1// Copyright (c) 1994-2006 Sun Microsystems Inc.
2// All Rights Reserved.
3//
4// Redistribution and use in source and binary forms, with or without
5// modification, are permitted provided that the following conditions are
6// met:
7//
8// - Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10//
11// - Redistribution in binary form must reproduce the above copyright
12// notice, this list of conditions and the following disclaimer in the
13// documentation and/or other materials provided with the distribution.
14//
15// - Neither the name of Sun Microsystems or the names of contributors may
16// be used to endorse or promote products derived from this software without
17// specific prior written permission.
18//
19// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
20// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
26// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
27// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31// The original source code covered by the above license above has been
32// modified significantly by Google Inc.
33// Copyright 2010 the V8 project authors. All rights reserved.
34
35
36#ifndef V8_MIPS_ASSEMBLER_MIPS_H_
37#define V8_MIPS_ASSEMBLER_MIPS_H_
38
39#include <stdio.h>
40#include "assembler.h"
41#include "constants-mips.h"
42#include "serialize.h"
43
44namespace v8 {
45namespace internal {
46
47// CPU Registers.
48//
49// 1) We would prefer to use an enum, but enum values are assignment-
50// compatible with int, which has caused code-generation bugs.
51//
52// 2) We would prefer to use a class instead of a struct but we don't like
53// the register initialization to depend on the particular initialization
54// order (which appears to be different on OS X, Linux, and Windows for the
55// installed versions of C++ we tried). Using a struct permits C-style
56// "initialization". Also, the Register objects cannot be const as this
57// forces initialization stubs in MSVC, making us dependent on initialization
58// order.
59//
60// 3) By not using an enum, we are possibly preventing the compiler from
61// doing certain constant folds, which may significantly reduce the
62// code generated for some assembly instructions (because they boil down
63// to a few constants). If this is a problem, we could change the code
64// such that we use an enum in optimized mode, and the struct in debug
65// mode. This way we get the compile-time error checking in debug mode
66// and best performance in optimized code.
67
68
69// -----------------------------------------------------------------------------
70// Implementation of Register and FPURegister
71
72// Core register.
73struct Register {
74  static const int kNumRegisters = v8::internal::kNumRegisters;
75  static const int kNumAllocatableRegisters = 14;  // v0 through t7
76
77  static int ToAllocationIndex(Register reg) {
78    return reg.code() - 2;  // zero_reg and 'at' are skipped.
79  }
80
81  static Register FromAllocationIndex(int index) {
82    ASSERT(index >= 0 && index < kNumAllocatableRegisters);
83    return from_code(index + 2);  // zero_reg and 'at' are skipped.
84  }
85
86  static const char* AllocationIndexToString(int index) {
87    ASSERT(index >= 0 && index < kNumAllocatableRegisters);
88    const char* const names[] = {
89      "v0",
90      "v1",
91      "a0",
92      "a1",
93      "a2",
94      "a3",
95      "t0",
96      "t1",
97      "t2",
98      "t3",
99      "t4",
100      "t5",
101      "t6",
102      "t7",
103    };
104    return names[index];
105  }
106
107  static Register from_code(int code) {
108    Register r = { code };
109    return r;
110  }
111
112  bool is_valid() const { return 0 <= code_ && code_ < kNumRegisters; }
113  bool is(Register reg) const { return code_ == reg.code_; }
114  int code() const {
115    ASSERT(is_valid());
116    return code_;
117  }
118  int bit() const {
119    ASSERT(is_valid());
120    return 1 << code_;
121  }
122
123  // Unfortunately we can't make this private in a struct.
124  int code_;
125};
126
127const Register no_reg = { -1 };
128
129const Register zero_reg = { 0 };
130const Register at = { 1 };
131const Register v0 = { 2 };
132const Register v1 = { 3 };
133const Register a0 = { 4 };
134const Register a1 = { 5 };
135const Register a2 = { 6 };
136const Register a3 = { 7 };
137const Register t0 = { 8 };
138const Register t1 = { 9 };
139const Register t2 = { 10 };
140const Register t3 = { 11 };
141const Register t4 = { 12 };
142const Register t5 = { 13 };
143const Register t6 = { 14 };
144const Register t7 = { 15 };
145const Register s0 = { 16 };
146const Register s1 = { 17 };
147const Register s2 = { 18 };
148const Register s3 = { 19 };
149const Register s4 = { 20 };
150const Register s5 = { 21 };
151const Register s6 = { 22 };
152const Register s7 = { 23 };
153const Register t8 = { 24 };
154const Register t9 = { 25 };
155const Register k0 = { 26 };
156const Register k1 = { 27 };
157const Register gp = { 28 };
158const Register sp = { 29 };
159const Register s8_fp = { 30 };
160const Register ra = { 31 };
161
162
163int ToNumber(Register reg);
164
165Register ToRegister(int num);
166
167// Coprocessor register.
168struct FPURegister {
169  static const int kNumRegisters = v8::internal::kNumFPURegisters;
170  // f0 has been excluded from allocation. This is following ia32
171  // where xmm0 is excluded.
