TargetInstrInfoImpl.cpp revision 3ef1c8759a20167457eb7fd82ebcaffe7ccaa1d1
1//===-- TargetInstrInfoImpl.cpp - Target Instruction Information ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the TargetInstrInfoImpl class, it just provides default
11// implementations of various methods.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Target/TargetInstrInfo.h"
16#include "llvm/Target/TargetLowering.h"
17#include "llvm/Target/TargetMachine.h"
18#include "llvm/Target/TargetRegisterInfo.h"
19#include "llvm/ADT/SmallVector.h"
20#include "llvm/CodeGen/MachineFrameInfo.h"
21#include "llvm/CodeGen/MachineInstr.h"
22#include "llvm/CodeGen/MachineInstrBuilder.h"
23#include "llvm/CodeGen/MachineMemOperand.h"
24#include "llvm/CodeGen/MachineRegisterInfo.h"
25#include "llvm/CodeGen/PostRAHazardRecognizer.h"
26#include "llvm/CodeGen/PseudoSourceValue.h"
27#include "llvm/Support/Debug.h"
28#include "llvm/Support/ErrorHandling.h"
29#include "llvm/Support/raw_ostream.h"
30using namespace llvm;
31
32/// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything
33/// after it, replacing it with an unconditional branch to NewDest.
34void
35TargetInstrInfoImpl::ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
36                                             MachineBasicBlock *NewDest) const {
37  MachineBasicBlock *MBB = Tail->getParent();
38
39  // Remove all the old successors of MBB from the CFG.
40  while (!MBB->succ_empty())
41    MBB->removeSuccessor(MBB->succ_begin());
42
43  // Remove all the dead instructions from the end of MBB.
44  MBB->erase(Tail, MBB->end());
45
46  // If MBB isn't immediately before MBB, insert a branch to it.
47  if (++MachineFunction::iterator(MBB) != MachineFunction::iterator(NewDest))
48    InsertBranch(*MBB, NewDest, 0, SmallVector<MachineOperand, 0>(),
49                 Tail->getDebugLoc());
50  MBB->addSuccessor(NewDest);
51}
52
53// commuteInstruction - The default implementation of this method just exchanges
54// the two operands returned by findCommutedOpIndices.
55MachineInstr *TargetInstrInfoImpl::commuteInstruction(MachineInstr *MI,
56                                                      bool NewMI) const {
57  const TargetInstrDesc &TID = MI->getDesc();
58  bool HasDef = TID.getNumDefs();
59  if (HasDef && !MI->getOperand(0).isReg())
60    // No idea how to commute this instruction. Target should implement its own.
61    return 0;
62  unsigned Idx1, Idx2;
63  if (!findCommutedOpIndices(MI, Idx1, Idx2)) {
64    std::string msg;
65    raw_string_ostream Msg(msg);
66    Msg << "Don't know how to commute: " << *MI;
67    report_fatal_error(Msg.str());
68  }
69
70  assert(MI->getOperand(Idx1).isReg() && MI->getOperand(Idx2).isReg() &&
71         "This only knows how to commute register operands so far");
72  unsigned Reg1 = MI->getOperand(Idx1).getReg();
73  unsigned Reg2 = MI->getOperand(Idx2).getReg();
74  bool Reg1IsKill = MI->getOperand(Idx1).isKill();
75  bool Reg2IsKill = MI->getOperand(Idx2).isKill();
76  bool ChangeReg0 = false;
77  if (HasDef && MI->getOperand(0).getReg() == Reg1) {
78    // Must be two address instruction!
79    assert(MI->getDesc().getOperandConstraint(0, TOI::TIED_TO) &&
80           "Expecting a two-address instruction!");
81    Reg2IsKill = false;
82    ChangeReg0 = true;
83  }
84
85  if (NewMI) {
86    // Create a new instruction.
87    unsigned Reg0 = HasDef
88      ? (ChangeReg0 ? Reg2 : MI->getOperand(0).getReg()) : 0;
89    bool Reg0IsDead = HasDef ? MI->getOperand(0).isDead() : false;
90    MachineFunction &MF = *MI->getParent()->getParent();
91    if (HasDef)
92      return BuildMI(MF, MI->getDebugLoc(), MI->getDesc())
93        .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead))
94        .addReg(Reg2, getKillRegState(Reg2IsKill))
95        .addReg(Reg1, getKillRegState(Reg2IsKill));
96    else
97      return BuildMI(MF, MI->getDebugLoc(), MI->getDesc())
98        .addReg(Reg2, getKillRegState(Reg2IsKill))
99        .addReg(Reg1, getKillRegState(Reg2IsKill));
100  }
101
102  if (ChangeReg0)
103    MI->getOperand(0).setReg(Reg2);
104  MI->getOperand(Idx2).setReg(Reg1);
105  MI->getOperand(Idx1).setReg(Reg2);
106  MI->getOperand(Idx2).setIsKill(Reg1IsKill);
107  MI->getOperand(Idx1).setIsKill(Reg2IsKill);
108  return MI;
109}
110
111/// findCommutedOpIndices - If specified MI is commutable, return the two
112/// operand indices that would swap value. Return true if the instruction
113/// is not in a form which this routine understands.
