    /// insert - Insert the specified ropepiece into this tree node at the
212    /// specified offset.  The offset is relative, so "0" is the start of the
213    /// node.
214    ///
215    /// If there is no space in this subtree for the extra piece, the extra tree
216    /// node is returned and must be inserted into a parent.
217    RopePieceBTreeNode *insert(unsigned Offset, const RopePiece &R);
218
219
220    /// erase - Remove NumBytes from this node at the specified offset.  We are
221    /// guaranteed that there is a split at Offset.
222    void erase(unsigned Offset, unsigned NumBytes);
223
224    //static inline bool classof(const RopePieceBTreeLeaf *) { return true; }
225    static inline bool classof(const RopePieceBTreeNode *N) {
226      return N->isLeaf();
227    }
228  };
229} // end anonymous namespace
230
231/// split - Split the range containing the specified offset so that we are
232/// guaranteed that there is a place to do an insertion at the specified
233/// offset.  The offset is relative, so "0" is the start of the node.
234///
235/// If there is no space in this subtree for the extra piece, the extra tree
236/// node is returned and must be inserted into a parent.
237RopePieceBTreeNode *RopePieceBTreeLeaf::split(unsigned Offset) {
238  // Find the insertion point.  We are guaranteed that there is a split at the
239  // specified offset so find it.
240  if (Offset == 0 || Offset == size()) {
241    // Fastpath for a common case.  There is already a splitpoint at the end.
242    return 0;
243  }
244
245  // Find the piece that this offset lands in.
246  unsigned PieceOffs = 0;
247  unsigned i = 0;
248  while (Offset >= PieceOffs+Pieces[i].size()) {
249    PieceOffs += Pieces[i].size();
250    ++i;
251  }
252
253  // If there is already a split point at the specified offset, just return
254  // success.
255  if (PieceOffs == Offset)
256    return 0;
257
258  // Otherwise, we need to split piece 'i' at Offset-PieceOffs.  Convert Offset
259  // to being Piece relative.
260  unsigned IntraPieceOffset = Offset-PieceOffs;
261
262  // We do this by shrinking the RopePiece and then doing an insert of the tail.
263  RopePiece Tail(Pieces[i].StrData, Pieces[i].StartOffs+IntraPieceOffset,
264                 Pieces[i].EndOffs);
265  Size -= Pieces[i].size();
266  Pieces[i].EndOffs = Pieces[i].StartOffs+IntraPieceOffset;
267  Size += Pieces[i].size();
268
269  return insert(Offset, Tail);
270}
271
272
273/// insert - Insert the specified RopePiece into this tree node at the
274/// specified offset.  The offset is relative, so "0" is the start of the node.
275///
276/// If there is no space in this subtree for the extra piece, the extra tree
277/// node is returned and must be inserted into a parent.
278RopePieceBTreeNode *RopePieceBTreeLeaf::insert(unsigned Offset,
279                                               const RopePiece &R) {
280  // If this node is not full, insert the piece.
281  if (!isFull()) {
282    // Find the insertion point.  We are guaranteed that there is a split at the
283    // specified offset so find it.
284    unsigned i = 0, e = getNumPieces();
285    if (Offset == size()) {
286      // Fastpath for a common case.
287      i = e;
288    } else {
289      unsigned SlotOffs = 0;
290      for (; Offset > SlotOffs; ++i)
291        SlotOffs += getPiece(i).size();
292      assert(SlotOffs == Offset && "Split didn't occur before insertion!");
293    }
294
295    // For an insertion into a non-full leaf node, just insert the value in
296    // its sorted position.  This requires moving later values over.
297    for (; i != e; --e)
298      Pieces[e] = Pieces[e-1];
299    Pieces[i] = R;
300    ++NumPieces;
301    Size += R.size();
302    return 0;
303  }
304
305  // Otherwise, if this is leaf is full, split it in two halves.  Since this
306  // node is full, it contains 2*WidthFactor values.  We move the first
307  // 'WidthFactor' values to the LHS child (which we leave in this node) and
308  // move the last 'WidthFactor' values into the RHS child.
309
310  // Create the new node.
