1//===- InstCombineSimplifyDemanded.cpp ------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains logic for simplifying instructions based on information
11// about how they are used.
12//
13//===----------------------------------------------------------------------===//
14
15
16#include "InstCombine.h"
17#include "llvm/Target/TargetData.h"
18#include "llvm/IntrinsicInst.h"
19
20using namespace llvm;
21
22
23/// ShrinkDemandedConstant - Check to see if the specified operand of the
24/// specified instruction is a constant integer.  If so, check to see if there
25/// are any bits set in the constant that are not demanded.  If so, shrink the
26/// constant and return true.
27static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
28                                   APInt Demanded) {
29  assert(I && "No instruction?");
30  assert(OpNo < I->getNumOperands() && "Operand index too large");
31
32  // If the operand is not a constant integer, nothing to do.
33  ConstantInt *OpC = dyn_cast<ConstantInt>(I->getOperand(OpNo));
34  if (!OpC) return false;
35
36  // If there are no bits set that aren't demanded, nothing to do.
37  Demanded = Demanded.zextOrTrunc(OpC->getValue().getBitWidth());
38  if ((~Demanded & OpC->getValue()) == 0)
39    return false;
40
41  // This instruction is producing bits that are not demanded. Shrink the RHS.
42  Demanded &= OpC->getValue();
43  I->setOperand(OpNo, ConstantInt::get(OpC->getType(), Demanded));
44  return true;
45}
46
47
48
49/// SimplifyDemandedInstructionBits - Inst is an integer instruction that
50/// SimplifyDemandedBits knows about.  See if the instruction has any
51/// properties that allow us to simplify its operands.
52bool InstCombiner::SimplifyDemandedInstructionBits(Instruction &Inst) {
53  unsigned BitWidth = Inst.getType()->getScalarSizeInBits();
54  APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
55  APInt DemandedMask(APInt::getAllOnesValue(BitWidth));
56
57  Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask,
58                                     KnownZero, KnownOne, 0);
59  if (V == 0) return false;
60  if (V == &Inst) return true;
61  ReplaceInstUsesWith(Inst, V);
62  return true;
63}
64
65/// SimplifyDemandedBits - This form of SimplifyDemandedBits simplifies the
66/// specified instruction operand if possible, updating it in place.  It returns
67/// true if it made any change and false otherwise.
68bool InstCombiner::SimplifyDemandedBits(Use &U, APInt DemandedMask,
69                                        APInt &KnownZero, APInt &KnownOne,
70                                        unsigned Depth) {
71  Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask,
72                                          KnownZero, KnownOne, Depth);
73  if (NewVal == 0) return false;
74  U = NewVal;
75  return true;
76}
77
78
79/// SimplifyDemandedUseBits - This function attempts to replace V with a simpler
80/// value based on the demanded bits.  When this function is called, it is known
81/// that only the bits set in DemandedMask of the result of V are ever used
82/// downstream. Consequently, depending on the mask and V, it may be possible
83/// to replace V with a constant or one of its operands. In such cases, this
84/// function does the replacement and returns true. In all other cases, it
85/// returns false after analyzing the expression and setting KnownOne and known
86/// to be one in the expression.  KnownZero contains all the bits that are known
87/// to be zero in the expression. These are provided to potentially allow the
88/// caller (which might recursively be SimplifyDemandedBits itself) to simplify
89/// the expression. KnownOne and KnownZero always follow the invariant that
90/// KnownOne & KnownZero == 0. That is, a bit can't be both 1 and 0. Note that
91/// the bits in KnownOne and KnownZero may only be accurate for those bits set
92/// in DemandedMask. Note also that the bitwidth of V, DemandedMask, KnownZero
93/// and KnownOne must all be the same.
94///
95/// This returns null if it did not change anything and it permits no
96/// simplification.  This returns V itself if it did some simplification of V's
97/// operands based on the information about what bits are demanded. This returns
98/// some other non-null value if it found out that V is equal to another value
99/// in the context where the specified bits are demanded, but not for all users.
100Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
101                                             APInt &KnownZero, APInt &KnownOne,
102                                             unsigned Depth) {
103  assert(V != 0 && "Null pointer of Value???");
104  assert(Depth <= 6 && "Limit Search Depth");
105  uint32_t BitWidth = DemandedMask.getBitWidth();
106  Type *VTy = V->getType();
107  assert((TD || !VTy->isPointerTy()) &&
108         "SimplifyDemandedBits needs to know bit widths!");
109  assert((!TD || TD->getTypeSizeInBits(VTy->getScalarType()) == BitWidth) &&
110         (!VTy->isIntOrIntVectorTy() ||
111          VTy->getScalarSizeInBits() == BitWidth) &&
112         KnownZero.getBitWidth() == BitWidth &&
113         KnownOne.getBitWidth() == BitWidth &&
114         "Value *V, DemandedMask, KnownZero and KnownOne "
115         "must have same BitWidth");
116  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
117    // We know all of the bits for a constant!
118    KnownOne = CI->getValue() & DemandedMask;
119    KnownZero = ~KnownOne & DemandedMask;
120    return 0;
121  }
122  if (isa<ConstantPointerNull>(V)) {
123    // We know all of the bits for a constant!
124    KnownOne.clearAllBits();
125    KnownZero = DemandedMask;
126    return 0;
127  }
128
129  KnownZero.clearAllBits();
130  KnownOne.clearAllBits();
131  if (DemandedMask == 0) {   // Not demanding any bits from V.
132    if (isa<UndefValue>(V))
133      return 0;
134    return UndefValue::get(VTy);
135  }
136
137  if (Depth == 6)        // Limit search depth.
138    return 0;
139
140  APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
141  APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
142
143  Instruction *I = dyn_cast<Instruction>(V);
144  if (!I) {
145    ComputeMaskedBits(V, DemandedMask, KnownZero, KnownOne, Depth);
146    return 0;        // Only analyze instructions.
