1//== RegionStore.cpp - Field-sensitive store model --------------*- C++ -*--==//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines a basic region store model. In this model, we do have field
11// sensitivity. But we assume nothing about the heap shape. So recursive data
12// structures are largely ignored. Basically we do 1-limiting analysis.
13// Parameter pointers are assumed with no aliasing. Pointee objects of
14// parameters are created lazily.
15//
16//===----------------------------------------------------------------------===//
17#include "clang/AST/CharUnits.h"
18#include "clang/AST/DeclCXX.h"
19#include "clang/AST/ExprCXX.h"
20#include "clang/Analysis/Analyses/LiveVariables.h"
21#include "clang/Analysis/AnalysisContext.h"
22#include "clang/Basic/TargetInfo.h"
23#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
24#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
25#include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
26#include "llvm/ADT/ImmutableList.h"
27#include "llvm/ADT/ImmutableMap.h"
28#include "llvm/ADT/Optional.h"
29#include "llvm/Support/raw_ostream.h"
30
31using namespace clang;
32using namespace ento;
33using llvm::Optional;
34
35//===----------------------------------------------------------------------===//
36// Representation of binding keys.
37//===----------------------------------------------------------------------===//
38
39namespace {
40class BindingKey {
41public:
42  enum Kind { Direct = 0x0, Default = 0x1 };
43private:
44  llvm ::PointerIntPair<const MemRegion*, 1> P;
45  uint64_t Offset;
46
47  explicit BindingKey(const MemRegion *r, uint64_t offset, Kind k)
48    : P(r, (unsigned) k), Offset(offset) {}
49public:
50
51  bool isDirect() const { return P.getInt() == Direct; }
52
53  const MemRegion *getRegion() const { return P.getPointer(); }
54  uint64_t getOffset() const { return Offset; }
55
56  void Profile(llvm::FoldingSetNodeID& ID) const {
57    ID.AddPointer(P.getOpaqueValue());
58    ID.AddInteger(Offset);
59  }
60
61  static BindingKey Make(const MemRegion *R, Kind k);
62
63  bool operator<(const BindingKey &X) const {
64    if (P.getOpaqueValue() < X.P.getOpaqueValue())
65      return true;
66    if (P.getOpaqueValue() > X.P.getOpaqueValue())
67      return false;
68    return Offset < X.Offset;
69  }
70
71  bool operator==(const BindingKey &X) const {
72    return P.getOpaqueValue() == X.P.getOpaqueValue() &&
73           Offset == X.Offset;
74  }
75
76  bool isValid() const {
77    return getRegion() != NULL;
78  }
79};
80} // end anonymous namespace
81
82BindingKey BindingKey::Make(const MemRegion *R, Kind k) {
83  if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
84    const RegionRawOffset &O = ER->getAsArrayOffset();
85
86    // FIXME: There are some ElementRegions for which we cannot compute
87    // raw offsets yet, including regions with symbolic offsets. These will be
88    // ignored by the store.
89    return BindingKey(O.getRegion(), O.getOffset().getQuantity(), k);
90  }
91
92  return BindingKey(R, 0, k);
93}
94
95namespace llvm {
96  static inline
97  raw_ostream &operator<<(raw_ostream &os, BindingKey K) {
98    os << '(' << K.getRegion() << ',' << K.getOffset()
99       << ',' << (K.isDirect() ? "direct" : "default")
100       << ')';
101    return os;
102  }
103} // end llvm namespace
104
105//===----------------------------------------------------------------------===//
106// Actual Store type.
107//===----------------------------------------------------------------------===//
108
109typedef llvm::ImmutableMap<BindingKey, SVal> RegionBindings;
110
111//===----------------------------------------------------------------------===//
112// Fine-grained control of RegionStoreManager.
113//===----------------------------------------------------------------------===//
114
115namespace {
116struct minimal_features_tag {};
117struct maximal_features_tag {};
118
119class RegionStoreFeatures {
120  bool SupportsFields;
121public:
122  RegionStoreFeatures(minimal_features_tag) :
123    SupportsFields(false) {}
124
125  RegionStoreFeatures(maximal_features_tag) :
126    SupportsFields(true) {}
127
128  void enableFields(bool t) { SupportsFields = t; }
129
130  bool supportsFields() const { return SupportsFields; }
131};
132}
133
134//===----------------------------------------------------------------------===//
135// Main RegionStore logic.
136//===----------------------------------------------------------------------===//
137
138namespace {
139
140class RegionStoreSubRegionMap : public SubRegionMap {
141public:
142  typedef llvm::ImmutableSet<const MemRegion*> Set;
143  typedef llvm::DenseMap<const MemRegion*, Set> Map;
144private:
145  Set::Factory F;
146  Map M;
147public:
148  bool add(const MemRegion* Parent, const MemRegion* SubRegion) {
149    Map::iterator I = M.find(Parent);
150
151    if (I == M.end()) {
152      M.insert(std::make_pair(Parent, F.add(F.getEmptySet(), SubRegion)));
153      return true;
154    }
155
156    I->second = F.add(I->second, SubRegion);
157    return false;
158  }
159
160  void process(SmallVectorImpl<const SubRegion*> &WL, const SubRegion *R);
161
162  ~RegionStoreSubRegionMap() {}
163
164  const Set *getSubRegions(const MemRegion *Parent) const {
165    Map::const_iterator I = M.find(Parent);
166    return I == M.end() ? NULL : &I->second;
167  }
168
169  bool iterSubRegions(const MemRegion* Parent, Visitor& V) const {
170    Map::const_iterator I = M.find(Parent);
171
172    if (I == M.end())
173      return true;
174
175    Set S = I->second;
176    for (Set::iterator SI=S.begin(),SE=S.end(); SI != SE; ++SI) {
177      if (!V.Visit(Parent, *SI))
178        return false;
179    }
180
181    return true;
182  }
183};
184
185void
186RegionStoreSubRegionMap::process(SmallVectorImpl<const SubRegion*> &WL,
187                                 const SubRegion *R) {
188  const MemRegion *superR = R->getSuperRegion();
189  if (add(superR, R))
190    if (const SubRegion *sr = dyn_cast<SubRegion>(superR))
191      WL.push_back(sr);
192}
193
194class RegionStoreManager : public StoreManager {
195  const RegionStoreFeatures Features;
196  RegionBindings::Factory RBFactory;
197
198public:
199  RegionStoreManager(ProgramStateManager& mgr, const RegionStoreFeatures &f)
200    : StoreManager(mgr),
201      Features(f),
202      RBFactory(mgr.getAllocator()) {}
203
204  SubRegionMap *getSubRegionMap(Store store) {
205    return getRegionStoreSubRegionMap(store);
206  }
207
208  RegionStoreSubRegionMap *getRegionStoreSubRegionMap(Store store);
209
210  Optional<SVal> getDirectBinding(RegionBindings B, const MemRegion *R);
211  /// getDefaultBinding - Returns an SVal* representing an optional default
212  ///  binding associated with a region and its subregions.
213  Optional<SVal> getDefaultBinding(RegionBindings B, const MemRegion *R);
214
215  /// setImplicitDefaultValue - Set the default binding for the provided
216  ///  MemRegion to the value implicitly defined for compound literals when
217  ///  the value is not specified.
218  StoreRef setImplicitDefaultValue(Store store, const MemRegion *R, QualType T);
219
220  /// ArrayToPointer - Emulates the "decay" of an array to a pointer
221  ///  type.  'Array' represents the lvalue of the array being decayed
222  ///  to a pointer, and the returned SVal represents the decayed
223  ///  version of that lvalue (i.e., a pointer to the first element of
224  ///  the array).  This is called by ExprEngine when evaluating
225  ///  casts from arrays to pointers.
226  SVal ArrayToPointer(Loc Array);
227
228  /// For DerivedToBase casts, create a CXXBaseObjectRegion and return it.
229  virtual SVal evalDerivedToBase(SVal derived, QualType basePtrType);
230
231  StoreRef getInitialStore(const LocationContext *InitLoc) {
232    return StoreRef(RBFactory.getEmptyMap().getRootWithoutRetain(), *this);
233  }
234
235  //===-------------------------------------------------------------------===//
236  // Binding values to regions.
237  //===-------------------------------------------------------------------===//
238
239  StoreRef invalidateRegions(Store store, ArrayRef<const MemRegion *> Regions,
240                             const Expr *E, unsigned Count,
241                             InvalidatedSymbols &IS,
242                             bool invalidateGlobals,
243                             InvalidatedRegions *Invalidated);
244
245public:   // Made public for helper classes.
246
247  void RemoveSubRegionBindings(RegionBindings &B, const MemRegion *R,
248                               RegionStoreSubRegionMap &M);
249
250  RegionBindings addBinding(RegionBindings B, BindingKey K, SVal V);
251
252  RegionBindings addBinding(RegionBindings B, const MemRegion *R,
253                     BindingKey::Kind k, SVal V);
254
255  const SVal *lookup(RegionBindings B, BindingKey K);
256  const SVal *lookup(RegionBindings B, const MemRegion *R, BindingKey::Kind k);
257
258  RegionBindings removeBinding(RegionBindings B, BindingKey K);
259  RegionBindings removeBinding(RegionBindings B, const MemRegion *R,
260                        BindingKey::Kind k);
261
262  RegionBindings removeBinding(RegionBindings B, const MemRegion *R) {
263    return removeBinding(removeBinding(B, R, BindingKey::Direct), R,
264                        BindingKey::Default);
265  }
266
267public: // Part of public interface to class.
