1//===-- MBlazeISelLowering.cpp - MBlaze DAG Lowering Implementation -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that MBlaze uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "mblaze-lower"
16#include "MBlazeISelLowering.h"
17#include "MBlazeMachineFunction.h"
18#include "MBlazeTargetMachine.h"
19#include "MBlazeTargetObjectFile.h"
20#include "MBlazeSubtarget.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/Function.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/Intrinsics.h"
25#include "llvm/CallingConv.h"
26#include "llvm/CodeGen/CallingConvLower.h"
27#include "llvm/CodeGen/MachineFrameInfo.h"
28#include "llvm/CodeGen/MachineFunction.h"
29#include "llvm/CodeGen/MachineInstrBuilder.h"
30#include "llvm/CodeGen/MachineRegisterInfo.h"
31#include "llvm/CodeGen/SelectionDAGISel.h"
32#include "llvm/CodeGen/ValueTypes.h"
33#include "llvm/Support/Debug.h"
34#include "llvm/Support/ErrorHandling.h"
35#include "llvm/Support/raw_ostream.h"
36using namespace llvm;
37
38static bool CC_MBlaze_AssignReg(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
39                                CCValAssign::LocInfo &LocInfo,
40                                ISD::ArgFlagsTy &ArgFlags,
41                                CCState &State);
42
43const char *MBlazeTargetLowering::getTargetNodeName(unsigned Opcode) const {
44  switch (Opcode) {
45    case MBlazeISD::JmpLink    : return "MBlazeISD::JmpLink";
46    case MBlazeISD::GPRel      : return "MBlazeISD::GPRel";
47    case MBlazeISD::Wrap       : return "MBlazeISD::Wrap";
48    case MBlazeISD::ICmp       : return "MBlazeISD::ICmp";
49    case MBlazeISD::Ret        : return "MBlazeISD::Ret";
50    case MBlazeISD::Select_CC  : return "MBlazeISD::Select_CC";
51    default                    : return NULL;
52  }
53}
54
55MBlazeTargetLowering::MBlazeTargetLowering(MBlazeTargetMachine &TM)
56  : TargetLowering(TM, new MBlazeTargetObjectFile()) {
57  Subtarget = &TM.getSubtarget<MBlazeSubtarget>();
58
59  // MBlaze does not have i1 type, so use i32 for
60  // setcc operations results (slt, sgt, ...).
61  setBooleanContents(ZeroOrOneBooleanContent);
62  setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
63
64  // Set up the register classes
65  addRegisterClass(MVT::i32, MBlaze::GPRRegisterClass);
66  if (Subtarget->hasFPU()) {
67    addRegisterClass(MVT::f32, MBlaze::GPRRegisterClass);
68    setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
69  }
70
71  // Floating point operations which are not supported
72  setOperationAction(ISD::FREM,       MVT::f32, Expand);
73  setOperationAction(ISD::FMA,        MVT::f32, Expand);
74  setOperationAction(ISD::UINT_TO_FP, MVT::i8,  Expand);
75  setOperationAction(ISD::UINT_TO_FP, MVT::i16, Expand);
76  setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
77  setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
78  setOperationAction(ISD::FP_ROUND,   MVT::f32, Expand);
79  setOperationAction(ISD::FP_ROUND,   MVT::f64, Expand);
80  setOperationAction(ISD::FCOPYSIGN,  MVT::f32, Expand);
81  setOperationAction(ISD::FCOPYSIGN,  MVT::f64, Expand);
82  setOperationAction(ISD::FSIN,       MVT::f32, Expand);
83  setOperationAction(ISD::FCOS,       MVT::f32, Expand);
84  setOperationAction(ISD::FPOWI,      MVT::f32, Expand);
85  setOperationAction(ISD::FPOW,       MVT::f32, Expand);
86  setOperationAction(ISD::FLOG,       MVT::f32, Expand);
87  setOperationAction(ISD::FLOG2,      MVT::f32, Expand);
88  setOperationAction(ISD::FLOG10,     MVT::f32, Expand);
89  setOperationAction(ISD::FEXP,       MVT::f32, Expand);
90
91  // Load extented operations for i1 types must be promoted
92  setLoadExtAction(ISD::EXTLOAD,  MVT::i1,  Promote);
93  setLoadExtAction(ISD::ZEXTLOAD, MVT::i1,  Promote);
94  setLoadExtAction(ISD::SEXTLOAD, MVT::i1,  Promote);
95
96  // Sign extended loads must be expanded
97  setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Expand);
98  setLoadExtAction(ISD::SEXTLOAD, MVT::i16, Expand);
99
100  // MBlaze has no REM or DIVREM operations.
101  setOperationAction(ISD::UREM,    MVT::i32, Expand);
102  setOperationAction(ISD::SREM,    MVT::i32, Expand);
103  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
104  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
105
106  // If the processor doesn't support multiply then expand it
107  if (!Subtarget->hasMul()) {
108    setOperationAction(ISD::MUL, MVT::i32, Expand);
109  }
110
111  // If the processor doesn't support 64-bit multiply then expand
112  if (!Subtarget->hasMul() || !Subtarget->hasMul64()) {
113    setOperationAction(ISD::MULHS, MVT::i32, Expand);
114    setOperationAction(ISD::MULHS, MVT::i64, Expand);
115    setOperationAction(ISD::MULHU, MVT::i32, Expand);
116    setOperationAction(ISD::MULHU, MVT::i64, Expand);
117  }
118
119  // If the processor doesn't support division then expand
120  if (!Subtarget->hasDiv()) {
121    setOperationAction(ISD::UDIV, MVT::i32, Expand);
122    setOperationAction(ISD::SDIV, MVT::i32, Expand);
123  }
124
125  // Expand unsupported conversions
126  setOperationAction(ISD::BITCAST, MVT::f32, Expand);
127  setOperationAction(ISD::BITCAST, MVT::i32, Expand);
128
129  // Expand SELECT_CC
130  setOperationAction(ISD::SELECT_CC, MVT::Other, Expand);
131
132  // MBlaze doesn't have MUL_LOHI
133  setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
134  setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
135  setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
136  setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
137
138  // Used by legalize types to correctly generate the setcc result.
