1//===-- JITMemoryManager.cpp - Memory Allocator for JIT'd code ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the DefaultJITMemoryManager class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "jit"
15#include "llvm/ExecutionEngine/JITMemoryManager.h"
16#include "llvm/ADT/SmallPtrSet.h"
17#include "llvm/ADT/Statistic.h"
18#include "llvm/ADT/Twine.h"
19#include "llvm/GlobalValue.h"
20#include "llvm/Support/Allocator.h"
21#include "llvm/Support/Compiler.h"
22#include "llvm/Support/Debug.h"
23#include "llvm/Support/ErrorHandling.h"
24#include "llvm/Support/raw_ostream.h"
25#include "llvm/Support/Memory.h"
26#include <vector>
27#include <cassert>
28#include <climits>
29#include <cstring>
30using namespace llvm;
31
32STATISTIC(NumSlabs, "Number of slabs of memory allocated by the JIT");
33
34JITMemoryManager::~JITMemoryManager() {}
35
36//===----------------------------------------------------------------------===//
37// Memory Block Implementation.
38//===----------------------------------------------------------------------===//
39
40namespace {
41  /// MemoryRangeHeader - For a range of memory, this is the header that we put
42  /// on the block of memory.  It is carefully crafted to be one word of memory.
43  /// Allocated blocks have just this header, free'd blocks have FreeRangeHeader
44  /// which starts with this.
45  struct FreeRangeHeader;
46  struct MemoryRangeHeader {
47    /// ThisAllocated - This is true if this block is currently allocated.  If
48    /// not, this can be converted to a FreeRangeHeader.
49    unsigned ThisAllocated : 1;
50
51    /// PrevAllocated - Keep track of whether the block immediately before us is
52    /// allocated.  If not, the word immediately before this header is the size
53    /// of the previous block.
54    unsigned PrevAllocated : 1;
55
56    /// BlockSize - This is the size in bytes of this memory block,
57    /// including this header.
58    uintptr_t BlockSize : (sizeof(intptr_t)*CHAR_BIT - 2);
59
60
61    /// getBlockAfter - Return the memory block immediately after this one.
62    ///
63    MemoryRangeHeader &getBlockAfter() const {
64      return *(MemoryRangeHeader*)((char*)this+BlockSize);
65    }
66
67    /// getFreeBlockBefore - If the block before this one is free, return it,
68    /// otherwise return null.
69    FreeRangeHeader *getFreeBlockBefore() const {
70      if (PrevAllocated) return 0;
71      intptr_t PrevSize = ((intptr_t *)this)[-1];
72      return (FreeRangeHeader*)((char*)this-PrevSize);
73    }
74
75    /// FreeBlock - Turn an allocated block into a free block, adjusting
76    /// bits in the object headers, and adding an end of region memory block.
77    FreeRangeHeader *FreeBlock(FreeRangeHeader *FreeList);
78
79    /// TrimAllocationToSize - If this allocated block is significantly larger
80    /// than NewSize, split it into two pieces (where the former is NewSize
81    /// bytes, including the header), and add the new block to the free list.
82    FreeRangeHeader *TrimAllocationToSize(FreeRangeHeader *FreeList,
83                                          uint64_t NewSize);
84  };
85
86  /// FreeRangeHeader - For a memory block that isn't already allocated, this
87  /// keeps track of the current block and has a pointer to the next free block.
88  /// Free blocks are kept on a circularly linked list.
89  struct FreeRangeHeader : public MemoryRangeHeader {
90    FreeRangeHeader *Prev;
91    FreeRangeHeader *Next;
92
93    /// getMinBlockSize - Get the minimum size for a memory block.  Blocks
94    /// smaller than this size cannot be created.
95    static unsigned getMinBlockSize() {
96      return sizeof(FreeRangeHeader)+sizeof(intptr_t);
97    }
98
99    /// SetEndOfBlockSizeMarker - The word at the end of every free block is
100    /// known to be the size of the free block.  Set it for this block.