268
269  StoreRef Bind(Store store, Loc LV, SVal V);
270
271  // BindDefault is only used to initialize a region with a default value.
272  StoreRef BindDefault(Store store, const MemRegion *R, SVal V) {
273    RegionBindings B = GetRegionBindings(store);
274    assert(!lookup(B, R, BindingKey::Default));
275    assert(!lookup(B, R, BindingKey::Direct));
276    return StoreRef(addBinding(B, R, BindingKey::Default, V).getRootWithoutRetain(), *this);
277  }
278
279  StoreRef BindCompoundLiteral(Store store, const CompoundLiteralExpr *CL,
280                               const LocationContext *LC, SVal V);
281
282  StoreRef BindDecl(Store store, const VarRegion *VR, SVal InitVal);
283
284  StoreRef BindDeclWithNoInit(Store store, const VarRegion *) {
285    return StoreRef(store, *this);
286  }
287
288  /// BindStruct - Bind a compound value to a structure.
289  StoreRef BindStruct(Store store, const TypedValueRegion* R, SVal V);
290
291  StoreRef BindArray(Store store, const TypedValueRegion* R, SVal V);
292
293  /// KillStruct - Set the entire struct to unknown.
294  StoreRef KillStruct(Store store, const TypedRegion* R, SVal DefaultVal);
295
296  StoreRef Remove(Store store, Loc LV);
297
298  void incrementReferenceCount(Store store) {
299    GetRegionBindings(store).manualRetain();
300  }
301
302  /// If the StoreManager supports it, decrement the reference count of
303  /// the specified Store object.  If the reference count hits 0, the memory
304  /// associated with the object is recycled.
305  void decrementReferenceCount(Store store) {
306    GetRegionBindings(store).manualRelease();
307  }
308
309  bool includedInBindings(Store store, const MemRegion *region) const;
310
311  //===------------------------------------------------------------------===//
312  // Loading values from regions.
313  //===------------------------------------------------------------------===//
314
315  /// The high level logic for this method is this:
316  /// Retrieve (L)
317  ///   if L has binding
318  ///     return L's binding
319  ///   else if L is in killset
320  ///     return unknown
321  ///   else
322  ///     if L is on stack or heap
323  ///       return undefined
324  ///     else
325  ///       return symbolic
326  SVal Retrieve(Store store, Loc L, QualType T = QualType());
327
328  SVal RetrieveElement(Store store, const ElementRegion *R);
329
330  SVal RetrieveField(Store store, const FieldRegion *R);
331
332  SVal RetrieveObjCIvar(Store store, const ObjCIvarRegion *R);
333
334  SVal RetrieveVar(Store store, const VarRegion *R);
335
336  SVal RetrieveLazySymbol(const TypedValueRegion *R);
337
338  SVal RetrieveFieldOrElementCommon(Store store, const TypedValueRegion *R,
339                                    QualType Ty, const MemRegion *superR);
340
341  SVal RetrieveLazyBinding(const MemRegion *lazyBindingRegion,
342                           Store lazyBindingStore);
343
344  /// Retrieve the values in a struct and return a CompoundVal, used when doing
345  /// struct copy:
346  /// struct s x, y;
347  /// x = y;
348  /// y's value is retrieved by this method.
349  SVal RetrieveStruct(Store store, const TypedValueRegion* R);
350
351  SVal RetrieveArray(Store store, const TypedValueRegion* R);
352
353  /// Used to lazily generate derived symbols for bindings that are defined
354  ///  implicitly by default bindings in a super region.
355  Optional<SVal> RetrieveDerivedDefaultValue(RegionBindings B,
356                                             const MemRegion *superR,
357                                             const TypedValueRegion *R,
358                                             QualType Ty);
359
360  /// Get the state and region whose binding this region R corresponds to.
361  std::pair<Store, const MemRegion*>
362  GetLazyBinding(RegionBindings B, const MemRegion *R,
363                 const MemRegion *originalRegion);
364
365  StoreRef CopyLazyBindings(nonloc::LazyCompoundVal V, Store store,
366                            const TypedRegion *R);
367
368  //===------------------------------------------------------------------===//
369  // State pruning.
370  //===------------------------------------------------------------------===//
371
372  /// removeDeadBindings - Scans the RegionStore of 'state' for dead values.
373  ///  It returns a new Store with these values removed.
374  StoreRef removeDeadBindings(Store store, const StackFrameContext *LCtx,
375                              SymbolReaper& SymReaper);
376
377  StoreRef enterStackFrame(const ProgramState *state,
378                           const StackFrameContext *frame);
379
380  //===------------------------------------------------------------------===//
381  // Region "extents".
382  //===------------------------------------------------------------------===//
383
384  // FIXME: This method will soon be eliminated; see the note in Store.h.
385  DefinedOrUnknownSVal getSizeInElements(const ProgramState *state,
386                                         const MemRegion* R, QualType EleTy);
387
388  //===------------------------------------------------------------------===//
389  // Utility methods.
390  //===------------------------------------------------------------------===//
391
392  static inline RegionBindings GetRegionBindings(Store store) {
393    return RegionBindings(static_cast<const RegionBindings::TreeTy*>(store));
394  }
395
396  void print(Store store, raw_ostream &Out, const char* nl,
397             const char *sep);
398
399  void iterBindings(Store store, BindingsHandler& f) {
400    RegionBindings B = GetRegionBindings(store);
401    for (RegionBindings::iterator I=B.begin(), E=B.end(); I!=E; ++I) {
402      const BindingKey &K = I.getKey();
403      if (!K.isDirect())
404        continue;
405      if (const SubRegion *R = dyn_cast<SubRegion>(I.getKey().getRegion())) {
406        // FIXME: Possibly incorporate the offset?
407        if (!f.HandleBinding(*this, store, R, I.getData()))
408          return;
409      }
410    }
411  }
412};
413
414} // end anonymous namespace
415
416//===----------------------------------------------------------------------===//
417// RegionStore creation.
418//===----------------------------------------------------------------------===//
419
420StoreManager *ento::CreateRegionStoreManager(ProgramStateManager& StMgr) {
421  RegionStoreFeatures F = maximal_features_tag();
422  return new RegionStoreManager(StMgr, F);
423}
424
425StoreManager *ento::CreateFieldsOnlyRegionStoreManager(ProgramStateManager &StMgr) {
426  RegionStoreFeatures F = minimal_features_tag();
427  F.enableFields(true);
428  return new RegionStoreManager(StMgr, F);
429}
430
431
432RegionStoreSubRegionMap*
433RegionStoreManager::getRegionStoreSubRegionMap(Store store) {
434  RegionBindings B = GetRegionBindings(store);
435  RegionStoreSubRegionMap *M = new RegionStoreSubRegionMap();
436
437  SmallVector<const SubRegion*, 10> WL;
438
439  for (RegionBindings::iterator I=B.begin(), E=B.end(); I!=E; ++I)
440    if (const SubRegion *R = dyn_cast<SubRegion>(I.getKey().getRegion()))
441      M->process(WL, R);
442
443  // We also need to record in the subregion map "intermediate" regions that
444  // don't have direct bindings but are super regions of those that do.
445  while (!WL.empty()) {
446    const SubRegion *R = WL.back();
447    WL.pop_back();
448    M->process(WL, R);
449  }
450
451  return M;
452}
453
454//===----------------------------------------------------------------------===//
455// Region Cluster analysis.
456//===----------------------------------------------------------------------===//
457
458namespace {
459template <typename DERIVED>
460class ClusterAnalysis  {
461protected:
462  typedef BumpVector<BindingKey> RegionCluster;
463  typedef llvm::DenseMap<const MemRegion *, RegionCluster *> ClusterMap;
464  llvm::DenseMap<const RegionCluster*, unsigned> Visited;
465  typedef SmallVector<std::pair<const MemRegion *, RegionCluster*>, 10>
466    WorkList;
467
468  BumpVectorContext BVC;
469  ClusterMap ClusterM;
470  WorkList WL;
471
472  RegionStoreManager &RM;
473  ASTContext &Ctx;
474  SValBuilder &svalBuilder;
475
476  RegionBindings B;
477
478  const bool includeGlobals;
479
480public:
481  ClusterAnalysis(RegionStoreManager &rm, ProgramStateManager &StateMgr,
482                  RegionBindings b, const bool includeGlobals)
483    : RM(rm), Ctx(StateMgr.getContext()),
484      svalBuilder(StateMgr.getSValBuilder()),
485      B(b), includeGlobals(includeGlobals) {}
486
487  RegionBindings getRegionBindings() const { return B; }
488
489  RegionCluster &AddToCluster(BindingKey K) {
490    const MemRegion *R = K.getRegion();
491    const MemRegion *baseR = R->getBaseRegion();
492    RegionCluster &C = getCluster(baseR);
493    C.push_back(K, BVC);
494    static_cast<DERIVED*>(this)->VisitAddedToCluster(baseR, C);
495    return C;
496  }
497
498  bool isVisited(const MemRegion *R) {
499    return (bool) Visited[&getCluster(R->getBaseRegion())];
500  }
501
502  RegionCluster& getCluster(const MemRegion *R) {
503    RegionCluster *&CRef = ClusterM[R];
504    if (!CRef) {
505      void *Mem = BVC.getAllocator().template Allocate<RegionCluster>();
506      CRef = new (Mem) RegionCluster(BVC, 10);
507    }
508    return *CRef;
509  }
510
511  void GenerateClusters() {
512      // Scan the entire set of bindings and make the region clusters.