139  // Without this, every float setcc comes with a AND/OR with the result,
140  // we don't want this, since the fpcmp result goes to a flag register,
141  // which is used implicitly by brcond and select operations.
142  AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
143  AddPromotedToType(ISD::SELECT, MVT::i1, MVT::i32);
144  AddPromotedToType(ISD::SELECT_CC, MVT::i1, MVT::i32);
145
146  // MBlaze Custom Operations
147  setOperationAction(ISD::GlobalAddress,      MVT::i32,   Custom);
148  setOperationAction(ISD::GlobalTLSAddress,   MVT::i32,   Custom);
149  setOperationAction(ISD::JumpTable,          MVT::i32,   Custom);
150  setOperationAction(ISD::ConstantPool,       MVT::i32,   Custom);
151
152  // Variable Argument support
153  setOperationAction(ISD::VASTART,            MVT::Other, Custom);
154  setOperationAction(ISD::VAEND,              MVT::Other, Expand);
155  setOperationAction(ISD::VAARG,              MVT::Other, Expand);
156  setOperationAction(ISD::VACOPY,             MVT::Other, Expand);
157
158
159  // Operations not directly supported by MBlaze.
160  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32,   Expand);
161  setOperationAction(ISD::BR_JT,              MVT::Other, Expand);
162  setOperationAction(ISD::BR_CC,              MVT::Other, Expand);
163  setOperationAction(ISD::SIGN_EXTEND_INREG,  MVT::i1,    Expand);
164  setOperationAction(ISD::ROTL,               MVT::i32,   Expand);
165  setOperationAction(ISD::ROTR,               MVT::i32,   Expand);
166  setOperationAction(ISD::SHL_PARTS,          MVT::i32,   Expand);
167  setOperationAction(ISD::SRA_PARTS,          MVT::i32,   Expand);
168  setOperationAction(ISD::SRL_PARTS,          MVT::i32,   Expand);
169  setOperationAction(ISD::CTLZ,               MVT::i32,   Expand);
170  setOperationAction(ISD::CTTZ,               MVT::i32,   Expand);
171  setOperationAction(ISD::CTPOP,              MVT::i32,   Expand);
172  setOperationAction(ISD::BSWAP,              MVT::i32,   Expand);
173
174  // We don't have line number support yet.
175  setOperationAction(ISD::EH_LABEL,          MVT::Other, Expand);
176
177  // Use the default for now
178  setOperationAction(ISD::STACKSAVE,         MVT::Other, Expand);
179  setOperationAction(ISD::STACKRESTORE,      MVT::Other, Expand);
180
181  // MBlaze doesn't have extending float->double load/store
182  setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
183  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
184
185  setMinFunctionAlignment(2);
186
187  setStackPointerRegisterToSaveRestore(MBlaze::R1);
188  computeRegisterProperties();
189}
190
191EVT MBlazeTargetLowering::getSetCCResultType(EVT VT) const {
192  return MVT::i32;
193}
194
195SDValue MBlazeTargetLowering::LowerOperation(SDValue Op,
196                                             SelectionDAG &DAG) const {
197  switch (Op.getOpcode())
198  {
199    case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
200    case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
201    case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
202    case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
203    case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
204    case ISD::VASTART:            return LowerVASTART(Op, DAG);
205  }
206  return SDValue();
207}
208
209//===----------------------------------------------------------------------===//
210//  Lower helper functions
211//===----------------------------------------------------------------------===//
212MachineBasicBlock*
213MBlazeTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
214                                                  MachineBasicBlock *MBB)
215                                                  const {
216  switch (MI->getOpcode()) {
217  default: assert(false && "Unexpected instr type to insert");
218
219  case MBlaze::ShiftRL:
220  case MBlaze::ShiftRA:
221  case MBlaze::ShiftL:
222    return EmitCustomShift(MI, MBB);
223
224  case MBlaze::Select_FCC:
225  case MBlaze::Select_CC:
226    return EmitCustomSelect(MI, MBB);
227
228  case MBlaze::CAS32:
229  case MBlaze::SWP32:
230  case MBlaze::LAA32:
231  case MBlaze::LAS32:
232  case MBlaze::LAD32:
233  case MBlaze::LAO32:
234  case MBlaze::LAX32:
235  case MBlaze::LAN32:
236    return EmitCustomAtomic(MI, MBB);
237
238  case MBlaze::MEMBARRIER:
239    // The Microblaze does not need memory barriers. Just delete the pseudo
240    // instruction and finish.
241    MI->eraseFromParent();
242    return MBB;
243  }
244}
245
246MachineBasicBlock*
247MBlazeTargetLowering::EmitCustomShift(MachineInstr *MI,
248                                      MachineBasicBlock *MBB) const {
249  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
250  DebugLoc dl = MI->getDebugLoc();
251
252  // To "insert" a shift left instruction, we actually have to insert a
253  // simple loop.  The incoming instruction knows the destination vreg to
254  // set, the source vreg to operate over and the shift amount.
255  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
256  MachineFunction::iterator It = MBB;
257  ++It;
258
259  // start:
260  //   andi     samt, samt, 31
261  //   beqid    samt, finish
262  //   add      dst, src, r0
263  // loop:
264  //   addik    samt, samt, -1
265  //   sra      dst, dst
266  //   bneid    samt, loop
267  //   nop
268  // finish:
269  MachineFunction *F = MBB->getParent();
270  MachineRegisterInfo &R = F->getRegInfo();
271  MachineBasicBlock *loop = F->CreateMachineBasicBlock(LLVM_BB);
272  MachineBasicBlock *finish = F->CreateMachineBasicBlock(LLVM_BB);
273  F->insert(It, loop);
274  F->insert(It, finish);
275
276  // Update machine-CFG edges by transferring adding all successors and
277  // remaining instructions from the current block to the new block which
278  // will contain the Phi node for the select.