147  }
148
149  // If there are multiple uses of this value and we aren't at the root, then
150  // we can't do any simplifications of the operands, because DemandedMask
151  // only reflects the bits demanded by *one* of the users.
152  if (Depth != 0 && !I->hasOneUse()) {
153    // Despite the fact that we can't simplify this instruction in all User's
154    // context, we can at least compute the knownzero/knownone bits, and we can
155    // do simplifications that apply to *just* the one user if we know that
156    // this instruction has a simpler value in that context.
157    if (I->getOpcode() == Instruction::And) {
158      // If either the LHS or the RHS are Zero, the result is zero.
159      ComputeMaskedBits(I->getOperand(1), DemandedMask,
160                        RHSKnownZero, RHSKnownOne, Depth+1);
161      ComputeMaskedBits(I->getOperand(0), DemandedMask & ~RHSKnownZero,
162                        LHSKnownZero, LHSKnownOne, Depth+1);
163
164      // If all of the demanded bits are known 1 on one side, return the other.
165      // These bits cannot contribute to the result of the 'and' in this
166      // context.
167      if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) ==
168          (DemandedMask & ~LHSKnownZero))
169        return I->getOperand(0);
170      if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) ==
171          (DemandedMask & ~RHSKnownZero))
172        return I->getOperand(1);
173
174      // If all of the demanded bits in the inputs are known zeros, return zero.
175      if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask)
176        return Constant::getNullValue(VTy);
177
178    } else if (I->getOpcode() == Instruction::Or) {
179      // We can simplify (X|Y) -> X or Y in the user's context if we know that
180      // only bits from X or Y are demanded.
181
182      // If either the LHS or the RHS are One, the result is One.
183      ComputeMaskedBits(I->getOperand(1), DemandedMask,
184                        RHSKnownZero, RHSKnownOne, Depth+1);
185      ComputeMaskedBits(I->getOperand(0), DemandedMask & ~RHSKnownOne,
186                        LHSKnownZero, LHSKnownOne, Depth+1);
187
188      // If all of the demanded bits are known zero on one side, return the
189      // other.  These bits cannot contribute to the result of the 'or' in this
190      // context.
191      if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) ==
192          (DemandedMask & ~LHSKnownOne))
193        return I->getOperand(0);
194      if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) ==
195          (DemandedMask & ~RHSKnownOne))
196        return I->getOperand(1);
197
198      // If all of the potentially set bits on one side are known to be set on
199      // the other side, just use the 'other' side.
200      if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) ==
201          (DemandedMask & (~RHSKnownZero)))
202        return I->getOperand(0);
203      if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) ==
204          (DemandedMask & (~LHSKnownZero)))
205        return I->getOperand(1);
206    }
207
208    // Compute the KnownZero/KnownOne bits to simplify things downstream.
209    ComputeMaskedBits(I, DemandedMask, KnownZero, KnownOne, Depth);
210    return 0;
211  }
212
213  // If this is the root being simplified, allow it to have multiple uses,
214  // just set the DemandedMask to all bits so that we can try to simplify the
215  // operands.  This allows visitTruncInst (for example) to simplify the
216  // operand of a trunc without duplicating all the logic below.
217  if (Depth == 0 && !V->hasOneUse())
218    DemandedMask = APInt::getAllOnesValue(BitWidth);
219
220  switch (I->getOpcode()) {
221  default:
222    ComputeMaskedBits(I, DemandedMask, KnownZero, KnownOne, Depth);
223    break;
224  case Instruction::And:
225    // If either the LHS or the RHS are Zero, the result is zero.
226    if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask,
227                             RHSKnownZero, RHSKnownOne, Depth+1) ||
228        SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownZero,
229                             LHSKnownZero, LHSKnownOne, Depth+1))
230      return I;
231    assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
232    assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
233
234    // If all of the demanded bits are known 1 on one side, return the other.
235    // These bits cannot contribute to the result of the 'and'.
236    if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) ==
237        (DemandedMask & ~LHSKnownZero))
238      return I->getOperand(0);
239    if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) ==
240        (DemandedMask & ~RHSKnownZero))
241      return I->getOperand(1);
242
243    // If all of the demanded bits in the inputs are known zeros, return zero.
244    if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask)
245      return Constant::getNullValue(VTy);
246
247    // If the RHS is a constant, see if we can simplify it.
248    if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnownZero))
249      return I;
250
251    // Output known-1 bits are only known if set in both the LHS & RHS.
252    KnownOne = RHSKnownOne & LHSKnownOne;
253    // Output known-0 are known to be clear if zero in either the LHS | RHS.
254    KnownZero = RHSKnownZero | LHSKnownZero;
255    break;
256  case Instruction::Or:
257    // If either the LHS or the RHS are One, the result is One.
258    if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask,
259                             RHSKnownZero, RHSKnownOne, Depth+1) ||
260        SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownOne,
261                             LHSKnownZero, LHSKnownOne, Depth+1))
262      return I;
263    assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
264    assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
265
266    // If all of the demanded bits are known zero on one side, return the other.
267    // These bits cannot contribute to the result of the 'or'.
268    if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) ==
269        (DemandedMask & ~LHSKnownOne))
270      return I->getOperand(0);
271    if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) ==
272        (DemandedMask & ~RHSKnownOne))
273      return I->getOperand(1);
274
275    // If all of the potentially set bits on one side are known to be set on
276    // the other side, just use the 'other' side.
277    if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) ==
278        (DemandedMask & (~RHSKnownZero)))
279      return I->getOperand(0);
280    if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) ==
281        (DemandedMask & (~LHSKnownZero)))
282      return I->getOperand(1);
283
284    // If the RHS is a constant, see if we can simplify it.
