TargetInstrInfoImpl.cpp revision 4d54e5b2dd4a3d3bed38ff9c7aa57fc66adb5855
1//===-- TargetInstrInfoImpl.cpp - Target Instruction Information ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the TargetInstrInfoImpl class, it just provides default
11// implementations of various methods.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Target/TargetInstrInfo.h"
16#include "llvm/Target/TargetLowering.h"
17#include "llvm/Target/TargetMachine.h"
18#include "llvm/Target/TargetRegisterInfo.h"
19#include "llvm/ADT/SmallVector.h"
20#include "llvm/CodeGen/MachineFrameInfo.h"
21#include "llvm/CodeGen/MachineInstr.h"
22#include "llvm/CodeGen/MachineInstrBuilder.h"
23#include "llvm/CodeGen/MachineMemOperand.h"
24#include "llvm/CodeGen/MachineRegisterInfo.h"
25#include "llvm/CodeGen/PostRAHazardRecognizer.h"
26#include "llvm/CodeGen/PseudoSourceValue.h"
27#include "llvm/Support/ErrorHandling.h"
28#include "llvm/Support/raw_ostream.h"
29using namespace llvm;
30
31/// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything
32/// after it, replacing it with an unconditional branch to NewDest.
33void
34TargetInstrInfoImpl::ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
35                                             MachineBasicBlock *NewDest) const {
36  MachineBasicBlock *MBB = Tail->getParent();
37
38  // Remove all the old successors of MBB from the CFG.
39  while (!MBB->succ_empty())
40    MBB->removeSuccessor(MBB->succ_begin());
41
42  // Remove all the dead instructions from the end of MBB.
43  MBB->erase(Tail, MBB->end());
44
45  // If MBB isn't immediately before MBB, insert a branch to it.
46  if (++MachineFunction::iterator(MBB) != MachineFunction::iterator(NewDest))
47    InsertBranch(*MBB, NewDest, 0, SmallVector<MachineOperand, 0>(),
48                 Tail->getDebugLoc());
49  MBB->addSuccessor(NewDest);
50}
51
52// commuteInstruction - The default implementation of this method just exchanges
53// the two operands returned by findCommutedOpIndices.
54MachineInstr *TargetInstrInfoImpl::commuteInstruction(MachineInstr *MI,
55                                                      bool NewMI) const {
56  const TargetInstrDesc &TID = MI->getDesc();
57  bool HasDef = TID.getNumDefs();
58  if (HasDef && !MI->getOperand(0).isReg())
59    // No idea how to commute this instruction. Target should implement its own.
60    return 0;
61  unsigned Idx1, Idx2;
62  if (!findCommutedOpIndices(MI, Idx1, Idx2)) {
63    std::string msg;
64    raw_string_ostream Msg(msg);
65    Msg << "Don't know how to commute: " << *MI;
66    report_fatal_error(Msg.str());
67  }
68
69  assert(MI->getOperand(Idx1).isReg() && MI->getOperand(Idx2).isReg() &&
70         "This only knows how to commute register operands so far");
71  unsigned Reg1 = MI->getOperand(Idx1).getReg();
72  unsigned Reg2 = MI->getOperand(Idx2).getReg();
73  bool Reg1IsKill = MI->getOperand(Idx1).isKill();
74  bool Reg2IsKill = MI->getOperand(Idx2).isKill();
75  bool ChangeReg0 = false;
76  if (HasDef && MI->getOperand(0).getReg() == Reg1) {
77    // Must be two address instruction!
78    assert(MI->getDesc().getOperandConstraint(0, TOI::TIED_TO) &&
79           "Expecting a two-address instruction!");
80    Reg2IsKill = false;
81    ChangeReg0 = true;
82  }
83
84  if (NewMI) {
85    // Create a new instruction.