279  finish->splice(finish->begin(), MBB,
280                 llvm::next(MachineBasicBlock::iterator(MI)),
281                 MBB->end());
282  finish->transferSuccessorsAndUpdatePHIs(MBB);
283
284  // Add the true and fallthrough blocks as its successors.
285  MBB->addSuccessor(loop);
286  MBB->addSuccessor(finish);
287
288  // Next, add the finish block as a successor of the loop block
289  loop->addSuccessor(finish);
290  loop->addSuccessor(loop);
291
292  unsigned IAMT = R.createVirtualRegister(MBlaze::GPRRegisterClass);
293  BuildMI(MBB, dl, TII->get(MBlaze::ANDI), IAMT)
294    .addReg(MI->getOperand(2).getReg())
295    .addImm(31);
296
297  unsigned IVAL = R.createVirtualRegister(MBlaze::GPRRegisterClass);
298  BuildMI(MBB, dl, TII->get(MBlaze::ADDIK), IVAL)
299    .addReg(MI->getOperand(1).getReg())
300    .addImm(0);
301
302  BuildMI(MBB, dl, TII->get(MBlaze::BEQID))
303    .addReg(IAMT)
304    .addMBB(finish);
305
306  unsigned DST = R.createVirtualRegister(MBlaze::GPRRegisterClass);
307  unsigned NDST = R.createVirtualRegister(MBlaze::GPRRegisterClass);
308  BuildMI(loop, dl, TII->get(MBlaze::PHI), DST)
309    .addReg(IVAL).addMBB(MBB)
310    .addReg(NDST).addMBB(loop);
311
312  unsigned SAMT = R.createVirtualRegister(MBlaze::GPRRegisterClass);
313  unsigned NAMT = R.createVirtualRegister(MBlaze::GPRRegisterClass);
314  BuildMI(loop, dl, TII->get(MBlaze::PHI), SAMT)
315    .addReg(IAMT).addMBB(MBB)
316    .addReg(NAMT).addMBB(loop);
317
318  if (MI->getOpcode() == MBlaze::ShiftL)
319    BuildMI(loop, dl, TII->get(MBlaze::ADD), NDST).addReg(DST).addReg(DST);
320  else if (MI->getOpcode() == MBlaze::ShiftRA)
321    BuildMI(loop, dl, TII->get(MBlaze::SRA), NDST).addReg(DST);
322  else if (MI->getOpcode() == MBlaze::ShiftRL)
323    BuildMI(loop, dl, TII->get(MBlaze::SRL), NDST).addReg(DST);
324  else
325    llvm_unreachable("Cannot lower unknown shift instruction");
326
327  BuildMI(loop, dl, TII->get(MBlaze::ADDIK), NAMT)
328    .addReg(SAMT)
329    .addImm(-1);
330
331  BuildMI(loop, dl, TII->get(MBlaze::BNEID))
332    .addReg(NAMT)
333    .addMBB(loop);
334
335  BuildMI(*finish, finish->begin(), dl,
336          TII->get(MBlaze::PHI), MI->getOperand(0).getReg())
337    .addReg(IVAL).addMBB(MBB)
338    .addReg(NDST).addMBB(loop);
339
340  // The pseudo instruction is no longer needed so remove it
341  MI->eraseFromParent();
342  return finish;
343}
344
345MachineBasicBlock*
346MBlazeTargetLowering::EmitCustomSelect(MachineInstr *MI,
347                                       MachineBasicBlock *MBB) const {
348  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
349  DebugLoc dl = MI->getDebugLoc();
350
351  // To "insert" a SELECT_CC instruction, we actually have to insert the
352  // diamond control-flow pattern.  The incoming instruction knows the
353  // destination vreg to set, the condition code register to branch on, the
354  // true/false values to select between, and a branch opcode to use.
355  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
356  MachineFunction::iterator It = MBB;
357  ++It;
358
359  //  thisMBB:
360  //  ...
361  //   TrueVal = ...
362  //   setcc r1, r2, r3
363  //   bNE   r1, r0, copy1MBB
364  //   fallthrough --> copy0MBB
365  MachineFunction *F = MBB->getParent();
366  MachineBasicBlock *flsBB = F->CreateMachineBasicBlock(LLVM_BB);
367  MachineBasicBlock *dneBB = F->CreateMachineBasicBlock(LLVM_BB);
368
369  unsigned Opc;
370  switch (MI->getOperand(4).getImm()) {
371  default: llvm_unreachable("Unknown branch condition");
372  case MBlazeCC::EQ: Opc = MBlaze::BEQID; break;
373  case MBlazeCC::NE: Opc = MBlaze::BNEID; break;
374  case MBlazeCC::GT: Opc = MBlaze::BGTID; break;
375  case MBlazeCC::LT: Opc = MBlaze::BLTID; break;
376  case MBlazeCC::GE: Opc = MBlaze::BGEID; break;
377  case MBlazeCC::LE: Opc = MBlaze::BLEID; break;
378  }
379
380  F->insert(It, flsBB);
381  F->insert(It, dneBB);
382
383  // Transfer the remainder of MBB and its successor edges to dneBB.
384  dneBB->splice(dneBB->begin(), MBB,
385                llvm::next(MachineBasicBlock::iterator(MI)),
386                MBB->end());
387  dneBB->transferSuccessorsAndUpdatePHIs(MBB);
388
389  MBB->addSuccessor(flsBB);
390  MBB->addSuccessor(dneBB);
391  flsBB->addSuccessor(dneBB);
392
393  BuildMI(MBB, dl, TII->get(Opc))
394    .addReg(MI->getOperand(3).getReg())
395    .addMBB(dneBB);
396
397  //  sinkMBB:
398  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
399  //  ...