311  RopePieceBTreeLeaf *NewNode = new RopePieceBTreeLeaf();
312
313  // Move over the last 'WidthFactor' values from here to NewNode.
314  std::copy(&Pieces[WidthFactor], &Pieces[2*WidthFactor],
315            &NewNode->Pieces[0]);
316  // Replace old pieces with null RopePieces to drop refcounts.
317  std::fill(&Pieces[WidthFactor], &Pieces[2*WidthFactor], RopePiece());
318
319  // Decrease the number of values in the two nodes.
320  NewNode->NumPieces = NumPieces = WidthFactor;
321
322  // Recompute the two nodes' size.
323  NewNode->FullRecomputeSizeLocally();
324  FullRecomputeSizeLocally();
325
326  // Update the list of leaves.
327  NewNode->insertAfterLeafInOrder(this);
328
329  // These insertions can't fail.
330  if (this->size() >= Offset)
331    this->insert(Offset, R);
332  else
333    NewNode->insert(Offset - this->size(), R);
334  return NewNode;
335}
336
337/// erase - Remove NumBytes from this node at the specified offset.  We are
338/// guaranteed that there is a split at Offset.
339void RopePieceBTreeLeaf::erase(unsigned Offset, unsigned NumBytes) {
340  // Since we are guaranteed that there is a split at Offset, we start by
341  // finding the Piece that starts there.
342  unsigned PieceOffs = 0;
343  unsigned i = 0;
344  for (; Offset > PieceOffs; ++i)
345    PieceOffs += getPiece(i).size();
346  assert(PieceOffs == Offset && "Split didn't occur before erase!");
347
348  unsigned StartPiece = i;
349
350  // Figure out how many pieces completely cover 'NumBytes'.  We want to remove
351  // all of them.
352  for (; Offset+NumBytes > PieceOffs+getPiece(i).size(); ++i)
353    PieceOffs += getPiece(i).size();
354
355  // If we exactly include the last one, include it in the region to delete.
356  if (Offset+NumBytes == PieceOffs+getPiece(i).size())
357    PieceOffs += getPiece(i).size(), ++i;
358
359  // If we completely cover some RopePieces, erase them now.
360  if (i != StartPiece) {
361    unsigned NumDeleted = i-StartPiece;
362    for (; i != getNumPieces(); ++i)
363      Pieces[i-NumDeleted] = Pieces[i];
364
365    // Drop references to dead rope pieces.
366    std::fill(&Pieces[getNumPieces()-NumDeleted], &Pieces[getNumPieces()],
367              RopePiece());
368    NumPieces -= NumDeleted;
369
370    unsigned CoverBytes = PieceOffs-Offset;
371    NumBytes -= CoverBytes;
372    Size -= CoverBytes;
373  }
374
375  // If we completely removed some stuff, we could be done.
376  if (NumBytes == 0) return;
377
378  // Okay, now might be erasing part of some Piece.  If this is the case, then
379  // move the start point of the piece.
380  assert(getPiece(StartPiece).size() > NumBytes);
381  Pieces[StartPiece].StartOffs += NumBytes;
382
383  // The size of this node just shrunk by NumBytes.
384  Size -= NumBytes;
385}
386
387//===----------------------------------------------------------------------===//
388// RopePieceBTreeInterior Class
389//===----------------------------------------------------------------------===//
390
391namespace {
392  /// RopePieceBTreeInterior - This represents an interior node in the B+Tree,
393  /// which holds up to 2*WidthFactor pointers to child nodes.
394  class RopePieceBTreeInterior : public RopePieceBTreeNode {
395    /// NumChildren - This holds the number of children currently active in the
396    /// Children array.
