1// Copyright 2011 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6//     * Redistributions of source code must retain the above copyright
7//       notice, this list of conditions and the following disclaimer.
8//     * Redistributions in binary form must reproduce the above
9//       copyright notice, this list of conditions and the following
10//       disclaimer in the documentation and/or other materials provided
11//       with the distribution.
12//     * Neither the name of Google Inc. nor the names of its
13//       contributors may be used to endorse or promote products derived
14//       from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28
29// Declares a Simulator for ARM instructions if we are not generating a native
30// ARM binary. This Simulator allows us to run and debug ARM code generation on
31// regular desktop machines.
32// V8 calls into generated code by "calling" the CALL_GENERATED_CODE macro,
33// which will start execution in the Simulator or forwards to the real entry
34// on a ARM HW platform.
35
36#ifndef V8_ARM_SIMULATOR_ARM_H_
37#define V8_ARM_SIMULATOR_ARM_H_
38
39#include "allocation.h"
40
41#if !defined(USE_SIMULATOR)
42// Running without a simulator on a native arm platform.
43
44namespace v8 {
45namespace internal {
46
47// When running without a simulator we call the entry directly.
48#define CALL_GENERATED_CODE(entry, p0, p1, p2, p3, p4) \
49  (entry(p0, p1, p2, p3, p4))
50
51typedef int (*arm_regexp_matcher)(String*, int, const byte*, const byte*,
52                                  void*, int*, Address, int, Isolate*);
53
54
55// Call the generated regexp code directly. The code at the entry address
56// should act as a function matching the type arm_regexp_matcher.
57// The fifth argument is a dummy that reserves the space used for
58// the return address added by the ExitFrame in native calls.
59#define CALL_GENERATED_REGEXP_CODE(entry, p0, p1, p2, p3, p4, p5, p6, p7) \
60  (FUNCTION_CAST<arm_regexp_matcher>(entry)(                              \
61      p0, p1, p2, p3, NULL, p4, p5, p6, p7))
62
63#define TRY_CATCH_FROM_ADDRESS(try_catch_address) \
64  reinterpret_cast<TryCatch*>(try_catch_address)
65
66// The stack limit beyond which we will throw stack overflow errors in
67// generated code. Because generated code on arm uses the C stack, we
68// just use the C stack limit.
69class SimulatorStack : public v8::internal::AllStatic {
70 public:
71  static inline uintptr_t JsLimitFromCLimit(uintptr_t c_limit) {
72    return c_limit;
73  }
74
75  static inline uintptr_t RegisterCTryCatch(uintptr_t try_catch_address) {
76    return try_catch_address;
77  }
78
79  static inline void UnregisterCTryCatch() { }
80};
81
82} }  // namespace v8::internal
83
84#else  // !defined(USE_SIMULATOR)
85// Running with a simulator.
86
87#include "constants-arm.h"
88#include "hashmap.h"
89#include "assembler.h"
90
91namespace v8 {
92namespace internal {
93
94class CachePage {
95 public:
96  static const int LINE_VALID = 0;
97  static const int LINE_INVALID = 1;
98
99  static const int kPageShift = 12;
100  static const int kPageSize = 1 << kPageShift;
101  static const int kPageMask = kPageSize - 1;
102  static const int kLineShift = 2;  // The cache line is only 4 bytes right now.
103  static const int kLineLength = 1 << kLineShift;
104  static const int kLineMask = kLineLength - 1;
105
106  CachePage() {
107    memset(&validity_map_, LINE_INVALID, sizeof(validity_map_));
108  }
109
110  char* ValidityByte(int offset) {
111    return &validity_map_[offset >> kLineShift];
112  }
113
114  char* CachedData(int offset) {
115    return &data_[offset];
116  }
117
118 private:
119  char data_[kPageSize];   // The cached data.
120  static const int kValidityMapSize = kPageSize >> kLineShift;
121  char validity_map_[kValidityMapSize];  // One byte per line.