513    for (RegionBindings::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI){
514      RegionCluster &C = AddToCluster(RI.getKey());
515      if (const MemRegion *R = RI.getData().getAsRegion()) {
516        // Generate a cluster, but don't add the region to the cluster
517        // if there aren't any bindings.
518        getCluster(R->getBaseRegion());
519      }
520      if (includeGlobals) {
521        const MemRegion *R = RI.getKey().getRegion();
522        if (isa<NonStaticGlobalSpaceRegion>(R->getMemorySpace()))
523          AddToWorkList(R, C);
524      }
525    }
526  }
527
528  bool AddToWorkList(const MemRegion *R, RegionCluster &C) {
529    if (unsigned &visited = Visited[&C])
530      return false;
531    else
532      visited = 1;
533
534    WL.push_back(std::make_pair(R, &C));
535    return true;
536  }
537
538  bool AddToWorkList(BindingKey K) {
539    return AddToWorkList(K.getRegion());
540  }
541
542  bool AddToWorkList(const MemRegion *R) {
543    const MemRegion *baseR = R->getBaseRegion();
544    return AddToWorkList(baseR, getCluster(baseR));
545  }
546
547  void RunWorkList() {
548    while (!WL.empty()) {
549      const MemRegion *baseR;
550      RegionCluster *C;
551      llvm::tie(baseR, C) = WL.back();
552      WL.pop_back();
553
554        // First visit the cluster.
555      static_cast<DERIVED*>(this)->VisitCluster(baseR, C->begin(), C->end());
556
557        // Next, visit the base region.
558      static_cast<DERIVED*>(this)->VisitBaseRegion(baseR);
559    }
560  }
561
562public:
563  void VisitAddedToCluster(const MemRegion *baseR, RegionCluster &C) {}
564  void VisitCluster(const MemRegion *baseR, BindingKey *I, BindingKey *E) {}
565  void VisitBaseRegion(const MemRegion *baseR) {}
566};
567}
568
569//===----------------------------------------------------------------------===//
570// Binding invalidation.
571//===----------------------------------------------------------------------===//
572
573void RegionStoreManager::RemoveSubRegionBindings(RegionBindings &B,
574                                                 const MemRegion *R,
575                                                 RegionStoreSubRegionMap &M) {
576
577  if (const RegionStoreSubRegionMap::Set *S = M.getSubRegions(R))
578    for (RegionStoreSubRegionMap::Set::iterator I = S->begin(), E = S->end();
579         I != E; ++I)
580      RemoveSubRegionBindings(B, *I, M);
581
582  B = removeBinding(B, R);
583}
584
585namespace {
586class invalidateRegionsWorker : public ClusterAnalysis<invalidateRegionsWorker>
587{
588  const Expr *Ex;
589  unsigned Count;
590  StoreManager::InvalidatedSymbols &IS;
591  StoreManager::InvalidatedRegions *Regions;
592public:
593  invalidateRegionsWorker(RegionStoreManager &rm,
594                          ProgramStateManager &stateMgr,
595                          RegionBindings b,
596                          const Expr *ex, unsigned count,
597                          StoreManager::InvalidatedSymbols &is,
598                          StoreManager::InvalidatedRegions *r,
599                          bool includeGlobals)
600    : ClusterAnalysis<invalidateRegionsWorker>(rm, stateMgr, b, includeGlobals),
601      Ex(ex), Count(count), IS(is), Regions(r) {}
602
603  void VisitCluster(const MemRegion *baseR, BindingKey *I, BindingKey *E);
604  void VisitBaseRegion(const MemRegion *baseR);
605
606private:
607  void VisitBinding(SVal V);
608};
609}
610
611void invalidateRegionsWorker::VisitBinding(SVal V) {
612  // A symbol?  Mark it touched by the invalidation.
613  if (SymbolRef Sym = V.getAsSymbol())
614    IS.insert(Sym);
615
616  if (const MemRegion *R = V.getAsRegion()) {
617    AddToWorkList(R);
618    return;
619  }
620
621  // Is it a LazyCompoundVal?  All references get invalidated as well.
622  if (const nonloc::LazyCompoundVal *LCS =
623        dyn_cast<nonloc::LazyCompoundVal>(&V)) {
624
625    const MemRegion *LazyR = LCS->getRegion();
626    RegionBindings B = RegionStoreManager::GetRegionBindings(LCS->getStore());
627
628    for (RegionBindings::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI){
629      const SubRegion *baseR = dyn_cast<SubRegion>(RI.getKey().getRegion());
630      if (baseR && baseR->isSubRegionOf(LazyR))
631        VisitBinding(RI.getData());
632    }
633
634    return;
635  }
636}
637
638void invalidateRegionsWorker::VisitCluster(const MemRegion *baseR,
639                                           BindingKey *I, BindingKey *E) {
640  for ( ; I != E; ++I) {
641    // Get the old binding.  Is it a region?  If so, add it to the worklist.
642    const BindingKey &K = *I;
643    if (const SVal *V = RM.lookup(B, K))
644      VisitBinding(*V);
645
646    B = RM.removeBinding(B, K);
647  }
648}
649
650void invalidateRegionsWorker::VisitBaseRegion(const MemRegion *baseR) {
651  // Symbolic region?  Mark that symbol touched by the invalidation.
652  if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR))
653    IS.insert(SR->getSymbol());
654
655  // BlockDataRegion?  If so, invalidate captured variables that are passed
656  // by reference.
657  if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(baseR)) {
658    for (BlockDataRegion::referenced_vars_iterator
659         BI = BR->referenced_vars_begin(), BE = BR->referenced_vars_end() ;
660         BI != BE; ++BI) {
661      const VarRegion *VR = *BI;
662      const VarDecl *VD = VR->getDecl();
663      if (VD->getAttr<BlocksAttr>() || !VD->hasLocalStorage())
664        AddToWorkList(VR);
665    }
666    return;
667  }
668
669  // Otherwise, we have a normal data region. Record that we touched the region.
670  if (Regions)
671    Regions->push_back(baseR);
672
673  if (isa<AllocaRegion>(baseR) || isa<SymbolicRegion>(baseR)) {
674    // Invalidate the region by setting its default value to
675    // conjured symbol. The type of the symbol is irrelavant.
676    DefinedOrUnknownSVal V =
677      svalBuilder.getConjuredSymbolVal(baseR, Ex, Ctx.IntTy, Count);
678    B = RM.addBinding(B, baseR, BindingKey::Default, V);
679    return;
680  }
681
682  if (!baseR->isBoundable())
683    return;
684
685  const TypedValueRegion *TR = cast<TypedValueRegion>(baseR);
686  QualType T = TR->getValueType();
687
688    // Invalidate the binding.
689  if (T->isStructureOrClassType()) {
690    // Invalidate the region by setting its default value to
691    // conjured symbol. The type of the symbol is irrelavant.
692    DefinedOrUnknownSVal V =
693      svalBuilder.getConjuredSymbolVal(baseR, Ex, Ctx.IntTy, Count);
694    B = RM.addBinding(B, baseR, BindingKey::Default, V);
695    return;
696  }
697
698  if (const ArrayType *AT = Ctx.getAsArrayType(T)) {
699      // Set the default value of the array to conjured symbol.
700    DefinedOrUnknownSVal V =
701    svalBuilder.getConjuredSymbolVal(baseR, Ex, AT->getElementType(), Count);
702    B = RM.addBinding(B, baseR, BindingKey::Default, V);
703    return;
704  }
705
706  if (includeGlobals &&
707      isa<NonStaticGlobalSpaceRegion>(baseR->getMemorySpace())) {
708    // If the region is a global and we are invalidating all globals,
709    // just erase the entry.  This causes all globals to be lazily
710    // symbolicated from the same base symbol.
711    B = RM.removeBinding(B, baseR);
712    return;
713  }
714
715
716  DefinedOrUnknownSVal V = svalBuilder.getConjuredSymbolVal(baseR, Ex, T, Count);
717  assert(SymbolManager::canSymbolicate(T) || V.isUnknown());
718  B = RM.addBinding(B, baseR, BindingKey::Direct, V);
719}
720
721StoreRef RegionStoreManager::invalidateRegions(Store store,
722                                            ArrayRef<const MemRegion *> Regions,
723                                               const Expr *Ex, unsigned Count,
724                                               InvalidatedSymbols &IS,
725                                               bool invalidateGlobals,
726                                              InvalidatedRegions *Invalidated) {
727  invalidateRegionsWorker W(*this, StateMgr,
728                            RegionStoreManager::GetRegionBindings(store),
729                            Ex, Count, IS, Invalidated, invalidateGlobals);
730
731  // Scan the bindings and generate the clusters.
732  W.GenerateClusters();
733
734  // Add the regions to the worklist.
735  for (ArrayRef<const MemRegion *>::iterator
736       I = Regions.begin(), E = Regions.end(); I != E; ++I)
737    W.AddToWorkList(*I);
738
739  W.RunWorkList();
740
741  // Return the new bindings.
742  RegionBindings B = W.getRegionBindings();
743
744  if (invalidateGlobals) {
745    // Bind the non-static globals memory space to a new symbol that we will
746    // use to derive the bindings for all non-static globals.