101    void SetEndOfBlockSizeMarker() {
102      void *EndOfBlock = (char*)this + BlockSize;
103      ((intptr_t *)EndOfBlock)[-1] = BlockSize;
104    }
105
106    FreeRangeHeader *RemoveFromFreeList() {
107      assert(Next->Prev == this && Prev->Next == this && "Freelist broken!");
108      Next->Prev = Prev;
109      return Prev->Next = Next;
110    }
111
112    void AddToFreeList(FreeRangeHeader *FreeList) {
113      Next = FreeList;
114      Prev = FreeList->Prev;
115      Prev->Next = this;
116      Next->Prev = this;
117    }
118
119    /// GrowBlock - The block after this block just got deallocated.  Merge it
120    /// into the current block.
121    void GrowBlock(uintptr_t NewSize);
122
123    /// AllocateBlock - Mark this entire block allocated, updating freelists
124    /// etc.  This returns a pointer to the circular free-list.
125    FreeRangeHeader *AllocateBlock();
126  };
127}
128
129
130/// AllocateBlock - Mark this entire block allocated, updating freelists
131/// etc.  This returns a pointer to the circular free-list.
132FreeRangeHeader *FreeRangeHeader::AllocateBlock() {
133  assert(!ThisAllocated && !getBlockAfter().PrevAllocated &&
134         "Cannot allocate an allocated block!");
135  // Mark this block allocated.
136  ThisAllocated = 1;
137  getBlockAfter().PrevAllocated = 1;
138
139  // Remove it from the free list.
140  return RemoveFromFreeList();
141}
142
143/// FreeBlock - Turn an allocated block into a free block, adjusting
144/// bits in the object headers, and adding an end of region memory block.
145/// If possible, coalesce this block with neighboring blocks.  Return the
146/// FreeRangeHeader to allocate from.
147FreeRangeHeader *MemoryRangeHeader::FreeBlock(FreeRangeHeader *FreeList) {
148  MemoryRangeHeader *FollowingBlock = &getBlockAfter();
149  assert(ThisAllocated && "This block is already free!");
150  assert(FollowingBlock->PrevAllocated && "Flags out of sync!");
151
152  FreeRangeHeader *FreeListToReturn = FreeList;
153
154  // If the block after this one is free, merge it into this block.
155  if (!FollowingBlock->ThisAllocated) {
156    FreeRangeHeader &FollowingFreeBlock = *(FreeRangeHeader *)FollowingBlock;
157    // "FreeList" always needs to be a valid free block.  If we're about to
158    // coalesce with it, update our notion of what the free list is.
159    if (&FollowingFreeBlock == FreeList) {
160      FreeList = FollowingFreeBlock.Next;
161      FreeListToReturn = 0;
162      assert(&FollowingFreeBlock != FreeList && "No tombstone block?");
163    }
164    FollowingFreeBlock.RemoveFromFreeList();
165
166    // Include the following block into this one.
167    BlockSize += FollowingFreeBlock.BlockSize;
168    FollowingBlock = &FollowingFreeBlock.getBlockAfter();
169
170    // Tell the block after the block we are coalescing that this block is
171    // allocated.
172    FollowingBlock->PrevAllocated = 1;
173  }
174
175  assert(FollowingBlock->ThisAllocated && "Missed coalescing?");
176
177  if (FreeRangeHeader *PrevFreeBlock = getFreeBlockBefore()) {
178    PrevFreeBlock->GrowBlock(PrevFreeBlock->BlockSize + BlockSize);
179    return FreeListToReturn ? FreeListToReturn : PrevFreeBlock;
180  }
181
182  // Otherwise, mark this block free.
183  FreeRangeHeader &FreeBlock = *(FreeRangeHeader*)this;
184  FollowingBlock->PrevAllocated = 0;
185  FreeBlock.ThisAllocated = 0;
186
187  // Link this into the linked list of free blocks.
188  FreeBlock.AddToFreeList(FreeList);
189
190  // Add a marker at the end of the block, indicating the size of this free
191  // block.
192  FreeBlock.SetEndOfBlockSizeMarker();
193  return FreeListToReturn ? FreeListToReturn : &FreeBlock;
194}
195
196/// GrowBlock - The block after this block just got deallocated.  Merge it
197/// into the current block.