122};
123
124
125class Simulator {
126 public:
127  friend class ArmDebugger;
128  enum Register {
129    no_reg = -1,
130    r0 = 0, r1, r2, r3, r4, r5, r6, r7,
131    r8, r9, r10, r11, r12, r13, r14, r15,
132    num_registers,
133    sp = 13,
134    lr = 14,
135    pc = 15,
136    s0 = 0, s1, s2, s3, s4, s5, s6, s7,
137    s8, s9, s10, s11, s12, s13, s14, s15,
138    s16, s17, s18, s19, s20, s21, s22, s23,
139    s24, s25, s26, s27, s28, s29, s30, s31,
140    num_s_registers = 32,
141    d0 = 0, d1, d2, d3, d4, d5, d6, d7,
142    d8, d9, d10, d11, d12, d13, d14, d15,
143    num_d_registers = 16
144  };
145
146  Simulator();
147  ~Simulator();
148
149  // The currently executing Simulator instance. Potentially there can be one
150  // for each native thread.
151  static Simulator* current(v8::internal::Isolate* isolate);
152
153  // Accessors for register state. Reading the pc value adheres to the ARM
154  // architecture specification and is off by a 8 from the currently executing
155  // instruction.
156  void set_register(int reg, int32_t value);
157  int32_t get_register(int reg) const;
158  double get_double_from_register_pair(int reg);
159  void set_dw_register(int dreg, const int* dbl);
160
161  // Support for VFP.
162  void set_s_register(int reg, unsigned int value);
163  unsigned int get_s_register(int reg) const;
164  void set_d_register_from_double(int dreg, const double& dbl);
165  double get_double_from_d_register(int dreg);
166  void set_s_register_from_float(int sreg, const float dbl);
167  float get_float_from_s_register(int sreg);
168  void set_s_register_from_sinteger(int reg, const int value);
169  int get_sinteger_from_s_register(int reg);
170
171  // Special case of set_register and get_register to access the raw PC value.
172  void set_pc(int32_t value);
173  int32_t get_pc() const;
174
175  // Accessor to the internal simulator stack area.
176  uintptr_t StackLimit() const;
177
178  // Executes ARM instructions until the PC reaches end_sim_pc.
179  void Execute();
180
181  // Call on program start.
182  static void Initialize();
183
184  // V8 generally calls into generated JS code with 5 parameters and into
185  // generated RegExp code with 7 parameters. This is a convenience function,
186  // which sets up the simulator state and grabs the result on return.
187  int32_t Call(byte* entry, int argument_count, ...);
188
189  // Push an address onto the JS stack.
190  uintptr_t PushAddress(uintptr_t address);
191
192  // Pop an address from the JS stack.
193  uintptr_t PopAddress();
194
195  // ICache checking.
196  static void FlushICache(v8::internal::HashMap* i_cache, void* start,
197                          size_t size);
198
199  // Returns true if pc register contains one of the 'special_values' defined
200  // below (bad_lr, end_sim_pc).
201  bool has_bad_pc() const;
202
203 private:
204  enum special_values {
205    // Known bad pc value to ensure that the simulator does not execute
206    // without being properly setup.
207    bad_lr = -1,
208    // A pc value used to signal the simulator to stop execution.  Generally
209    // the lr is set to this value on transition from native C code to
210    // simulated execution, so that the simulator can "return" to the native
211    // C code.
212    end_sim_pc = -2
213  };
214
215  // Unsupported instructions use Format to print an error and stop execution.
216  void Format(Instruction* instr, const char* format);
217
218  // Checks if the current instruction should be executed based on its
219  // condition bits.
220  bool ConditionallyExecute(Instruction* instr);
221
222  // Helper functions to set the conditional flags in the architecture state.
223  void SetNZFlags(int32_t val);
224  void SetCFlag(bool val);
225  void SetVFlag(bool val);
226  bool CarryFrom(int32_t left, int32_t right);
227  bool BorrowFrom(int32_t left, int32_t right);
228  bool OverflowFrom(int32_t alu_out,
229                    int32_t left,
230                    int32_t right,
231                    bool addition);
232
233  // Support for VFP.