86    unsigned Reg0 = HasDef
87      ? (ChangeReg0 ? Reg2 : MI->getOperand(0).getReg()) : 0;
88    bool Reg0IsDead = HasDef ? MI->getOperand(0).isDead() : false;
89    MachineFunction &MF = *MI->getParent()->getParent();
90    if (HasDef)
91      return BuildMI(MF, MI->getDebugLoc(), MI->getDesc())
92        .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead))
93        .addReg(Reg2, getKillRegState(Reg2IsKill))
94        .addReg(Reg1, getKillRegState(Reg2IsKill));
95    else
96      return BuildMI(MF, MI->getDebugLoc(), MI->getDesc())
97        .addReg(Reg2, getKillRegState(Reg2IsKill))
98        .addReg(Reg1, getKillRegState(Reg2IsKill));
99  }
100
101  if (ChangeReg0)
102    MI->getOperand(0).setReg(Reg2);
103  MI->getOperand(Idx2).setReg(Reg1);
104  MI->getOperand(Idx1).setReg(Reg2);
105  MI->getOperand(Idx2).setIsKill(Reg1IsKill);
106  MI->getOperand(Idx1).setIsKill(Reg2IsKill);
107  return MI;
108}
109
110/// findCommutedOpIndices - If specified MI is commutable, return the two
111/// operand indices that would swap value. Return true if the instruction
112/// is not in a form which this routine understands.
113bool TargetInstrInfoImpl::findCommutedOpIndices(MachineInstr *MI,
114                                                unsigned &SrcOpIdx1,
115                                                unsigned &SrcOpIdx2) const {
116  const TargetInstrDesc &TID = MI->getDesc();
117  if (!TID.isCommutable())
118    return false;
119  // This assumes v0 = op v1, v2 and commuting would swap v1 and v2. If this
120  // is not true, then the target must implement this.
121  SrcOpIdx1 = TID.getNumDefs();
122  SrcOpIdx2 = SrcOpIdx1 + 1;
123  if (!MI->getOperand(SrcOpIdx1).isReg() ||
124      !MI->getOperand(SrcOpIdx2).isReg())
125    // No idea.
126    return false;
127  return true;
128}
129
130
131bool TargetInstrInfoImpl::PredicateInstruction(MachineInstr *MI,
132                            const SmallVectorImpl<MachineOperand> &Pred) const {
133  bool MadeChange = false;
134  const TargetInstrDesc &TID = MI->getDesc();
135  if (!TID.isPredicable())
136    return false;
137
138  for (unsigned j = 0, i = 0, e = MI->getNumOperands(); i != e; ++i) {
139    if (TID.OpInfo[i].isPredicate()) {
140      MachineOperand &MO = MI->getOperand(i);
141      if (MO.isReg()) {
142        MO.setReg(Pred[j].getReg());
143        MadeChange = true;
144      } else if (MO.isImm()) {
145        MO.setImm(Pred[j].getImm());
146        MadeChange = true;
147      } else if (MO.isMBB()) {
148        MO.setMBB(Pred[j].getMBB());
149        MadeChange = true;
150      }
151      ++j;
152    }
153  }
154  return MadeChange;
155}
156
157void TargetInstrInfoImpl::reMaterialize(MachineBasicBlock &MBB,
158                                        MachineBasicBlock::iterator I,
159                                        unsigned DestReg,
160                                        unsigned SubIdx,
161                                        const MachineInstr *Orig,
162                                        const TargetRegisterInfo &TRI) const {
163  MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
164  MI->substituteRegister(MI->getOperand(0).getReg(), DestReg, SubIdx, TRI);
165  MBB.insert(I, MI);
166}
167
168bool TargetInstrInfoImpl::produceSameValue(const MachineInstr *MI0,
169                                           const MachineInstr *MI1) const {
170  return MI0->isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
171}
172
173MachineInstr *TargetInstrInfoImpl::duplicate(MachineInstr *Orig,
174                                             MachineFunction &MF) const {
175  assert(!Orig->getDesc().isNotDuplicable() &&
176         "Instruction cannot be duplicated");
177  return MF.CloneMachineInstr(Orig);
178}
179
180unsigned
181TargetInstrInfoImpl::GetFunctionSizeInBytes(const MachineFunction &MF) const {
182  unsigned FnSize = 0;
183  for (MachineFunction::const_iterator MBBI = MF.begin(), E = MF.end();
184       MBBI != E; ++MBBI) {
185    const MachineBasicBlock &MBB = *MBBI;
186    for (MachineBasicBlock::const_iterator I = MBB.begin(),E = MBB.end();
187         I != E; ++I)
188      FnSize += GetInstSizeInBytes(I);
189  }
190  return FnSize;
191}
192
193/// foldMemoryOperand - Attempt to fold a load or store of the specified stack
194/// slot into the specified machine instruction for the specified operand(s).
