1//===-- JITMemoryManager.cpp - Memory Allocator for JIT'd code ------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file defines the DefaultJITMemoryManager class. 11// 12//===----------------------------------------------------------------------===// 13 14#define DEBUG_TYPE "jit" 15#include "llvm/ExecutionEngine/JITMemoryManager.h" 16#include "llvm/ADT/SmallPtrSet.h" 17#include "llvm/ADT/Statistic.h" 18#include "llvm/ADT/Twine.h" 19#include "llvm/GlobalValue.h" 20#include "llvm/Support/Allocator.h" 21#include "llvm/Support/Compiler.h" 22#include "llvm/Support/Debug.h" 23#include "llvm/Support/ErrorHandling.h" 24#include "llvm/Support/raw_ostream.h" 25#include "llvm/Support/Memory.h" 26#include <vector> 27#include <cassert> 28#include <climits> 29#include <cstring> 30using namespace llvm; 31 32STATISTIC(NumSlabs, "Number of slabs of memory allocated by the JIT"); 33 34JITMemoryManager::~JITMemoryManager() {} 35 36//===----------------------------------------------------------------------===// 37// Memory Block Implementation. 38//===----------------------------------------------------------------------===// 39 40namespace { 41 /// MemoryRangeHeader - For a range of memory, this is the header that we put 42 /// on the block of memory. It is carefully crafted to be one word of memory. 43 /// Allocated blocks have just this header, free'd blocks have FreeRangeHeader 44 /// which starts with this. 45 struct FreeRangeHeader; 46 struct MemoryRangeHeader { 47 /// ThisAllocated - This is true if this block is currently allocated. If 48 /// not, this can be converted to a FreeRangeHeader. 49 unsigned ThisAllocated : 1; 50 51 /// PrevAllocated - Keep track of whether the block immediately before us is 52 /// allocated. If not, the word immediately before this header is the size 53 /// of the previous block. 54 unsigned PrevAllocated : 1; 55 56 /// BlockSize - This is the size in bytes of this memory block, 57 /// including this header. 58 uintptr_t BlockSize : (sizeof(intptr_t)*CHAR_BIT - 2); 59 60 61 /// getBlockAfter - Return the memory block immediately after this one. 62 /// 63 MemoryRangeHeader &getBlockAfter() const { 64 return *(MemoryRangeHeader*)((char*)this+BlockSize); 65 } 66 67 /// getFreeBlockBefore - If the block before this one is free, return it, 68 /// otherwise return null. 69 FreeRangeHeader *getFreeBlockBefore() const { 70 if (PrevAllocated) return 0; 71 intptr_t PrevSize = ((intptr_t *)this)[-1]; 72 return (FreeRangeHeader*)((char*)this-PrevSize); 73 } 74 75 /// FreeBlock - Turn an allocated block into a free block, adjusting 76 /// bits in the object headers, and adding an end of region memory block. 77 FreeRangeHeader *FreeBlock(FreeRangeHeader *FreeList); 78 79 /// TrimAllocationToSize - If this allocated block is significantly larger 80 /// than NewSize, split it into two pieces (where the former is NewSize 81 /// bytes, including the header), and add the new block to the free list. 82 FreeRangeHeader *TrimAllocationToSize(FreeRangeHeader *FreeList, 83 uint64_t NewSize); 84 }; 85 86 /// FreeRangeHeader - For a memory block that isn't already allocated, this 87 /// keeps track of the current block and has a pointer to the next free block. 88 /// Free blocks are kept on a circularly linked list. 89 struct FreeRangeHeader : public MemoryRangeHeader { 90 FreeRangeHeader *Prev; 91 FreeRangeHeader *Next; 92 93 /// getMinBlockSize - Get the minimum size for a memory block. Blocks 94 /// smaller than this size cannot be created. 