400  //BuildMI(dneBB, dl, TII->get(MBlaze::PHI), MI->getOperand(0).getReg())
401  //  .addReg(MI->getOperand(1).getReg()).addMBB(flsBB)
402  //  .addReg(MI->getOperand(2).getReg()).addMBB(BB);
403
404  BuildMI(*dneBB, dneBB->begin(), dl,
405          TII->get(MBlaze::PHI), MI->getOperand(0).getReg())
406    .addReg(MI->getOperand(2).getReg()).addMBB(flsBB)
407    .addReg(MI->getOperand(1).getReg()).addMBB(MBB);
408
409  MI->eraseFromParent();   // The pseudo instruction is gone now.
410  return dneBB;
411}
412
413MachineBasicBlock*
414MBlazeTargetLowering::EmitCustomAtomic(MachineInstr *MI,
415                                       MachineBasicBlock *MBB) const {
416  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
417  DebugLoc dl = MI->getDebugLoc();
418
419  // All atomic instructions on the Microblaze are implemented using the
420  // load-linked / store-conditional style atomic instruction sequences.
421  // Thus, all operations will look something like the following:
422  //
423  //  start:
424  //    lwx     RV, RP, 0
425  //    <do stuff>
426  //    swx     RV, RP, 0
427  //    addic   RC, R0, 0
428  //    bneid   RC, start
429  //
430  //  exit:
431  //
432  // To "insert" a shift left instruction, we actually have to insert a
433  // simple loop.  The incoming instruction knows the destination vreg to
434  // set, the source vreg to operate over and the shift amount.
435  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
436  MachineFunction::iterator It = MBB;
437  ++It;
438
439  // start:
440  //   andi     samt, samt, 31
441  //   beqid    samt, finish
442  //   add      dst, src, r0
443  // loop:
444  //   addik    samt, samt, -1
445  //   sra      dst, dst
446  //   bneid    samt, loop
447  //   nop
448  // finish:
449  MachineFunction *F = MBB->getParent();
450  MachineRegisterInfo &R = F->getRegInfo();
451
452  // Create the start and exit basic blocks for the atomic operation
453  MachineBasicBlock *start = F->CreateMachineBasicBlock(LLVM_BB);
454  MachineBasicBlock *exit = F->CreateMachineBasicBlock(LLVM_BB);
455  F->insert(It, start);
456  F->insert(It, exit);
457
458  // Update machine-CFG edges by transferring adding all successors and
459  // remaining instructions from the current block to the new block which
460  // will contain the Phi node for the select.
461  exit->splice(exit->begin(), MBB, llvm::next(MachineBasicBlock::iterator(MI)),
462               MBB->end());
463  exit->transferSuccessorsAndUpdatePHIs(MBB);
464
465  // Add the fallthrough block as its successors.
466  MBB->addSuccessor(start);
467
468  BuildMI(start, dl, TII->get(MBlaze::LWX), MI->getOperand(0).getReg())
469    .addReg(MI->getOperand(1).getReg())
470    .addReg(MBlaze::R0);
471
472  MachineBasicBlock *final = start;
473  unsigned finalReg = 0;
474
475  switch (MI->getOpcode()) {
476  default: llvm_unreachable("Cannot lower unknown atomic instruction!");
477
478  case MBlaze::SWP32:
479    finalReg = MI->getOperand(2).getReg();
480    start->addSuccessor(exit);
481    start->addSuccessor(start);
482    break;
483
484  case MBlaze::LAN32:
485  case MBlaze::LAX32:
486  case MBlaze::LAO32:
487  case MBlaze::LAD32:
488  case MBlaze::LAS32:
489  case MBlaze::LAA32: {
490    unsigned opcode = 0;
491    switch (MI->getOpcode()) {
492    default: llvm_unreachable("Cannot lower unknown atomic load!");
493    case MBlaze::LAA32: opcode = MBlaze::ADDIK; break;
494    case MBlaze::LAS32: opcode = MBlaze::RSUBIK; break;
495    case MBlaze::LAD32: opcode = MBlaze::AND; break;
496    case MBlaze::LAO32: opcode = MBlaze::OR; break;
497    case MBlaze::LAX32: opcode = MBlaze::XOR; break;
498    case MBlaze::LAN32: opcode = MBlaze::AND; break;
499    }
500
501    finalReg = R.createVirtualRegister(MBlaze::GPRRegisterClass);
502    start->addSuccessor(exit);
503    start->addSuccessor(start);
504
505    BuildMI(start, dl, TII->get(opcode), finalReg)
506      .addReg(MI->getOperand(0).getReg())
507      .addReg(MI->getOperand(2).getReg());
508
509    if (MI->getOpcode() == MBlaze::LAN32) {
510      unsigned tmp = finalReg;
511      finalReg = R.createVirtualRegister(MBlaze::GPRRegisterClass);
512      BuildMI(start, dl, TII->get(MBlaze::XORI), finalReg)
513        .addReg(tmp)
514        .addImm(-1);
515    }
516    break;
517  }
518
519  case MBlaze::CAS32: {
520    finalReg = MI->getOperand(3).getReg();
521    final = F->CreateMachineBasicBlock(LLVM_BB);
522
523    F->insert(It, final);
524    start->addSuccessor(exit);
525    start->addSuccessor(final);
526    final->addSuccessor(exit);
527    final->addSuccessor(start);
528
529    unsigned CMP = R.createVirtualRegister(MBlaze::GPRRegisterClass);
530    BuildMI(start, dl, TII->get(MBlaze::CMP), CMP)
531      .addReg(MI->getOperand(0).getReg())
532      .addReg(MI->getOperand(2).getReg());
533
534    BuildMI(start, dl, TII->get(MBlaze::BNEID))
535      .addReg(CMP)
536      .addMBB(exit);
537
538    final->moveAfter(start);
539    exit->moveAfter(final);
540    break;
541  }
542  }
543
544  unsigned CHK = R.createVirtualRegister(MBlaze::GPRRegisterClass);
545  BuildMI(final, dl, TII->get(MBlaze::SWX))
546    .addReg(finalReg)
547    .addReg(MI->getOperand(1).getReg())
548    .addReg(MBlaze::R0);
549
550  BuildMI(final, dl, TII->get(MBlaze::ADDIC), CHK)
551    .addReg(MBlaze::R0)
552    .addImm(0);
553
554  BuildMI(final, dl, TII->get(MBlaze::BNEID))
555    .addReg(CHK)
556    .addMBB(start);
557