195/// If this is possible, a new instruction is returned with the specified
196/// operand folded, otherwise NULL is returned. The client is responsible for
197/// removing the old instruction and adding the new one in the instruction
198/// stream.
199MachineInstr*
200TargetInstrInfo::foldMemoryOperand(MachineFunction &MF,
201                                   MachineInstr* MI,
202                                   const SmallVectorImpl<unsigned> &Ops,
203                                   int FrameIndex) const {
204  unsigned Flags = 0;
205  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
206    if (MI->getOperand(Ops[i]).isDef())
207      Flags |= MachineMemOperand::MOStore;
208    else
209      Flags |= MachineMemOperand::MOLoad;
210
211  // Ask the target to do the actual folding.
212  MachineInstr *NewMI = foldMemoryOperandImpl(MF, MI, Ops, FrameIndex);
213  if (!NewMI) return 0;
214
215  assert((!(Flags & MachineMemOperand::MOStore) ||
216          NewMI->getDesc().mayStore()) &&
217         "Folded a def to a non-store!");
218  assert((!(Flags & MachineMemOperand::MOLoad) ||
219          NewMI->getDesc().mayLoad()) &&
220         "Folded a use to a non-load!");
221  const MachineFrameInfo &MFI = *MF.getFrameInfo();
222  assert(MFI.getObjectOffset(FrameIndex) != -1);
223  MachineMemOperand *MMO =
224    MF.getMachineMemOperand(PseudoSourceValue::getFixedStack(FrameIndex),
225                            Flags, /*Offset=*/0,
226                            MFI.getObjectSize(FrameIndex),
227                            MFI.getObjectAlignment(FrameIndex));
228  NewMI->addMemOperand(MF, MMO);
229
230  return NewMI;
231}
232
233/// foldMemoryOperand - Same as the previous version except it allows folding
234/// of any load and store from / to any address, not just from a specific
235/// stack slot.
236MachineInstr*
237TargetInstrInfo::foldMemoryOperand(MachineFunction &MF,
238                                   MachineInstr* MI,
239                                   const SmallVectorImpl<unsigned> &Ops,
240                                   MachineInstr* LoadMI) const {
241  assert(LoadMI->getDesc().canFoldAsLoad() && "LoadMI isn't foldable!");
242#ifndef NDEBUG
243  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
244    assert(MI->getOperand(Ops[i]).isUse() && "Folding load into def!");
245#endif
246
247  // Ask the target to do the actual folding.
248  MachineInstr *NewMI = foldMemoryOperandImpl(MF, MI, Ops, LoadMI);
249  if (!NewMI) return 0;
250
251  // Copy the memoperands from the load to the folded instruction.
252  NewMI->setMemRefs(LoadMI->memoperands_begin(),
253                    LoadMI->memoperands_end());
254
255  return NewMI;
256}
257
258bool TargetInstrInfo::
259isReallyTriviallyReMaterializableGeneric(const MachineInstr *MI,
260                                         AliasAnalysis *AA) const {
261  const MachineFunction &MF = *MI->getParent()->getParent();
262  const MachineRegisterInfo &MRI = MF.getRegInfo();
263  const TargetMachine &TM = MF.getTarget();
264  const TargetInstrInfo &TII = *TM.getInstrInfo();
265  const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
266
267  // A load from a fixed stack slot can be rematerialized. This may be
268  // redundant with subsequent checks, but it's target-independent,
269  // simple, and a common case.