285    if (ShrinkDemandedConstant(I, 1, DemandedMask))
286      return I;
287
288    // Output known-0 bits are only known if clear in both the LHS & RHS.
289    KnownZero = RHSKnownZero & LHSKnownZero;
290    // Output known-1 are known to be set if set in either the LHS | RHS.
291    KnownOne = RHSKnownOne | LHSKnownOne;
292    break;
293  case Instruction::Xor: {
294    if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask,
295                             RHSKnownZero, RHSKnownOne, Depth+1) ||
296        SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,
297                             LHSKnownZero, LHSKnownOne, Depth+1))
298      return I;
299    assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
300    assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
301
302    // If all of the demanded bits are known zero on one side, return the other.
303    // These bits cannot contribute to the result of the 'xor'.
304    if ((DemandedMask & RHSKnownZero) == DemandedMask)
305      return I->getOperand(0);
306    if ((DemandedMask & LHSKnownZero) == DemandedMask)
307      return I->getOperand(1);
308
309    // If all of the demanded bits are known to be zero on one side or the
310    // other, turn this into an *inclusive* or.
311    //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
312    if ((DemandedMask & ~RHSKnownZero & ~LHSKnownZero) == 0) {
313      Instruction *Or =
314        BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
315                                 I->getName());
316      return InsertNewInstWith(Or, *I);
317    }
318
319    // If all of the demanded bits on one side are known, and all of the set
320    // bits on that side are also known to be set on the other side, turn this
321    // into an AND, as we know the bits will be cleared.
322    //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
323    if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask) {
324      // all known
325      if ((RHSKnownOne & LHSKnownOne) == RHSKnownOne) {
326        Constant *AndC = Constant::getIntegerValue(VTy,
327                                                   ~RHSKnownOne & DemandedMask);
328        Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
329        return InsertNewInstWith(And, *I);
330      }
331    }
332
333    // If the RHS is a constant, see if we can simplify it.
334    // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
335    if (ShrinkDemandedConstant(I, 1, DemandedMask))
336      return I;
337
338    // If our LHS is an 'and' and if it has one use, and if any of the bits we
339    // are flipping are known to be set, then the xor is just resetting those
340    // bits to zero.  We can just knock out bits from the 'and' and the 'xor',
341    // simplifying both of them.
342    if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0)))
343      if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() &&
344          isa<ConstantInt>(I->getOperand(1)) &&
345          isa<ConstantInt>(LHSInst->getOperand(1)) &&
346          (LHSKnownOne & RHSKnownOne & DemandedMask) != 0) {
347        ConstantInt *AndRHS = cast<ConstantInt>(LHSInst->getOperand(1));
348        ConstantInt *XorRHS = cast<ConstantInt>(I->getOperand(1));
349        APInt NewMask = ~(LHSKnownOne & RHSKnownOne & DemandedMask);
350
351        Constant *AndC =
352          ConstantInt::get(I->getType(), NewMask & AndRHS->getValue());
353        Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
354        InsertNewInstWith(NewAnd, *I);
355
356        Constant *XorC =
357          ConstantInt::get(I->getType(), NewMask & XorRHS->getValue());
358        Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC);
359        return InsertNewInstWith(NewXor, *I);
360      }
361
362    // Output known-0 bits are known if clear or set in both the LHS & RHS.
363    KnownZero= (RHSKnownZero & LHSKnownZero) | (RHSKnownOne & LHSKnownOne);
364    // Output known-1 are known to be set if set in only one of the LHS, RHS.
365    KnownOne = (RHSKnownZero & LHSKnownOne) | (RHSKnownOne & LHSKnownZero);
366    break;
367  }
368  case Instruction::Select:
369    if (SimplifyDemandedBits(I->getOperandUse(2), DemandedMask,
370                             RHSKnownZero, RHSKnownOne, Depth+1) ||
371        SimplifyDemandedBits(I->getOperandUse(1), DemandedMask,
372                             LHSKnownZero, LHSKnownOne, Depth+1))
373      return I;
374    assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
375    assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
376
377    // If the operands are constants, see if we can simplify them.
378    if (ShrinkDemandedConstant(I, 1, DemandedMask) ||
379        ShrinkDemandedConstant(I, 2, DemandedMask))
380      return I;
381
382    // Only known if known in both the LHS and RHS.
383    KnownOne = RHSKnownOne & LHSKnownOne;
384    KnownZero = RHSKnownZero & LHSKnownZero;
385    break;
386  case Instruction::Trunc: {
387    unsigned truncBf = I->getOperand(0)->getType()->getScalarSizeInBits();
388    DemandedMask = DemandedMask.zext(truncBf);
389    KnownZero = KnownZero.zext(truncBf);
390    KnownOne = KnownOne.zext(truncBf);
391    if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,
392                             KnownZero, KnownOne, Depth+1))
393      return I;
394    DemandedMask = DemandedMask.trunc(BitWidth);
395    KnownZero = KnownZero.trunc(BitWidth);
396    KnownOne = KnownOne.trunc(BitWidth);
397    assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
398    break;
399  }
400  case Instruction::BitCast:
401    if (!I->getOperand(0)->getType()->isIntOrIntVectorTy())
402      return 0;  // vector->int or fp->int?
403
404    if (VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) {
405      if (VectorType *SrcVTy =
406            dyn_cast<VectorType>(I->getOperand(0)->getType())) {
407        if (DstVTy->getNumElements() != SrcVTy->getNumElements())
408          // Don't touch a bitcast between vectors of different element counts.
409          return 0;
410      } else
411        // Don't touch a scalar-to-vector bitcast.
412        return 0;
413    } else if (I->getOperand(0)->getType()->isVectorTy())
414      // Don't touch a vector-to-scalar bitcast.