172  static const int kNumAllocatableRegisters = 15;
173
174  static int ToAllocationIndex(FPURegister reg) {
175    ASSERT(reg.code() != 0);
176    ASSERT(reg.code() % 2 == 0);
177    return (reg.code() / 2) - 1;
178  }
179
180  static FPURegister FromAllocationIndex(int index) {
181    ASSERT(index >= 0 && index < kNumAllocatableRegisters);
182    return from_code((index + 1) * 2);
183  }
184
185  static const char* AllocationIndexToString(int index) {
186    ASSERT(index >= 0 && index < kNumAllocatableRegisters);
187    const char* const names[] = {
188      "f2",
189      "f4",
190      "f6",
191      "f8",
192      "f10",
193      "f12",
194      "f14",
195      "f16",
196      "f18",
197      "f20",
198      "f22",
199      "f24",
200      "f26",
201      "f28",
202      "f30"
203    };
204    return names[index];
205  }
206
207  static FPURegister from_code(int code) {
208    FPURegister r = { code };
209    return r;
210  }
211
212  bool is_valid() const { return 0 <= code_ && code_ < kNumFPURegisters ; }
213  bool is(FPURegister creg) const { return code_ == creg.code_; }
214  int code() const {
215    ASSERT(is_valid());
216    return code_;
217  }
218  int bit() const {
219    ASSERT(is_valid());
220    return 1 << code_;
221  }
222  void setcode(int f) {
223    code_ = f;
224    ASSERT(is_valid());
225  }
226  // Unfortunately we can't make this private in a struct.
227  int code_;
228};
229
230typedef FPURegister DoubleRegister;
231
232const FPURegister no_creg = { -1 };
233
234const FPURegister f0 = { 0 };  // Return value in hard float mode.
235const FPURegister f1 = { 1 };
236const FPURegister f2 = { 2 };
237const FPURegister f3 = { 3 };
238const FPURegister f4 = { 4 };
239const FPURegister f5 = { 5 };
240const FPURegister f6 = { 6 };
241const FPURegister f7 = { 7 };
242const FPURegister f8 = { 8 };
243const FPURegister f9 = { 9 };
244const FPURegister f10 = { 10 };
245const FPURegister f11 = { 11 };
246const FPURegister f12 = { 12 };  // Arg 0 in hard float mode.
247const FPURegister f13 = { 13 };
248const FPURegister f14 = { 14 };  // Arg 1 in hard float mode.
249const FPURegister f15 = { 15 };
250const FPURegister f16 = { 16 };
251const FPURegister f17 = { 17 };
252const FPURegister f18 = { 18 };
253const FPURegister f19 = { 19 };
254const FPURegister f20 = { 20 };
255const FPURegister f21 = { 21 };
256const FPURegister f22 = { 22 };
257const FPURegister f23 = { 23 };
258const FPURegister f24 = { 24 };
259const FPURegister f25 = { 25 };
260const FPURegister f26 = { 26 };
261const FPURegister f27 = { 27 };
262const FPURegister f28 = { 28 };
263const FPURegister f29 = { 29 };
264const FPURegister f30 = { 30 };
265const FPURegister f31 = { 31 };
266
267// FPU (coprocessor 1) control registers.
268// Currently only FCSR (#31) is implemented.
269struct FPUControlRegister {
270  static const int kFCSRRegister = 31;
271  static const int kInvalidFPUControlRegister = -1;
272
273  bool is_valid() const { return code_ == kFCSRRegister; }
274  bool is(FPUControlRegister creg) const { return code_ == creg.code_; }
275  int code() const {
276    ASSERT(is_valid());
277    return code_;
278  }
279  int bit() const {
280    ASSERT(is_valid());
281    return 1 << code_;
282  }
283  void setcode(int f) {
284    code_ = f;
285    ASSERT(is_valid());
286  }
287  // Unfortunately we can't make this private in a struct.
288  int code_;
289};
290
291const FPUControlRegister no_fpucreg = { -1 };
292const FPUControlRegister FCSR = { kFCSRRegister };
293
294
295// -----------------------------------------------------------------------------
296// Machine instruction Operands.
297
298// Class Operand represents a shifter operand in data processing instructions.
299class Operand BASE_EMBEDDED {
300 public:
301  // Immediate.
302  INLINE(explicit Operand(int32_t immediate,
303         RelocInfo::Mode rmode = RelocInfo::NONE));
304  INLINE(explicit Operand(const ExternalReference& f));
305  INLINE(explicit Operand(const char* s));
306  INLINE(explicit Operand(Object** opp));
307  INLINE(explicit Operand(Context** cpp));
308  explicit Operand(Handle<Object> handle);
309  INLINE(explicit Operand(Smi* value));
310
311  // Register.
312  INLINE(explicit Operand(Register rm));
313
314  // Return true if this is a register operand.