95 static unsigned getMinBlockSize() { 96 return sizeof(FreeRangeHeader)+sizeof(intptr_t); 97 } 98 99 /// SetEndOfBlockSizeMarker - The word at the end of every free block is 100 /// known to be the size of the free block. Set it for this block. 101 void SetEndOfBlockSizeMarker() { 102 void *EndOfBlock = (char*)this + BlockSize; 103 ((intptr_t *)EndOfBlock)[-1] = BlockSize; 104 } 105 106 FreeRangeHeader *RemoveFromFreeList() { 107 assert(Next->Prev == this && Prev->Next == this && "Freelist broken!"); 108 Next->Prev = Prev; 109 return Prev->Next = Next; 110 } 111 112 void AddToFreeList(FreeRangeHeader *FreeList) { 113 Next = FreeList; 114 Prev = FreeList->Prev; 115 Prev->Next = this; 116 Next->Prev = this; 117 } 118 119 /// GrowBlock - The block after this block just got deallocated. Merge it 120 /// into the current block. 121 void GrowBlock(uintptr_t NewSize); 122 123 /// AllocateBlock - Mark this entire block allocated, updating freelists 124 /// etc. This returns a pointer to the circular free-list. 125 FreeRangeHeader *AllocateBlock(); 126 }; 127} 128 129 130/// AllocateBlock - Mark this entire block allocated, updating freelists 131/// etc. This returns a pointer to the circular free-list. 132FreeRangeHeader *FreeRangeHeader::AllocateBlock() { 133 assert(!ThisAllocated && !getBlockAfter().PrevAllocated && 134 "Cannot allocate an allocated block!"); 135 // Mark this block allocated. 136 ThisAllocated = 1; 137 getBlockAfter().PrevAllocated = 1; 138 139 // Remove it from the free list. 140 return RemoveFromFreeList(); 141} 142 143/// FreeBlock - Turn an allocated block into a free block, adjusting 144/// bits in the object headers, and adding an end of region memory block. 145/// If possible, coalesce this block with neighboring blocks. Return the 146/// FreeRangeHeader to allocate from. 147FreeRangeHeader *MemoryRangeHeader::FreeBlock(FreeRangeHeader *FreeList) { 148 MemoryRangeHeader *FollowingBlock = &getBlockAfter(); 149 assert(ThisAllocated && "This block is already free!"); 150 assert(FollowingBlock->PrevAllocated && "Flags out of sync!"); 151 152 FreeRangeHeader *FreeListToReturn = FreeList; 153 154 // If the block after this one is free, merge it into this block. 155 if (!FollowingBlock->ThisAllocated) { 156 FreeRangeHeader &FollowingFreeBlock = *(FreeRangeHeader *)FollowingBlock; 157 // "FreeList" always needs to be a valid free block. If we're about to 158 // coalesce with it, update our notion of what the free list is. 159 if (&FollowingFreeBlock == FreeList) { 160 FreeList = FollowingFreeBlock.Next; 161 FreeListToReturn = 0; 162 assert(&FollowingFreeBlock != FreeList && "No tombstone block?"); 163 } 164 FollowingFreeBlock.RemoveFromFreeList(); 165 166 // Include the following block into this one. 167 BlockSize += FollowingFreeBlock.BlockSize; 168 FollowingBlock = &FollowingFreeBlock.getBlockAfter(); 169 170 // Tell the block after the block we are coalescing that this block is 171 // allocated. 172 FollowingBlock->PrevAllocated = 1; 173 } 174 175 assert(FollowingBlock->ThisAllocated && "Missed coalescing?"); 176 177 if (FreeRangeHeader *PrevFreeBlock = getFreeBlockBefore()) { 178 PrevFreeBlock->GrowBlock(PrevFreeBlock->BlockSize + BlockSize); 179 return FreeListToReturn ? FreeListToReturn : PrevFreeBlock; 180 } 181 182 // Otherwise, mark this block free. 183 FreeRangeHeader &FreeBlock = *(FreeRangeHeader*)this; 184 FollowingBlock->PrevAllocated = 0; 185 FreeBlock.ThisAllocated = 0; 186 187 // Link this into the linked list of free blocks. 