397    unsigned char NumChildren;
398    RopePieceBTreeNode *Children[2*WidthFactor];
399  public:
400    RopePieceBTreeInterior() : RopePieceBTreeNode(false), NumChildren(0) {}
401
402    RopePieceBTreeInterior(RopePieceBTreeNode *LHS, RopePieceBTreeNode *RHS)
403    : RopePieceBTreeNode(false) {
404      Children[0] = LHS;
405      Children[1] = RHS;
406      NumChildren = 2;
407      Size = LHS->size() + RHS->size();
408    }
409
410    bool isFull() const { return NumChildren == 2*WidthFactor; }
411
412    unsigned getNumChildren() const { return NumChildren; }
413    const RopePieceBTreeNode *getChild(unsigned i) const {
414      assert(i < NumChildren && "invalid child #");
415      return Children[i];
416    }
417    RopePieceBTreeNode *getChild(unsigned i) {
418      assert(i < NumChildren && "invalid child #");
419      return Children[i];
420    }
421
422    /// FullRecomputeSizeLocally - Recompute the Size field of this node by
423    /// summing up the sizes of the child nodes.
424    void FullRecomputeSizeLocally() {
425      Size = 0;
426      for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
427        Size += getChild(i)->size();
428    }
429
430
431    /// split - Split the range containing the specified offset so that we are
432    /// guaranteed that there is a place to do an insertion at the specified
433    /// offset.  The offset is relative, so "0" is the start of the node.
434    ///
435    /// If there is no space in this subtree for the extra piece, the extra tree
436    /// node is returned and must be inserted into a parent.
437    RopePieceBTreeNode *split(unsigned Offset);
438
439
440    /// insert - Insert the specified ropepiece into this tree node at the
441    /// specified offset.  The offset is relative, so "0" is the start of the
442    /// node.
443    ///
444    /// If there is no space in this subtree for the extra piece, the extra tree
445    /// node is returned and must be inserted into a parent.
446    RopePieceBTreeNode *insert(unsigned Offset, const RopePiece &R);
447
448    /// HandleChildPiece - A child propagated an insertion result up to us.
449    /// Insert the new child, and/or propagate the result further up the tree.
450    RopePieceBTreeNode *HandleChildPiece(unsigned i, RopePieceBTreeNode *RHS);
451
452    /// erase - Remove NumBytes from this node at the specified offset.  We are
453    /// guaranteed that there is a split at Offset.
454    void erase(unsigned Offset, unsigned NumBytes);
455
456    //static inline bool classof(const RopePieceBTreeInterior *) { return true; }
457    static inline bool classof(const RopePieceBTreeNode *N) {
458      return !N->isLeaf();
459    }
460  };
461} // end anonymous namespace
462
463/// split - Split the range containing the specified offset so that we are
464/// guaranteed that there is a place to do an insertion at the specified
465/// offset.  The offset is relative, so "0" is the start of the node.
466///
467/// If there is no space in this subtree for the extra piece, the extra tree
468/// node is returned and must be inserted into a parent.
469RopePieceBTreeNode *RopePieceBTreeInterior::split(unsigned Offset) {
470  // Figure out which child to split.
471  if (Offset == 0 || Offset == size())
472    return 0;  // If we have an exact offset, we're already split.
473
474  unsigned ChildOffset = 0;
475  unsigned i = 0;
476  for (; Offset >= ChildOffset+getChild(i)->size(); ++i)
477    ChildOffset += getChild(i)->size();
478
479  // If already split there, we're done.
480  if (ChildOffset == Offset)
481    return 0;
482
483  // Otherwise, recursively split the child.
484  if (RopePieceBTreeNode *RHS = getChild(i)->split(Offset-ChildOffset))
485    return HandleChildPiece(i, RHS);
486  return 0;  // Done!
487}
488
489/// insert - Insert the specified ropepiece into this tree node at the
490/// specified offset.  The offset is relative, so "0" is the start of the
491/// node.
492///
493/// If there is no space in this subtree for the extra piece, the extra tree
494/// node is returned and must be inserted into a parent.
495RopePieceBTreeNode *RopePieceBTreeInterior::insert(unsigned Offset,
496                                                   const RopePiece &R) {
497  // Find the insertion point.  We are guaranteed that there is a split at the
498  // specified offset so find it.
499  unsigned i = 0, e = getNumChildren();
500
501  unsigned ChildOffs = 0;
502  if (Offset == size()) {
503    // Fastpath for a common case.  Insert at end of last child.
504    i = e-1;
505    ChildOffs = size()-getChild(i)->size();
506  } else {
507    for (; Offset > ChildOffs+getChild(i)->size(); ++i)
508      ChildOffs += getChild(i)->size();
509  }
510
511  Size += R.size();
512
513  // Insert at the end of this child.