315  INLINE(bool is_reg() const);
316
317  Register rm() const { return rm_; }
318
319 private:
320  Register rm_;
321  int32_t imm32_;  // Valid if rm_ == no_reg
322  RelocInfo::Mode rmode_;
323
324  friend class Assembler;
325  friend class MacroAssembler;
326};
327
328
329// On MIPS we have only one adressing mode with base_reg + offset.
330// Class MemOperand represents a memory operand in load and store instructions.
331class MemOperand : public Operand {
332 public:
333
334  explicit MemOperand(Register rn, int32_t offset = 0);
335
336 private:
337  int32_t offset_;
338
339  friend class Assembler;
340};
341
342
343// CpuFeatures keeps track of which features are supported by the target CPU.
344// Supported features must be enabled by a Scope before use.
345class CpuFeatures {
346 public:
347  // Detect features of the target CPU. Set safe defaults if the serializer
348  // is enabled (snapshots must be portable).
349  void Probe(bool portable);
350
351  // Check whether a feature is supported by the target CPU.
352  bool IsSupported(CpuFeature f) const {
353    if (f == FPU && !FLAG_enable_fpu) return false;
354    return (supported_ & (1u << f)) != 0;
355  }
356
357  // Check whether a feature is currently enabled.
358  bool IsEnabled(CpuFeature f) const {
359    return (enabled_ & (1u << f)) != 0;
360  }
361
362  // Enable a specified feature within a scope.
363  class Scope BASE_EMBEDDED {
364#ifdef DEBUG
365   public:
366    explicit Scope(CpuFeature f)
367        : cpu_features_(Isolate::Current()->cpu_features()),
368          isolate_(Isolate::Current()) {
369      ASSERT(cpu_features_->IsSupported(f));
370      ASSERT(!Serializer::enabled() ||
371             (cpu_features_->found_by_runtime_probing_ & (1u << f)) == 0);
372      old_enabled_ = cpu_features_->enabled_;
373      cpu_features_->enabled_ |= 1u << f;
374    }
375    ~Scope() {
376      ASSERT_EQ(Isolate::Current(), isolate_);
377      cpu_features_->enabled_ = old_enabled_;
378     }
379   private:
380    unsigned old_enabled_;
381    CpuFeatures* cpu_features_;
382    Isolate* isolate_;
383#else
384   public:
385    explicit Scope(CpuFeature f) {}
386#endif
387  };
388
389 private:
390  CpuFeatures();
391
392  unsigned supported_;
393  unsigned enabled_;
394  unsigned found_by_runtime_probing_;
395
396  friend class Isolate;
397
398  DISALLOW_COPY_AND_ASSIGN(CpuFeatures);
399};
400
401
402class Assembler : public AssemblerBase {
403 public:
404  // Create an assembler. Instructions and relocation information are emitted
405  // into a buffer, with the instructions starting from the beginning and the
406  // relocation information starting from the end of the buffer. See CodeDesc
407  // for a detailed comment on the layout (globals.h).
408  //
409  // If the provided buffer is NULL, the assembler allocates and grows its own
410  // buffer, and buffer_size determines the initial buffer size. The buffer is
411  // owned by the assembler and deallocated upon destruction of the assembler.
412  //
413  // If the provided buffer is not NULL, the assembler uses the provided buffer
414  // for code generation and assumes its size to be buffer_size. If the buffer
415  // is too small, a fatal error occurs. No deallocation of the buffer is done
416  // upon destruction of the assembler.
417  Assembler(void* buffer, int buffer_size);
418  ~Assembler();
419
420  // Overrides the default provided by FLAG_debug_code.
421  void set_emit_debug_code(bool value) { emit_debug_code_ = value; }
422
423  // GetCode emits any pending (non-emitted) code and fills the descriptor
424  // desc. GetCode() is idempotent; it returns the same result if no other
425  // Assembler functions are invoked in between GetCode() calls.
426  void GetCode(CodeDesc* desc);
427
428  // Label operations & relative jumps (PPUM Appendix D).
429  //
430  // Takes a branch opcode (cc) and a label (L) and generates
431  // either a backward branch or a forward branch and links it
432  // to the label fixup chain. Usage:
433  //
434  // Label L;    // unbound label
435  // j(cc, &L);  // forward branch to unbound label
436  // bind(&L);   // bind label to the current pc
437  // j(cc, &L);  // backward branch to bound label
438  // bind(&L);   // illegal: a label may be bound only once
439  //
440  // Note: The same Label can be used for forward and backward branches
441  // but it may be bound only once.
442  void bind(Label* L);  // binds an unbound label L to the current code position
443
444  // Returns the branch offset to the given label from the current code position
445  // Links the label to the current position if it is still unbound
446  // Manages the jump elimination optimization if the second parameter is true.
447  int32_t branch_offset(Label* L, bool jump_elimination_allowed);
448  int32_t shifted_branch_offset(Label* L, bool jump_elimination_allowed) {
449    int32_t o = branch_offset(L, jump_elimination_allowed);
450    ASSERT((o & 3) == 0);   // Assert the offset is aligned.
451    return o >> 2;
452  }
453
454  // Puts a labels target address at the given position.