558  // The pseudo instruction is no longer needed so remove it
559  MI->eraseFromParent();
560  return exit;
561}
562
563//===----------------------------------------------------------------------===//
564//  Misc Lower Operation implementation
565//===----------------------------------------------------------------------===//
566//
567
568SDValue MBlazeTargetLowering::LowerSELECT_CC(SDValue Op,
569                                             SelectionDAG &DAG) const {
570  SDValue LHS = Op.getOperand(0);
571  SDValue RHS = Op.getOperand(1);
572  SDValue TrueVal = Op.getOperand(2);
573  SDValue FalseVal = Op.getOperand(3);
574  DebugLoc dl = Op.getDebugLoc();
575  unsigned Opc;
576
577  SDValue CompareFlag;
578  if (LHS.getValueType() == MVT::i32) {
579    Opc = MBlazeISD::Select_CC;
580    CompareFlag = DAG.getNode(MBlazeISD::ICmp, dl, MVT::i32, LHS, RHS)
581                    .getValue(1);
582  } else {
583    llvm_unreachable("Cannot lower select_cc with unknown type");
584  }
585
586  return DAG.getNode(Opc, dl, TrueVal.getValueType(), TrueVal, FalseVal,
587                     CompareFlag);
588}
589
590SDValue MBlazeTargetLowering::
591LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
592  // FIXME there isn't actually debug info here
593  DebugLoc dl = Op.getDebugLoc();
594  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
595  SDValue GA = DAG.getTargetGlobalAddress(GV, dl, MVT::i32);
596
597  return DAG.getNode(MBlazeISD::Wrap, dl, MVT::i32, GA);
598}
599
600SDValue MBlazeTargetLowering::
601LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
602  llvm_unreachable("TLS not implemented for MicroBlaze.");
603  return SDValue(); // Not reached
604}
605
606SDValue MBlazeTargetLowering::
607LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
608  SDValue ResNode;
609  SDValue HiPart;
610  // FIXME there isn't actually debug info here
611  DebugLoc dl = Op.getDebugLoc();
612
613  EVT PtrVT = Op.getValueType();
614  JumpTableSDNode *JT  = cast<JumpTableSDNode>(Op);
615
616  SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, 0);
617  return DAG.getNode(MBlazeISD::Wrap, dl, MVT::i32, JTI);
618}
619
620SDValue MBlazeTargetLowering::
621LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
622  SDValue ResNode;
623  ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
624  const Constant *C = N->getConstVal();
625  DebugLoc dl = Op.getDebugLoc();
626
627  SDValue CP = DAG.getTargetConstantPool(C, MVT::i32, N->getAlignment(),
628                                         N->getOffset(), 0);
629  return DAG.getNode(MBlazeISD::Wrap, dl, MVT::i32, CP);
630}
631
632SDValue MBlazeTargetLowering::LowerVASTART(SDValue Op,
633                                           SelectionDAG &DAG) const {
634  MachineFunction &MF = DAG.getMachineFunction();
635  MBlazeFunctionInfo *FuncInfo = MF.getInfo<MBlazeFunctionInfo>();
636
637  DebugLoc dl = Op.getDebugLoc();
638  SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
639                                 getPointerTy());
640
641  // vastart just stores the address of the VarArgsFrameIndex slot into the
642  // memory location argument.
643  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
644  return DAG.getStore(Op.getOperand(0), dl, FI, Op.getOperand(1),
645                      MachinePointerInfo(SV),
646                      false, false, 0);
647}
648
649//===----------------------------------------------------------------------===//
650//                      Calling Convention Implementation
651//===----------------------------------------------------------------------===//
652
653#include "MBlazeGenCallingConv.inc"
654
655static bool CC_MBlaze_AssignReg(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
656                                CCValAssign::LocInfo &LocInfo,
657                                ISD::ArgFlagsTy &ArgFlags,
658                                CCState &State) {
659  static const unsigned ArgRegs[] = {
660    MBlaze::R5, MBlaze::R6, MBlaze::R7,
661    MBlaze::R8, MBlaze::R9, MBlaze::R10
662  };
663
664  const unsigned NumArgRegs = array_lengthof(ArgRegs);
665  unsigned Reg = State.AllocateReg(ArgRegs, NumArgRegs);
666  if (!Reg) return false;
667
668  unsigned SizeInBytes = ValVT.getSizeInBits() >> 3;
669  State.AllocateStack(SizeInBytes, SizeInBytes);
670  State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
671
672  return true;
673}
674
675//===----------------------------------------------------------------------===//
676//                  Call Calling Convention Implementation
677//===----------------------------------------------------------------------===//
678
679/// LowerCall - functions arguments are copied from virtual regs to
680/// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
681/// TODO: isVarArg, isTailCall.
682SDValue MBlazeTargetLowering::
683LowerCall(SDValue Chain, SDValue Callee, CallingConv::ID CallConv,
684          bool isVarArg, bool &isTailCall,
685          const SmallVectorImpl<ISD::OutputArg> &Outs,
686          const SmallVectorImpl<SDValue> &OutVals,
687          const SmallVectorImpl<ISD::InputArg> &Ins,
688          DebugLoc dl, SelectionDAG &DAG,
689          SmallVectorImpl<SDValue> &InVals) const {
690  // MBlaze does not yet support tail call optimization
691  isTailCall = false;
692
693  // The MBlaze requires stack slots for arguments passed to var arg
694  // functions even if they are passed in registers.