514  if (RopePieceBTreeNode *RHS = getChild(i)->insert(Offset-ChildOffs, R))
515    return HandleChildPiece(i, RHS);
516
517  return 0;
518}
519
520/// HandleChildPiece - A child propagated an insertion result up to us.
521/// Insert the new child, and/or propagate the result further up the tree.
522RopePieceBTreeNode *
523RopePieceBTreeInterior::HandleChildPiece(unsigned i, RopePieceBTreeNode *RHS) {
524  // Otherwise the child propagated a subtree up to us as a new child.  See if
525  // we have space for it here.
526  if (!isFull()) {
527    // Insert RHS after child 'i'.
528    if (i + 1 != getNumChildren())
529      memmove(&Children[i+2], &Children[i+1],
530              (getNumChildren()-i-1)*sizeof(Children[0]));
531    Children[i+1] = RHS;
532    ++NumChildren;
533    return 0;
534  }
535
536  // Okay, this node is full.  Split it in half, moving WidthFactor children to
537  // a newly allocated interior node.
538
539  // Create the new node.
540  RopePieceBTreeInterior *NewNode = new RopePieceBTreeInterior();
541
542  // Move over the last 'WidthFactor' values from here to NewNode.
543  memcpy(&NewNode->Children[0], &Children[WidthFactor],
544         WidthFactor*sizeof(Children[0]));
545
546  // Decrease the number of values in the two nodes.
547  NewNode->NumChildren = NumChildren = WidthFactor;
548
549  // Finally, insert the two new children in the side the can (now) hold them.
550  // These insertions can't fail.
551  if (i < WidthFactor)
552    this->HandleChildPiece(i, RHS);
553  else
554    NewNode->HandleChildPiece(i-WidthFactor, RHS);
555
556  // Recompute the two nodes' size.
557  NewNode->FullRecomputeSizeLocally();
558  FullRecomputeSizeLocally();
559  return NewNode;
560}
561
562/// erase - Remove NumBytes from this node at the specified offset.  We are
563/// guaranteed that there is a split at Offset.
564void RopePieceBTreeInterior::erase(unsigned Offset, unsigned NumBytes) {
565  // This will shrink this node by NumBytes.
566  Size -= NumBytes;
567
568  // Find the first child that overlaps with Offset.
569  unsigned i = 0;
570  for (; Offset >= getChild(i)->size(); ++i)
571    Offset -= getChild(i)->size();
572
573  // Propagate the delete request into overlapping children, or completely
574  // delete the children as appropriate.
575  while (NumBytes) {
576    RopePieceBTreeNode *CurChild = getChild(i);
577
578    // If we are deleting something contained entirely in the child, pass on the
579    // request.
580    if (Offset+NumBytes < CurChild->size()) {
581      CurChild->erase(Offset, NumBytes);
582      return;
583    }
584
585    // If this deletion request starts somewhere in the middle of the child, it
586    // must be deleting to the end of the child.
587    if (Offset) {
588      unsigned BytesFromChild = CurChild->size()-Offset;
589      CurChild->erase(Offset, BytesFromChild);
590      NumBytes -= BytesFromChild;
591      // Start at the beginning of the next child.
592      Offset = 0;
593      ++i;
594      continue;
595    }
596
597    // If the deletion request completely covers the child, delete it and move
598    // the rest down.
599    NumBytes -= CurChild->size();
600    CurChild->Destroy();
601    --NumChildren;
602    if (i != getNumChildren())
603      memmove(&Children[i], &Children[i+1],
604              (getNumChildren()-i)*sizeof(Children[0]));
605  }
606}
607
608//===----------------------------------------------------------------------===//
609// RopePieceBTreeNode Implementation
610//===----------------------------------------------------------------------===//
611
612void RopePieceBTreeNode::Destroy() {
613  if (RopePieceBTreeLeaf *Leaf = dyn_cast<RopePieceBTreeLeaf>(this))
614    delete Leaf;
615  else
616    delete cast<RopePieceBTreeInterior>(this);
617}
618
619/// split - Split the range containing the specified offset so that we are
620/// guaranteed that there is a place to do an insertion at the specified
621/// offset.  The offset is relative, so "0" is the start of the node.