455  // The high 8 bits are set to zero.
456  void label_at_put(Label* L, int at_offset);
457
458  // Read/Modify the code target address in the branch/call instruction at pc.
459  static Address target_address_at(Address pc);
460  static void set_target_address_at(Address pc, Address target);
461
462  // This sets the branch destination (which gets loaded at the call address).
463  // This is for calls and branches within generated code.
464  inline static void set_target_at(Address instruction_payload,
465                                   Address target) {
466    set_target_address_at(instruction_payload, target);
467  }
468
469  // This sets the branch destination.
470  // This is for calls and branches to runtime code.
471  inline static void set_external_target_at(Address instruction_payload,
472                                            Address target) {
473    set_target_address_at(instruction_payload, target);
474  }
475
476  // Size of an instruction.
477  static const int kInstrSize = sizeof(Instr);
478
479  // Difference between address of current opcode and target address offset.
480  static const int kBranchPCOffset = 4;
481
482  // Here we are patching the address in the LUI/ORI instruction pair.
483  // These values are used in the serialization process and must be zero for
484  // MIPS platform, as Code, Embedded Object or External-reference pointers
485  // are split across two consecutive instructions and don't exist separately
486  // in the code, so the serializer should not step forwards in memory after
487  // a target is resolved and written.
488  static const int kCallTargetSize = 0 * kInstrSize;
489  static const int kExternalTargetSize = 0 * kInstrSize;
490
491  // Number of consecutive instructions used to store 32bit constant.
492  // Used in RelocInfo::target_address_address() function to tell serializer
493  // address of the instruction that follows LUI/ORI instruction pair.
494  static const int kInstructionsFor32BitConstant = 2;
495
496  // Distance between the instruction referring to the address of the call
497  // target and the return address.
498  static const int kCallTargetAddressOffset = 4 * kInstrSize;
499
500  // Distance between start of patched return sequence and the emitted address
501  // to jump to.
502  static const int kPatchReturnSequenceAddressOffset = 0;
503
504  // Distance between start of patched debug break slot and the emitted address
505  // to jump to.
506  static const int kPatchDebugBreakSlotAddressOffset =  0 * kInstrSize;
507
508  // Difference between address of current opcode and value read from pc
509  // register.
510  static const int kPcLoadDelta = 4;
511
512  // Number of instructions used for the JS return sequence. The constant is
513  // used by the debugger to patch the JS return sequence.
514  static const int kJSReturnSequenceInstructions = 7;
515  static const int kDebugBreakSlotInstructions = 4;
516  static const int kDebugBreakSlotLength =
517      kDebugBreakSlotInstructions * kInstrSize;
518
519
520  // ---------------------------------------------------------------------------
521  // Code generation.
522
523  // Insert the smallest number of nop instructions
524  // possible to align the pc offset to a multiple
525  // of m. m must be a power of 2 (>= 4).
526  void Align(int m);
527  // Aligns code to something that's optimal for a jump target for the platform.
528  void CodeTargetAlign();
529
530  // Different nop operations are used by the code generator to detect certain
531  // states of the generated code.
532  enum NopMarkerTypes {
533    NON_MARKING_NOP = 0,
534    DEBUG_BREAK_NOP,
535    // IC markers.
536    PROPERTY_ACCESS_INLINED,
537    PROPERTY_ACCESS_INLINED_CONTEXT,
538    PROPERTY_ACCESS_INLINED_CONTEXT_DONT_DELETE,
539    // Helper values.
540    LAST_CODE_MARKER,
541    FIRST_IC_MARKER = PROPERTY_ACCESS_INLINED
542  };
543
544  // type == 0 is the default non-marking type.
545  void nop(unsigned int type = 0) {
546    ASSERT(type < 32);
547    sll(zero_reg, zero_reg, type, true);
548  }
549
550
551  //------- Branch and jump  instructions --------
552  // We don't use likely variant of instructions.
553  void b(int16_t offset);
554  void b(Label* L) { b(branch_offset(L, false)>>2); }
555  void bal(int16_t offset);
556  void bal(Label* L) { bal(branch_offset(L, false)>>2); }
557
558  void beq(Register rs, Register rt, int16_t offset);
559  void beq(Register rs, Register rt, Label* L) {
560    beq(rs, rt, branch_offset(L, false) >> 2);
561  }
562  void bgez(Register rs, int16_t offset);
563  void bgezal(Register rs, int16_t offset);
564  void bgtz(Register rs, int16_t offset);
565  void blez(Register rs, int16_t offset);
566  void bltz(Register rs, int16_t offset);
567  void bltzal(Register rs, int16_t offset);
568  void bne(Register rs, Register rt, int16_t offset);
569  void bne(Register rs, Register rt, Label* L) {
570    bne(rs, rt, branch_offset(L, false)>>2);
571  }
572
573  // Never use the int16_t b(l)cond version with a branch offset
574  // instead of using the Label* version. See Twiki for infos.