695  bool needsRegArgSlots = isVarArg;
696
697  MachineFunction &MF = DAG.getMachineFunction();
698  MachineFrameInfo *MFI = MF.getFrameInfo();
699  const TargetFrameLowering &TFI = *MF.getTarget().getFrameLowering();
700
701  // Analyze operands of the call, assigning locations to each operand.
702  SmallVector<CCValAssign, 16> ArgLocs;
703  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
704		 getTargetMachine(), ArgLocs, *DAG.getContext());
705  CCInfo.AnalyzeCallOperands(Outs, CC_MBlaze);
706
707  // Get a count of how many bytes are to be pushed on the stack.
708  unsigned NumBytes = CCInfo.getNextStackOffset();
709
710  // Variable argument function calls require a minimum of 24-bytes of stack
711  if (isVarArg && NumBytes < 24) NumBytes = 24;
712
713  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
714
715  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
716  SmallVector<SDValue, 8> MemOpChains;
717
718  // Walk the register/memloc assignments, inserting copies/loads.
719  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
720    CCValAssign &VA = ArgLocs[i];
721    MVT RegVT = VA.getLocVT();
722    SDValue Arg = OutVals[i];
723
724    // Promote the value if needed.
725    switch (VA.getLocInfo()) {
726    default: llvm_unreachable("Unknown loc info!");
727    case CCValAssign::Full: break;
728    case CCValAssign::SExt:
729      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
730      break;
731    case CCValAssign::ZExt:
732      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
733      break;
734    case CCValAssign::AExt:
735      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
736      break;
737    }
738
739    // Arguments that can be passed on register must be kept at
740    // RegsToPass vector
741    if (VA.isRegLoc()) {
742      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
743    } else {
744      // Register can't get to this point...
745      assert(VA.isMemLoc());
746
747      // Since we are alread passing values on the stack we don't
748      // need to worry about creating additional slots for the
749      // values passed via registers.
750      needsRegArgSlots = false;
751
752      // Create the frame index object for this incoming parameter
753      unsigned ArgSize = VA.getValVT().getSizeInBits()/8;
754      unsigned StackLoc = VA.getLocMemOffset() + 4;
755      int FI = MFI->CreateFixedObject(ArgSize, StackLoc, true);
756
757      SDValue PtrOff = DAG.getFrameIndex(FI,getPointerTy());
758
759      // emit ISD::STORE whichs stores the
760      // parameter value to a stack Location
761      MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
762                                         MachinePointerInfo(),
763                                         false, false, 0));
764    }
765  }
766
767  // If we need to reserve stack space for the arguments passed via registers
768  // then create a fixed stack object at the beginning of the stack.
769  if (needsRegArgSlots && TFI.hasReservedCallFrame(MF))
770    MFI->CreateFixedObject(28,0,true);
771
772  // Transform all store nodes into one single node because all store
773  // nodes are independent of each other.
774  if (!MemOpChains.empty())
775    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
776                        &MemOpChains[0], MemOpChains.size());
777
778  // Build a sequence of copy-to-reg nodes chained together with token
779  // chain and flag operands which copy the outgoing args into registers.
780  // The InFlag in necessary since all emitted instructions must be
781  // stuck together.
782  SDValue InFlag;
783  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
784    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
785                             RegsToPass[i].second, InFlag);
786    InFlag = Chain.getValue(1);
787  }
788
789  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
790  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
791  // node so that legalize doesn't hack it.
792  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
793    Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
794                                getPointerTy(), 0, 0);
795  else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
796    Callee = DAG.getTargetExternalSymbol(S->getSymbol(),
797                                getPointerTy(), 0);
798
799  // MBlazeJmpLink = #chain, #target_address, #opt_in_flags...
800  //             = Chain, Callee, Reg#1, Reg#2, ...
801  //
802  // Returns a chain & a flag for retval copy to use.
803  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
804  SmallVector<SDValue, 8> Ops;
805  Ops.push_back(Chain);
806  Ops.push_back(Callee);
807
808  // Add argument registers to the end of the list so that they are
809  // known live into the call.
810  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
811    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
812                                  RegsToPass[i].second.getValueType()));
813  }
814
815  if (InFlag.getNode())
816    Ops.push_back(InFlag);
817
818  Chain  = DAG.getNode(MBlazeISD::JmpLink, dl, NodeTys, &Ops[0], Ops.size());
819  InFlag = Chain.getValue(1);
820
821  // Create the CALLSEQ_END node.
822  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
823                             DAG.getIntPtrConstant(0, true), InFlag);
824  if (!Ins.empty())
825    InFlag = Chain.getValue(1);
826
827  // Handle result values, copying them out of physregs into vregs that we
828  // return.
829  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
830                         Ins, dl, DAG, InVals);
831}
832
833/// LowerCallResult - Lower the result values of a call into the
834/// appropriate copies out of appropriate physical registers.
835SDValue MBlazeTargetLowering::
836LowerCallResult(SDValue Chain, SDValue InFlag, CallingConv::ID CallConv,
837                bool isVarArg, const SmallVectorImpl<ISD::InputArg> &Ins,
838                DebugLoc dl, SelectionDAG &DAG,
839                SmallVectorImpl<SDValue> &InVals) const {
840  // Assign locations to each value returned by this call.
841  SmallVector<CCValAssign, 16> RVLocs;
842  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
843		 getTargetMachine(), RVLocs, *DAG.getContext());
844
845  CCInfo.AnalyzeCallResult(Ins, RetCC_MBlaze);
846
847  // Copy all of the result registers out of their specified physreg.