622///
623/// If there is no space in this subtree for the extra piece, the extra tree
624/// node is returned and must be inserted into a parent.
625RopePieceBTreeNode *RopePieceBTreeNode::split(unsigned Offset) {
626  assert(Offset <= size() && "Invalid offset to split!");
627  if (RopePieceBTreeLeaf *Leaf = dyn_cast<RopePieceBTreeLeaf>(this))
628    return Leaf->split(Offset);
629  return cast<RopePieceBTreeInterior>(this)->split(Offset);
630}
631
632/// insert - Insert the specified ropepiece into this tree node at the
633/// specified offset.  The offset is relative, so "0" is the start of the
634/// node.
635///
636/// If there is no space in this subtree for the extra piece, the extra tree
637/// node is returned and must be inserted into a parent.
638RopePieceBTreeNode *RopePieceBTreeNode::insert(unsigned Offset,
639                                               const RopePiece &R) {
640  assert(Offset <= size() && "Invalid offset to insert!");
641  if (RopePieceBTreeLeaf *Leaf = dyn_cast<RopePieceBTreeLeaf>(this))
642    return Leaf->insert(Offset, R);
643  return cast<RopePieceBTreeInterior>(this)->insert(Offset, R);
644}
645
646/// erase - Remove NumBytes from this node at the specified offset.  We are
647/// guaranteed that there is a split at Offset.
648void RopePieceBTreeNode::erase(unsigned Offset, unsigned NumBytes) {
649  assert(Offset+NumBytes <= size() && "Invalid offset to erase!");
650  if (RopePieceBTreeLeaf *Leaf = dyn_cast<RopePieceBTreeLeaf>(this))
651    return Leaf->erase(Offset, NumBytes);
652  return cast<RopePieceBTreeInterior>(this)->erase(Offset, NumBytes);
653}
654
655
656//===----------------------------------------------------------------------===//
657// RopePieceBTreeIterator Implementation
658//===----------------------------------------------------------------------===//
659
660static const RopePieceBTreeLeaf *getCN(const void *P) {
661  return static_cast<const RopePieceBTreeLeaf*>(P);
662}
663
664// begin iterator.
665RopePieceBTreeIterator::RopePieceBTreeIterator(const void *n) {
666  const RopePieceBTreeNode *N = static_cast<const RopePieceBTreeNode*>(n);
667
668  // Walk down the left side of the tree until we get to a leaf.
669  while (const RopePieceBTreeInterior *IN = dyn_cast<RopePieceBTreeInterior>(N))
670    N = IN->getChild(0);
671
672  // We must have at least one leaf.
673  CurNode = cast<RopePieceBTreeLeaf>(N);
674
675  // If we found a leaf that happens to be empty, skip over it until we get
676  // to something full.
677  while (CurNode && getCN(CurNode)->getNumPieces() == 0)
678    CurNode = getCN(CurNode)->getNextLeafInOrder();
679
680  if (CurNode != 0)
681    CurPiece = &getCN(CurNode)->getPiece(0);
682  else  // Empty tree, this is an end() iterator.
683    CurPiece = 0;
684  CurChar = 0;
685}
686
687void RopePieceBTreeIterator::MoveToNextPiece() {
688  if (CurPiece != &getCN(CurNode)->getPiece(getCN(CurNode)->getNumPieces()-1)) {
689    CurChar = 0;
690    ++CurPiece;
691    return;
692  }
693
694  // Find the next non-empty leaf node.
695  do
696    CurNode = getCN(CurNode)->getNextLeafInOrder();
697  while (CurNode && getCN(CurNode)->getNumPieces() == 0);
698
699  if (CurNode != 0)
700    CurPiece = &getCN(CurNode)->getPiece(0);
701  else // Hit end().