575
576  // Jump targets must be in the current 256 MB-aligned region. ie 28 bits.
577  void j(int32_t target);
578  void jal(int32_t target);
579  void jalr(Register rs, Register rd = ra);
580  void jr(Register target);
581
582
583  //-------Data-processing-instructions---------
584
585  // Arithmetic.
586  void addu(Register rd, Register rs, Register rt);
587  void subu(Register rd, Register rs, Register rt);
588  void mult(Register rs, Register rt);
589  void multu(Register rs, Register rt);
590  void div(Register rs, Register rt);
591  void divu(Register rs, Register rt);
592  void mul(Register rd, Register rs, Register rt);
593
594  void addiu(Register rd, Register rs, int32_t j);
595
596  // Logical.
597  void and_(Register rd, Register rs, Register rt);
598  void or_(Register rd, Register rs, Register rt);
599  void xor_(Register rd, Register rs, Register rt);
600  void nor(Register rd, Register rs, Register rt);
601
602  void andi(Register rd, Register rs, int32_t j);
603  void ori(Register rd, Register rs, int32_t j);
604  void xori(Register rd, Register rs, int32_t j);
605  void lui(Register rd, int32_t j);
606
607  // Shifts.
608  // Please note: sll(zero_reg, zero_reg, x) instructions are reserved as nop
609  // and may cause problems in normal code. coming_from_nop makes sure this
610  // doesn't happen.
611  void sll(Register rd, Register rt, uint16_t sa, bool coming_from_nop = false);
612  void sllv(Register rd, Register rt, Register rs);
613  void srl(Register rd, Register rt, uint16_t sa);
614  void srlv(Register rd, Register rt, Register rs);
615  void sra(Register rt, Register rd, uint16_t sa);
616  void srav(Register rt, Register rd, Register rs);
617  void rotr(Register rd, Register rt, uint16_t sa);
618  void rotrv(Register rd, Register rt, Register rs);
619
620
621  //------------Memory-instructions-------------
622
623  void lb(Register rd, const MemOperand& rs);
624  void lbu(Register rd, const MemOperand& rs);
625  void lh(Register rd, const MemOperand& rs);
626  void lhu(Register rd, const MemOperand& rs);
627  void lw(Register rd, const MemOperand& rs);
628  void lwl(Register rd, const MemOperand& rs);
629  void lwr(Register rd, const MemOperand& rs);
630  void sb(Register rd, const MemOperand& rs);
631  void sh(Register rd, const MemOperand& rs);
632  void sw(Register rd, const MemOperand& rs);
633  void swl(Register rd, const MemOperand& rs);
634  void swr(Register rd, const MemOperand& rs);
635
636
637  //-------------Misc-instructions--------------
638
639  // Break / Trap instructions.
640  void break_(uint32_t code);
641  void tge(Register rs, Register rt, uint16_t code);
642  void tgeu(Register rs, Register rt, uint16_t code);
643  void tlt(Register rs, Register rt, uint16_t code);
644  void tltu(Register rs, Register rt, uint16_t code);
645  void teq(Register rs, Register rt, uint16_t code);
646  void tne(Register rs, Register rt, uint16_t code);
647
648  // Move from HI/LO register.
649  void mfhi(Register rd);
650  void mflo(Register rd);
651
652  // Set on less than.
653  void slt(Register rd, Register rs, Register rt);
654  void sltu(Register rd, Register rs, Register rt);
655  void slti(Register rd, Register rs, int32_t j);
656  void sltiu(Register rd, Register rs, int32_t j);
657
658  // Conditional move.
659  void movz(Register rd, Register rs, Register rt);
660  void movn(Register rd, Register rs, Register rt);
661  void movt(Register rd, Register rs, uint16_t cc = 0);
662  void movf(Register rd, Register rs, uint16_t cc = 0);
663
664  // Bit twiddling.
665  void clz(Register rd, Register rs);
666  void ins_(Register rt, Register rs, uint16_t pos, uint16_t size);
667  void ext_(Register rt, Register rs, uint16_t pos, uint16_t size);
668
669  //--------Coprocessor-instructions----------------
670
671  // Load, store, and move.
672  void lwc1(FPURegister fd, const MemOperand& src);
673  void ldc1(FPURegister fd, const MemOperand& src);
674
675  void swc1(FPURegister fs, const MemOperand& dst);
676  void sdc1(FPURegister fs, const MemOperand& dst);
677
678  void mtc1(Register rt, FPURegister fs);
679  void mfc1(Register rt, FPURegister fs);
680
681  void ctc1(Register rt, FPUControlRegister fs);
682  void cfc1(Register rt, FPUControlRegister fs);
683
684  // Arithmetic.
685  void add_d(FPURegister fd, FPURegister fs, FPURegister ft);
686  void sub_d(FPURegister fd, FPURegister fs, FPURegister ft);
687  void mul_d(FPURegister fd, FPURegister fs, FPURegister ft);
688  void div_d(FPURegister fd, FPURegister fs, FPURegister ft);
689  void abs_d(FPURegister fd, FPURegister fs);
690  void mov_d(FPURegister fd, FPURegister fs);
691  void neg_d(FPURegister fd, FPURegister fs);
692  void sqrt_d(FPURegister fd, FPURegister fs);
693
694  // Conversion.