188 FreeBlock.AddToFreeList(FreeList); 189 190 // Add a marker at the end of the block, indicating the size of this free 191 // block. 192 FreeBlock.SetEndOfBlockSizeMarker(); 193 return FreeListToReturn ? FreeListToReturn : &FreeBlock; 194} 195 196/// GrowBlock - The block after this block just got deallocated. Merge it 197/// into the current block. 198void FreeRangeHeader::GrowBlock(uintptr_t NewSize) { 199 assert(NewSize > BlockSize && "Not growing block?"); 200 BlockSize = NewSize; 201 SetEndOfBlockSizeMarker(); 202 getBlockAfter().PrevAllocated = 0; 203} 204 205/// TrimAllocationToSize - If this allocated block is significantly larger 206/// than NewSize, split it into two pieces (where the former is NewSize 207/// bytes, including the header), and add the new block to the free list. 208FreeRangeHeader *MemoryRangeHeader:: 209TrimAllocationToSize(FreeRangeHeader *FreeList, uint64_t NewSize) { 210 assert(ThisAllocated && getBlockAfter().PrevAllocated && 211 "Cannot deallocate part of an allocated block!"); 212 213 // Don't allow blocks to be trimmed below minimum required size 214 NewSize = std::max<uint64_t>(FreeRangeHeader::getMinBlockSize(), NewSize); 215 216 // Round up size for alignment of header. 217 unsigned HeaderAlign = __alignof(FreeRangeHeader); 218 NewSize = (NewSize+ (HeaderAlign-1)) & ~(HeaderAlign-1); 219 220 // Size is now the size of the block we will remove from the start of the 221 // current block. 222 assert(NewSize <= BlockSize && 223 "Allocating more space from this block than exists!"); 224 225 // If splitting this block will cause the remainder to be too small, do not 226 // split the block. 227 if (BlockSize <= NewSize+FreeRangeHeader::getMinBlockSize()) 228 return FreeList; 229 230 // Otherwise, we splice the required number of bytes out of this block, form 231 // a new block immediately after it, then mark this block allocated. 232 MemoryRangeHeader &FormerNextBlock = getBlockAfter(); 233 234 // Change the size of this block. 235 BlockSize = NewSize; 236 237 // Get the new block we just sliced out and turn it into a free block. 238 FreeRangeHeader &NewNextBlock = (FreeRangeHeader &)getBlockAfter(); 239 NewNextBlock.BlockSize = (char*)&FormerNextBlock - (char*)&NewNextBlock; 240 NewNextBlock.ThisAllocated = 0; 241 NewNextBlock.PrevAllocated = 1; 242 NewNextBlock.SetEndOfBlockSizeMarker(); 243 FormerNextBlock.PrevAllocated = 0; 244 NewNextBlock.AddToFreeList(FreeList); 245 return &NewNextBlock; 246} 247 248//===----------------------------------------------------------------------===// 249// Memory Block Implementation. 250//===----------------------------------------------------------------------===// 251 252namespace { 253 254 class DefaultJITMemoryManager; 255 256 class JITSlabAllocator : public SlabAllocator { 257 DefaultJITMemoryManager &JMM; 258 public: 259 JITSlabAllocator(DefaultJITMemoryManager &jmm) : JMM(jmm) { } 260 virtual ~JITSlabAllocator() { } 261 virtual MemSlab *Allocate(size_t Size); 262 virtual void Deallocate(MemSlab *Slab); 263 }; 264 265 /// DefaultJITMemoryManager - Manage memory for the JIT code generation. 266 /// This splits a large block of MAP_NORESERVE'd memory into two 267 /// sections, one for function stubs, one for the functions themselves. We 268 /// have to do this because we may need to emit a function stub while in the 269 /// middle of emitting a function, and we don't know how large the function we 270 /// are emitting is. 271 class DefaultJITMemoryManager : public JITMemoryManager { 272 273 // Whether to poison freed memory. 