702    CurPiece = 0;
703  CurChar = 0;
704}
705
706//===----------------------------------------------------------------------===//
707// RopePieceBTree Implementation
708//===----------------------------------------------------------------------===//
709
710static RopePieceBTreeNode *getRoot(void *P) {
711  return static_cast<RopePieceBTreeNode*>(P);
712}
713
714RopePieceBTree::RopePieceBTree() {
715  Root = new RopePieceBTreeLeaf();
716}
717RopePieceBTree::RopePieceBTree(const RopePieceBTree &RHS) {
718  assert(RHS.empty() && "Can't copy non-empty tree yet");
719  Root = new RopePieceBTreeLeaf();
720}
721RopePieceBTree::~RopePieceBTree() {
722  getRoot(Root)->Destroy();
723}
724
725unsigned RopePieceBTree::size() const {
726  return getRoot(Root)->size();
727}
728
729void RopePieceBTree::clear() {
730  if (RopePieceBTreeLeaf *Leaf = dyn_cast<RopePieceBTreeLeaf>(getRoot(Root)))
731    Leaf->clear();
732  else {
733    getRoot(Root)->Destroy();
734    Root = new RopePieceBTreeLeaf();
735  }
736}
737
738void RopePieceBTree::insert(unsigned Offset, const RopePiece &R) {
739  // #1. Split at Offset.
740  if (RopePieceBTreeNode *RHS = getRoot(Root)->split(Offset))
741    Root = new RopePieceBTreeInterior(getRoot(Root), RHS);
742
743  // #2. Do the insertion.
744  if (RopePieceBTreeNode *RHS = getRoot(Root)->insert(Offset, R))
745    Root = new RopePieceBTreeInterior(getRoot(Root), RHS);
746}
747
748void RopePieceBTree::erase(unsigned Offset, unsigned NumBytes) {
749  // #1. Split at Offset.
750  if (RopePieceBTreeNode *RHS = getRoot(Root)->split(Offset))
751    Root = new RopePieceBTreeInterior(getRoot(Root), RHS);
752
753  // #2. Do the erasing.
754  getRoot(Root)->erase(Offset, NumBytes);
755}
756
757//===----------------------------------------------------------------------===//
758// RewriteRope Implementation
759//===----------------------------------------------------------------------===//
760
761/// MakeRopeString - This copies the specified byte range into some instance of
762/// RopeRefCountString, and return a RopePiece that represents it.  This uses
763/// the AllocBuffer object to aggregate requests for small strings into one
764/// allocation instead of doing tons of tiny allocations.
765RopePiece RewriteRope::MakeRopeString(const char *Start, const char *End) {
766  unsigned Len = End-Start;
767  assert(Len && "Zero length RopePiece is invalid!");
768
769  // If we have space for this string in the current alloc buffer, use it.
770  if (AllocOffs+Len <= AllocChunkSize) {
771    memcpy(AllocBuffer->Data+AllocOffs, Start, Len);
772    AllocOffs += Len;
773    return RopePiece(AllocBuffer, AllocOffs-Len, AllocOffs);
774  }
775
776  // If we don't have enough room because this specific allocation is huge,
777  // just allocate a new rope piece for it alone.
778  if (Len > AllocChunkSize) {
779    unsigned Size = End-Start+sizeof(RopeRefCountString)-1;
780    RopeRefCountString *Res =
781      reinterpret_cast<RopeRefCountString *>(new char[Size]);
782    Res->RefCount = 0;
783    memcpy(Res->Data, Start, End-Start);
784    return RopePiece(Res, 0, End-Start);
785  }
786
787  // Otherwise, this was a small request but we just don't have space for it
788  // Make a new chunk and share it with later allocations.
789
790  // If we had an old allocation, drop our reference to it.
791  if (AllocBuffer && --AllocBuffer->RefCount == 0)
792    delete [] (char*)AllocBuffer;
793
794  unsigned AllocSize = offsetof(RopeRefCountString, Data) + AllocChunkSize;
795  AllocBuffer = reinterpret_cast<RopeRefCountString *>(new char[AllocSize]);
796  AllocBuffer->RefCount = 0;
797  memcpy(AllocBuffer->Data, Start, Len);
798  AllocOffs = Len;
799
800  // Start out the new allocation with a refcount of 1, since we have an
801  // internal reference to it.
802  AllocBuffer->addRef();
803  return RopePiece(AllocBuffer, 0, Len);
804}
805
806
807