198void FreeRangeHeader::GrowBlock(uintptr_t NewSize) {
199  assert(NewSize > BlockSize && "Not growing block?");
200  BlockSize = NewSize;
201  SetEndOfBlockSizeMarker();
202  getBlockAfter().PrevAllocated = 0;
203}
204
205/// TrimAllocationToSize - If this allocated block is significantly larger
206/// than NewSize, split it into two pieces (where the former is NewSize
207/// bytes, including the header), and add the new block to the free list.
208FreeRangeHeader *MemoryRangeHeader::
209TrimAllocationToSize(FreeRangeHeader *FreeList, uint64_t NewSize) {
210  assert(ThisAllocated && getBlockAfter().PrevAllocated &&
211         "Cannot deallocate part of an allocated block!");
212
213  // Don't allow blocks to be trimmed below minimum required size
214  NewSize = std::max<uint64_t>(FreeRangeHeader::getMinBlockSize(), NewSize);
215
216  // Round up size for alignment of header.
217  unsigned HeaderAlign = __alignof(FreeRangeHeader);
218  NewSize = (NewSize+ (HeaderAlign-1)) & ~(HeaderAlign-1);
219
220  // Size is now the size of the block we will remove from the start of the
221  // current block.
222  assert(NewSize <= BlockSize &&
223         "Allocating more space from this block than exists!");
224
225  // If splitting this block will cause the remainder to be too small, do not
226  // split the block.
227  if (BlockSize <= NewSize+FreeRangeHeader::getMinBlockSize())
228    return FreeList;
229
230  // Otherwise, we splice the required number of bytes out of this block, form
231  // a new block immediately after it, then mark this block allocated.
232  MemoryRangeHeader &FormerNextBlock = getBlockAfter();
233
234  // Change the size of this block.
235  BlockSize = NewSize;
236
237  // Get the new block we just sliced out and turn it into a free block.
238  FreeRangeHeader &NewNextBlock = (FreeRangeHeader &)getBlockAfter();
239  NewNextBlock.BlockSize = (char*)&FormerNextBlock - (char*)&NewNextBlock;
240  NewNextBlock.ThisAllocated = 0;
241  NewNextBlock.PrevAllocated = 1;
242  NewNextBlock.SetEndOfBlockSizeMarker();
243  FormerNextBlock.PrevAllocated = 0;
244  NewNextBlock.AddToFreeList(FreeList);
245  return &NewNextBlock;
246}
247
248//===----------------------------------------------------------------------===//
249// Memory Block Implementation.
250//===----------------------------------------------------------------------===//
251
252namespace {
253
254  class DefaultJITMemoryManager;
255
256  class JITSlabAllocator : public SlabAllocator {
257    DefaultJITMemoryManager &JMM;
258  public:
259    JITSlabAllocator(DefaultJITMemoryManager &jmm) : JMM(jmm) { }
260    virtual ~JITSlabAllocator() { }
261    virtual MemSlab *Allocate(size_t Size);
262    virtual void Deallocate(MemSlab *Slab);
263  };
264
265  /// DefaultJITMemoryManager - Manage memory for the JIT code generation.
266  /// This splits a large block of MAP_NORESERVE'd memory into two
267  /// sections, one for function stubs, one for the functions themselves.  We
268  /// have to do this because we may need to emit a function stub while in the
269  /// middle of emitting a function, and we don't know how large the function we
270  /// are emitting is.
271  class DefaultJITMemoryManager : public JITMemoryManager {
272
273    // Whether to poison freed memory.
274    bool PoisonMemory;
275
276    /// LastSlab - This points to the last slab allocated and is used as the
277    /// NearBlock parameter to AllocateRWX so that we can attempt to lay out all
278    /// stubs, data, and code contiguously in memory.  In general, however, this
279    /// is not possible because the NearBlock parameter is ignored on Windows
280    /// platforms and even on Unix it works on a best-effort pasis.
281    sys::MemoryBlock LastSlab;
282
283    // Memory slabs allocated by the JIT.  We refer to them as slabs so we don't
284    // confuse them with the blocks of memory described above.