274 bool PoisonMemory; 275 276 /// LastSlab - This points to the last slab allocated and is used as the 277 /// NearBlock parameter to AllocateRWX so that we can attempt to lay out all 278 /// stubs, data, and code contiguously in memory. In general, however, this 279 /// is not possible because the NearBlock parameter is ignored on Windows 280 /// platforms and even on Unix it works on a best-effort pasis. 281 sys::MemoryBlock LastSlab; 282 283 // Memory slabs allocated by the JIT. We refer to them as slabs so we don't 284 // confuse them with the blocks of memory described above. 285 std::vector<sys::MemoryBlock> CodeSlabs; 286 JITSlabAllocator BumpSlabAllocator; 287 BumpPtrAllocator StubAllocator; 288 BumpPtrAllocator DataAllocator; 289 290 // Circular list of free blocks. 291 FreeRangeHeader *FreeMemoryList; 292 293 // When emitting code into a memory block, this is the block. 294 MemoryRangeHeader *CurBlock; 295 296 uint8_t *GOTBase; // Target Specific reserved memory 297 public: 298 DefaultJITMemoryManager(); 299 ~DefaultJITMemoryManager(); 300 301 /// allocateNewSlab - Allocates a new MemoryBlock and remembers it as the 302 /// last slab it allocated, so that subsequent allocations follow it. 303 sys::MemoryBlock allocateNewSlab(size_t size); 304 305 /// DefaultCodeSlabSize - When we have to go map more memory, we allocate at 306 /// least this much unless more is requested. 307 static const size_t DefaultCodeSlabSize; 308 309 /// DefaultSlabSize - Allocate data into slabs of this size unless we get 310 /// an allocation above SizeThreshold. 311 static const size_t DefaultSlabSize; 312 313 /// DefaultSizeThreshold - For any allocation larger than this threshold, we 314 /// should allocate a separate slab. 315 static const size_t DefaultSizeThreshold; 316 317 void AllocateGOT(); 318 319 // Testing methods. 320 virtual bool CheckInvariants(std::string &ErrorStr); 321 size_t GetDefaultCodeSlabSize() { return DefaultCodeSlabSize; } 322 size_t GetDefaultDataSlabSize() { return DefaultSlabSize; } 323 size_t GetDefaultStubSlabSize() { return DefaultSlabSize; } 324 unsigned GetNumCodeSlabs() { return CodeSlabs.size(); } 325 unsigned GetNumDataSlabs() { return DataAllocator.GetNumSlabs(); } 326 unsigned GetNumStubSlabs() { return StubAllocator.GetNumSlabs(); } 327 328 /// startFunctionBody - When a function starts, allocate a block of free 329 /// executable memory, returning a pointer to it and its actual size. 330 uint8_t *startFunctionBody(const Function *F, uintptr_t &ActualSize) { 331 332 FreeRangeHeader* candidateBlock = FreeMemoryList; 333 FreeRangeHeader* head = FreeMemoryList; 334 FreeRangeHeader* iter = head->Next; 335 336 uintptr_t largest = candidateBlock->BlockSize; 337 338 // Search for the largest free block 339 while (iter != head) { 340 if (iter->BlockSize > largest) { 341 largest = iter->BlockSize; 342 candidateBlock = iter; 343 } 344 iter = iter->Next; 345 } 346 347 largest = largest - sizeof(MemoryRangeHeader); 348 349 // If this block isn't big enough for the allocation desired, allocate 350 // another block of memory and add it to the free list. 351 if (largest < ActualSize || 352 largest <= FreeRangeHeader::getMinBlockSize()) { 353 DEBUG(dbgs() << "JIT: Allocating another slab of memory for function."); 354 candidateBlock = allocateNewCodeSlab((size_t)ActualSize); 355 } 356 357 // Select this candidate block for allocation 358 CurBlock = candidateBlock; 359 360 // Allocate the entire memory block. 