415      return 0;
416
417    if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,
418                             KnownZero, KnownOne, Depth+1))
419      return I;
420    assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
421    break;
422  case Instruction::ZExt: {
423    // Compute the bits in the result that are not present in the input.
424    unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits();
425
426    DemandedMask = DemandedMask.trunc(SrcBitWidth);
427    KnownZero = KnownZero.trunc(SrcBitWidth);
428    KnownOne = KnownOne.trunc(SrcBitWidth);
429    if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,
430                             KnownZero, KnownOne, Depth+1))
431      return I;
432    DemandedMask = DemandedMask.zext(BitWidth);
433    KnownZero = KnownZero.zext(BitWidth);
434    KnownOne = KnownOne.zext(BitWidth);
435    assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
436    // The top bits are known to be zero.
437    KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
438    break;
439  }
440  case Instruction::SExt: {
441    // Compute the bits in the result that are not present in the input.
442    unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits();
443
444    APInt InputDemandedBits = DemandedMask &
445                              APInt::getLowBitsSet(BitWidth, SrcBitWidth);
446
447    APInt NewBits(APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth));
448    // If any of the sign extended bits are demanded, we know that the sign
449    // bit is demanded.
450    if ((NewBits & DemandedMask) != 0)
451      InputDemandedBits.setBit(SrcBitWidth-1);
452
453    InputDemandedBits = InputDemandedBits.trunc(SrcBitWidth);
454    KnownZero = KnownZero.trunc(SrcBitWidth);
455    KnownOne = KnownOne.trunc(SrcBitWidth);
456    if (SimplifyDemandedBits(I->getOperandUse(0), InputDemandedBits,
457                             KnownZero, KnownOne, Depth+1))
458      return I;
459    InputDemandedBits = InputDemandedBits.zext(BitWidth);
460    KnownZero = KnownZero.zext(BitWidth);
461    KnownOne = KnownOne.zext(BitWidth);
462    assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
463
464    // If the sign bit of the input is known set or clear, then we know the
465    // top bits of the result.
466
467    // If the input sign bit is known zero, or if the NewBits are not demanded
468    // convert this into a zero extension.
469    if (KnownZero[SrcBitWidth-1] || (NewBits & ~DemandedMask) == NewBits) {
470      // Convert to ZExt cast
471      CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName());
472      return InsertNewInstWith(NewCast, *I);
473    } else if (KnownOne[SrcBitWidth-1]) {    // Input sign bit known set
474      KnownOne |= NewBits;
475    }
476    break;
477  }
478  case Instruction::Add: {
479    // Figure out what the input bits are.  If the top bits of the and result
480    // are not demanded, then the add doesn't demand them from its input
481    // either.
482    unsigned NLZ = DemandedMask.countLeadingZeros();
483
484    // If there is a constant on the RHS, there are a variety of xformations
485    // we can do.
486    if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
487      // If null, this should be simplified elsewhere.  Some of the xforms here
488      // won't work if the RHS is zero.
489      if (RHS->isZero())
490        break;
491
492      // If the top bit of the output is demanded, demand everything from the
493      // input.  Otherwise, we demand all the input bits except NLZ top bits.
494      APInt InDemandedBits(APInt::getLowBitsSet(BitWidth, BitWidth - NLZ));
495
496      // Find information about known zero/one bits in the input.
497      if (SimplifyDemandedBits(I->getOperandUse(0), InDemandedBits,
498                               LHSKnownZero, LHSKnownOne, Depth+1))
499        return I;
500
501      // If the RHS of the add has bits set that can't affect the input, reduce
502      // the constant.
503      if (ShrinkDemandedConstant(I, 1, InDemandedBits))
504        return I;
505
506      // Avoid excess work.
507      if (LHSKnownZero == 0 && LHSKnownOne == 0)
508        break;
509
510      // Turn it into OR if input bits are zero.
511      if ((LHSKnownZero & RHS->getValue()) == RHS->getValue()) {
512        Instruction *Or =
513          BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
514                                   I->getName());
515        return InsertNewInstWith(Or, *I);
516      }
517
518      // We can say something about the output known-zero and known-one bits,
519      // depending on potential carries from the input constant and the
520      // unknowns.  For example if the LHS is known to have at most the 0x0F0F0
521      // bits set and the RHS constant is 0x01001, then we know we have a known
522      // one mask of 0x00001 and a known zero mask of 0xE0F0E.
523
524      // To compute this, we first compute the potential carry bits.  These are
525      // the bits which may be modified.  I'm not aware of a better way to do
526      // this scan.
527      const APInt &RHSVal = RHS->getValue();
528      APInt CarryBits((~LHSKnownZero + RHSVal) ^ (~LHSKnownZero ^ RHSVal));
529
530      // Now that we know which bits have carries, compute the known-1/0 sets.
531
532      // Bits are known one if they are known zero in one operand and one in the
533      // other, and there is no input carry.
534      KnownOne = ((LHSKnownZero & RHSVal) |
535                  (LHSKnownOne & ~RHSVal)) & ~CarryBits;
536
537      // Bits are known zero if they are known zero in both operands and there
538      // is no input carry.
539      KnownZero = LHSKnownZero & ~RHSVal & ~CarryBits;
540    } else {
541      // If the high-bits of this ADD are not demanded, then it does not demand
542      // the high bits of its LHS or RHS.
543      if (DemandedMask[BitWidth-1] == 0) {
544        // Right fill the mask of bits for this ADD to demand the most
545        // significant bit and all those below it.
546        APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
547        if (SimplifyDemandedBits(I->getOperandUse(0), DemandedFromOps,
548                                 LHSKnownZero, LHSKnownOne, Depth+1) ||
549            SimplifyDemandedBits(I->getOperandUse(1), DemandedFromOps,
550                                 LHSKnownZero, LHSKnownOne, Depth+1))
551          return I;
552      }
553    }
554    break;
555  }
556  case Instruction::Sub:
557    // If the high-bits of this SUB are not demanded, then it does not demand
558    // the high bits of its LHS or RHS.