234  void Compute_FPSCR_Flags(double val1, double val2);
235  void Copy_FPSCR_to_APSR();
236
237  // Helper functions to decode common "addressing" modes
238  int32_t GetShiftRm(Instruction* instr, bool* carry_out);
239  int32_t GetImm(Instruction* instr, bool* carry_out);
240  void ProcessPUW(Instruction* instr,
241                  int num_regs,
242                  int operand_size,
243                  intptr_t* start_address,
244                  intptr_t* end_address);
245  void HandleRList(Instruction* instr, bool load);
246  void HandleVList(Instruction* inst);
247  void SoftwareInterrupt(Instruction* instr);
248
249  // Stop helper functions.
250  inline bool isStopInstruction(Instruction* instr);
251  inline bool isWatchedStop(uint32_t bkpt_code);
252  inline bool isEnabledStop(uint32_t bkpt_code);
253  inline void EnableStop(uint32_t bkpt_code);
254  inline void DisableStop(uint32_t bkpt_code);
255  inline void IncreaseStopCounter(uint32_t bkpt_code);
256  void PrintStopInfo(uint32_t code);
257
258  // Read and write memory.
259  inline uint8_t ReadBU(int32_t addr);
260  inline int8_t ReadB(int32_t addr);
261  inline void WriteB(int32_t addr, uint8_t value);
262  inline void WriteB(int32_t addr, int8_t value);
263
264  inline uint16_t ReadHU(int32_t addr, Instruction* instr);
265  inline int16_t ReadH(int32_t addr, Instruction* instr);
266  // Note: Overloaded on the sign of the value.
267  inline void WriteH(int32_t addr, uint16_t value, Instruction* instr);
268  inline void WriteH(int32_t addr, int16_t value, Instruction* instr);
269
270  inline int ReadW(int32_t addr, Instruction* instr);
271  inline void WriteW(int32_t addr, int value, Instruction* instr);
272
273  int32_t* ReadDW(int32_t addr);
274  void WriteDW(int32_t addr, int32_t value1, int32_t value2);
275
276  // Executing is handled based on the instruction type.
277  // Both type 0 and type 1 rolled into one.
278  void DecodeType01(Instruction* instr);
279  void DecodeType2(Instruction* instr);
280  void DecodeType3(Instruction* instr);
281  void DecodeType4(Instruction* instr);
282  void DecodeType5(Instruction* instr);
283  void DecodeType6(Instruction* instr);
284  void DecodeType7(Instruction* instr);
285
286  // Support for VFP.
287  void DecodeTypeVFP(Instruction* instr);
288  void DecodeType6CoprocessorIns(Instruction* instr);
289
290  void DecodeVMOVBetweenCoreAndSinglePrecisionRegisters(Instruction* instr);
291  void DecodeVCMP(Instruction* instr);
292  void DecodeVCVTBetweenDoubleAndSingle(Instruction* instr);
293  void DecodeVCVTBetweenFloatingPointAndInteger(Instruction* instr);
294
295  // Executes one instruction.
296  void InstructionDecode(Instruction* instr);
297
298  // ICache.
299  static void CheckICache(v8::internal::HashMap* i_cache, Instruction* instr);
300  static void FlushOnePage(v8::internal::HashMap* i_cache, intptr_t start,
301                           int size);
302  static CachePage* GetCachePage(v8::internal::HashMap* i_cache, void* page);
303
304  // Runtime call support.
305  static void* RedirectExternalReference(
306      void* external_function,
307      v8::internal::ExternalReference::Type type);
308
309  // For use in calls that take two double values, constructed from r0, r1, r2
310  // and r3.
311  void GetFpArgs(double* x, double* y);
312  void SetFpResult(const double& result);
313  void TrashCallerSaveRegisters();
314
315  // Architecture state.
316  // Saturating instructions require a Q flag to indicate saturation.