747    const GlobalsSpaceRegion *GS = MRMgr.getGlobalsRegion();
748    SVal V =
749      svalBuilder.getConjuredSymbolVal(/* SymbolTag = */ (void*) GS, Ex,
750                                  /* symbol type, doesn't matter */ Ctx.IntTy,
751                                  Count);
752    B = addBinding(B, BindingKey::Make(GS, BindingKey::Default), V);
753
754    // Even if there are no bindings in the global scope, we still need to
755    // record that we touched it.
756    if (Invalidated)
757      Invalidated->push_back(GS);
758  }
759
760  return StoreRef(B.getRootWithoutRetain(), *this);
761}
762
763//===----------------------------------------------------------------------===//
764// Extents for regions.
765//===----------------------------------------------------------------------===//
766
767DefinedOrUnknownSVal RegionStoreManager::getSizeInElements(const ProgramState *state,
768                                                           const MemRegion *R,
769                                                           QualType EleTy) {
770  SVal Size = cast<SubRegion>(R)->getExtent(svalBuilder);
771  const llvm::APSInt *SizeInt = svalBuilder.getKnownValue(state, Size);
772  if (!SizeInt)
773    return UnknownVal();
774
775  CharUnits RegionSize = CharUnits::fromQuantity(SizeInt->getSExtValue());
776
777  if (Ctx.getAsVariableArrayType(EleTy)) {
778    // FIXME: We need to track extra state to properly record the size
779    // of VLAs.  Returning UnknownVal here, however, is a stop-gap so that
780    // we don't have a divide-by-zero below.
781    return UnknownVal();
782  }
783
784  CharUnits EleSize = Ctx.getTypeSizeInChars(EleTy);
785
786  // If a variable is reinterpreted as a type that doesn't fit into a larger
787  // type evenly, round it down.
788  // This is a signed value, since it's used in arithmetic with signed indices.
789  return svalBuilder.makeIntVal(RegionSize / EleSize, false);
790}
791
792//===----------------------------------------------------------------------===//
793// Location and region casting.
794//===----------------------------------------------------------------------===//
795
796/// ArrayToPointer - Emulates the "decay" of an array to a pointer
797///  type.  'Array' represents the lvalue of the array being decayed
798///  to a pointer, and the returned SVal represents the decayed
799///  version of that lvalue (i.e., a pointer to the first element of
800///  the array).  This is called by ExprEngine when evaluating casts
801///  from arrays to pointers.
802SVal RegionStoreManager::ArrayToPointer(Loc Array) {
803  if (!isa<loc::MemRegionVal>(Array))
804    return UnknownVal();
805
806  const MemRegion* R = cast<loc::MemRegionVal>(&Array)->getRegion();
807  const TypedValueRegion* ArrayR = dyn_cast<TypedValueRegion>(R);
808
809  if (!ArrayR)
810    return UnknownVal();
811
812  // Strip off typedefs from the ArrayRegion's ValueType.
813  QualType T = ArrayR->getValueType().getDesugaredType(Ctx);
814  const ArrayType *AT = cast<ArrayType>(T);
815  T = AT->getElementType();
816
817  NonLoc ZeroIdx = svalBuilder.makeZeroArrayIndex();
818  return loc::MemRegionVal(MRMgr.getElementRegion(T, ZeroIdx, ArrayR, Ctx));
819}
820
821SVal RegionStoreManager::evalDerivedToBase(SVal derived, QualType baseType) {
822  const CXXRecordDecl *baseDecl;
823  if (baseType->isPointerType())
824    baseDecl = baseType->getCXXRecordDeclForPointerType();
825  else
826    baseDecl = baseType->getAsCXXRecordDecl();
827
828  assert(baseDecl && "not a CXXRecordDecl?");
829
830  loc::MemRegionVal *derivedRegVal = dyn_cast<loc::MemRegionVal>(&derived);
831  if (!derivedRegVal)
832    return derived;
833
834  const MemRegion *baseReg =
835    MRMgr.getCXXBaseObjectRegion(baseDecl, derivedRegVal->getRegion());
836
837  return loc::MemRegionVal(baseReg);
838}
839
840//===----------------------------------------------------------------------===//
841// Loading values from regions.
842//===----------------------------------------------------------------------===//
843
844Optional<SVal> RegionStoreManager::getDirectBinding(RegionBindings B,
845                                                    const MemRegion *R) {
846
847  if (const SVal *V = lookup(B, R, BindingKey::Direct))
848    return *V;
849
850  return Optional<SVal>();
851}
852
853Optional<SVal> RegionStoreManager::getDefaultBinding(RegionBindings B,
854                                                     const MemRegion *R) {
855  if (R->isBoundable())
856    if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(R))
857      if (TR->getValueType()->isUnionType())
858        return UnknownVal();
859
860  if (const SVal *V = lookup(B, R, BindingKey::Default))
861    return *V;
862
863  return Optional<SVal>();
864}
865
866SVal RegionStoreManager::Retrieve(Store store, Loc L, QualType T) {
867  assert(!isa<UnknownVal>(L) && "location unknown");
868  assert(!isa<UndefinedVal>(L) && "location undefined");
869
870  // For access to concrete addresses, return UnknownVal.  Checks
871  // for null dereferences (and similar errors) are done by checkers, not
872  // the Store.
873  // FIXME: We can consider lazily symbolicating such memory, but we really
874  // should defer this when we can reason easily about symbolicating arrays
875  // of bytes.
876  if (isa<loc::ConcreteInt>(L)) {
877    return UnknownVal();
878  }
879  if (!isa<loc::MemRegionVal>(L)) {
880    return UnknownVal();
881  }
882
883  const MemRegion *MR = cast<loc::MemRegionVal>(L).getRegion();
884
885  if (isa<AllocaRegion>(MR) || isa<SymbolicRegion>(MR)) {
886    if (T.isNull()) {
887      const SymbolicRegion *SR = cast<SymbolicRegion>(MR);
888      T = SR->getSymbol()->getType(Ctx);
889    }
890    MR = GetElementZeroRegion(MR, T);
891  }
892
893  if (isa<CodeTextRegion>(MR)) {
894    llvm_unreachable("Why load from a code text region?");
895  }
896
897  // FIXME: Perhaps this method should just take a 'const MemRegion*' argument
898  //  instead of 'Loc', and have the other Loc cases handled at a higher level.
899  const TypedValueRegion *R = cast<TypedValueRegion>(MR);
900  QualType RTy = R->getValueType();
901
902  // FIXME: We should eventually handle funny addressing.  e.g.:
903  //
904  //   int x = ...;
905  //   int *p = &x;
906  //   char *q = (char*) p;
907  //   char c = *q;  // returns the first byte of 'x'.
908  //
909  // Such funny addressing will occur due to layering of regions.
910
911  if (RTy->isStructureOrClassType())
912    return RetrieveStruct(store, R);
913
914  // FIXME: Handle unions.
915  if (RTy->isUnionType())
916    return UnknownVal();
917
918  if (RTy->isArrayType())
919    return RetrieveArray(store, R);
920
921  // FIXME: handle Vector types.
922  if (RTy->isVectorType())
923    return UnknownVal();
924
925  if (const FieldRegion* FR = dyn_cast<FieldRegion>(R))
926    return CastRetrievedVal(RetrieveField(store, FR), FR, T, false);
927
928  if (const ElementRegion* ER = dyn_cast<ElementRegion>(R)) {
929    // FIXME: Here we actually perform an implicit conversion from the loaded
930    // value to the element type.  Eventually we want to compose these values
931    // more intelligently.  For example, an 'element' can encompass multiple
932    // bound regions (e.g., several bound bytes), or could be a subset of
933    // a larger value.
934    return CastRetrievedVal(RetrieveElement(store, ER), ER, T, false);
935  }
936
937  if (const ObjCIvarRegion *IVR = dyn_cast<ObjCIvarRegion>(R)) {
938    // FIXME: Here we actually perform an implicit conversion from the loaded
939    // value to the ivar type.  What we should model is stores to ivars
940    // that blow past the extent of the ivar.  If the address of the ivar is
941    // reinterpretted, it is possible we stored a different value that could
942    // fit within the ivar.  Either we need to cast these when storing them
943    // or reinterpret them lazily (as we do here).
944    return CastRetrievedVal(RetrieveObjCIvar(store, IVR), IVR, T, false);
945  }
946
947  if (const VarRegion *VR = dyn_cast<VarRegion>(R)) {
948    // FIXME: Here we actually perform an implicit conversion from the loaded
949    // value to the variable type.  What we should model is stores to variables
950    // that blow past the extent of the variable.  If the address of the
951    // variable is reinterpretted, it is possible we stored a different value
952    // that could fit within the variable.  Either we need to cast these when
953    // storing them or reinterpret them lazily (as we do here).
954    return CastRetrievedVal(RetrieveVar(store, VR), VR, T, false);
955  }
956
957  RegionBindings B = GetRegionBindings(store);
958  const SVal *V = lookup(B, R, BindingKey::Direct);
959
960  // Check if the region has a binding.
961  if (V)
962    return *V;
963
964  // The location does not have a bound value.  This means that it has
965  // the value it had upon its creation and/or entry to the analyzed
966  // function/method.  These are either symbolic values or 'undefined'.
967  if (R->hasStackNonParametersStorage()) {
968    // All stack variables are considered to have undefined values
969    // upon creation.  All heap allocated blocks are considered to
970    // have undefined values as well unless they are explicitly bound
971    // to specific values.
972    return UndefinedVal();
973  }
974
975  // All other values are symbolic.