285    std::vector<sys::MemoryBlock> CodeSlabs;
286    JITSlabAllocator BumpSlabAllocator;
287    BumpPtrAllocator StubAllocator;
288    BumpPtrAllocator DataAllocator;
289
290    // Circular list of free blocks.
291    FreeRangeHeader *FreeMemoryList;
292
293    // When emitting code into a memory block, this is the block.
294    MemoryRangeHeader *CurBlock;
295
296    uint8_t *GOTBase;     // Target Specific reserved memory
297  public:
298    DefaultJITMemoryManager();
299    ~DefaultJITMemoryManager();
300
301    /// allocateNewSlab - Allocates a new MemoryBlock and remembers it as the
302    /// last slab it allocated, so that subsequent allocations follow it.
303    sys::MemoryBlock allocateNewSlab(size_t size);
304
305    /// DefaultCodeSlabSize - When we have to go map more memory, we allocate at
306    /// least this much unless more is requested.
307    static const size_t DefaultCodeSlabSize;
308
309    /// DefaultSlabSize - Allocate data into slabs of this size unless we get
310    /// an allocation above SizeThreshold.
311    static const size_t DefaultSlabSize;
312
313    /// DefaultSizeThreshold - For any allocation larger than this threshold, we
314    /// should allocate a separate slab.
315    static const size_t DefaultSizeThreshold;
316
317    void AllocateGOT();
318
319    // Testing methods.
320    virtual bool CheckInvariants(std::string &ErrorStr);
321    size_t GetDefaultCodeSlabSize() { return DefaultCodeSlabSize; }
322    size_t GetDefaultDataSlabSize() { return DefaultSlabSize; }
323    size_t GetDefaultStubSlabSize() { return DefaultSlabSize; }
324    unsigned GetNumCodeSlabs() { return CodeSlabs.size(); }
325    unsigned GetNumDataSlabs() { return DataAllocator.GetNumSlabs(); }
326    unsigned GetNumStubSlabs() { return StubAllocator.GetNumSlabs(); }
327
328    /// startFunctionBody - When a function starts, allocate a block of free
329    /// executable memory, returning a pointer to it and its actual size.
330    uint8_t *startFunctionBody(const Function *F, uintptr_t &ActualSize) {
331
332      FreeRangeHeader* candidateBlock = FreeMemoryList;
333      FreeRangeHeader* head = FreeMemoryList;
334      FreeRangeHeader* iter = head->Next;
335
336      uintptr_t largest = candidateBlock->BlockSize;
337
338      // Search for the largest free block
339      while (iter != head) {
340        if (iter->BlockSize > largest) {
341          largest = iter->BlockSize;
342          candidateBlock = iter;
343        }
344        iter = iter->Next;
345      }
346
347      largest = largest - sizeof(MemoryRangeHeader);
348
349      // If this block isn't big enough for the allocation desired, allocate
350      // another block of memory and add it to the free list.
351      if (largest < ActualSize ||
352          largest <= FreeRangeHeader::getMinBlockSize()) {
353        DEBUG(dbgs() << "JIT: Allocating another slab of memory for function.");
354        candidateBlock = allocateNewCodeSlab((size_t)ActualSize);
355      }
356
357      // Select this candidate block for allocation
358      CurBlock = candidateBlock;
359
360      // Allocate the entire memory block.
361      FreeMemoryList = candidateBlock->AllocateBlock();
362      ActualSize = CurBlock->BlockSize - sizeof(MemoryRangeHeader);
363      return (uint8_t *)(CurBlock + 1);
364    }
365
366    /// allocateNewCodeSlab - Helper method to allocate a new slab of code
367    /// memory from the OS and add it to the free list.  Returns the new
368    /// FreeRangeHeader at the base of the slab.
369    FreeRangeHeader *allocateNewCodeSlab(size_t MinSize) {
370      // If the user needs at least MinSize free memory, then we account for
371      // two MemoryRangeHeaders: the one in the user's block, and the one at the
372      // end of the slab.