848  for (unsigned i = 0; i != RVLocs.size(); ++i) {
849    Chain = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(),
850                               RVLocs[i].getValVT(), InFlag).getValue(1);
851    InFlag = Chain.getValue(2);
852    InVals.push_back(Chain.getValue(0));
853  }
854
855  return Chain;
856}
857
858//===----------------------------------------------------------------------===//
859//             Formal Arguments Calling Convention Implementation
860//===----------------------------------------------------------------------===//
861
862/// LowerFormalArguments - transform physical registers into
863/// virtual registers and generate load operations for
864/// arguments places on the stack.
865SDValue MBlazeTargetLowering::
866LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
867                     const SmallVectorImpl<ISD::InputArg> &Ins,
868                     DebugLoc dl, SelectionDAG &DAG,
869                     SmallVectorImpl<SDValue> &InVals) const {
870  MachineFunction &MF = DAG.getMachineFunction();
871  MachineFrameInfo *MFI = MF.getFrameInfo();
872  MBlazeFunctionInfo *MBlazeFI = MF.getInfo<MBlazeFunctionInfo>();
873
874  unsigned StackReg = MF.getTarget().getRegisterInfo()->getFrameRegister(MF);
875  MBlazeFI->setVarArgsFrameIndex(0);
876
877  // Used with vargs to acumulate store chains.
878  std::vector<SDValue> OutChains;
879
880  // Keep track of the last register used for arguments
881  unsigned ArgRegEnd = 0;
882
883  // Assign locations to all of the incoming arguments.
884  SmallVector<CCValAssign, 16> ArgLocs;
885  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
886		 getTargetMachine(), ArgLocs, *DAG.getContext());
887
888  CCInfo.AnalyzeFormalArguments(Ins, CC_MBlaze);
889  SDValue StackPtr;
890
891  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
892    CCValAssign &VA = ArgLocs[i];
893
894    // Arguments stored on registers
895    if (VA.isRegLoc()) {
896      MVT RegVT = VA.getLocVT();
897      ArgRegEnd = VA.getLocReg();
898      TargetRegisterClass *RC = 0;
899
900      if (RegVT == MVT::i32)
901        RC = MBlaze::GPRRegisterClass;
902      else if (RegVT == MVT::f32)
903        RC = MBlaze::GPRRegisterClass;
904      else
905        llvm_unreachable("RegVT not supported by LowerFormalArguments");
906
907      // Transform the arguments stored on
908      // physical registers into virtual ones
909      unsigned Reg = MF.addLiveIn(ArgRegEnd, RC);
910      SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
911
912      // If this is an 8 or 16-bit value, it has been passed promoted
913      // to 32 bits.  Insert an assert[sz]ext to capture this, then
914      // truncate to the right size. If if is a floating point value
915      // then convert to the correct type.
916      if (VA.getLocInfo() != CCValAssign::Full) {
917        unsigned Opcode = 0;
918        if (VA.getLocInfo() == CCValAssign::SExt)
919          Opcode = ISD::AssertSext;
920        else if (VA.getLocInfo() == CCValAssign::ZExt)
921          Opcode = ISD::AssertZext;
922        if (Opcode)
923          ArgValue = DAG.getNode(Opcode, dl, RegVT, ArgValue,
924                                 DAG.getValueType(VA.getValVT()));
925        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
926      }
927
928      InVals.push_back(ArgValue);
929    } else { // VA.isRegLoc()
930      // sanity check
931      assert(VA.isMemLoc());
932
933      // The last argument is not a register
934      ArgRegEnd = 0;
935
936      // The stack pointer offset is relative to the caller stack frame.
937      // Since the real stack size is unknown here, a negative SPOffset
938      // is used so there's a way to adjust these offsets when the stack
939      // size get known (on EliminateFrameIndex). A dummy SPOffset is
940      // used instead of a direct negative address (which is recorded to
941      // be used on emitPrologue) to avoid mis-calc of the first stack
942      // offset on PEI::calculateFrameObjectOffsets.
943      // Arguments are always 32-bit.
944      unsigned ArgSize = VA.getLocVT().getSizeInBits()/8;
945      unsigned StackLoc = VA.getLocMemOffset() + 4;
946      int FI = MFI->CreateFixedObject(ArgSize, 0, true);
947      MBlazeFI->recordLoadArgsFI(FI, -StackLoc);
948      MBlazeFI->recordLiveIn(FI);
949
950      // Create load nodes to retrieve arguments from the stack
951      SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
952      InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
953                                   MachinePointerInfo::getFixedStack(FI),
954                                   false, false, 0));
955    }
956  }
957
958  // To meet ABI, when VARARGS are passed on registers, the registers
959  // must have their values written to the caller stack frame. If the last
960  // argument was placed in the stack, there's no need to save any register.
961  if ((isVarArg) && ArgRegEnd) {
962    if (StackPtr.getNode() == 0)
963      StackPtr = DAG.getRegister(StackReg, getPointerTy());
964
965    // The last register argument that must be saved is MBlaze::R10
966    TargetRegisterClass *RC = MBlaze::GPRRegisterClass;
967
968    unsigned Begin = getMBlazeRegisterNumbering(MBlaze::R5);
969    unsigned Start = getMBlazeRegisterNumbering(ArgRegEnd+1);
970    unsigned End   = getMBlazeRegisterNumbering(MBlaze::R10);
971    unsigned StackLoc = Start - Begin + 1;
972
973    for (; Start <= End; ++Start, ++StackLoc) {
974      unsigned Reg = getMBlazeRegisterFromNumbering(Start);
975      unsigned LiveReg = MF.addLiveIn(Reg, RC);
976      SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, LiveReg, MVT::i32);
977
978      int FI = MFI->CreateFixedObject(4, 0, true);
979      MBlazeFI->recordStoreVarArgsFI(FI, -(StackLoc*4));
980      SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy());
981      OutChains.push_back(DAG.getStore(Chain, dl, ArgValue, PtrOff,
982                                       MachinePointerInfo(),
983                                       false, false, 0));
984
985      // Record the frame index of the first variable argument
986      // which is a value necessary to VASTART.