114bool TargetInstrInfoImpl::findCommutedOpIndices(MachineInstr *MI,
115                                                unsigned &SrcOpIdx1,
116                                                unsigned &SrcOpIdx2) const {
117  const TargetInstrDesc &TID = MI->getDesc();
118  if (!TID.isCommutable())
119    return false;
120  // This assumes v0 = op v1, v2 and commuting would swap v1 and v2. If this
121  // is not true, then the target must implement this.
122  SrcOpIdx1 = TID.getNumDefs();
123  SrcOpIdx2 = SrcOpIdx1 + 1;
124  if (!MI->getOperand(SrcOpIdx1).isReg() ||
125      !MI->getOperand(SrcOpIdx2).isReg())
126    // No idea.
127    return false;
128  return true;
129}
130
131
132bool TargetInstrInfoImpl::PredicateInstruction(MachineInstr *MI,
133                            const SmallVectorImpl<MachineOperand> &Pred) const {
134  bool MadeChange = false;
135  const TargetInstrDesc &TID = MI->getDesc();
136  if (!TID.isPredicable())
137    return false;
138
139  for (unsigned j = 0, i = 0, e = MI->getNumOperands(); i != e; ++i) {
140    if (TID.OpInfo[i].isPredicate()) {
141      MachineOperand &MO = MI->getOperand(i);
142      if (MO.isReg()) {
143        MO.setReg(Pred[j].getReg());
144        MadeChange = true;
145      } else if (MO.isImm()) {
146        MO.setImm(Pred[j].getImm());
147        MadeChange = true;
148      } else if (MO.isMBB()) {
149        MO.setMBB(Pred[j].getMBB());
150        MadeChange = true;
151      }
152      ++j;
153    }
154  }
155  return MadeChange;
156}
157
158void TargetInstrInfoImpl::reMaterialize(MachineBasicBlock &MBB,
159                                        MachineBasicBlock::iterator I,
160                                        unsigned DestReg,
161                                        unsigned SubIdx,
162                                        const MachineInstr *Orig,
163                                        const TargetRegisterInfo &TRI) const {
164  MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
165  MI->substituteRegister(MI->getOperand(0).getReg(), DestReg, SubIdx, TRI);
166  MBB.insert(I, MI);
167}
168
169bool TargetInstrInfoImpl::produceSameValue(const MachineInstr *MI0,
170                                           const MachineInstr *MI1) const {
171  return MI0->isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
172}
173
174MachineInstr *TargetInstrInfoImpl::duplicate(MachineInstr *Orig,
175                                             MachineFunction &MF) const {
176  assert(!Orig->getDesc().isNotDuplicable() &&
177         "Instruction cannot be duplicated");
178  return MF.CloneMachineInstr(Orig);
179}
180
181// If the COPY instruction in MI can be folded to a stack operation, return
182// the register class to use.
183static const TargetRegisterClass *canFoldCopy(const MachineInstr *MI,
184                                              unsigned FoldIdx) {
185  assert(MI->isCopy() && "MI must be a COPY instruction");
186  if (MI->getNumOperands() != 2)
187    return 0;
188  assert(FoldIdx<2 && "FoldIdx refers no nonexistent operand");
189
190  const MachineOperand &FoldOp = MI->getOperand(FoldIdx);
191  const MachineOperand &LiveOp = MI->getOperand(1-FoldIdx);
192
193  if (FoldOp.getSubReg() || LiveOp.getSubReg())
194    return 0;
195
196  unsigned FoldReg = FoldOp.getReg();
197  unsigned LiveReg = LiveOp.getReg();
198
199  assert(TargetRegisterInfo::isVirtualRegister(FoldReg) &&
200         "Cannot fold physregs");
201
202  const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
203  const TargetRegisterClass *RC = MRI.getRegClass(FoldReg);
204
205  if (TargetRegisterInfo::isPhysicalRegister(LiveOp.getReg()))
206    return RC->contains(LiveOp.getReg()) ? RC : 0;
207
208  const TargetRegisterClass *LiveRC = MRI.getRegClass(LiveReg);
209  if (RC == LiveRC || RC->hasSubClass(LiveRC))
210    return RC;
211
212  // FIXME: Allow folding when register classes are memory compatible.