373      size_t PaddedMin = MinSize + 2 * sizeof(MemoryRangeHeader);
374      size_t SlabSize = std::max(DefaultCodeSlabSize, PaddedMin);
375      sys::MemoryBlock B = allocateNewSlab(SlabSize);
376      CodeSlabs.push_back(B);
377      char *MemBase = (char*)(B.base());
378
379      // Put a tiny allocated block at the end of the memory chunk, so when
380      // FreeBlock calls getBlockAfter it doesn't fall off the end.
381      MemoryRangeHeader *EndBlock =
382          (MemoryRangeHeader*)(MemBase + B.size()) - 1;
383      EndBlock->ThisAllocated = 1;
384      EndBlock->PrevAllocated = 0;
385      EndBlock->BlockSize = sizeof(MemoryRangeHeader);
386
387      // Start out with a vast new block of free memory.
388      FreeRangeHeader *NewBlock = (FreeRangeHeader*)MemBase;
389      NewBlock->ThisAllocated = 0;
390      // Make sure getFreeBlockBefore doesn't look into unmapped memory.
391      NewBlock->PrevAllocated = 1;
392      NewBlock->BlockSize = (uintptr_t)EndBlock - (uintptr_t)NewBlock;
393      NewBlock->SetEndOfBlockSizeMarker();
394      NewBlock->AddToFreeList(FreeMemoryList);
395
396      assert(NewBlock->BlockSize - sizeof(MemoryRangeHeader) >= MinSize &&
397             "The block was too small!");
398      return NewBlock;
399    }
400
401    /// endFunctionBody - The function F is now allocated, and takes the memory
402    /// in the range [FunctionStart,FunctionEnd).
403    void endFunctionBody(const Function *F, uint8_t *FunctionStart,
404                         uint8_t *FunctionEnd) {
405      assert(FunctionEnd > FunctionStart);
406      assert(FunctionStart == (uint8_t *)(CurBlock+1) &&
407             "Mismatched function start/end!");
408
409      uintptr_t BlockSize = FunctionEnd - (uint8_t *)CurBlock;
410
411      // Release the memory at the end of this block that isn't needed.
412      FreeMemoryList =CurBlock->TrimAllocationToSize(FreeMemoryList, BlockSize);
413    }
414
415    /// allocateSpace - Allocate a memory block of the given size.  This method
416    /// cannot be called between calls to startFunctionBody and endFunctionBody.
417    uint8_t *allocateSpace(intptr_t Size, unsigned Alignment) {
418      CurBlock = FreeMemoryList;
419      FreeMemoryList = FreeMemoryList->AllocateBlock();
420
421      uint8_t *result = (uint8_t *)(CurBlock + 1);
422
423      if (Alignment == 0) Alignment = 1;
424      result = (uint8_t*)(((intptr_t)result+Alignment-1) &
425               ~(intptr_t)(Alignment-1));
426
427      uintptr_t BlockSize = result + Size - (uint8_t *)CurBlock;
428      FreeMemoryList =CurBlock->TrimAllocationToSize(FreeMemoryList, BlockSize);
429
430      return result;
431    }
432
433    /// allocateStub - Allocate memory for a function stub.
434    uint8_t *allocateStub(const GlobalValue* F, unsigned StubSize,
435                          unsigned Alignment) {
436      return (uint8_t*)StubAllocator.Allocate(StubSize, Alignment);
437    }
438
439    /// allocateGlobal - Allocate memory for a global.
440    uint8_t *allocateGlobal(uintptr_t Size, unsigned Alignment) {
441      return (uint8_t*)DataAllocator.Allocate(Size, Alignment);
442    }
443
444    /// startExceptionTable - Use startFunctionBody to allocate memory for the
445    /// function's exception table.
446    uint8_t* startExceptionTable(const Function* F, uintptr_t &ActualSize) {
447      return startFunctionBody(F, ActualSize);
448    }
449
450    /// endExceptionTable - The exception table of F is now allocated,
451    /// and takes the memory in the range [TableStart,TableEnd).