976  return svalBuilder.getRegionValueSymbolVal(R);
977}
978
979std::pair<Store, const MemRegion *>
980RegionStoreManager::GetLazyBinding(RegionBindings B, const MemRegion *R,
981                                   const MemRegion *originalRegion) {
982
983  if (originalRegion != R) {
984    if (Optional<SVal> OV = getDefaultBinding(B, R)) {
985      if (const nonloc::LazyCompoundVal *V =
986          dyn_cast<nonloc::LazyCompoundVal>(OV.getPointer()))
987        return std::make_pair(V->getStore(), V->getRegion());
988    }
989  }
990
991  if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
992    const std::pair<Store, const MemRegion *> &X =
993      GetLazyBinding(B, ER->getSuperRegion(), originalRegion);
994
995    if (X.second)
996      return std::make_pair(X.first,
997                            MRMgr.getElementRegionWithSuper(ER, X.second));
998  }
999  else if (const FieldRegion *FR = dyn_cast<FieldRegion>(R)) {
1000    const std::pair<Store, const MemRegion *> &X =
1001      GetLazyBinding(B, FR->getSuperRegion(), originalRegion);
1002
1003    if (X.second)
1004      return std::make_pair(X.first,
1005                            MRMgr.getFieldRegionWithSuper(FR, X.second));
1006  }
1007  // C++ base object region is another kind of region that we should blast
1008  // through to look for lazy compound value. It is like a field region.
1009  else if (const CXXBaseObjectRegion *baseReg =
1010                            dyn_cast<CXXBaseObjectRegion>(R)) {
1011    const std::pair<Store, const MemRegion *> &X =
1012      GetLazyBinding(B, baseReg->getSuperRegion(), originalRegion);
1013
1014    if (X.second)
1015      return std::make_pair(X.first,
1016                     MRMgr.getCXXBaseObjectRegionWithSuper(baseReg, X.second));
1017  }
1018
1019  // The NULL MemRegion indicates an non-existent lazy binding. A NULL Store is
1020  // possible for a valid lazy binding.
1021  return std::make_pair((Store) 0, (const MemRegion *) 0);
1022}
1023
1024SVal RegionStoreManager::RetrieveElement(Store store,
1025                                         const ElementRegion* R) {
1026  // Check if the region has a binding.
1027  RegionBindings B = GetRegionBindings(store);
1028  if (const Optional<SVal> &V = getDirectBinding(B, R))
1029    return *V;
1030
1031  const MemRegion* superR = R->getSuperRegion();
1032
1033  // Check if the region is an element region of a string literal.
1034  if (const StringRegion *StrR=dyn_cast<StringRegion>(superR)) {
1035    // FIXME: Handle loads from strings where the literal is treated as
1036    // an integer, e.g., *((unsigned int*)"hello")
1037    QualType T = Ctx.getAsArrayType(StrR->getValueType())->getElementType();
1038    if (T != Ctx.getCanonicalType(R->getElementType()))
1039      return UnknownVal();
1040
1041    const StringLiteral *Str = StrR->getStringLiteral();
1042    SVal Idx = R->getIndex();
1043    if (nonloc::ConcreteInt *CI = dyn_cast<nonloc::ConcreteInt>(&Idx)) {
1044      int64_t i = CI->getValue().getSExtValue();
1045      // Abort on string underrun.  This can be possible by arbitrary
1046      // clients of RetrieveElement().
1047      if (i < 0)
1048        return UndefinedVal();
1049      int64_t byteLength = Str->getByteLength();
1050      // Technically, only i == byteLength is guaranteed to be null.
1051      // However, such overflows should be caught before reaching this point;
1052      // the only time such an access would be made is if a string literal was
1053      // used to initialize a larger array.
1054      char c = (i >= byteLength) ? '\0' : Str->getString()[i];
1055      return svalBuilder.makeIntVal(c, T);
1056    }
1057  }
1058
1059  // Check for loads from a code text region.  For such loads, just give up.
1060  if (isa<CodeTextRegion>(superR))
1061    return UnknownVal();
1062
1063  // Handle the case where we are indexing into a larger scalar object.
1064  // For example, this handles:
1065  //   int x = ...
1066  //   char *y = &x;
1067  //   return *y;
1068  // FIXME: This is a hack, and doesn't do anything really intelligent yet.
1069  const RegionRawOffset &O = R->getAsArrayOffset();
1070
1071  // If we cannot reason about the offset, return an unknown value.
1072  if (!O.getRegion())
1073    return UnknownVal();
1074
1075  if (const TypedValueRegion *baseR =
1076        dyn_cast_or_null<TypedValueRegion>(O.getRegion())) {
1077    QualType baseT = baseR->getValueType();
1078    if (baseT->isScalarType()) {
1079      QualType elemT = R->getElementType();
1080      if (elemT->isScalarType()) {
1081        if (Ctx.getTypeSizeInChars(baseT) >= Ctx.getTypeSizeInChars(elemT)) {
1082          if (const Optional<SVal> &V = getDirectBinding(B, superR)) {
1083            if (SymbolRef parentSym = V->getAsSymbol())
1084              return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
1085
1086            if (V->isUnknownOrUndef())
1087              return *V;
1088            // Other cases: give up.  We are indexing into a larger object
1089            // that has some value, but we don't know how to handle that yet.
1090            return UnknownVal();
1091          }
1092        }
1093      }
1094    }
1095  }
1096  return RetrieveFieldOrElementCommon(store, R, R->getElementType(), superR);
1097}
1098
1099SVal RegionStoreManager::RetrieveField(Store store,
1100                                       const FieldRegion* R) {
1101
1102  // Check if the region has a binding.
1103  RegionBindings B = GetRegionBindings(store);
1104  if (const Optional<SVal> &V = getDirectBinding(B, R))
1105    return *V;
1106
1107  QualType Ty = R->getValueType();
1108  return RetrieveFieldOrElementCommon(store, R, Ty, R->getSuperRegion());
1109}
1110
1111Optional<SVal>
1112RegionStoreManager::RetrieveDerivedDefaultValue(RegionBindings B,
1113                                                const MemRegion *superR,
1114                                                const TypedValueRegion *R,
1115                                                QualType Ty) {
1116
1117  if (const Optional<SVal> &D = getDefaultBinding(B, superR)) {
1118    const SVal &val = D.getValue();
1119    if (SymbolRef parentSym = val.getAsSymbol())
1120      return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
1121
1122    if (val.isZeroConstant())
1123      return svalBuilder.makeZeroVal(Ty);
1124
1125    if (val.isUnknownOrUndef())
1126      return val;
1127
1128    // Lazy bindings are handled later.
1129    if (isa<nonloc::LazyCompoundVal>(val))
1130      return Optional<SVal>();
1131
1132    llvm_unreachable("Unknown default value");
1133  }
1134
1135  return Optional<SVal>();
1136}
1137
1138SVal RegionStoreManager::RetrieveLazyBinding(const MemRegion *lazyBindingRegion,
1139                                             Store lazyBindingStore) {
1140  if (const ElementRegion *ER = dyn_cast<ElementRegion>(lazyBindingRegion))
1141    return RetrieveElement(lazyBindingStore, ER);
1142
1143  return RetrieveField(lazyBindingStore,
1144                       cast<FieldRegion>(lazyBindingRegion));
1145}
1146
1147SVal RegionStoreManager::RetrieveFieldOrElementCommon(Store store,
1148                                                      const TypedValueRegion *R,
1149                                                      QualType Ty,
1150                                                      const MemRegion *superR) {
1151
1152  // At this point we have already checked in either RetrieveElement or
1153  // RetrieveField if 'R' has a direct binding.
1154
1155  RegionBindings B = GetRegionBindings(store);
1156
1157  while (superR) {
1158    if (const Optional<SVal> &D =
1159        RetrieveDerivedDefaultValue(B, superR, R, Ty))
1160      return *D;
1161
1162    // If our super region is a field or element itself, walk up the region
1163    // hierarchy to see if there is a default value installed in an ancestor.
1164    if (const SubRegion *SR = dyn_cast<SubRegion>(superR)) {
1165      superR = SR->getSuperRegion();
1166      continue;
1167    }
1168    break;
1169  }
1170
1171  // Lazy binding?
1172  Store lazyBindingStore = NULL;
1173  const MemRegion *lazyBindingRegion = NULL;
1174  llvm::tie(lazyBindingStore, lazyBindingRegion) = GetLazyBinding(B, R, R);
1175
1176  if (lazyBindingRegion)
1177    return RetrieveLazyBinding(lazyBindingRegion, lazyBindingStore);
1178
1179  if (R->hasStackNonParametersStorage()) {
1180    if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
1181      // Currently we don't reason specially about Clang-style vectors.  Check
1182      // if superR is a vector and if so return Unknown.
1183      if (const TypedValueRegion *typedSuperR =
1184            dyn_cast<TypedValueRegion>(superR)) {
1185        if (typedSuperR->getValueType()->isVectorType())
1186          return UnknownVal();
1187      }
1188
1189      // FIXME: We also need to take ElementRegions with symbolic indexes into
1190      // account.
1191      if (!ER->getIndex().isConstant())
1192        return UnknownVal();
1193    }
1194
1195    return UndefinedVal();
1196  }
1197
1198  // All other values are symbolic.
1199  return svalBuilder.getRegionValueSymbolVal(R);
1200}
1201
1202SVal RegionStoreManager::RetrieveObjCIvar(Store store, const ObjCIvarRegion* R){
1203
1204    // Check if the region has a binding.