361 FreeMemoryList = candidateBlock->AllocateBlock(); 362 ActualSize = CurBlock->BlockSize - sizeof(MemoryRangeHeader); 363 return (uint8_t *)(CurBlock + 1); 364 } 365 366 /// allocateNewCodeSlab - Helper method to allocate a new slab of code 367 /// memory from the OS and add it to the free list. Returns the new 368 /// FreeRangeHeader at the base of the slab. 369 FreeRangeHeader *allocateNewCodeSlab(size_t MinSize) { 370 // If the user needs at least MinSize free memory, then we account for 371 // two MemoryRangeHeaders: the one in the user's block, and the one at the 372 // end of the slab. 373 size_t PaddedMin = MinSize + 2 * sizeof(MemoryRangeHeader); 374 size_t SlabSize = std::max(DefaultCodeSlabSize, PaddedMin); 375 sys::MemoryBlock B = allocateNewSlab(SlabSize); 376 CodeSlabs.push_back(B); 377 char *MemBase = (char*)(B.base()); 378 379 // Put a tiny allocated block at the end of the memory chunk, so when 380 // FreeBlock calls getBlockAfter it doesn't fall off the end. 381 MemoryRangeHeader *EndBlock = 382 (MemoryRangeHeader*)(MemBase + B.size()) - 1; 383 EndBlock->ThisAllocated = 1; 384 EndBlock->PrevAllocated = 0; 385 EndBlock->BlockSize = sizeof(MemoryRangeHeader); 386 387 // Start out with a vast new block of free memory. 388 FreeRangeHeader *NewBlock = (FreeRangeHeader*)MemBase; 389 NewBlock->ThisAllocated = 0; 390 // Make sure getFreeBlockBefore doesn't look into unmapped memory. 391 NewBlock->PrevAllocated = 1; 392 NewBlock->BlockSize = (uintptr_t)EndBlock - (uintptr_t)NewBlock; 393 NewBlock->SetEndOfBlockSizeMarker(); 394 NewBlock->AddToFreeList(FreeMemoryList); 395 396 assert(NewBlock->BlockSize - sizeof(MemoryRangeHeader) >= MinSize && 397 "The block was too small!"); 398 return NewBlock; 399 } 400 401 /// endFunctionBody - The function F is now allocated, and takes the memory 402 /// in the range [FunctionStart,FunctionEnd). 403 void endFunctionBody(const Function *F, uint8_t *FunctionStart, 404 uint8_t *FunctionEnd) { 405 assert(FunctionEnd > FunctionStart); 406 assert(FunctionStart == (uint8_t *)(CurBlock+1) && 407 "Mismatched function start/end!"); 408 409 uintptr_t BlockSize = FunctionEnd - (uint8_t *)CurBlock; 410 411 // Release the memory at the end of this block that isn't needed. 412 FreeMemoryList =CurBlock->TrimAllocationToSize(FreeMemoryList, BlockSize); 413 } 414 415 /// allocateSpace - Allocate a memory block of the given size. This method 416 /// cannot be called between calls to startFunctionBody and endFunctionBody. 417 uint8_t *allocateSpace(intptr_t Size, unsigned Alignment) { 418 CurBlock = FreeMemoryList; 419 FreeMemoryList = FreeMemoryList->AllocateBlock(); 420 421 uint8_t *result = (uint8_t *)(CurBlock + 1); 422 423 if (Alignment == 0) Alignment = 1; 424 result = (uint8_t*)(((intptr_t)result+Alignment-1) & 425 ~(intptr_t)(Alignment-1)); 426 427 uintptr_t BlockSize = result + Size - (uint8_t *)CurBlock; 428 FreeMemoryList =CurBlock->TrimAllocationToSize(FreeMemoryList, BlockSize); 429 430 return result; 431 } 432 433 /// allocateStub - Allocate memory for a function stub. 434 uint8_t *allocateStub(const GlobalValue* F, unsigned StubSize, 435 unsigned Alignment) { 436 return (uint8_t*)StubAllocator.Allocate(StubSize, Alignment); 437 } 438 439 /// allocateGlobal - Allocate memory for a global. 