452    void endExceptionTable(const Function *F, uint8_t *TableStart,
453                           uint8_t *TableEnd, uint8_t* FrameRegister) {
454      assert(TableEnd > TableStart);
455      assert(TableStart == (uint8_t *)(CurBlock+1) &&
456             "Mismatched table start/end!");
457
458      uintptr_t BlockSize = TableEnd - (uint8_t *)CurBlock;
459
460      // Release the memory at the end of this block that isn't needed.
461      FreeMemoryList =CurBlock->TrimAllocationToSize(FreeMemoryList, BlockSize);
462    }
463
464    uint8_t *getGOTBase() const {
465      return GOTBase;
466    }
467
468    void deallocateBlock(void *Block) {
469      // Find the block that is allocated for this function.
470      MemoryRangeHeader *MemRange = static_cast<MemoryRangeHeader*>(Block) - 1;
471      assert(MemRange->ThisAllocated && "Block isn't allocated!");
472
473      // Fill the buffer with garbage!
474      if (PoisonMemory) {
475        memset(MemRange+1, 0xCD, MemRange->BlockSize-sizeof(*MemRange));
476      }
477
478      // Free the memory.
479      FreeMemoryList = MemRange->FreeBlock(FreeMemoryList);
480    }
481
482    /// deallocateFunctionBody - Deallocate all memory for the specified
483    /// function body.
484    void deallocateFunctionBody(void *Body) {
485      if (Body) deallocateBlock(Body);
486    }
487
488    /// deallocateExceptionTable - Deallocate memory for the specified
489    /// exception table.
490    void deallocateExceptionTable(void *ET) {
491      if (ET) deallocateBlock(ET);
492    }
493
494    /// setMemoryWritable - When code generation is in progress,
495    /// the code pages may need permissions changed.
496    void setMemoryWritable()
497    {
498      for (unsigned i = 0, e = CodeSlabs.size(); i != e; ++i)
499        sys::Memory::setWritable(CodeSlabs[i]);
500    }
501    /// setMemoryExecutable - When code generation is done and we're ready to
502    /// start execution, the code pages may need permissions changed.
503    void setMemoryExecutable()
504    {
505      for (unsigned i = 0, e = CodeSlabs.size(); i != e; ++i)
506        sys::Memory::setExecutable(CodeSlabs[i]);
507    }
508
509    /// setPoisonMemory - Controls whether we write garbage over freed memory.
510    ///
511    void setPoisonMemory(bool poison) {
512      PoisonMemory = poison;
513    }
514  };
515}
516
517MemSlab *JITSlabAllocator::Allocate(size_t Size) {
518  sys::MemoryBlock B = JMM.allocateNewSlab(Size);
519  MemSlab *Slab = (MemSlab*)B.base();
520  Slab->Size = B.size();
521  Slab->NextPtr = 0;
522  return Slab;
523}
524
525void JITSlabAllocator::Deallocate(MemSlab *Slab) {
526  sys::MemoryBlock B(Slab, Slab->Size);
527  sys::Memory::ReleaseRWX(B);
528}
529
530DefaultJITMemoryManager::DefaultJITMemoryManager()
531  :
532#ifdef NDEBUG
533    PoisonMemory(false),
534#else
535    PoisonMemory(true),
536#endif
537    LastSlab(0, 0),
538    BumpSlabAllocator(*this),
539    StubAllocator(DefaultSlabSize, DefaultSizeThreshold, BumpSlabAllocator),
540    DataAllocator(DefaultSlabSize, DefaultSizeThreshold, BumpSlabAllocator) {
541
542  // Allocate space for code.
543  sys::MemoryBlock MemBlock = allocateNewSlab(DefaultCodeSlabSize);
544  CodeSlabs.push_back(MemBlock);
545  uint8_t *MemBase = (uint8_t*)MemBlock.base();
546
547  // We set up the memory chunk with 4 mem regions, like this:
548  //  [ START
549  //    [ Free      #0 ] -> Large space to allocate functions from.
550  //    [ Allocated #1 ] -> Tiny space to separate regions.
551  //    [ Free      #2 ] -> Tiny space so there is always at least 1 free block.