1205  RegionBindings B = GetRegionBindings(store);
1206
1207  if (const Optional<SVal> &V = getDirectBinding(B, R))
1208    return *V;
1209
1210  const MemRegion *superR = R->getSuperRegion();
1211
1212  // Check if the super region has a default binding.
1213  if (const Optional<SVal> &V = getDefaultBinding(B, superR)) {
1214    if (SymbolRef parentSym = V->getAsSymbol())
1215      return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
1216
1217    // Other cases: give up.
1218    return UnknownVal();
1219  }
1220
1221  return RetrieveLazySymbol(R);
1222}
1223
1224SVal RegionStoreManager::RetrieveVar(Store store, const VarRegion *R) {
1225
1226  // Check if the region has a binding.
1227  RegionBindings B = GetRegionBindings(store);
1228
1229  if (const Optional<SVal> &V = getDirectBinding(B, R))
1230    return *V;
1231
1232  // Lazily derive a value for the VarRegion.
1233  const VarDecl *VD = R->getDecl();
1234  QualType T = VD->getType();
1235  const MemSpaceRegion *MS = R->getMemorySpace();
1236
1237  if (isa<UnknownSpaceRegion>(MS) ||
1238      isa<StackArgumentsSpaceRegion>(MS))
1239    return svalBuilder.getRegionValueSymbolVal(R);
1240
1241  if (isa<GlobalsSpaceRegion>(MS)) {
1242    if (isa<NonStaticGlobalSpaceRegion>(MS)) {
1243      // Is 'VD' declared constant?  If so, retrieve the constant value.
1244      QualType CT = Ctx.getCanonicalType(T);
1245      if (CT.isConstQualified()) {
1246        const Expr *Init = VD->getInit();
1247        // Do the null check first, as we want to call 'IgnoreParenCasts'.
1248        if (Init)
1249          if (const IntegerLiteral *IL =
1250              dyn_cast<IntegerLiteral>(Init->IgnoreParenCasts())) {
1251            const nonloc::ConcreteInt &V = svalBuilder.makeIntVal(IL);
1252            return svalBuilder.evalCast(V, Init->getType(), IL->getType());
1253          }
1254      }
1255
1256      if (const Optional<SVal> &V = RetrieveDerivedDefaultValue(B, MS, R, CT))
1257        return V.getValue();
1258
1259      return svalBuilder.getRegionValueSymbolVal(R);
1260    }
1261
1262    if (T->isIntegerType())
1263      return svalBuilder.makeIntVal(0, T);
1264    if (T->isPointerType())
1265      return svalBuilder.makeNull();
1266
1267    return UnknownVal();
1268  }
1269
1270  return UndefinedVal();
1271}
1272
1273SVal RegionStoreManager::RetrieveLazySymbol(const TypedValueRegion *R) {
1274  // All other values are symbolic.
1275  return svalBuilder.getRegionValueSymbolVal(R);
1276}
1277
1278SVal RegionStoreManager::RetrieveStruct(Store store,
1279                                        const TypedValueRegion* R) {
1280  QualType T = R->getValueType();
1281  assert(T->isStructureOrClassType());
1282  return svalBuilder.makeLazyCompoundVal(StoreRef(store, *this), R);
1283}
1284
1285SVal RegionStoreManager::RetrieveArray(Store store,
1286                                       const TypedValueRegion * R) {
1287  assert(Ctx.getAsConstantArrayType(R->getValueType()));
1288  return svalBuilder.makeLazyCompoundVal(StoreRef(store, *this), R);
1289}
1290
1291bool RegionStoreManager::includedInBindings(Store store,
1292                                            const MemRegion *region) const {
1293  RegionBindings B = GetRegionBindings(store);
1294  region = region->getBaseRegion();
1295
1296  for (RegionBindings::iterator it = B.begin(), ei = B.end(); it != ei; ++it) {
1297    const BindingKey &K = it.getKey();
1298    if (region == K.getRegion())
1299      return true;
1300    const SVal &D = it.getData();
1301    if (const MemRegion *r = D.getAsRegion())
1302      if (r == region)
1303        return true;
1304  }
1305  return false;
1306}
1307
1308//===----------------------------------------------------------------------===//
1309// Binding values to regions.
1310//===----------------------------------------------------------------------===//
1311
1312StoreRef RegionStoreManager::Remove(Store store, Loc L) {
1313  if (isa<loc::MemRegionVal>(L))
1314    if (const MemRegion* R = cast<loc::MemRegionVal>(L).getRegion())
1315      return StoreRef(removeBinding(GetRegionBindings(store),
1316                                    R).getRootWithoutRetain(),
1317                      *this);
1318
1319  return StoreRef(store, *this);
1320}
1321
1322StoreRef RegionStoreManager::Bind(Store store, Loc L, SVal V) {
1323  if (isa<loc::ConcreteInt>(L))
1324    return StoreRef(store, *this);
1325
1326  // If we get here, the location should be a region.
1327  const MemRegion *R = cast<loc::MemRegionVal>(L).getRegion();
1328
1329  // Check if the region is a struct region.
1330  if (const TypedValueRegion* TR = dyn_cast<TypedValueRegion>(R))
1331    if (TR->getValueType()->isStructureOrClassType())
1332      return BindStruct(store, TR, V);
1333
1334  if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
1335    if (ER->getIndex().isZeroConstant()) {
1336      if (const TypedValueRegion *superR =
1337            dyn_cast<TypedValueRegion>(ER->getSuperRegion())) {
1338        QualType superTy = superR->getValueType();
1339        // For now, just invalidate the fields of the struct/union/class.
1340        // This is for test rdar_test_7185607 in misc-ps-region-store.m.
1341        // FIXME: Precisely handle the fields of the record.
1342        if (superTy->isStructureOrClassType())
1343          return KillStruct(store, superR, UnknownVal());
1344      }
1345    }
1346  }
1347  else if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R)) {
1348    // Binding directly to a symbolic region should be treated as binding
1349    // to element 0.
1350    QualType T = SR->getSymbol()->getType(Ctx);
1351
1352    // FIXME: Is this the right way to handle symbols that are references?
1353    if (const PointerType *PT = T->getAs<PointerType>())
1354      T = PT->getPointeeType();
1355    else
1356      T = T->getAs<ReferenceType>()->getPointeeType();
1357
1358    R = GetElementZeroRegion(SR, T);
1359  }
1360
1361  // Perform the binding.
1362  RegionBindings B = GetRegionBindings(store);
1363  return StoreRef(addBinding(B, R, BindingKey::Direct,
1364                             V).getRootWithoutRetain(), *this);
1365}
1366
1367StoreRef RegionStoreManager::BindDecl(Store store, const VarRegion *VR,
1368                                      SVal InitVal) {
1369
1370  QualType T = VR->getDecl()->getType();
1371
1372  if (T->isArrayType())
1373    return BindArray(store, VR, InitVal);
1374  if (T->isStructureOrClassType())
1375    return BindStruct(store, VR, InitVal);
1376
1377  return Bind(store, svalBuilder.makeLoc(VR), InitVal);
1378}
1379
1380// FIXME: this method should be merged into Bind().
1381StoreRef RegionStoreManager::BindCompoundLiteral(Store store,
1382                                                 const CompoundLiteralExpr *CL,
1383                                                 const LocationContext *LC,
1384                                                 SVal V) {
1385  return Bind(store, loc::MemRegionVal(MRMgr.getCompoundLiteralRegion(CL, LC)),
1386              V);
1387}
1388
1389StoreRef RegionStoreManager::setImplicitDefaultValue(Store store,
1390                                                     const MemRegion *R,
1391                                                     QualType T) {
1392  RegionBindings B = GetRegionBindings(store);
1393  SVal V;
1394
1395  if (Loc::isLocType(T))
1396    V = svalBuilder.makeNull();
1397  else if (T->isIntegerType())
1398    V = svalBuilder.makeZeroVal(T);
1399  else if (T->isStructureOrClassType() || T->isArrayType()) {
1400    // Set the default value to a zero constant when it is a structure
1401    // or array.  The type doesn't really matter.
1402    V = svalBuilder.makeZeroVal(Ctx.IntTy);
1403  }
1404  else {
1405    // We can't represent values of this type, but we still need to set a value
1406    // to record that the region has been initialized.
1407    // If this assertion ever fires, a new case should be added above -- we
1408    // should know how to default-initialize any value we can symbolicate.
1409    assert(!SymbolManager::canSymbolicate(T) && "This type is representable");
1410    V = UnknownVal();
1411  }
1412
1413  return StoreRef(addBinding(B, R, BindingKey::Default,
1414                             V).getRootWithoutRetain(), *this);
1415}
1416
1417StoreRef RegionStoreManager::BindArray(Store store, const TypedValueRegion* R,
1418                                       SVal Init) {
1419
1420  const ArrayType *AT =cast<ArrayType>(Ctx.getCanonicalType(R->getValueType()));
1421  QualType ElementTy = AT->getElementType();
1422  Optional<uint64_t> Size;
1423
1424  if (const ConstantArrayType* CAT = dyn_cast<ConstantArrayType>(AT))
1425    Size = CAT->getSize().getZExtValue();
1426
1427  // Check if the init expr is a string literal.
1428  if (loc::MemRegionVal *MRV = dyn_cast<loc::MemRegionVal>(&Init)) {
1429    const StringRegion *S = cast<StringRegion>(MRV->getRegion());
1430
1431    // Treat the string as a lazy compound value.