213  return 0;
214}
215
216bool TargetInstrInfoImpl::
217canFoldMemoryOperand(const MachineInstr *MI,
218                     const SmallVectorImpl<unsigned> &Ops) const {
219  return MI->isCopy() && Ops.size() == 1 && canFoldCopy(MI, Ops[0]);
220}
221
222/// foldMemoryOperand - Attempt to fold a load or store of the specified stack
223/// slot into the specified machine instruction for the specified operand(s).
224/// If this is possible, a new instruction is returned with the specified
225/// operand folded, otherwise NULL is returned. The client is responsible for
226/// removing the old instruction and adding the new one in the instruction
227/// stream.
228MachineInstr*
229TargetInstrInfo::foldMemoryOperand(MachineBasicBlock::iterator MI,
230                                   const SmallVectorImpl<unsigned> &Ops,
231                                   int FI) const {
232  unsigned Flags = 0;
233  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
234    if (MI->getOperand(Ops[i]).isDef())
235      Flags |= MachineMemOperand::MOStore;
236    else
237      Flags |= MachineMemOperand::MOLoad;
238
239  MachineBasicBlock *MBB = MI->getParent();
240  assert(MBB && "foldMemoryOperand needs an inserted instruction");
241  MachineFunction &MF = *MBB->getParent();
242
243  // Ask the target to do the actual folding.
244  if (MachineInstr *NewMI = foldMemoryOperandImpl(MF, MI, Ops, FI)) {
245    // Add a memory operand, foldMemoryOperandImpl doesn't do that.
246    assert((!(Flags & MachineMemOperand::MOStore) ||
247            NewMI->getDesc().mayStore()) &&
248           "Folded a def to a non-store!");
249    assert((!(Flags & MachineMemOperand::MOLoad) ||
250            NewMI->getDesc().mayLoad()) &&
251           "Folded a use to a non-load!");
252    const MachineFrameInfo &MFI = *MF.getFrameInfo();
253    assert(MFI.getObjectOffset(FI) != -1);
254    MachineMemOperand *MMO =
255      MF.getMachineMemOperand(PseudoSourceValue::getFixedStack(FI),
256                              Flags, /*Offset=*/0,
257                              MFI.getObjectSize(FI),
258                              MFI.getObjectAlignment(FI));
259    NewMI->addMemOperand(MF, MMO);
260
261    // FIXME: change foldMemoryOperandImpl semantics to also insert NewMI.
262    return MBB->insert(MI, NewMI);
263  }
264
265  // Straight COPY may fold as load/store.
266  if (!MI->isCopy() || Ops.size() != 1)
267    return 0;
268
269  const TargetRegisterClass *RC = canFoldCopy(MI, Ops[0]);
270  if (!RC)
271    return 0;
272
273  const MachineOperand &MO = MI->getOperand(1-Ops[0]);
274  MachineBasicBlock::iterator Pos = MI;
275  const TargetRegisterInfo *TRI = MF.getTarget().getRegisterInfo();
276
277  if (Flags == MachineMemOperand::MOStore)
278    storeRegToStackSlot(*MBB, Pos, MO.getReg(), MO.isKill(), FI, RC, TRI);
279  else
280    loadRegFromStackSlot(*MBB, Pos, MO.getReg(), FI, RC, TRI);
281  return --Pos;
282}
283
284/// foldMemoryOperand - Same as the previous version except it allows folding
285/// of any load and store from / to any address, not just from a specific
286/// stack slot.
287MachineInstr*
288TargetInstrInfo::foldMemoryOperand(MachineBasicBlock::iterator MI,
289                                   const SmallVectorImpl<unsigned> &Ops,
290                                   MachineInstr* LoadMI) const {
291  assert(LoadMI->getDesc().canFoldAsLoad() && "LoadMI isn't foldable!");
292#ifndef NDEBUG
293  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
294    assert(MI->getOperand(Ops[i]).isUse() && "Folding load into def!");
295#endif
296  MachineBasicBlock &MBB = *MI->getParent();
297  MachineFunction &MF = *MBB.getParent();
298
299  // Ask the target to do the actual folding.
300  MachineInstr *NewMI = foldMemoryOperandImpl(MF, MI, Ops, LoadMI);
301  if (!NewMI) return 0;
302
303  NewMI = MBB.insert(MI, NewMI);
304
305  // Copy the memoperands from the load to the folded instruction.