552  //    [ Allocated #3 ] -> Tiny space to prevent looking past end of block.
553  //  END ]
554  //
555  // The last three blocks are never deallocated or touched.
556
557  // Add MemoryRangeHeader to the end of the memory region, indicating that
558  // the space after the block of memory is allocated.  This is block #3.
559  MemoryRangeHeader *Mem3 = (MemoryRangeHeader*)(MemBase+MemBlock.size())-1;
560  Mem3->ThisAllocated = 1;
561  Mem3->PrevAllocated = 0;
562  Mem3->BlockSize     = sizeof(MemoryRangeHeader);
563
564  /// Add a tiny free region so that the free list always has one entry.
565  FreeRangeHeader *Mem2 =
566    (FreeRangeHeader *)(((char*)Mem3)-FreeRangeHeader::getMinBlockSize());
567  Mem2->ThisAllocated = 0;
568  Mem2->PrevAllocated = 1;
569  Mem2->BlockSize     = FreeRangeHeader::getMinBlockSize();
570  Mem2->SetEndOfBlockSizeMarker();
571  Mem2->Prev = Mem2;   // Mem2 *is* the free list for now.
572  Mem2->Next = Mem2;
573
574  /// Add a tiny allocated region so that Mem2 is never coalesced away.
575  MemoryRangeHeader *Mem1 = (MemoryRangeHeader*)Mem2-1;
576  Mem1->ThisAllocated = 1;
577  Mem1->PrevAllocated = 0;
578  Mem1->BlockSize     = sizeof(MemoryRangeHeader);
579
580  // Add a FreeRangeHeader to the start of the function body region, indicating
581  // that the space is free.  Mark the previous block allocated so we never look
582  // at it.
583  FreeRangeHeader *Mem0 = (FreeRangeHeader*)MemBase;
584  Mem0->ThisAllocated = 0;
585  Mem0->PrevAllocated = 1;
586  Mem0->BlockSize = (char*)Mem1-(char*)Mem0;
587  Mem0->SetEndOfBlockSizeMarker();
588  Mem0->AddToFreeList(Mem2);
589
590  // Start out with the freelist pointing to Mem0.
591  FreeMemoryList = Mem0;
592
593  GOTBase = NULL;
594}
595
596void DefaultJITMemoryManager::AllocateGOT() {
597  assert(GOTBase == 0 && "Cannot allocate the got multiple times");
598  GOTBase = new uint8_t[sizeof(void*) * 8192];
599  HasGOT = true;
600}
601
602DefaultJITMemoryManager::~DefaultJITMemoryManager() {
603  for (unsigned i = 0, e = CodeSlabs.size(); i != e; ++i)
604    sys::Memory::ReleaseRWX(CodeSlabs[i]);
605
606  delete[] GOTBase;
607}
608
609sys::MemoryBlock DefaultJITMemoryManager::allocateNewSlab(size_t size) {
610  // Allocate a new block close to the last one.
611  std::string ErrMsg;
612  sys::MemoryBlock *LastSlabPtr = LastSlab.base() ? &LastSlab : 0;
613  sys::MemoryBlock B = sys::Memory::AllocateRWX(size, LastSlabPtr, &ErrMsg);
614  if (B.base() == 0) {
615    report_fatal_error("Allocation failed when allocating new memory in the"
616                       " JIT\n" + Twine(ErrMsg));
617  }
618  LastSlab = B;
619  ++NumSlabs;
620  // Initialize the slab to garbage when debugging.
621  if (PoisonMemory) {
622    memset(B.base(), 0xCD, B.size());
623  }
624  return B;
625}
626
627/// CheckInvariants - For testing only.  Return "" if all internal invariants
628/// are preserved, and a helpful error message otherwise.  For free and
629/// allocated blocks, make sure that adding BlockSize gives a valid block.
630/// For free blocks, make sure they're in the free list and that their end of
631/// block size marker is correct.  This function should return an error before
632/// accessing bad memory.  This function is defined here instead of in
633/// JITMemoryManagerTest.cpp so that we don't have to expose all of the
634/// implementation details of DefaultJITMemoryManager.