1432    nonloc::LazyCompoundVal LCV =
1433      cast<nonloc::LazyCompoundVal>(svalBuilder.
1434                                makeLazyCompoundVal(StoreRef(store, *this), S));
1435    return CopyLazyBindings(LCV, store, R);
1436  }
1437
1438  // Handle lazy compound values.
1439  if (nonloc::LazyCompoundVal *LCV = dyn_cast<nonloc::LazyCompoundVal>(&Init))
1440    return CopyLazyBindings(*LCV, store, R);
1441
1442  // Remaining case: explicit compound values.
1443
1444  if (Init.isUnknown())
1445    return setImplicitDefaultValue(store, R, ElementTy);
1446
1447  nonloc::CompoundVal& CV = cast<nonloc::CompoundVal>(Init);
1448  nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
1449  uint64_t i = 0;
1450
1451  StoreRef newStore(store, *this);
1452  for (; Size.hasValue() ? i < Size.getValue() : true ; ++i, ++VI) {
1453    // The init list might be shorter than the array length.
1454    if (VI == VE)
1455      break;
1456
1457    const NonLoc &Idx = svalBuilder.makeArrayIndex(i);
1458    const ElementRegion *ER = MRMgr.getElementRegion(ElementTy, Idx, R, Ctx);
1459
1460    if (ElementTy->isStructureOrClassType())
1461      newStore = BindStruct(newStore.getStore(), ER, *VI);
1462    else if (ElementTy->isArrayType())
1463      newStore = BindArray(newStore.getStore(), ER, *VI);
1464    else
1465      newStore = Bind(newStore.getStore(), svalBuilder.makeLoc(ER), *VI);
1466  }
1467
1468  // If the init list is shorter than the array length, set the
1469  // array default value.
1470  if (Size.hasValue() && i < Size.getValue())
1471    newStore = setImplicitDefaultValue(newStore.getStore(), R, ElementTy);
1472
1473  return newStore;
1474}
1475
1476StoreRef RegionStoreManager::BindStruct(Store store, const TypedValueRegion* R,
1477                                        SVal V) {
1478
1479  if (!Features.supportsFields())
1480    return StoreRef(store, *this);
1481
1482  QualType T = R->getValueType();
1483  assert(T->isStructureOrClassType());
1484
1485  const RecordType* RT = T->getAs<RecordType>();
1486  RecordDecl *RD = RT->getDecl();
1487
1488  if (!RD->isCompleteDefinition())
1489    return StoreRef(store, *this);
1490
1491  // Handle lazy compound values.
1492  if (const nonloc::LazyCompoundVal *LCV=dyn_cast<nonloc::LazyCompoundVal>(&V))
1493    return CopyLazyBindings(*LCV, store, R);
1494
1495  // We may get non-CompoundVal accidentally due to imprecise cast logic or
1496  // that we are binding symbolic struct value. Kill the field values, and if
1497  // the value is symbolic go and bind it as a "default" binding.
1498  if (V.isUnknown() || !isa<nonloc::CompoundVal>(V)) {
1499    SVal SV = isa<nonloc::SymbolVal>(V) ? V : UnknownVal();
1500    return KillStruct(store, R, SV);
1501  }
1502
1503  nonloc::CompoundVal& CV = cast<nonloc::CompoundVal>(V);
1504  nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
1505
1506  RecordDecl::field_iterator FI, FE;
1507  StoreRef newStore(store, *this);
1508
1509  for (FI = RD->field_begin(), FE = RD->field_end(); FI != FE; ++FI, ++VI) {
1510
1511    if (VI == VE)
1512      break;
1513
1514    QualType FTy = (*FI)->getType();
1515    const FieldRegion* FR = MRMgr.getFieldRegion(*FI, R);
1516
1517    if (FTy->isArrayType())
1518      newStore = BindArray(newStore.getStore(), FR, *VI);
1519    else if (FTy->isStructureOrClassType())
1520      newStore = BindStruct(newStore.getStore(), FR, *VI);
1521    else
1522      newStore = Bind(newStore.getStore(), svalBuilder.makeLoc(FR), *VI);
1523  }
1524
1525  // There may be fewer values in the initialize list than the fields of struct.
1526  if (FI != FE) {
1527    RegionBindings B = GetRegionBindings(newStore.getStore());
1528    B = addBinding(B, R, BindingKey::Default, svalBuilder.makeIntVal(0, false));
1529    newStore = StoreRef(B.getRootWithoutRetain(), *this);
1530  }
1531
1532  return newStore;
1533}
1534
1535StoreRef RegionStoreManager::KillStruct(Store store, const TypedRegion* R,
1536                                     SVal DefaultVal) {
1537  BindingKey key = BindingKey::Make(R, BindingKey::Default);
1538
1539  // The BindingKey may be "invalid" if we cannot handle the region binding
1540  // explicitly.  One example is something like array[index], where index
1541  // is a symbolic value.  In such cases, we want to invalidate the entire
1542  // array, as the index assignment could have been to any element.  In
1543  // the case of nested symbolic indices, we need to march up the region
1544  // hierarchy untile we reach a region whose binding we can reason about.
1545  const SubRegion *subReg = R;
1546
1547  while (!key.isValid()) {
1548    if (const SubRegion *tmp = dyn_cast<SubRegion>(subReg->getSuperRegion())) {
1549      subReg = tmp;
1550      key = BindingKey::Make(tmp, BindingKey::Default);
1551    }
1552    else
1553      break;
1554  }
1555
1556  // Remove the old bindings, using 'subReg' as the root of all regions
1557  // we will invalidate.
1558  RegionBindings B = GetRegionBindings(store);
1559  llvm::OwningPtr<RegionStoreSubRegionMap>
1560    SubRegions(getRegionStoreSubRegionMap(store));
1561  RemoveSubRegionBindings(B, subReg, *SubRegions);
1562
1563  // Set the default value of the struct region to "unknown".
1564  if (!key.isValid())
1565    return StoreRef(B.getRootWithoutRetain(), *this);
1566
1567  return StoreRef(addBinding(B, key, DefaultVal).getRootWithoutRetain(), *this);
1568}
1569
1570StoreRef RegionStoreManager::CopyLazyBindings(nonloc::LazyCompoundVal V,
1571                                              Store store,
1572                                              const TypedRegion *R) {
1573
1574  // Nuke the old bindings stemming from R.
1575  RegionBindings B = GetRegionBindings(store);
1576
1577  llvm::OwningPtr<RegionStoreSubRegionMap>
1578    SubRegions(getRegionStoreSubRegionMap(store));
1579
1580  // B and DVM are updated after the call to RemoveSubRegionBindings.
1581  RemoveSubRegionBindings(B, R, *SubRegions.get());
1582
1583  // Now copy the bindings.  This amounts to just binding 'V' to 'R'.  This
1584  // results in a zero-copy algorithm.
1585  return StoreRef(addBinding(B, R, BindingKey::Default,
1586                             V).getRootWithoutRetain(), *this);
1587}
1588
1589//===----------------------------------------------------------------------===//
1590// "Raw" retrievals and bindings.
1591//===----------------------------------------------------------------------===//
1592
1593
1594RegionBindings RegionStoreManager::addBinding(RegionBindings B, BindingKey K,
1595                                              SVal V) {
1596  if (!K.isValid())
1597    return B;
1598  return RBFactory.add(B, K, V);
1599}
1600
1601RegionBindings RegionStoreManager::addBinding(RegionBindings B,
1602                                              const MemRegion *R,
1603                                              BindingKey::Kind k, SVal V) {
1604  return addBinding(B, BindingKey::Make(R, k), V);
1605}
1606
1607const SVal *RegionStoreManager::lookup(RegionBindings B, BindingKey K) {
1608  if (!K.isValid())
1609    return NULL;
1610  return B.lookup(K);
1611}
1612
1613const SVal *RegionStoreManager::lookup(RegionBindings B,
1614                                       const MemRegion *R,
1615                                       BindingKey::Kind k) {
1616  return lookup(B, BindingKey::Make(R, k));
1617}
1618
1619RegionBindings RegionStoreManager::removeBinding(RegionBindings B,
1620                                                 BindingKey K) {
1621  if (!K.isValid())
1622    return B;
1623  return RBFactory.remove(B, K);
1624}
1625
1626RegionBindings RegionStoreManager::removeBinding(RegionBindings B,
1627                                                 const MemRegion *R,
1628                                                BindingKey::Kind k){
1629  return removeBinding(B, BindingKey::Make(R, k));
1630}
1631
1632//===----------------------------------------------------------------------===//
1633// State pruning.
1634//===----------------------------------------------------------------------===//
1635
1636namespace {
1637class removeDeadBindingsWorker :
1638  public ClusterAnalysis<removeDeadBindingsWorker> {
1639  SmallVector<const SymbolicRegion*, 12> Postponed;
1640  SymbolReaper &SymReaper;
1641  const StackFrameContext *CurrentLCtx;
1642
1643public:
1644  removeDeadBindingsWorker(RegionStoreManager &rm, ProgramStateManager &stateMgr,
1645                           RegionBindings b, SymbolReaper &symReaper,
1646                           const StackFrameContext *LCtx)
1647    : ClusterAnalysis<removeDeadBindingsWorker>(rm, stateMgr, b,
1648                                                /* includeGlobals = */ false),
1649      SymReaper(symReaper), CurrentLCtx(LCtx) {}
1650
1651  // Called by ClusterAnalysis.