695  void cvt_w_s(FPURegister fd, FPURegister fs);
696  void cvt_w_d(FPURegister fd, FPURegister fs);
697  void trunc_w_s(FPURegister fd, FPURegister fs);
698  void trunc_w_d(FPURegister fd, FPURegister fs);
699  void round_w_s(FPURegister fd, FPURegister fs);
700  void round_w_d(FPURegister fd, FPURegister fs);
701  void floor_w_s(FPURegister fd, FPURegister fs);
702  void floor_w_d(FPURegister fd, FPURegister fs);
703  void ceil_w_s(FPURegister fd, FPURegister fs);
704  void ceil_w_d(FPURegister fd, FPURegister fs);
705
706  void cvt_l_s(FPURegister fd, FPURegister fs);
707  void cvt_l_d(FPURegister fd, FPURegister fs);
708  void trunc_l_s(FPURegister fd, FPURegister fs);
709  void trunc_l_d(FPURegister fd, FPURegister fs);
710  void round_l_s(FPURegister fd, FPURegister fs);
711  void round_l_d(FPURegister fd, FPURegister fs);
712  void floor_l_s(FPURegister fd, FPURegister fs);
713  void floor_l_d(FPURegister fd, FPURegister fs);
714  void ceil_l_s(FPURegister fd, FPURegister fs);
715  void ceil_l_d(FPURegister fd, FPURegister fs);
716
717  void cvt_s_w(FPURegister fd, FPURegister fs);
718  void cvt_s_l(FPURegister fd, FPURegister fs);
719  void cvt_s_d(FPURegister fd, FPURegister fs);
720
721  void cvt_d_w(FPURegister fd, FPURegister fs);
722  void cvt_d_l(FPURegister fd, FPURegister fs);
723  void cvt_d_s(FPURegister fd, FPURegister fs);
724
725  // Conditions and branches.
726  void c(FPUCondition cond, SecondaryField fmt,
727         FPURegister ft, FPURegister fs, uint16_t cc = 0);
728
729  void bc1f(int16_t offset, uint16_t cc = 0);
730  void bc1f(Label* L, uint16_t cc = 0) { bc1f(branch_offset(L, false)>>2, cc); }
731  void bc1t(int16_t offset, uint16_t cc = 0);
732  void bc1t(Label* L, uint16_t cc = 0) { bc1t(branch_offset(L, false)>>2, cc); }
733  void fcmp(FPURegister src1, const double src2, FPUCondition cond);
734
735  // Check the code size generated from label to here.
736  int InstructionsGeneratedSince(Label* l) {
737    return (pc_offset() - l->pos()) / kInstrSize;
738  }
739
740  // Class for scoping postponing the trampoline pool generation.
741  class BlockTrampolinePoolScope {
742   public:
743    explicit BlockTrampolinePoolScope(Assembler* assem) : assem_(assem) {
744      assem_->StartBlockTrampolinePool();
745    }
746    ~BlockTrampolinePoolScope() {
747      assem_->EndBlockTrampolinePool();
748    }
749
750   private:
751    Assembler* assem_;
752
753    DISALLOW_IMPLICIT_CONSTRUCTORS(BlockTrampolinePoolScope);
754  };
755
756  // Debugging.
757
758  // Mark address of the ExitJSFrame code.
759  void RecordJSReturn();
760
761  // Mark address of a debug break slot.
762  void RecordDebugBreakSlot();
763
764  // Record a comment relocation entry that can be used by a disassembler.
765  // Use --code-comments to enable.
766  void RecordComment(const char* msg);
767
768  // Writes a single byte or word of data in the code stream.  Used for
769  // inline tables, e.g., jump-tables.
770  void db(uint8_t data);
771  void dd(uint32_t data);
772
773  int32_t pc_offset() const { return pc_ - buffer_; }
774
775  PositionsRecorder* positions_recorder() { return &positions_recorder_; }
776
777  bool can_peephole_optimize(int instructions) {
778    if (!allow_peephole_optimization_) return false;
779    if (last_bound_pos_ > pc_offset() - instructions * kInstrSize) return false;
780    return reloc_info_writer.last_pc() <= pc_ - instructions * kInstrSize;
781  }
782
783  // Postpone the generation of the trampoline pool for the specified number of
784  // instructions.
785  void BlockTrampolinePoolFor(int instructions);
786
787  // Check if there is less than kGap bytes available in the buffer.
788  // If this is the case, we need to grow the buffer before emitting
789  // an instruction or relocation information.
790  inline bool overflow() const { return pc_ >= reloc_info_writer.pos() - kGap; }
791
792  // Get the number of bytes available in the buffer.
793  inline int available_space() const { return reloc_info_writer.pos() - pc_; }
794
795  // Read/patch instructions.