635bool DefaultJITMemoryManager::CheckInvariants(std::string &ErrorStr) {
636  raw_string_ostream Err(ErrorStr);
637
638  // Construct a the set of FreeRangeHeader pointers so we can query it
639  // efficiently.
640  llvm::SmallPtrSet<MemoryRangeHeader*, 16> FreeHdrSet;
641  FreeRangeHeader* FreeHead = FreeMemoryList;
642  FreeRangeHeader* FreeRange = FreeHead;
643
644  do {
645    // Check that the free range pointer is in the blocks we've allocated.
646    bool Found = false;
647    for (std::vector<sys::MemoryBlock>::iterator I = CodeSlabs.begin(),
648         E = CodeSlabs.end(); I != E && !Found; ++I) {
649      char *Start = (char*)I->base();
650      char *End = Start + I->size();
651      Found = (Start <= (char*)FreeRange && (char*)FreeRange < End);
652    }
653    if (!Found) {
654      Err << "Corrupt free list; points to " << FreeRange;
655      return false;
656    }
657
658    if (FreeRange->Next->Prev != FreeRange) {
659      Err << "Next and Prev pointers do not match.";
660      return false;
661    }
662
663    // Otherwise, add it to the set.
664    FreeHdrSet.insert(FreeRange);
665    FreeRange = FreeRange->Next;
666  } while (FreeRange != FreeHead);
667
668  // Go over each block, and look at each MemoryRangeHeader.
669  for (std::vector<sys::MemoryBlock>::iterator I = CodeSlabs.begin(),
670       E = CodeSlabs.end(); I != E; ++I) {
671    char *Start = (char*)I->base();
672    char *End = Start + I->size();
673
674    // Check each memory range.
675    for (MemoryRangeHeader *Hdr = (MemoryRangeHeader*)Start, *LastHdr = NULL;
676         Start <= (char*)Hdr && (char*)Hdr < End;
677         Hdr = &Hdr->getBlockAfter()) {
678      if (Hdr->ThisAllocated == 0) {
679        // Check that this range is in the free list.
680        if (!FreeHdrSet.count(Hdr)) {
681          Err << "Found free header at " << Hdr << " that is not in free list.";
682          return false;
683        }
684
685        // Now make sure the size marker at the end of the block is correct.
686        uintptr_t *Marker = ((uintptr_t*)&Hdr->getBlockAfter()) - 1;
687        if (!(Start <= (char*)Marker && (char*)Marker < End)) {
688          Err << "Block size in header points out of current MemoryBlock.";
689          return false;
690        }
691        if (Hdr->BlockSize != *Marker) {
692          Err << "End of block size marker (" << *Marker << ") "
693              << "and BlockSize (" << Hdr->BlockSize << ") don't match.";
694          return false;
695        }
696      }
697
698      if (LastHdr && LastHdr->ThisAllocated != Hdr->PrevAllocated) {
699        Err << "Hdr->PrevAllocated (" << Hdr->PrevAllocated << ") != "
700            << "LastHdr->ThisAllocated (" << LastHdr->ThisAllocated << ")";
701        return false;
702      } else if (!LastHdr && !Hdr->PrevAllocated) {
703        Err << "The first header should have PrevAllocated true.";
704        return false;
705      }
706
707      // Remember the last header.
708      LastHdr = Hdr;
709    }
710  }
711
712  // All invariants are preserved.
713  return true;
714}
715
716JITMemoryManager *JITMemoryManager::CreateDefaultMemManager() {
717  return new DefaultJITMemoryManager();
718}
719
720// Allocate memory for code in 512K slabs.
721const size_t DefaultJITMemoryManager::DefaultCodeSlabSize = 512 * 1024;
722
723// Allocate globals and stubs in slabs of 64K.  (probably 16 pages)
724const size_t DefaultJITMemoryManager::DefaultSlabSize = 64 * 1024;
725
726// Waste at most 16K at the end of each bump slab.  (probably 4 pages)
727const size_t DefaultJITMemoryManager::DefaultSizeThreshold = 16 * 1024;
728