270  int FrameIdx = 0;
271  if (TII.isLoadFromStackSlot(MI, FrameIdx) &&
272      MF.getFrameInfo()->isImmutableObjectIndex(FrameIdx))
273    return true;
274
275  const TargetInstrDesc &TID = MI->getDesc();
276
277  // Avoid instructions obviously unsafe for remat.
278  if (TID.hasUnmodeledSideEffects() || TID.isNotDuplicable() ||
279      TID.mayStore())
280    return false;
281
282  // Avoid instructions which load from potentially varying memory.
283  if (TID.mayLoad() && !MI->isInvariantLoad(AA))
284    return false;
285
286  // If any of the registers accessed are non-constant, conservatively assume
287  // the instruction is not rematerializable.
288  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
289    const MachineOperand &MO = MI->getOperand(i);
290    if (!MO.isReg()) continue;
291    unsigned Reg = MO.getReg();
292    if (Reg == 0)
293      continue;
294
295    // Check for a well-behaved physical register.
296    if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
297      if (MO.isUse()) {
298        // If the physreg has no defs anywhere, it's just an ambient register
299        // and we can freely move its uses. Alternatively, if it's allocatable,
300        // it could get allocated to something with a def during allocation.
301        if (!MRI.def_empty(Reg))
302          return false;
303        BitVector AllocatableRegs = TRI.getAllocatableSet(MF, 0);
304        if (AllocatableRegs.test(Reg))
305          return false;
306        // Check for a def among the register's aliases too.
307        for (const unsigned *Alias = TRI.getAliasSet(Reg); *Alias; ++Alias) {
308          unsigned AliasReg = *Alias;
309          if (!MRI.def_empty(AliasReg))
310            return false;
311          if (AllocatableRegs.test(AliasReg))
312            return false;
313        }
314      } else {
315        // A physreg def. We can't remat it.
316        return false;
317      }
318      continue;
319    }
320
321    // Only allow one virtual-register def, and that in the first operand.
322    if (MO.isDef() != (i == 0))
323      return false;
324
325    // For the def, it should be the only def of that register.
326    if (MO.isDef() && (llvm::next(MRI.def_begin(Reg)) != MRI.def_end() ||
327                       MRI.isLiveIn(Reg)))
328      return false;
329
330    // Don't allow any virtual-register uses. Rematting an instruction with
331    // virtual register uses would length the live ranges of the uses, which
332    // is not necessarily a good idea, certainly not "trivial".
333    if (MO.isUse())
334      return false;
335  }
336
337  // Everything checked out.
338  return true;
339}
340
341/// isSchedulingBoundary - Test if the given instruction should be
342/// considered a scheduling boundary. This primarily includes labels
343/// and terminators.
344bool TargetInstrInfoImpl::isSchedulingBoundary(const MachineInstr *MI,
345                                               const MachineBasicBlock *MBB,
346                                               const MachineFunction &MF) const{
347  // Terminators and labels can't be scheduled around.
348  if (MI->getDesc().isTerminator() || MI->isLabel())
349    return true;
350
351  // Don't attempt to schedule around any instruction that defines
352  // a stack-oriented pointer, as it's unlikely to be profitable. This
353  // saves compile time, because it doesn't require every single
354  // stack slot reference to depend on the instruction that does the
355  // modification.
356  const TargetLowering &TLI = *MF.getTarget().getTargetLowering();
357  if (MI->definesRegister(TLI.getStackPointerRegisterToSaveRestore()))
358    return true;
359
360  return false;
361}
362
363// Default implementation of CreateTargetPostRAHazardRecognizer.
364ScheduleHazardRecognizer *TargetInstrInfoImpl::
365CreateTargetPostRAHazardRecognizer(const InstrItineraryData &II) const {
366  return (ScheduleHazardRecognizer *)new PostRAHazardRecognizer(II);
367}
368