559    if (DemandedMask[BitWidth-1] == 0) {
560      // Right fill the mask of bits for this SUB to demand the most
561      // significant bit and all those below it.
562      uint32_t NLZ = DemandedMask.countLeadingZeros();
563      APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
564      if (SimplifyDemandedBits(I->getOperandUse(0), DemandedFromOps,
565                               LHSKnownZero, LHSKnownOne, Depth+1) ||
566          SimplifyDemandedBits(I->getOperandUse(1), DemandedFromOps,
567                               LHSKnownZero, LHSKnownOne, Depth+1))
568        return I;
569    }
570    // Otherwise just hand the sub off to ComputeMaskedBits to fill in
571    // the known zeros and ones.
572    ComputeMaskedBits(V, DemandedMask, KnownZero, KnownOne, Depth);
573    break;
574  case Instruction::Shl:
575    if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
576      uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
577      APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt));
578
579      // If the shift is NUW/NSW, then it does demand the high bits.
580      ShlOperator *IOp = cast<ShlOperator>(I);
581      if (IOp->hasNoSignedWrap())
582        DemandedMaskIn |= APInt::getHighBitsSet(BitWidth, ShiftAmt+1);
583      else if (IOp->hasNoUnsignedWrap())
584        DemandedMaskIn |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
585
586      if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn,
587                               KnownZero, KnownOne, Depth+1))
588        return I;
589      assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
590      KnownZero <<= ShiftAmt;
591      KnownOne  <<= ShiftAmt;
592      // low bits known zero.
593      if (ShiftAmt)
594        KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
595    }
596    break;
597  case Instruction::LShr:
598    // For a logical shift right
599    if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
600      uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
601
602      // Unsigned shift right.
603      APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
604
605      // If the shift is exact, then it does demand the low bits (and knows that
606      // they are zero).
607      if (cast<LShrOperator>(I)->isExact())
608        DemandedMaskIn |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
609
610      if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn,
611                               KnownZero, KnownOne, Depth+1))
612        return I;
613      assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
614      KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
615      KnownOne  = APIntOps::lshr(KnownOne, ShiftAmt);
616      if (ShiftAmt) {
617        // Compute the new bits that are at the top now.
618        APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
619        KnownZero |= HighBits;  // high bits known zero.
620      }
621    }
622    break;
623  case Instruction::AShr:
624    // If this is an arithmetic shift right and only the low-bit is set, we can
625    // always convert this into a logical shr, even if the shift amount is
626    // variable.  The low bit of the shift cannot be an input sign bit unless
627    // the shift amount is >= the size of the datatype, which is undefined.
628    if (DemandedMask == 1) {
629      // Perform the logical shift right.
630      Instruction *NewVal = BinaryOperator::CreateLShr(
631                        I->getOperand(0), I->getOperand(1), I->getName());
632      return InsertNewInstWith(NewVal, *I);
633    }
634
635    // If the sign bit is the only bit demanded by this ashr, then there is no
636    // need to do it, the shift doesn't change the high bit.
637    if (DemandedMask.isSignBit())
638      return I->getOperand(0);
639
640    if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
641      uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
642
643      // Signed shift right.
644      APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
645      // If any of the "high bits" are demanded, we should set the sign bit as
646      // demanded.
647      if (DemandedMask.countLeadingZeros() <= ShiftAmt)
648        DemandedMaskIn.setBit(BitWidth-1);
649
650      // If the shift is exact, then it does demand the low bits (and knows that
651      // they are zero).
652      if (cast<AShrOperator>(I)->isExact())
653        DemandedMaskIn |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
654
655      if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn,
656                               KnownZero, KnownOne, Depth+1))
657        return I;
658      assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
659      // Compute the new bits that are at the top now.
660      APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
661      KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
662      KnownOne  = APIntOps::lshr(KnownOne, ShiftAmt);
663
664      // Handle the sign bits.
665      APInt SignBit(APInt::getSignBit(BitWidth));
666      // Adjust to where it is now in the mask.
667      SignBit = APIntOps::lshr(SignBit, ShiftAmt);
668
669      // If the input sign bit is known to be zero, or if none of the top bits
670      // are demanded, turn this into an unsigned shift right.
671      if (BitWidth <= ShiftAmt || KnownZero[BitWidth-ShiftAmt-1] ||
672          (HighBits & ~DemandedMask) == HighBits) {
673        // Perform the logical shift right.
674        Instruction *NewVal = BinaryOperator::CreateLShr(
675                          I->getOperand(0), SA, I->getName());
676        return InsertNewInstWith(NewVal, *I);
677      } else if ((KnownOne & SignBit) != 0) { // New bits are known one.
678        KnownOne |= HighBits;
679      }
680    }
681    break;
682  case Instruction::SRem:
683    if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
684      // X % -1 demands all the bits because we don't want to introduce
685      // INT_MIN % -1 (== undef) by accident.
686      if (Rem->isAllOnesValue())
687        break;
688      APInt RA = Rem->getValue().abs();
689      if (RA.isPowerOf2()) {
690        if (DemandedMask.ult(RA))    // srem won't affect demanded bits
691          return I->getOperand(0);
692
693        APInt LowBits = RA - 1;
694        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
695        if (SimplifyDemandedBits(I->getOperandUse(0), Mask2,
696                                 LHSKnownZero, LHSKnownOne, Depth+1))
697          return I;
698
699        // The low bits of LHS are unchanged by the srem.
700        KnownZero = LHSKnownZero & LowBits;
701        KnownOne = LHSKnownOne & LowBits;
702
703        // If LHS is non-negative or has all low bits zero, then the upper bits
704        // are all zero.