796  static Instr instr_at(byte* pc) { return *reinterpret_cast<Instr*>(pc); }
797  static void instr_at_put(byte* pc, Instr instr) {
798    *reinterpret_cast<Instr*>(pc) = instr;
799  }
800  Instr instr_at(int pos) { return *reinterpret_cast<Instr*>(buffer_ + pos); }
801  void instr_at_put(int pos, Instr instr) {
802    *reinterpret_cast<Instr*>(buffer_ + pos) = instr;
803  }
804
805  // Check if an instruction is a branch of some kind.
806  static bool IsBranch(Instr instr);
807
808  static bool IsNop(Instr instr, unsigned int type);
809  static bool IsPop(Instr instr);
810  static bool IsPush(Instr instr);
811  static bool IsLwRegFpOffset(Instr instr);
812  static bool IsSwRegFpOffset(Instr instr);
813  static bool IsLwRegFpNegOffset(Instr instr);
814  static bool IsSwRegFpNegOffset(Instr instr);
815
816  static Register GetRt(Instr instr);
817
818  static int32_t GetBranchOffset(Instr instr);
819  static bool IsLw(Instr instr);
820  static int16_t GetLwOffset(Instr instr);
821  static Instr SetLwOffset(Instr instr, int16_t offset);
822
823  static bool IsSw(Instr instr);
824  static Instr SetSwOffset(Instr instr, int16_t offset);
825  static bool IsAddImmediate(Instr instr);
826  static Instr SetAddImmediateOffset(Instr instr, int16_t offset);
827
828  void CheckTrampolinePool(bool force_emit = false);
829
830 protected:
831  bool emit_debug_code() const { return emit_debug_code_; }
832
833  int32_t buffer_space() const { return reloc_info_writer.pos() - pc_; }
834
835  // Decode branch instruction at pos and return branch target pos.
836  int target_at(int32_t pos);
837
838  // Patch branch instruction at pos to branch to given branch target pos.
839  void target_at_put(int32_t pos, int32_t target_pos);
840
841  // Say if we need to relocate with this mode.
842  bool MustUseReg(RelocInfo::Mode rmode);
843
844  // Record reloc info for current pc_.
845  void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0);
846
847  // Block the emission of the trampoline pool before pc_offset.
848  void BlockTrampolinePoolBefore(int pc_offset) {
849    if (no_trampoline_pool_before_ < pc_offset)
850      no_trampoline_pool_before_ = pc_offset;
851  }
852
853  void StartBlockTrampolinePool() {
854    trampoline_pool_blocked_nesting_++;
855  }
856  void EndBlockTrampolinePool() {
857    trampoline_pool_blocked_nesting_--;
858  }
859
860  bool is_trampoline_pool_blocked() const {
861    return trampoline_pool_blocked_nesting_ > 0;
862  }
863
864 private:
865  // Code buffer:
866  // The buffer into which code and relocation info are generated.
867  byte* buffer_;
868  int buffer_size_;
869  // True if the assembler owns the buffer, false if buffer is external.
870  bool own_buffer_;
871
872  // Buffer size and constant pool distance are checked together at regular
873  // intervals of kBufferCheckInterval emitted bytes.
874  static const int kBufferCheckInterval = 1*KB/2;
875
876  // Code generation.
877  // The relocation writer's position is at least kGap bytes below the end of
878  // the generated instructions. This is so that multi-instruction sequences do
879  // not have to check for overflow. The same is true for writes of large
880  // relocation info entries.
881  static const int kGap = 32;
882  byte* pc_;  // The program counter - moves forward.
883
884
885  // Repeated checking whether the trampoline pool should be emitted is rather
886  // expensive. By default we only check again once a number of instructions
887  // has been generated.
888  static const int kCheckConstIntervalInst = 32;
889  static const int kCheckConstInterval = kCheckConstIntervalInst * kInstrSize;
890
891  int next_buffer_check_;  // pc offset of next buffer check.
892
893  // Emission of the trampoline pool may be blocked in some code sequences.
894  int trampoline_pool_blocked_nesting_;  // Block emission if this is not zero.
895  int no_trampoline_pool_before_;  // Block emission before this pc offset.
896
897  // Keep track of the last emitted pool to guarantee a maximal distance.
898  int last_trampoline_pool_end_;  // pc offset of the end of the last pool.
899
900  // Relocation information generation.
901  // Each relocation is encoded as a variable size value.
902  static const int kMaxRelocSize = RelocInfoWriter::kMaxSize;
903  RelocInfoWriter reloc_info_writer;
904
905  // The bound position, before this we cannot do instruction elimination.
906  int last_bound_pos_;
907
908  // Code emission.
909  inline void CheckBuffer();
910  void GrowBuffer();
911  inline void emit(Instr x);
912  inline void CheckTrampolinePoolQuick();
913
914  // Instruction generation.
915  // We have 3 different kind of encoding layout on MIPS.
916  // However due to many different types of objects encoded in the same fields
917  // we have quite a few aliases for each mode.