317  // There is currently no way to read the CPSR directly, and thus read the Q
318  // flag, so this is left unimplemented.
319  int32_t registers_[16];
320  bool n_flag_;
321  bool z_flag_;
322  bool c_flag_;
323  bool v_flag_;
324
325  // VFP architecture state.
326  unsigned int vfp_register[num_s_registers];
327  bool n_flag_FPSCR_;
328  bool z_flag_FPSCR_;
329  bool c_flag_FPSCR_;
330  bool v_flag_FPSCR_;
331
332  // VFP rounding mode. See ARM DDI 0406B Page A2-29.
333  VFPRoundingMode FPSCR_rounding_mode_;
334
335  // VFP FP exception flags architecture state.
336  bool inv_op_vfp_flag_;
337  bool div_zero_vfp_flag_;
338  bool overflow_vfp_flag_;
339  bool underflow_vfp_flag_;
340  bool inexact_vfp_flag_;
341
342  // Simulator support.
343  char* stack_;
344  bool pc_modified_;
345  int icount_;
346
347  // Icache simulation
348  v8::internal::HashMap* i_cache_;
349
350  // Registered breakpoints.
351  Instruction* break_pc_;
352  Instr break_instr_;
353
354  v8::internal::Isolate* isolate_;
355
356  // A stop is watched if its code is less than kNumOfWatchedStops.
357  // Only watched stops support enabling/disabling and the counter feature.
358  static const uint32_t kNumOfWatchedStops = 256;
359
360  // Breakpoint is disabled if bit 31 is set.
361  static const uint32_t kStopDisabledBit = 1 << 31;
362
363  // A stop is enabled, meaning the simulator will stop when meeting the
364  // instruction, if bit 31 of watched_stops[code].count is unset.
365  // The value watched_stops[code].count & ~(1 << 31) indicates how many times
366  // the breakpoint was hit or gone through.
367  struct StopCountAndDesc {
368    uint32_t count;
369    char* desc;
370  };
371  StopCountAndDesc watched_stops[kNumOfWatchedStops];
372};
373
374
375// When running with the simulator transition into simulated execution at this
376// point.
377#define CALL_GENERATED_CODE(entry, p0, p1, p2, p3, p4) \
378  reinterpret_cast<Object*>(Simulator::current(Isolate::Current())->Call( \
379      FUNCTION_ADDR(entry), 5, p0, p1, p2, p3, p4))
380
381#define CALL_GENERATED_REGEXP_CODE(entry, p0, p1, p2, p3, p4, p5, p6, p7) \
382  Simulator::current(Isolate::Current())->Call( \
383      entry, 9, p0, p1, p2, p3, NULL, p4, p5, p6, p7)
384
385#define TRY_CATCH_FROM_ADDRESS(try_catch_address)                              \
386  try_catch_address == NULL ?                                                  \
387      NULL : *(reinterpret_cast<TryCatch**>(try_catch_address))
388
389
390// The simulator has its own stack. Thus it has a different stack limit from
391// the C-based native code.  Setting the c_limit to indicate a very small
392// stack cause stack overflow errors, since the simulator ignores the input.
393// This is unlikely to be an issue in practice, though it might cause testing
394// trouble down the line.
395class SimulatorStack : public v8::internal::AllStatic {
396 public:
397  static inline uintptr_t JsLimitFromCLimit(uintptr_t c_limit) {
398    return Simulator::current(Isolate::Current())->StackLimit();
399  }
400
401  static inline uintptr_t RegisterCTryCatch(uintptr_t try_catch_address) {
402    Simulator* sim = Simulator::current(Isolate::Current());
403    return sim->PushAddress(try_catch_address);
404  }
405
406  static inline void UnregisterCTryCatch() {
407    Simulator::current(Isolate::Current())->PopAddress();
408  }
409};
410
411} }  // namespace v8::internal
412
413#endif  // !defined(USE_SIMULATOR)
414#endif  // V8_ARM_SIMULATOR_ARM_H_
415