705        if (LHSKnownZero[BitWidth-1] || ((LHSKnownZero & LowBits) == LowBits))
706          KnownZero |= ~LowBits;
707
708        // If LHS is negative and not all low bits are zero, then the upper bits
709        // are all one.
710        if (LHSKnownOne[BitWidth-1] && ((LHSKnownOne & LowBits) != 0))
711          KnownOne |= ~LowBits;
712
713        assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
714      }
715    }
716
717    // The sign bit is the LHS's sign bit, except when the result of the
718    // remainder is zero.
719    if (DemandedMask.isNegative() && KnownZero.isNonNegative()) {
720      APInt Mask2 = APInt::getSignBit(BitWidth);
721      APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
722      ComputeMaskedBits(I->getOperand(0), Mask2, LHSKnownZero, LHSKnownOne,
723                        Depth+1);
724      // If it's known zero, our sign bit is also zero.
725      if (LHSKnownZero.isNegative())
726        KnownZero |= LHSKnownZero;
727    }
728    break;
729  case Instruction::URem: {
730    APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0);
731    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
732    if (SimplifyDemandedBits(I->getOperandUse(0), AllOnes,
733                             KnownZero2, KnownOne2, Depth+1) ||
734        SimplifyDemandedBits(I->getOperandUse(1), AllOnes,
735                             KnownZero2, KnownOne2, Depth+1))
736      return I;
737
738    unsigned Leaders = KnownZero2.countLeadingOnes();
739    Leaders = std::max(Leaders,
740                       KnownZero2.countLeadingOnes());
741    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask;
742    break;
743  }
744  case Instruction::Call:
745    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
746      switch (II->getIntrinsicID()) {
747      default: break;
748      case Intrinsic::bswap: {
749        // If the only bits demanded come from one byte of the bswap result,
750        // just shift the input byte into position to eliminate the bswap.
751        unsigned NLZ = DemandedMask.countLeadingZeros();
752        unsigned NTZ = DemandedMask.countTrailingZeros();
753
754        // Round NTZ down to the next byte.  If we have 11 trailing zeros, then
755        // we need all the bits down to bit 8.  Likewise, round NLZ.  If we
756        // have 14 leading zeros, round to 8.
757        NLZ &= ~7;
758        NTZ &= ~7;
759        // If we need exactly one byte, we can do this transformation.
760        if (BitWidth-NLZ-NTZ == 8) {
761          unsigned ResultBit = NTZ;
762          unsigned InputBit = BitWidth-NTZ-8;
763
764          // Replace this with either a left or right shift to get the byte into
765          // the right place.
766          Instruction *NewVal;
767          if (InputBit > ResultBit)
768            NewVal = BinaryOperator::CreateLShr(II->getArgOperand(0),
769                    ConstantInt::get(I->getType(), InputBit-ResultBit));
770          else
771            NewVal = BinaryOperator::CreateShl(II->getArgOperand(0),
772                    ConstantInt::get(I->getType(), ResultBit-InputBit));
773          NewVal->takeName(I);
774          return InsertNewInstWith(NewVal, *I);
775        }
776
777        // TODO: Could compute known zero/one bits based on the input.
778        break;
779      }
780      case Intrinsic::x86_sse42_crc32_64_8:
781      case Intrinsic::x86_sse42_crc32_64_64:
782        KnownZero = APInt::getHighBitsSet(64, 32);
783        return 0;
784      }
785    }
786    ComputeMaskedBits(V, DemandedMask, KnownZero, KnownOne, Depth);
787    break;
788  }
789
790  // If the client is only demanding bits that we know, return the known
791  // constant.
792  if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask)
793    return Constant::getIntegerValue(VTy, KnownOne);
794  return 0;
795}
796
797
798/// SimplifyDemandedVectorElts - The specified value produces a vector with
799/// any number of elements. DemandedElts contains the set of elements that are
800/// actually used by the caller.  This method analyzes which elements of the
801/// operand are undef and returns that information in UndefElts.
802///
803/// If the information about demanded elements can be used to simplify the
804/// operation, the operation is simplified, then the resultant value is
805/// returned.  This returns null if no change was made.
806Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
807                                                APInt &UndefElts,
808                                                unsigned Depth) {
809  unsigned VWidth = cast<VectorType>(V->getType())->getNumElements();
810  APInt EltMask(APInt::getAllOnesValue(VWidth));
811  assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!");
812
813  if (isa<UndefValue>(V)) {
814    // If the entire vector is undefined, just return this info.
815    UndefElts = EltMask;
816    return 0;
817  }
818
819  if (DemandedElts == 0) { // If nothing is demanded, provide undef.
820    UndefElts = EltMask;
821    return UndefValue::get(V->getType());
822  }
823
824  UndefElts = 0;
825  if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) {
826    Type *EltTy = cast<VectorType>(V->getType())->getElementType();
827    Constant *Undef = UndefValue::get(EltTy);
828
829    std::vector<Constant*> Elts;
830    for (unsigned i = 0; i != VWidth; ++i)
831      if (!DemandedElts[i]) {   // If not demanded, set to undef.
832        Elts.push_back(Undef);
833        UndefElts.setBit(i);
834      } else if (isa<UndefValue>(CV->getOperand(i))) {   // Already undef.
835        Elts.push_back(Undef);
836        UndefElts.setBit(i);
837      } else {                               // Otherwise, defined.
838        Elts.push_back(CV->getOperand(i));
839      }
840
841    // If we changed the constant, return it.
842    Constant *NewCP = ConstantVector::get(Elts);
843    return NewCP != CV ? NewCP : 0;
844  }
845
846  if (isa<ConstantAggregateZero>(V)) {
847    // Simplify the CAZ to a ConstantVector where the non-demanded elements are
848    // set to undef.
849
850    // Check if this is identity. If so, return 0 since we are not simplifying
851    // anything.