1652  void VisitAddedToCluster(const MemRegion *baseR, RegionCluster &C);
1653  void VisitCluster(const MemRegion *baseR, BindingKey *I, BindingKey *E);
1654
1655  void VisitBindingKey(BindingKey K);
1656  bool UpdatePostponed();
1657  void VisitBinding(SVal V);
1658};
1659}
1660
1661void removeDeadBindingsWorker::VisitAddedToCluster(const MemRegion *baseR,
1662                                                   RegionCluster &C) {
1663
1664  if (const VarRegion *VR = dyn_cast<VarRegion>(baseR)) {
1665    if (SymReaper.isLive(VR))
1666      AddToWorkList(baseR, C);
1667
1668    return;
1669  }
1670
1671  if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR)) {
1672    if (SymReaper.isLive(SR->getSymbol()))
1673      AddToWorkList(SR, C);
1674    else
1675      Postponed.push_back(SR);
1676
1677    return;
1678  }
1679
1680  if (isa<NonStaticGlobalSpaceRegion>(baseR)) {
1681    AddToWorkList(baseR, C);
1682    return;
1683  }
1684
1685  // CXXThisRegion in the current or parent location context is live.
1686  if (const CXXThisRegion *TR = dyn_cast<CXXThisRegion>(baseR)) {
1687    const StackArgumentsSpaceRegion *StackReg =
1688      cast<StackArgumentsSpaceRegion>(TR->getSuperRegion());
1689    const StackFrameContext *RegCtx = StackReg->getStackFrame();
1690    if (RegCtx == CurrentLCtx || RegCtx->isParentOf(CurrentLCtx))
1691      AddToWorkList(TR, C);
1692  }
1693}
1694
1695void removeDeadBindingsWorker::VisitCluster(const MemRegion *baseR,
1696                                            BindingKey *I, BindingKey *E) {
1697  for ( ; I != E; ++I)
1698    VisitBindingKey(*I);
1699}
1700
1701void removeDeadBindingsWorker::VisitBinding(SVal V) {
1702  // Is it a LazyCompoundVal?  All referenced regions are live as well.
1703  if (const nonloc::LazyCompoundVal *LCS =
1704      dyn_cast<nonloc::LazyCompoundVal>(&V)) {
1705
1706    const MemRegion *LazyR = LCS->getRegion();
1707    RegionBindings B = RegionStoreManager::GetRegionBindings(LCS->getStore());
1708    for (RegionBindings::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI){
1709      const SubRegion *baseR = dyn_cast<SubRegion>(RI.getKey().getRegion());
1710      if (baseR && baseR->isSubRegionOf(LazyR))
1711        VisitBinding(RI.getData());
1712    }
1713    return;
1714  }
1715
1716  // If V is a region, then add it to the worklist.
1717  if (const MemRegion *R = V.getAsRegion())
1718    AddToWorkList(R);
1719
1720    // Update the set of live symbols.
1721  for (SVal::symbol_iterator SI=V.symbol_begin(), SE=V.symbol_end();
1722       SI!=SE;++SI)
1723    SymReaper.markLive(*SI);
1724}
1725
1726void removeDeadBindingsWorker::VisitBindingKey(BindingKey K) {
1727  const MemRegion *R = K.getRegion();
1728
1729  // Mark this region "live" by adding it to the worklist.  This will cause
1730  // use to visit all regions in the cluster (if we haven't visited them
1731  // already).
1732  if (AddToWorkList(R)) {
1733    // Mark the symbol for any live SymbolicRegion as "live".  This means we
1734    // should continue to track that symbol.
1735    if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(R))
1736      SymReaper.markLive(SymR->getSymbol());
1737
1738    // For BlockDataRegions, enqueue the VarRegions for variables marked
1739    // with __block (passed-by-reference).
1740    // via BlockDeclRefExprs.
1741    if (const BlockDataRegion *BD = dyn_cast<BlockDataRegion>(R)) {
1742      for (BlockDataRegion::referenced_vars_iterator
1743           RI = BD->referenced_vars_begin(), RE = BD->referenced_vars_end();
1744           RI != RE; ++RI) {
1745        if ((*RI)->getDecl()->getAttr<BlocksAttr>())
1746          AddToWorkList(*RI);
1747      }
1748
1749      // No possible data bindings on a BlockDataRegion.
1750      return;
1751    }
1752  }
1753
1754  // Visit the data binding for K.
1755  if (const SVal *V = RM.lookup(B, K))
1756    VisitBinding(*V);
1757}
1758
1759bool removeDeadBindingsWorker::UpdatePostponed() {
1760  // See if any postponed SymbolicRegions are actually live now, after
1761  // having done a scan.
1762  bool changed = false;
1763
1764  for (SmallVectorImpl<const SymbolicRegion*>::iterator
1765        I = Postponed.begin(), E = Postponed.end() ; I != E ; ++I) {
1766    if (const SymbolicRegion *SR = cast_or_null<SymbolicRegion>(*I)) {
1767      if (SymReaper.isLive(SR->getSymbol())) {
1768        changed |= AddToWorkList(SR);
1769        *I = NULL;
1770      }
1771    }
1772  }
1773
1774  return changed;
1775}
1776
1777StoreRef RegionStoreManager::removeDeadBindings(Store store,
1778                                                const StackFrameContext *LCtx,
1779                                                SymbolReaper& SymReaper) {
1780  RegionBindings B = GetRegionBindings(store);
1781  removeDeadBindingsWorker W(*this, StateMgr, B, SymReaper, LCtx);
1782  W.GenerateClusters();
1783
1784  // Enqueue the region roots onto the worklist.
1785  for (SymbolReaper::region_iterator I = SymReaper.region_begin(),
1786       E = SymReaper.region_end(); I != E; ++I) {
1787    W.AddToWorkList(*I);
1788  }
1789
1790  do W.RunWorkList(); while (W.UpdatePostponed());
1791
1792  // We have now scanned the store, marking reachable regions and symbols
1793  // as live.  We now remove all the regions that are dead from the store
1794  // as well as update DSymbols with the set symbols that are now dead.
1795  for (RegionBindings::iterator I = B.begin(), E = B.end(); I != E; ++I) {
1796    const BindingKey &K = I.getKey();
1797
1798    // If the cluster has been visited, we know the region has been marked.
1799    if (W.isVisited(K.getRegion()))
1800      continue;
1801
1802    // Remove the dead entry.
1803    B = removeBinding(B, K);
1804
1805    // Mark all non-live symbols that this binding references as dead.
1806    if (const SymbolicRegion* SymR = dyn_cast<SymbolicRegion>(K.getRegion()))
1807      SymReaper.maybeDead(SymR->getSymbol());
1808
1809    SVal X = I.getData();
1810    SVal::symbol_iterator SI = X.symbol_begin(), SE = X.symbol_end();
1811    for (; SI != SE; ++SI)
1812      SymReaper.maybeDead(*SI);
1813  }
1814
1815  return StoreRef(B.getRootWithoutRetain(), *this);
1816}
1817
1818
1819StoreRef RegionStoreManager::enterStackFrame(const ProgramState *state,
1820                                             const StackFrameContext *frame) {
1821  FunctionDecl const *FD = cast<FunctionDecl>(frame->getDecl());
1822  FunctionDecl::param_const_iterator PI = FD->param_begin(),
1823                                     PE = FD->param_end();
1824  StoreRef store = StoreRef(state->getStore(), *this);
1825
1826  if (CallExpr const *CE = dyn_cast<CallExpr>(frame->getCallSite())) {
1827    CallExpr::const_arg_iterator AI = CE->arg_begin(), AE = CE->arg_end();
1828
1829    // Copy the arg expression value to the arg variables.  We check that
1830    // PI != PE because the actual number of arguments may be different than
1831    // the function declaration.
1832    for (; AI != AE && PI != PE; ++AI, ++PI) {
1833      SVal ArgVal = state->getSVal(*AI);
1834      store = Bind(store.getStore(),
1835                   svalBuilder.makeLoc(MRMgr.getVarRegion(*PI, frame)), ArgVal);
1836    }
1837  } else if (const CXXConstructExpr *CE =
1838               dyn_cast<CXXConstructExpr>(frame->getCallSite())) {
1839    CXXConstructExpr::const_arg_iterator AI = CE->arg_begin(),
1840      AE = CE->arg_end();
1841
1842    // Copy the arg expression value to the arg variables.
1843    for (; AI != AE; ++AI, ++PI) {
1844      SVal ArgVal = state->getSVal(*AI);
1845      store = Bind(store.getStore(),
1846                   svalBuilder.makeLoc(MRMgr.getVarRegion(*PI,frame)), ArgVal);
1847    }
1848  } else
1849    assert(isa<CXXDestructorDecl>(frame->getDecl()));
1850
1851  return store;
1852}
1853
1854//===----------------------------------------------------------------------===//
1855// Utility methods.
1856//===----------------------------------------------------------------------===//
1857
1858void RegionStoreManager::print(Store store, raw_ostream &OS,
1859                               const char* nl, const char *sep) {
1860  RegionBindings B = GetRegionBindings(store);
1861  OS << "Store (direct and default bindings):" << nl;
1862
1863  for (RegionBindings::iterator I = B.begin(), E = B.end(); I != E; ++I)
1864    OS << ' ' << I.getKey() << " : " << I.getData() << nl;
1865}
1866