440 uint8_t *allocateGlobal(uintptr_t Size, unsigned Alignment) { 441 return (uint8_t*)DataAllocator.Allocate(Size, Alignment); 442 } 443 444 /// startExceptionTable - Use startFunctionBody to allocate memory for the 445 /// function's exception table. 446 uint8_t* startExceptionTable(const Function* F, uintptr_t &ActualSize) { 447 return startFunctionBody(F, ActualSize); 448 } 449 450 /// endExceptionTable - The exception table of F is now allocated, 451 /// and takes the memory in the range [TableStart,TableEnd). 452 void endExceptionTable(const Function *F, uint8_t *TableStart, 453 uint8_t *TableEnd, uint8_t* FrameRegister) { 454 assert(TableEnd > TableStart); 455 assert(TableStart == (uint8_t *)(CurBlock+1) && 456 "Mismatched table start/end!"); 457 458 uintptr_t BlockSize = TableEnd - (uint8_t *)CurBlock; 459 460 // Release the memory at the end of this block that isn't needed. 461 FreeMemoryList =CurBlock->TrimAllocationToSize(FreeMemoryList, BlockSize); 462 } 463 464 uint8_t *getGOTBase() const { 465 return GOTBase; 466 } 467 468 void deallocateBlock(void *Block) { 469 // Find the block that is allocated for this function. 470 MemoryRangeHeader *MemRange = static_cast<MemoryRangeHeader*>(Block) - 1; 471 assert(MemRange->ThisAllocated && "Block isn't allocated!"); 472 473 // Fill the buffer with garbage! 474 if (PoisonMemory) { 475 memset(MemRange+1, 0xCD, MemRange->BlockSize-sizeof(*MemRange)); 476 } 477 478 // Free the memory. 479 FreeMemoryList = MemRange->FreeBlock(FreeMemoryList); 480 } 481 482 /// deallocateFunctionBody - Deallocate all memory for the specified 483 /// function body. 484 void deallocateFunctionBody(void *Body) { 485 if (Body) deallocateBlock(Body); 486 } 487 488 /// deallocateExceptionTable - Deallocate memory for the specified 489 /// exception table. 490 void deallocateExceptionTable(void *ET) { 491 if (ET) deallocateBlock(ET); 492 } 493 494 /// setMemoryWritable - When code generation is in progress, 495 /// the code pages may need permissions changed. 496 void setMemoryWritable() 497 { 498 for (unsigned i = 0, e = CodeSlabs.size(); i != e; ++i) 499 sys::Memory::setWritable(CodeSlabs[i]); 500 } 501 /// setMemoryExecutable - When code generation is done and we're ready to 502 /// start execution, the code pages may need permissions changed. 503 void setMemoryExecutable() 504 { 505 for (unsigned i = 0, e = CodeSlabs.size(); i != e; ++i) 506 sys::Memory::setExecutable(CodeSlabs[i]); 507 } 508 509 /// setPoisonMemory - Controls whether we write garbage over freed memory. 510 /// 511 void setPoisonMemory(bool poison) { 512 PoisonMemory = poison; 513 } 514 }; 515} 516 517MemSlab *JITSlabAllocator::Allocate(size_t Size) { 518 sys::MemoryBlock B = JMM.allocateNewSlab(Size); 519 MemSlab *Slab = (MemSlab*)B.base(); 520 Slab->Size = B.size(); 521 Slab->NextPtr = 0; 522 return Slab; 523} 524 525void JITSlabAllocator::Deallocate(MemSlab *Slab) { 526 sys::MemoryBlock B(Slab, Slab->Size); 527 sys::Memory::ReleaseRWX(B); 528} 529 530DefaultJITMemoryManager::DefaultJITMemoryManager() 531 : 532#ifdef NDEBUG 533 PoisonMemory(false), 534#else 535 PoisonMemory(true), 536#endif 537 LastSlab(0, 0), 538 BumpSlabAllocator(*this), 539 StubAllocator(DefaultSlabSize, DefaultSizeThreshold, BumpSlabAllocator), 540 DataAllocator(DefaultSlabSize, DefaultSizeThreshold, BumpSlabAllocator) { 541 542 // Allocate space for code. 543 sys::MemoryBlock MemBlock = allocateNewSlab(DefaultCodeSlabSize); 544 CodeSlabs.push_back(MemBlock); 545 uint8_t *MemBase = (uint8_t*)MemBlock.base(); 546 547 // We set up the memory chunk with 4 mem regions, like this: 548 // [ START 549 // [ Free #0 ] -> Large space to allocate functions from. 550 // [ Allocated #1 ] -> Tiny space to separate regions. 