852    if (DemandedElts.isAllOnesValue())
853      return 0;
854
855    Type *EltTy = cast<VectorType>(V->getType())->getElementType();
856    Constant *Zero = Constant::getNullValue(EltTy);
857    Constant *Undef = UndefValue::get(EltTy);
858    std::vector<Constant*> Elts;
859    for (unsigned i = 0; i != VWidth; ++i) {
860      Constant *Elt = DemandedElts[i] ? Zero : Undef;
861      Elts.push_back(Elt);
862    }
863    UndefElts = DemandedElts ^ EltMask;
864    return ConstantVector::get(Elts);
865  }
866
867  // Limit search depth.
868  if (Depth == 10)
869    return 0;
870
871  // If multiple users are using the root value, proceed with
872  // simplification conservatively assuming that all elements
873  // are needed.
874  if (!V->hasOneUse()) {
875    // Quit if we find multiple users of a non-root value though.
876    // They'll be handled when it's their turn to be visited by
877    // the main instcombine process.
878    if (Depth != 0)
879      // TODO: Just compute the UndefElts information recursively.
880      return 0;
881
882    // Conservatively assume that all elements are needed.
883    DemandedElts = EltMask;
884  }
885
886  Instruction *I = dyn_cast<Instruction>(V);
887  if (!I) return 0;        // Only analyze instructions.
888
889  bool MadeChange = false;
890  APInt UndefElts2(VWidth, 0);
891  Value *TmpV;
892  switch (I->getOpcode()) {
893  default: break;
894
895  case Instruction::InsertElement: {
896    // If this is a variable index, we don't know which element it overwrites.
897    // demand exactly the same input as we produce.
898    ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2));
899    if (Idx == 0) {
900      // Note that we can't propagate undef elt info, because we don't know
901      // which elt is getting updated.
902      TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
903                                        UndefElts2, Depth+1);
904      if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
905      break;
906    }
907
908    // If this is inserting an element that isn't demanded, remove this
909    // insertelement.
910    unsigned IdxNo = Idx->getZExtValue();
911    if (IdxNo >= VWidth || !DemandedElts[IdxNo]) {
912      Worklist.Add(I);
913      return I->getOperand(0);
914    }
915
916    // Otherwise, the element inserted overwrites whatever was there, so the
917    // input demanded set is simpler than the output set.
918    APInt DemandedElts2 = DemandedElts;
919    DemandedElts2.clearBit(IdxNo);
920    TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts2,
921                                      UndefElts, Depth+1);
922    if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
923
924    // The inserted element is defined.
925    UndefElts.clearBit(IdxNo);
926    break;
927  }
928  case Instruction::ShuffleVector: {
929    ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I);
930    uint64_t LHSVWidth =
931      cast<VectorType>(Shuffle->getOperand(0)->getType())->getNumElements();
932    APInt LeftDemanded(LHSVWidth, 0), RightDemanded(LHSVWidth, 0);
933    for (unsigned i = 0; i < VWidth; i++) {
934      if (DemandedElts[i]) {
935        unsigned MaskVal = Shuffle->getMaskValue(i);
936        if (MaskVal != -1u) {
937          assert(MaskVal < LHSVWidth * 2 &&
938                 "shufflevector mask index out of range!");
939          if (MaskVal < LHSVWidth)
940            LeftDemanded.setBit(MaskVal);
941          else
942            RightDemanded.setBit(MaskVal - LHSVWidth);
943        }
944      }
945    }
946
947    APInt UndefElts4(LHSVWidth, 0);
948    TmpV = SimplifyDemandedVectorElts(I->getOperand(0), LeftDemanded,
949                                      UndefElts4, Depth+1);
950    if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
951
952    APInt UndefElts3(LHSVWidth, 0);
953    TmpV = SimplifyDemandedVectorElts(I->getOperand(1), RightDemanded,
954                                      UndefElts3, Depth+1);
955    if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
956
957    bool NewUndefElts = false;
958    for (unsigned i = 0; i < VWidth; i++) {
959      unsigned MaskVal = Shuffle->getMaskValue(i);
960      if (MaskVal == -1u) {
961        UndefElts.setBit(i);
962      } else if (!DemandedElts[i]) {
963        NewUndefElts = true;
964        UndefElts.setBit(i);
965      } else if (MaskVal < LHSVWidth) {
966        if (UndefElts4[MaskVal]) {
967          NewUndefElts = true;
968          UndefElts.setBit(i);
969        }
970      } else {
971        if (UndefElts3[MaskVal - LHSVWidth]) {
972          NewUndefElts = true;
973          UndefElts.setBit(i);
974        }
975      }
976    }
977
978    if (NewUndefElts) {
979      // Add additional discovered undefs.
980      std::vector<Constant*> Elts;
981      for (unsigned i = 0; i < VWidth; ++i) {
982        if (UndefElts[i])
983          Elts.push_back(UndefValue::get(Type::getInt32Ty(I->getContext())));
984        else
985          Elts.push_back(ConstantInt::get(Type::getInt32Ty(I->getContext()),
986                                          Shuffle->getMaskValue(i)));
987      }
988      I->setOperand(2, ConstantVector::get(Elts));
989      MadeChange = true;
990    }
991    break;
992  }
993  case Instruction::BitCast: {
994    // Vector->vector casts only.
995    VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType());
996    if (!VTy) break;
997    unsigned InVWidth = VTy->getNumElements();
998    APInt InputDemandedElts(InVWidth, 0);
999    unsigned Ratio;
1000
1001    if (VWidth == InVWidth) {
1002      // If we are converting from <4 x i32> -> <4 x f32>, we demand the same
1003      // elements as are demanded of us.
1004      Ratio = 1;
1005      InputDemandedElts = DemandedElts;
1006    } else if (VWidth > InVWidth) {
1007      // Untested so far.