918  // Using the same structure to refer to Register and FPURegister would spare a
919  // few aliases, but mixing both does not look clean to me.
920  // Anyway we could surely implement this differently.
921
922  void GenInstrRegister(Opcode opcode,
923                        Register rs,
924                        Register rt,
925                        Register rd,
926                        uint16_t sa = 0,
927                        SecondaryField func = NULLSF);
928
929  void GenInstrRegister(Opcode opcode,
930                        Register rs,
931                        Register rt,
932                        uint16_t msb,
933                        uint16_t lsb,
934                        SecondaryField func);
935
936  void GenInstrRegister(Opcode opcode,
937                        SecondaryField fmt,
938                        FPURegister ft,
939                        FPURegister fs,
940                        FPURegister fd,
941                        SecondaryField func = NULLSF);
942
943  void GenInstrRegister(Opcode opcode,
944                        SecondaryField fmt,
945                        Register rt,
946                        FPURegister fs,
947                        FPURegister fd,
948                        SecondaryField func = NULLSF);
949
950  void GenInstrRegister(Opcode opcode,
951                        SecondaryField fmt,
952                        Register rt,
953                        FPUControlRegister fs,
954                        SecondaryField func = NULLSF);
955
956
957  void GenInstrImmediate(Opcode opcode,
958                         Register rs,
959                         Register rt,
960                         int32_t  j);
961  void GenInstrImmediate(Opcode opcode,
962                         Register rs,
963                         SecondaryField SF,
964                         int32_t  j);
965  void GenInstrImmediate(Opcode opcode,
966                         Register r1,
967                         FPURegister r2,
968                         int32_t  j);
969
970
971  void GenInstrJump(Opcode opcode,
972                     uint32_t address);
973
974  // Helpers.
975  void LoadRegPlusOffsetToAt(const MemOperand& src);
976
977  // Labels.
978  void print(Label* L);
979  void bind_to(Label* L, int pos);
980  void link_to(Label* L, Label* appendix);
981  void next(Label* L);
982
983  // One trampoline consists of:
984  // - space for trampoline slots,
985  // - space for labels.
986  //
987  // Space for trampoline slots is equal to slot_count * 2 * kInstrSize.
988  // Space for trampoline slots preceeds space for labels. Each label is of one
989  // instruction size, so total amount for labels is equal to
990  // label_count *  kInstrSize.
991  class Trampoline {
992   public:
993    Trampoline(int start, int slot_count, int label_count) {
994      start_ = start;
995      next_slot_ = start;
996      free_slot_count_ = slot_count;
997      next_label_ = start + slot_count * 2 * kInstrSize;
998      free_label_count_ = label_count;
999      end_ = next_label_ + (label_count - 1) * kInstrSize;
1000    }
1001    int start() {
1002      return start_;
1003    }
1004    int end() {
1005      return end_;
1006    }
1007    int take_slot() {
1008      int trampoline_slot = next_slot_;
1009      ASSERT(free_slot_count_ > 0);
1010      free_slot_count_--;
1011      next_slot_ += 2 * kInstrSize;
1012      return trampoline_slot;
1013    }
1014    int take_label() {
1015      int label_pos = next_label_;
1016      ASSERT(free_label_count_ > 0);
1017      free_label_count_--;
1018      next_label_ += kInstrSize;
1019      return label_pos;
1020    }
1021   private:
1022    int start_;
1023    int end_;
1024    int next_slot_;
1025    int free_slot_count_;
1026    int next_label_;
1027    int free_label_count_;
1028  };
1029
1030  int32_t get_label_entry(int32_t pos, bool next_pool = true);
1031  int32_t get_trampoline_entry(int32_t pos, bool next_pool = true);
1032
1033  static const int kSlotsPerTrampoline = 2304;
1034  static const int kLabelsPerTrampoline = 8;
1035  static const int kTrampolineInst =
1036      2 * kSlotsPerTrampoline + kLabelsPerTrampoline;
1037  static const int kTrampolineSize = kTrampolineInst * kInstrSize;
1038  static const int kMaxBranchOffset = (1 << (18 - 1)) - 1;
1039  static const int kMaxDistBetweenPools =
1040      kMaxBranchOffset - 2 * kTrampolineSize;
1041
1042  List<Trampoline> trampolines_;
1043
1044  friend class RegExpMacroAssemblerMIPS;
1045  friend class RelocInfo;
1046  friend class CodePatcher;
1047  friend class BlockTrampolinePoolScope;
1048
1049  PositionsRecorder positions_recorder_;
1050  bool allow_peephole_optimization_;
1051  bool emit_debug_code_;
1052  friend class PositionsRecorder;
1053  friend class EnsureSpace;
1054};
1055
1056
1057class EnsureSpace BASE_EMBEDDED {
1058 public:
1059  explicit EnsureSpace(Assembler* assembler) {
1060    assembler->CheckBuffer();
1061  }
1062};
1063
1064} }  // namespace v8::internal
1065
1066#endif  // V8_ARM_ASSEMBLER_MIPS_H_
1067