551 // [ Free #2 ] -> Tiny space so there is always at least 1 free block. 552 // [ Allocated #3 ] -> Tiny space to prevent looking past end of block. 553 // END ] 554 // 555 // The last three blocks are never deallocated or touched. 556 557 // Add MemoryRangeHeader to the end of the memory region, indicating that 558 // the space after the block of memory is allocated. This is block #3. 559 MemoryRangeHeader *Mem3 = (MemoryRangeHeader*)(MemBase+MemBlock.size())-1; 560 Mem3->ThisAllocated = 1; 561 Mem3->PrevAllocated = 0; 562 Mem3->BlockSize = sizeof(MemoryRangeHeader); 563 564 /// Add a tiny free region so that the free list always has one entry. 565 FreeRangeHeader *Mem2 = 566 (FreeRangeHeader *)(((char*)Mem3)-FreeRangeHeader::getMinBlockSize()); 567 Mem2->ThisAllocated = 0; 568 Mem2->PrevAllocated = 1; 569 Mem2->BlockSize = FreeRangeHeader::getMinBlockSize(); 570 Mem2->SetEndOfBlockSizeMarker(); 571 Mem2->Prev = Mem2; // Mem2 *is* the free list for now. 572 Mem2->Next = Mem2; 573 574 /// Add a tiny allocated region so that Mem2 is never coalesced away. 575 MemoryRangeHeader *Mem1 = (MemoryRangeHeader*)Mem2-1; 576 Mem1->ThisAllocated = 1; 577 Mem1->PrevAllocated = 0; 578 Mem1->BlockSize = sizeof(MemoryRangeHeader); 579 580 // Add a FreeRangeHeader to the start of the function body region, indicating 581 // that the space is free. Mark the previous block allocated so we never look 582 // at it. 583 FreeRangeHeader *Mem0 = (FreeRangeHeader*)MemBase; 584 Mem0->ThisAllocated = 0; 585 Mem0->PrevAllocated = 1; 586 Mem0->BlockSize = (char*)Mem1-(char*)Mem0; 587 Mem0->SetEndOfBlockSizeMarker(); 588 Mem0->AddToFreeList(Mem2); 589 590 // Start out with the freelist pointing to Mem0. 591 FreeMemoryList = Mem0; 592 593 GOTBase = NULL; 594} 595 596void DefaultJITMemoryManager::AllocateGOT() { 597 assert(GOTBase == 0 && "Cannot allocate the got multiple times"); 598 GOTBase = new uint8_t[sizeof(void*) * 8192]; 599 HasGOT = true; 600} 601 602DefaultJITMemoryManager::~DefaultJITMemoryManager() { 603 for (unsigned i = 0, e = CodeSlabs.size(); i != e; ++i) 604 sys::Memory::ReleaseRWX(CodeSlabs[i]); 605 606 delete[] GOTBase; 607} 608 609sys::MemoryBlock DefaultJITMemoryManager::allocateNewSlab(size_t size) { 610 // Allocate a new block close to the last one. 611 std::string ErrMsg; 612 sys::MemoryBlock *LastSlabPtr = LastSlab.base() ? &LastSlab : 0; 613 sys::MemoryBlock B = sys::Memory::AllocateRWX(size, LastSlabPtr, &ErrMsg); 614 if (B.base() == 0) { 615 report_fatal_error("Allocation failed when allocating new memory in the" 616 " JIT\n" + Twine(ErrMsg)); 617 } 618 LastSlab = B; 619 ++NumSlabs; 620 // Initialize the slab to garbage when debugging. 621 if (PoisonMemory) { 622 memset(B.base(), 0xCD, B.size()); 623 } 624 return B; 625} 626 627/// CheckInvariants - For testing only. Return "" if all internal invariants 628/// are preserved, and a helpful error message otherwise. For free and 629/// allocated blocks, make sure that adding BlockSize gives a valid block. 630/// For free blocks, make sure they're in the free list and that their end of 631/// block size marker is correct. This function should return an error before 632/// accessing bad memory. This function is defined here instead of in 633/// JITMemoryManagerTest.cpp so that we don't have to expose all of the 634/// implementation details of DefaultJITMemoryManager. 