987      if (!MBlazeFI->getVarArgsFrameIndex())
988        MBlazeFI->setVarArgsFrameIndex(FI);
989    }
990  }
991
992  // All stores are grouped in one node to allow the matching between
993  // the size of Ins and InVals. This only happens when on varg functions
994  if (!OutChains.empty()) {
995    OutChains.push_back(Chain);
996    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
997                        &OutChains[0], OutChains.size());
998  }
999
1000  return Chain;
1001}
1002
1003//===----------------------------------------------------------------------===//
1004//               Return Value Calling Convention Implementation
1005//===----------------------------------------------------------------------===//
1006
1007SDValue MBlazeTargetLowering::
1008LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1009            const SmallVectorImpl<ISD::OutputArg> &Outs,
1010            const SmallVectorImpl<SDValue> &OutVals,
1011            DebugLoc dl, SelectionDAG &DAG) const {
1012  // CCValAssign - represent the assignment of
1013  // the return value to a location
1014  SmallVector<CCValAssign, 16> RVLocs;
1015
1016  // CCState - Info about the registers and stack slot.
1017  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1018		 getTargetMachine(), RVLocs, *DAG.getContext());
1019
1020  // Analize return values.
1021  CCInfo.AnalyzeReturn(Outs, RetCC_MBlaze);
1022
1023  // If this is the first return lowered for this function, add
1024  // the regs to the liveout set for the function.
1025  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
1026    for (unsigned i = 0; i != RVLocs.size(); ++i)
1027      if (RVLocs[i].isRegLoc())
1028        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
1029  }
1030
1031  SDValue Flag;
1032
1033  // Copy the result values into the output registers.
1034  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1035    CCValAssign &VA = RVLocs[i];
1036    assert(VA.isRegLoc() && "Can only return in registers!");
1037
1038    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
1039                             OutVals[i], Flag);
1040
1041    // guarantee that all emitted copies are
1042    // stuck together, avoiding something bad
1043    Flag = Chain.getValue(1);
1044  }
1045
1046  // If this function is using the interrupt_handler calling convention
1047  // then use "rtid r14, 0" otherwise use "rtsd r15, 8"
1048  unsigned Ret = (CallConv == llvm::CallingConv::MBLAZE_INTR) ? MBlazeISD::IRet
1049                                                              : MBlazeISD::Ret;
1050  unsigned Reg = (CallConv == llvm::CallingConv::MBLAZE_INTR) ? MBlaze::R14
1051                                                              : MBlaze::R15;
1052  SDValue DReg = DAG.getRegister(Reg, MVT::i32);
1053
1054  if (Flag.getNode())
1055    return DAG.getNode(Ret, dl, MVT::Other, Chain, DReg, Flag);
1056
1057  return DAG.getNode(Ret, dl, MVT::Other, Chain, DReg);
1058}
1059
1060//===----------------------------------------------------------------------===//
1061//                           MBlaze Inline Assembly Support
1062//===----------------------------------------------------------------------===//
1063
1064/// getConstraintType - Given a constraint letter, return the type of
1065/// constraint it is for this target.
1066MBlazeTargetLowering::ConstraintType MBlazeTargetLowering::
1067getConstraintType(const std::string &Constraint) const
1068{
1069  // MBlaze specific constrainy
1070  //
1071  // 'd' : An address register. Equivalent to r.
1072  // 'y' : Equivalent to r; retained for
1073  //       backwards compatibility.
1074  // 'f' : Floating Point registers.
1075  if (Constraint.size() == 1) {
1076    switch (Constraint[0]) {
1077      default : break;
1078      case 'd':
1079      case 'y':
1080      case 'f':
1081        return C_RegisterClass;
1082        break;
1083    }
1084  }
1085  return TargetLowering::getConstraintType(Constraint);
1086}
1087
1088/// Examine constraint type and operand type and determine a weight value.
1089/// This object must already have been set up with the operand type
1090/// and the current alternative constraint selected.
1091TargetLowering::ConstraintWeight
1092MBlazeTargetLowering::getSingleConstraintMatchWeight(
1093    AsmOperandInfo &info, const char *constraint) const {
1094  ConstraintWeight weight = CW_Invalid;
1095  Value *CallOperandVal = info.CallOperandVal;
1096    // If we don't have a value, we can't do a match,
1097    // but allow it at the lowest weight.
1098  if (CallOperandVal == NULL)
1099    return CW_Default;
1100  Type *type = CallOperandVal->getType();
1101  // Look at the constraint type.
1102  switch (*constraint) {
1103  default:
1104    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
1105    break;
1106  case 'd':
1107  case 'y':
1108    if (type->isIntegerTy())
1109      weight = CW_Register;
1110    break;
1111  case 'f':
1112    if (type->isFloatTy())
1113      weight = CW_Register;
1114    break;
1115  }
1116  return weight;
1117}
1118
1119/// Given a register class constraint, like 'r', if this corresponds directly
1120/// to an LLVM register class, return a register of 0 and the register class
1121/// pointer.
1122std::pair<unsigned, const TargetRegisterClass*> MBlazeTargetLowering::
1123getRegForInlineAsmConstraint(const std::string &Constraint, EVT VT) const {
1124  if (Constraint.size() == 1) {
1125    switch (Constraint[0]) {
1126    case 'r':
1127      return std::make_pair(0U, MBlaze::GPRRegisterClass);
1128      // TODO: These can't possibly be right, but match what was in
1129      // getRegClassForInlineAsmConstraint.
1130    case 'd':
1131    case 'y':
1132    case 'f':
1133      if (VT == MVT::f32)
1134        return std::make_pair(0U, MBlaze::GPRRegisterClass);
1135    }
1136  }
1137  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
1138}
1139
1140bool MBlazeTargetLowering::
1141isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
1142  // The MBlaze target isn't yet aware of offsets.
1143  return false;
1144}
1145
1146bool MBlazeTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
1147  return VT != MVT::f32;
1148}
1149