306  NewMI->setMemRefs(LoadMI->memoperands_begin(),
307                    LoadMI->memoperands_end());
308
309  return NewMI;
310}
311
312bool TargetInstrInfo::
313isReallyTriviallyReMaterializableGeneric(const MachineInstr *MI,
314                                         AliasAnalysis *AA) const {
315  const MachineFunction &MF = *MI->getParent()->getParent();
316  const MachineRegisterInfo &MRI = MF.getRegInfo();
317  const TargetMachine &TM = MF.getTarget();
318  const TargetInstrInfo &TII = *TM.getInstrInfo();
319  const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
320
321  // A load from a fixed stack slot can be rematerialized. This may be
322  // redundant with subsequent checks, but it's target-independent,
323  // simple, and a common case.
324  int FrameIdx = 0;
325  if (TII.isLoadFromStackSlot(MI, FrameIdx) &&
326      MF.getFrameInfo()->isImmutableObjectIndex(FrameIdx))
327    return true;
328
329  const TargetInstrDesc &TID = MI->getDesc();
330
331  // Avoid instructions obviously unsafe for remat.
332  if (TID.hasUnmodeledSideEffects() || TID.isNotDuplicable() ||
333      TID.mayStore())
334    return false;
335
336  // Avoid instructions which load from potentially varying memory.
337  if (TID.mayLoad() && !MI->isInvariantLoad(AA))
338    return false;
339
340  // If any of the registers accessed are non-constant, conservatively assume
341  // the instruction is not rematerializable.
342  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
343    const MachineOperand &MO = MI->getOperand(i);
344    if (!MO.isReg()) continue;
345    unsigned Reg = MO.getReg();
346    if (Reg == 0)
347      continue;
348
349    // Check for a well-behaved physical register.
350    if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
351      if (MO.isUse()) {
352        // If the physreg has no defs anywhere, it's just an ambient register
353        // and we can freely move its uses. Alternatively, if it's allocatable,
354        // it could get allocated to something with a def during allocation.
355        if (!MRI.def_empty(Reg))
356          return false;
357        BitVector AllocatableRegs = TRI.getAllocatableSet(MF, 0);
358        if (AllocatableRegs.test(Reg))
359          return false;
360        // Check for a def among the register's aliases too.
361        for (const unsigned *Alias = TRI.getAliasSet(Reg); *Alias; ++Alias) {
362          unsigned AliasReg = *Alias;
363          if (!MRI.def_empty(AliasReg))
364            return false;
365          if (AllocatableRegs.test(AliasReg))
366            return false;
367        }
368      } else {
369        // A physreg def. We can't remat it.
370        return false;
371      }
372      continue;
373    }
374
375    // Only allow one virtual-register def, and that in the first operand.
376    if (MO.isDef() != (i == 0))
377      return false;
378
379    // For the def, it should be the only def of that register.
380    if (MO.isDef() && (llvm::next(MRI.def_begin(Reg)) != MRI.def_end() ||
381                       MRI.isLiveIn(Reg)))
382      return false;
383
384    // Don't allow any virtual-register uses. Rematting an instruction with
385    // virtual register uses would length the live ranges of the uses, which
386    // is not necessarily a good idea, certainly not "trivial".
387    if (MO.isUse())
388      return false;
389  }
390
391  // Everything checked out.
392  return true;
393}
394
395/// isSchedulingBoundary - Test if the given instruction should be
396/// considered a scheduling boundary. This primarily includes labels
397/// and terminators.
398bool TargetInstrInfoImpl::isSchedulingBoundary(const MachineInstr *MI,
399                                               const MachineBasicBlock *MBB,
400                                               const MachineFunction &MF) const{
401  // Terminators and labels can't be scheduled around.
402  if (MI->getDesc().isTerminator() || MI->isLabel())
403    return true;
404
405  // Don't attempt to schedule around any instruction that defines
406  // a stack-oriented pointer, as it's unlikely to be profitable. This
407  // saves compile time, because it doesn't require every single
408  // stack slot reference to depend on the instruction that does the
409  // modification.
410  const TargetLowering &TLI = *MF.getTarget().getTargetLowering();
411  if (MI->definesRegister(TLI.getStackPointerRegisterToSaveRestore()))
412    return true;
413
414  return false;
415}
416
417// Default implementation of CreateTargetPostRAHazardRecognizer.
418ScheduleHazardRecognizer *TargetInstrInfoImpl::
419CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II) const {
420  return (ScheduleHazardRecognizer *)new PostRAHazardRecognizer(II);
421}
422