635bool DefaultJITMemoryManager::CheckInvariants(std::string &ErrorStr) { 636 raw_string_ostream Err(ErrorStr); 637 638 // Construct a the set of FreeRangeHeader pointers so we can query it 639 // efficiently. 640 llvm::SmallPtrSet<MemoryRangeHeader*, 16> FreeHdrSet; 641 FreeRangeHeader* FreeHead = FreeMemoryList; 642 FreeRangeHeader* FreeRange = FreeHead; 643 644 do { 645 // Check that the free range pointer is in the blocks we've allocated. 646 bool Found = false; 647 for (std::vector<sys::MemoryBlock>::iterator I = CodeSlabs.begin(), 648 E = CodeSlabs.end(); I != E && !Found; ++I) { 649 char *Start = (char*)I->base(); 650 char *End = Start + I->size(); 651 Found = (Start <= (char*)FreeRange && (char*)FreeRange < End); 652 } 653 if (!Found) { 654 Err << "Corrupt free list; points to " << FreeRange; 655 return false; 656 } 657 658 if (FreeRange->Next->Prev != FreeRange) { 659 Err << "Next and Prev pointers do not match."; 660 return false; 661 } 662 663 // Otherwise, add it to the set. 664 FreeHdrSet.insert(FreeRange); 665 FreeRange = FreeRange->Next; 666 } while (FreeRange != FreeHead); 667 668 // Go over each block, and look at each MemoryRangeHeader. 669 for (std::vector<sys::MemoryBlock>::iterator I = CodeSlabs.begin(), 670 E = CodeSlabs.end(); I != E; ++I) { 671 char *Start = (char*)I->base(); 672 char *End = Start + I->size(); 673 674 // Check each memory range. 675 for (MemoryRangeHeader *Hdr = (MemoryRangeHeader*)Start, *LastHdr = NULL; 676 Start <= (char*)Hdr && (char*)Hdr < End; 677 Hdr = &Hdr->getBlockAfter()) { 678 if (Hdr->ThisAllocated == 0) { 679 // Check that this range is in the free list. 680 if (!FreeHdrSet.count(Hdr)) { 681 Err << "Found free header at " << Hdr << " that is not in free list."; 682 return false; 683 } 684 685 // Now make sure the size marker at the end of the block is correct. 686 uintptr_t *Marker = ((uintptr_t*)&Hdr->getBlockAfter()) - 1; 687 if (!(Start <= (char*)Marker && (char*)Marker < End)) { 688 Err << "Block size in header points out of current MemoryBlock."; 689 return false; 690 } 691 if (Hdr->BlockSize != *Marker) { 692 Err << "End of block size marker (" << *Marker << ") " 693 << "and BlockSize (" << Hdr->BlockSize << ") don't match."; 694 return false; 695 } 696 } 697 698 if (LastHdr && LastHdr->ThisAllocated != Hdr->PrevAllocated) { 699 Err << "Hdr->PrevAllocated (" << Hdr->PrevAllocated << ") != " 700 << "LastHdr->ThisAllocated (" << LastHdr->ThisAllocated << ")"; 701 return false; 702 } else if (!LastHdr && !Hdr->PrevAllocated) { 703 Err << "The first header should have PrevAllocated true."; 704 return false; 705 } 706 707 // Remember the last header. 708 LastHdr = Hdr; 709 } 710 } 711 712 // All invariants are preserved. 713 return true; 714} 715 716JITMemoryManager *JITMemoryManager::CreateDefaultMemManager() { 717 return new DefaultJITMemoryManager(); 718} 719 720// Allocate memory for code in 512K slabs. 721const size_t DefaultJITMemoryManager::DefaultCodeSlabSize = 512 * 1024; 722 723// Allocate globals and stubs in slabs of 64K. (probably 16 pages) 724const size_t DefaultJITMemoryManager::DefaultSlabSize = 64 * 1024; 725 726// Waste at most 16K at the end of each bump slab. (probably 4 pages) 727const size_t DefaultJITMemoryManager::DefaultSizeThreshold = 16 * 1024; 728