1008      break;
1009
1010      // If there are more elements in the result than there are in the source,
1011      // then an input element is live if any of the corresponding output
1012      // elements are live.
1013      Ratio = VWidth/InVWidth;
1014      for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) {
1015        if (DemandedElts[OutIdx])
1016          InputDemandedElts.setBit(OutIdx/Ratio);
1017      }
1018    } else {
1019      // Untested so far.
1020      break;
1021
1022      // If there are more elements in the source than there are in the result,
1023      // then an input element is live if the corresponding output element is
1024      // live.
1025      Ratio = InVWidth/VWidth;
1026      for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1027        if (DemandedElts[InIdx/Ratio])
1028          InputDemandedElts.setBit(InIdx);
1029    }
1030
1031    // div/rem demand all inputs, because they don't want divide by zero.
1032    TmpV = SimplifyDemandedVectorElts(I->getOperand(0), InputDemandedElts,
1033                                      UndefElts2, Depth+1);
1034    if (TmpV) {
1035      I->setOperand(0, TmpV);
1036      MadeChange = true;
1037    }
1038
1039    UndefElts = UndefElts2;
1040    if (VWidth > InVWidth) {
1041      llvm_unreachable("Unimp");
1042      // If there are more elements in the result than there are in the source,
1043      // then an output element is undef if the corresponding input element is
1044      // undef.
1045      for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1046        if (UndefElts2[OutIdx/Ratio])
1047          UndefElts.setBit(OutIdx);
1048    } else if (VWidth < InVWidth) {
1049      llvm_unreachable("Unimp");
1050      // If there are more elements in the source than there are in the result,
1051      // then a result element is undef if all of the corresponding input
1052      // elements are undef.
1053      UndefElts = ~0ULL >> (64-VWidth);  // Start out all undef.
1054      for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1055        if (!UndefElts2[InIdx])            // Not undef?
1056          UndefElts.clearBit(InIdx/Ratio);    // Clear undef bit.
1057    }
1058    break;
1059  }
1060  case Instruction::And:
1061  case Instruction::Or:
1062  case Instruction::Xor:
1063  case Instruction::Add:
1064  case Instruction::Sub:
1065  case Instruction::Mul:
1066    // div/rem demand all inputs, because they don't want divide by zero.
1067    TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
1068                                      UndefElts, Depth+1);
1069    if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1070    TmpV = SimplifyDemandedVectorElts(I->getOperand(1), DemandedElts,
1071                                      UndefElts2, Depth+1);
1072    if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1073
1074    // Output elements are undefined if both are undefined.  Consider things
1075    // like undef&0.  The result is known zero, not undef.
1076    UndefElts &= UndefElts2;
1077    break;
1078
1079  case Instruction::Call: {
1080    IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
1081    if (!II) break;
1082    switch (II->getIntrinsicID()) {
1083    default: break;
1084
1085    // Binary vector operations that work column-wise.  A dest element is a
1086    // function of the corresponding input elements from the two inputs.
1087    case Intrinsic::x86_sse_sub_ss:
1088    case Intrinsic::x86_sse_mul_ss:
1089    case Intrinsic::x86_sse_min_ss:
1090    case Intrinsic::x86_sse_max_ss:
1091    case Intrinsic::x86_sse2_sub_sd:
1092    case Intrinsic::x86_sse2_mul_sd:
1093    case Intrinsic::x86_sse2_min_sd:
1094    case Intrinsic::x86_sse2_max_sd:
1095      TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts,
1096                                        UndefElts, Depth+1);
1097      if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
1098      TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts,
1099                                        UndefElts2, Depth+1);
1100      if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }
1101
1102      // If only the low elt is demanded and this is a scalarizable intrinsic,
1103      // scalarize it now.
1104      if (DemandedElts == 1) {
1105        switch (II->getIntrinsicID()) {
1106        default: break;
1107        case Intrinsic::x86_sse_sub_ss:
1108        case Intrinsic::x86_sse_mul_ss:
1109        case Intrinsic::x86_sse2_sub_sd:
1110        case Intrinsic::x86_sse2_mul_sd:
1111          // TODO: Lower MIN/MAX/ABS/etc
1112          Value *LHS = II->getArgOperand(0);
1113          Value *RHS = II->getArgOperand(1);
1114          // Extract the element as scalars.
1115          LHS = InsertNewInstWith(ExtractElementInst::Create(LHS,
1116            ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U)), *II);
1117          RHS = InsertNewInstWith(ExtractElementInst::Create(RHS,
1118            ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U)), *II);
1119
1120          switch (II->getIntrinsicID()) {
1121          default: llvm_unreachable("Case stmts out of sync!");
1122          case Intrinsic::x86_sse_sub_ss:
1123          case Intrinsic::x86_sse2_sub_sd:
1124            TmpV = InsertNewInstWith(BinaryOperator::CreateFSub(LHS, RHS,
1125                                                        II->getName()), *II);
1126            break;
1127          case Intrinsic::x86_sse_mul_ss:
1128          case Intrinsic::x86_sse2_mul_sd:
1129            TmpV = InsertNewInstWith(BinaryOperator::CreateFMul(LHS, RHS,
1130                                                         II->getName()), *II);
1131            break;
1132          }
1133
1134          Instruction *New =
1135            InsertElementInst::Create(
1136              UndefValue::get(II->getType()), TmpV,
1137              ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U, false),
1138                                      II->getName());
1139          InsertNewInstWith(New, *II);
1140          return New;
1141        }
1142      }
1143
1144      // Output elements are undefined if both are undefined.  Consider things
1145      // like undef&0.  The result is known zero, not undef.
1146      UndefElts &= UndefElts2;
1147      break;
1148    }
1149    break;
1150  }
1151  }
1152  return MadeChange ? I : 0;
1153}
1154